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ABSTRACT 

 

Understanding of Amyloid Formation Using Ion Mobility Mass 

Spectrometry and Latent Models with Variational Autoencoders 

by 

Michael Joaquin Tro 

 

Amyloid fibrils are a solid composed of proteins or peptides arranged in what is known as a 

cross beta pattern.  That is, the fibril is made of beta sheets where the peptide backbone is 

perpendicular to the fibril axis.  This structure has been associated with several difficult to treat 

diseases including Alzheimer’s Disease, type II diabetes, and amyotrophic lateral sclerosis.  The 

characterization of the formation of these fibrils remains poorly understood at a fundamental level.    

    First, I consider the understanding of the primary structure – activity relationship for 

amyloid-forming peptides. Here I use a neural-network based method of analysis: the classifying 

autoencoder (CAE). I demonstrate its capabilities by applying the technique to an experimental 

database (the Waltz database) to provide insight into a novel descriptor, dimeric isotropic deviation 

— an experimental measure of the aggregation properties of the amino acids. I find correlation 

between dimeric isotropic deviation and the failure to form amyloids when hydrophobic effects are 

not a primary driving force in amyloid formation. 

Next, I consider the formation of amyloids from the perspective of a molecular dynamics simulation.  

I use a similar technique as above to analyze molecular dynamics simulations of amyloid formation.  

Here we the technique is applied to the internal coordinates of a coarse-grained molecular dynamics 

simulation of amyloid formation. The method is shown to be able to reduce the ensemble of data to 

a single variable that tracks evolution in the system and successfully characterizes large-scale system 
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evolutions with precision exceeding or comparable to more conventional order parameters.  In 

addition, we show it can be used to identify the features of the system which best track the 

evolution of the system and be used to automatically detect the nucleus of the aggregating system. 
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I. Introduction 

“Biology today is moving in the direction of chemistry. Much of what is understood in the field is 

based on the structure of molecules and the properties of molecules in relation to their structure. If 

you have that basis, then biology isn’t just a collection of disconnected facts.” 

Linus Pauling (Campbell 1986) 

 

A. Proteins 

Proteins are the molecular work horses of biology.  They are the result of over 4.54 billion 

years of chemical (and, of course, biological) evolution and are responsible for nearly all of the most 

remarkable accomplishments of molecular biology.  From some of the simplest parts of our bodies, 

our hair and fingernails, to complex the complex chemical machines involved in DNA replication, 

proteins are the molecules that allow biology to perform efficient, complex chemistry.  The key to 

the success of proteins is the structure of the protein molecule; as the above Linus Pauling quote 

states: structure determines properties, and this is the key to understanding molecular biology.   

A protein is, itself, a heteropolymer made up of many amino acid monomers. That is, the 

protein is a chain of linked molecules where each link in the chain can be any amino acid.  While 

there are twenty canonical amino acids, there also exist some unusual amino acids.  In this thesis we 

will only consider the twenty.   
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Figure I-1 Basic representation of the peptide bond which links two amino acids in a protein.  Here the R group is defined by 
which amino acid which is represented.  The 𝛼 carbon of only the first reactant has been highlighted. On the reactants side 
of the above equation the peptide bond is highlighted in red. (“Amino Acids and Proteins - Biological Molecules - MCAT 
Review” n.d.) 

 Error! Reference source not found. depicts a basic representation of the bond involved 

between two amino acids, the peptide bond. In this depiction R can be any of the 20 amino acids†.  

The carbon to which the side chain is bonded is referred to as the 𝛼 carbon.  Almost all of the 20 

canonical amino acids share this backbone structure, with the exception of proline where an 

additional bond from the the R group comes back to bond to the amine, resulting in a five-member-

ring including the nitrogen, the alpha carbon, and three other carbons.  This has important 

implications since it constrains the torsion angles that may be accessed by the nitrogen-𝛼 carbon 

bond.   

 Additionally, the 𝛼 carbon is a chiral center.  For almost all the 20 canonical amino acids the 

vast majority of them are found in the L-isoform.  One exception to this is glycine, which has two 

hydrogens bonded to the 𝛼 carbon and is not a chiral center.   

 Often the length and complexity of these chains of amino acids is implied by the word we 

use to describe the chain.  A shorter chains of amino acids Amino acids can be chained together in 

small numbers (< ~50) to form peptides, while longer chains may be called polypeptides.  Proteins 

are made up of one more polypeptides, and serve some biological function.   

 
†A table of all 20 amino acids can be found in the appendix 
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 The structure of a protein is separated in to four levels, primary, secondary, tertiary, and 

quaternary structure.  The primary structure is the sequence of amino acids that make up the 

protein.  Often, and for the rest of this thesis, a peptide’s primary structure is represented by each 

amino acid’s three letter or single letter code starting from the unbound amino group (the n-

terminus) to the unbound carboxylic acid group (the c-terminus).   

 The secondary structure refers to the local structure along the chain.  There are two major 

classes of secondary structure, 𝛼-helix, and 𝛽 -sheet.  The 𝛼-helix, as the name implies, is a helix, 

often with three to four amino acids per full rotation of the helix.  In this secondary structure, the 

side chains are on the outside of the helix, and the carbon back is on the inside of the helix.  A major 

driving force in the stability of an 𝛼-helix is hydrogen bonding formed between the carbonyl group 

of one amino acid and the amino group of an amino acid right next to it in the helix, four residues 

away in primary structure.  The 𝛽-sheet on the other hand is a relatively straight region requiring at 

least two strands to run parallel to each other.  This is driven by hydrogen bonding, again between 

carbonyl and amino groups between the two chains, but here between the two strands.  The result 

is that the side chains extend roughly parallel to the normal plane of the beta sheet, and each 

consecutive side chain in the primary sequence extends on opposite sides of the sheet.  There are 

different varieties of these major classes of secondary structure, but they are out of the scope of this 

thesis.  Notably, some peptides may lack secondary structure, and can will be referred to as random 

coil.  These are particularly important to the work in this thesis, since their lack of structure leaves 

them free to adopt problematic structures.   

While tertiary and quaternary structure are not as pertinent to this thesis, they are briefly 

described here for completeness sake.  The tertiary structure refers to how the chains fold in on 

them selves in order to form a three-dimensional molecule.  Finally, the quaternary structure is the 

interaction between two three dimensional structures to form a fully functioning protein. 
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 The final structure of a proteins varies wildly, from the relatively simple structure of 

ubiquitin, basically a tangled ball (Smith et al. 2019) which, as can be inferred from its name, is 

found ubiquitously, and serves many different functions throughout the cell (Komander and Rape 

2012).  To the exotic and beautifully complex pilus machine, used in bacteria mobility and surface 

adhesion (Chang et al. 2016).  These two proteins are visualized in Figure I-2.     

 

Figure I-2 A. Cartoon depiction of ubiquitin take from an NMR study. B. Assembly of pilus machine determined with electron 

microscopy.  Here the color scheme is only to help the eye make sense of the complicated structure.  

 The mechanism by which the protein reaches these final structures can be as complex as the 

structure is itself, and even perplexed scientists for some time.  What came to be known as the 

Leventhal Paradox stated that even a peptide with only 150 amino acids could have 3100 possible 

configurations (based on the backbone bonds, and their low energy conformations), and unless 

there was some directed folding mechanism, that peptide could never randomly find its native state 

(Levinthal 1969).  While protein folding remains an active area of research (Elías-Villalobos et al. 
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2019; Puchades, Sandate, and Lander 2020), epically when considering refolding and chaperone 

assisted folding schemes, it is generally accepted that the solution to Leventhal’s paradox is a funnel 

shaped energy landscape, as depicted in Figure I-3.  When a protein starts in an unfolded state, it 

will descend through the contours of that energy landscape until it reaches a global minimum, which 

should be its native state.   

 

Figure I-3 A funnel shaped energy landscape. If the protein is unfolded and by itself it will descend the energy landscape of 

the funnel until it reaches its final state. However, also depicted here are competing states that are a result of inter 

molecular interactions with other proteins.   

  However, Figure I-3 also depicts possible metastable states, and competing states that are 

the result of intermolecular interactions.  These other states complicate our understanding of the 

folding mechanism of the proteins, and it has even been hypothesized that most proteins are 

metastable, and in fact the global minimum of proteins are aggregate structures (Thirumalai and 

Reddy 2011).  One of the most common, and important, protein aggregate structures is known as 

the amyloid fibril.  Which will be discussed in detail in the next section.   
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B. Amyloids 

Due to the complicated nature of amyloids, the term itself can sometimes be used in a 

variety of circumstances.  I will keep to the nomenclature set out by the International Society of 

Amyloidosis (ISA) (Benson et al. 2019).  Here an amyloid is biological deposit consisting of mostly 

protein, where a large amount of that protein is a fibril which has adopted what is known as a 

“cross-𝛽” structure.  The structure of the fibril is shown in Figure I-4.  The fibril itself can range from 

about 60-200 Å in diameter (Makin and Serpell 2002; Fitzpatrick et al. 2013; Sipe and Cohen 2000).  

The peptide chains in the beta sheets run perpendicular to the fibril, as does the normal plane of the 

beta sheet.  This results in the x-ray diffraction pattern shown in Figure I-4 A: an intersheet spacing 

of ~10 Å which is perpendicular to a interstrand spacing of ~4.8 Å.   

 

Figure I-4 Left: a cartoon drawing of an amyloid fibril during an x-ray diffraction experiment (Eisenberg and Jucker 2012).  

Right: single crystal x-ray diffraction results of an amyloid fibril. The primary structure of this peptide is GNNQQNY, a 

peptide derived from the yeast protein Sup35 (Nelson et al. 2005). 

 As suggested in Figure I-3 this structure can be a lower energy state then the protein in its 

native state, and, again, some have even suggested this to be universal of all proteins (Thirumalai 

and Reddy 2011).  This phenomenon is interesting for a number of reasons as will be disused in 

further detail in the next two sections.    
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i. Amyloid Diseases 

The amyloid state has been under intense study due to its complex relationship to disease.  

Many diseases have been found to be associated with disease, yet there are varying degrees of 

understanding when it comes to the disease mechanism. 

In amyloidosis the fibrils are the cause the disease.  There are two general forms of 

amyloidosis, systematic and localized.  As the name suggest, in systematic amyloidosis amyloids can 

be found in the whole body or rather, amyloids can be found in many parts of the body.  In localized 

amyloidosis the amyloids are found in a localized region.  In this class of diseases, it is known that 

the fibril itself is the pathogenic agent.  One example is AA amyloidosis in which the protein amyloid 

A, derived from the protein serum amyloid A, forms amyloids in across the body (Benson et al. 

2019).  

Alternatively, diseases in which the fibrils are not necessarily the pathogenic species exist as 

well, this includes Alzheimer’s, where clearly some relationship between the disease and the fibril 

exists, but the fibril itself can not be implicated as the main pathogenic species (Sakono and Zako 

2010; Lesné et al. 2013; Dodart et al. 2002).  In the case of Alzheimer’s it is suspected that the toxic 

species is an intermediate in the fibril formation process (Bernstein et al. 2009; Sakono and Zako 

2010).   

While much of the conversation on amyloids is centered on disease (for good reason), it is 

also interesting to note that amyloids are not always toxic.   
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ii. Functional Amyloids 

Due to the unique properties of amyloids, nature has found a use for them.  Interestingly 

the aspects of amyloids that make the resulting diseases difficult to treat are also the same aspects 

that have made them a useful tool for nature.  That is the strong hydrogen bonds between the 

strands, their unique morphology, and their ability to aggregate are all aspects which I will show are 

used by organisms to their benefit (Fowler et al. 2007).  

With respect to the strength of the hydrogen bonded back bone, an interesting example is 

spider silk.  Proteins known as spidroins form beta sheet rich crystalline-like structures within the 

spider silk.  Further study of these beta sheet rich structures test positive for many amyloid tests 

including ThT fluorescence, Congo Red binding, and x-ray diffraction.  While the strength of 

hydrogen bonds is one of the reasons it is so break up amyloids in disease, here that same strength 

lets it to contribute to the strength of spider silk (Kenney et al. 2002).    

Another, interesting example of a functional amyloid is in the synthesis of melanin (Fowler 

et al. 2005).  The protein Pmel17, forms amyloid fibrils which both sequester toxic melanin 

intermediates during the synthesis, and eventually template the formation of melanin polymer 

along the amyloid fibril.  Here both the chemical and morphological properties are taken advantage 

of in order to carry out the synthesis.  Interestingly this whole process is carried out inside a vesical 

in the cell, where the process is carefully moderated.  While the amyloid in this case is being used by 

the cell, the cell also takes care to sequester the fibrils to protect itself from the negative effects of 

amyloids (Fowler et al. 2005).   

Lastly, and one of my favorite examples functional amyloids, is the way Escherichia coli 

creates an extra cellular matrix.  It does this by secreting a peptide called CsgA.  These proteins will 

eventually be the monomers in the amyloid assembly process.  In order to control the formation of 
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these amyloid fibrils, however, the cell also produces a protein, CsgB, a membrane bound protein on 

the outside of the cell.  This protein nucleates the fibril formation; CsgB will template the first unit of 

CsgA which will promote assembly of more CsgA on top of it (Fowler et al. 2007).   

In all these cases nature has figured out a way to not only found a way to survive alongside 

amyloid fibrils, but to use them to their benefit.   This raises two interesting questions for us as 

researchers.  The first is how do these organisms protect themselves?  Perhaps by studying these 

systems we may learn new ways to combat amyloid diseases.  The second question is, is there a way 

we can use amyloids to our advantage much like nature has.  The materials research has long been 

looking at self-organization to create new materials, and the idea of using amyloid systems has 

attracted some interest.  For all these applications, however, a better fundamental understanding of 

amyloid is key.  

C. Conclusions 

In conclusion, amyloids are important.  They are important due to their disease applications, 

of course, but also to biology in general.  Furthermore, they may yet have yet unknown uses to us.  

Despite this, there remains much unknown to us about this structure. We have yet to invent a good 

way to stop many of the diseases that are related to amyloids.  Despite massive efforts to solve the 

Alzheimer’s problem (Cummings, Reiber, and Kumar 2018)  the problem remains unsolved, and 

recently the pharmaceutical industry has started pulling back on Alzheimer’s research (BBC News 

2018).  This only highlights the need for a fundamental understanding of the disease pathogenesis, 

including understanding of fibril formation. 

One surprising aspect missing from this understanding of amyloid fibrils, is the ability to predict 

amyloid propensity of a protein, or section of protein, to form amyloids using only the primary 

sequence of the protein.  There have been many attempts (Walsh et al. 2014; Tartaglia and 
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Vendruscolo 2008; Thompson et al. 2006; Do et al. 2016), but there has been failure to find 

consensus on a method which works very well.  There, in fact, has even been a trend to use as many 

different prediction algorithms as possible in order to come up with some meta method, but even 

these are not perfect (Emily, Talvas, and Delamarche 2013; Tsolis et al. 2013).   

Since amyloids seem to show up in so many different and complex contexts, some method to 

learn amyloid propensity from primary sequence with high throughput would be highly valuable.  

For example, one could scan the protein data base to find amyloid forming hot spots to find new 

amyloid forming proteins that may or may not be involved in disease.  One could scan a known fibril 

forming peptide and find the amyloid hot spot, and design blockers for that specific region of 

peptide in order to stop or reverse disease progress.  In addition, this could be a way to help design 

amyloid materials.  Finally, the method itself may reveal aspects of amyloids that are yet not 

understood, which could lead to yet further unexpected benefits.      
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II. Instrumentation 

A. Ion Mobility Mass Spectrometry 

Mass spectrometry is one of the most widely used analytical techniques in chemistry.  All 

mass spectrometry is based fundamentally on the force experienced by a charged particle in an 

electric field.  Specifically, the acceleration of a charged particle in an electric field can be written by 

equating the force acting on a charged particle in an electric field to the algebraic version of 

newtons second law resulting the following equation: 

𝑎 =
𝑞 ∗ 𝐸

𝑚
 

Here 𝑎 is acceleration, 𝑞 is the charge of the ion, 𝑚 is the mass of the ion, and 𝐸 is the strength of 

the electric field.  For singly charged particles this relationship means all we need to calculate the 

mass of an ion is to measure how long it takes for that ion to be accelerated through an electric 

field.  Since we can control the electric field this should give us all we need to know about the ion to 

calculate its mass.  However, not all ions are singly charged.  Unfortunately, two ions with different 

masses are equally accelerated by an electric field if those ions charge differs by the same 

proportion as the masses.  In other words if one ion has twice the mass and twice the charge of 

another ion they will have the exact same acceleration as each other.   

 This a fundamental limitation on mass spectrometry, has spurred many solutions to gain 

more information from a mass spectrum.  Gas chromatography, couples well with mass 

spectrometry, a sample may be evaporated, allowed to be separated based on its interactions with 

some column medium, then fed into a mass spectrometer in order to be further analyzed.  This 

extra degree of separation may separate species which happen to have the same mass to charge 

ratio.  In this vein of thought mass spectrometry has been coupled to as many analytical methods as 
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possible, from relatively common methods such as, gas chromatography (as I just mentioned), liquid 

chromatography, and capillary electrophoresis, to more exotic methods like resonance enhanced 

multi photon ionization (Haggmark et al. 2018).  The mass of an ion is such a good indicator of the 

ion’s identity, mass spectrometry has proven itself to be a powerful method of analysis.  

Ion mobility is yet another axis on which to perform separation prior to mass analysis, which 

has been highly useful in analytical chemistry, and is used in a variety of analytical environments 

from boarder protection, to airport security, to food safety (Liu and Hill 2015, 5; D’Agostino and 

Chenier 2010; Scoville 2013, 13).  As with mass spectrometry we may write a relatively simple 

expression in order to understand the value we are measuring. Here we measure the velocity of an 

ion as it is pulled through a buffer gas by an electric field: 

𝑣𝑑 = 𝐾 ∗ 𝐸 

Here 𝑣𝑑 is the drift velocity, 𝐾 is the mobility of the ion, and 𝐸 is the strength of the electric field.  

This mobility is affected by the temperature and pressure of the buffer gas and is often converted 

into the reduced mobility: 

𝐾0 = 𝐾
𝑃

𝑃0

𝑇0

𝑇
 

Where 𝐾0 is the reduced mobility, 𝐾 is the measured mobility,  𝑃 is the measured pressure, 𝑃0 is the 

standard pressure (760 torr), 𝑇 is the measured pressure, and 𝑇0 is the standard temperature 

273.15 K.  

 It is worth noting that at high drift voltages the mobility will become field dependent as the 

nature of the ion-gas interaction will be changed as the ions gain energy between each collision 

(Revercomb and Mason 1975).  As such many ion mobility experiments are done at sufficiently low 

voltages for the above relationships to hold true.   
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 While there are many types of ion mobility instruments, here I will focus on a drift time 

instrument, as it is the only ion mobility instrument I have used during my graduate studies.  

Generally, in this experiment, after the ions are generated, they are gated, stored, then pulsed into 

a drift tube with uniform electric field, while temperature and pressure are recorded.  By assuming 

the ions reach 𝑣𝑑 in a negligible amount of time the mobility may be calculated by measuring the 

drift time, 𝑡𝑑, it takes for the ions to cross that electric field.  Since ion mobility instruments often 

have further analysis (namely mass analysis) after the drift tube, the arrival time at the detector, 𝑡𝑎, 

is often convoluted by the time spent outside the drift tube, 𝑡0 (ie. 𝑡𝑎 = 𝑡0 + 𝑡𝑑).  By using the drift 

velocity 𝑣𝑑 and the length of the drift region 𝐿.  One may replace 𝑡𝑑 in the expression for the arrival 

time (𝑡𝑎 = 𝑡0 + 𝑡𝑑) with the appropriate values based on the reduced mobility and the pressure to 

voltage ratio to arrive at the following expression for arrival time. 

𝑡𝑎 = 𝑡0 +
𝐿2𝑇0

𝐾0𝑃0𝑇

𝑃

𝑉
 

Here 𝐿 is the length of the drift region.  In this way by plotting the arrival time against the pressure 

to voltage ratio one may calculate the reduced mobility independently of 𝑡0. Note, that the pressure 

to voltage ratio is only changed in the drift region, and thus 𝑡0 will be constant over the course of 

the experiments.   

 While this is useful in its own right for analytical chemistry and is the basis for ion mobility 

being so widely used for chemical identification.  We may further learn something about the 

structure of the analyte by exploring the kinetic theory.    

B. Experimental Collison Cross Sections 

While it is useful to measure the mobility of an ion, to me this has only been a means to an 

end.  That end is calculating the collision cross section of the ion.  This way we can get some 
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measure of the physical size of the ion in units of Å2.  To do this, again we must be in the low field 

limit as described by Mason (Revercomb and Mason 1975).  In this case we can relate the mobility 

to the collision cross section with the Mason-Schamp equation (Mason and Schamp 1958): 

𝐾0 =
3𝑒

16𝑁0
(

2𝜋

𝜇𝑘𝐵𝑇
)

1
2 1

Ω
 

Where 𝐾0 is the reduced mobility, 𝑁0 is the buffer gas number density at 𝑃0, 𝑒 is the elementary 

charge, 𝜇 is the reduced mass between a buffer gas molecule and the ion, 𝑘𝐵 is the Boltzman 

constant, and Ω is the momentum transfer collision integral.  It is this value which we can measure 

and which we call our experimental collision cross section.     

C. Theoretical Collison Cross sections 

While the ability to measure the experimental collision cross section is interesting, the 

power of this technique is derived from comparing that experimental value to theoretical values.  

There are many methods to obtain the structure of a molecule including quantum calculations, 

molecular dynamics, x-ray crystallography, or NMR.  The ability to calculate a theoretical collision 

cross section and compare it to the experimental value allows us to infer atomic scale structural 

information about our system with ion mobility measurements.   

Calculating this value from a structure, however, is not trivial, and a variety of methods to 

approximate this value exist.  To a first approximation you may think of the cross section as the 

average “shadow” of the molecule as it tumbles through the buffer gas, or in other words the 

spherically averaged cross section.  This method to calculate the cross section is used and is known 

as the projection approximation (PA). In this method, the collision cross section is estimated by 

projecting the molecule onto a randomly chosen plane and recording the area of the projection.  

This is done until the average value of this projection converges within an acceptable error 
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(Wyttenbach et al. 1997).  This approximation works well for spheres, but more exotic shapes (bowls 

for example) are particularly problematic.   

To conceptually understand why a bowl shape is so problematic it helps to consider the 

maximum momentum transfer possible, that is where collisions of the buffer gas hit a surface 

perpendicular to the direction of motion. That is if a bowl is traveling through a buffer gas bottom 

first, a sphere reasonably approximates this surface.  The area where a buffer molecule collides with 

a surface perpendicular to the motion is only the very center of the bowl or the sphere.  However, if 

the bowl is now traveling with the open side in the front, the surface area that is perpendicular to 

the direction of motion is similar in the center of the bowl, but in addition the rim of the bowl 

contributes as well.  While this is an oversimplified explanation, it does simply make the case for a 

more sophisticated model which can account for concavity leading to more efficient momentum 

transfer between the buffer gas and the ion.   

While PA is convenient and conceptually simple to understand, it is the least accurate of the 

commonly used methods to approximate the collision cross section of a given molecular structure.  

Two other methods commonly used are exact hard-sphere scattering (EHSS) (Shvartsburg and 

Jarrold 1996) and trajectory method (TJM) (Shvartsburg, Schatz, and Jarrold 1998).  While each of 

these methods represent a step forward in being able to accurately model experiment, they each 

take a step backwards in calculation time.  I will not go into the specifics of these models, because 

the next model, projection superposition approximation (PSA), is the model we use most.   

In projection superposition approximation (PSA) the three-dimensional shape of the 

molecule is better taken into account.  The method is based on the projection approximation, but 

that value is adjusted by a shape factor.  This shape factor is calculated by comparing the surface 

area of the analyte to the surface area of the same molecule but with all the concave surfaces filled 
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in to make a purely convex shape.  It has been shown that PSA generally performs comparably to 

TJM, but is 100-1000 times faster in computation time (Bleiholder, Wyttenbach, and Bowers 2011).   

D. The High-Resolution Ion Mobility Mass Spectrometer 

The instrument I used the most is a high-resolution ion mobility mass spectrometer 

informally known as the “high-res”.  This instrument features a 2 meter drift cell resulting in an ion 

mobility resolution of 109, and able to distinguish between ions with a 1.01% difference in mobility 

(Kemper, Dupuis, and Bowers 2009).  In addition to the instrument’s remarkable mobility resolution, 

it is exceedingly gentle in its treatment of ions.  It was designed to minimize energizing regions in 

order to better look at clusters. 

In general, I have tried to leave this instrument in a better then I found it.  In addition to 

describing the details of the instrument here, I will also document the various ways I have optimized 

it, and my diagnosis on existing problems.   

i. Ionization 

The ionization source is nano electrospray ionization.  In conventional electrospray 

ionization (which interestingly, was inspired by a car painting technique), a syringe (typically around 

100 𝜇L in volume) filled with sample and slowly injects that sample into a needle near in the inlet of 

the instrument.  The flow rate of the syringe is often controlled by some external controller in order 

to improve reproducibility.   An electric potential is held between the instrument and the needle.  

The sample dispensed from the electrospray tip as a fine mist.  Inevitably some of the mist droplets 

will have an overall charge and will be pulled towards the instrument by the electrospray voltage. As 

the solvent in the droplets evaporates the high density of charge will eventually cause the droplet to 

burst or eject the ion from the droplet.  In either case this results in soft ionization of the analyte, 

and can often result in multiple charges deposited on the analyte without fragmentation of the 



20 

 

analyte itself.  Nano electrospray ionization follows a similar process, but instead of a syringe filled 

with sample, a glass capillary is pulled to form a needle tip and filled with sample.  The whole 

capillary is coated in a metal to conduct the electric potential.  This needle typically holds between 5 

to 10 𝜇L of sample.  This offers an advantage over electrospray in the amount of sample needed, but 

tends to have higher variance from tip to tip.  In our case we often use precious samples, where 100 

𝜇L can not be spared, nano electrospray is ideal.   In addition, nano spray tends to be better at 

ionizing the biological molecules we typically study.   

The tip on this instrument is typically held between 800-1300 V above the entrance to the 

instrument.  Higher voltages tend to result in higher charge states, while lower voltages tend to 

favor cluster formation.   I’ve spent some time trying to add some amount of back pressure by 

attaching a hose attached to a nitrogen take to the back of the tip.  This has been able to improve 

signal on other instruments.  While I was successful in setting up the back-pressure apparatus, the 

improvement in signal was negligible.  This may be due to the lack of pressure controls I had 

available.  On other instruments the pressure applied to the sample is controlled with a small 

pressure regulator which holds some constant pressure, and can be finely tuned.  Here I used a 

series of valves and vents in order to control the flow of the pressurized nitrogen.  I suspect this did 

not give adequate control on the backing pressure.  Perhaps a better pressure regulator, similar to 

our other instrument (the “ESI”) would have allowed for more precise optimization and resulted in 

improved signal.   

The ions then enter the instrument through a small capillary.  The spray voltage is with 

respect to this capillary.  The voltage of the capillary with respect to the next segment of the 

instrument, the ion funnel, may be changed.  I have not found this voltage to be largely important 

for signal optimization.  In the paper describing this instrument (Kemper, Dupuis, and Bowers 2009) 

it says that a slightly lower voltage then the ion funnel (0-10 V) for positive ions results in a 10-20% 
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signal increase.  While I have found this to be the case in some situations, generally I’ve found it has 

little effect on signal intensity.   

ii. Source Region 

The ions then reach the region source region.  This region is held at about 10 torr but is 

precisely held slightly below the pressure in the drift region.  This is done in order to make sure gas 

flows exclusively from the drift cell towards the source region but minimizes that flow.  This ensures 

the no impurities flow from the source region to the drift region which must be pure helium in order 

to calculate cross section.  Minimizing this flow makes sure that ions are not impeded by this head 

wind.  This is done by pumping on the region with a ~5 L/s roughing pump while at the same time 

flowing helium into the region.  The flow of the helium is controlled using a feedback loop which 

measures the pressure difference between the drift tube and the source region and adjusts the 

helium flow to maintain a specific pressure difference.    

This differential was set to 0.3 Torr when I started working on this instrument.  I observed 

that had not measured ion mobilities lower than about 2 𝑐𝑚2(𝑉𝑠)−1.  I suspected that this pressure 

differential, might be inhibiting low mobility ions from entering the drift tube as well as neutral 

impurities.  To measure the contents of the gas in the drift tube a residual gas analyzer (RGA) is 

placed in in the main chamber analyzes the gas.  It is assumed that the gas leaving the drift tube into 

the main chamber at the detector side is of the same chemical composition of the gas in the whole 

drift tube.  I lowered the differential until I saw gases other than helium show up on the RGA 

(essentially just nitrogen), then raised the differential until that peak was no longer appreciable, 

resulting in a new differential of about 0.25 torr.  In the end I did not observe any new peaks in the 

samples I was analyzing, but perhaps in marginal cases this may help with signal of low mobility ions.  
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Low mobility ions also take longer to traverse the drift cell allowing for more time for the ion cloud 

to diffuse radially which may also hinder detection of low mobility ions.   

iii. Entrance Funnel 

In the source region the ions are pulled into an hourglass shaped entrance funnel.  The 

entrance funnel serves several purposes.  The first is to radially focus the ions through a small orifice 

which serves to limit gas flow from the drift tube to the source region.  In the second part of the ion 

funnel, when it opens back up on the other side of the hourglass, stores ions for pulsing into the 

drift tube during ion mobility experiments.   

The electronics in the entrance funnel are some of the most complicated electronics on the 

instrument.  There are two constant voltages that are always present.  A DC voltage that moves ions 

from the source region into the drift cell, and a radio frequency (RF, 1.3 MHz) AC voltage that 

radially confines the ions.  Higher DC voltages give better ion transmission but will eventually lead to 

discharge resulting in no usable signal.  This voltage is largely left untouched, since discharge leaves 

the instrument unusable for some time.  Higher AC voltages also lead to better transmission but 

may also cause heating of the ions resulting on more nonnative state protein structures or breakage 

of clusters. 

The entrance funnel is also responsible for storing and pulsing the ions in ion mobility 

experiments.  In an ion mobility experiment a wire mesh at the detector side of the entrance funnel 

serves as a gate to trap ions.  An electric potential is applied to that gate to store ions.  A pulse 

generator signals the electronics to lower that voltage briefly to allow an ion packet into the drift 

tube for a mobility experiment.   In a later installment, a “trap” voltage was also introduced just on 

the detector side of the entrance funnel.  This voltage serves to flatten the voltages on the storage 

side of the ion funnel so that the ions are not all clustered near the gate.  When the gate is opened, 
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this trap voltages also pulses to push ions out of the entrance funnel.  The pulses are typically set to 

be about 0.1 s apart and are typically 250 𝜇s long.   

One problem with this instrument I have not been able to fix is that at times there may be 

noise in the ATDs, and in the worst cases this results in no appreciable peaks in the ATD spectrum.  

Since the entrance funnel is the region that controls ion pulsing, I suspect the problem is in this 

region.  The condition is fairly rare, making diagnosis difficult.  I had suspected the gate pulsing to 

the problem, since poor gating would seem to cause leakage or failure to trap the ions.  The gate 

pulsing is controlled by electronics devoted to that task.  I have measured the gate voltage being fed 

to the box, and the pulsing being fed to the box.  Both of these signals appear to be the same with 

or with out the ATD noise issue showing up.  I also measured the voltages inside the box itself to 

determine if perhaps a component of the box had broken.  The box actually has symmetrical halves 

for positive and negative ions.  By comparing both halves of the box I have determined that the two 

components most likely to fail, the transistors and the optoisolator appear to be functioning the 

same.  While it is possible that both components on each side of the box broke at the same time, it 

is unlikely, and I suspect they are working correctly.  

Since the only other pulsed voltage here is the trap voltage, I suspect this to be the problem.  

The trap voltage was added after the paper on the instrument, so it is not documented there, but is 

documented in schematics of the instrument in our group files.  The trap voltage pulses are 

controlled separately along with the other entrance funnel electronics on the instrument rack, 

which I have not yet been able to measure.  The next time this issue arises, that is the place I would 

look. 
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iv. Drift Tube 

The start of the drift region is defined with a second wire mesh directly after the gating 

mesh.  This serves to ensure the gate voltages and the RF voltages of the funnel do not penetrate 

into the drift region, the field of which must be uniform to ensure accurate calculation of collision 

cross sections.  The field in the drift tube is maintained by a series of rings connected by resistors.  

The drift voltage is typically held at 3000 V but is brought down to 1500 V during ion mobility 

measurements.  Voltages higher then 3000 V are not viable with a pure helium buffer gas due to 

discharge.   

The drift tube is held at a pressure of about 10 torr.  The cell pressure is maintained by 

controlling the flow of helium into the drift cell with a leak valve.  That helium flows out of the cell 

through the entrance and exit funnel.  The end of the electric field of the drift cell is defined with a 

second wire mesh just before the exit funnel.   

v. Exit Funnel 

The exit funnel serves to focus the ions through a small orifice, and is thus a standard funnel 

shape (as opposed to the entrance funnel which is more of an hourglass shape).  This serves two 

purposes, the first is to radially focus the ions which have spread due to diffusion as the ions go 

though the drift cell.  This creates a conveniently behaved ion source in the main chamber which 

allows for modeling and design of the post drift cell components.  The second function of orifice is to 

limit the gas flow from the drift cell to the main chamber.   

In addition, it should be noted that this is the single pressure drop from the 10 torr drift cell 

region to the high vacuum (collision free, 1 × 10−5 torr) main chamber.   This single drop in pressure 

minimizes the time the ions spend in a pressure region where the ions can accelerate enough to 

have high energy collisions with the gas.  This preserves any clusters that traveled across the drift 
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cell.  This is important because any fragmentation after the drift cell would cause misleading data.  

Ions which traveled as a cluster with one mass may get fragmented into two new ions.  These new 

ions would appear to have the mobility of the parent ion but would have a new mass.  This would 

severely convolute data and make any analysis near impossible.  This instrument is remarkable in 

the size of ion clusters that it is capable of measuring.   

Finally, I suspect this region of the instrument currently is not preforming well.  I have spent 

a significant amount of time to come to this conclusion.  The symptoms of this problem are 

intermittent, but problematic when manifest.  This is a mass cutoff that is fairly sharp, perhaps over 

10 or so mass units.  At masses higher than mass cutoff there is no signal above background.  Most 

commonly this mass cutoff will center around 1050 m/z, but can shift, even from scan to scan (over 

about 10 seconds).  I have observed this mass cutoff reach down to about 300 m/z.  The mass cut 

may also shift towards higher masses as well, but seldom goes away completely once it shows up.  

In addition, I have noticed this problem is less often observed when the instrument has been off for 

some time, and it is more common once the instrument has been on for some time.  However, there 

is no consistent time frame I have observed (typically it may work for a couple hours if it has been 

off for a few days, but there is significant variance in this).  I have also observed that the mass cutoff 

can be manipulated.  The mass cutoff may be lowered by lowering the exit funnel DC voltage or 

reducing the exit funnel amplitude voltage.  The mass cutoff may be raised by raising the exit funnel 

DC voltage or raising the exit funnel amplitude voltage.  While raising these voltages can, at times, 

be a temporary solution, raising them too high will eventually result in discharge and all signal will 

be lost. In addition, high AC amplitudes in the exit funnel are undesirable since they may heat ions, 

and cause fragmentation of clusters after the ion mobility measurement.  

I have performed numerous measurements in order to try understand this problem.  Initial 

measurements of voltages being fed to the instrument did not show any obvious problems.  
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Previous experience with mass cutoffs, first lead me to suspect that this could be caused by oil on 

the quadrupole or faulty RF feedthroughs on the quadruple or exit funnel.  Oil can, over the course 

of the experiment charge and can have unpredictable effects on signal.  In addition, experience told 

us that RF feed throughs were liable to fail without a measurable change.  To remedy this, I took 

apart the back end of the instrument from the detector flanged to and the pre quadrupole lenses.  

All RF feed throughs were replaced.  Each piece was thoroughly washed in hexanes, toluene, and 

methanol and the instrument was reassembled.  This unfortunately had no effect on the mass 

cutoff.  This procedure did actually fix an issue that we had been having where we would get signal 

even when the source was off, commonly called dark current.  This issue had been something that 

could be worked around as long as there was enough signal, but after cleaning we have almost no 

dark current.  This was likely dude to oil on the detector flange.   

After cleaning had no effect on the mass cutoff, I performed more detailed diagnostics to try 

to determine the cause of the mass cutoff.  This included measuring all voltages into the instrument, 

during operation, but without the high drift voltage.  In order to determine if these voltages were 

the cause of the mass cutoff, I measured each voltages with and with out the mass cutoff.  I still was 

not able to measure and difference between the problematic state of the instrument and when the 

instrument is working perfectly.   

During this time I also measured how each voltage effected the mass cutoff itself.  This is 

when I noticed the dependence on the exit funnel electronics.  The funnel voltages are generally not 

tuning voltages and are not often changed due to the risk of discharge or heating of the ions.  There 

are not many places in the instrument where a mass cutoff as sharp as this could originate form, but 

the exit funnel is once of the places, and along with this observation I suspect this is the most likely 

source.  I have not, however, been able to directly measure any problem with the funnel itself and 

only the evidence above leads me to suspect the exit funnel.  It is possible, in my experience, that 
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this effect could be caused by oil on electrodes in the funnel and also that this could not be 

measurable.  

Even without out confirmation of the exit funnel, it is still the most likely cause of the 

problem.  The next step I would take in troubleshooting this problem, is to either clean or replace 

the exit funnel.  Diagrams of the instrument, along with memory of its construction cannot confirm 

that adequate cleaning of the piece is possible.  In order to best clean the funnel one would need to 

take the exit funnel apart, but assembly of the exit funnel requires template hardware and is 

tediously time consuming.  Since cleaning is likely not a viable option, the next best solution is to 

replace the exit funnel.  We have an exit funnel that will likely work.  It will have to be shortened, 

but this is possible.  Then an adapter must be constructed in order to attach it to this instrument.  

While this process will also be time consuming, I currently believe it is the best course of action.   

vi. Main Chamber 

The main chamber contains ion optics, the quadrupole, and the detector.  The ion optics 

serve to keep ions focused and accelerate them to about 40 eV into a well-behaved beam for the 

quadruple to mass filter the ions.  The ions then encounter another set of ion optics which focus the 

ions onto the detector.  

The pre quadruple ion optics consist of both x and y steering, and three lenses.  Each voltage 

may be optimized individually.  While the x and y steering generally does not change much run to 

run, it can sometimes have small effects on signal, and they are easy to tune.  Doing so is generally 

recommended.  Each of the three pre quadrupole lenses can also be individually adjusted, but once 

optimized, only the third lens need be tuned.  Lower voltages on this third lens favors high mass 

ions, while a higher voltage favors low mass ions.  This lens should be tuned to optimize the for the 

ions of interest and should additionally be tuned for each mass during ATD collection.    
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After focusing the ions are mass selected with a quadrupole.  The quadrupole is a 

commercial set up that came with the quadrupole itself and electronics to drive it (Extrel Core MS).  

The quadrupole is centered at ground and the mass selecting voltages are applied to it form the 

Extrel electronics.  We interface with the Extrel electronics by supplying it a DV voltage form 0 -20 V 

which is interpreted by the Extrel hardware as mapping to 0-4000 amu.  In addition, the capacitance 

of the system must be correctly tuned in order for the quadrupole to electronically resonate and 

function over its full mass range.  Poor resonance leads to low transmission at high mass.  In order 

to resonate the quadruple, the Extrel electronics are equipped with two variable capacitors and an 

electrode which gives a reading proportional to the resonance of the system.  The Extrel manual 

contains detailed instructions on how to measure the resonance of the quadrupole.  If the system 

cannot resonate within the range of the variable capacitors then one may lower the capacitance of 

the system by removing some length of wire.  To increase the capacitance in the system, however, it 

is not feasible to add wire.  While Extrel recommends adding capacitors inside the electronics box, 

this is inconvenient.  The Extrel manual has detailed circuit diagrams of the system which show the 

capacitance added must be between the system and ground.  By simply adding capacitors to ground 

at the feedthroughs we were able to add enough capacitance to the system to get in range of the 

variable capacitors and maximize the resonance of the system.   

 After mass selection the ions again encounter steering and focusing lenses.  These 

electrodes should be optimized each run, but generally the maximum signal is quick and easy to 

find.   

 Finally, the detector is mounted on the back flange of the instrument.  Two high voltage 

power supplies are used to power the detector.  The first applies a high voltage to the conversion 

dynode which attracts ions and accelerates them to high energy.  When the ions strike the 

conversion dynode, electrons are emitted.  Another voltage is applied to a cascading mechanism in 
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the detector.  The electrons emitted by the initial ion impact are accelerated to another plate where 

each of the high energy electrons emit yet more electrons on impact, these are then accelerated to 

the next plate.   This is repeated several times in order to achieve a measurable current.  This 

current is still small enough that it must quickly be amplified so that it does not get obscured by 

electrical noise in the room.  A small preamp is attached directly to the detector flange for this 

purpose.   

The pumping on the main chamber is relatively simple.  The load on this chamber comes 

only from the drift cell which is normally operated at 10 torr and is separated from the main 

chamber by a 0.5 mm orifice. The target pressure for a mean free path on this length and time scale 

is about 5 × 10−5 torr.  In order to do this in one step a 250 mm diffusion pumps on the chamber.  

An ion gauge is used to measure the pressure in this chamber and must be monitored during use.  

Standard operation runs the drift cell at about 10 torr which results in pressures around 2 −

3 × 10−5 torr.  Since the drift pressure is maintained by the leak valve, it is liable to drift slightly 

during the course the experiment.  As the drift cell pressure drifts so does the load and thus 

pressure in the main chamber.  As such it is essential that one keeps a close eye on these pressures, 

especially at start up, but also during the course of the experiment.  The most dangerous failure 

mode of this instrument is if the pressure in the main chamber gets too high and the diffusion pump 

stalls leading to a pressure spike and causing the detector to burn out.   

E. Conclusions  

Ion mobility is a powerful tool.  On the simplest side it a well-defined and reproduceable 

analytical measurement for chemical identification.  More than this, however, it can give us 

structural information on the analytes we are studying.  We have been able to apply this method to 
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biological systems, like the amyloid systems I described in the introduction, in order to gain a unique 

perspective of the assembly of these systems. 

 The aspect of ion mobility which makes it so uniquely suited to study aggregating systems is 

the ability to measure a distribution of many unique structures present in a solution, as opposed to 

an average structure.  As I mentioned above, other common structural determination of biological 

molecules include X-ray crystallography and NMR.  These methods are important because they give 

us easily interpretable atomic coordinates of the structure the molecules in the system.  This is 

powerful when our analyte only adopts a single structure, but for dynamic systems these techniques 

may be problematic.  In NMR only the average structure will be measured.  In X-ray crystallography 

the sample must be crystalized into a single crystal, and a single structure is forced.  As I mentioned 

before, these are important steps in finding starting structures.  In many of the amyloid forming 

systems, this has led to detailed structures of the fibrils themselves but does not allow for study of 

the assembly process.  Furthermore, there is mounting evidence that the fibrils themselves are not 

the toxic agent in many amyloid diseases, but the oligomers are responsible for the toxicity (Arya et 

al. 2019; Downey et al. 2018; Benilova, Karran, and De Strooper 2012; Sakono and Zako 2010).  By 

using ion mobility we have been able to ionize the oligomers present in solution and isolate them for 

study.  This allows us to measure the relative abundance of particular oligomeric species in solution 

and get some idea of the size of those ions.  Coupled with molecular dynamics, and inferences from 

NMR and X-ray studies we have been able to identify and characterize the assembly and structure of 

the possible toxic oligomers (Downey et al. 2018; Bernstein et al. 2009; de Almeida et al. 2016; 

2017).   
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III. Ion mobility experiments on p53  

A. Introduction  

The tumor suppressor protein p53 is an important part of the body’s ability to control cell 

growth, in fact, it is so important, it has earned the nick name of “the guardian of the genome” (Silva 

et al. 2014).  Mutations in p53 are found in 20% of breast cancer tumors (Olivier 2006), the gene 

that codes for p53 was found to be the most commonly mutated gene in tumor samples by Kandoth 

et al (Kandoth et al. 2013), and mutations are found in half of malignant tumor samples by Silva et al 

(Silva et al. 2014).   

  When describing the function of the p53 one will often encounter an automotive analogy; 

that is, if one thinks of cell growth as a car then the p53 is the breaks to that car.  It plays a crucial 

role in slowing cell growth in the case of genetic damage (Vogelstein, Lane, and Levine 2000).  It 

does this, in part, by sliding along DNA until it detects genetic damage and then signaling the 

appropriate response through a diverse and complex signaling pathway.  To simplify, however, the 

cell will try to repair damage, but if the damage is too severe p53 also plays a role in signaling for 

apoptosis of the cell.  In this way p53 protects the body from tumors. Essentially it signals for the 

repair of genetic damage, but also for the destruction of the cell if that damage is too severe.  When 

p53 is disrupted that genetic damage may go unchecked and may lead to mutations which cause 

uncontrolled cell growth which result in tumors.   

The protein itself is a homotetramer, with each chain consisting of 393 residues and divided 

in to two folded domains: the DNA binding domain from residue 94-294, and the tetramerization 

domain from residue 323-360.  The rest of the protein is intrinsically disordered, and serves a variety 

of functions in the cell (Tidow et al. 2007).  
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It has been found that mutations of p53 not only induce the amyloid state, but further, 

exhibit prion-like recruitment effects (Silva et al. 2014; Ano Bom et al. 2012; Levy et al. 2011; Silva et 

al. 2013).  That is to say these mutations not only cause a protein to adopt an amyloid state, but that 

amyloid fibril can incorporate other p53 proteins which are not mutated and are in their native 

state.  When in the fibril state the protein would no longer be able to protect the cell form genetic 

damage, and an important anticancer safeguard will be missing.   

Despite experiments showing evidence of formation of amyloid fibrils and the resultant 

prion-like behavior of mutated p53 to induce conformational change in wild type p53, the 

mechanism of this fibril formation is poorly understood. In this study, a fragment (residues 231-257), 

and a amyloid forming mutation to that fragment (R248Q) are studied.  This mutation is the most 

common cancer-causing mutation, and interestingly this arginine one of the residues which makes 

 Figure III-1 A depiction of the DNA binding domain of 
p53 as determined by x-ray crystallography.  Highlighted 
in red is the arginine at the 248th position, as it inserts 
itself into the minor groove of the DNA. Next to it, 
highlighted in orange is the arginine at the 249th position.   
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contact with the DNA, depicted in Figure III-1 (Cho et al. 1994).   The positive charge on the arginine 

interacts with the negatively charged DNA backbone and inserts itself into the minor groove of the 

DNA.  In addition, this mutation has been associated amyloid fibrils.  

  Ion mobility is used to study the assembly from the monomer to higher order oligomers 

and the relative concentrations of these species.  Transmission electron microscopy (TEM) is used to 

determine the final states of these aggregates.  Finally, replica exchange molecular dynamics 

(REMD) is used to determine the mutations effects on the monomer. It is found that surprisingly this 

mutation has little effect on these experiments.  While it may seem that the removal of a charged 

residue must have drastic effects on the structure of the fragment, it should be noted, as shown in 

Figure III-1, there is a second arginine directly adjacent to the mutation.  Unfortunately, there is no 

conclusion to this study.  Here I will present what data I have and discuss my current hypotheses and 

what further data must be taken to find a conclusion.     

 

B. Results 

The wild type of this peptides has been well characterized.  While it has been found that the 

peptide can form amyloid fibrils. It is also remarkably disordered.  Both REMD and ion mobility show 

a broad and complex ensemble of structures.   

Figure III-2 The sequences used in this study.  Blue letters are basic residues, and the highlighted residues represent the 
secondary structure as calculated from x-ray crystal structures according to the DSSP definitions of secondary structure. 
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Figure III-3 The top five most populated clusters of structures from the REMD trajectory at 300 K.  In teal a single structure 

is drawn to give an example structure, while the blue to red lines are many example structures from the cluster to give an 

idea of the breath of the structures in each cluster.   The percentage written next to each structure represents the 

proportion of time the trajectory spent in that cluster throughout the course of the simulation.  Finally, PSA was run on 

each cluster, and the average cross section is written next to each structure.  

 The molecular dynamics run shows a variety of structures with no single structure strongly 

preferred over any other structure.  Figure III-3 shows some of the breath of structures identified 

with REMD.  In order to generate clusters with amber a RMSD distance cutoff must be chosen to 

define the diversity of structures which can be clustered together.  Smaller cutoffs result in clusters 

which are more closely related in structure, but fewer structures in the cluster, while larger cutoffs 

will allow structures which are less related to eachother, but each cluster will represent a larger 

portion of the total structures.  In Figure III-3 this cutoff has been chosen to be arguably too large.  

Each structure shows one example structure in teal, and a sampling of other structures in blue and 

red lines.  Each cluster clearly shows a large diversity of structures, which one could argue are 
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actually unrelated and should not belong to the same cluster.  Despite setting this cutoff to a value 

in which each cluster includes as many structures as possible.  No cluster can account for even 1% of 

the peptide’s simulation time.  In other words, even using a generous definition of what a single 

structure is, this peptide never favors any single structure, nor even a few structures. 

 

Figure III-4 Mass spectrum and arrival time distributions for each of the labeled peaks in the mass spectrum.  The mass 

spectrum is labeled as such, and each ATD is labeled above with the mass to charge ratio that the ATD was measured at 

(eg. m/z = 1049).  Each peak is labeled according to the convention [𝑛]𝑧 where n is number of monomers in the cluster and 

z is the charge.  For the mass spectrum this label has been chosen to represent the minimum possible value for n, but a 

single peak in the mass spectrum may represent several oligomers with the same mass to charge ratio.  For ATDs 

experimental data is represented with a black line, while colored lines represent what a peak of a single structure with the 

same cross section would look like.  Each peak has been labeled with the experimentally determined cross section.  In some 

cases, a single oligomer adopts a variety of structures, in this case, the most compact structure arrives first.   

 This result is also reflected in the ion mobility data as well.  At all three possible charge 

states, we can see that the smallest oligomer adopts a wide range of structures.  This is most 
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drastically the case for the dimer six charges.  The ATD with m/z = 1049 shows a triplet of peaks 

which are poorly resolved.  The fits, the colored lines, represent what a single structure at that cross 

section would look like.  For these fits show that this instrument could fully resolve these three 

peaks if they represented three distinct structures.  If however these three peaks represented three 

structures which could easily interconvert we would expect to see the three peaks to run together 

as shown in this figure.  For the monomer with four charges (m/z = 786) we also see that the 

monomer is much broader then the fit, again representing a diverse set of structures centered at 

that region.  It is not until we reach the monomer with five charges (m/z = 637) that the data starts 

to approach the resolution of the fit.  This is expected since intramolecular coulombic repulsion, 

would restrain the diversity of structures accessible to the peptide.  

Figure III-5 Cross section dependence on Oligomer size.  Each dot on the plot represents a cross section, oligomer size, and 

charge associated with the labeled peaks in Figure III-4.  The black line represents isotropic growth based on the lowest 

charged monomer’s cross section.   Higher order oligomers above the line suggest extended growth typical of amyloid 

systems. 

  We also find that the peptides are highly prone to aggregate, and that the aggregates are 

fibrillar.  At lower charge states (m/z = 1049) there is almost an undetectable amount of monomer, 
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while at higher charge states (m/z = 637) aggregates continue to be are observed.  In addition, 

higher order oligomers appear to have cross sections larger than the isotropic prediction based on 

the monomer.  The isotropic prediction is the cross section of an oligomer if the aggregation process 

was followed a globular pathway.  Experimental cross sections exceeding the isotropic prediction 

suggest structure to the oligomers and is typical of amyloid systems.  In addition, TEM data of 

aggregated peptide shows a fibril morphology (Figure III-7).   

 Interestingly, the R248Q mutation does not seem to have a strong effect on the structure.  

Despite the replacement of a charged residue with a neutral residue, resulting in an overall charge 

reduction of the peptide, the PMF plots (Figure III-6) of the simulations suggest the two peptides are 

sampling a similar conformational space.  While it may be surprising that the removal of a charge 

had such a small effect of the simulation, it should be noted that there is another arginine directly 

adjacent to R248.  Perhaps the preservation of the charge center (despite the halving of the value) 

preserves the structure space that the peptide samples from.  Additionally, there is little preference 

of either peptide towards any single structure, and these two plots represent the space of a peptide 

randomly sampling a diverse conformational space.   

 

Figure III-6 PMF plots from simulations of the wildtype peptide and the mutant.   
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 Transmission electron microscopy (Figure III-7) suggest that the peptide forms fibrils.  While 

the morphology does appear to change between the two systems it should be noted that this could 

also be due to a change in the solvent conditions.  The wild type was measured from a solution of 

pure water.  The mutant however, was not soluble in pure water, and a 1:1 mixture of 

methanol:water needed to be used.   

  

Figure III-7  Representative transmission electron microscopy images of each peptide after a week of incubation.  While the 

morphology seems distinct, this may be due to differences in solvent.  The wild type is in pure water, but the mutant was 

not soluble in pure water and a mixture of 1:1 methanol:water was used.  
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C. Methods  

i. Ion Mobility Data 

Ion mobility data was collected on an instrument which is described in detail elsewhere 

(Kemper, Dupuis, and Bowers 2009).  Briefly, the instrument uses a nano electrospray ionization 

source.  The ions then enter a source region which is held at 0.25 torr bellow the drift pressure 

which is around 10 torr.  This pressure difference ensures that the drift tube maintains a pure 

helium buffer gas composition.  In the source region the ions are focused through a orifice in an 

hour glass shaped ion funnel which separates the impurities in the source region from the pure 

helium in the drift region.  After the orifice, the diameter of the ion funnel increases again.  The drift 

tube side of the ion funnel serves to store ions during pulsed ion mobility experiments.  The drift 

tube is held at 10 torr and is 2 meters long.  At the end of the drift tube the ions are refocused 

though an orifice in the exit funnel which takes the ions straight from the 10 torr drift tube to a the 

main chamber region which is held at 3×10-5 torr.  In this regions the ions are mass selected with a 

quadruple and detected.   

To take a mass spectrum the ions on continuously introduced into the instrument and the 

quadruple scans a mass range to acquire a mass spectrum.  To take an ATD the ions are stored then 

pulsed in the entrance funnel.  The quadrupole is set to filter all but a single mass to charge ratio 

and the arrival time of the ions at the detector is recorded.   

The peptides were meas 
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ii. Transmission Electron Microscopy 

 Transmission electron microscopy was carried out by a collaborator, Nikki LaPointe.  The 

samples were adsorbed onto a 300 mesh formvar/carbon copper grids and imaged with a JEOL 

123 microscope equipped with an ORCA camera.   

iii. Molecular Dynamics  

Temperature Replica Exchange Molecular dynamics were carried out using Amber 15 (D.A. 

Case et al. 2015) and the ff14SB forcefield with ff99SB backbone parameters since ff14SB is 

optimized for explicit solvent.  The simulations were run using an implicit solvent model.  Each run 

used 12 replicas with exchange attempts every 3 ps and with an exchange rate around 25%.  Time 

steps for these simulations were 1 fs.  Each simulation was run for about 1000 ns and convergence 

was checked using block analysis.  Analysis was carried out on the final 600 ns of simulation time.   

iv. Peptides 

Peptides were custom ordered from genscript.  The peptides were dissolved and aliquoted 

using HFIP in order to reduce any oligomers already present back to the monomer state.  HFIP was 

allowed to evaporate, and the samples were held dry in the freezer until ready for use.  They 

samples were dissolved to a conenctraioon of 100 𝜇M and Ion mobility data was taken that same 

day.  The samples were allowed to incubate for one week before TEM images were taken.    

D. Conclusions and Future Work  

While the data remains inconclusive without mutant and interaction data, preliminary 

results show that with out the mutation the peptide readily aggregates, and that while the 

morphology as determined by TEM shows differences between the wild type and mutant, they still 

both form fibrils.  In addition, simulation suggest that the monomer is surprisingly unaffected by the 

mutation.  Together this seems to suggest that the toxicity of this mutation is not necessarily that it 
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is much more prone to form amyloids, but that the protein is destabilized without the crucial 

arginine that complexes with the DNA.  The result is that the already amyloid prone DNA binding 

domain may interact with healthy proteins, causing the suggested prion effect.   

To verify this ion mobility experiment must be carried out on the mutant and the mixture of 

the mutant and wild type to confirm that the mechanism is unaffected by the mutant.  It should be 

noted however that with out the extra charge the mutant is much harder to work with then the 

wildtype, but preliminary results show that it should be possible even in just water.   In addition, 

molecular dynamics showing that the mutation destabilizing the protein would be a nice addition.  

Admittedly this would be a difficult simulation and would require some course graining and a 

specialized molecular dynamics group in order to achieve results.  
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IV. The Classifying Autoencoder: Gaining Insight to Amyloid 

Assembly of Peptides and Proteins 
Reprinted with permission from Tro, Michael J., Nathaniel Charest, Zachary Taitz, Joan-Emma Shea, 
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A. Abstract  
Despite the importance of amyloid formation in disease pathology, the understanding of the primary 

structure – activity relationship for amyloid-forming peptides remains elusive. Here we use a new 

neural-network based method of analysis: the classifying autoencoder (CAE). This machine learning 

technique uses specialized architecture of artificial neural networks to provide insight into typically 

opaque classification processes. The method proves to be robust to noisy and limited datasets, as well 

as being capable of disentangling relatively complicated rules over datasets. We demonstrate its 

capabilities by applying the technique to an experimental database (the Waltz database) and 

demonstrate the CAE’s capability to provide insight into a novel descriptor, dimeric isotropic deviation 

— an experimental measure of the aggregation properties of the amino acids. We measure this value 

for all 20 of the common amino acids and find correlation between dimeric isotropic deviation and 

the failure to form amyloids when hydrophobic effects are not a primary driving force in amyloid 

formation. These applications show the value of the new method and provide a flexible and general 

framework to approach problems in biochemistry using artificial neural networks. 

B. Introduction 
Amyloid aggregates are pathologically associated with numerous diseases and biological functions, 

with their existence having long drawn the attention of the biochemical and biological scientific 

communities(Chiti and Dobson 2006; Fowler et al. 2007; Zhao and Townsend 2009; Bernstein et al. 

2009; Bleiholder et al. 2011). An amyloid is defined as a proteinaceous fibrillar aggregate where the 

proteins are arranged with a “cross-β” spine —  that is, both the protein backbone and the normal 

vector of the beta sheet plane are perpendicular to the fibril axis (Astbury, Dickinson, and Bailey 1935; 
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Morriss-Andrews and Shea 2015). The fibril typically ranges from 60-200 Å in diameter when fully 

mature, with fibril-like subunits which have been observed in isolation with diameters as small as 10 

Å (Economou et al. 2016; Makin and Serpell 2002; Jiménez et al. 2002; Fitzpatrick et al. 2013; Sipe and 

Cohen 2000). While amyloids are particularly known for association with degenerative diseases such 

as Alzheimer’s (Jarrett and Lansbury 1993; Stelzmann, Norman Schnitzlein, and Reed Murtagh 1995; 

Bernstein et al. 2009), Parkinson’s (Maries et al. 2003), Huntington’s (Scherzinger et al. 1997), type 2 

diabetes (Westermark, Andersson, and Westermark 2011), and amyotrophic lateral sclerosis (Elam et 

al. 2003), they may also play beneficial roles. The motif appears in spider silks, egg shells, biofilms and 

biomechanical scaffolds for human synthetic pathways (Fowler et al. 2007).  

Despite the apparent importance of these aggregate structures, specifics regarding the physics driving 

the formation of these structures remains weakly characterized. There is interest in developing a 

process which relates a primary structure to that peptide’s ability to form amyloids (Walsh et al. 2014; 

Tartaglia and Vendruscolo 2008; Thompson et al. 2006). Enough algorithms have been developed on 

this topic that there exists prediction algorithms which take into account as many other algorithms as 

possible (Emily, Talvas, and Delamarche 2013; Tsolis et al. 2013). These meta-predictors improve 

predictions, but unfortunately step into a major criticism of machine learning based classifiers: hiding 

insight into why they make the classifications they do.  This is also common in attempts to use machine 

learning for understanding amyloid aggregation. With these predictors it is possible to get either a 

positive or negative prediction, but it is hard to examine the process and learn what aspects of the 

peptide are contributing to for this prediction.  For example, there could be multiple mechanisms for 

amyloid formation, such as one driven by hydrophobic interactions and one driven by electrostatic 

interaction.  Many algorithms would be able to make the correct prediction, but the opaque 

construction of those algorithms makes it hard to distinguish the difference between the first and 

second mechanisms.  Our aim was to develop a method that addressed these problems; a method 
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which would be able to give us predictions and allow us to easily visualize what factors contributed to 

those predictions.    

One machine learning framework, artificial neural networks (ANNs), offers a powerful approach to 

classification problems. By using numerical descriptions of a system, many fitting parameters, and a 

set of data points to learn from, ANNs generate a complicated mapping from the descriptions to an 

output. This output can be any target set of numbers but is often a numerical representation of a class 

— for our purposes, whether a peptide sequence is amyloid-forming or not. These classification 

networks have been employed in a number of fields, from ecological studies to economics to 

chemistry (Olden and Jackson 2002; White 1988; Gómez-Bombarelli et al. 2018; Brunner et al. 2018). 

Attempts have been made to elucidate the inner workings of ANNs (Hermundstad et al. 2011; 

Andrews, Diederich, and Tickle 1995), however these methods can still leave intuition difficult to 

obtain. 

Fundamentally, classification can be viewed as a dimensional reduction problem in which numerous 

pieces of descriptive input data (an attribute of an amino acid, in our case) must be reduced to a single 

descriptive dimension (the propensity to aggregate). Autoencoders are an architecture of ANNs that 

have been applied to the problem of dimensional reduction, capable of reducing relatively complex 

descriptions of objects to a lower dimension (termed the latent space), and then reconstructing the 

original description of the object with as much fidelity as can be allowed (Hinton and Salakhutdinov 

2006). Differing versions of the basic autoencoder, perhaps most notably the Variational Autoencoder 

(VAE) (Kingma and Welling 2013) have emerged, with variants typically involving goals beyond 

dimensional reduction and reconstruction of the data (Wehmeyer and Noé 2018). In this paper, our 

goal was to develop a method of classification, which we call the classifying autoencoder (CAE), based 

on prior algorithms(Gómez-Bombarelli et al. 2018; Brunner et al. 2018; Kingma and Welling 2013), 

that could offer easily-interpreted insight into our classification task. 
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For this work, we develop a relation between the attributes of the amino acids in a six amino acid 

peptide (hexapeptide) and the amyloid propensity of the sequences. The use of hexapeptides means 

the primary structure will dominate the behavior of a given peptide. While other peptide lengths can 

also form amyloids, hexapeptides are the shortest length for which a large number of amyloid forming 

peptides are known(Beerten et al. 2015).  There are relatively few known examples of smaller 

peptides which form amyloids(Reches, Porat, and Gazit 2002; Reches and Gazit 2004).  Longer 

peptides are more likely to have more complex mechanisms of amyloid formation involving thorough 

considerations of internal secondary and tertiary structures.  We adopt a reductionist paradigm and 

posit understanding simple systems will help understanding of more complex systems in future work.   

A database exists in which about one thousand hexapeptides have been experimentally characterized 

as amyloid or non-amyloid, which we use here(Beerten et al. 2015). We this database to help prove 

the concept of our method and explore some of its potential usages, including elucidating the role 

specific descriptors play in establishing the classification and whether any motifs within these 

descriptor sequences can be identified as especially related to amyloid formation. 

In the next sections we first assess the capability of the CAE to identify motifs by generating a dataset 

and then using the method to recover the motifs used in generating the dataset. With our method’s 

concept successfully tested, we demonstrate its ability to analyze the relationship between a novel 

experimentally measured descriptor of a system, and that system’s properties. We have called the 

new descriptor dimeric isotropic deviation (DID). Deviation from isotropic aggregation of amino acids 

has previously been suggested a parameter predictive of amyloid formation(Do, de Almeida, et al. 

2016) for a small data set (3 peptides) and only 5 amino acids. DID differs from the isotropic deviation 

previously utilized (explained in Results and Discussion), but these simplifying differences enabled the 

measurement of all 20 common amino acids, allowing for a more robust exploration of DID and 

amyloid aggregation over a set of about one thousand peptides (Beerten et al. 2015).   
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C. Methods 

i. Generated Database  
It was important to first test our architecture on a generated database, so that we could examine the 

method under a controlled setting. We devised a set of amino acid sequences that were assigned as 

belonging to an archetype (we use this term to describe a pattern within the sequence, such as 

alternating amino acid hydrophobicity), and then the sequence classified as positive or negative.  

Figure III-8 depicts a flow chart of the process used to generate this database. 

 

We generated two artificial descriptors for our validation database.  A descriptor is a property of the 

system (e.g. the hydrophobicity of an amino acid). The two descriptors were uncorrelated and 

generated to be linearly distributed between 0 and 1. Peptide archetypes were also defined.   These 

archetypes are treated as the ideal positive or negative peptide (in the context of amyloid 

aggregation this assumes that certain patterns would yield an optimal activity, and the activity could 

be directly correlated  to the degree of difference between an archetype’s set of descriptor values 

and a peptide’s set of descriptor values). The database was generated by randomly picking 

Figure III-8 This flow chart depicts the generation of the database. In the example depiction shown in the flow chart a random 

peptide is added to the database by being assigned to the positive archetype and classified as positive. 
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hexapeptides and classifying them as positive or negative (e.g. amyloid or not amyloid). These 

classifications were based on equation 1, which compares a generated peptide to an archetype: 

𝑟2 = Σ𝑖=𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠Σ𝑗=𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 (𝑓𝑎𝑟𝑐ℎ𝑒𝑡𝑦𝑝𝑒;𝑖,𝑗 − 𝑓𝑖,𝑗)
2

                       (1) 

Where 𝑓𝑎𝑟𝑐ℎ𝑒𝑡𝑦𝑝𝑒;𝑖,𝑗 is the value of the 𝑗th descriptor of the 𝑖th amino acid in an archetypal peptide, 

and 𝑓
𝑖,𝑗

 is the corresponding value of the peptide that is being classified. This r-squared value 

between the peptide and the archetypes served as our metric of distance. A peptide is assigned to 

an archetype with which it has the smallest r-squared value. The peptide is then classified based on 

which archetype it has been assigned to. In addition, if the peptide is not within a threshold r-

squared of any of the archetypes, that peptide was deemed unassigned and either given a random 

classification or thrown out, depending on which validation test we were performing. 

ii. Experimental Database 
Given that our goal is to better understand how the physical descriptors of a peptide relate to amyloid 

activity, we used a database of experimentally-verified peptides. We use the Waltz-DB (Beerten et al. 

2015; Schymkowitz and Rousseau n.d.) of 1089 hexapeptides that have been experimentally tested 

for amyloid formation by transmission electron microscopy, dye binding, and Fourier transform 

infrared spectroscopy. Of the 1089 peptides, 244 form amyloids, and the rest do not. This database is 

known to have over-representation of peptides similar to the peptide sequence STVIIE.  The database 

was pruned to exclude any peptide which is within three point mutations of the peptide sequence 

STVIIE. This reduced the database to 946 total peptides. Of the pruned data set, 174 form amyloids; 

772 do not.  

The model was trained on half of the database, while the other half of the database was used for 

validation. The ratio of amyloid peptides to non-amyloid peptides was held constant over the training 

set and the validation set. Other fitting algorithms often use upwards of 66% of the database for 
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training and 34% for validation (Stanislawski, Kotulska, and Unold 2013; Kim et al. 2009). We opted 

for a larger validation set at the cost of a smaller training set since the database is relatively small and 

we wanted to make sure there was enough data in the validation set to get a good idea of how 

generalizable the model is. 

iii. Polarity Descriptor 
We found the hydrophobic parameter using the AAindex database (S. Kawashima and Kanehisa 2000; 

Shuichi Kawashima et al. 2008; Tomii and Kanehisa 1996). This parameter was first measured by Jean-

Luc Fauchere, in which the amino acids were dissolved in octanol and water and the relative solubility 

was measured (Fauchere, Jean Luc; Pliska, Vladimir 1983). We choose this metric for hydrophobicity 

because it correlates with many of the other hydrophobicity metrics in the database, it performs well 

for classification, and has a clear experimental basis and intuitive interpretation.  

iv. Cross Section Measurements 
To measure the DID, amino acid samples were dissolved in water to concentrations between 1 and 

12 millimolar. The cross section of the singly charged amino acid, and the cross section of the singly 

charged dimer cluster of the amino acid were measured using a lab-built ion mobility mass 

spectrometer which is described in detail elsewhere (Kemper, Dupuis, and Bowers 2009). Briefly, this 

instrument uses nano-electrospray ionization to generate ions. The ions enter the instrument from 

atmosphere into a 10 torr source region. The ions are stored in an ion funnel and pulse injected into 

a 2-meter-long drift cell which is held at 0.25 torr above the pressure in the ion funnel to maintain a 

pure helium buffer gas in the drift cell. The ions exit the drift cell through another ion funnel and are 

mass selected with a quadrupole before being detected. This instrument is notable for minimization 

of energizing the sample ions at all stages. This allows us to easily measure non-covalently bound 

assemblies such as the amino acid clusters reported here.  
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To measure the cross section, the ions traverse the drift cell at various drift voltages. The time it takes 

to reach the detector is 𝑡𝐴 =
𝑙2

𝐾0
(

𝑇

760
) (

𝑃

𝑉
) + 𝑡0, where 𝑙 is the cell length, 𝑇 the temperature, 𝑉 the 

voltage across the cell, 𝑃 the pressure in the cell, and 𝑡0 the time from exiting the drift cell to the 

detector recorded for mobility calculations(Gidden et al. 2004). The reduced mobility, 𝐾0, is related 

to the cross section by the equation 𝜎 ≈
3𝑒

16𝑁0
(

2𝜋

𝜇𝑘𝐵𝑇
)

1

2
(

1

𝐾0
). Here 𝑒 is the charge of the ion, 𝑁0 is the 

number density of the buffer gas, 𝜇 is the reduced mass of the buffer gas and the ion, 𝑘𝐵 is the 

Boltzmann constant, and 𝜎 is the cross section of the ion (Mason and McDaniel 1988).  

Software 

All neural nets were constructed and trained using the Keras software package(Chollet and Others 

2015) with the Tensorflow backend(Martín Abadi et al., n.d.).   

D. Results and Discussion 

i. Developing the Classifying Autoencoder 
Classification is a specific type of dimensional reduction. We hypothesize we can learn more about 

why the classifying model is making its predictions by combining it with a variational autoencoder 

(VAE).  A primer of VAEs can be found in the supporting information, but briefly, a VAE is an 

unsupervised neural-network-based dimensional reduction algorithm which seeks a robust reduced 

representation of a data set.  As with any fitting algorithm, it quantifies the quality of the fit by defining 

and minimizing a loss function.  For standard linear regression this is typically the sum of squares of 

the residuals, r2.  The VAE has a two-term loss function. The first term relates the fidelity between the 

reduced representation and the original representation.  This is called the reconstruction term since 

it is a measure of how well the model can reconstruct the original representation if only given the 

reduced representation.  The second term adds noise to the data during training.  These competing 

loss terms lead to robust reduced representations.  
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We used the underlying architecture and concept of the VAE, but added another term to the loss 

function to make the reduced representation also function as a classification metric.  We have called 

this the classifying autoencoder (CAE), and depicted it in Figure III-9.  Inputs (a description of the 

peptide) are fed into the model via the input nodes. The depiction in Figure III-9 shows only four input 

nodes, but in the final model there will be an input node for each value that represents the peptide, 

i.e. the number of descriptors times the number of amino acids in the peptide.  The hidden layers add 

more fitting parameters.  The nodes labeled 𝜇 represent what is termed the latent space.  Typically, 

the term latent space is used to refer to the space of the reduced representation.  Here, these values 

are also used as the prediction.  The latent space is two dimensional, one for the amyloid propensity 

and one for the non-amyloid propensity.  A peptide is classified depending which node outputs a 

higher value. The nodes labeled 𝑁(𝜇, 𝜎2) inject noise into the data during training. This noise is in the 

form of a normal distribution centered at the reduced representation, 𝜇, and has a standard deviation, 

𝜎2.  The nodes to the right of the nodes labeled 𝑁(𝜇, 𝜎2) (the decoder) attempt to reconstruct the 

original input.  For a more detailed explanation of this please see the primer of VAEs in the supporting 

information.  
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Figure III-9 Depicted is the architecture of a classifying autoencoder (CAE) with four inputs, and one hidden layer with three 

nodes. The latent space in this model is two-dimensional and is labeled  𝜇.  These nodes are also used as the prediction 

layer. Noise is added to the latent space at the nodes labeled 𝑁(𝜇, 𝜎2); this noise is in the form of a normal distribution 

centered on the reduced representation, 𝜇, with a standard deviation, 𝜎2.  The decoder (all nodes to the right of the nodes 

which introduce the noise) tries to reconstruct the input. Dense connectivity (see primer of VAEs in Supporting Information) 

can be assumed for all layers not drawn explicitly. In addition, connectivity has been drawn explicitly at the latent space to 

highlight that the output nodes are not fed into the decoder, but the nodes labeled 𝑁(𝜇, 𝜎) are fed to the decoder. 

ii. Validation on a Constructed Data Set 
To verify that the CAE successfully elucidates and reconstructs characteristic archetypes, we 

generated an artificial peptide database as discussed in Methods. Using the constructed database 

allowed us to verify the model was performing its intended functions, while also testing how sensitive 

the model is to potential issues within the database, such as small database sizes or flawed results. 

We did this in two ways. First, we allowed for some unassigned peptides (peptides which were not in 

the neighborhood of any archetype) to be given a random class to see if the model would be able to 

see through the resulting noise. This tests situations where the descriptor we are using contributes to 

the amyloid activity of some of the peptides, while other peptides are dominated by a mechanism 

unrelated to the descriptors that have been chosen.  The second test only used peptides that have 
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been assigned to an archetype but introduced a stochastic element to classifications. When a peptide 

was assigned to an archetype it was classified as amyloidogenic or non-amyloidogenic according to a 

probability. The second scenario captures errors in the experimental data in the database, or an 

amyloid mechanism that only partially relates to the chosen descriptors.  

All models are trained on 500 peptides and validated with 500 different peptides. Peptides are 

described with two descriptors per amino acid. The axes for each plot in Figure III-10 are the values in 

the latent space; that is the values output by the two nodes labeled 𝜇 in Figure III-9. The y-axis is the 

positive prediction axis, and the x-axis is the negative prediction axis. A peptide is classified as positive 

if its positive prediction value is greater than its negative prediction value. Thus, if a peptide falls above 

the red line on the plots that peptide is predicted positive, while falling below the red line is a negative 

prediction. Figure III-10 A, D, and E plot each peptide in the database according to where they fall in 

latent space. Figure III-10 B and C show the reconstructed description of the peptide for equally spaced 

points in latent space. These types of plots will be referred as reconstruction plots.  
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Figure III-10 For all plots, the y-axis is the positive prediction axis, and the x-axis is the negative prediction axis. A peptide is 

predicted positive if it is falls above the red line and is predicted negative if it falls below the red line. Plot (A) shows where 

each peptide is encoded by the CAE, while plots (B) and (C) show the reconstructed description at each point in latent space 

for that same model. Plots (D) and (E) are each a separate model (see text) and show where each peptide in their database 

encodes to in latent space. 

Figure III-10 A-C are generated from the same model. Of the 1000 peptides 27% are assigned to an 

archetype, and subsequently classified as either positive or negative depending on the archetype. The 

positive archetype is LULULU (U = upper, L = lower) in descriptor 1 and LLLLLL or UUUUUU in descriptor 

2. The negative archetype is LLLUUU for descriptor 1 and either LLLLLL or UUUUUU in descriptor 2. All 

peptides not assigned to an archetype were not within a threshold r-squared distance of any of these 

archetypes and were classified randomly.  

In Figure III-10 A, each peptide is encoded to two numbers (the values output by 𝜇) and plotted 

according to those values, showing how the peptides are arranged in latent space. The color of the 

marker represents the peptide’s classification in the database; pink markers are positive, while green 
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are negative. In Figure III-10 B and C, we visualize the reconstructed description of the peptide, 

descriptors 1 and 2, respectively, in latent space.  This representation of the peptide description 

arranged in latent space, the reconstruction plot, is the key to gaining intuition from the CAE, as it 

visualizes the different regions of positive and negative predictions that the CAE identified. 

Figure III-10 D and E depict different models than Figure III-10 A-C. These use a database generated to 

mimic a set of experiments that yielded occasionally flawed results. In Figure III-10 D and E all peptides 

in the database are within a threshold distance to one of four archetypes. For the two positive 

archetypes, one archetype was always classified positive, while the other archetype was misclassified 

at the rate indicated in the plot title. The negative archetypes were assigned in the same way. 

These results show the models can simultaneously sort the data into the positive and negative 

classifications and identify the original archetypes used to generate the data. In the top left of Figure 

III-10 A, the positive prediction region of the latent space, positive peptides have been separated from 

a mixture of positive and negative peptides, correctly predicting those peptides as positive. The 

corresponding region in the reconstruction plot, Figure III-10 B and C, correctly reflects the positive 

archetypes. This happens similarly for the negative prediction region. We, also, learn how to interpret 

the reconstruction plot by examining Figure III-10 B and C. The middle of Figure III-10 A, the data’s latent 

space distribution, shows mixed positive and negative peptides; in Figure III-10 B and C, the 

reconstruction plot, this region shows no evidence of the positive or negative archetypes. However, 

as we move to the top left of the data’s latent space distribution, Figure III-10 A, we see a separation of 

positive classifications from the mixture of classifications; when we follow this trajectory in the 

reconstruction plot, Figure III-10 B and C, the positive archetype emerges. The separation of a single 

class from a mixture of classes can tell us about the trend that contributed to that separation.  
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In Figure III-10 D and E, the model correctly shows four clusters in the latent space, according to the four 

archetypes used to construct the database. The reconstruction plot (Figure A-I-5) correctly reflects 

the four archetypes. This gives us insight to how the model deals with the uncertainty in the data. In 

Figure III-10 D, the archetype which has been 80% classified positive and 20% classified negative is 

placed in the positive prediction region of the latent space. However, this is nearer the decision 

boundary (the red line) than the cluster associated with the 100% positive archetype, suggesting the 

model identified the ambiguous archetype. Further, in Figure III-10 E, the ambiguous archetype was 

associated 60% to one classification and 40% to the other. In this case, the cluster that represents the 

ambiguous archetype is placed nearly atop the decision boundary, leaning slightly positive. The 

method is capable of making identifications regarding how an archetype leans, in addition to 

characterizing archetypes that are certainly associated with activities. 

 We note our validations show our method works with large databases that are typically used 

in machine learning (N = 10,000; Figure A-1-7), but crucially also with the limited databases we have 

available for amyloid studies (N = 1000; as shown here).  This suggests potential generalizability of the 

models to problems associated with relatively small databases, such as the Waltz database we use 

later (Beerten et al. 2015).   

Ultimately, these results demonstrate the CAE’s ability to relate sequences to an interesting activity. 

Even adding disturbances to the ideality of an artificially constructed database, the CAE was able to 

mine the patterns associated with the class of interest, and discern when a pattern had a leaning, 

rather than a fixed identity. This suggests the validity of this method for the task at hand: identifying 

characteristics and motifs of sequences that yield amyloidogenic behavior. 

iii. CAE on an Experimental Database: Hydrophobicity 
Metrics related to hydrophobicity were found to be the most effective descriptors, and such a metric 

is used in both descriptors examined here. In Figure III-11 B (and later in Figure III-12 B) we can see a region 
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of peptides with yellow or green amino acids in the middle (positions 3 and 4) and dark green or blue 

amino acids on the ends. This means peptides in this region of the latent space tend to be hydrophobic 

in the middle, and more hydrophilic on the ends, suggesting this type of amyloid fibril buries the 

hydrophobic core by stacking while the hydrophilic ends on the outside interact with water. It should 

be noted in both cases much of this region is an extrapolation by the model (there are few data points 

in the latent space in these regions). While extrapolation must be taken with caution, this motif in this 

“most-likely amyloid” region is worth noting due to the intuitive sense that hydrophobic amino acids 

should be buried away from the solvent.  This motivates further investigation on sequences capturing 

this motif. In other words, if a goal is to investigate the coarse forces driving amyloid formation or 

design new amyloid forming peptides, the CAE’s extrapolation can be a hypothesis to pursue. 

 

Figure III-11. Representative model trained using hydrophobicity and monomer cross section (MCS). (A) All sequences in the 

validation set plotted in latent space. Each axis here is the value of one of the latent space nodes. The color of the point 

represents the experimental classification of that peptide. (B) and (C) show the reconstructed descriptions.  The axes here 

also represent values in the latent space, but the markers represent peptide descriptions. Each group of six dots represents 

a peptide, and the color of that dot represents the reconstructed descriptor value at that point in latent space. (B) depicts 
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the hydrophobicity of the peptides, where yellow is hydrophobic, and blue is hydrophilic. (C) depicts the monomer cross 

section (MCS) of each point in latent space. Here yellow is a large cross section, and blue a small cross section. 

There also exists some signs of the West et al result (West et al. 1999) of NPNPNP (P = hydrophobic 

(polar), N = hydrophilic (non-polar) within the core residues (2, 3, 4, 5) in both models. This patterning 

is also characterized by less extreme hydrophobicity, suggesting this motif is preferred by those 

residues with moderate hydrophobicity values. It is worth noting this region has been interpolated as 

there are many amyloid points in this region of the latent space; we can then be more confident that 

these motifs are well-represented within the database. Observations based on this interpolated 

region could also provide grounds to investigate forces driving amyloid formation or to inspire novel 

amyloid forming peptides.  

 These two motifs are consistently represented in the amyloid region independently of the second 

descriptor, giving further confidence these motifs are mirrored in the data. 

iv. CAE on an Experimental Database: Monomeric Cross Section 
Figure III-11 represents a model trained using Monomeric Cross Section (reported in Table 1) and 

hydrophobicity as the descriptors. The populated region on the amyloid side tends to include mid-

to-large residues, while the populated region in the non-amyloid side tends to include small 

residues. This could suggest a preference for bulky side chains, perhaps to help drive amyloid 

stability through surface-area dependent forces such as van der Waals.  Additionally, on the amyloid 

side, there is some alternation of large and small residues. We also note that hydrophobicity 

similarly alternates in the same region of latent space. Perhaps this alludes to a connection between 

the size of a side chain and its potential for stronger hydrophobic-related forces resulting in a 

preference for sequences that alternate large, hydrophobic residues and small, hydrophilic 

residues(Valentine, Counterman, and Clemmer 1999; Dilger, Glover, and Clemmer 2017; 

Counterman and Clemmer 1999).  
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Monomer Cross Section and Dimeric Isotropic Deviation 

  
  

Amino acid 

Monomer 

Cross Section 

(Å±Standard 

Deviation) 

Dimeric isotropic 

deviation, 𝚫𝒊𝟐 
× 𝟏𝟎𝟎 (± 

Standard 

Deviation) 
Glutamic acid 61.9 ± 0.3 -6.1 ± 0.3 
Leucine 65.3 ± 0.2 -5.8 ± 0.4 
Isoleucine 64.2 ± 0.4 -4.8 ± 0.5 
Glutamine 63.3 ± 0.1 -4.7 ± 0.4 
Valine 58.8 ± 0.2 -4.7 ± 0.7 
Methionine 65.6 ± 0.3 -4.5 ± 0.2 
Proline 56.5 ± 0.2 -3.2 ± 0.2 
Histidine 66.3 ± 0.4 -2.9 ± 0.5 
Threonine 56.3 ± 0.3   -2.5 ± 0.6 
Aspartic acid 57.8 ± 0.4  -1.7 ± 0.5 
Arginine 71.8 ± 0.2  -1.0 ± 0.4 
Asparagine 59.0 ± 0.4  -0.1 ± 0.5 
Lysine 65.4 ± 0.2  0.5 ± 0.4 
Alanine 50.6 ± 0.3 0.8 ± 0.3 
Serine 52.1 ± 0.5 1.2 ± 0.9 
Phenylalanine 72.0 ± 0.4 3.5 ± 0.6 
Tyrosine 75.2 ± 0.3 4.0 ± 0.0 
Tryptophan 81.3 ± 0.7 6.0 ± 1.0 
Cysteine 55.7 ± 0.3 9.2 ± 0.3 
Glycine 49.1 ± 0.4 11.6 ± 0.5 

 

Table 1 Experimentally measured monomer cross section and dimeric isotropic deviation (𝛥𝑖2) for each amino acid. The 𝛥𝑖2 

have been multiplied by 100 for ease of reading. Convention dictates a negative value is associated with growth larger than 

isotropic prediction, zero is isotropic growth, and a positive deviation growth more compact than the isotropic prediction. 

v. Introducing Dimeric Isotropic Deviation (DID) 
To offer insight into isotropic deviation, consider growth around a sphere as material is added. If that 

volume is distributed equally around the object, isotropically, it is straight-forward to write an 

equation which predicts the cross section when material is added: 𝜎𝑖𝑠𝑜 = 𝜎0 (
𝑉

𝑉0
)

2 3⁄
, where 𝑉0 is the 

original volume of the sphere , 𝑉 the final volume of the sphere, 𝜎0 the cross section of the original 
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sphere, and 𝜎𝑖𝑠𝑜 the cross section given isotropic addition of volume. If that volume is not added 

isotropically, or the overall density changes, the system will deviate from that prediction. In the same 

way, if we calculate the volume of an amino acid based off our experimentally measured cross section 

and assume isotropic growth, we can predict the cross section of an oligomer (in this case, a cluster 

of amino acids) based on the volume of the monomer using the equation 𝜎𝑛
𝑖𝑠𝑜 = 𝜎1

𝑒𝑥𝑝 
𝑛2/3, where 𝑛 

is the number of amino acid molecules in the oligomer (Do, de Almeida, et al. 2016). Most amino acids 

do not grow isotropically, and we call the degree of deviation from this growth isotropic deviation.  

It is intuitive that this property of amino acid aggregation could be used to make predictions about 

the aggregation properties of peptides since it reflects some degree of order in the amino acid 

aggregates. In the Do paper, isotropic deviation is measured for different large order oligomers (n = 

20 to 30), but was only measured for five amino acids, and verified on three peptides (Do, de Almeida, 

et al. 2016). As we collected more data on aggregation of amino acids, we found that this value was 

oligomer size dependent (Figure A-I-3). We also found the monomer and dimer to be the only 

oligomer sizes that could we could consistently observe across all amino acids. The desire for a 

systematic metric for all amino acids drove the development of what we call DID (reported in Table 

1). For the data available, comparison of Do’s measure and DID does not show strong correlation, 

however DID’s basis in peptide packing behavior suggests a potential relation to amyloid formation.  

DID is calculated as follows. We have measured the cross section of the singly charged monomer and 

the singly charged dimer of each of the 20 canonical amino acids (arrival time distributions and cross 

sections in Figure A-1-4). If the dimer cross section is larger than the isotropic prediction, convention 

dictates a negative isotropic deviation is obtained, which we will refer to as extended growth. An 

experimental dimer cross section which is smaller than the isotropic prediction, compact growth, 

results in a positive isotropic deviation according to the equation, Δ𝑖2 = (1 −
𝜎2

𝑒𝑥𝑝

𝜎2
𝑖𝑠𝑜 ). Here 𝜎2

𝑒𝑥𝑝
 is the 
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experimentally measured cross section of the dimer with one charge, and 𝜎2
𝑖𝑠𝑜 the isotropic prediction 

of the dimer based on the singly charged monomer’s cross section.  

Use of DID (a descriptor to be assessed) along with hydrophobicity (a known strong descriptor) shows 

an important power of the CAE: the ability to assess the relationship between a potential descriptor 

and classification.  The strong descriptor essentially scaffolds the latent space’s shape, ensuring good 

classifications, while the other descriptor can then be used to refine details within the latent space, 

either indicating that descriptor’s relationship to the activity through meaningful contributions, or no 

such relationship through a lack of systematic contributions. This process is illustrated below. 

vi. CAE on an Experimental Database: Dimeric Isotropic Deviation (DID) 
Here we probe the relationship between DID and amyloid propensity. For the most part, Figure III-12 C 

shows few features in the amyloid region and the peptides are generally on the extended side of DID. 

The top left shows some signs of compact DID. This is also the same region where the hydrophobic 

core motif is represented. Like the monomer cross section result, here the hydrophobicity is likely the 

larger factor governing amyloid formation, as evidenced by the larger diversity of hydrophobicity 

motifs in the amyloid region. In the non-amyloid region, there exists a region of mixed amyloid and 

non-amyloid points (middle of the plots), as well as a region of pure non-amyloid points (the right of 

the plots), reminiscent to the pattern we saw in the distribution of points during the first validation 

experiment (Figure III-10 A). Within these regions the hydrophobicity motifs have relatively low 

diversity, being generally hydrophilic, while there is greater diversity in the DID motifs. Critically, as 

one moves deeper into the non-amyloid region, one observes a rise in the compactness of the 

residues. Thus, in the same way the model from Figure III-10 A determined the archetype in the pure 

green region, the CAE has determined a strong relationship between compactness and a failure to 

grow fibrils – the extrapolated “least amyloidogenic” peptides (those that would appear in the bottom 
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right of Figure III-12 C) are most strongly characterized by a higher degree of compactness, with less 

distinguishing features in hydrophobicity representation.  

 

Figure III-12 Representative model trained using hydrophobicity and DID.  This figure is the same representation of a model 

as  Figure III-11 except (C) depicts the DID of each point in latent space. Here yellow is extended growth, and blue is 

compact growth. 

These results provide potential insight about how DID relates to amyloid formation. Namely, compact 

growth of the amino acids could block the amyloid process of the peptide when hydrophobic 

interactions are not a significant driving force of amyloid formation. While it was not found that DID 

could be used by itself to attain reliable correlations with amyloid-forming behavior, likely due to the 

specificity of the interaction observed at the dimer level, the CAE determined that DID could be 

strongly related to a failure to form fibrils.  Further, from this observation we may gain some insight 

about the differences between amyloid forming hexapeptides, and larger proteins.  The residue with 
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the most compact isotropic deviation is glycine, and indeed the peptides in the non-amyloid 

forming/compact isotropic deviation region of the latent space are rich in glycine.  This is a curious 

result since amyloids are often associated with glycine rich proteins as they tend to be intrinsically 

disordered (Fink 2005; Uversky 2010).  Further, it has also recently been shown that glycine is an 

essential residue in cylindrin formation(Laganowsky et al. 2012; Do, LaPointe, et al. 2016; Sangwan et 

al. 2017), a structure that may be responsible for breaching the plasma membrane potentially leading 

to neuron death.  However, for cylindrin formation peptide lengths on 11 or more amino acids are 

required. Here, however, we see the opposite trend.  Perhaps amyloid structures for small 

hexapeptides are destabilized by the lack of side chains from glycine. Larger proteins have more 

backbone interactions and other non-glycine side chains to stabilize the amyloid structure.  This 

observation may help in understanding how to use data taken on hexapeptides to make predictions 

about proteins.  Precise mechanistic insight is beyond the capability of this method. However, its 

ability to obtain correlations may motivate more detailed experiments or simulations which can 

investigate the hypotheses yielded by the trends within the CAE’s latent space representations.  

E. Conclusions  
Here we develop a method combining the techniques of an artificial neural network classifier and the 

variational autoencoder (VAE) to analyze a set of experimental data and produce relationships 

between properties of the peptides and their amyloidogenic activity. This method was validated on a 

set of artificially generated data, demonstrating its ability to perform the functions intended as well 

as demonstrate a robustness to both noisy and limited datasets – common features of currently 

available data for biochemical assembly systems.  

The CAE was then applied to the experimentally verified Waltz database to mine important motifs 

correlated to amyloidogenic behavior. The CAE was able to rediscover previously observed 

relationships regarding hydrophobicity and steric size and additionally establish a link between DID 
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and amyloidogenic activity. This observation demonstrates its ability to provide relationships between 

relatively complex input spaces and a reduced-dimension output associated with whether a peptide 

produces amyloid fibrils. This capability enabled us to observe an extrapolated but intuitive suggestion 

that hexapeptides with highly hydrophobic, bulky cores and hydrophilic, smaller termini will be among 

the most likely to form fibrils. We were also able to detect that the database has a strong 

representation of sequences in which alternating patterns of hydrophobic and intermediate residues 

correlate to amyloid formation.  

In addition, we used this method to elucidate the relationship between novel descriptors (such as the 

newly reported DID) and activities of interest. The CAE was able to extract trends within the DID of 

peptides, and demonstrate a relationship to amyloidogenicity, even though this relationship only 

weakly contributed to the overall score of the model. The hydrophobicity of the peptide dominates 

in this database, but we are still able to observe cases where hydrophobic forces did not strongly 

contribute, and compact amino acid growth could be clearly associated with failure to form amyloid.  

This method can easily be generalized to analyze many problems that involve understanding 

complicated data. There are no restrictions on the number of classes or inputs that can be considered, 

and while we use classification in the latent space, other loss functions could be used to alter the 

meaning of the axes. While we demonstrated this works on relatively small datasets, we took great 

care to avoid overfitting. The more inputs (and thus hidden layer fitting parameters) and the smaller 

the dataset, the more likely the model will overfit.  

We believe we have successfully illustrated a quick and understandable analysis of high dimensional, 

nonlinearly dependent data. We set out to probe the relationship between DID and amyloid 

formation, and our method offered a relatively rapid way to obtain correlations of significance. The 

general approach established here could be used to mine databases for directions to take when 
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considering future experiments. As science continues to move to higher throughput methods, higher 

dimensionality, and more complicated systems, machine learning methods have flourished at the cost 

of physical/chemical insight. Here we have used a prescription to open the black box and have offered 

a way to gain intuitive insight to the system which has been modeled, while retaining the full power 

of machine learning’s modeling abilities. 
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V. Unsupervised Learning of Amyloid Aggregation Molecular 

Dynamics Data: Automatic Order Parameter and Nucleus 

Detection 
Nathaniel Charest╪, Michael Tro╪, Michael T Bowers, Joan-Emma Shea* 

A. Abstract 
The characterization of amyloid forming peptides and processes is of interest in the 

biochemistry community. Two processes – the direct assembly of amyloid fibrils and the liquid-to-

solid phase transition of protein droplets within the cellular milieu – are a popular target for 

simulation due to their association with amyloid disease pathologies. Methods for characterizing 

these dynamical processes make use of order parameters as single value representations of the 

system’s state, with effective order parameters offering insight into the process in an accessible way. 

An unsupervised machine learning algorithm known as the variational autoencoder is applied to the 

internal coordinates of a coarse-grained molecular dynamics simulation of an amyloid prone peptide 

model that spontaneously orders from a disordered solution, representing the first application of such 

a technique to systems of aggregating peptides. The method is shown to be able to reduce the 

ensemble of data to a single variable that tracks evolution in the system and successfully characterizes 

large-scale system evolutions with precision exceeding or comparable to more conventional order 

parameters. We apply the technique to an amyloid system of scale and analyze its viability as a 

method for large molecular dynamic simulations. 

B. Introduction 
Amyloid fibrils are associated with the clinical pathology of numerous diseases, including 

Alzheimer’s disease (Bernstein et al. 2009; Jarrett and Lansbury 1993; Stelzmann, Norman Schnitzlein, 

and Reed Murtagh 1995), ALS (Maries et al. 2003), Type II Diabetes (Westermark, Andersson, and 

Westermark 2011) and Parkinson’s disease (Maries et al. 2003). Because of this connection, there has 

been considerable investigation into the means by which these fibrils form through both experiment 
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and simulation. Amyloid fibrils are distinguished by their characteristic x-ray diffraction pattern, and 

their structure is well-characterized as being beta-sheets whose stacking axis is perpendicular to the 

peptide backbone (Fitzpatrick et al. 2013; Geddes et al. 1968; Guenther et al. 2018). 

Fibrillizing systems have proven difficult to explore computationally due to the large number of 

atoms needed to produce a fully formed fibril and the timescale over which that fibral forms.  Fully 

atomistic studies of the formation of a fibrillar plaque are limited by time and scale constraints, and 

so coarse grained models have been successfully used to model fibril formation from unassembled 

monomers(Nguyen et al. 2019; Ilie and Caflisch 2019; Chiricotto et al. 2019; M. Chen, Schafer, and 

Wolynes 2018; Rojas, Maisuradze, and Scheraga 2018).  Previous publications have utilized the Shea 

peptide model to explore possible pathways by which fibrils form (Morriss-Andrews, Bellesia, and 

Shea 2012; Bellesia and Shea 2009). This model was chosen because its computational tractability 

allows the access of system sizes that enable mechanistic insight, while preserving major common 

attributes of various fibrillizing peptides. 

The complexity of the system lends itself to the use of relatively new methods for developing 

coordinates that track system transformations. In this work, we apply a common type of artificial 

neural network – the variational autoencoder (VAE) (Kingma and Welling 2013) – with the goal of 

developing a single value parameter that can indicate the degree of progression of a system 

approaching a final, ordered form by characterizing the underlying order of the trajectory’s time 

series.  Building on work done improving molecular dynamics sampling, facilitating analysis, 

developing collective variables, and analyzing the Ising model (Wehmeyer and Noé 2018; W. Chen, 

Tan, and Ferguson 2018; Wetzel 2017; Wang, Lamim Ribeiro, and Tiwary 2020), we the first to use 

VAE-based techniques to analyze large systems of fibrillizing peptides. Emphasis is placed on the use 

of the VAE’s ability to reconstruct information in human-accessible form and provide a unique means 

of analysis and insight.  
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In this paper, we first explain the VAE and demonstrate how it can use the information in a 

molecular dynamics ensemble of a serial ordering process to develop its single-valued order 

parameter. We then use the VAE to generate a this single-valued order parameter two fibrilizing 

systems..  The automatically learned order parameter is compared to the commonly used nematic 

order parameter (Stephen and Straley 1974; Saupe 1968; Eppenga and Frenkel 1984; Ray et al. 2019) 

both to highlight the strengths of this method and also analyze and address potential issues.    We 

emphasize the use of the VAE’s ability to ‘translate’ its insights into the original representation of the 

system, for possible of analysis.  This process represents a more general field of interest: the transition 

of a disordered phase of matter into an ordered phase. Our contribution is the application of this 

method to an amyloid assembly process, representing the use of VAE methods on systems larger and 

more dynamically complex than systems so-far studied. 

C. Methods 
Out model’s monomeric unit 

is depicted in Figure V-1. It is a 

phenomenological coarse grained 

model based on an earlier paper 

(Bellesia and Shea, 2007). The 

backbone contains two 

interaction centers per residue (X 

and Y) along the backbone, and 

one interaction center on the side chain. Four different types of side chain groups are considered: 

hydrophobic group H, polar group P, cationic group C and anionic group A. Capping groups, E, are used 

at the termini. The sequence is chosen to have an alternating sequence HPHPHP, a decision initially 

motivated by combinatorial studies of Hecht and collaborators (Xiong et al. 1995; West et al. 1999) 

Figure V-1: A diagram of the peptide model with important vectors labeled. 
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Hecht et al. that indicated a generic amphiphilic alternating pattern is a major indicator of beta-sheet 

for self-assembling peptides. This trend was also supported by recent analysis of the Waltz database 

using classifying autoencoders (Tro et al. 2019), further recommending the pattern.  

i. Energy Terms 
The force field terms are as follows.  

1. The bond potential is of the form: 

𝑈𝑏𝑜𝑛𝑑 =  ∑ (
1

2
) 𝐾𝑏(𝑖𝑗)

𝑏𝑜𝑛𝑑𝑠(𝑖𝑗)

(𝑟𝑖𝑗 −  𝑟0𝑖𝑗)
2

 

For which Kb(ij) = 200.0 kcal/mol and r0ij = 2.0 A 

2. The angle potential is of the form:  

Kangles = ∑
𝐾𝜃(𝑖𝑗𝑘)

2
(𝜃𝑖𝑗𝑘 − 𝜃0𝑖𝑗𝑘)

2

𝑎𝑛𝑔𝑙𝑒𝑠(𝑖𝑗𝑘)

 

Where Kθ(ijjk) = 40.0 kcal/mol, θ0iXk = 120.0o and θ0iYk = 180o. 

3. Dihedral potentials are of the form: 

𝑈𝑑𝑖ℎ𝑒𝑑 =  ∑ 𝐷𝑖𝑗𝑘𝑙 cos(3 𝛼 − 𝛿𝑖𝑗𝑘𝑙) − 𝐺𝑖𝑗𝑘𝑙cos (𝛼 − 𝛿𝑖𝑗𝑘𝑙)

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠(𝑖𝑗𝑘𝑙)

 

Parameters for quadruplets are listed in Table 1.  

Ijkl D (kcal/mol) G (kcal/mol) Δ (degrees) 

XYXY, YXYX -0.25 -0.25 180 

Sequence 1 (Rigid)    

CXXH, HXXP, PXXH, HXXA 0.0 -1.115 180.0 

Sequence 2 (Flexible)    



77 

 

CXXH, HXXP, PXXH, HXXA 0.0 -2.0 180.0 

4. Nonbonded Interactions are of the form: 

𝑈𝑁𝐵 = (
1

2
) ∑ 4 𝜖𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− 𝜆 (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝐶𝑐𝑞𝑖𝑞𝑗

𝑟𝑖𝑗𝑖 ≠𝑗

 

Where εXX = εYY = εXY = 0.5, εHH = 0.3, εPP = 0.04, εHP  = 1.0 and Cc = 16.603 kcal Å mol-1 e-2 . Beads A and C 

have charges qA = -1 e and qc = 1 e respectively. Parameter σ has the value 2.0 for every pair except 

XY, where σXY  = 3.0. λXX = λYY = λXY = λHH = λPP = 1.0 and λHP = 0.01. For any pair of a side chain bead 

(C,H,P,A) and a backbone bead (X,Y) or else a pair involving a terminus bead (E) the parameters are  ε 

= 1.0, σ = 2.0 and λ = 0.0. Energy constants are in kcal/mol and distance constants are in units of 

angstrom.  

ii. Simulations & Nematic Order Parameter 
Simulations were run in the molecular dynamics package NAMD (Phillips et al. 2005)  using a 

Langevin implicit solvent.  108 copies of the peptide model were placed in a cubic box of 102 

angstroms on a side. Periodic boundary conditions were applied, and the temperature brought to 305 

K after scattering the peptides at a high temperature in absence of pair-wise potentials. A timestep of 

10 fs was used, while randomly seeded velocity initialization promoted the evolution of multiple 

trajectories from the same initial conditions. Systems were then relaxed using a brief minimization to 

eliminate strain from scattering, and then run for 750 ns. 

First-pass analysis of the trajectories was conducted using the what is referred to as the nematic 

order parameter, 𝜆𝑝 which is described in detail elsewhere (Eppenga and Frenkel 1984; Stephen and 

Straley 1974; Saupe 1968). Briefly, it is calculated as the highest eigenvalue of the always-

diagonalizable 3-by-3 matrix Qab where: 

𝑄𝑎𝑏 =
1

2𝑁
∑(3𝑢𝑎

(𝑖)
𝑢𝑏

(𝑖)
− 𝛿𝑎𝑏)

𝑁

𝑖=1
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where a and b are x, y or z; N is the number of peptides, δ is the Kronecker delta, and 𝑢𝑎 and 𝑢𝑏 are 

the x, y, or z components of the Up vector described above. This expression is a metric of overlap of 

the monomers’ orientations.  Eigenvalue decomposition yields eigenvectors, the primary of which is 

parallel with the fibril axis.  The corresponding eigenvalue is the nematic order parameter, 𝜆𝑝,  which 

describes the degree of that alignment along the major axis.  In other words, the nematic order 

parameter describes the degree of alignment of the carbon back bones in the system  In a perfect 

fibril stack this value would approach one, however in practice fibril stacks are associated with values 

around 0.8. This choice of order parameter helps differentiate between two ordered but 

fundamentally different structures (the fibril stack and the beta-barrel-like structure) which were not 

appropriately discriminated between by the prior formulation of the nematic order parameter 

(Morriss-Andrews, Bellesia, and Shea 2012). 

iii. Variational Autoencoder 
A variational auto encoder is a method of dimensional reduction using an artificial neural network.  

It has been described in detail elsewhere (Kingma and Welling 2013), but is briefly described here.  

Artificial neural networks are a machine learning system inspired by biological neurons.  Much like 

biological neurons, each node in an artificial neural network takes in many inputs, depending on those 

inputs the node is activated or deactivated, and the node’s output along with all other nodes in its 

layer are used as inputs for the next set of nodes.  The layout of these nodes is depicted in Figure V-2.  

Each gray arrow has a fitting parameter associated with it.  The fitting parameters are fit to the data 

such that when an input, here data derived from a single frame of the trajectory, is fed into the model 

it reproduces that input in the reconstructed nodes.  Note, a frame in this context is the state of all 

atomic data (coordinates, velocity and physical properties) at a specified time point of the simulation.  

Importantly, the input data is first reduced to a single number — encoded — before being 

reconstructed — decoded.  That single number is termed the latent space value (LSV).  In order to 
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decode that value with the highest fidelity possible, similar inputs will be encoded to similar points in 

latent space.  This means that frames in the trajectory which are similar will encode to similar points 

in latent space.   

In terms of an order parameter, frames in the beginning of the simulation are similar to other 

frames in the beginning of the simulation and will encode to similar point in latent space.  As the 

simulation begins to evolve, each frame’s data will encode to a different point in latent space. In this 

way we can plot the LSV of each frame as a function of time and this should give us an idea of when 

our system is changing.   

 

Figure V-2 A simple depiction of a variational autoencoder.  Each dot represents a node. The gray arrows show how 

information is passed from node to node.  Inputs are fed into nodes on the left, and the network is fit to reconstruct those 

inputs in the nodes on the right.   

Artificial neural networks were built using the Keras python package (Chollet and Others 2015), 

using Google’s Tensorflow (Martín Abadi et al., n.d.) as a backend. Learning sets were representations 
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of frames from the simulation.  The simulation was run for 750 ns and saved every 0.1 ns resulting in 

7500 frames or input data points for the model.  Each frame was represented as the internal 

coordinates of the system (dihedral angles, molecular angles and bond lengths, 7236 total features in 

each frame).  A full discussion of hyperparameters are in the supporting information and code has 

been posted on github at https://github.com/Michael-Tro/VAE_OrderParameter. 

iv. Reconstruction Analysis 
For the reconstruction analysis, LSVs of interest were chosen based on correlating LSV behavior 

with visual inspection over the course of the trajectory.  For example, over the course of the 

simulation the LSV typically reaches a final value and remains at that value for the remainder of the 

trajectory.  Presumably this means the system has reached some final state. Visual inspection of the 

trajectory confirms no large structural shifts occur once the LSV reaches its final value.  Typically this 

final state is used as a reference state, and compared to other LSVs of interest (the beginning of a 

rise in LSV for example).  Each LSV (including the reference) was then decoded into reconstructions.  

The residual, 𝑟 =  𝐼𝑟𝑒𝑓
𝑟𝑒𝑐𝑜𝑛 − 𝐼𝑖𝑛𝑡

𝑟𝑒𝑐𝑜𝑛 , was calculated for each dihedral angle, bond length, and 

bond angle (or, generally, feature) in the system, where 𝐼𝑟𝑒𝑓
𝑟𝑒𝑐𝑜𝑛 represents the value of that feature 

in the reference reconstruction,  and  𝐼𝑖𝑛𝑡
𝑟𝑒𝑐𝑜𝑛 the value of that feature in the reconstruction of 

interest. To identify dihedral angles that contributed to changes in latent space, dihedral angles 

which satisfied some residual threshold were identified, where the threshold condition was varied.  

Thresholds presented here are ones which best demonstrate the change of interest.  

https://github.com/Michael-Tro/VAE_OrderParameter
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D. Results 

 

Figure V-3 Parameterizations of representative simulations. Trajectory (RA)undergoes an evolution of rigid sequences from 

bulk dispersion progressing toward a final stacked beta-sheet state via the assembly of smaller stacks from bulk and 

subsequent rearrangement. In trajectory (RB) the system  relatively disordered beta-barrel-like intermediate forms, but then 

rearranges into a stack. In the flexible sequence trajectory (FA), a liquid droplet coalesces from bulk and then undergoes a 

phase transition to solid. Trajectories (RB) and (FB) have been chosen specifically to illustrate instances where the LSV and 

the nematic order parameter diverged.    

This section will proceed as follows. The results of representative simulations for the rigid 

sequence will be analyzed using traditional methods: the nematic order parameter and visual 

inspection. This analysis will be compared to an analysis using the automated order parameter (the 

LSV). Discussion will include Trajectories (RA) and (RB) represented by both the nematic order 
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parameter and LSV in Figure V-3. Emphasis will be on comparing where the either the nematic or 

automated order parameter fail to reconcile with visual inspection.  

The results of a representative simulation for flexible sequence simulation (FA) will then be 

treated in a similar manner, with a discussion of how the automated order parameter can be used to 

identify regions of interest within the simulation. Finally, a sampling issue present in a flexible 

simulation (FB) will be analyzed and anomalous behavior of the automated order parameter discussed, 

with means of isolating the cause provided. 

i. Analysis of Rigid Peptides 
Simulations using the rigid sequence parameters were associated with the relatively rapid 

formation of states of stacked peptide sheets that resemble amyloid fibrils. These stacks are 

exceptionally stable, with little evolution away from these states. The primary means of assembly for 

these systems involves the alignment of existing stacks (seen in RA), or the slow recruitment from 

nearby beta-barrels to slowly grow the stacks where possible (seen in RB).  In both cases presented 

here the nematic order parameter is at odds with the LSV.  By inspecting the trajectories we are able 

to deduce the reasons for the divergences.    

a. Trajectory R¬A: Nematic Parameter Implies Erroneous Growth 

In trajectory (RA) there is an apparent rapid growth of a fibril structure as evidenced by the rapid 

increase of the nematic order parameter (Figure V-3) in the earliest few hundred nanoseconds of the 



83 

 

simulation, followed by a lag period before a final burst of growth.  The LSV, however, predicts a 

plateau region during the initial simulation period. By visually inspecting the simulation, the source of 

the disagreement becomes clear.  The middle two images (130 ns and 300 ns) in Figure V-4, Trajectory 

RA shows the beginning and the end of the first major transition between plateaus in the LSV (between 

130 ns and 300 ns). A noteworthy transformation is occurring during this period, in which the largest 

fibril stack (circled in red) is reorganizing the rest of the cluster by recruiting peptides from the more 

disordered regions. This is an important moment for the sequence of events – this major stack 

eventually becomes the template for the realization of the relatively complete fibril stack at the end 

of the trajectory. The nematic order parameter fails to find this transition, and seems to indicate the 

fibril core condenses somewhat immediately out of bulk. This occurs due to a coincidentally parallel 

orientation of the major stack and minor stack at about 130 ns – the nematic order parameter treats 

Figure V-4 A visual summary of Trajectory (RA). Over the length of time consider, a major fibril stack capped by beta-

barrel-like structures emerges (circled in red), along with two minor fibril stacks. Subsequent rearrangement results in 

the formation of the final state, largely a single fibril stack with only a few disordered peptides on the ends. 
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these separated moieties as belonging to the same stack since they are in planar alignment.  The 

matrix Q artificially diagonalizes to have an eigenvalue implying a higher degree of connected 

fibrilization than is actually present in the system. 

b. Trajectory RB: Nematic Parameter Erroneously Implies Transient Ordering 

With No Resulting Fibril 

Trajectory (RB) illustrates a mechanism by which a mixed, largely immobile extended structure 

condenses out of bulk. This structure consists of beta-barrel-like structures or fibril stacks. Over the 

course of the trajectory, sections of beta-barrels or stacks get absorbed into one of two primary fibril 

stacks. By the end of the time studied, two major fibril stacks are formed, joined by a beta-barrel 

moiety. This is visually summarized in Figure V-5. 

Trajectory (RB) provides a good example of how the nematic order parameter is vulnerable to 

oversights that the LSV detects. The nematic order parameter suggests the system initially starts by 

ordering and then suddenly undergoes a dramatic disordering around 200-300 ns (Figure V-5). This is 

at odds with the analysis of the LSV, which continues to increase over the course of the entire 

Figure V-5: A visual summary of Trajectory (RB). Over the length of time considered, two major fibril stacks form and 

are joined by a beta barrel region. Growth occurs by the absorption of smaller stacks or the reorientation of peptides 
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trajectory. This trajectory, with images of the major structures, is presented in Figure V-5.  Broadly, 

two fibril stacks form early in the trajectory (depicted at 100 ns in Figure V-5), resulting in both the 

nematic order parameter and the LSV to increase in value until about 200 ns.   These two stacks have 

planar vectors that point roughly in the same direction, resulting in the relatively large value for the 

nematic order parameter. At around 200 ns, however, the two stacks twist out of alignment, resulting 

in an “L” shape arrangement of the two major fibril stacks. Because the planar vectors are now 

perpendicular, the nematic order parameter now perceives a lower degree of order despite the fact 

the two fibril stacks are still present, but now just oriented differently in space. This oversight is not 

exhibited by the LSV, which is trained on data from the monomers and therefore considers the 

structure from the level of the individual molecules. Because this perspective is insensitive to global 

rearrangement of major, multimeric structures the LSV does not consider the perpendicular 

arrangement of the stacks to be disordered. In this sense the LSV outperforms the nematic order 

parameter because it recognizes that the parallel-aligned fibril stacks are structurally quite similar to 

the perpendicular-aligned fibril stacks and does not register this difference as substantially impacting 

the overall structure. 

ii. Analysis of Flexible Peptides 
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The flexible peptides progressed through a different primary mechanism of growth than the rigid 

peptides.   Relatively speaking, the rate at which the disordered peptides were attracted into a liquid-

like mass was faster than the rate of stacking. The result was relatively few peptides aligned during 

the condensation of the bulk distributed peptides, with a slow transition from a liquid peptide mass, 

characterized by relative conformational flexibility for conformers, into a solid mass, characterized by 

peptides ‘locked’ into a beta-barrel-like conformation. The initial state will be referred to as 

‘dispersed’, the fluid intermediate as the ‘globule’ and the final, solid state as ‘beta-barrel-like’.  This 

transition bears resemblance to similar liquid-to-solid transitions observed in literature, relating to 

coacervation processes of amyloid-forming systems. 

a. Trajectory FA: Nucleus Detection and Reconstruction Analysis 

 

Figure V-6 A visual summary of Trajectory (FA), showing the formation of a globular, spherical disordered phase with 

high internal mobility. The final state is a highly immobile beta-barrel-like solid. This system forms a solid nucleus early 

in the trajectory and subsequently undergoes a conversion from globule to solid. 
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In trajectory (FA), depicted in Figure V-6, the first stable BBL nucleates around 100 ns (see blue 

arrow in trajectory (FA) in Figure V-3). During this initial phase, the nucleic dihedrals (those which have 

already adopted the BBL state) must be similar to those of the final state (where all the peptides are 

in  the BBL state).  Using this knowledge, the nucleus may be found by the reconstructing dihedrals 

from the LSV as it begins to increase (presumably due to an initial ordering event), and from the final 

LSV (when all peptides are in the BBL state). Then the subset of dihedrals whose reconstructed values 

from the early LSV which most closely resemble their values in the reconstructions from the final LSV, 

are most likely to belong to the nucleus.  These dihedrals are highlighted in Figure V-7.Error! 

Reference source not found. for visual inspection, which confirms these dihedrals are centered in 

what appears to be the nucleus.  Note, this is not the same as a trivial comparison of the original 

frames from those points in time. The VAE’s reconstruction condenses the information in a way that 

transient obscuring factors, such as thermal fluctuations, are removed and thus comparing 

reconstructions automatically adds a layer of information distillation that might have otherwise 

required researcher intuition or manipulation to account for.  
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This may be taken further to look at various subsets and monitor them throughout the trajectory 

to find subsets that contribute to features of the LSV.  Here we do this to find the set of dihedrals 

which correspond most to the change in order parameter over the course of the trajectory.  In Figure 

V-8, that subset is found by comparing  initial state (globule) to the final state (beta-barrel-like), and 

monitoring average value of that subset during the course of the trajectory.  The darkest purple curve 

shows the subset of dihedrals that changed the most according to the reconstructions, while lighter 

purple indicates moving the threshold to allow a smaller amount of change.  We find that by looking 

at just the 10% of the dihedrals that change the most according to the reconstruction, we are able to 

reproduce the behavior of the LSV order parameter with decent fidelity.  By plotting the average value 

of the rest of the dihedrals (the corresponding green line for each purple line), it is made clear that 

Figure V-7 The formation of the nucleus in trajectory (FA) as labeled comparing reconstructions of the final 

state to reconstructions of the initial nucleation. Atoms labeled with red were found to be the most similar 

between the moment of nucleation and the final stable state, with orange, yellow and finally bold gray 

denoting increasingly weak degrees of similarity. The process successfully labels many of the atoms involved in 

the formation of the solid nucleus and helps identify a ‘hot spot’ of mechanistic behavior. 
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the dihedrals which were not contributing to the order parameter are filtered out by the VAE. When 

the threshold reaches about 50% there is little change in the dihedral values as the simulation 

progresses, indicating a cutoff where the dihedrals are not as affected by the fibrillization process.     

Figure V-8.  Subsets of dihedrals were chosen by calculating the residual between the beginning state and the end state, then 

selecting the dihedrals which had the largest residuals.  The threshold for including a dihedral was scanned to from including 

99% of the dihedrals to excluding 99% of the dihedrals.  The purple lines represent the average value of the dihedrals above 

the threshold (these are the dihedrals the largest residual), while the green lines represent the rest of the dihedrals. The black 

line is the average of all dihedral angles.  These lines have been smoothed by a rolling 10 ns averaging, and they have been 

shifted to have the same end point.   
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This is useful for systems of scale, when identifying relatively small portions of large simulation 

volumes might require an otherwise difficult search. Furthermore, it more generally enables the 

comparison of any point in the trajectory with any other point, and swift labeling of the VAE’s 

interpretation of similar regions. Thus for dynamical systems with high degrees of noise or other 

convoluting factors, the VAE’s encoded representation may serve as an effective method of cleaning 

up the simulation data for analysis. 

b. Trajectory FB: Importance of Sampling 

Trajectory (FB) is an example of anomalous LSV behavior, and the authors emphasize this section 

is present to examine the flaws of applying variational autoencoding techniques to flawed data. 

Trajectory FB was selected due the fact it poorly samples the liquid-to-solid ordering process of 

interest, and thus its analysis allows for the consideration of a potential pitfall when using an 

unsupervised method to study a system might be presumed to have an ordering process, but does 

not. Trajectory (FB) has the most rapid ordering process of any of the flexible peptide systems, 

Figure V-9: Visual summary of Trajectory (FB). The system condenses into a relatively extended, solid structure out of 

bulk. This solidifies into a beta-barrel-like structure quickly and remains in this state until the end of the simulation. 
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reaching an axially aligned BBL state within 200 ns according to the nematic order parameter and by 

visual inspection. Consequently, its ensemble is composed entirely of BBL states, and thus its LSV 

depicts odd behavior that captures the shifting changes in the BBL structures but does not accurately 

parameterize the ordering process of interest. Using an VAE trained on trajectory (FA) to encode 

trajectory (FB)  we achieve LSVs which better agree with the nematic order parameter and visual 

inspection (Figure V-10).  

 

Figure V-10 Trajectory FB’s LSV anomalously shows an increase from 200 ns to 500 ns.  This LSV behavior is not seen when an 

order parameter is generated by encoding the trajectory of FB  with an VAE trained on FA, suggesting that this is related to 

training, and not a feature of the trajectory itself.  

To further investigate this anomalous behavior the trajectory was examined by analyzing the 

reconstructions, much like Figure V-8.  By reconstructing representations of the system from the LSV 

of the plateau between 200 to 500 𝜇s, and the LSV after the plateau we can identify the change in 

dihedral values that the plateau represents. The dihedrals that changed the most in the plateau were 

isolated and their average value was plotted alongside the average value of all dihedrals over the 

course of the simulation Figure V-11.  Comparing the behavior of this subset of dihedrals to the LSV 

we can see the analysis method successfully found the subset of dihedrals that contribute to the 



92 

 

anomalous behavior of the LSV. Visual inspection, in a similar manor as the nucleus detection above, 

of these dihedrals did not reveal behavior that was of substantial interest and acts as evidence that 

the LSV’s characterization was not useful in providing information about general trends in the 

trajectory’s evolution. 

This evidence, along with the extreme over representation of the BBL state in in this trajectory, 

leads to the conclusion: if the 

model is trained on data with 

overrepresentation of a given 

state, as relevant when sampling a 

mechanistic pathway with 

potentially brief representation of 

intermediate states, then it may 

learn to differentiate small changes 

within the over-representated 

state not just transformations 

between states of interest. This is 

where researcher oversight is 

important; the algorithm must have good data to learn, or else it may focus on numerically valid but 

scientifically uninteresting aspects of the data. While many machine learning techniques present 

exciting and novel ways of analyzing data, it remains extremely important that researchers have a 

very clear idea of what they are trying to detect when they implement them. This allows reconciliation 

of the unsupervised method’s result with research intuition, and that remains an important check on 

this evolving field of analytical approaches. 

 

Figure V-11 Trajectory FB with its 'plateau' region marked. This is the 

major consequence of its poor sampling and its contributing features 

(purple) are isolated for examination. Turquoise is a curve representing 

the behavior of all dihedrals. 
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The ability to perform this reconstruction analysis represents an important means to infer the 

VAE’s process.  Generally, lack of insight resulting in misinterpretation is a major, and valid, criticism 

of the so-called ‘blackboxes’ of other artificial neural network techniques. When something seemingly 

anomalous occurs, it is important to be able to inspect the neural network and validate whether or 

not it is an appropriate quantification of the system, something which we are able to do by using a 

VAE. 

E. Conclusions 
A coarse-grained model of amyloid-prone peptides was used to simulate the formation of 

amyloid fibrils. It was found by visual inspection that, depending on the flexibility of the monomer 

backbones, different mechanisms were possible for reaching the final state, supporting conclusions 

from previous studies on similar models (Bellesia and Shea, 2009; Morriss-Andrews and Shea, 2012). 

True fibril stacks were observed as being the final state of more rigid peptides, while more flexible 

peptides were observed to form more cylindrical intermediate structures whose kinetic stability was 

high. In both cases, a beta-barrel-like state and a fibril stack state were noted to have low internal 

mobility of the constituent monomers consistent with a solid state. However, a highly mobile liquid 

phase was also observed especially in the more flexible systems. In all cases, the trajectories 

approached a solid final state with little further evolution in the time spans studied. 

The results provided here represent a survey of techniques for using Variational Autoencoder 

machinery in automatically learning an order parameter to characterize the ordering of a simplified 

model of solution-phase amyloid aggregation. In addition, this represents an increase in the size of 

systems treated by autoencoder methodologies and shows its potential for application even for 

systems that possess considerable scale and a diversity of different behaviors and processes. The 

order parameters (LSVs) learned from serial trajectories of aggregating monomers were compared to 

the nematic order parameter widely used in aggregation literature.  The VAE required no implicit 
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enforcement of a time series to properly organize the data, nor did they require significant feature 

selection by the researcher. They were trained on states encoded as monomeric internal coordinates 

(the bond lengths, the bond angles and the dihedrals defined in the system). The success of these 

models demonstrates it is possible to characterize the state of the system by these monomer features 

alone.  Reconstruction-based methods were shown to facilitate an understanding of which features 

were most significant to characterization of the transition from the dispersed phase to a final solid 

state. 

Weaknesses in the generation of order parameters using variational autoencoders were 

addressed, including a need for well-sampled trajectories and good statistics of the transitions being 

characterized. Remediations in the form of strategies for elucidating how the VAE was ‘thinking’ were 

offered as a means of validating the found solutions, specifically using the VAE’s reconstructions to 

study which elements of the simulation were contributing to its characterization. This allows for 

targeted study of the visualized trajectories and served as a useful means of confirming or excluding 

the solutions of variational autoencoders as useful to characterization of the system. The process 

additionally facilitates the analysis of large amount of simulation data by acting a means of filtering 

transient behaviors and comparing points in time with one another in a streamlined fashion. 

The work presented here indicates, VAEs represent a powerful tool in the methods of information 

compression, filtration and denoising. Additionally, they are unsupervised algorithms, requiring 

relatively little preparation of data to be used. As these algorithms become more prevalent more work 

will be needed to characterize their effectiveness on systems of scale, their flexibility, and successfully 

apply them.  
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Appendix I. Supplementary Information for The Classifying 

Autoencoder: Gaining Insight to Amyloid Assembly of Peptides and 

Proteins 

a. Optimization 
To optimize the model, we first need a metric for characterizing the effectiveness of a given 

model. Accuracy, as given in the following equation, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁) + 𝑇𝑃 + 𝑇𝑁
 

can be a poor metric in cases where one class is much greater than the other. Consider, for example, 

a situation in which 90% of all peptides were non-amyloid and 10% were amyloid. Then, by trivially 

classifying all inputs as non-amyloid, our classifier would obtain an accuracy of 90% without any real 

characterization of the classifying task. Thus, we sought a better measure of success. 

The Matthews correlation coefficient (MCC): 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁 

√((𝑇𝑃 + 𝐹𝑃)𝑥(𝑇𝑃 + 𝐹𝑁)𝑥(𝑇𝑁 + 𝐹𝑃)𝑥(𝑇𝑁 + 𝐹𝑁))

 

is a metric of agreement (or correlation) between the predicted class and the experimentally 

determined class over all samples in the data base 1.  The MCC ranges from -1 to 1.  1 is perfect 

correlation, 0 is no correlation, and -1 is perfect anti-correlation.  We use this as the metric for 

comparing our models’ effectiveness due to its robustness to unequal populations within classes. 

Using the MCC to evaluate our model’s performance, we optimized the so-called 

‘hyperparameters’ to maximize this performance. Before using most machine learning algorithms, 

several hyperparameters must be chosen. Hyperparameters are parameters which are not fit during 
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training (the number of nodes per layer for example).  There is generally more than one set of 

hyperparameters which yield a strong model, but poorly chosen hyperparameters can detrimentally 

affect performance.   

In the next sections each hyperparameter is detailed.  The CAE has three hyperparameters 

(relating to the terms of the loss function), as well as the typical hyperparameters for artificial neural 

networks specifying its architecture (the number of layers, and the number of nodes per layer).   

Since the fitting parameters in the ANN are initialized to random numbers, there is a 

stochastic element to the fitting process. To address this, we train each set of hyperparameters 50 

times.  The performance of each model is logged, and the best models are saved for later analysis.  

Because of the stochastic nature of training the models, the reconstructed space between different 

trainings with the same parameters vary from one another slightly. It is thus important to draw 

conclusions from consensus between models.  The figures presented here represent behaviors found 

in high-scoring models. 

b. Weights of the Loss Function 
The loss function defines the goals of the training process.  During the training process the 

fitting parameters are varied until a minimum in the loss function is found. It is analogous to the 

square of the residual in linear regression.  The classifying autoencoder has three terms in the loss 

function.  The reconstruction term compares the reconstructed input to the original input. The 

prediction term compares the model’s classification prediction (amyloid or not) to the classification 

from the database.  Finally, the Kullback-Leibler (KL) divergence term relates to how much noise is 

added to the model during training 2.  Interestingly, we did not find the relative weighting of these 

terms affected the maximum MCC score a configuration can achieve (Fig. S1). We attribute this to 

the model being able to independently minimize the prediction term regardless of the magnitude of 

the other terms in the loss function. The weights do, however, affect the frequency with which a 
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model can find this maximum MCC, suggesting that while the global minimum remains constant, a 

poorly weighted loss function tends to get stuck in local minima during training, leading to a need 

for more trainings and thus inefficiency in the training process. 

Once we found that the maximum MCC achievable was unaffected by the loss weighting, we 

investigated the reconstructive capabilities of the model. As shown in Fig. S1, every weight of the 

reconstruction term over 5 orders of magnitude can score an MCC of around 0.5.  However, we 

notice a strong dependence on the minimum reconstruction loss the model can achieve at each 

weighting. We seek to minimize the reconstruction loss (ensuring fidelity of reconstruction), while 

simultaneously maximizing the MCC (representative of a successful representation of the 

classification function).  The models in the bottom right of Fig. S1 achieve this. 

c. Number of Layers 
This plot also informs the number of hidden layers to choose.  All models have the same 

number of nodes. A node is a unit cell of an artificial neural network, that stores a unit of the 

information learned during training. The depth is the number of hidden layers and the nodes per 

layer is the total number of nodes (24) divided by the depth.  We find that depths of 1, 2, and 3 are 

found most frequently in the bottom right of Fig. S 1.  
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d. Hyperparameters  

 
Figure S1: A scatter plot over 50 trainings with each combination of hyper parameters shown.  The 

depth of the model is the number of hidden layers, while the total number of hidden nodes was 

held constant at 24. The weight is a scaler multiplied by the reconstruction term of the loss function.  

MCC is the Mathews correlation coefficient of the test set. The Val Reconstruction Loss is the loss of 

the reconstruction term on the test set before being multiplied by the weight.   
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Figure S2 Histograms of models trained with differing weights in the loss function against MCC of 

each model.  To optimize the weights in the loss function, each weight was varied over 5 orders of 

magnitude from 0.01 to 100, while holding the other two weights at 1.  The heat bars represent the 

MCC distribution of models with the weight set to the value of the x axis.  Light colors on the heat 

bars represent more models with that MCC.  The green X denotes the best model at that weight— 

the model with the highest MCC on the test set at that set of hyperparameters; the red X is the MCC 

on the test set of that same model.  There is little dependence in the maximum MCC (from the test 

set) from the change in weights.  There is, however a change in the distribution of MCC depending 

on the weights.  When the reconstruction weight (reconw) or the noise weight (klw) are raised to 

100 the histogram shows a larger spread in MCC.  Surprisingly as the prediction weight (predw) is 

increased, the peak of the green histogram (the test MCCs) decreases.  This trend is explained by 

studying the red histogram, the training set MCC.  When the prediction weight is set to high values 

the model overfits, and ‘memorizes’ the data in the training set. By doing so the model only learns a 

specific dataset and is not able to generalize to the test set.  
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e. Ion Mobility Measurements 

 

Figure S3 This figure demonstrates how isotropic deviation depends the number of amino acids the 

cluster — oligomer size.  Here 𝜆𝑛 =  
𝜎𝑛

𝑒𝑥𝑝

𝜎𝑛
𝑖𝑠𝑜  , and the line is where 𝜆𝑛 = 1.  Recall this relates to 

isotropic deviation by the following equation Δ𝑖𝑛 = (1 −
𝜎𝑛

𝑒𝑥𝑝

𝜎𝑛
𝑖𝑠𝑜 ).  In this figure we see that isotropic 

deviation for glutamine is perhaps approaching some value as we reach higher oligomer sizes.  We 

also note that the isotropic deviation is largely dependent on the charge state.  If this was the case 

for all amino acids this would have been a good metric for isotropic deviation, however as we 

explored more amino acids we found that Valine remains oligomer size dependent in the oligomer 

range we are able to observe, thus we decided that we needed a metric which constant in both 

oligomer size, and charge state.  
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f. Arrival Time Distributions 
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Figure S4 Arrival time distributions of each amino acid and the dimer of each amino acid. Using 

notation [n]z where n is the number of amino acids in the cluster, and z is the total charge of the 

cluster. The x axis is in units of milliseconds. Amino acids which are not in this figure (Asn, Ile, Phe, 

Ser, and Trp), are published elsewhere. 3,4 
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g. Validation 

 

Figure S5 Reconstruction plots of Figs 4 D and E (A and B here respectively).  The legend here is the 

same as Fig. S6.  Here the positive motifs are LULULU or UUULLL in descriptor 1 and UUUUUU in 

descriptor 2, and the negative motif is LULULU or UUULLL in descriptor 1 and LLLLLL in descriptor 2.  

In top right of these figures the classification was made ambiguous.  In the top right of the 

reconstruction plot of descriptor 2 UUUUUU penetrates the negative region more when there the 

classification was 60% classified positive (B) than when the classification was 80% positive (A).  
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Figure S6. Shown here is our first attempts to validate this method.  For these two models there are 

10,000 entries in the database.  We show that the positive and negative motifs are recovered 

despite large amounts of noise. The model A has only 15% of the data base with a positive or 

negative class assignment.  All other points in the data base are randomly asigned a class.  Here the 

positive motif is ULULUL in descriptor 1 and LLLLLL in descriptor 2, and LULULU in descriptor 1 and 

UUUUUU in descriptor 2.  The negitive motif is UUULLL in descriptor 1 and LLLLLL in descriptor 2, 

and LLLUUU in descriptor 1 and UUUUUU in descriptor 2.  This model shows that not only can the 

model recover the positive and negtitive motifs, it groups the related positive and negitive motif on 

the same side of the plot, according to descriptor 2.  Model B is the same as Fig. 4 but with 10,000 

data points. 
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h. Primer of Variational Autoencoders 
The Variational Autoencoder 

(VAE) has been published 

elsewhere 2, but here we offer a 

simplified explination. The VAE 

attempts to efficiently compress 

data to a lower dimensionally 

using the encoder half of the 

model (which maps from the inputs to the node labeled 𝜇) and then reconstruct the original data 

from the lower dimensional representation using the decoder half of the model (which starts at the 

node labeled 𝑁(𝜇, 𝜎2) and outputs when the model reaches the reconstructed input).  To make this 

compression more robust, random noise is injected into the reduced representation (commonly 

called the latent space, or latent representation) during training.  For a one-dimensional latent 

space, the encoder side of the VAE will reduce the data to two nodes labeled 𝜇  and 𝜎2.  These 

values will be used to define a Gaussian distribution where 𝑁(𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2 .  During 

training the node labeled 𝑁(𝜇, 𝜎2) will output values by sampling from this probability distribution.  

When training over the same input many times the average of the values given by node 𝑁(𝜇, 𝜎2) 

will be 𝜇 and the variance will be 𝜎2.  When trying to understand variational auto encoders it is 

important to remember that traditional ANNs are deterministic.  This means that if you put the 

same input into an ANN you will always get the same output.  VAEs are unique in that during 

training the node labeled 𝑁(𝜇, 𝜎2) is not deterministic, but a single input will form a distribution 

over many rounds of training.  In this way, the encoder finds an appropriate point in latent space to 

encode to and finds the amount of noise it can add before no longer being able to reconstruct the 

inputs effectively.  This consideration of tolerance for noise is the source of the VAE’s eventual 

Figure S7  A representation of a variational auto encoder (VAE) with two inputs 
and a one-dimensional latent space.  All layers can be assumed to be densely 
connected except layers where arrows are explicitly drawn. 
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resilience to variations in the input data. The tolerance also allows effective decoding of arbitrary 

points in latent space. In addition, the output of the autoencoder smoothly transitions between 

points in latent space.  This is convenient because the model will group points with similar inputs in 

latent space and will allow us to interpolate what input would reach an arbitrary point in latent 

space.   In the variational autoencoder, the loss function balances two objectives. 1. It minimizes the 

difference between the true input and the reconstructed input, and 2. it seeks to maximize the 

amount of noise tolerated by this reconstruction.  This reconstruction capability was key in our 

method to understand why classification was made by an ANN.   
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