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Abstract

Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ~400 million 

infections and ~100 million dengue cases each year. Factors that contribute to protection from and 

risk of dengue and severe dengue disease have been studied extensively but are still not fully 

understood. Results from Phase 3 vaccine efficacy trials have recently become available for one 

vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of 

additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At 

the “Summit on Dengue Immune Correlates of Protection”, held in Annecy, France, on March 8-9, 

2016, dengue experts from diverse fields came together to discuss the current understanding of the 

immune response to and protection from DENV infection and disease, identify key unanswered 

questions, discuss data on immune correlates and plans for comparison of results across assays/

consortia, and propose a research agenda for investigation of dengue immune correlates, all in the 

context of both natural infection studies and vaccine trials.

Keywords

Dengue virus; immune correlates of protection; immune correlates of risk; natural infection; 
vaccine

1. Introduction

Dengue is the most prevalent arthropod-borne viral disease globally. The four serotypes of 

dengue virus (DENV1-4) cause approximately 400 million infections annually [1] ranging 

from asymptomatic infection to severe disease manifested by vascular leak, hemorrhagic 

manifestations, and shock [2]. A major goal of dengue research is to identify and understand 

immune correlates of protection and risk (Box 1) of DENV infection, dengue illness, and 

severe disease, particularly in the context of vaccines (Box 2).

Here we summarize insights from the “Summit on Dengue Immune Correlates of 
Protection”, sponsored by the Partnership for Dengue Control. This summit focused on 

research on dengue immunology and pathogenesis in relation to correlates of protection and 

risk. The goal of the summit was to review the state-of-the-art regarding immunity to DENV 

natural infections and vaccines (Box 3) and to generate a research agenda of key unanswered 

questions (Box 4). We also addressed methods for measuring dengue immune correlates, 
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measurement of safety and efficacy in vaccine trials, and a framework for comparing results 

across consortia, vaccines, and research sites (Box 5).

2. What have we learned from natural DENV infections?

Dynamics of immunity following natural infection

The dynamics of immunity derived from natural DENV infections provide important 

insights into the appropriate time-point(s) to measure immune correlates of protection for 

vaccines. After natural primary DENV infection, the antibody response against the 

homologous infecting serotype is potently neutralizing and thought to be life-long; however, 

individuals also generate a large quantity of less-neutralizing cross-reactive antibodies that 

initially protect against but may later enhance infection and/or disease with heterologous 

serotypes [3–5]. After primary infection, neutralizing antibody (nAb) titers against all four 

serotypes are highest during the first six months, when individuals are thought to be 

protected from disease caused by DENV infection of any serotype [6]. NAb titers wane over 

this time period and possibly thereafter, depending on the level of dengue endemicity/DENV 

exposure [7–10]. On the population level, the average period of cross-serotype protection is 

~1.5-2 years against symptomatic disease and ~2.5 years against severe disease [11–13]. 

Recent studies of children in Thailand and Nicaragua have demonstrated that natural 

infections can induce cross-protective immunity over longer periods of time in individuals 

with high nAb titers [9,14]. However, multiple cohort studies have documented differences 

in the ratio of symptomatic to inapparent (S:I) infections year-to-year [15–18]; when the S:I 

ratio is high, perhaps the epidemic “force” is greater and there is less protection against 

disease.

Additionally, maternal antibodies either protect against or increase risk of severe disease in 

infants in a time-dependent manner. The greatest number of symptomatic and hospitalized 

dengue cases in infants is observed approximately six months after birth [19–21]: maternal 

nAb titers decay to <1:10 serum dilution by six months of age on average, whereas non-

neutralizing antibodies persist for up to one year [22]. On average, sera collected at six 

months of age can enhance infection of monocytes more than antibodies collected at other 

time-points [21,23].

Homotypic reinfection

The recent observation of RT-PCR-confirmed homotypic re-infections in Nicaragua [24] and 

an epidemic of severe DENV2 in a population with pre-existing anti-DENV2 nAbs in 

Iquitos, Peru [25,26], led to a discussion about the clinical and epidemiological importance 

of homotypic reinfections. Homotypic immunity might not be fully sterilizing or protective 

and may occasionally lead to clinical disease, especially with a large viral inoculum, high 

strain-specific virulence/infectiousness, or poor quantity and quality of host immunity [27]. 

Overall, however, evidence exists for long-term protection against disease due to homotypic 

re-infection [6]. Thus, the clinical relevance of homotypic re-infections is likely limited, but 

the immunological consequences may be important.
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Boosting

Homologous and mild heterologous infections may lead to boosts in immunity (<4-fold rise 

in antibody titers) that modify subsequent disease risk. Homologous challenge with distinct 

genotypes in non-human primate studies one year post-infection resulted in a persistent rise 

in antibody titers [28], and natural boosts have been observed in both Thailand and in 

Nicaragua and are consistent with case-based estimates of DENV transmission [9,29]. 

Determining whether and how boosting affects the durability of dengue immunity in 

endemic areas is important for evaluating the duration of natural and vaccine-induced 

immunity and the potential need for vaccine booster doses.

Post-second infection immunity

Following second heterologous DENV infection, individuals can develop potent type-

specific responses to the second infecting DENV serotype in addition to potent cross-

neutralizing/multitypic antibodies, which are thought to be more protective than heterotypic 

antibodies generated following primary DENV infection [30,31]. Although symptomatic 

dengue cases continue to occur, the risk of severe disease and hospitalization is low during 

third and fourth DENV infections [6,12,32,33]. The epidemiology of dengue is consistent 

with this observation, as the peak age of medically-attended dengue depends on the local 

force of infection [34,35]. However, some argued that more research is required on whether 

second infections truly induce durable cross-protective immunity. Sites with discrete 

introductions of DENV may aid in these studies [36]. Human challenge studies are another 

important approach to test whether cross-protective immunity following sequential DENV 

infection differs from tetravalent vaccination [37,38].

3. Immune responses in the context of dengue vaccines

Antibodies induced by vaccination

The strategy for dengue vaccination has been to immunize simultaneously with antigens 

from DENV1-4 in an effort to induce balanced type-specific neutralizing responses to each 

serotype [39] (Box 2). There are currently multiple dengue vaccine candidates, including 

live-attenuated vaccines (LAV), whole virus inactivated vaccines, protein-based vaccines, 

and more recently mRNA-based vaccines; all are tetravalent [40]. The magnitude of the 

vaccine-mediated immune response is generally lower than in natural infection. Several key 

questions remain with respect to how the antibody response elicited during vaccination 

(simultaneous exposure) differs from natural infection (sequential exposure). In theory, 

vaccines may stimulate expansion and affinity maturation of type-specific memory B cells to 

all four DENV serotypes simultaneously, generating a mature antibody response that may be 

different from natural infection. A major challenge of current vaccination strategies is 

achieving balanced tetravalent immunity when administering all four antigens at once [41]. 

The licensed tetravalent LAV studied to date appears to induce substantial cross-reactive 

nAbs in addition to more limited type-specific nAbs, with unbalanced immunity to 

DENV1-4 [42]. Rebalancing the doses of each component in the tetravalent formulation may 

improve replication and immunogenicity. The question of whether tetravalent immunity is 

needed to reduce the public health impact of dengue remains, although unpublished data of a 
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study from trivalent vaccination followed by heterologous challenge suggest that tetravalent 

formulations may be more protective against viremia (A. Durbin, unpublished).

Antibody-mediated immunity and efficacy following vaccination in relation to serostatus

Multiple candidate vaccines show differences in nAb profiles to DENV1-4 and nAb decay 

following vaccination in flavivirus- and/or DENV-seropositive versus -seronegative 

recipients. In the Dengvaxia trials, seropositive individuals (PRNT50 titer ≥1:10 to DENV, 

due to prior DENV or other flavivirus infection) on average had PRNT50 titers >1:100 

following two vaccine doses without increasing after the third dose, whereas seronegative 

individuals had lower nAb titers following the first two doses that increased upon subsequent 

immunization [43]. However, for both seronegative and seropositive individuals, the 

proportion that seroconverted to all four serotypes increased with each vaccine dose [44]. 

Recent studies show that Dengvaxia induces nAbs against DENV1-4 in seronegative 

individuals, but most type-specific nAbs against DENV4 [42]. Unpublished exploratory 

analyses of vaccinated cases from the Dengvaxia Phase 2b trials suggest a relationship 

between nAb titers and probability of disease [45]. Further, the Phase 3 clinical trials 

showed an overall positive efficacy (protection against having a dengue case) of the vaccine 

during the initial 25 months of the trial, but evidence of reduced protective immunity over 

the follow-up period, with more hospitalized dengue cases in vaccinees than placebos >1 

year after the final vaccine dose in children <9 years old [46,47].

With the NIH LAV vaccine, post-dose-1 peak titers declined by day 180, although most 

individuals, who were flavivirus-seronegative, did not show boosted responses following 

repeat vaccination at one year, suggesting sustained protection and sterilizing immunity 

[48,49]. The GlaxoSmithKline whole virus-inactivated vaccine induces good peak nAb titers 

against all four serotypes after the second dose, but nAb titers wane over time in non-human 

primates [50] and in seronegative adults [51]. In the Takeda LAV vaccine, more asymmetry 

in nAb titers to the four serotypes, with stronger responses to DENV2 and weaker responses 

to DENV4, is seen in seronegative individuals than in seropositive individuals, even 

following multiple doses [52]. These observations suggest that differential immune 

responses according to serostatus as viral and host genetic factors may be a challenge to 

achieving balanced, durable nAb responses for multiple dengue LAVs.

It was suggested that vaccine trial data be presented to display individual nAb variation to 

enable study of correlations among nAb responses to different serotypes following 

vaccination; this might also allow the establishment of type-specific correlates of protection. 

The initial target duration for vaccine efficacy of life-long protection may not be feasible for 

all vaccine candidates. Some dengue vaccines may require periodic booster immunizations 

over time, especially in non-endemic areas or areas with a low force of infection, in a model 

more like tetanus. Further, the kinetics of antibody waning is such that the time-point for 

valid measurement of a long-term antibody correlate of protection is likely to be later than 

30 days post-vaccination.

Katzelnick et al. Page 6

Vaccine. Author manuscript; available in PMC 2018 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vaccines and cell-mediated immunity

The role of cell-mediated immunity (CMI) studies in the context of dengue vaccines was 

discussed at a WHO-led consultation in 2008, and it was recommended that exploratory 

studies be conducted [53]. Initially, the primary concern with respect to T cells was to ensure 

that vaccines did not induce a harmful T cell profile that could contribute to the 

immunopathogenesis seen with secondary DENV infections [54–56]. However, current data 

suggest that DENV-specific T cells are associated with a protective response and thus may 

be beneficial [57–59]. Furthermore, findings from the Dengvaxia Phase 3 trial are not 

entirely explained by nAb responses as measured by existing assays, making a case for 

further dissecting the specificity of the humoral immune response, as well as exploring other 

aspects of immunity, such as T cell responses, that may be immune correlates or co-

correlates of protection alongside nAbs.

Differences among vaccine candidates and implications for immune correlates

Due to fundamental differences between vaccines, there will likely be differences in what 

can be used as a correlate of protection for each vaccine. For instance, inactivated vaccines 

may induce fundamentally different antibody responses than live vaccines, and while 

individuals may achieve the same nAb titers with two different vaccines, as judged by 

current in vitro assays, the quality and protective activity of the antibody responses may 

differ in vivo. Another key difference is that some vaccines lack DENV nonstructural genes 

or capsid proteins [39]. As CD8+ T cells primarily target nonstructural proteins, with the 

strongest responses to NS3, NS4B, and NS5, and CD4+ T cells target both structural (capsid 

and envelope) and non-structural (NS3) proteins [60,61], LAVs without these proteins differ 

in the quality and nature of their T cell responses [55]. In contrast, a LAV containing all 

DENV proteins has been shown to induce CD8+ T cells comparable to natural infection 

responses [62]. Antibodies to NS1, which can protect against lethal vascular leak in mouse 

models [63], may also play an important role in vaccine-mediated protection and disease 

modification. Significance of these differences vis-à-vis protection against dengue remains 

to be demonstrated.

4. Considerations for defining immune correlates

The virus

Dengue virions display on their surface a lattice of pre-membrane/membrane (prM/M) and 

envelope (E) proteins. DENV strains vary in temperature sensitivity and maturation state, in 

part due to laboratory-adapted mutations in prototype and some vaccine strains, which may 

not be representative of circulating strains [64]. Such amino acid differences can also lead to 

differences in virion “breathing”, which allows cryptic epitopes to be revealed during 

temperature- and time-dependent changes in the virion structure [65,66]. Further evidence 

for antigenic variation within serotypes was presented, including amino acid variation in 

type-specific quaternary epitopes in highly laboratory-adapted, prototype strains [67,68]. It 

was suggested that natural strain variation may play a role in vaccine performance and 

should be further studied. The maturation state of vaccine strains could affect 

immunogenicity, and as prM antibodies strongly induce antibody-dependent enhancement in 
vitro [69], anti-prM antibody responses should be studied in the context of vaccines. It was 
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suggested that researchers perform pre-clinical immunogenicity studies on diverse DENV 

strains to better determine which viruses should be used for next-generation dengue 

vaccines.

Antibodies and neutralization assays

Serum nAb titers above a certain threshold are correlated with protection from symptomatic 

infection [9,14,70], but more research is required to establish specific nAb titers as correlates 

of protection, which will vary by vaccine, serotype, immune status, and assay [71]. 

Inconsistencies across laboratories exist in the neutralization assay due to differences in 

reagents, methods, and statistical analyses [72–74]. However, it was recommended that 

standard neutralization assays should still be performed, despite the challenges with 

interpretation. Availability of a reference panel of low-passage strains of multiple genotypes 

in addition to reference sera would be helpful for standardizing neutralization assays across 

laboratories (some reference materials are already available through NIBSC). Antigenic 

differences between prototype strains remain problematic; one solution is for dengue 

researchers to work with infectious clones to control for laboratory adaptation [75]. It was 

recognized that the maturation state of dengue viruses circulating in humans is not known: 

primary human dendritic cell-derived viruses are currently the closest approximation of the 

maturation state of DENV in people [76]. Resolving the maturation state of virions in 

humans was emphasized as critical, as maturation state affects nAb titers differentially 

depending on assay characteristics.

NAb titers were generally recognized as a crude measure that may not fully capture the 

protective component of the immune response, which is likely due to antibodies that bind 

type-specific or cross-reactive quaternary epitopes [64,76–79]. Combining antibody 

depletion methods with neutralization assays enables dissection of the cross-reactive versus 

type-specific neutralizing antibody response after natural infection and vaccination [80,81]. 

Following natural DENV infection, the majority of human anti-DENV antibodies target prM 

and the fusion loop in E, most of which are poorly neutralizing. Potently neutralizing type-

specific and cross-reactive quaternary antibodies are generated, but in lower amounts 

[64,76–80]. Antibodies generated following tetravalent vaccination will likely differ 

depending on each vaccine. Information on the only vaccine published to date reveals that 

type-specific antibodies targeting quaternary epitopes were not generated against all four 

serotypes [81]. In experiments where blood from viremic adults was mixed with different 

human monoclonal antibodies (MAbs) and fed to mosquitoes, quaternary epitope-binding 

MAbs prevented mosquito infection most effectively, whereas cross-reactive (e.g., fusion-

loop targeting) and other type-specific MAbs did not. At least one type-specific quaternary 

epitope has now been identified for each DENV serotype [68,82,83]. Chimeric viruses with 

these “transplanted” epitopes have been generated as tools for dissection of polyclonal 

antibody repertoire and for epitope-specific diagnostics [68,83]. However, overlap of type-

specific epitopes sometimes makes it impossible to create recombinant viruses modifying 

only one epitope at a time. Further, individuals develop many antibodies that bind a 

dominant epitope in slightly different ways; additional human MAbs will help to accurately 

define boundaries of major antigenic sites and epitopes and develop new reagents for 

tracking polyclonal epitope-specific responses. New approaches that combine proteomics 
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and functional methods to study the antibody repertoire are promising, but require further 

investigation [84].

Memory B cells, plasmablasts, and long-lived plasma cells

Protection may be mediated by antibodies in plasma from long-lived plasma cells (LLPCs), 

antibodies encoded by memory B cells (MBCs) with the potential to differentiate following 

antigen exposure into plasmablasts, or from naïve plasmablasts; characterizing differences in 

specificity between these populations is a research priority. The plasmablast response is 

extensive and convenient to study, but the profile of these antibodies does not necessarily 

correlate with the specificity or function of memory responses. Only a small proportion of 

the breadth of the MBC repertoire may be found in the blood, and currently, there are 

numerous challenges to MBC profiling, including how to properly identify and sort DENV-

specific MBCs [85]. LLPCs cannot easily be studied in human populations, limiting research 

to plasma antibodies. New methods are available for comparing MBC specificity and plasma 

antibody repertoire in humans, which may be applied to studying dengue [86].

T cells

The discussion of the role of T cells in dengue disease has shifted over the last five years 

from a focus on pathogenesis to a potential beneficial role based on new evidence suggesting 

that robust CD8+ T cell responses may be protective [54–59]. More work is required to 

characterize the CD4+ T cell response and its role in protection [57], although some 

evidence exists for particularly important subsets, such as follicular T helper (Tfh) cells in 

the blood. Follow-up research should be performed on the observed association between 

certain HLA types and more severe forms of dengue [87]. The importance of large CMI 

studies was discussed: if each HLA type is present in only a fraction of the population, 

correlations cannot be determined unless large studies are performed. Phase 1 and Phase 2 

vaccine studies, which include adults who can provide larger quantities of blood, should be 

used to identify the most critical assays to use in efficacy trials, such as the induction of 

multifunctional CD8+/CD4+ T cells. There was consensus that it is important to measure the 

frequency, function, specificity, and kinetics of T cell responses in dengue patients and 

vaccinees.

Systems immunology

A next step for dengue research is use of comprehensive immune profiling and 

computational approaches to measure multiple immune parameters simultaneously via a 

systems immunology approach to identify correlates of protection and risk, drawing on the 

experience with, for example, HIV and influenza viruses [88–91]. A systems immunology 

approach can improve prediction of vaccine efficacy and protection at the individual level, 

encompassing multiple potential contributors to immune state and response variability in the 

human population. For example, ‘intrinsic’ variation in immunity at baseline and in response 

to a vaccine can be driven by age, sex, infection history, microbiome, co-morbidities, and 

host genetics, and systems immunology provides ways to explore these and other variables 

alongside multiple immune and gene expression parameters to identify correlates. There is 

value to this more holistic and broad approach, although it can be more expensive and 

complicated, and thus requires careful planning and coordination.
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5. Efficacy and safety of dengue vaccines and lessons learned from recent 

vaccine clinical trials

Age, serostatus, and disease severity in vaccine trials

Given the differences observed in all vaccine trials to date between flavivirus- and/or DENV-

seropositive and -seronegative vaccine recipients, vaccine efficacy must be assessed 

separately according to prior baseline serostatus; whether studies should be powered to 

evaluate vaccine efficacy by baseline serostatus was also discussed. An exploratory analysis 

of a recent Phase 3 trial showed a significant increase in risk of hospitalization with dengue 

disease in vaccinated 2-5 year olds 1-2 years after the third vaccine dose as well as an 

elevated risk, though not significant, 2-4 years after the third vaccine dose [46]. A proposed 

explanation is that vaccination stimulated the immune system as a natural primary DENV 

infection would: vaccine recipients without a moderate-to-strong month 13 nAb titer in 

response to vaccination have waning immunity over a year beyond vaccination/infection and 

are at increased risk of severe disease upon their next DENV exposure [45]. In contrast, 

flavivivrus-seropositive vaccine recipients had high vaccine efficacy, approximating immune 

responses more analogous to natural secondary DENV immunity and suggesting that 

seropositive children may require fewer than 3 doses for protection. Modeling results 

demonstrate that this hypothesis is consistent with the vaccine efficacy observations [92,93]. 

As pre-vaccine samples were only collected for a subset of trial subjects, efforts to estimate 

protection stratified by immune status, rather than just age, for all children in the trial were 

recommended, including measuring antibody response in post-vaccine samples to either the 

yellow fever chimeric backbone of the vaccine constructs or DENV nonstructural proteins to 

determine baseline DENV serostatus (e.g., whether immunity was vaccine-derived, from 

prior DENV infection, or other flavivirus infection).

The WHO Strategic Advisory Group of Experts (SAGE) on Immunization recommended 

that countries consider Dengvaxia vaccination only in areas where seroprevalence of anti-

DENV antibodies is ≥70% in the population targeted for vaccination, namely individuals age 

≥9 years [92,94,95]. A vaccine that protects seropositive individuals but not seronegative 

individuals provides more protection than risk if the majority of vaccinees are seropositive, 

but in areas with low DENV transmission intensity, vaccination may place some 

seronegative recipients (especially young children) at higher risk of hospitalization than if 

they had never been vaccinated [92,93]. Some argued that available evidence is not sufficient 

to prove a safety issue related to serostatus, and further research is required to evaluate the 

safety signal in 2-5 year-olds and whether it is a transient or a long-lasting problem. Others 

argued that the scale of the Phase 3 trial in Southeast Asia was sufficient to be confident that 

the observed risk in young vaccinated individuals demonstrates a safety problem associated 

with serostatus. There was debate regarding whether sufficient data are [96] or are not [44] 

available to determine whether negative serostatus is associated with risk of hospitalized 

dengue regardless of age, including children age ≥9 years. It remains to be seen whether 

similar safety problems will be detected for other tetravalent vaccines.
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Communicating to the public risk-benefit assessments for dengue vaccines

The importance of considering the effect of vaccination at both the population level and the 

individual level, including effects on those who are not vaccinated, was emphasized, as well 

as the importance of communication and discussion of risks and benefits of any dengue 

vaccine to aid country-level and individual decision-making about vaccination in dengue-

endemic countries. For instance, it may be difficult for non-experts to place the observed 

increase in the risk of severe disease in young individuals >1 year after vaccination in the 

context of concerns about vaccine-enhanced DENV disease in seronegatives [44,97]. 

Communicating potential risks as well as benefits of dengue vaccination is particularly 

important because the political fall-out from vaccine-induced severe dengue disease could 

impact future vaccination efforts. For comparison, an RSV vaccine that caused severe 

complications slowed development of new vaccine candidates for 30 years due to risk 

perception and a resulting lack of private and public investment [98]. For dengue, a major 

scientific and communication problem is to distinguish between vaccine-associated disease 

and simple breakthrough infections. Some argued that good risk management approaches are 

currently in place, and vaccine rollout can safely continue in settings with high background 

seroprevalence [99].

Mitigating individual risk of severe disease in vaccinated individuals with evaluation of 
individual baseline serostatus by companion diagnostics or available dengue antibody 
tests

Modeling work based on available data suggests that Dengvaxia can place seronegative 

individuals at increased risk of hospitalized dengue, regardless of transmission setting, but is 

highly effective in seropositive individuals in all settings [93]. Thus, modeling suggests that 

a companion diagnostic or available rapid serostatus diagnostic test could be used to 

determine seropositivity prior to vaccination to better target the population that most benefits 

from vaccination [93]. Such diagnostics are in development for other vaccines and 

treatments with efficacy concerns, and are even more important if there is a safety concern. 

The choice of test and feasibility of such an approach was acknowledged to be challenging, 

as current IgG tests are not fully reliable, and the current Zika epidemic, as well as Japanese 

encephalitis and yellow fever vaccination, only further complicate matters. Some argued 

that, until there is a good point-of-care test, available IgG tests could be used. A regulator 

noted that national regulatory agencies may want to mitigate individual risk of enhanced 

dengue disease by requiring risk-stratification based on serostatus as measured by serostatus 

diagnostic tests. Others argued that population-level seropositivity data can be used to 

determine whether vaccination should be implemented and that a pre-vaccination test is not 

necessary.

Future clinical trial design

There was broad consensus that in light of dependence of vaccine performance on prior 

DENV and/or flavivirus exposure, vaccine trials should collect serum samples from all trial 

participants at multiple time-points, including baseline, the end of the vaccine series, and 

periodically thereafter.
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It may not be necessary to process all specimens immediately, but they should be stored for 

later analysis if needed. PBMCs should be collected from a subset of trial participants, but 

the size of an immunogenicity subset would be limited by feasibility and the assays/analyses 

required. However, identifying cell-mediated correlates of protection would likely require 

large immunogenicity subsets, potentially all trial participants, in order to have sufficient 

numbers of cases for statistical inference. For systems immunology studies, serum and 

PBMC samples should also be collected soon after vaccination (day 1-7).

Vaccine trial design should account for the known period of cross-protection between 

serotypes, estimated to be 1-2 years after the last vaccination, and should continue active 

surveillance for a minimum of 3-5 years after the final vaccine dose to allow for estimation 

of long-term vaccine efficacy as well as risks of vaccine-enhanced disease in vaccinated 

individuals. WHO recommends 3-5 years of follow-up of trial participants [100]; several 

National Regulatory Authorities accepted primary endpoint data at 12 months for licensure, 

but also based decisions on long-term follow up data available at the time or registration.

Post-authorization safety studies and risk management plans

When introducing dengue vaccines into routine vaccination programs, it will be difficult to 

determine whether an excess of severe dengue cases is occurring in vaccinated populations 

compared to what would be otherwise expected unless there is a control group, e.g. non-

vaccinated individuals of the same age and population experiencing primary dengue. It was 

agreed that Phase 4 trials need: 1) natural control groups, such as age cohorts, to allow for 

comparison of disease incidence; 2) good case definitions of severe disease; and 3) vaccine 

campaigns only in areas where vaccination history and linked individual clinical data can be 

monitored and severe disease can be appropriately treated [94]. Many low-income countries 

do not have robust pharmacovigilance/disease surveillance, and routine ‘adverse events 

following immunization’ monitoring systems are not able to assess potential increases in 

dengue associated with vaccination, which may occur potentially years after vaccination. As 

vaccine safety is also monitored through a developer’s/manufacturer’s post-licensure risk 

management plan, developers work with local governments to build infrastructure and 

develop better tools for tracking vaccination status and linking it to hospitalized cases, as 

well as supporting training programs on dengue and severe dengue case management 

administered by local governments. An approach adopted by Butantan for the ongoing Phase 

3 DENV trial in Brazil is to work with family clinics to facilitate vaccination administration 

and tracking of outcomes through to Phase 4 [101].

Next-generation vaccines

Rationally designed vaccines might drive immune responses towards desired neutralizing 

epitopes and achieve more balanced immune responses [102]. This may require engineering 

of antigen complexes that create the quaternary structure of E protein rafts, which is 

technically challenging. Conversely, it may be possible to “mask” some targets, such as the 

cross-reactive fusion loop, to drive immune responses towards relevant neutralizing epitopes. 

Another proposed approach is to use multivalent viruses in which critical features of type-

specific epitopes are contained in one or two chimeric vaccine strains. Finally, sequential (as 
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opposed to simultaneous) vaccination was presented as an alternative method to induce 

cross-reactive responses to multiple serotypes.

7. Conclusions

The Summit on Dengue Immune Correlates of Protection highlighted recent advances in 

research toward identifying DENV immune correlates in the context of natural DENV 

infections and vaccines, as well as remaining research questions and challenges to be 

addressed in the future.
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Box 1

Correlates of protection: Summary points

• An immune correlate of protection is an immune response marker that is 

statistically associated with protection from disease or infection and may be 

either mechanistic (causally related to outcome) or non-mechanistic 

(statistically related to outcome).

• An immune marker that is a correlate of protection is defined for a specific 

infectious disease endpoint and may be derived from natural or vaccine-

induced immunity.

• For some diseases and vaccines, useful non-mechanistic correlates in lieu of 

true mechanistic correlates of protection are available.

• All currently licensed vaccines work primarily through antibodies, and most 

vaccines approved in the last 10 years had serological markers as immune 

correlates measured with validated assays.

• Different aspects of the immune system often perform redundant functions or 

may be synergistic protective mechanistic correlates.

• Applications and uses of immune correlates of protection and risk include:

○ helping to define important aspects of infectious disease biology;

○ identifying the optimal choice of vaccine antigen and establish 

criteria for the consistency and potency between vaccine lots;

○ determining susceptibility to disease at the individual and 

population level;

○ providing a way to inform vaccine licensure in cases where 

establishing efficacy directly through clinical trials is not ethical or 

feasible; and

○ helping with bridging from first- to second-generation vaccines 

[103].

• Types of adaptive immunity that may modify protection include:

○ serum antibodies and their avidity, neutralization capacity, cytotoxic 

functionality, and ability to promote opsonophagocytosis;

○ mucosal antibodies, including local IgA and diffusion of IgG to 

relevant surfaces;

○ CD4+ T cells and the degree to which they help activate B and T 

cells, promote inflammation, release cytokines, lyse cells, and 

maintain steady-state immunity; and

Katzelnick et al. Page 20

Vaccine. Author manuscript; available in PMC 2018 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



○ the avidity of CD8+ T cells and their ability to lyse appropriate 

target cells and not cause excessive damage [104,105].
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Box 2

Correlates of protection for dengue vaccine licensure

Overview of correlates of protection for vaccine licensure

• The primary goal of regulators is to establish that biological agents are safe, 

pure, and potent.

• The traditional method for vaccine licensure requires a randomized clinical 

trial with comparison between treatment and control arms using a quantitative 

measure, either disease or an immune correlate.

• Mechanistic and non-mechanistic correlates of protection are used, but 

immune markers should be measured using functional assays and be regarded 

by the scientific community as biologically relevant.

• Other fields, such as HIV, received central funding (NIH) to take a 

harmonized approach for standardization of all measures of immune 

correlates.

• All assays should be qualified (control for variability due to reagents, the 

process of conducting the assay, operators, training) so that there can be 

confidence in the results.

• Validation is a stringent and labor-intensive process, and is important for 

regulatory submissions [106].

Specific considerations for dengue correlates of protection

• For dengue, safety, efficacy, and duration of protection are highly interrelated 

with disease due to immune enhancement.

• Valuable assays for vaccine evaluation include:

○ second generation neutralization assays, considering different types 

of cell substrates;

○ B cell memory assays for inactivated vaccines;

○ cell-mediated immunity assays;

○ antibody affinity/avidity;

○ serotype-specific antibody/depletion assays;

○ systems immunology; and

○ isotype/effector function.

• Currently, vaccine developers have each developed their own assays, 

measuring particular endpoints relevant to their vaccines.
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• Attempts to harmonize neutralization assays have been difficult, and lack of a 

universal correlate of protection across products makes it difficult to know 

which assay to harmonize.
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Box 3

State of the art

What have we learned from natural infections?

• Protection and correlates of protection need to be separated into “soon-after-

infection/vaccination” and those that provide long-term protection.

• Cross-protection from dengue disease after primary infection is observed in 

those who maintain high nAb antibody titers.

• Homologous re-infections can lead to a boost in immunity.

• Tertiary and quaternary infections are typically milder than secondary, as well 

as primary, infections.

• Immune correlates of protection may differ by immune status, serotype, assay, 

and possibly by “epidemic force”.

Immune correlates in the context of dengue vaccines

• Multiple dengue vaccine candidates show differences in immunogenicity 

between seropositive and seronegative recipients.

• Temporal dynamics of vaccine-mediated immunity have some analogy to 

natural immunity for live-attenuated vaccines, although there are differences 

in immunity due to sequential monotypic DENV exposure (natural infection) 

and tetravalent DENV exposure (vaccination).

• The magnitude of vaccine-mediated immunity is generally lower than in 

natural infection.

• Immune correlates will likely differ by vaccine and assay employed.

Considerations for defining immune correlates

• There is antigenic variation within serotypes, including amino acid variation 

in type-specific quaternary epitopes in highly lab-adapted, prototype strains; 

DENV strains also vary in temperature sensitivity and maturation state, which 

may vary by assay conditions.

• NAb titers may not fully capture the ‘protective’ component of the immune 

response, which is likely due to antibodies that bind type-specific and cross-

reactive quaternary epitopes; further research on functionality in vivo is 

required.

• Standard neutralization assays should still be performed, despite the 

challenges with interpretation, but efforts to standardize/qualify assays should 

be made.

• Current data suggest that DENV-specific T cells may contribute to protective 

immune responses and thus can be beneficial.
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• A systems immunology approach to identify correlates of protection and risk 

may be a key next step for dengue, including measurement of a large number 

of immunological markers combined with unbiased statistical/computational 

learning for inference and building and validation of predictive models.

Efficacy and safety of dengue vaccines and lessons learned from ongoing vaccine 
clinical trials

• Vaccine efficacy should be assessed separately for baseline DENV- and/or 

flavivirus-seronegative and -seropositive vaccine recipients and whether 

studies should be powered to do so remains an important question.

• The effect of dengue vaccination must be considered on both the population 

and individual level.

• There is a potential risk of dengue vaccination sensitizing seronegative 

individuals to hospitalized dengue upon subsequent DENV exposure.

• Clear communication and discussion of the risks and benefits of dengue 

vaccines can aid country level and individual decision-making about 

vaccination in dengue-endemic countries.

• Vaccine trials should collect serum samples from all trial participants at 

multiple time-points, including baseline, the end of the vaccine series and 

periodically thereafter. The baseline samples are critical for statistical 

assessment of immune correlates of protection. Ideally PBMCs should be 

collected for assessment of T cell correlates, although it may not be feasible 

to collect PBMCs from all trial participants.

• Vaccine trial design should account for the known period of cross-protection 

between serotypes and include active surveillance of trial participants for at 

least 3-5 years to enable long-term vaccine efficacy estimates.
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Box 4

Research Agenda

• Whether and how boosting affects the durability of dengue immunity in 

endemic areas is important for understanding the duration of vaccine-induced 

immunity.

• Further research is needed to understand the specificity of DENV memory B 

cells and how they differ from long-lived plasma cells and plasmablasts.

• T cell responses, including HLA, are potential immune correlates and should 

be further investigated in the context of natural infections and vaccines.

• Establishing correlates of protection will likely require complementing 

traditional “reductionist” approaches with newer systems immunology 

approaches that attempt to combine multidimensional datasets in unbiased 

statistical/computational learning analyses, including combining 

measurements of antibody and T cell responses.

• As countries start vaccinating their populations, it will be difficult to 

determine whether an excess of severe dengue cases is occurring compared to 

what would be otherwise expected unless there is a unvaccinated control 

group: strategies and tools for measuring vaccine efficacy and risk in Phase 4 

trials should be implemented.

• The role of natural strain variation in vaccine performance should be further 

studied.

• Lessons learned from recent advances in dengue structural biology should be 

applied to next-generation vaccines to optimize antigens for immunogenicity 

evaluation.
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Box 5

Future directions: Standing working committees for specific projects

Reference panels

• Learning from the experience of the HIV field, a central reference laboratory 

or at least a repository for standardized reference panels of diverse, low-

passage strains and infectious clones, alongside sera from primary and 

secondary natural DENV infections, would be of enormous benefit for 

standardizing neutralization assays across laboratories. However, this would 

require identifying a funding source.

Standardizing and qualifying neutralization assays

• It was suggested that the dengue community derive a matrix of variables that 

affect nAb titers, and how, to be shared among new and established dengue 

researchers, including parameters such as: cell substrate and receptors, virus 

strain, source and maturation state of virus, use of serum versus plasma 

(presence of EDTA), etc. The community should also work toward qualifying 

neutralization assays, including controlling variability due to reagents, the 

process of conducting the assay, operators, and training, to ensure that results 

are highly repeatable.

T cells

• There was a call for collaboration among researchers and vaccine developers 

to better define the role of cellular immunity (T cells) in DENV infection and 

vaccine protection, including sharing results, samples, and reagents; follow-

up meetings/efforts are ongoing.

Cross-cohort comparisons

• Cross-cohort comparisons (possibly including placebo arms of vaccine trials) 

will enable testing of specific questions that take advantage of the 

epidemiological differences between locations as well as increased sample 

size. Such questions include the impact of DENV genotype on disease, 

immunological determinants of severe disease, homotypic infection, and 

boosting, among other questions. This would involve harmonizing 

measurement of specific parameters and reanalyzing existing data, and 

follow-up plans are in progress.
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