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Abstract 

Background: Cone beam CT is a widely available modality, but its clinical utility has been 

limited by detail conspicuity and quantitative accuracy. Convenient post-reconstruction denoising 

is subject to back projected patterned residual, but joint denoise-reconstruction is typically 

computationally expensive and complex.   25 

Purpose: In this study, we develop and evaluate a novel Metric-learning guided wavelet 

transform reconstruction (MEGATRON) approach to achieve image domain quality enhancement 

from projection-domain processing.  

Methods: Projection domain-based processing has the benefit of being simple, efficient, 

and compatible with various reconstruction toolkit and vendor platforms. However, they also 30 

typically show inferior performance in the final reconstructed image, because the denoising goals 

in projection and image domains do not necessarily align. Driven by this insight, this work strives 

to develop a simple approach to translate the demand for quality enhancement from the 

quantitative image domain to the more easily operable projection domain. Specifically, the 

proposed paradigm consists of a metric learning module and a denoising network module. Via 35 

metric learning, enhancement objectives on the wavelet encoded sinogram domain data are 

defined with respect to post-reconstruction image discrepancy. The denoising network maps 

measured cone-beam projection to its enhanced version, driven by the learnt objective. In doing 

so, the denoiser operates in the convenient sinogram to sinogram fashion but reflects 

improvement in reconstructed image as the final goal. Implementation-wise, metric learning was 40 

formalized as optimizing the weighted fitting of wavelet subbands, and a res-Unet, which is a Unet 

structure with residual blocks, was used for denoising. To access quantitative reference, cone-

beam projections were simulated using the X-ray-based Cancer Imaging Simulation Toolkit 

(XCIST). In both learning modules, a data set of 123 human thoraxes which was from Open-

Source Imaging Consortium (OSIC) Pulmonary Fibrosis Progression challenge, was used. 45 

Reconstructed CBCT thoracic images were compared against ground truth FB and performance 

was assessed in Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM).  

Results: MEGATRON achieved RMSE in HU value, PSNR, and SSIM were 30.97±4.25, 

37.45±1.78, and 93.23±1.62, respectively. These values are on par with reported results from 50 

sophisticated physics driven CBCT enhancement, demonstrating promise and utility of the 

proposed MEGATRON method.  
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Conclusions: We have demonstrated that incorporating the proposed metric learning into 

sinogram denoising introduces awareness of reconstruction goal and improves final quantitative 

performance. The proposed approach is compatible with a wide range of denoiser network 55 

structures and reconstruction modules, to suit customized need or further improve performance.  

Keywords 

Cone beam computed tomography (CBCT), Deep Learning, Metric Learning 

1. Introduction 

  Cone-beam computed tomography (CBCT) is a widely available modality that can be 60 

used to generate fast volumetric anatomic imaging. While its quality is typically sufficient for 

qualitative assessment and depiction, the combined impact from scatter, motion, and low signal-

to-noise ratio makes it an inferior source for quantitative information. CBCT enhancement or 

denoising is an active area of research, and the main methods can be categories as either 

postprocessing or with direct engagement in reconstruction. In the post-processing based 65 

enhancement category, fast filtered-back projection FDK reconstruction is first performed, and 

then adaptive noise reduction filters1 or nonlocal means (NLM) method such as BM4D 2 can be 

applied to reduce noise in CBCT while preserving edges and details. The filtering approach is 

very intuitive and can be implemented with high efficiency, but usually fails to achieve very high 

quantitative accuracy as measurement uncertainty or noise was propagated first by back 70 

projections onto the complete spatial domain and cannot be fully decoupled after the fact. In the 

second category, regularization priors on the reconstruction can be incorporated directly into the 

optimization-based reconstruction, via basis encoding such as wavelet3, tight frame4, or more 

recently learning based features5,6, and can be combined with variational operators7.  This 

approach offers flexible ways to incorporate priors but usually requires iterative procedures for 75 

reconstruction that can be time consuming. More recently, deep learning-based reconstruction 

with unrolled network has demonstrated promise but its clinical stability could be sensitive to 

specific data characteristics and is still under exploration.  

 In this study, we work in the sinogram domain with an overall sequential procedure, 

performing projection data correction and standard reconstruction. Our major innovation and 80 

contribution lie in that we define the sinogram correction objective by conducting a metric learning 

study so that it reflects the targeted quality improvement in the image domain. Subsequently, a 

denoising network, trained with the learned metric, is used to denoise the sinogram data. The 

utility of the proposed Metric-learning guided wavelet transform reconstruction (MEGATRON) 
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approach is validated and assessed using realistically simulated cone beam data against 85 

reference.  

 

2. Methods and Materials 
2.1 MEGATRON Metric learning  

Figure 1 illustrates the main idea of metric transformation in MEGATRON. To enhance 90 

reconstructed CBCT quality, it is desirable to have its reconstruction match that provided by its 

Fan-beam counterpart8. Ideally, one wants to perform denoising with respect to the difference 

between image reconstruction and the ground truth fan-beam quantitative map, a metric that is 

 

Figure 1. Schema of the metric transfer module in MEGATRON. For any two datasets, known 
as a pair,  the left-side panel describes the images and the relationships in the image domain. 
The oracle metric is defined based on the quantitative electron density from reference fan-
beam CT which we aim to learn but is inaccessible in practice. On the right-side panel are the 
corresponding projection sets that are presented with the corresponding sinograms wavelet 
representations. A set of wavelet band weights w is sought to maximize the correlation between 
these two objectives.  
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ideal but typically inaccessible,  termed “Oracle” metric on the reconstructed image domain. On 

the other hand, processing directly on sinogram makes it easier to cope with scatter, beam 95 

hardening, and starvation. It also provides a more modular way to integrate with openly or 

commercially available reconstruction software. Since forward projection is not unitary, applying 

the same quantitative metric (e.g., mean squared difference) to the image versus the sinogram 

domain would have different denoising impact. We propose to work with the sinogram domain 

and modify the commonly used objective with wavelet-band-variant-weights. By maximizing the 100 

correlation between the weighted wavelet representation discrepancy to the Oracle metric, we 

introduce reconstruction awareness into the objective function w.r.t. sinogram domain, shown in 

Equation 1.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒!						𝐶𝑜𝑟𝑟(-Image" 	−	Imagej-#, 〈-Wavelet(Sino)" 	− 	Wavelet(Sino)$-# 	, w〉)  (1) 

s. t.																						 ∑ 𝑤% = 1,			𝑤% ≥ 0&'(                                                                                                  105 

where w is the weight vector corresponding to the contribution of the K wavelet bands. It is 

constrained to reside on the simplex to avoid trivial nulls-space caused by trivial scaling and the 

corresponding oscillations in optimization convergence. The correlation is compared against all 

image/sinogram pairs (i, j) in samples supporting metric learning. 
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2.2 Denoising network 110 

As demonstrated in Figure 2, the learnt metric is utilized to train for the denoising 

network, and subsequently for denoising and reconstructing the image volume. The 

denoising network with a Dense Residual 3D U-Net backbone9, is used to map wavelet 

coefficients of the corrupted sinogram data to its ideal counterpart. The network is trained 

in a supervised fashion to seek the optimal network parameters Θ. Equation 2 presents 115 

the corresponding loss function, where  Φ is our denoiser and w is the result from metric 

learning.  

																								〈‖Φ(Wavelet(Sino)corrupt; 	Θ) − 	Wavelet(Sino)ideal‖# 	, w〉                         (2) 

2.3 Comparison benchmarks 

To understand and appreciate the contribution of each design component, namely the 120 

metric learning and wavelet representation, we assessed two denoising benchmarks for ablation 

analysis and performance comprehension. The first one directly uses sinogram data and trains a 

  

 

Figure 2.  Schema of the workflow of MEGATRON. Our presenting workflow consists of two 
major modules, one is the metric learning module, the other is the denoising module. 
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denoising network to minimize the conventional L2 difference between denoised data and its ideal 

counterpart, abbreviated as “Denoise in sino”. The second one trains the network on the wavelet-

transformed representation, also driven by L2 cost, noted as “Denoise in wl-sino”. For fair 125 

comparison, data usage and network structure are kept the same across the benchmarks and the 

proposed work.  

2.4 Implementation and Experimental details 

To perform metric optimization, 50 chest volume data from the Open-Source Imaging 

Consortium (OSIC) Pulmonary Fibrosis Progression challenge were used10. Each sinogram 130 

image was decomposed into 13 wavelet subbands using open-source package pywt11, where 

decomposition level is set to 4. For N sample pairs, the Mean Squared Error (MSE) for each 

subband was calculated, forming an Nx13 matrix. In the image domain, the pairwise difference 

was recorded in an Nx1 matrix. The optimization in Equation 1 specialized to estimating the 13x1 

weighting and was solved with a sequential least squares programming approach 'SLSQP' using 135 

the open-source library Scipy. 

In denoiser training process, a different subset of 66 chest CT volumes was used. The 

whole cohort was split into 50 for training and 16 for validation. The Xcist open-source library was 

used to simulate the primary only (ideal) sinogram, and its corresponding scattered and Poisson 

noise corrupted the measurement. The training was performed using 32 projection angles with 140 

512x512 pixel detector arrays. The denoising network adopted a  Dense Residual 3D U-Net 

backbone10 comprising five encoding and decoding levels respectively. Within the network, skip 

connections were established from each encoder layer to the corresponding decoder feature 

layers. In each layer, residual blocks were used to maintain the information across convolutional 

operations and support better back propagation. Our network was built with PyTorch version 2.0.1 145 

and CUDA 11.7, operating on an NVIDIA GeForce RTX 1080Ti GPU, with the Adam optimizer 

with a learning rate of 0.0001. The testing for sinogram denoising and FDK reconstruction were 

performed on a separate holdoff set of 7 subjects. 

 

3. Results 150 
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3.1 Cone-beam projection Simulation  

 Sinograms with a Scatter to Primer Ratio (SPR) of 2.9 were simulated. When 

reconstructed with FDK, it resulted in Normalized Mean Square Error (NMSE), structural similarity 

index (SSIM) and peak signal-to-noise ratio (PSNR) were 105.13±11.79, 75.06±4.51 and 

22.48±1.68. Illustrative examples and their line profile details are presented in Figures 3 and 4.  155 

3.2 Wavelet band weights from metric Learning. 

 
Figure 3. Visualization of the model target and model input (from scatter-Poisson corrupted 
sinogram simulation with SPR = 2.9). From left to right are axial view, coronal view, and sagittal 
view of the object. All images are displayed with window level [-600,1500]. 

 
Figure 4. Line profile view for the reconstructions from reference (primary only) vs. scatter-Poisson 
corrupted sinogram simulation with SPR = 2.9. Solid lines indicate the reference and dashed lines 
indicate reconstruction from the simulated noisy measurements.  
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The optimized subband weights are reported in Figure 5,  with its impact on the correlation 

between the sinogram and image domains shown in Figure 6. 

The wavelet weighting shows preferrable emphasis on superior-inferior oriented features 

on various scales but discounts the global low frequency component. The improvement in cross-160 

domain metric alignment is notable from Figure 6. The much tighter spread with an R2 going from 

 
Figure 6. Scatter plot of the L2 metrics in the wavelet-sinogram domain and image domain. The 
coordinates of each sample correpond to the “distance” between a pair of samples, with the x-
coordinate representing the pairwise distance in sinogram domain, and the y-coordinate 
representing the distance in image domain. With the introduction of wavelet band weighting, the 
correlation increases from 0.94 to 0.98, with a corresponding R2 increasing from 0.88 to 0.96. 

  
Figure 5. Wavelet decomposition of a sinogram and the optimized band weighting 
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0.88 to 0.96 shows that the adjustment makes the two metrics much better aligned. In other words, 

weighted wavelet-sinogram metric is an improved surrogate than the unweighted version for the 

image domain discrepancy metric. This is in alignment with our optimization intention. The 

ultimate impact on reconstruction is further validated and reported in Section 3.3. 165 

 

3.3 Comparison with Different methods 

 

Table 1 reveals the importance of aligning denoising intention to the use of objectives and 

the corresponding configurations. When direct sinogram data was used as the input and output, 170 

and the objective was also defined directly on the paired difference for supervised learning, as in 

the “Denoise in sino” configuration, it yields the best denoising performance in the sinogram 

domain. However, with the intention being performance in reconstruction domain, the proposed 

MEGATRON excels in all assessment metrics, improving RMSE, SSIM, and PSNR. Paired t-test 

resulted in p-values of 0.003, 0.011, 0.036 respectively for these three metrics, compared with 175 

the close runner-up of “Denoise in wl-sino,” indicating statistically significant superiority of 

MEGATRON. Figures 7 and 8 show the reconstruction results from sinogram denoising when we 

used different objectives to drive the same 3D ResUnet denoising network structure.  

Table 1. Quantitative evaluation of different methods in Reconstruction and sinogram domain, 
Mean ± std. 

 
Reconstruction Domain Sinogram Domain 

RMSE SSIM PSNR NMSE SSIM PSNR 

Noisy 173.83±16.83 75.36±4.23 22.43±1.57 2.5x10-1 ±2.0x10-2 92.42±1.98 16.52±0.89 

Denoise 
in sino 56.28± 7.10 85.44±3.55 32.27±2.12 2.0x10-4 ± 7.1x10-5 99.41±0.14 47.42± 1.76 

Denoise 
in wl-sino 39.81±4.86 90.55±1.72 35.25±1.72 5.0x10-4 ± 9.5x10-5 98.03±0.23 43.44± 0.88 

MEGAT
RON 30.97±4.25* 93.23±1.62* 37.45±1.78* 5.0 x10-4± 1.0 x10-4 97.42± 0.39 43.21± 0.88 
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Figure 7 Visualization of an example of denoising results. Columns (left to right): an axial view, 
axis view of the difference image, a zoom-in at the indicated box region, coronal and sagittal 
sinogram views. Rows (top to bottom): reference truth, noisy simulation, denoised with L2 cost 
in sinogram, denoised with L2 cost in wavelet sinogram, denoised with learnt wavelet-band 
weighted L2 cost in sinogram. All reconstructed images are displayed with window level [-600, 
1500]. 
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4. Discussions and Conclusion 

We have proposed a simple approach to perform denoising in the sinogram domain with 

awareness of quantitative reconstruction goals in CBCT reconstruction. The major contribution is 

that a cross-domain objective can be applied with any objective driven or guided denoisers in the 

sinogram domain including BM4D or various networks12,13. It fits in well with a sequential 185 

denoising-reconstruction pipeline that is friendly with clinical use. The benefit is insensitive to the 

choice of reconstruction module and can be determined based on user access or preference. We 

used simple ResUnet for the denoiser and standard FDK for the latter, to demonstrate the 

contribution from the transfer metric. It is expected that further optimization of either one or both 

components can further improve the absolute performance further.  190 

 To provide a good quantitative reference from FBCT, XCIST was used to simulate scatter, 

spectrum integration, scatter factor, Poisson/Gaussian noise, and detector characteristics14. We 

used the default parameters in the XCIST which was calibrated against known phantoms and 

clinical data to ensure realism in our simulations. With XCIST using a convolution kernel approach 

to simulate scatter, and handling attenuation in the line integral fashion (post logarithm transfer of 195 

count ratio), negativity arose in the air and was converted to zero in post-processing. This could 

lead to an overall bias towards lower attenuation in the simulation. It was not a problem with 

network denoiser but could cause potential issues with model-driven unbiased estimator as 

denoisers.  

 

 

Figure 8.  Line profile comparison among various methods. The left and right panels correspond 
to the upper dashed and lower solid line locations in Figure 7.  Ground truth (-), noisy (-), 
denoising on sinogram (-), denoising on wavelet (-) and the proposed MEGATRON(-) are plotted 
in black, blue, orange, green, and red, respectively.  



 13 

 Wavelet transformation involves a set of unitary operators and are not expected to change 200 

the behavior with respect to metric, in principle. The positive difference in performance introduced 

by using wavelet may be attributed to its explicit help with feature encoding for the denoising 

network. Explicit guidance on structure or feature design has shown benefit in deep learning 

performance. Study has proven the importance of effectively incorporating prior knowledge and 

feature fusion techniques to enhance the encoding capabilities of deep learning models, making 205 

them more robust and capable of handling diverse and complex tasks15,16.  

While sophisticated CBCT reconstruction methods, such as dual-domain regularized 

reconstruction offer potentially higher accuracy by leveraging both image and sinogram domains, 

they typically demand considerably higher computational resources and more complex tuning. 

These methods, although robust, can pose significant barriers to clinical deployment due to their 210 

complexity. Our approach prioritizes ease of use and modularity. This alignment with the practical 

needs of clinical environments ensures that it fits seamlessly into existing workflows. As a result, 

it offers an excellent balance of performance and usability, making it a commendable choice for 

clinical settings. This makes it an attractive option for clinical efficiency and effectiveness. 

The general rationale of metric learning followed by a denoiser network is applicable 215 

towards various CBCT enhancement applications. However, the specific optimal weights for 

metric transformation and denoiser network coefficient can be site specific.  

In summary, the proposed MEGATRON makes the conscious compromise to use a 

simple, lightweight, modular, and clinically friendly pipeline, in lieu of much more sophisticated 

dual domain regularized reconstruction or networks. It allows for easy offline appreciation of the 220 

metric relation and allows for plug-and-play of various modular components. Within the realm of 

clinical utility, we feel such decision and pipelined design could be appealing.  
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