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Abstract

We determine the thermal evolution of the intergalactic medium (IGM) over 3 Gyr of cosmic time

1.8 < z < 5.4 by comparing measurements of the Lyα forest power spectrum to a suite of ∼ 70

hydrodynamical simulations. We conduct Bayesian inference of IGM thermal parameters using an

end-to-end forward modeling framework whereby mock spectra generated from our simulation grid are

used to build a custom emulator which interpolates the power spectrum between thermal grid points.

The temperature at mean density T0 rises steadily from T0 ∼ 6000 K at z = 5.4, peaks at 14 000 K

for z ∼ 3.4, and decreases at lower redshift reaching T0 ∼ 7000 K by z ∼ 1.8. This evolution provides

conclusive evidence for photoionization heating resulting from the reionization of He II, as well as

the subsequent cooling of the IGM due to the expansion of the Universe after all reionization events

are complete. Our results are broadly consistent with previous measurements of thermal evolution

based on a variety of approaches, but the sensitivity of the power spectrum, the combination of high

precision BOSS measurements of large-scale modes (k . 0.02 s km−1) with our recent determination of

the small-scale power, our large grid of models, and our careful statistical analysis allow us to break the

well known degeneracy between the temperature at mean density T0 and the slope of the temperature

density relation γ that has plagued previous analyses. At the highest redshifts z ≥ 5 we infer lower

temperatures than expected from the standard picture of IGM thermal evolution leaving little room

for additional smoothing of the Lyα forest by free streaming of warm dark matter.

Keywords: galaxies: intergalactic medium, cosmology: observations, reionization, cosmological param-

eters

1. INTRODUCTION

The Lyman Alpha (Lyα) forest (Gunn & Peterson

1965; Lynds 1971) is the premier probe of diffuse baryons

in the intergalactic medium (IGM) at high redshifts.

Its fluctuations can be accurately described in the cur-

rent ΛCDM framework — on large scales it is mostly

sensitive to cosmological parameters such as the am-

plitude of fluctuations σ8, primordial power spectrum

Corresponding author: Michael Walther

michael.walther@cea.fr

slope ns, baryon density Ωb, number of neutrino species

Neff , and the sum of neutrino masses
∑
mν (Palanque-

Delabrouille et al. 2015; Rossi 2017). On small scales,

however, it is sensitive to the thermal state of the IGM1.

This alters the observed spectra via the Doppler broad-

ening of absorption features due to thermal motions,

as well as pressure smoothing of the gas (sometimes

called “Jeans” broadening), which affects the underlying

1Note that the small scale Lyα forest is also sensitive to the
nature of dark matter (like Warm Dark Matter (WDM), see e.g.
Seljak et al. 2006; Viel et al. 2013) which will not be the focus of
this work, but leads to important applications of our results.
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baryon distribution and depends on the integrated ther-

mal history of the IGM (Gnedin & Hui 1998; Kulkarni

et al. 2015; Oñorbe et al. 2017a). The thermal evolu-

tion is largely driven by impulsive heating from cosmic

reionization events and the cooling process due to adia-

batic expansion and Compton cooling (McQuinn & Up-

ton Sanderbeck 2016).

Current constraints imply that hydrogen and He I

were reionized at zreion,50 = 6.4–9.0(95%)2 (see Planck

Collaboration et al. 2018). Additionally, measurements

of the Lyα forest optical depth show a strong increase

close to z = 6 leading to complete Gunn-Peterson ab-

sorption (Fan et al. 2006; Becker et al. 2015; Bosman

et al. 2018; Eilers et al. 2018) which reveals that reion-

ization ends at z ∼ 6. As for He II reionization, which

is driven by the hard > 4 Ryd photons emitted by lu-

minous quasars, observations of the He II Lyα forest

indicate He II had to be reionized by z = 2.7 (Worseck

et al. 2011) and possibly as early as z = 3.4 (Worseck

et al. 2016), but the limited number of observational

constraints imply that the exact timing remains largely

uncertain. While it is observationally tricky to obtain

direct higher redshift constraints on He II reionization

through He II Lyα absorption measurements because the

He II forest becomes more and more opaque, we can in-

directly constrain it via its imprint on the thermal state

of the IGM.

In the standard picture of thermal evolution cold IGM

gas (few K) is strongly heated during H I and He I reion-

ization (by few times 10 000 K), subsequently cools and

then experiences additional heating during He II reion-

ization (McQuinn et al. 2009; Compostella et al. 2013;

Puchwein et al. 2015; Greig et al. 2015; Upton Sander-

beck et al. 2016; McQuinn & Upton Sanderbeck 2016;

Oñorbe et al. 2017a; Puchwein et al. 2018). The com-

bined effects of photoionization heating, Compton cool-

ing, and adiabatic cooling due to the expansion of the

universe lead to a net cooling of intergalactic gas be-

tween and after the reionization phases which has so far

not been conclusively observed. Another consequence

of these effects is a tight power law temperature-density

relation (TDR) for most of the IGM gas (Hui & Gnedin

1997; Puchwein et al. 2015; McQuinn & Upton Sander-

beck 2016) about ∆z ≈ 1–2 after the impulsive heating

from a reionization event:

T (∆) = T0∆γ−1, (1)

2zreion,50 is the redshift at which xH I = 0.50.

where ∆ = ρ/ρ̄ is the overdensity, T0 is temperature

at mean density T0, and the index γ is expected to ap-

proach ∼ 1.6 long after the completion of reionization.

As we recently summarized in Walther et al. (2018)

(hereafter Paper I) there have been many attempts

to measure the IGM’s thermal parameters (Haehnelt &

Steinmetz 1998; Schaye et al. 2000; Bryan & Machacek

2000; Ricotti et al. 2000; McDonald et al. 2001; Theuns

et al. 2002; Bolton et al. 2008; Viel et al. 2009; Lidz et al.

2010; Becker et al. 2011; Rudie et al. 2012; Garzilli et al.

2012; Rorai et al. 2013; Viel et al. 2013; Boera et al.

2014; Bolton et al. 2014; Lee et al. 2015; Rorai et al.

2017a,b; Iršič et al. 2017b; Yèche et al. 2017; Garzilli

et al. 2017; Rorai et al. 2018; D’Aloisio et al. 2018a;

Hiss et al. 2018) based on different statistical techniques

which typically constrain the smoothness of the Lyα for-

est as a whole via some summary statistics (e.g. wavelet

amplitudes, spectral curvature or the power spectrum)

or decompose the forest into individual absorption lines

by Voigt profile fitting. While there were some notable

discrepancies between some of the older measurements

(e.g. low values of γ inferred from the Bolton et al.

2008 flux PDF or the high T0 measurements from the

Lidz et al. 2010 wavelet analysis), more recent measure-

ments appear to be in better agreement. For example,

temperature determinations from the curvature statistic

(Becker et al. 2011; Boera et al. 2014) agree fairly well

with those determined from Voigt profile fitting (Bolton

et al. 2014; Rorai et al. 2018; Hiss et al. 2018). Note

however, that different techniques have distinct system-

atics and parameter degeneracies, that often complicate

detailed comparisons.

In this work, we use the power spectrum of the Lyα

forest to obtain an accurate self-consistent measurement

of IGM thermal evolution over a large redshift range

from z = 5.4 to z = 1.8. The power spectrum exhibits

a cutoff at small scales (high k) beyond which there is

no structure left in the Lyα forest. The reason for this

is both the smoothness in the baryon density resulting

from the finite gas pressure (often called Jeans pres-

sure smoothing) as well as thermal Doppler broadening.

The great advantage of the power spectrum compared to

other methods, is its sensitivity to structure on a multi-

tude of scales. Specifically, whereas other methods like

the curvature (Becker et al. 2011) and wavelets (Lidz

et al. 2010) provide only a small-scale measurement of

spectral smoothness, the overall shape of the power spec-

trum for scales between ∼ 500 kpc and ∼ 10 Mpc as well

as small-scale (high-k) cutoff provides additional con-

straining power that breaks degeneracies between dif-
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ferent thermal parameters3. For this work we consider

T0, γ and the pressure smoothing scale λP as thermal

parameters and the mean transmission F̄ as a further

astrophysical parameter. We additionally marginalize

over the strength of Si III correlations and the resolution

of the X-SHOOTER spectrograph (see §4.4 for more de-

tailed information about our prior assumptions).

Our analysis is based upon our recent high-precision

measurements of the the small-scale (high wavenumber

k) the Lyα forest flux power spectrum in Paper I as well

as other recent measurements from different instruments

(Palanque-Delabrouille et al. 2013, hereafter PD+13;

Viel et al. 2013; and Iršič et al. 2017b) combined with

the new Thermal History and Evolution in Reionization

Models of Absorption Lines (THERMAL) grid4 of hy-

drodynamical simulations. We then perform inference

by employing fast interpolation of our model power spec-

tra and performing an MCMC analysis with a Gaussian

likelihood.

This paper is organized as follows. The measurements

we used in this work are summarized in § 2. In § 3 we

present our grid of hydrodynamical simulations. We use

modified versions of our forward modeling, interpolation

and inference tools from Paper I, which we present in

§ 4, to measure the thermal state of the IGM at each

redshift. In § 5 we present these results and compare

them to measurements from the literature as well as

thermal evolution models. Finally, we discuss the results

in § 6 and conclude with § 7.

2. POWER SPECTRUM DATASETS FOR

STUDYING IGM THERMAL EVOLUTION

In Paper I we performed a new measurement of

the Lyα forest power spectrum. This is based on 74

archival high-resolution, high-S/N quasar spectra ob-

tained with the VLT/UVES (from Dall’Aglio et al. 2008)

and Keck/HIRES (from O’Meara et al. 2015, 2017) spec-

trographs covering a redshift range from z = 1.8 to

z = 3.4. This comprises a significant improvement in

dataset size compared to previous measurements based

on high-resolution spectra (McDonald et al. 2000; Croft

et al. 2002; Kim et al. 2004; Viel et al. 2008) in this red-

shift range. We semi-automatically masked out possible

metal contamination in our data based on several ap-

proaches, measured the power spectrum using a Lomb-

Scargle Periodogram (Lomb 1976; Scargle 1982) on the

3Note that this property can also be used to break degeneracies
with cosmological parameters, e.g. the nature of dark matter (Viel
et al. 2013; Iršič et al. 2017b; Armengaud et al. 2017) or the mass
of neutrinos (Palanque-Delabrouille et al. 2015; Yèche et al. 2017;
Baur et al. 2017).

4see thermal.joseonorbe.com

flux contrast δF = (F − F̄ )/F̄ , and binned the resulting

power in equidistant bins in log k. Statistical uncertain-

ties were estimated using a bootstrap method and are

. 10% for the small scale modes that are most sensitive

to the thermal state of the IGM.

Additionally, data using the BOSS (Baryon Os-

cillation Spectroscopic Survey, with the dataset of

Palanque-Delabrouille et al. 2013) or X-SHOOTER

(datasets of Iršič et al. 2017a; Yèche et al. 2017) spec-

trographs are available with even smaller statistical

uncertainties (e.g. ∼ 2% on large scales k < 0.01 s km−1

for the BOSS dataset), but limited small scale power

spectrum coverage due to the significantly lower spec-

troscopic resolutions of these instruments. As these

analyses use the same redshift binning as we do, but ex-

tend to higher redshifts 3.6 ≤ z ≤ 4.2 a comparison to

them is straightforward. In particular, the BOSS data

provides a large scale anchor point thereby partially

breaking degeneracies between the different parameters.

However, the X-SHOOTER dataset may have signifi-

cant uncertainty in its resolution estimates which we

will take into account in our modeling procedure (see

§ 4.4)5.

To assess the thermal state at even higher red-

shifts 4.2 ≤ z ≤ 5.4 (where currently no large survey

dataset exists) we use data from the previous high-

resolution measurement by Viel et al. (2013) based on

Keck/HIRES and Magellan/MIKE data. This extension

allows us to cover a big part of the universes history

(1.8 < z < 5.4) from just after H I reionization to well

after the He II reionization (according to Worseck et al.

2016) and the peak of the cosmic star formation history.

To summarize, our fiducial dataset consists of the data

from Paper I for z ≤ 3.4, the BOSS data by PD+13

at 2.2 ≤ z ≤ 4.2, the data by Viel et al. (2013) at

z ≥ 4.2, and the XQ-100 measurement by Iršič et al.

(2017a) at 3.6 ≤ z ≤ 4.2 where the VIS arm was used

(for z = 3.6 jointly with data from the UVB arm). Note

that for 3.6 ≤ z ≤ 4.0 no recent high-resolution analysis

is available. A summary of the datasets we analyzed can

be found in Table 1. Here, we show the observed redshift

range zmin–zmax , the binning in redshift ∆z, the number

of spectra analyzed Nqso, the approximate resolution R,

and the maximal wavenumber kmax obtained.

3. THE THERMAL SUITE OF

HYDRODYNAMICAL SIMULATIONS

5This issue was discussed in Paper I. See also Selsing et al.
(2018) who show the dependence of spectroscopic resolution on
seeing for the VIS and NIR arms in their Fig. 2 and find both sig-
nificant scatter as well as overall higher resolution than previously
quoted on the ESO webpage.

thermal.joseonorbe.com
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Table 1. Different data sets used in this analysis

dataset zmin zmax ∆z Nqso ∼ R kmax[s/km]

Palanque-Delabrouille et al. (2013) 2.2 4.2 0.2 11000 2200 0.02

Viel et al. (2013) 4.2 5.4 0.4 15 60000 0.1

Iršič et al. (2017b) 3.0 4.2 0.2 100 6000–9000 0.05

Walther et al. (2018) 1.8 3.4 0.2 74 60000 0.1

The hydrodynamical models we use in this paper for

comparison with our measurement are part of the pub-

lically available THERMAL suite of Nyx simulations

(Almgren et al. 2013). Nyx follows the evolution of dark

matter simulated as self-gravitating Lagrangian parti-

cles, and baryons modeled as an ideal gas on a uni-

form Cartesian grid. The Eulerian gas dynamics equa-

tions are solved using a second-order accurate piecewise

parabolic method (PPM) to accurately capture shocks.

For more details of these numerical methods and scaling

behavior tests, see Almgren et al. (2013) and Lukić et al.

(2015).

Besides solving for gravity and the Euler equations,

we also include the main physical processes fundamen-

tal to model the Lyα forest. First we consider the chem-

istry of the gas as having a primordial composition with

hydrogen and helium mass abundances of Xp, and Yp,

respectively. In addition, we include inverse Compton

cooling off the microwave background and keep track of

the net loss of thermal energy resulting from atomic col-

lisional processes. We used the updated recombination,

collision ionization, dielectric recombination rates, and

cooling rates given in Lukić et al. (2015). All cells are

assumed to be optically thin to ionizing radiation, and

radiative feedback is accounted for via a spatially uni-

form, but time-varying ultraviolet background (UVB)

radiation field given to the code as a list of photoioniza-

tion and photoheating rates that vary with redshift (e.g.

Katz et al. 1992).

The THERMAL suite consists of ∼ 70 simulations,

each in Lbox = 20 h−1 Mpc box and using Ncell = 10243

Eulerian cells and 10243 dark matter particles which is

a strong improvement with respect to previous studies

of the thermal state which relied on smaller boxes with

the same resolution (e.g. Becker et al. 2011). Cosmology

is based on a Planck Collaboration et al. (2014) model

(Ωm = 0.319181, Ωbh
2 = 0.022312, h = 0.670386, ns =

0.96, σ8 = 0.8288). Comparisons of different resolutions

and box sizes can be found in Lukić et al. (2015) and

this box size was chosen as the best compromise between

being able to run a large grid of models and the need

to be converged at least to < 10% on small scales (large

k). The power spectrum is even converged to the one

percent level on all relevant scales for z . 3 and all

scales k . 0.05 s km−1 at higher redshifts with respect to

resolution. For boxsize, however, the power is converged

to the ∼ 5% level, with the largest scales (smallest k <

0.01 s km−1) being significantly influenced by poor mode

sampling and therefore excluded from our analysis. We

further discuss effects of numerical convergence in § 6

which proves to be a major systematic effect for our

analysis.

For most simulations we generated different thermal

histories in a similar way as in Becker et al. (2011) by

changing the heating rates relative to a fiducial model

at all redshifts and we’ll henceforth call these our ‘heat-

ing rate rescaling models’. The heating rates we used

to construct different thermal histories have been con-

structed as:

ε = A∆BεHM12, (2)

where εHM12 are the heating rates tabulated in Haardt &

Madau (2012) and A and B are the parameters changed

to get different thermal histories. Note that while long

after any reionization event the instantaneous temper-

ature is more or less independent of the redshift of

reionization, the pressure smoothing scale λP retains a

memory of this for a longer time (Gnedin et al. 2003;

Kulkarni et al. 2015; Oñorbe et al. 2017a, an alternative

parametrization is possible using the total heat input,

see Nasir et al. 2016). As this type of modeling leads to

changes in the thermal state at all redshifts, it is hard to

disentangle λP from T0 and γ from just this approach.

Because of this and to better explore the parameter

space we also use a second modeling approach provid-

ing completely distinct thermal histories. In this ap-

proach we self-consistently solve for the UV background

as well as the heating during reionization following the

approach laid out in Oñorbe et al. (2017a). Reioniza-

tion models are parametrized by both a total heat input

∆T during reionization and a redshift of reionization

zreion (at which a species is 99.9% ionized and assuming

a fixed shape for the reionization history) for both H I

and He II reionization. We also consider the thermal

histories based on this approach to be more physically

motivated and will later use them to study the implica-

tions of our measurements on reionization.
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The values for thermal parameters T0 and γ were ob-

tained from the simulation by fitting a power law TDR

to the distribution of gas cells in log ∆ and log T using a

linear least squares method as described in Lukić et al.

(2015). To determine the pressure smoothing scale λP

the cutoff in the power spectrum of the real-space Lyα

flux Freal was fit as described in Kulkarni et al. (2015).

Here, Freal is the flux each position in the simulation

would produce (given it’s temperature and density), but

neglecting redshift space effects.

The model parameters were chosen to bracket most

current observational constraints on thermal parame-

ters from curvature, wavelet, line-fitting and quasar-pair

phase angle statistics. The set of all thermal evolution

models used in this paper as well as the current obser-

vational constraints are shown in Figure 1. The explicit

reionization based models (red curves) show strongly dif-

ferent evolutionary behavior especially in T0 (most of

them show a relatively narrow He II reionization peak

around z = 3) compared to a relatively smooth evolu-

tion for the heating rate rescaling approach (gray curves)

and will also be used later as comparison models for our

measured thermal evolution.

The combined set of models results in an irregular grid

of thermal parameters at each individual redshift. This

is shown in Figure 2 where each point in the T0, γ, λP

volume corresponds to one of our hydrodynamical simu-

lations. We can see that a large range is spanned in each

of the parameters and most of the 2 parameter combi-

nations. As λP probes the integrated thermal history

which is smooth for each individual model and partly

constrained by physical limits on heating and cooling of

the IGM during and after reionization it turns out to

be relatively difficult to independently vary λP in a way

that is not correlated with the thermal state parame-

ters T0 and γ. Alternatively, one could generate models

with abruptly changing temperature such that the pres-

sure smoothing does not have enough time to follow this

change. While arbitrary λP could be generated in this

way, fine-tuning is needed to produce this kind of model

for an individual redshift which would take a lot of ad-

ditional computational time (especially for changes at

low redshifts) and it also seems unphysical. Therefore,

we do not have full flexibility (mostly due to CPU time

restrictions) in varying T0 vs. λP orthogonal to the de-

generacy direction visible in our models. However, this

in the end does not pose a problem to our analysis as

the correlation between both parameters is physically

motivated.

In principle reionization is an inhomogeneous process

(Davies & Furlanetto 2016; D’Aloisio et al. 2015), but we

only use an homogeneous model to describe photoion-

izations. While generally UVB and thermal fluctuations

could be influencing the power spectrum and therefore

our conclusions on thermal evolution especially at z > 4

(see e.g. Cen et al. 2009), recent analyses (Onorbe et al.

2018, also earlier studies by McDonald et al. 2005 and

Croft 2004 obtained similar results but with a focus on

lower redshifts) have found that those mostly change the

power spectrum on larger scales than used for this work

(at least for H I reionization), but does not strongly

change the power on small scales which provides most

of the sensitivity to the thermal state of the IGM. Note

again that we are not using the largest scale modes which

strongly reduces our sensitivity to inhomogeneities, fur-

ther justifying our use of a homogeneous UVB.

We computed skewers of optical depth τ = − lnF

by convolving each pixel along one dimension in the

simulation box with the corresponding Voigt-profile for

the Temperature T , NH I ∝ ∆2/(T 0.7ΓH I) and Doppler

shifts due to v for each simulation snapshot. As is com-

mon in Lyα forest studies (see e.g. Bolton et al. 2010;

Boera et al. 2014), the obtained values of τ were then

rescaled to match different mean transmission values F̄

to compensate for our lack of knowledge of the UVB

amplitude. Generally this rescaling will affect the shape

and large scale amplitude of the power spectrum. Lukić

et al. (2015) investigated this issue (see their Figure

23) and found that rescaling τ by a factor of ∼ 0.5

results in to ∼ 5% changes in the Lyα forest power

spectrum, especially at low redshifts. While rescaling

τ could be slightly biasing our results, we emphasize

that the rescalings we perform in this work are typically

smaller ∆τ/τ ∼ 30%, and hence this effect should be

subdominant compared to e.g. boxsize effects and cos-

mic variance (see § 6).

For each redshift and each parameter combination

Θ = {T0, γ, λP, F̄} we generated 50000 randomly se-

lected skewers – the same ones for each parameter com-

bination – which serves as the starting point of our anal-

ysis.

4. MEASURING THE THERMAL STATE OF THE

IGM

In this section, we describe how we perform inference

on our data using the THERMAL grid. This involves

generating a forward model of the data, creating an emu-

lator – a fast method to interpolate from a sparse grid of

simulation to any point in the multi-d parameter space,

and finally performing the actual inference via Bayesian

methods.

4.1. Forward Modeling

To compare to existing measurements, which didn’t

apply masking of spectral regions, but instead treated
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Figure 1. Redshift evolution of different thermal evolution models (lines). Most of the different curves (gray) where obtained
by changing the overall heating rates from (Haardt & Madau 2012) by a factor (changing T0 at all redshifts) as well as the
exponent in their density dependence (changing γ at all redshifts) according to eqn. (2). As the pressure smoothing scale λP is
dependent on the full thermal evolution of the IGM it changes accordingly in these cases. Additional models of thermal evolution
(red) with different H I and He II reionization redshifts and heat inputs partially break those degeneracies. Also shown is the
Temperature T (∆?) (based on the values of ∆? by Becker et al. 2011) at the overdensity where constraints from curvature
measurements are independent of γ. We compare to the measurements by Lidz et al. (2010), Becker et al. (2011), Bolton et al.
(2014), Boera et al. (2014), Rorai et al. (2017b), Hiss et al. (2018) and Rorai et al. (2018) in the parameters constrained by the
respective analysis. The Lidz et al. (2010), Bolton et al. (2014) and Rorai et al. (2018) data have been offset by 0.02 along the
redshift axis for clarity.
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optical depths to obtain outputs with different mean trans-
mitted fluxes F̄ .

metal contamination statistically by comparing to lower

redshift data where most metals are outside the Lyα for-

est, we compute the power spectrum based on ∼ 50000

noiseless, high-resolution skewers from our simulation.

We will refer to this as the ‘perfect model’.

However, due to fully account for the window func-

tion introduced on the power spectrum by masking parts

of the data, when comparing to our measurement from

Paper I, we compute the power spectrum based on the

skewers for each combination of parameters applying the

full forward modeling technique described in Paper I

to our hydrodynamical simulations. Henceforth we’ll

call this the ‘forward model’. This technique consists

of several steps of post-processing the hydrodynamical

simulation outputs followed by a power spectrum com-

putation in the same way as for the data. To forward

model an individual quasar spectrum we first merge ran-

domly selected skewers (without repetition) to cover the

same pathlength as the data, then convolve the spectra

with a Gaussian smoothing kernel reducing the resolu-

tion of the models to match that of the data, rebin the

models onto the pixels of the observed spectra, and add

noise drawn from a Gaussian distribution for each indi-

vidual pixel with a standard deviation equal to the 1σ

uncertainty of the corresponding quasar spectral pixel

reported by the data reduction pipelines. Finally and

most importantly, we mask the forward modeled spec-

10−2 10−1

k [s/km]

−0.10

−0.05

0.00

0.05

0.10

(Δ
P/

P)

median deviation
maximum deviation
95% region
68% region

Figure 3. Cross validation results for our emulation proce-
dure at z = 2.8. Colored bands are showing the relative dif-
ference between emulated and true power for different cuts
of the full cross validation set. The median is shown as a
black curve. Other redshifts give similar results especially
for the 68% region. See main text for more details.

trum in exactly the same way as the data to account for

the windowing effects resulting from gaps in the data

and our metal masking procedure. We then compute the

power spectrum by utilizing ∼ 50000 skewers from our

simulation (see there Paper I, for a more detailed de-

scription of the individual steps. Note that while the full

forward modeling of noise and resolution might not be

completely necessary as they have been corrected in the

measurement (and are corrected in the same way inside

the forward modeling procedure as well), there might be

subtle effects on the masking correction. We therefore

want to make the model spectra as similar to data as

possible. Note that this does not change our model pre-

cision which is dominated by dataset size rather than

noise or resolution.

4.2. Emulation of the Power Spectrum

To perform a fit to the data and infer the thermal

state at a particular redshift we need to be able to com-

pute power spectra on a continuous range of parame-

ters. Therefore we need to interpolate between the dis-

crete and sparse outputs of the THERMAL grid. To

perform this task we follow the emulation approach of

Heitmann et al. (2006) and Habib et al. (2007). For

details, we refer the reader to their papers (and refer-

ences therein) as well as Paper I; in the following we

summarize the main steps of the approach. First, we de-

compose the simulated logarithmic power spectra onto a
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principal component analysis (PCA) basis. We save the

PCA vectors as well as the coefficients Ai(Θj) at each

thermal model location Θj . We then use a Gaussian

process to interpolate the coefficients Ai(Θj) onto any

arbitrary location in parameter space Θ. Taking the

dot product of the PCA vectors with these interpolated

coefficients then gives the power spectrum evaluated at

any parameter location.

We thus calculate a Gaussian process (GP) for each

principal component coefficient (using GEORGE, see Am-

bikasaran et al. 2016) using a squared exponential kernel

plus an additional white noise contribution

K(Θ1,Θ2) = exp(−0.5(Θ1−Θ2)C−1
l (Θ1−Θ2))+σnδij

(3)

for parameter values Θi, a chosen distance metric Cl
(which is defined by a smoothing length l for each pa-

rameter, i.e. it’s diagonal) and a noise contribution σn
(for an in depth introduction to GP techniques, see Ras-

mussen & Williams 2005).

As the hydrodynamical grid consists of far less mod-

els (∼ 50)6 than the previous dark matter (DM) based

grid (∼ 500) used in Paper I, we must be more careful

about the interpolation errors resulting from our emu-

lation procedure. Instead of just using a kernel with

a fixed hand-tuned smoothing length, which was our

approach in Paper I, we additionally optimized our

kernel parameters by maximizing GP-likelihood using

the scipy.optimize (Jones et al. 2001) package and

the so-called L-BFGS-B (Zhu et al. 1997) method7. We

then performed the analysis using the optimal smooth-

ing lengths l and noise σn for the kernel for each Gaus-

sian process emulator.

We estimate the emulation uncertainties using a cross-

validation scheme to propagate interpolation errors. To

do this we generate the emulator, but leave one simula-
tion out of the training set8. We denote emulators with

a model (defined by parameters Θ) left out as emu\Θ.

We then compare the actual models (with power Pmodel)

for this simulation to the emulator (with power Pemu\Θ)

at the parameters Θ of this model:

∆Pemu(k,Θ) = Pmodel,Θ(k)− Pemu\Θ(k,Θ). (4)

We show the accuracy of the emulation in Figure 3. This

shows quantiles of the deviations ∆Pemu from the true

6The exact number of models used is redshift dependent be-
cause of further cuts that are discussed at the end of this subsec-
tion.

7If a low likelihood was achieved we optimized again using the
downhill simplex method by Nelder & Mead 1965 and took the
more optimal of the 2 runs

8In fact we discard all the different F̄ realizations for this sim-
ulation in this test as they all have the same thermal parameters

underlying model inside our cross-validation sample. We

see that for most models in our parameter space the

emulator works to better than 1%. However, emulation

uncertainty can increase to the 5% level (with a prefer-

ence for underestimation at k > 0.06 s km−1) for some

models. As the uncertainty in our power spectrum mea-

surements is ∼ 2% (for the 68% quantile) on large scales

(k . 0.01 s km−1) and & 5% on smaller scales, measure-

ment errors are much larger than these interpolation er-

rors. Nevertheless, we opted to add the covariance ma-

trix for the interpolation process to our likelihood. This

covariance matrix can be obtained by performing:

Cemu,ij = 〈∆emu(ki,Θ)∆emu(kj,Θ)〉 (5)

with the average performed over all possible combina-

tions of model parameters inside our grid for each red-

shift bin.

Due to the variety of thermal histories in the THER-

MAL suite some simulations can have extremelly close

values of their thermal parameters at some specific red-

shifts. In order to avoid possible problems in the em-

ulator due to this issue we removed models from the

THERMAL grid that did not satisfy a distance thresh-

old9 and are left with 45 to 65 models per redshift.

4.3. Inference

We perform a Bayesian Markov Chain Monte Carlo

(MCMC) analysis on the power spectrum data at each

individual redshift using the emcee package (Foreman-

Mackey et al. 2013) based on the affine invariant sam-

pling technique (Goodman & Weare 2010) and assuming

the multivariate Gaussian likelihood:

L ≡P (data|model) (6)

∝
∏

datasets

1√
det(C)

exp

(
−∆TC−1∆

2

)
∆ =Pdata −Pemu

C =Cdata + Cemu.

with Cemu being the covariance of the interpolation pro-

cedure and Cdata being the covariance of an individual

measurement. For these covariances we use published

9To be precise we demand

√∑
Θ∈Θ

(
Θi−Θj

max(Θ)−min(Θ)

)2
≥ 0.1.

As we have about 10 bins in γ, and about 7 in T0, the separation
between adjacent points would be at least 0.1 in the units shown.
But no two models have the same λP , increasing the separation.
Therefore, the chosen minimal separation is still closer than our
typical grid separation. While this threshold leads to good results
throughout our redshift range, it is not necessarily the optimal
one and further tests adopting different values could therefore be
used to slightly increase interpolation accuracy.
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Figure 4. Corner plot showing the Prior PDF for thermal
parameters and F̄ given our model grid and excluding pa-
rameter values outside its convex hull. This was obtained
by sampling our prior with an MCMC assuming a flat likeli-
hood. Note that the degeneracies in our model grid lead to
non-flat marginalized distributions. The diagonal shows the
1d-PDF (marginalized over all other parameters) for each
parameter with dashed vertical lines at the 16% and 84%
quantiles. The scatter plots below show the 2d-PDFs for
each combination of 2 parameters (also marginalized over all
others) with contours showing the region containing the 68%
and 95% highest densities. Note that due to the restrictions
of our grid there is a strong correlation especially between T0

and λP. The additional preference towards low T0 or λP is
due to our choice of flat priors in the log of these parameters.
The green band shows the 1σ interval in F̄ we use for the
Gaussian prior.

values if available. For our own dataset from Paper I

as well as the Viel et al. (2013) dataset, we used the

published uncertainties (i.e. the diagonal covariance el-

ements) and combined them with the correlation ma-

trix of the model closest in parameter space to obtain

an estimate of the covariance, i.e. we perform nearest

neighbor interpolation between covariance matrices ob-

tained at every point (see Paper I for details on this

approach).

4.4. Parameters and Priors

Our modeling so far depends on 4 parameters, T0

and γ describing the thermal state, λP for the pres-

sure smoothing depending on the full thermal history,

and F̄ for the mean transmission that corresponds to

a given UVB amplitude. There is, however, one addi-

tional parameter that we input in our models for each

dataset10 to generate the observed correlation between

Si III and Lyα (see McDonald et al. 2006; Palanque-

Delabrouille et al. 2013). Finally, because of significant

uncertainties in the resolution of the XQ-100 data (see

the detailed discussion in Appendix B of Paper I), we

also marginalize over the resolution of the XQ-100 mea-

surement whenever we use this data, giving us another

parameter. Therefore we have a total of 5 (in the case of

high-resolution data only) to 8 (in the case of fitting 3

datasets of which one comes from XQ-100) parameters.

We assume flat priors on log T0, log λP, γ. We now go

into further detail about the modeling and assumptions

for the other parameters.

We add Si III correlations to the model analytically by

multiplying the model power spectrum with an oscillat-

ing signal as correlations inside a spectrum correspond

to oscillations of the corresponding power spectrum:

Ptot = (1 + a2
Si III + 2a cos(k ∆v))PH I (7)

with aSi III being a free nuisance parameter for the

strength of the correlation. In previous works this was

typically expressed as aSi III = fSi III/(1− F̄ ) with fSi III

being a redshift independent quantity that was fit using

the entire dataset. We adopt this same parametrization

but opt to fit for a unique value of fSi III at each redshift

and for each dataset because of the different metal treat-

ment in the datasets and as we do not perform a joint

fit of different redshifts here. We assume a flat prior on

each fSi III and demand correlations to be positive.

We modeled the resolution of the X-SHOOTER spec-

trograph Rnew by multiplying the measured XQ-100

power spectrum with the resolution dependent part of

the window function:

WR(k,R) = exp

(
−1

2
(kR)2

)
(8)

using the resolutions quoted in Iršič et al. (2017a) and

dividing byWR(k,Rnew). Note that the resolution of the

instrument depends on two different factors: the resolu-

tion for a fully illuminated slit (or “slit resolution”) and

the seeing which gives rise to higher spectral resolution

if smaller than the slit size. We assume two limits for

the resolving power of the XQ-100 dataset. The lower

limit assumes the slit resolutions quoted in the XQ-100

data release paper (López et al. 2016) as well as a fully

10As the treatment of metal lines in the different data sets is fol-
lowing fundamentally different approaches, masking which should
remove at least part of the Si III in the spectra vs. subtraction
of the metal power estimated from side bands, we decided to al-
low a different value for each measurement. Note that in the end
thermal parameters will not be strongly correlated with the Si III

parameter.



10

illuminated slit (leading to RUVB = 4350 for the UVB

arm of the instrument, RVIS = 7410 for the VIS arm11).

The upper limit assumes a seeing of 0.65′′ (smaller than

the slit) and higher values for the slit resolution12 (lead-

ing to RUVB = 8230 and RVIS = 12184). We assume

a flat prior between these two limits. As z = 3.6 is us-

ing both spectral arms we use the lowest and highest of

the 4 resolution values above as the limits here. Note

that this choice of priors on spectroscopic resolution is

an extremely conservative choice that will significantly

weaken the constraints that can be obtained from this

XQ-100 dataset. This is most acute in the UVB arm be-

cause of its intrinsically lower resolution. A more care-

ful analysis of the XQ-100 resolution would allow us to

adopt a far stronger prior on these values, which would

increase the precision of constraints deduced from power

spectra measured from such moderate resolution spec-

tra.

Note that most previous measurements (exceptions

to this are e.g. Lidz et al. 2010; Iršič et al. 2017b) of

the IGMs thermal state did not attempt to marginalize

over the uncertainty in the mean flux estimate. Instead,

typically simulations that match the mean flux of the

data assuming perfect knowledge of this quantity are

used (e.g. in Voigt profile fitting or curvature analy-

ses). For F̄ we used both a flat prior (corresponding to

performing a joint measurement of F̄ and the thermal

state) and a Gaussian shaped prior. For the Gaussian

prior we assumed a mean based on the fit by Oñorbe

et al. (2017a) to a compilation of recent measurements

(Fan et al. 2006; Kirkman et al. 2007; Faucher-Giguère

et al. 2008b; Becker et al. 2013) and a standard deviation

based on the uncertainties for the most recent measure-

ments at z ≤ 4.0: Becker et al. (2013) for 2.2 ≤ z ≤ 4.0,

Faucher-Giguère et al. (2008a) for z = 2.0, Kirkman

et al. 2005 for z = 1.8. For z ≥ 4.2 we use σF̄ = 0.03

which is loosely based on the discrepancy between Fan

et al. 2006 for z ≥ 4.6 and the measurements by Becker

et al. 2011 in the range 4.1 ≤ z ≤ 4.7 (see also Bosman

et al. 2018; Eilers et al. 2018, for more recent mean flux

measurements that are discrepant by a similar amount

for 5.0 ≤ z ≤ 5.4).

To avoid extrapolating from our model grid we

additionally require that all thermal parameters lie

inside the convex hull of our model grid (see Fig-

11These values are also close to the formerly quoted “new val-
ues” from the instrument website as well as manuals until Period
101.

12Based on our on estimates of XSHOOTER’s resolution in
Paper I which is also close to the recently updated values on the
XSHOOTER website and manual from Period 102

ure 2), i.e. the smallest convex shape including all

THERMAL grid points. The convex hull is evalu-

ated numerically by triangulating the model grid (using

scipy.spatial.Delaunay) and for each MCMC sample

we test whether it is inside the triangulation when eval-

uating the prior. Otherwise the prior is set to zero. To

see the effective prior resulting from only using this non-

rectangular region where we have models, we performed

an MCMC run assuming a completely uninformative

dataset, i.e. using only the priors in our fit and a con-

stant likelihood. The results of this procedure are shown

in Figure 4 for z = 2.8. In some contours, e.g. T0 and

λP, we can see that parameters are highly correlated

already since our grid is non-rectangular. We argue,

however, that these correlations are physically moti-

vated as models perpendicular to these correlations are

hard to produce (see §3) and that this behavior actually

constitutes prior information for our analysis.

5. THERMAL EVOLUTION OF THE IGM

5.1. Measurements and Degeneracies

We performed fits of the parameters governing the

thermal state using combinations of all datasets dis-

cussed in § 2 in 16 individual redshift bins with 1.8 <

z < 5.4, where we used a bin size ∆z = 0.2 for z ≤ 4.2

and ∆z = 0.4 for z ≥ 4.6.

The power spectra of each dataset are summarized

and compared to models based on our posterior MCMC

chains in Figure 5. Note that for visualization purposes

we only compare window-function, Si III correlation and

resolution corrected data to the perfect model. The

window function due to masking was taken out of the

UVES/HIRES data by multiplying measurement points

with the median Pemu,perfect/Pemu,forward for our MCMC

chain and propagating its uncertainties using Gaussian

error propagation for each individual mode (see Pa-

per I, for a more detailed description of this process)13.

Analogously, we rescaled the XQ-100 power to use the

“best-fit” resolution correction, i.e. we renormalize with

WR(k,Rnew)/WR(k,R) (see eqn. (8)) from the posterior

and removed Si III correlations from the data applying

eqn. (7). We can see that satisfactory fits have been

achieved at all redshifts.

In Figure 6 we further illustrate the posterior distribu-

tion we infer via our MCMC at z = 2.8 with a so-called

‘corner plot’. We can see that the data strongly con-

strains all parameters (e.g. compare to Figure 4 or the

blue curves in the 1d histograms, for which the likelihood

13Note that while we used DM models to correct the “raw”
power in Walther et al. (2018), the masking correction performed
here is fully based on hydrodynamical simulations
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Figure 5. Redshift evolution of the power spectrum with colors showing different datasets. Data by Iršič et al. (2017a) were
corrected to the median of the marginalized posterior resolution, Walther et al. (2018) points have been corrected for the masking
window function. All data have been corrected for Si III correlations. Bands show 68% confidence regions for our emulator with
parameters randomly drawn from the posterior distribution.

is assumed to be completely uninformative). The most

important feature we see is that there are strong degen-

eracies between some parameters, e.g. the diagonal con-

tours between permutations of T0, γ and F̄ . Note that

the strong correlation between T0 and γ is well under-

stood and results from the IGM not probing the mean

density, but instead mild overdensities at these redshifts

(see e.g. Lidz et al. 2010; Becker et al. 2011). We also

infer a low mean transmitted flux F̄ = 0.69 ± 0.01

compared to the Becker et al. (2013) measurement of

F̄ = 0.727±0.009 (green band). It is interesting to note

that this low value however agrees well with the joint

constraint on mean transmission evolution by Palanque-

Delabrouille et al. (2015) obtained from the BOSS power

spectrum yielding A = 0.0028± 0.0002, η = 3.67± 0.02

for F̄ (z) = exp(−A(1 + z)η) resulting in F̄ (z = 2.8) ≈
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0.687±0.020. Note that the dataset used in this analysis

overlaps with the one we used here, but simulations and

inference procedure are independent and our analysis

has additional higher resolution data available. Inde-

pendent of the BOSS data, we also obtain similarly low

F̄ values when performing fits on the high-resolution

data from Paper I alone.

Additionally, the posterior distribution for γ shows a

clear preference for values γ ≈ 2.1, far above the ex-

pected value of ∼ 1.6 for IGM gas in photoionization

equilibrium long after reionization events (Hui & Gnedin

1997; McQuinn & Upton Sanderbeck 2016) Note again

that there is a strong anti-correlation between γ and F̄ ,

so while our analysis prefers a high value of γ and a

low value of F̄ , this is a movement along the degeneracy

direction. We will further discuss this issue in § 5.2.

The redshift evolution of individual parameters, deter-

mined from the 1d marginalized posteriors, is illustrated

in Figure 7. For 3.0 ≤ z ≤ 3.4 we also performed fits

including the XQ-100 data, and fully marginalized over

our lack of knowledge of the exact spectroscopic resolu-

tion (see discussion in § 4.4). As including this dataset

did not significantly change our results, we decided to

leave those points off the plot for clarity. Numerical

values for the marginalized parameters are tabulated in

Table 3 in the Appendix.

There are several noteworthy features in Figure 7.

First, the disagreement that we saw at z = 2.8 between

our inferred value of F̄ and recent measurements is also

present at all other redshifts z < 3 (green and blue dat-

apoints compared to the pink shaded region in the lower

panel). At the same time γ reaches very high values in

the same redshift range. Also T0 drops strongly from

z = 3.0 to lower redshifts, but due to the degenera-

cies between T0, γ, and F̄ these measurements are all

strongly correlated and this effect is therefore expected.

Note that these trends – high γ, low F̄ , and low T0 – per-

sists if we fit the high-resolution data alone, as the BOSS

data alone do not individually constrain all of these pa-

rameters due to the lack of high-k modes (resulting from

limited spectral resolution).

Second, for z ≥ 3 we can see that γ shows little evo-

lution and the mean transmitted flux F̄ is consistent

with the Oñorbe et al. (2017a) fit to recent measure-

ments. We can also see that T0 increases from ≈ 5100 K

at z = 5.0 to ≈ 15 000 K at z = 3.4. This rise could

be explained by the onset of He II reionization, which

we discuss in more detail in §5.5 where we compare our

inferred parameter values to models of IGM thermal his-

tory that treat reionization heating.

In summary, we can see that the power spectrum

analyzed here can in principle achieve high precision

constraints on IGM thermal parameters and the mean

transmission, but the high values of γ ' 2 inferred at

z < 3 and concomitant discrepancies between our in-

ferred mean flux and the Becker et al. (2013) measure-

ments might indicate systematics in our procedure. We

consider this issue in detail in the next section.

5.2. Analyzing the Discrepancies in γ and F̄

In the previous section we found low values of F̄ com-

pared to Becker et al. (2013) and possibly unphysically

high values of γ. While both parameters are degenerate

and the degeneracy direction matches with our discrep-

ancy this might point towards some problem within the

analysis. To investigate this scenario we want to iso-

late the change in the power spectrum when moving

along the degeneracy direction of our posterior distribu-

tions. Due to the dimensionality of the parameter space

and correlations between different parameters this can’t

be achieved by simple cuts along a parameter direction.

Therefore we designed the following procedure to gener-

ate model curves tracking the degeneracy direction for

different values of γ (also see the illustration in Figure 8):

• We take the posterior of our MCMC analysis (i.e.

the Markov chain) and define bins such that the

median of γ inside a bin is equal to a desired quan-

tile of the marginalized γ distribution (which are

chosen to be equivalent to ±1σ,±2σ).

These bins are shown as colored bars in the left

panel of Figure 8.

• For γ values in our chain within a given bin, we

then compute the median of all other parameters.

Because of the way we chose our γ bins, this yields

the quantile of interest for γ, whereas the other pa-

rameters will track their corresponding degeneracy

direction with respect to γ. This can be seen in

the colored squares in the right panel of Figure 8.

• For the set of parameters at each of the quantiles

(e.g. the 84% quantile in γ and the median in

all other parameters for the corresponding bin) we

can then generate a model using our Gaussian pro-

cess emulator.

The result of this procedure is shown in Figure 9 for

the power spectrum at redshift z = 2.8 which is the

highest redshift showing a high γ value. We compare

models generated in this way to the measured power

spectra shown as the blue and green points in the fig-

ure. Bands show the 68% confidence interval at each k

for models generated using our emulator with random

draws from the posterior distribution. Note that the
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(dashed line) fit to these data and further datasets. Note the large discrepancies between our measurements and those results
when assuming an uninformative prior on the mean flux. The white range shows the space populated by our models, i.e. we
cannot expect to measure values inside the gray shade using our current emulator.
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Figure 8. Illustration for our approach in selecting mod-
els along the posterior distribution (see main text for de-
tails). Left: The marginalized posterior distribution of γ
values from our chain with the bins which we used to select
generate models at the 68% and 95% confidence intervals
shown as bars. The median chain value in each bin is shown
as a colored line. Right: 68% and 95% contours for γ vs. F̄
with the selected values of both parameters shown as squares.

forward model (due to both masking and forward mod-

eling of noise and resolution) can generate slightly more

converged model power spectra than the perfect model

using the same parameters. The latter band is therefore

actually a prediction for k & 0.02 s km−1 and its slightly

larger extent is not surprising. Also note that due to

the way we chose to produce curves with different ther-

mal parameters and the dimensionality of the space the

range spanned by the dashed curves is typically smaller

than the colored bands. This is expected as the band

shows the actual spread in the five/six (depending on the

number of datasets used) dimensional parameter space

whereas the lines are based on a quantile for one of the

parameters and values at the center of the distribution

close to that quantile for all others which will lead to a

point inside the respective hypersurface, e.g. parameters

of the purple/blue curve fall inside the five/six dimen-

sional 68% surface, where the band corresponds to the

actual surface).

We can see that all 5 models shown basically lead to

the same power except for the highest k-values measured

k ≥ 0.07 (smallest scales). At those scales a higher γ and

lower F̄ indeed seems to provide a better fit to the data

whereas at larger scales (smaller k) the model does not

seem to be strongly affected by the parameters when

moving along the degeneracy.

However, for other redshift bins (see Figure 10) the

sensitivity of the power spectrum toward changes in γ

for a region around the median value shifts to different

scales. For example, at z ≤ 2.0 the most dominant ef-
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Figure 9. Topmost panel: The power spectrum (not cor-
rected for masking) at z = 2.8 (other redshifts are shown in
Figure 10, bands are showing regions in which 68% of mod-
els in the posterior fall) with curves showing models (drawn
from the respective emulator) with different thermal param-
eters. Those are chosen such that the lines represent the
2.5%, 16%, 50%, 84% and 97.5% quantiles of the posterior
distribution in γ while following degeneracies with the other
parameters (see main text and Figure 8 for the details). Val-
ues of the most relevant parameters are printed inside the
figure (with T4 = T0/10 000 K). Both datasets have been
offset by a factor of two for clarity. Bottom panels: The
fractional deviation between data in the topmost panel and
the model at median γ (green curve) for each dataset.

fect seems to be on large scales, but note that we do not

have the high precision BOSS measurement and that

therefore both the range in allowed power spectra and
the range of parameters in the 2σ region of γ are larger.

All other redshifts seem to suggest a highest sensitiv-

ity to γ at scales k ∼ 0.05 s km−1, different from both

the lowest redshifts and z = 2.8. While we note that

differences between models of different γ along the de-

generacy direction are typically small compared to our

measurement errors for an individual k-bin, it is clear

that the data of all bins combined has the precision to

distinguish between these models, and that our infer-

ence is producing sensible fits. One might argue that

the fact that the k-modes that are driving the fits to

high γ and low F̄ change for different redshift bins is a

source of concern, but we caution that the degeneracies

in this multi-dimensional parameter space are complex

and not always easy to visualize. We are confident that

these results are not spurious, since this high γ, low F̄

combination persists consistently across all redshift bins
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Figure 10. Same as Figure 9, but also for all redshifts z ≤ 3.4. We can see that while most redshift bins show the strongest
scatter in the power at k ∼ 0.06 s km−1 when moving along the degeneracy direction. However, for z = 1.8, 2.0 the behaviour
seems to be significantly different most likely due to the lacking precision on small k due to the lack of the BOSS measurement
at these redshifts.

with z ≤ 2.8, and both measurements and our infer-

ence of different redshift bins are completely indepen-

dent. We will return to this issue of discrepant γ and F̄

values in § 6 when we discuss possible systematic errors

in our hydrodynamical simulations.

5.3. Measuring Thermal Evolution in the IGM using a

Gaussian Prior on the Mean Transmission

Given that independent precise constraints on the

mean transmission exist we now consider the effect of

applying a Gaussian prior on the mean transmission

based on these measurements (see discussion in § 4.4

for details). Henceforth we will refer to these fits as

the ‘strong prior’ results, and we will designate them

as our fiducial measurements (as opposed to the joint

fits for thermal parameters and F̄ described in previous

sections). Note that most previous analyses of the IGM

thermal properties have simply assumed perfect knowl-

edge of the mean transmission (see Lidz et al. 2010; Iršič
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Figure 11. Evolution of the T0 vs γ contours with redshift assuming the strong prior on F̄ for different combinations of datasets
(different colors matched to Figure 7, filled contours showing our fiducial dataset while open contours show analyses ignoring the
XQ-100 data as in the circles of Figure 7). When high resolution data is used we can see that strong constraints perpendicular
to a degeneracy direction can be obtained. We can also see that this degeneracy direction rotates as the Lyα forest probes higher
and higher densities.

et al. 2017b, for exceptions), such that this ‘strong prior’

approach is more consistent with previous efforts.

We present the redshift evolution of posterior parame-

ter degeneracies assuming the strong prior in Figure 11.

Each panel in these figures shows the 2d marginalized

68% and 95% confidence regions of T0 vs. γ. While

γ and T0 are strongly anticorrelated at low redshifts

z ≤ 3.4, i.e. the contours are close to diagonal, this

correlation gets weaker at higher redshifts (especially at

z ≥ 4.2), i.e. contours become aligned with the axes due

to lower overdensities probed by the power spectrum.

Likewise, the γ vs. F̄ confidence regions are shown in

Figure 12. Note that these properties are correlated

independent of redshift, in stark contrast to the ther-

mal parameter degeneracy, while still changing shape

and direction due to the different precision of the mea-

surements. Therefore, a change of prior for the mean

transmission measurements propagates into γ at high

redshifts (z ≥ 4.2), but does not affect T0 significantly.

At lower redshifts (especially for z ≤ 3.4), however, γ is

strongly correlated with both T0 and F̄ , so a change in

priors for any of the three quantities always affects the

results on the other two quantities as well. Consequen-

tially the change in our mean flux prior affects lower

redshifts (especially z < 3) more strongly than higher

ones.

We show the fully marginalized posterior constraints

on thermal parameters as a function of redshift in Fig-

ure 13. We can see that now the values of γ cover the

theoretically expected value of γ ≈ 1.6 at low redshifts

z < 3, while the values of T0 obtained are higher than

in the fit using a flat prior on mean transmission be-
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Figure 12. The same as Figure 11 but with F̄ vs. γ contours. This shows that independent of redshift γ and F̄ are strongly
anticorrelated.

cause of the degeneracies between T0 and γ. This is

more clearly illustrated in Figure 14 where we compare

T0 and γ evolution for the different prior assumptions.

We can see that indeed the changes between both the

two fits are strongly anticorrelated between T0 and γ and

that the change in marginalized parameters between the

two cases can be large, particularly for γ where the dif-

ferences at 2.2 ≤ z ≤ 2.6 are & 2σ and as high as 3σ at

z = 2.8.

However, this is the first thermal evolution measure-

ment performed over the whole epoch of He II reioniza-

tion and beyond based on the power spectrum. Using

the strong mean flux prior we also obtained reasonable

results including physically possible measurements of γ,

a rise in temperature for z & 3 as time progresses (or red-

shift decreases) and the first measurement of the IGM

cooling down thereafter. In the next sections we com-

pare our strong prior results to recent thermal parameter

measurements from different methods as well as models

of IGM thermal evolution.

5.4. Comparison to Previous Measurements

A comparison of our results to recent measurements

of thermal parameters is shown in Figure 15. We dis-

cuss the various datasets involved and elaborate on the

comparison to our new measurement below.

The phase angle PDF of quasar pairs (Rorai et al.

2013) measures the smoothness of the 3d distribution of

IGM gas and therefore directly constrains the pressure

smoothing scale λP independent of the instantaneous

thermal state of the IGM (i.e. T0 and γ). Rorai et al.

(2017b) measured λP from a sample of quasar pairs in

4 redshift bins between 2.0 ≤ z ≤ 3.6. Figure 15 shows

that our inferred values of λP are fully consistent with

the Rorai et al. (2017b) measurement. We also see a

smaller uncertainty in our power spectrum based mea-

surement. Part of the explanation for these small error
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Figure 13. The fiducial measurements from Figure 7, but assuming a Gaussian prior on the mean transmission complying
with the fit of (Oñorbe et al. 2017b) measurement within errorbars given by observations (Becker et al. 2013; Faucher-Giguère
et al. 2008a; Kirkman et al. 2005). We can see that now the obtained γ values at low redshifts are far lower (and compatible
with the expected value of 1.6 long after reionization) due to the additional mean transmission constraint. The high values of
γ at high redshifts obtained here, are likely due to the discrepancy of the mean of our chosen prior (dashed curve) with the
Becker et al. (2013) (red band) analysis for the mean transmission. Due to the far lower overdensities probed at high-redshifts
compared to low redshifts these high values of γ do not change results on T0 strongly as degeneracies are largely broken (see
also the evolution of the T0-γ and γ-F̄ contours which can be found in Figure 11 and Figure 12 ).
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γ that due to correlations between parameters lead to lower
values of T0. ).

bars lies in how our model grid, and therefore our prior

probability, is set up. As discussed in § 4.4, the degen-

eracy between T0 and λP within our simulated models

combined with our approach of not extrapolating to re-

gions outside our model grid result in a positive correla-

tion in the prior probability between these parameters.

However, the power spectrum cutoff, is sensitive to a

degenerate combination of both λP and thermal broad-

ening (Peeples et al. 2010; Rorai et al. 2013) leading to

an anti-correlation in the likelihood. So the correlations

inside our prior (Figure 4) and the degeneracy direc-

tion of the likelihood due to the aforementioned effect

are nearly perpendicular and as the posterior distribu-

tion is the product of these two, resulting constraints

appear very tight. However, we argue that it is hard to

generate physical models without imprinting the corre-

lation between thermal state and λP that depends on

the integrated thermal history of the IGM. While the

uncertainties in λP might still be somewhat underesti-

mated, we note that our prior grid degeneracy has a

strong physical motivation (see also § 4.4).

The orange points in Figure 15 show the T0 and γ

measurements from Lidz et al. (2010), who decomposed

the Lyα forest of the Dall’Aglio et al. (2008) dataset into

wavelets and analyze the PDF of their squared ampli-

tudes to derive constraints on the thermal state of the

IGM. We note that this data is a subset of that used to

compute the power spectrum in Paper I and analyzed

here. Note that their γ constraint is often limited to the

boundaries of their fits14. While the wavelet analysis

results at z = 2.6 are consistent with our measurement

we disfavor the z = 2.2, z = 3.0, z = 4 and especially

z = 3.4 wavelet results which seem to indicate a far

hotter IGM than our measurement. The origin of this

discrepancy is unclear, but it was also noted before by

Becker et al. (2011).

Another method for obtaining constraints on the ther-

mal state of the IGM is by decomposing the Lyα forest

into individual absorption lines, assuming that a cutoff

in the distribution of column densities NH I vs. Doppler

parameter b exists and can be attributed to lines that

are only thermally broadened (see e.g. Schaye et al. 2000;

Rudie et al. 2012; Bolton et al. 2014; Hiss et al. 2018;

Rorai et al. 2018). Especially the new Hiss et al. (2018)

(which is based on the same dataset as Paper I and is

using a subset of the same simulation grid) thermal evo-

lution result seems to hint toward a period of heating

until z ∼ 2.8 that could be attributed to He II reioniza-

tion.

For both T0 and γ we see broad agreement between

our measurements and the line-fitting results at most

redshifts. Of particular interest are z = 2.4 and z = 2.8

where several line fitting measurements exist. At z = 2.4

we do reproduce the result from Hiss et al. (2018) (blue

points) as well as Bolton et al. (2014) (green) in both

T0 and γ. At z = 2.8 we agree with the Rorai et al.

(2018) (brown point), but obtain higher precision. How-

ever, agreement with Hiss et al. (2018) at this redshift

seems to be poor as they measure both higher T0 and

lower γ (which is along the degeneracy direction for line

fitting analyses as well as the power spectrum). Part

of this discrepancy might come from systematics in the

Voigt profile analysis depending on the cutoff fitting al-

gorithm chosen, as Hiss et al. (2018, see Appendix B)

find either a multimodal posterior probability distribu-

tion for T0, γ with a similar 68% confidence interval as

the Rorai et al. (2018) or a unimodal distribution with

the values shown here depending on the cutoff fitting

algorithm used. Whether this multimodal behavior re-

sults from systematics in the measurement procedure or

is a real physical effect from e.g. a real multimodal IGM

temperature density relation is not yet clear, but we do

not see such behavior in our power spectrum analysis.

For the other overlapping redshifts (except z = 2.2 and

z = 2.4 which match very well) we generally measure a

lower T0 and higher γ compared to Hiss et al. (2018).

14We therefore show the extent of their 1σ contours (as a by-eye
marginalization) for γ in the Figure.
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Figure 15. The fiducial data from Figure 13 (black points) assuming the strong Gaussian prior on F̄ . In addition to the
previous plots we show the thermal parameters as well as T (∆?) at the optimal overdensities ∆? for curvature measurements
as given by Becker et al. (2011). We compare to measurements of thermal evolution in the IGM based on different statistics:
curvature (red, pink), line fitting (green, blue, brown), wavelets (orange), phase angles (purple) and power spectrum (gray).
We can see overall good agreement with previous datasets (except for wavelets) albeit significantly higher T (∆?) than in the
curvature measurements is obtained at some redshifts. All measurement errors shown are 1σ or 68% intervals, for measurements
that only quote 2σ errorbars we divided those by a factor of two.
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The most precise measurements of temperature in the

IGM so far are based on the mean curvature in the Lyα

forest 〈κ〉 (Becker et al. 2011; Boera et al. 2014). These

measurements constrain T (∆?) at an optimal overden-

sity ∆? at which a one-to-one relation between the mean

curvature 〈κ〉 of the Lyα forest and T (∆?) exists inde-

pendent of the slope γ of the TDR (note again Figure 11

which shows the corresponding degeneracy for the power

spectrum). However this method is not able to measure

γ or T0 independently. To compare to curvature based

measurements, we compute T∆?
= T0∆γ−1

? (using the

values for ∆? given by Becker et al. 2011) for each sam-

ple in our MCMC chain and evaluate the 68% confidence

interval. This approach allows us to directly compare to

what the curvature results measure.

The agreement with the curvature analysis seems to

be generally good for the largest part of the overlap-

ping redshift range, but we seem to measure overall

slightly higher temperatures. There are some redshifts

z = 2.6, 2.8, 3.2, 3.4 where our analysis gives significantly

higher temperatures than implied by the curvature mea-

surements. Note in particular that at z = 2.8 where we

see the strongest discrepancy between our results and

the curvature measurements, multiple measurements of

the thermal state have been performed via several dif-

ferent methods and these results do not full agree with

each other. We argue, that the overall agreement is still

good given the significantly different datasets, statisti-

cal approaches and models used for both types of analy-

sis. E.g., the difference in measured thermal state might

potentially arise due to the different sensitivity of both

statistics to metal contamination. While the power spec-

trum is only weakly affected by residual metal lines on

the very smallest scales we cover here (see the compari-

son in Walther et al. 2018), the averaged squared curva-

ture is basically measuring
∫∞
kmin

k5P (k)d ln k (see Ap-

pendix D in Puchwein et al. 2015) and thus enhances the

weight of residual small scale contamination in the Lyα

forest. At the same time small scale contaminants, like

e.g. leftover metal lines, would decrease the obtained

IGM temperatures as there is now too much small-scale

power, thus leading to a colder IGM in curvature than

in power spectrum analyses. Additionally, these mea-

surements did not marginalize over the mean flux in

the simulations, thereby e.g. potentially underestimate

their errors.

Finally, we also show the Garzilli et al. (2017) mea-

surement of T0 at 4.2 ≤ z ≤ 5.4 based on the same Viel

et al. (2013) dataset we use here (gray points, the limit

is at the 1σ level), but using a different analysis pipeline

and including a WDM particle mass as an additional free

parameter. We can see that for z ≤ 5 the agreement is

Table 2. Thermal evolution models used in comparisons to
existing measurements, parameters are the reionization redshifts
and the total heat input during reionization for H I and He II,
see Oñorbe et al. (2017a) for details

model name zreion,H I zreion,He II ∆TH I[K] ∆THe II[K]

no He II 7.3 – 20000 –

cold He II 6.55 3.0 20000 10000

standard He II 6.55 3.0 20000 15000

warm He II 6.55 3.0 20000 20000

hot He II 6.55 3.0 20000 30000

late He II 6.55 2.8 20000 15000

good, but for z = 5.4 we seem to get slightly higher

values of T0 than their 1σ upper limit. Part of that dif-

ference can be attributed to the additional freedom in

their model.

Overall we conclude, that the agreement between our

data and previous results is reasonably good. Our mea-

surement comprises a strong advancement with regard

to previous analyses especially due to the large range of

uniformly covered redshifts and due to jointly constrain-

ing T0 and γ over this full range.

5.5. Comparing to Thermal Evolution Models for

Different He II Reionization Scenarios

In the previous sections we performed a self-consistent

measurement of thermal evolution in the IGM from z =

5.4 to z = 1.8 corresponding to 3 Gyr of cosmic history.

In this section we compare to simulations to thermal

evolution due to He II reionization as this is expected

to be the dominant process setting the thermal state of

the IGM at this epoch.
In Figure 16 we show comparisons between our ther-

mal evolution measurement and models based on dif-

ferent approaches. The solid curves show the “explicit

reionization” simulations from our model grid for which

hydrogen reionizes (to a level xH II = 99.9%, note that

for our models this point is typically reached with a de-

lay of ∆z ≈ 1 compared to the corresponding zreion,50
15)

at zreion,H I = 6.5 in agreement with the Planck Collab-

oration et al. (2016b) (and also Planck Collaboration

et al. 2018) constraints, but for which the parameters

governing He II reionization are varied (see Table 2).

The red dash-dotted curve is showing an extreme ver-

sion of these models for which He II was never reion-

15Notice that the interpretation of the duration of reionization
in homogeneous UVB models can be misleading. We point to
(Oñorbe et al. 2017a) for a full discussion in this regard.
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Figure 16. The fiducial data assuming the strong Gaussian prior from Figure 13 (black points) compared to thermal evolution
models assuming different redshifts of He II reionization and heat inputs during this process (solid curves) and without any
He II reionization (dot-dashed red curve). The model parameters are given in Table 2. We also show comparisons to the
Upton Sanderbeck et al. (2016) (dashed pink) thermal evolution model and a run using the Puchwein et al. (2018) non-eq.
heating rates in a Nyx simulation (dashed brown). We can clearly see that the data shows a hotter IGM than created in the
model without He II reionization. Instead, the overall evolution of thermal parameters seems to agree well with the standard
to warm He II reionization scenarios in both T0 and γ. Finally, the temperatures found at the 2 highest redshift bins are colder
than any model.
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ized16. The measured temperature at mean density is

significantly higher (by & 3σ for each of the 7 individual

redshift bins with 2.2 ≤ z ≤ 3.4) than this “no He II”

scenario for z ≤ 4.6 suggestive of a period of He II reion-

ization taking place.

To allow a comparison between different He II reion-

ization scenarios, the gray, blue, green, and purple

curves show models with zreion,He II = 3.0 assuming dif-

ferent amounts of heat being injected ∆THe II into the

IGM varying from 10 000 K (cold) to 30 000 K (hot);

whereas the orange curve shows a model with ∆THe II =

15 000 K but zreion,He II = 2.8 (late). We can see that the

models predict an extended period of heating (i.e. in-

creasing T0) until zreion,He II followed by the IGM cooling

down due to the expansion of the universe whose effects

on the thermal state cannot be fully counteracted by

ionizations anymore. Overall, for our measurement this

rise and fall in T0 lies between the standard and warm

He II evolution models for 2.2 ≤ z ≤ 4.6 disfavoring

particularly hot or late phases of He II reionization.

We also compare to the analytical thermal evolution

model by Upton Sanderbeck et al. (2016) and the fidu-

cial non-equilibrium reionization model by Puchwein

et al. (2018, see their Figure 6). We note that while

the general shape of thermal evolution looks similar to

both models for z ≤ 4.6 we seem to obtain a slightly

less pronounced peak in T0. Overall, the temperature

evolution we see in this redshift range is indeed well

modeled by an He II reionization event followed by pho-

toionization equilibrium in an adiabatically expanding

IGM. While it has been argued that this effect has been

seen before (Becker et al. 2011), previous work did not

break the degeneracy between γ and T0. Note that also

the cooldown of the IGM after reionization has never

been conclusively observed due to this degeneracy.

Models of He II reionization typically also show a dip

in γ resulting from the IGM to be more isothermal dur-

ing reionization events (see e.g. also McQuinn et al.

2009). We can also see this effect by comparing γ for our

He II models with the no-He II model. Note that while

the Upton Sanderbeck et al. (2016) model also shows

a dip (albeit at later times and with a more strongly

isothermal γ), the fully non-equilibrium simulation by

Puchwein et al. (2018) does show an intrinsically smaller

γ and no strong dip. The reason for this is that the non-

equilibrium model reached γ = 1 at z = 7 due to H I

reionization and is still recovering from this feature, i.e.

it did not yet forget about the timing of H I reionization.

The “dip” for this model therefore manifests in the near

16We note that this reionizes H I slightly earlier z = 7.3 which
is still in good agreement with both Planck results.

constant evolution from z ∼ 5 to z ∼ 3 compared to an

otherwise expected rise in γ.

We can see this dip in γ for the measurement at

z ∼ 3.9 aligned in redshift with the expected decrease

due to He II reionization in our explicit He II reioniza-

tion models. Note that the dip is only ∼ 2σ significant

compared to the no-He II reion model, but overall a

slightly higher value for γ than this model is preferred.

Also note that on the data side this feature is currently

dominated by XQ-100 data (which is the highest resolu-

tion data available at 3.6 ≤ z ≤ 4.0) which we strongly

degraded by marginalizing over resolution. Additional

high resolution data or an accurate determination of the

XQ-100 dataset resolution at these redshifts and adopt-

ing a prior based on those results could therefore lead

to additional constraints on He II reionization due to its

signature in the slope of the TDR.

Note that this feature also strongly relies on precise

knowledge of F̄ as the expected decrease is very shal-

low. Additionally, γ values for z > 4.2 might have

a significant uncertainty as measurements of the mean

transmission get less accurate for this range due to the

smaller amounts of data available and stronger fluctu-

ations in the ionization state of the IGM. Thus, there

are currently several discrepant measurements of F̄ (as

discussed in § 4.4) which consequently lead to a high

uncertainty in γ.

At early times (z ≥ 5, we call those points the high-

est redshift measurements) we can see that the mea-

sured T0 is lower than in any of the models. Note

again that similarly low temperatures were also obtained

by Garzilli et al. 2017 based on the same dataset in a

fully independent analysis. While one could in prin-

ciple think that an earlier redshift of H I reionization

gives the IGM more time to cool thereafter leading to

lower temperatures at these times, models suggest that

is not the case and T0 has essentially forgotten about

the timing of reionization by z = 5.4 (see e.g. Oñorbe

et al. 2017b who present models for a range of differ-

ent 6.0 < zreion,H I < 9.7). Instead the post-reionization

thermal state mostly depends on the spectral shape of

the UVB (McQuinn & Upton Sanderbeck 2016) and a

low temperature at z ∼ 5.4 requires lower photoheating

rates, i.e. a particularly soft spectral energy distribu-

tion (SED) for ionizing sources is needed which is not

favored by current models of the UVB (Faucher-Giguère

et al. 2009; Haardt & Madau 2012; Stanway et al. 2016;

D’Aloisio et al. 2018b; Puchwein et al. 2018).

While it may be that the thermal state at z ' 5.4

would still be sensitive to the reionization redshift for

particularly late z . 6 reionization scenario (which now

seems to be allowed regarding the newest CMB results
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from Planck Collaboration et al. 2018), this would nev-

ertheless need to be in conjunction with very low reion-

ization heat injection. The recent results by D’Aloisio

et al. (2018b) who use radiative transfer to simulate

photoheating by ionization fronts during H I reioniza-

tion suggest that such low levels of IGM heating are

unlikely. Finally, note that the onset of He II reioniza-

tion can only increase model temperatures and therefore

worsen the disagreement as none of the models shown

exhibits any He II reionization before z = 4.8.

Therefore, the small temperatures we (and also other

groups using the same dataset) obtain at z ≥ 5 are chal-

lenging to fit with current models of reionization. Con-

sequently, models fitting the low-T measurements would

also lead to a colder IGM at later times without addi-

tionally increasing heating due to e.g. He II reionization.

However, as current constraints at the highest redshifts

rest upon the single dataset by Viel et al. (2013) based

on a handful of objects, future measurements based on

larger samples of quasar spectra obtained might change

those low-T0 results.

6. SYSTEMATIC EFFECTS ON THE MEASURED

THERMAL EVOLUTION

In § 5.1 we attempted to jointly fit the mean flux and

thermal parameters and arrived at puzzling results for

γ. This, combined with the fact that independent high-

precision measurements of the mean flux are available

and that the most precise former analyses of thermal

evolution fixed the mean flux, led us to adopt the strong

prior which led to sensible results on thermal evolution

of the IGM that are in broad agreement with previous

measurements as well as simulation predictions. In this

section we investigate possible systematics in our mod-

eling procedure which could be responsible for the high

γ- low F̄ we observe with the flat prior on F̄ in § 5.

We think that the biggest issue is our modeling and

there are several possible sources of bias for our measure-

ment: the small boxes used and the cosmic variance,

not simultaneously exploring cosmological parameters,

and spatial resolution of the simulation. We attempt to

quantify the significance of all these issues below. While

ideally a large set of simulations would be used to do a

detailed study of each issue, due to computational cost

we are limited to a handful of simulations per problem.

To explore box size we compare one model from

our grid to a simulation with exactly the same ther-

mal model and cosmology performed with the same

resolution, but with twice the box size, i.e. Lbox =

40 h−1 Mpc, Ncell = 2048317 In the left panel of Fig-

ure 17 we show this comparison. Similar to the results

of Lukić et al. (2015), one clearly sees that for the range

of power spectrum modes that we fit a ∼ 6% bias in the

power might be expected due to box size effects. The

gray curve shows the posterior 68% model interval from

Figure 5 as a measure of the joint precision of all datasets

used in the fit. So especially for scales k . 0.03 s km−1

box size effects are larger than this precision and could

thus strongly affect the results. Whether the overall 6%

at k & 0.01 s km−1 results from box size effects or cos-

mic variance (see below) is unclear, but assuming the

former, we perform an estimate of how much a flat bias

affects our thermal evolution constraints. For this pur-

pose, we repeat our data analysis, but rescale the em-

ulated power spectrum for every redshift by a factor of

0.94 independent of k and model parameters. In Fig-

ure 18 we show our fiducial analysis (blue) compared to

this “corrected” measurement (green). We can see that

the rescaling leads to a ∼ 0.5σ to 1.2σ higher T0 and

lower γ for all 2.2 ≤ z ≤ 4. Therefore, our measurement

is clearly limited by the combined effect of box size and

cosmic variance in this redshift range. Note that the

change when applying this rescaling is such that the in-

ferred γ is reduced, i.e. the discrepancies we analyzed

in § 5.2 become weaker.

Simulations also suffer from statistical variance for the

largest modes where the sampling is poor. To better

understand this issue we ran simulations with different

initial conditions but an otherwise identical setup. The

comparison of those runs to our default simulation is

shown in the middle panel of Figure 18. We can clearly

see, that even with just 4 samples of initial conditions

a ∼ 5% change in the power can be reached on small

scales similar to the results in the boxsize test above.

Additionally, the effect of cosmic variance on the largest

scales (lowest k . 0.01 s km−1) can exceed the 10% level,

which is huge compared to the ∼ 2% errors of the BOSS

measurement. To get both box size and cosmic variance

effects under better control requires an analysis based

on larger simulations, where doubling the (linear) box

size would be expected to reduce cosmic variance by a

factor of
√

8 (but also needs at least eight times more

computing time).

To understand the effect of cosmological parameters

on the Lyα forest power spectrum we compare to three

different cosmologies consistent with the Planck Collab-

17Note that the initial conditions cannot be the same for two
boxes of different size and so every comparison of this kind includes
cosmic variance on both boxes,but with

√
8 times lower amplitude

at a given mode for the larger box.
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Figure 17. Left: One model from our thermal grid at z = 2.8 (solid black, the redshift is taken as an example, other redshifts
are similar) compared to the same model run with a two times larger box and the same spatial resolution (dotted gray). The
bottom panel shows relative differences and the size of the 68% confidence region of jointly fitting BOSS + high-resolution data
as a grey band. Center: A comparison between different initial conditions (dot-dashed) that were elsewise run with the same
setup. Right: A comparison of models based on other cosmologies (B,C are compatible with the Planck Collaboration et al.
2016a parameters and chosen to maximally change the matter power spectrum w.r.t. the default model, see Oñorbe et al. 2017a
for details; D is the cosmology from Lukić et al. 2015). We can see that all three effects change the power on the 5% level.
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0.94 (mimicking the joint effect of box size and cosmic vari-
ance seen in Figure 17) to the model power (different colors).
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oration et al. (2016a) results. Cosmology B & C were se-

lected from their posterior distribution in order to differ

as much as possible in the linear matter power spectrum

(see Oñorbe et al. 2017a). Cosmology D uses the same

parameters as in Lukić et al. (2015). The right panel of

Figure 18 shows that a change in cosmological param-

eters within the current CMB constraints can lead to

a ∼ 5% change in the flux power as well. Of course a

more detailed analysis of this effect is needed and ide-

ally one would marginalize over cosmological parame-

ters adding additional dimensions to our simulation grid.

However future independent higher precision cosmolog-

ical constraints from either joining existing datasets or

new measurements will reduce the strength of this effect.

Finally, the finite resolution of the simulations is not

an issue at z . 4 (see Figure 11 in Lukić et al. 2015,

showing convergence to 1% at z ≤ 3 and to better than

5% at z = 4), but might be of some importance at

z & 5 (see Appendix of Oñorbe et al. 2017a) and might

be more severe in exceptionally cold models as pressure

smoothing is then weaker and structures are thus harder

to resolve. In the latter case the power at the smallest

mode covered in our analysis could be underestimated

at the ∼ 10% level which is comparable to its errorbars.

However, in contrast to box size effects only the small-

est scales (k & 0.07 s km−1) are affected which will not

lead to changes as dramatic as seen for the other model-

ing errors considered in this section. However, the scale

dependence of this effect, large scales (small k) being

nearly unaffected while small scale power is reduced in

the model, might lead to slightly underestimated results

on T0.
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In summary, we have seen that all four effects we dis-

cuss in this section, box size, initial conditions, cosmol-

ogy, and resolution can affect the power spectrum by a

similar amount as our statistical measurement errors at

least for some range of scales and redshifts. We have

seen that these effects can be comparable or larger than

our statistical errors on the power spectrum, and can

thus systematically change our thermal evolution at the

0.5 to 1σ level at a range of redshifts. Note again that

all the effects we considered here are converged at the

∼ 5% level and a better treatment of any of the effects

would require additional computation time or reduce the

number of simulations that can be performed thereby

increasing interpolation errors. The current analysis is

therefore the best compromise between accurate results

and available computing time. But note that the ef-

fects discussed here, might very well explain some of the

discrepancies between constraints of the thermal state

obtained by different groups.

7. CONCLUSIONS AND OUTLOOK

In this work, we presented the first uniform thermal

evolution analysis based on the Lyα forest power spec-

trum covering a large redshift range from z = 5.4 to

z = 1.8 or equivalently a timespan of nearly 3 Gyr.

For this purpose we combined multiple high-precision

measurements performed by several groups using differ-

ent instruments. Furthermore, we compare this dataset

with a large grid of high-resolution hydrodynamical sim-

ulations to connect the measured Lyα forest to physi-

cal properties of the IGM. To interpolate between these

simulations we developed a Gaussian process emulation

scheme and take its errors into account using a cross-

validation approach. Compared to previous results we

measure thermal evolution from high redshifts z = 5.4 to

the limit of Lyα forest observability with ground based

telescopes due to the atmospheric UV cutoff at z ∼ 1.8,

and our combination of high-precision low-k measure-

ments with our new high-k analysis allows us to break

the well known degeneracy between the temperature at

mean density and the slope of the TDR. Our analy-

sis thus provides the first comprehensive homogeneous

analysis of IGM thermal evolution probing times as early

the end stages of H I reionization, extending through

the epoch of He II reionization, and spanning the era of

galaxy formation.

Our primary results are measurements of T0, γ, and

λP (see Table 4) marginalizing over the mean transmis-

sion in two different ways (with a flat prior or a Gaussian

prior based on recent measurements). These measure-

ments show a clear increase in T0 from T0 ∼ 6000 K at

z = 5.4 to T0 ∼ 14 000 K at z = 3.4 followed by a de-

crease reaching T0 ∼ 7000 K at z = 1.8. We compared

our results to published thermal evolution constraints

using different statistics and find broad consistency with

data from curvature, Voigt profile fitting and the phase

angle distribution analyses. Comparing to simulations

we indeed see compelling evidence for He II reionization

in the rise of T0 which is not expected in absence of He II

reionization. In general the thermal parameters we ob-

tained from fitting the power spectrum measurements

agree well with models for which He II reionization is

complete at z ∼ 3. At later times, i.e. z < 3, we see the

first conclusive evidence that the IGM is cooling down

after the last reionization heating episode driven by adi-

abatic cooling due to the expansion of the universe.

However, at the highest redshifts z ≥ 5 we find evi-

dence for low temperatures T0 ∼ 6000 K (slightly higher,

but consistent with other measurements based on the

same dataset) that might be hard to explain with our

current understanding of the shape of the UVB at those

redshifts as well as our current understanding of H I

reionization. This is especially important as the same

dataset resulting in these low temperatures also places

the most stringent limits on the mass of WDM (Viel

et al. 2013). Comparing these power spectrum mea-

surements to models that include both WDM particle

mass as well as the IGMs thermal history as free pa-

rameters would necessarily result in an even colder IGM,

because small-scale structure in the Lyα forest can now

be erased by both thermal broadening and a finite WDM

free-streaming length (see Figure 15, compare to Garzilli

et al. 2017). Thus, given our current expectations for

reionization heating, the cold temperatures we infer pro-

vide additional evidence for a cold dark matter universe.

To obtain a complete measurement of the IGM’s ther-

mal state, Lyα forest measurements clearly need to be

extended to both higher and lower redshifts. At high-z

this would allow for testing the current power spectrum

results and enable stronger joint constraints on the ther-

mal state just after H I reionization as well as the nature

of dark matter (see Oñorbe et al. 2017b, for a forecast

of possible constraints using high-resolution data up to

z = 6) due to an increase in the available dataset size in

recent years. At the same time, the great success of the

COS and STIS instruments on HST enables new mea-

surements of the thermal state at low redshifts (z . 1)

allowing to test if the IGM cools down further as theoret-

ically expected. As the post-reionization IGM physics is

in principle well understood, these low-redshift measure-

ments could then be used to constrain heat input from

other astrophysical processes, e.g. galaxy formation or

blazar heating.
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However, to get precision constraints of the thermal

state in the IGM better hydrodynamical simulations are

needed. We characterized the effect of box size, cosmic

variance and cosmology and found, that for some range

of scales systematic uncertainties due to these effects can

be comparable to our measurement precision. Future

progress will therefore rely on simulating larger grids

to marginalize over cosmological parameters or alterna-

tively a more precise external determination of those

parameters as well as larger simulation boxes. Thanks

to great improvements in recent years, allowing nearly

linear scaling of computing time with volume (at fixed

resolution) in some hydrodynamical simulation codes,

and the current advancement of computing speed in su-

percomputers this will be possible within the next few

years.
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Lukić, Z., Stark, C. W., Nugent, P., et al. 2015, MNRAS,

446, 3697

Lynds, R. 1971, ApJL, 164, L73
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Table 3. Fiducial Evolution of Thermal Parameters Assuming a Flat Prior on F̄ .
Columns are: redshift z, pressure smoothing scale λP, temperature at mean density T0,
TDR index γ, mean transmission F̄ , temperature at optimal overdensity for this mea-
surement T∆power , temperature at optimal overdensity for curvature analyses T. . .∆?,
and the optimal overdensity ∆power for this measurement. Note that quoted error values
are purely statistical and systematic uncertainties of parameters due to box size, fixed
cosmology and cosmic variance are expected to be about 0.5–1σstat based on the analysis
presented in § 6. However, this estimate is based on a single simulation and a precise
characterization of systematics requires a large set of additional simulations.

z λP T0 γ F̄ T∆power T∆? ∆power

[kpc] [104 K] [104 K] [104 K]

1.8 79.0+16.0
−11.9 0.684+0.18

−0.12 1.97+0.16
−0.26 0.872+0.020

−0.018 1.160+0.24
−0.24 4.288+2.16

−1.53 1.705

2.0 93.0+8.3
−17.4 0.734+0.093

−0.071 2.15+0.09
−0.26 0.831+0.033

−0.011 1.096+0.12
−0.12 5.749+1.01

−2.29 1.437

2.2 91.0+6.3
−6.4 0.789+0.085

−0.068 2.13+0.09
−0.13 0.796+0.010

−0.009 1.369+0.12
−0.11 4.942+0.77

−0.77 1.638

2.4 87.2+5.4
−5.1 0.831+0.11

−0.078 2.07+0.13
−0.18 0.772+0.013

−0.012 1.593+0.14
−0.12 3.995+0.72

−0.63 1.841

2.6 88.3+3.7
−4.5 1.000+0.15

−0.090 1.93+0.15
−0.17 0.745+0.012

−0.013 1.936+0.095
−0.084 3.449+0.45

−0.35 2.012

2.8 93.8+4.2
−4.2 1.000+0.11

−0.087 2.16+0.09
−0.13 0.688+0.013

−0.010 1.982+0.16
−0.15 3.911+0.43

−0.41 1.818

3.0 80.6+6.0
−5.6 1.429+0.31

−0.27 1.47+0.26
−0.24 0.694+0.009

−0.015 2.027+0.16
−0.14 2.347+0.27

−0.23 2.110

3.2 84.9+4.7
−6.3 1.115+0.23

−0.15 1.85+0.21
−0.25 0.623+0.018

−0.019 1.910+0.17
−0.15 2.465+0.28

−0.25 1.882

3.4 90.1+4.7
−5.8 1.330+0.30

−0.22 1.82+0.24
−0.27 0.569+0.021

−0.023 2.202+0.21
−0.21 2.592+0.28

−0.28 1.791

3.6 79.4+10.0
−9.6 1.010+0.36

−0.30 1.74+0.28
−0.36 0.512+0.022

−0.021 1.160+0.39
−0.34 1.704+0.60

−0.56 1.194

3.8 79.4+8.4
−6.7 1.029+0.29

−0.25 1.74+0.29
−0.39 0.433+0.025

−0.026 1.320+0.36
−0.27 1.548+0.44

−0.34 1.442

4.0 72.3+7.6
−5.8 0.863+0.27

−0.19 1.42+0.37
−0.34 0.387+0.017

−0.022 0.942+0.29
−0.20 1.090+0.34

−0.26 1.218

4.2 77.0+3.6
−6.0 0.905+0.12

−0.082 1.73+0.33
−0.40 0.355+0.025

−0.031 1.051+0.087
−0.082 1.246+0.12

−0.16 1.215

4.6 73.7+4.9
−5.8 0.910+0.12

−0.12 1.54+0.37
−0.39 0.278+0.023

−0.028 0.966+0.13
−0.11 1.037+0.15

−0.12 1.134

5.0 57.3+4.0
−4.3 0.535+0.12

−0.092 1.54+0.31
−0.33 0.159+0.018

−0.020 0.555+0.12
−0.095 0.580+0.12

−0.10 1.067

5.4 54.4+4.3
−4.5 0.597+0.15

−0.13 1.55+0.29
−0.29 0.060+0.009

−0.008 0.551+0.14
−0.12 0.613+0.16

−0.14 0.868

APPENDIX

A. TABLES OF THE MEASURED THERMAL EVOLUTIONS

In this section we tabulate our measurement values

at each redshift for the flat prior on F̄ (Table 3) and

the strong prior (Table 4). Those tables do not only

show the marginalized constraints of all thermal param-

eters, but additionally show values for the temperature

at the overdensity ∆? where curvature measurements

are optimal (with the value for ∆? interpolated in red-

shift between results from Becker et al. 2011) as well as

at ∆power where the degeneracy between γ and T is min-

imized for the power spectrum. The latter was obtained

by assuming a power law relation T (∆power) = T0∆γ−1
power

to the samples in our Markov chains and varying ∆power

such that the variance of T (∆power) is minimized. The

density values where degeneracies are minimal are tab-

ulated as well. We will provide chains from our MCMC

analysis on request.
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Table 4. Fiducial Evolution of Thermal Parameters Assuming the Strong Prior on
F̄ . Columns are defined in Table 3. Note that quoted error values are purely statistical
and systematic uncertainties of parameters due to box size, fixed cosmology and cosmic
variance are expected to be about 0.5–1σstat based on the analysis presented in § 6.
However, this estimate is based on a single simulation and a precise characterization of
systematics requires a large set of additional simulations.

z λP T0 γ F̄ T∆power T∆? ∆power

[kpc] [104 K] [104 K] [104 K]

1.8 65.9+5.0
−4.2 0.768+0.37

−0.22 1.63+0.16
−0.25 0.897+0.005

−0.005 2.011+0.31
−0.28 2.533+0.44

−0.38 4.760

2.0 75.5+9.8
−6.4 0.732+0.17

−0.091 1.88+0.20
−0.27 0.865+0.015

−0.019 1.357+0.20
−0.15 3.411+1.32

−0.83 1.983

2.2 79.4+5.1
−5.0 1.014+0.25

−0.15 1.74+0.15
−0.21 0.825+0.009

−0.008 2.119+0.18
−0.15 3.338+0.49

−0.44 2.713

2.4 81.1+4.6
−4.7 1.165+0.29

−0.19 1.63+0.16
−0.19 0.799+0.008

−0.008 2.267+0.19
−0.17 2.980+0.35

−0.30 2.828

2.6 84.9+4.4
−4.8 1.234+0.19

−0.14 1.67+0.13
−0.15 0.763+0.007

−0.007 2.277+0.097
−0.092 2.994+0.23

−0.21 2.501

2.8 91.3+4.5
−5.3 1.286+0.19

−0.15 1.78+0.11
−0.12 0.719+0.008

−0.008 2.610+0.22
−0.20 3.278+0.30

−0.27 2.462

3.0 81.7+5.8
−5.9 1.289+0.18

−0.14 1.60+0.14
−0.16 0.687+0.008

−0.008 1.946+0.15
−0.14 2.408+0.24

−0.21 2.016

3.2 83.4+5.6
−5.3 1.186+0.13

−0.12 1.75+0.11
−0.13 0.631+0.007

−0.008 1.770+0.15
−0.14 2.385+0.24

−0.22 1.735

3.4 88.7+5.2
−5.3 1.404+0.17

−0.16 1.74+0.10
−0.11 0.576+0.007

−0.007 2.075+0.21
−0.21 2.555+0.27

−0.27 1.634

3.6 79.7+9.5
−10.7 1.038+0.31

−0.27 1.69+0.14
−0.25 0.518+0.007

−0.007 0.666+0.16
−0.14 1.696+0.64

−0.61 0.509

3.8 77.8+8.3
−6.9 1.205+0.23

−0.19 1.41+0.20
−0.23 0.457+0.006

−0.006 1.132+0.20
−0.18 1.524+0.43

−0.33 0.848

4.0 71.5+7.4
−5.2 0.940+0.22

−0.17 1.27+0.24
−0.24 0.397+0.006

−0.006 0.878+0.19
−0.15 1.084+0.33

−0.26 0.782

4.2 77.5+3.3
−5.4 0.890+0.093

−0.073 1.85+0.23
−0.33 0.346+0.025

−0.022 1.047+0.082
−0.079 1.268+0.11

−0.15 1.209

4.6 76.2+4.2
−5.4 0.877+0.13

−0.11 1.84+0.23
−0.33 0.254+0.021

−0.020 1.016+0.14
−0.11 1.080+0.15

−0.12 1.203

5.0 57.7+4.2
−4.3 0.533+0.12

−0.091 1.64+0.26
−0.32 0.152+0.016

−0.017 0.576+0.12
−0.099 0.586+0.12

−0.10 1.125

5.4 54.3+4.3
−4.6 0.599+0.15

−0.13 1.54+0.29
−0.29 0.061+0.009

−0.008 0.549+0.14
−0.12 0.616+0.16

−0.14 0.857




