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Abstract21

Purpose: Fluence–modulated proton computed tomography (FMpCT) using pencil22

beam scanning aims at achieving task–specific image noise distributions by modulating23

the imaging proton fluence spot–by–spot based on an object–specific noise model. In24

this work we present a method for fluence field optimization and investigate its perfor-25

mance in dose reduction for various phantoms and image variance targets.26

Methods: The proposed method uses Monte Carlo simulations of a proton CT (pCT)27

prototype scanner to estimate expected variance levels at uniform fluence. Using an28

iterative approach, we calculate a stack of target variance projections that are required29

to achieve the prescribed image variance, assuming a reconstruction using filtered back-30

projection. By fitting a pencil beam model to the ratio of uniform fluence variance31

and target variance, relative weights for each pencil beam can be calculated. The32

quality of the resulting fluence modulations is evaluated by scoring imaging doses and33

comparing them to those at uniform fluence, as well as evaluating conformity of the34

achieved variance with the prescription. For three different phantoms, we prescribed35

constant image variance as well as two regions–of–interest (ROI) imaging tasks with36

inhomogeneous image variance. The shape of the ROIs followed typical beam profiles37

for proton therapy.38

Results: Prescription of constant image variance resulted in a dose reduction of 8.9 %39

for a homogeneous water phantom compared to a uniform fluence scan at equal peak40

i

mailto:guillaume.landry@med.uni-muenchen.de


variance level. For a more heterogeneous head phantom, dose reduction increased to41

16.0 % for the same task. Prescribing two different ROIs resulted in dose reductions42

between 25.7 % and 40.5 % outside of the ROI at equal peak variance levels inside the43

ROI. Imaging doses inside the ROI were increased by 9.2 % to 19.2 % compared to the44

uniform fluence scan, but can be neglected assuming that the ROI agrees with the45

therapeutic dose region. Agreement of resulting variance maps with the prescriptions46

was satisfactory.47

Conclusions: We developed a method for fluence field optimization based on a noise48

model for a real scanner used in proton computed tomography. We demonstrated that49

it can achieve prescribed image variance targets. A uniform fluence field was shown50

not to be dose optimal and dose reductions achievable with the proposed method for51

fluence–modulated proton CT were considerable, opening an interesting perspective52

for image guidance and adaptive therapy.53

Keywords: proton CT, fluence field optimization, proton therapy, dose reduction, fluence-54

modulated proton CT55
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I. Introduction56

Cancer treatment using intensity–modulated proton and heavier ion therapy is effective,57

and comes at a low risk of side–effects for the patient compared to conventional treatment58

modalities using x–rays. The good tolerance is believed to be linked to the low dose to59

normal tissue when using protons for treatment.1–4 At the same time, low–dose, frequent60

and accurate imaging, ideally at the treatment site, is required to ensure a safe delivery61

of the therapeutic doses.5,6 Proton therapy treatment planning requires a spatial map of62

the relative (to water) stopping power (RSP), which in current clinical practice is acquired63

through a conversion from x–ray CT images.7–9 X–ray CT images are typically not acquired64

in treatment position and not prior to every treatment fraction, in order to keep treatment65

time short and imaging dose low enough that they do not compromise the dose benefit of66

proton therapy.10 Direct imaging of RSP using proton computed tomography (pCT)11–1667

has been proposed to increase accuracy and to allow for a frequent, dose efficient acquisition68

in treatment position. Accuracies achievable with current prototypes are comparable to69

state–of–the art clinical dual energy x–ray CT.7,17–1970

A further reduction of imaging dose can be achieved by modulating the imaging fluence71

field during the acquisition and thereby achieving a task–specific image quality. Fluence–72

modulated scans20 can either aim for homogeneous variance across the whole volume, or for73

region–of–interest imaging, where only the relevant part of the image is acquired at low noise74

and imaging dose is reduced elsewhere. Algorithms21–24 and experimental prototypes25–2975

have been developed for fluence modulation in x–ray CT. Recently, fluence–modulated pCT76

(FMpCT) has also been proposed30 and its initial experimental feasibility using pencil beam77

scanning was investigated.31 The best achievable dose efficiency through fluence modulation78

or other techniques is a key requirement for x–ray CT32 and most likely will be for pCT as79

it moves closer to the clinics. Moreover, region–of–interest imaging is of high interest for80

particle therapy treatment planning and dose verification, where only a fraction of the image81

volume (the treatment beam path) is of relevance.30 A challenge for FMpCT is that simple82

Poisson noise modeling is not sufficient, as image variance for pCT depends on the object’s83

heterogeneity, and several contributions, including multiple Coulomb scattering, have to be84

taken into account for fluence–modulation.33,3485

In this work, we present a method for fluence–field optimization in pCT using pencil86
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beam scanning. We employ a pCT scanner–specific Monte Carlo simulation,35 which was87

shown to reproduce experimental variance levels for a typical fluence field.34 The problem88

of finding relative modulation factors for each pencil beam such that the summed fluence89

pattern results in a prescribed image variance map is a computationally expensive optimiza-90

tion problem which generally requires alternating between the reconstructed image domain91

(where the variance prescription is defined) and the projection domain (the detector data at92

each projection angle from which the image is reconstructed, and where the fluence modu-93

lation is defined). Therefore we separated the problem into first solving for the projection94

domain variance yielding a given prescribed variance in the image domain and subsequently95

optimizing pencil beam weights leading to this projection domain variance. To realistically96

describe pencil beams in the optimization and in simulations, we established a pencil beam97

model based on experimental data. In a simulation study, we estimated dose savings for98

fluence–modulated pCT using three different phantoms, and compared our proposed solu-99

tion with a straightforward intersection–based fluence modulation.31 We also verified that100

the resulting variance map approaches the target variance. Both a constant variance tar-101

get as well as two regions–of–interest (ROI) following typical treatment beam paths were102

investigated.103

II. Materials and methods104

II.A. Simulation framework105

The Monte Carlo simulation framework35 used in this study is a detailed model of the phase II106

pCT prototype scanner.13 It is based on the GEANT4 toolkit36 version 10.2.p01. Details107

about the modeling of physics processes can be found in literature, where the platform was108

validated for its fidelity in terms of RSP.19,35 A previous study34 improved the platform109

for reproducing variance levels of experimental scans. With respect to that work, the beam110

model was modified, and is described below. Imaging doses, in the form of absorbed physical111

dose, were scored on a centered grid of 125 × 125 × 35 voxels with a uniform voxel size of112

2 mm and summed for all projection angles.113

The simulation framework outputs data in the same format as the prototype scanner. It114

records position and direction information of individual protons before and after the object,115
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as well as the proton’s residual energy. Using a calibration,37 the residual energy can be116

mapped to a water–equivalent path length (WEPL), which is the line integral over the RSP117

of the object along the curved path of the proton. Because measurements are available for118

every detected proton, these data are referred to as “list–mode.”119

II.B. Image reconstruction120

To reconstruct RSP images from the list–mode data, a most likely path38 is estimated for121

every proton from the tracking information. The path information is taken into account by122

performing distance–driven binning and applying a special cone–beam filtered backprojec-123

tion algorithm.39 In total, 90 projections from rotation angles covering a full rotation were124

used. This relatively low number of projections was chosen to satisfy experimental timing125

constraints and to allow for a future experimental validation of this work. Reconstructions126

were performed on a grid of 250×250×70 voxels with a uniform size of 1 mm. For performing127

data cuts,12,38,39 the grid was 125× 125 pixels with a uniform size of 2 mm. Binning of data128

into distance–driven projections was performed on a grid of 250 × 250 × 70 voxels with a129

uniform size of 1 mm. All grids were centered on the isocenter.130

Assume a voxel centered in (u, v, d) in the three–dimensional distance–driven projection,131

where d is the binning depth and u and v are the coordinates normal to it. We can identify a132

set of protons such that the most likely path of every proton crosses the voxel volume around133

(u, v, d). The number of protons in that set is then referred to as the “counts” C(u, v, d).134

These counts only consider protons used for image reconstruction and therefore are reduced135

compared to the incident protons due to interactions with the object and cuts on the data.136

In contrast to that, counts in the absence of interactions and cuts are referred to as F (u, v, d)137

throughout the paper. The point u = v = d = 0 is the location of the isocenter, where the138

rotation axis is located.139

II.C. Phantoms140

In the simulation study, three different phantoms with a physical counterpart were used. The141

water phantom is a cylindrical container made from polystyrene (outer diameter 150.5 mm,142

wall thickness 6.35 mm) and filled with distilled water. The CTP404 phantom (Phantom143
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Laboratory, New York, USA) is a commercial sensitometric phantom with a cylindrical shape144

(diameter 150 mm) and several tissue–equivalent inserts and two cylinders filled with air.145

Both phantoms were implemented in the simulation as analytical models. The pediatric146

head phantom (ATOM R©, Model 715 HN, CIRS Inc., Norfolk, USA) models the anatomy147

of a 5–year–old child and was implemented as a voxelized phantom in the simulation.40148

Previous publications34,35,40 can be consulted for details about the phantoms.149

II.D. Gaussian pencil beam model150

To allow for the flexible simulation of FMpCT data, an analytical pencil beam model was151

derived from experimental tracking data acquired at the pencil beam scanning beamline152

of the Northwestern Medicine Chicago Proton Center without phantom. Using the timing153

information of the scanner, a count rate was calculated in steps of 0.8 ms, allowing for the154

separation of individual pencil beams as the count rate dropped in between two spots. The155

separated data were processed individually by estimating most likely paths and performing156

distance–driven binning.39157

For each pencil beam b, this resulted in a three–dimensional experimental counts map158

Cb(u, v, d). We fitted the Gaussian model159

G(u, v, d) =
N0

2πσ′uσ
′
v

· exp

(
−(u− u′0(d))2

2σ′2u
− (v − v′0(d))2

2σ′2v

)
(1)160

to each pencil beam’s Cb, where N0 is the total number of protons per pencil beam, and161

(u′0(d), v′0(d)) is the pencil beam center at depth d. The pencil beam center is assumed162

to diverge linearly with the binning depth, such that u′0(d) = u0 · (1 + δu · d) and v′0(d)163

analogously, where (u0, v0) is the pencil beam center at d = 0 and δu and δv are the linear164

divergence factors. By construction, the isocenter–beam for u0 = v0 = 0 is parallel to the165

d–axis. The σ′u = σu ·
√

1 + δ2uu
2
0 and σ′v analogously are the beam widths projected to a166

plane normal to the d–axis while σu and σv are the actual beam widths. This resulted in167

a fit with seven open parameters (N0, u0, v0, σu, σv, δu, δv), which was performed for each168

individual pencil beam by minimization of the squared deviation. The parameters σu, σv, δu169

and δv were not specific to one pencil beam, and estimates for them were therefore found as170

the mean value over all pencil beams. N0, v0 and u0 were open parameters specific to a given171

pencil beam, but overwritten in subsequent simulations of different pencil beam patterns.172
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They are therefore not reported.173

II.D.1. Simulation of pencil beams174

All datasets were generated by shooting a regular grid of simulated proton pencil beams.175

At d = 0, neighboring pencil beams were interspaced by ∆PB,u = 12 mm along u and176

∆PB,v = 8 mm along v. The pencil beam grid was offset in u by ∆PB,u/4 = 3 mm so that177

the summed fluence from two opposing angles was homogeneous. This helped to reduce the178

total number of pencil beams and thereby reduce the complexity of the optimization. In179

the simulation platform, protons were emitted from a point (u0 · (1 + δu · d0), v0 · (1 + δv ·180

d0), d0) + (ru, rv, 0), where d0 = −400 mm and ru and rv are normally distributed random181

numbers with a standard deviation of σu and σv respectively. The point d0 is just before182

the front tracker and was chosen in agreement to previous investigations.34 Protons were183

assumed to have an initial direction vector of (u0δu, v0δv, 1). The beam centers (u0, v0) were184

chosen according the pencil beam grid defined above. For non–modulated scans, N0 was set185

to a default value N0 = N for all pencil beams. For modulated scans it was N0 = mα
bN186

for a pencil beam modulated with a factor mα
b . The proton’s initial energy was set to187

(200.00± 0.66) MeV, which is the standard mean energy used experimentally. The energy188

spread was determined in a previous study34 and agrees with experimental data acquired189

at the beamline at Northwestern Medicine Chicago Proton Center, albeit with a wider spot190

size setting.191

II.D.2. Pencil beam reference counts192

To optimize pencil beam weights, a reference of the proton counts for every pencil beam is193

needed. This reference serves as a basis function for the fluence modulation and should not194

take into account interactions with the object. It can be generated for every pencil beam b195

using the Gaussian model196

Fb(u, v, d) = G(u, v, d)
∣∣∣
N0=N,u0=ub,v0=vb

(2)197

assuming a pencil beam center (ub, vb) according to the regular grid and a constant number198

of protons N which is equal for all pencil beams.199
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II.D.3. Optimization of pencil beam weights200

Using the Fb as basis functions, it is possible to generate an arbitrary counts field Cα for201

rotation angle α by finding weights wαb , such that Cα is expressed as a linear combination of202

the reference counts Fb from equation (2). Weights were found by minimizing the squared203

deviation, and therefore204

wαb (Cα) = arg min
wαb

∫∫
du dv

(
Cα(u, v, 0)−

∑
b

wαb Fb(u, v, 0)

)2

. (3)205

Integration was performed over u and v, but only the isocenter binning depth d = 0 was206

considered. Optimization was performed using the method of Nelder and Mead.41207

II.E. Proposed algorithm for fluence field optimization208

Fluence field optimization requires finding a set of fluence modulation factors mα
b ∈ [0, 1]209

for pencil beam b at rotation angle α, such that the resulting pCT reconstruction best210

achieves a given image variance target Vtarget(x, y, z). The proposed method for fluence field211

optimization is performed in the projection domain (denoted by coordinates (u, v, d) and212

the rotation angle α) instead of the image domain (denoted by coordinates (x, y, z)). The213

method is sketched in figure 1 and consists of the following three steps, which will be detailed214

in sections II.E.1. to II.E.3.:215

1. For a given phantom, find the resulting variance V α
unit(u, v, d) in the projection domain216

for a unit fluence simulation with mα
b = 1 for all pencil beams.217

2. For a given image variance target Vtarget(x, y, z), find a stack of variance levels in the218

projection domain V α
target(u, v, d) that yields the image variance target.219

3. Calculate the pixel–wise counts target Cα
target(u, v, d). Then, optimize weights that220

yield the counts target according to equation (3).221

The algorithm extends ideas from literature for x–ray CT21,22 to requirements of pCT such222

as the three–dimensional projections due to distance–driven binning39 and a more complex223

noise model.33,34 It is, to our knowledge, not equivalent to any existing approach as it is224

performed in projection domain and computationally feasible without simplification to a225

parallel–beam geometry.226
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Figure 1: Workflow for optimization of fluence modulation factors mα
b , given an object model

and a variance target Vtarget.

II.E.1. Step 1: Variance at unit fluence prediction227

To find variance levels at unit fluence for a given phantom, we employed a Monte Carlo228

simulation using the beam model described in section II.D. and mα
b = 1 for all pencil beams229

and rotation angles. This step requires an object model according to section II.C. and resulted230

in counts Cα
unit(u, v, d), which were reduced compared to the reference counts Funit(u, v, d) =231 ∑

b Fb(u, v, d) due to interactions with the object. For every point (u, v, d) in the projection,232

a set of n = Cα
unit(u, v, d) WEPLs, {p}, was found such that the voxel around (u, v, d) was233

crossed by the most likely path of each of the selected protons.39 The unit fluence variance234

was then the squared error of the mean235

V α
unit(u, v, d) = Var[{p}]/Cα

unit(u, v, d). (4)236

Given a variance projection stack V α
unit(u, v, d) the corresponding image variance Vunit(x, y, z)237

can be calculated analytically as reconstruction was performed using filtered backprojection.238

Please refer to previous publications33,34 for details about variance calculations for pCT and239

for variance reconstruction in general.42240

II.. MATERIALS AND METHODS



II.. MATERIALS AND METHODS Dickmann et al.

II.E.2. Step 2: Iterative variance forward projection241

Finding a stack of variance projections V α
target(u, v, d) whose variance reconstruction33 yields242

a given image variance target Vtarget(x, y, z) is a problem with a large set of solutions. We243

therefore aimed to find the inverse operation of variance reconstruction,42 i.e. a “variance244

forward projection.” An initial guess V α
0 (u, v, d) could be obtained by performing ray–245

tracing43 through the image variance target Vtarget(x, y, z) followed by a ramp–filtration.246

The additional filtration was motivated by the fact that variance reconstruction is very247

close to a simple unfiltered backprojection.42 Since ray–tracing is the inverse operation to248

filtered backprojection, an additional ramp–filtration was required. While such forward– and249

backprojection yield Vtarget again, this often yields unphysical negative variance projection250

values and amplifies noise. Therefore, a median filter was applied to the ramp–filtered251

projections followed by thresholding to positive values.252

To minimize the error introduced by thresholding, we employed an iterative approach by253

applying variance reconstruction to the i–th set of variance projections V α
i (u, v, d) yielding a254

variance volume Vi(x, y, z). Again, using ray–tracing, the difference volume Vtarget(x, y, z)−255

Vi(x, y, z) was forward–projected and added to the current stack of variance projections. In256

every iteration, variance projection values were forced to be positive. This will converge to257

a set of physical (i.e. strictly positive) variance projections that yield an image variance258

approaching Vtarget(x, y, z).259

II.E.3. Step 3: Fluence optimization260

By definition, the variance projection values in equation (4) are inversely proportional to261

the number of contributing protons C. Therefore, the pixel–wise counts required to achieve262

the variance target could be calculated as (V α
unit/V

α
target) · Cα

unit. However, for low counts, we263

need to consider that C follows a Poisson distribution (contrary to a normal distribution at264

sufficiently high counts) and therefore an additional correction function265

k(C) = C ·
∞∑
n′=1

PC(n′) · βn′,C = C2

∞∑
n′=1

PC(n′)

n′
(5)266

needs to be introduced, where PC(n′) = Cn′
exp(−C)/n′! is the Poisson probability of de-267

tecting n′ protons instead of the expectation value of C and βn′,C = C/n′ is the relative268
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change in variance if n′ instead of C protons were detected. The function k(C) was stored269

in a lookup table for all relevant integer values of C up to 300 by numerically calculating the270

infinite sum for 1000 summands. Since limC 7→∞ k(C)/C = 1 and k(300)/300 = 1.0033 we271

assumed k(C) = C for all C > 300. Furthermore, k(C) was thresholded to return at least272

Cmin = 8 protons to avoid detector elements with missing information.273

We used an optimization according to equation (3) to find pencil beam weights274

wαb (Cα
target) which achieve the pixel–wise projection counts target of275

Cα
target(u, v, d) = k

[
V α
unit(u, v, d)

V α
target(u, v, d)

· Cα
unit(u, v, d)

]
. (6)276

Due to the fact that Cα
unit and Cα

target are both affected by interactions with the object, the277

optimization also needed to be performed for unit fluence allowing for an elimination of the278

effect of attenuation and scattering. This resulted in fluence modulation factors279

mα
b =

wαb (Cα
target)

wαb (Cα
unit)

(7)280

with numerator and denominator as defined in equation (3). Due to the normalization, these281

factors were corrected for interactions with the object and thus could be used to simulate282

an FMpCT scan according to section II.D.1..283

II.E.4. Reference approach284

A simpler approach for fluence field optimization, which was used in previous works,31 is to285

perform a binary modulation with two fluence levels. In image domain, a ROI is defined as286

a set of voxels that should be imaged with high fluence. A pencil beam is assigned a high287

imaging fluence if its central axis intersects the ROI, and a low imaging fluence otherwise.288

The fluence modulation factors were289

mα
b =

{
1 if intersecting
γ otherwise

, (8)290

where 0 < γ < 1 is the modulation strength, which was chosen to be equal to the contrast291

of the variance prescription of the proposed method.292

II.F. Simulation study293

In a simulation study we prescribed three different image variance targets, which can be ap-294

preciated in figure 2: (1) constant variance VROI throughout the imaged object; (2) FMpCT295

II.. MATERIALS AND METHODS
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prescription A (variance VROI inside one quadrant of the imaged object and 4 · VROI else-296

where); and (3) FMpCT prescription B (VROI inside a central rectangular region and 4 ·VROI297

elsewhere). Variance targets are used in step 2 of the proposed algorithm, and therefore in-298

dependent of the imaged object. In agreement to previous investigations31 the prescription299

contrast of 4 was chosen such that it is higher than the variance dynamic range of a unit300

fluence scan,34 but reasonably achievable without expecting regions with vanishing counts301

or distortions of RSP accuracy.302

Previous investigations34 have shown that a uniform fluence does not yield a constant303

variance for pCT. Therefore, the constant variance prescription is the most dose–efficient304

image, if the complete image is required for diagnosis. Prescriptions A and B model two305

treatment scenarios, where the treatment beam path is coming from 0 and 90 degrees in306

A and from 90 and 180 degrees in B. Prescriptions were slightly blurred as sharp gradients307

in image variance cannot be achieved due to the ramp filtration involved in reconstruction.308

Throughout this work we use the nomenclature “constant”, “A” and “B” to refer to the309

three prescriptions.310

C/W = (2/4) VROI

constant variance prescription FMpCT prescription A FMpCT prescription B

Figure 2: Three different image variance targets for the simulation study. The ROI region
and the out–of–ROI region are indicated in green and red respectively. The display center (C)
and window (W) is noted below the figure.

For all phantoms we first simulated a high dose unit fluence dataset with mα
i = 1.311

The mean incident proton fluence was chosen to be 133 mm−2 such that it yielded a typical312

imaging dose for pCT of about 1.4 mGy,12 when summed over all projections. We then313

chose the value of VROI for each phantom as the 95–th–percentile value of the variance in314

the unit fluence scan. For the water phantom this was VROI = 4.61× 10−4, for the CTP404315

phantom VROI = 5.89× 10−4, and for the head phantom VROI = 11.96× 10−4. These values316
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are consistent with previous studies.34317

For the CTP404 phantom RSP values of the phantom body and of two inserts inside the318

ROI were evaluated and compared to the unit fluence scenario. The body consisted of epoxy319

(RSP = 1.144), and inserts were made from Teflon (RSP = 1.791) and polymethylpentene320

(RSP = 0.883). RSP values were calculated with GEANT4 at a proton energy of 150 MeV321

and agreed with previous experiments.35322

For a fair comparison of imaging doses, we computed the 95–th–percentile variance value323

vROI
95 inside the ROI (inside the whole phantom for unit fluence) and calculated a linear324

correction factor η = vROI
95 /VROI. Doses and counts were multiplied by η, variances were325

multiplied by 1/η. The choice of the 95–th–percentile value over the mean or the maximum326

value is a compromise between the requirement that variances should be at VROI or lower,327

and tolerating outliers. As the water and the CTP404 phantom were thin, the percentile328

value was calculated only within the displayed central slice. For the head phantom, which329

covered the entire height of the detector aperture, it was calculated over the full volume. To330

avoid the variance evaluation being dominated by increased noise at the hull of the phantom331

as discussed in previous works,33,34 we determined the shape of the hull by setting an RSP332

threshold of 0.5 and eroding the hull by 7 mm. Values outside this region were disregarded.333

The ROI region and the out–of–ROI region are indicated in figure 2 for fluence modulations334

A and B.335

III. Results336

III.A. Gaussian pencil beam model337

In an experimental dataset without phantom we determined the beam spreads of the Gaus-338

sian beam model to be σu = (4.04± 0.08) mm and σv = (5.24± 0.09) mm. The divergence339

was δu = (5.2± 0.6) 10−4mm−1 and δu = (5.8± 1.4) 10−4mm−1. The beam spread in the u340

direction was significantly smaller compared to the beam spread in v direction. Divergence341

in the u and v direction did not differ outside of the uncertainty bounds. The distances from342

the isocenter to a virtual source were 1/δu = (1.9± 0.2) m and 1/δv = (1.7± 0.4) m, which343

agrees with the position of the scanning magnets, which is 1.8 m from the isocenter. The344

stated parameters were used in all following evaluations.345
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III.B. Variance optimization346

III.B.1. Iterative variance forward projection347
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iteration
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(a) iteration errors

constant
A
B

C/W = (2.5/3.0) VROI

(b) B at iteration 1 (c) B at iteration 20 (d) B at iteration 60

Figure 3: (a) Root–mean–square error (solid) and mean error (dashed) as a function of the
iteration number of the three image variance targets. (b) – (d) Reconstructed variance volumes
for prescription B for different iterations. The display center (C) and window (W) is noted
below the figure.

For step 2 of the proposed method, figure 3 (a) shows error measures as a function of348

the iteration number. The root–mean–square (RMS) error as well as the mean error between349

the current variance volume Vi(x, y, z) and the variance target Vtarget(x, y, z) are calculated350

within the field–of–view. The fastest convergence is observed for the constant variance351

prescription, while both FMpCT prescriptions A and B show a remaining RMS error that352

only reduces slowly in every iteration. The mean error quickly drops to zero within the353

first iterations. The relative change in RMS error for all prescriptions was below 1 % per354

iteration when they were stopped. Figure 3 (b) to (d) show Vi(x, y, z) for prescription B at355

three different iterations. At iteration 20, the high–variance region has reached the correct356

value, while in the low–variance region artifacts remain, but decrease up to the last iteration.357

III.B.2. Fluence optimization358

To validate the use of the correction function k(C), figure 4 shows k(C)/C together with359

the relative increase of the image variance VC at mean counts C. The relative increase is360

calculated as (VC ·C)/(VC∞ ·C∞) for C∞ = 310 for simulated pCT data. Both curves agree,361

which shows that variance increases overproportionally for low counts and that the correction362

function k(C) describes this well.363
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Figure 4: Overproportional increase of image variance with decreasing counts in a simulation
with varying mean proton number C and agreement with the fluence correction function
k(C)/C.

Figure 5 shows intermediate steps of the fluence optimization for the pediatric head364

phantom and variance prescription A. All projection data are shown as sinograms plotted365

as a function of the detector position in u direction and the rotation angle. Only data for366

v = d = 0 are shown. In figure 5 (a), variance at unit fluence V α
unit(u, 0, 0) is shown (step 1367

of the algorithm), which is high at the periphery of the object and around heterogeneities,368

as discussed in previous works.34 Figure 5 (b) shows the variance target V α
target(u, 0, 0) as a369

result of the iterative optimization (step 2). Figure 5 (c) shows the pixel–wise counts target370

for fluence modulation Cα
target(u, 0, 0) (step 3) as given by equation (6). Parts of the variance371

target in (b) are assigned a value of 0, and receive the unit fluence in (c). In figure 5 (d),372

the counts target is fitted by the pencil beam model to get the weights required for fluence373

modulation (also step 3). This can be calculated as
∑

bw
α
b Fb(u, v, d). Some small features374

of (c) are not present in (d) if they are smaller than the extension of a pencil beam.375

III.C. Simulation study376

Figures 6 and 7 show simulated fluence modulations for all phantoms. RSP, variance and377

dose maps are shown together with the counts sinograms. For the water phantom imaged378

with unit fluence (figure 6 (a)), counts and dose were homogeneous throughout the phantom,379

variance was reduced in the center. This reduction was compensated in figure 6 (b) for the380

constant variance target, where instead counts and imaging dose were reduced in the center381

and variance was homogeneous across the phantom, except for a steep increase at the hull.382
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Figure 5: Intermediate results of the fluence optimization process for the pediatric head
phantom and the orthogonal beams variance target: (a) unit fluence variance V α

unit(u, 0, 0),
(b) variance target V α

target(u, 0, 0), (c) pixel–wise target counts Cα
target(u, 0, 0), and (d) target

counts as fitted by the beam model. Data are shown as a function of the rotation angle α
and the detector coordinate u. For display a center of 0.4 mm2 and a window of 0.8 mm2 has
been applied for variances, and a center of 80 and a window of 160 for counts.

The fluence modulations in figure 6 (c) and (e) for variance targets A and B can already383

be appreciated in the RSP maps. Variance levels followed the prescription with a sharp384

gradient. For prescription A some streaks of high variance were observed within the ROI.385

Using the reference approach in figure 6 (d) and (f), conformity of variance and dose maps386

with the ROI was degraded, in particular for prescription B, where variance and dose are387

at the same level as in the unit fluence scan for most of the phantom and the change in388

variance cannot be seen in the RSP maps. In the counts sinograms, regions of increased389

counts roughly agreed with those using the optimization, but were uniform, as required.390

Instead, using the optimization, a heterogeneous counts pattern was observed.391

For the CTP404 phantom (figure 7 (a,b)) and the head phantom (figure 7 (c,d)), variance392

increased around heterogeneities both in unit fluence and fluence–modulated scans. For the393

head phantom in particular the palate exhibited locally elevated variance levels. The fluence394

modulation with prescription A was less conformal, compared to those of the water phantom.395

In particular for the CTP404 phantom variance contrast was impaired. Counts sinograms for396

prescription A in figure 6 (c) and figure 7 (b,d) are similar, but phantom–specific differences397

are noticeable.398

Mean imaging doses are summarized in figure 8, where for fluence modulations the mean399

dose over the whole phantom as well as mean doses in the ROI region and the out–of–ROI400

region are reported. For the water phantom, prescribing constant variance resulted in a401

dose reduction of 8.9 % compared to the unit fluence dose. For the region–of–interest fluence402
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Figure 6: Simulation study for the water phantom and variance targets as indicated in the
titles. Sinograms are shown for v = d = 0. Center (C) and window (W) settings for display
of RSP and variance values are given.

modulations, dose saving outside the ROI was 40.5 % for prescription A and 25.7 % for403

prescription B. Using the simple reference approach, dose reductions were less pronounced404

and dropped to 29.2 % and 13.2 % respectively. For the FMpCT prescription A and the405

CTP404 phantom as well as the head phantom, dose savings outside the ROI were slightly406

lower compared to the 40.5 % of the water phantom (35.4 % and 38.9 % respectively). For407

all phantoms, fluence modulations A and B achieved a lower dose outside the ROI compared408

to the unit fluence, but after normalization with η required a higher dose inside the ROI409

by 9.2 % to 19.2 %. Doses inside the ROI were approximately constant for the reference410

approach. Mean doses over the whole phantom were reduced by 7.2 % to 13.1 % using the411

reference approach and by 9.8 % to 18.6 % for the FMpCT optimizations.412

III.. RESULTS



III.. RESULTS Dickmann et al.

For the CTP404 phantom, the two inserts and the body inside the ROI had an RSP413

value of 1.776, 0.881, and 1.143, compared to 1.776, 0.879, and 1.143 for the unit fluence414

case.415

Figure 9 shows the head phantom with unit fluence (a,b) and for the constant variance416

target (c,d) both in a sagittal view (a,c) and a coronal view (b,d). Dose is homogeneous417

for the unit fluence imaging, but the variance is notably lower in the back of the head and418

around the spinal cord compared to regions around the palate and the nasal cavities. These419

variations were compensated for in the fluence modulations achieving more homogeneous420

variance levels at reduced doses in regions where variance was low for unit fluence. Mean421

dose over the whole phantom was 1.15 mGy compared to 1.37 mGy in the unit fluence case422

(16.0 % reduction). Around the palate and the nasal cavities, dose is increased in the fluence–423

modulated scan, which is not expected and may be due to the normalization by η.424
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Figure 7: Simulation study for the CTP404 and the head phantom, and variance targets as
indicated in the titles. Sinograms are shown for v = d = 0. Center (C) and window (W)
settings for display of RSP and variance values are given.
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IV. Discussion425

IV.A. Gaussian pencil beam model426

We found parameters of a Gaussian pencil beam model that allowed us to describe pencil427

beams at arbitrary fluences and positions. This is a key component of the fluence modulation428

scheme, as it allows to find a linear combination of a regular grid of pencil beams that achieves429

the required counts as calculated by our algorithm. Uncertainty bounds for fits in v direction430

were consistently larger than those in u direction, in particular for the divergence parameter431

δ. This was because the detector aperture is smaller in u direction and less datapoints were432

available. The beam spread σv was significantly larger than σu. While this anisotropy is433

not expected for clinical operation, it may have been caused by operating the beam line in434

research mode and modifying beam optics settings to keep proton fluence low and viable for435

the scanner. For future experimental studies, certain model parameters, such as the beam436

energy spread, may require adjustment to exactly match experimental variance levels.437

IV.B. Variance optimization438

IV.B.1. Iterative variance forward projection439

Using an iterative approach, we calculated stacks of variance projections that yield a desired440

variance map in image space. Depending on the complexity of the variance prescription, this441

required a different amount of iterations and a non–zero RMS error remained. The easiest442

case (constant variance target), did not require negative variance values (a constant stack of443

variance projections would yield a constant image variance) and therefore converged quickly.444

The two inhomogeneous variance targets A and B did suffer from the positivity requirement445

and therefore only slowly converged towards a reduced RMS error. While with negative446

variance values, a (close to) zero RMS error would be possible, this was not the case when447

requiring physical variance values. The variance target stacks therefore already contained an448

inherent error, which impacted the achievable variance contrast. However, it did not impact449

fluence modulation in general, as the prescribed fluences could be rescaled, such that VROI450

was achieved inside the ROI.451
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IV.B.2. Fluence optimization452

We calculated the counts target according to equation (6), which could run into a lower and453

an upper limit. Firstly, to ensure that that data was available throughout the projection,454

we required at least Cmin protons in every pixel. Secondly, to avoid unreasonably high455

imaging doses, only fluence modulation factors mα
b ≤ 1 were allowed, even if the variance456

target from the previous step (iterative variance forward projection) was zero. This was457

relevant in particular at the hull of the object, which is also a limited area to be traversed by458

a therapeutic proton beam. Again, both limits impacted achievable variance contrast, but459

VROI could be achieved in the ROI by rescaling with η. Due to the limitation to pencil beams460

with a finite size, small variance features were averaged out, which may impact homogeneity461

of the achieved variance, in particular for phantoms with strong heterogeneities.462

IV.C. Simulation study463

We simulated FMpCT scans for different phantoms and variance targets demonstrating two464

possible applications for dose reduction using fluence modulation: (1) for achieving constant465

variance throughout the object and (2) concentrating imaging dose in a high image quality466

ROI and reducing it elsewhere.467

The dose reduction for constant variance with the homogeneous water phantom was468

8.9 %, which already is considerable. As shown in previous investigations,34 variance for469

hetereogeneous phantoms is dominated by mutiple Coulomb scattering, which depends on470

the local heterogeneity of the phantom. Therefore, variance maps of the head phantom in471

coronal and sagittal views were varying greatly. Assuming that good image quality is required472

in the complete field–of–view, a fluence–modulated scan can reduce the imaging dose by473

16.0 % compared to a unit fluence scan, without any loss of diagnostic value. Equivalently,474

the signal–to–noise ratio could have been improved by 35 % at equal dose.475

For all phantoms and two different image variance targets we could demonstrate con-476

siderable dose savings of 25.7 % to 40.5 % outside of the ROI. At the same time, the imaging477

dose inside the ROI increased compared to the unit fluence acquisition. Assuming that the478

ROI agrees with the treatment beam path and that treatment doses are several orders of479

magnitude higher than imaging doses, this increase is probably not relevant. At the same480
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time, proton therapy allows for minimal doses outside the treatment beam path, requiring481

that this advantage is not compromised by frequent imaging. Mean imaging doses over the482

whole phantom were reduced for all combinations of phantoms and variance targets. Using483

a sensitometric phantom we showed that RSP accuracy is not compromised by fluence mod-484

ulation. RSP errors were comparable for modulated and un–modulated scans, and all below485

1 %, which is within the magnitude expected from literature.12,19,35486

Imaging doses in fluence–modulated scans showed local increases and doses partially487

spilled out of the ROI. This may have impaired results in this study and could be caused488

by the fact that optimization was exclusively performed with a variance objective. Future489

studies should therefore include a dose objective outside of the ROI while keeping the variance490

objective inside the ROI, further developing ideas from studies for x–ray CT.21 Moreover,491

the optimal choice of the contrast in the image variance prescription should be studied in492

the future, but is out of scope for this work.493

Using a simple intersection–based approach also showed dose savings compared to unit494

fluence acquisitions. However, dose savings were considerably less compared to the opti-495

mized FMpCT scans and conformity of variance with the prescription was degraded. By496

construction, a prescription of constant variance is not possible with this approach.497

Future work should also address the impact of iterative image reconstruction, which is498

frequently used for pCT imaging.44–48 In contrast to the direct filtered backprojection algo-499

rithm used in this study, iterative reconstruction employs a regularization method (typically500

total variation), which reduces noise and whose optimal weight depends on the object and501

the fluence level.49 While most fluence modulation studies for x–ray CT have been performed502

using filtered backprojection,20,21 a first study23 investigated a joint optimization of the flu-503

ence field and a spatially varying regularization parameter in the iterative reconstruction.504

For pCT, a comparison of iterative and direct reconstruction47 showed comparable image505

quality. Preliminary work of the authors using an iterative reconstruction algorithm46 and506

fluence modulation suggests feasibility of combining the two methods for pCT.507
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V. Conclusion508

We developed a novel method for fluence–modulated proton computed tomography using509

pencil beam scanning and demonstrated its feasibility in a simulation study. Dose reductions510

achieved by prescribing uniform variance were considerable, in particular for an anthropo-511

morphic head phantom. This suggests the need for employing non–uniform fluence patterns512

in future pCT studies, whenever dose efficiency is a key requirement. Furthermore, the pro-513

posed method allows us to prescribe arbitrary image variance targets, which were shown to514

further reduce imaging dose outside of a given region–of–interest. This can be of particular515

interest in the context of particle therapy and allow for daily imaging at a reduced imaging516

dose to healthy tissue outside of the treatment beam path.517
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