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Abstract

The plant-specific DNA-dependent RNA polymerase V (Pol V) evolved from Pol II to function in 

an RNA-directed DNA methylation pathway. Here, we have identified targets of Pol V in 

Arabidopsis thaliana on a genome-wide scale using ChIP-seq of NRPE1, the largest catalytic 

subunit of Pol V. We found that Pol V is enriched at promoters and evolutionarily recent 

transposons. This localization pattern is highly correlated with Pol V-dependent DNA methylation 

and small RNA accumulation. We also show that genome-wide chromatin association of Pol V is 

dependent on all members of a putative chromatin-remodeling complex termed DDR. Our study 

presents the first genome-wide view of Pol V occupancy and sheds light on the mechanistic basis 

of Pol V localization. Furthermore, these findings suggest a role for Pol V and RNA-directed 

DNA methylation in genome surveillance and in responding to genome evolution.

De novo DNA methylation in the Arabidopsis genome within all sequence contexts is 

carried out by the DRM2 DNA methyltransferase via the RNA-directed DNA methylation 

(RdDM) pathway1. In contrast, maintenance of DNA methylation is carried out by different 
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DNA methyltransferase systems for cytosines in each of three different sequence contexts. 

CG and CHG (where H is either C, T or A) are maintained by the MET1 and CMT3 DNA 

methyltransferases, respectively, whereas asymmetric CHH-context methylation is mostly 

maintained via persistent targeting by DRM2 and the RdDM pathway1,2.

All eukaryotes have three DNA-dependent RNA polymerases (Pols I, II and III) that are 

essential for transcription of the genome3. Plants have two additional polymerases (Pol IV 

and Pol V) that have evolved from Pol II to act in RdDM wherein small RNAs target de 

novo DNA methylation to transposons and other sequences in the genome1,3. While Pol IV 

is required for the genome-wide production of 24 nucleotide small RNAs4, Pol V is thought, 

based on single-locus studies at several intergenic (IGN) loci, to generate non-coding RNA 

transcripts that serve as molecular scaffolds for recruiting downstream RdDM components5.

Several RdDM effectors have been shown to interact with Pol V and assist in its function at 

various stages of action6–11. The Argonaute protein, AGO4, and the putative elongation 

factor, SPT5L, interact with Pol V but act downstream of Pol V binding to chromatin12–14. 

In contrast, a previously identified putative chromatin remodeling complex termed DDR is 

thought to act upstream of Pol V to either regulate Pol V activity or stabilize Pol V 

association with chromatin9. The DRD1, DMS3, and RDM1 proteins comprise the DDR 

complex and each was previously shown to be required for the production of Pol V-

dependent non-coding RNAs at two IGN regions, IGN5 and MEA-ISR9. DRD1 and DMS3 

were also reported to mediate Pol V recruitment at several IGN loci5,15. However, despite 

these informative studies, the current RdDM model for Pol V function is largely based on 

the characterization of the few identified Pol V targets, and it remains unknown where Pol V 

is active in the genome, to what extent RdDM components are required for Pol V 

localization, and what might distinguish Pol V targets from non-targets. To address these 

questions, we profiled genome-wide Pol V occupancy by ChIP-seq, in both wild type and 

mutant plants. We found that Pol V is enriched at gene promoter regions and evolutionary 

young transposons containing marks of epigenetic silencing, and that genome-wide Pol V 

localization is dependent on DDR complex components.

RESULTS

Pol V occupancy is correlated with marks of epigenetic gene silencing

Using chromatin immunoprecipitation in combination with massively parallel sequencing 

(ChIP-seq), we generated a genome-wide map of the chromatin-association profile of 

NRPE1, the largest catalytic subunit of Pol V, in Arabidopsis flowers expressing FLAG 

epitope-tagged NRPE112. At the chromosomal level, NRPE1 was enriched in 

pericentromeric heterochromatin but not at the central core of centromeric regions (Fig. 1a). 

In addition we identified 2,600 small NRPE1-enriched regions distributed throughout the 

chromosomes that were reproducible in two biological replicates (Supplementary Table 1). 

The vast majority of these defined NRPE1 binding regions (2300 sites or approximately 

88%) was shorter than 250 bp (Supplementary Fig. 1), consistent with a recent finding that 

Pol V-dependent small RNAs are derived from small, intergenic loci16. To examine the 

biological significance of these sites, we performed a series of genomic and epigenomic 

profiling experiments.
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We first examined the role of NRPE1 in RdDM by performing whole-genome bisulfite 

sequencing and small RNA sequencing in nrpe1 mutant and wild type (WT) plants. DNA 

methylation in all three-sequence contexts (CG, CHG and CHH) was highly enriched over 

NRPE1 binding sites in wild type (Fig. 1b). Notably, CHH, and to a lesser extent, CHG 

methylation at these sites was NRPE1-dependent (Fig. 1b–d and Supplementary Fig. 2a). 

Genome-wide small RNA profiling similarly identified a strong enrichment of NRPE1-

dependent 24nt RNAs at NRPE1 binding sites (Fig. 1b,d and Supplementary Fig. 2b). We 

also analyzed a published RNA-seq dataset17 and found, consistent with the silencing 

function of RdDM, that RNA reads were elevated at NRPE1 binding regions in the nrpe1 

mutant relative to wild type (Fig. 1e). Thus Pol V bound sites are highly correlated with 

marks of epigenetic gene silencing, as well as with the suppression of mRNA in those 

regions.

The DDR complex is required for global chromatin association of Pol V

To test the extent to which the DDR complex is required for Pol V localization to chromatin, 

we crossed the NRPE1-FLAG transgene separately into the drd1, dms3 and rdm1 mutant 

backgrounds and profiled genome-wide occupancy of NRPE1 in these mutants by ChIP-seq. 

We found that drd1, dms3 and rdm1 mutations all strongly reduced or eliminated NRPE1 

enrichment at all of the defined NRPE1 binding sites (Fig. 2a,b). These results suggest that 

the previously reported effects of drd1, dms3 and rdm1 mutations on Pol V transcript 

accumulation are due to effects on Pol V chromatin association. As NRPE1 protein levels 

were similar between wild type and mutant plants (Supplementary Fig. 3a), these results 

indicate that all members of the DDR complex act to promote stable, genome-wide Pol V 

association with its chromatin targets and also further verify that our identified NRPE1 

peaks are biologically significant.

Pol V site correlate with NRPE1-dependent transcripts

Previous studies have identified several Pol V-dependent non-coding RNA transcripts5,13. 

To explore whether our ChIP-seq dataset would enable us to identify new Pol V-dependent 

transcripts, we tested for the presence of potential Pol V-dependent transcripts at our 

identified NRPE1-enrichment sites. Of seven randomly chosen and validated NRPE1-

enrichment sites (Supplementary Fig. 3b,c), all showed the presence of detectable Pol V-

dependent transcripts using RT-qPCR (Fig. 2c). In line with our ChIP-seq data, for those 

RNAs tested (Supplementary Fig. 3d), the Pol V-dependent transcripts were also DDR-

dependent (Fig. 2d).

Taken together, our ChIP-seq results, in conjunction with our epigenomic profiling of nrpe1 

mutants and the discovery of new Pol V-dependent transcripts, suggest that the enrichment 

sites in our ChIP-seq dataset represent bona fide Pol V binding sites.

Pol V is enriched at gene promoters containing transposons

Next we sought to identify common features of Pol V targets. Interestingly, yet perhaps 

consistent with its likely ancestral relationship to Pol II, we found that NRPE1 sites are 

enriched at gene promoters, which we defined as sequences up to 1kb upstream of a putative 

transcription start site (Fig. 3a). This observation was further supported by analysis of 
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previously published histone modification profiles18, in which we found that NRPE1 sites 

are flanked by H3K4 methylation chromatin marks that are found near promoter and genic 

regions (Supplementary Fig. 4a)18. Promoters overlapping NRPE1 sites, which we referred 

to as “NRPE1-associated”, are intrinsically different from non-NRPE1-associated promoters 

in that they contain much higher levels of DNA methylation and 24-nucleotide small RNAs 

(Fig. 3b and Supplementary Fig. 4b). Interestingly, we found that even at promoters 

classified by our analysis as “non-NRPE1-associated” there was a small enrichment of 

NRPE1 (Fig. 3c,d), consistent with the idea that gene promoters may recruit Pol V in a weak 

and/or transient manner.

The epigenetic profile of NRPE1-associated promoters can be at least partially attributed to 

the fact that 55% of NRPE1-associated promoters overlapped with transposons (Fig. 4a), 

with transposon-proximal genes in general showing higher NRPE1 enrichment at their 

promoters than genes far from transposons (Fig. 4b). As expected from the presumed 

function of the RdDM pathway, a large number of the NRPE1 peaks map to annotated 

transposons (Fig 4c). Further supporting the notion that Pol V might have an inherent 

affinity for promoters, we found that at NRPE1 associated transposons the profile of NRPE1 

binding showed a clear enrichment at transposon edges (Fig. 4d), which are known to 

contain autonomous transposon promoter elements19,20. Similar to our observations at 

NRPE1-associated promoters (Fig. 3b), the sub-set of transposons that is NRPE1-associated 

is significantly enriched for transposons within 1kb of a protein-coding gene (Fig. 4c and 

Supplementary Fig. 5a,b) and these transposons were more heavily methylated and targeted 

by 24nt small RNAs than non-NRPE1-associated transposons (Supplementary Fig. 5c,d). 

Thus, our observation of a majority of NRPE1 sites (~54%) overlapping with transposons or 

transposon fragments within gene promoters supports prevailing models of RdDM wherein 

repetitive elements such as transposons are common targets, but also suggests that gene 

promoters, especially promoters with nearby transposons, are frequent targets of Pol V.

Loss of Pol V affects the transcription of Pol V-proximal genes

Given the association of Pol V with promoters, we sought to determine whether or not Pol V 

affects the transcription of endogenous protein coding genes. We examined mRNA 

expression changes in nrpe1 relative to wild type plants for genes near NRPE1 sites. Indeed, 

we did observe a significant increase in mRNA expression at genes close to NRPE1 sites as 

compared to genes not close to NRPE1 sites. In particular, the nearer the NRPE1 site is to 

the predicted transcriptional start site (TSS), the larger the increase in expression (Fig. 5a). 

Thus, in the absence of Pol V function, genes near Pol V targets are upregulated. To test 

whether the up-regulation is due to the production of alternative upstream transcripts that are 

derepressed in nrpe1 mutant plants, or whether the up-regulation is mainly restricted to the 

protein coding gene transcripts, we mapped the RNA-seq reads relative to the transcriptional 

start sites. We found that the extra RNA-seq reads in nrpe1 mutant plants mapped almost 

exclusively downstream of the TSS, suggesting that loss of Pol V causes up-regulation of 

the main Pol II protein coding gene transcripts (Fig. 5b). One possibility is that the up-

regulation of genes in nrpe1 mutant plants is due to the loss of Pol V transcripts, which 

otherwise interfere with the transcription of the Pol II promoter. Alternatively, the proximity 

of an NRPE1 site to a gene might make it more likely that RdDM will dampen the activity 
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of the protein coding gene promoter. To distinguish between these hypotheses, we analyzed 

RNA-seq data from two additional RdDM mutants, drm2 and ago4, that act downstream of 

Pol V action 5,13,15. We observed a very similar pattern of gene up-regulation at genes near 

the NRPE1 sites in these other RdDM mutants (Fig. 5b, Supplementary Fig. 4c,d), 

suggesting that loss of RdDM in general, rather than loss of Pol V specifically, is causing 

up-regulation of normal Pol II initiation.

Pol V is enriched at evolutionarily recent transposons

Because Pol V only targets a subset of transposons in the genome (Fig. 4c), we sought to 

determine if these transposons have any commonalities. In A. thaliana, gene-proximal 

transposons are relatively young compared to gene-distal transposons21. Given that NRPE1-

associated transposons were enriched for gene-proximal transposons, we investigated the 

relative age of NRPE1-targeted transposons. For this analysis, we used the genome of a 

close A. thaliana relative, A. lyrata22, to distinguish between transposons conserved in the 

two genomes (“ancient”, Supplementary Table 2) versus those found only in A. thaliana 

(“unique”) that are therefore relatively young21. We found that NRPE1-associated 

transposons were enriched for unique transposons (Fig. 6a) and that NRPE1-associated 

promoters similarly enriched for unique transposons (Fig. 6b). Moreover, when comparing 

unique versus ancient transposons irrespective of overlap with called NRPE1 peaks, we 

found that unique transposons showed a significant enrichment for NRPE1-binding (Fig. 6c, 

P<2.2e-16, Mann-Whitney Test). We also noted that, while unique transposons were 

generally more lowly expressed than ancient transposons (Supplementary Fig. 6), mutations 

in NRPE1 resulted in greater gains of expression for unique transposons relative to ancient 

transposons (Fig. 6d). While these results indicate that young transposons are a preferred 

target for NRPE1, it is also possible that this could also be an indirect effect of young 

transposons being gene-proximal as previously reported21. To control for this, we compared 

gene-proximal ancient transposons with gene-proximal unique transposons and found that 

even among the gene-proximal subset, unique transposons were enriched for NRPE1 targets 

as compared to ancient transposons (P<2.2e-16 Fisher’s Exact Test, Fig. 6e). These results 

suggests that transposon age may be a determinant of Pol V targeting, and that RdDM could 

be an epigenetic read out of the evolutionary history of repetitive elements in the 

Arabidopsis genome.

DISCUSSION

In this study, we have generated the first genome-wide chromatin association profile of an 

RdDM component. We believe that these datasets have identified bona fide Pol V sites that 

are biologically significant, because epigenomic profiling indicate that these are sites of 

NRPE1-dependent DNA methylation and small RNA accumulation, consistent with the role 

of Pol V in RdDM. Additionally, the loss of NRPE1 chromatin association in mutants 

disrupting the DDR putative chromatin-remodeling complex further confirms the identified 

Pol V target sites as biologically significant.

The observation that Pol V is enriched at gene promoters is intriguing. It suggests that while 

Pol V has evolved from the ancestral Pol II to target de novo DNA methylation, it may 
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retain some Pol II binding preferences for gene proximal regions. Consistent with this idea, 

we noted that even at promoters without defined NRPE1-peaks, we observed an enrichment 

of NRPE1 ChIP-seq reads near the transcriptional start site (Fig. 3c,d). This suggests a 

broader set of promoters than those we have identified may be transient targets of Pol V 

with more stable association occurring only at a subset of promoters.

The key determinants for a promoter region becoming strongly associated with Pol V are 

unknown, but our data indicate that the presence of a transposable element, particularly a 

relatively young insertion, is a major driver in the stable association of Pol V to a given 

genomic locus. Thus, it appears that Pol V preferentially associates at regions where 

promoters and transposons overlap. This conclusion is further supported by the observation 

that younger transposons, which tend to be close to genes, are preferential targets of Pol V. 

Our analysis of RNA-seq datasets shows that the endogenous protein coding genes near Pol 

V sites are up-regulated upon loss of RdDM effectors, indicating that the active targeting of 

promoters and transposons by Pol V has functional implications for the transcriptome. 

Furthermore, the results provide an potential explanation for previous observations that 

genes near methylated transposons are often associated with reduced expression21,23.

Given the observed pattern of Pol V association within the genome, it appears that Pol V 

transiently associates with most promoters. We hypothesize that when an active transposon 

jumps into a promoter region of a gene, Pol V will become more stably associated with that 

promoter and the associated transposon, thus targeting the transposon for de novo DNA 

methylation and transcriptional repression, preventing further movement of the transposon 

and potentially mitigating effects of the insertion on nearby genes. In this model, Pol V and 

RdDM have evolved to act in genome surveillance for newly inserted transposons, 

especially those near genes. The MET1 and CMT3 DNA methylation pathways would 

subsequently maintain epigenetic silencing of those targets. This idea is supported by the 

relatively greater loss of CHH methylation compared to CG and CHG DNA methylation in 

nrpe1 mutants (Fig 1c).

The results of Pol V ChIP-seq provide insights into the genome-wide targets of a non-

canonical eukaryotic DNA-dependent RNA polymerase. In the future, it will be important to 

test if the targeting of this polymerase is solely dictated by the genomic elements suggested 

by this study, or if there are other chromatin-level or protein interaction components that 

direct recruitment.

ONLINE METHODS

Plant materials

NRPE1-FLAG12 transgenic plants and nrpe1-12 (SALK_033852)24, nrpd1-4 

(SALK_083051)25, drd1-66 and dms3-48 mutant plants are in the A. thaliana Columbia 

ecotype. Mutant rdm1-1 was identified from ros1-1 background in C24 ecotype10. NRPE1-

FLAG transgene was crossed into the drd1-6, dms3-4 and rdm1-1 mutant backgrounds.
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Chromatin immunoprecipitation and RNA analysis

Two grams of flower tissues were utilized for chromatin immunoprecipitation using a 

previously published protocol with minor modifications26, 27. Chromatin was sonicated in a 

Bioruptor (Diagenode) for 15 minutes of 30 s on and 30 s off, and the chromatin was 

immunoprecipitated with anti-FLAG M2 Magnetic Beads (Sigma). The enriched DNA was 

ethanol precipitated and subjected to library generation following Illumina’s manufacturer 

instructions. ChIP-seq data were validated by independent ChIP experiments at randomly 

selected 9 regions (P1–P9) as well as one NP region, located between two adjacent binding 

peaks, served as a negative control. Only primers producing single amplification products 

were included for the validation analysis. Of these, regions P2 and P9 were selected as 

representative examples of typical NRPE1 occupancy in drd1, dms3 and rdm1 mutants. The 

data presented are relative to input (% input). Total RNA was isolated from flowers using 

TRIzol reagent (Invitrogen) and used to synthesize first strand cDNA using SuperScript III 

(Invitrogen). Real-Time PCR was performed using the SYBR Green SuperMix (Bio-Rad) in 

MxPro3000 qPCR machine (Stratagene) following the manufacturer instruction. The 

primers used are listed in Supplemental Table 3.

ChIP-seq, BS-seq and smRNA-seq libraries constructions and sequencing

Small RNA was extracted and purified from floral tissue as described28. Libraries for ChIP-

seq were generated using paired-end regents from NEB and adapters from the Illumina 

whereas smRNA-seq libraries were generated using the Illumina True-seq protocol. BS-seq 

libraries were generated as previously reported2. All libraries were sequenced using the 

HiSeq 2,000 platform following manufacturer instructions (Illumina) at a length of 50 bp. 

Read statistics are listed in Supplemental Table 4.

Data analyses

Sequenced reads were base-called using the standard Illumina pipeline. For ChIP-seq and 

BS-seq libraries, only full 50 nt reads were retained, whereas for smRNA-seq libraries reads 

had adapter sequence trimmed and were retained if they were between 15 nt and 30 nt in 

length. For ChIP-seq and smRNA-seq libraries, reads were mapped to the Arabidopsis 

genome (TAIR8 – www.arabidopsis.org) with Bowtie29 allowing up to 2 mismatches and 

retaining only reads mapping uniquely to the genome for further analysis. For the biological 

replicate of the ChIP-seq experiment and the ChIP-seq of DDR mutants, 50 million reads 

were subset from the initial approximate 200 million reads for further analysis in the interest 

of computational time. For BS-seq libraries, reads were mapped using the BSseeker wrapper 

for Bowtie30. For ChIP-seq and BS-seq, identical reads were collapsed into one read, 

whereas for smRNA-seq identical reads were retained.

For methylation analysis, percent methylation was calculated as previously reported2, with 

only cytosines having at least 5X coverage in both the WT and nrpe1 libraries included in 

any analysis. For all libraries the list of mRNA and transposons along with genomic 

coordinates were obtained from TAIR (TAIR8). For all analyses, only transposons greater 

than 100bp in length were used.
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For analysis of the previously published mRNA-seq datasets (main text reference 17) we 

considered TAIR8 representative gene models within a given distance of an NRPE1 site as 

described in the main text. To quantify expression change we only considered genes that had 

at least 10 reads in any of the libraries considered (Col, ago4, drm2, or nrpe1) to filter out 

genes not expressed in the tissue considered.

Identification of NRPE1 peaks and calling of promoter and transposon overlaps

The R package BayesPeak31, 32 was used to identify regions of NRPE1 enrichment in our 

NRPE1-FLAG ChIP-seq library as compared to the Col ChIP-seq control library. To filter 

out false positives, we also identified peaks using a sliding window approach using a 200bp 

window at 50bp increments and performing a Fisher Exact Test comparison between the 

ChIP-seq libraries. Resulting p-values were Benjamini-Hochberg adjusted to estimate FDRs. 

Only high scoring peaks that overlapped from the Bayesian analysis (PP>0.99999) and the 

Fisher test (FDR<1e-5) were retained.

For the purposes of this study, “overlap” of NRPE1 peaks with genomic regions (promoters/

transposons) is called when >=1bp of a peak overlaps with a locus. Similarly, elements were 

considered “proximal” if within 1kb of each other, and “distal” if farther than 1 kb from 

each other.

Classification of “gancient” h versus “gunique” h transposons

The list of TAIR8 transposable elements (ftp://ftp.arabidopsis.org/home/tair/Genes/

TAIR8_genome_release/TAIR8_Transposable_Elements.txt) were classified as either 

“unique” or “ancient” using the exact methodology previously described21. The Arabidopsis 

lyrata genome (Araly1, unmasked) was downloaded from JGI (http://genome.jgi-psf.org/

Araly1/Araly1.home.html), and used to generate a BLASTable database.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Identification of NRPE1 enriched sites by ChIP-seq and characterization of epigenetic marks 

at those sites. (a) Chromosomal view of NRPE1-FLAG ChIP-seq reads relative to an 

untagged wild type (WT) control with a schematic representation of each chromosome 

shown below. The chromosome numbers represent the approximation of the centromere 

location with the boxes indicating pericentromeric heterochromatin. (b) Heatmaps showing 

the % methylation levels in all three sequence contexts as well as 24 nucleotide small RNA 

abundance (reads per bp per million 21 nt mapping reads) for all NRPE1 sites (+/− 2,000 bp 

from midpoint) in WT (top) and nrpe1 mutants (bottom) as well as a scatter plot showing 
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the relative NRPE1 enrichment at each site. (c) Distribution of the % methylation of the 

central 100 base pairs of NRPE1 sites in wild type and nrpe1 mutants. (d) Metaplot (+/− 

2,000 base pairs from NRPE1 binding midpoints shown by triangle) showing the relative 

change of epigenetic marks in shown in (b) for nrpe1 mutants. (e) Metaplot showing the 

changes of RNA-seq reads in nrpe1 mutants relative to WT.
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Figure 2. 
The DDR complex is required for stable Pol V association with chromatin. (a) Heat map of 

NRPE1 enrichment at sites defined in ChIP-seq experiments in wild type and mutants. The 

genotype of each library is indicated at the far right side. (b) Boxplot (whiskers extend to +/

− 1.5 inter-quartile range (IQR)) of NRPE1 enrichment at sites shown in (a) for various 

genotypes. (c) Quantitative RT-PCR analysis of transcripts originating from NRPE1 

enrichment sites. IGN22 is a previously published Pol V target, P2 to P9 are newly 

identified Pol V binding sites and NP is a non-NRPE1 enrichment region. (d) Quantitative 

RT-PCR analysis of transcripts originating from NRPE1 enrichment sites in nrpe1, drd1 and 

dms3 mutants. Error bars represent the standard deviation of three biological replicates.
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Figure 3. 
NRPE1 is enriched at gene promoters. (a) Relative enrichment of the observed overlap 

between NRPE1 sites and gene features compared to the average overlap of 10,000 genome-

shuffled experiments. (b) Metaplots for WT and nrpe1 genomes of DNA methylation for 

each cytosine context at NRPE1-associated promoters and non-NRPE1-associated 

promoters. (c–d) Metaplots (c) and heatmaps (d) of ChIP-seq reads at NRPE1-associated 

promoters versus non-NRPE1-associated promoters. For each panel black triangles denote 

the transcriptional start site (TSS) with plots extending + or − 2,000 bp upstream and 

downstream.
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Figure 4. 
NRPE1 is enriched at the intersection of promoters and transposons. (a) NRPE1-associated 

promoters are enriched for promoters overlapping with transposons (P<2.2e-16, Fisher’s 

Exact Test). (b) Metaplot showing NRPE1 enrichment at transposon-proximal (within 1 kb) 

and -distal (>1 kb) protein coding genes for ± 2,000 bp upstream and downstream and over 

the gene body (shown in % coverage of gene 5′ to 3′). (c) NRPE1-associated transposons 

(those overlapping with an NRPE1 site) are enriched for gene-proximal transposons 

(P<2.2e-16, Fisher’s Exact Test). (d) Metplots of NRPE1 enrichment at NRPE1-associated 

transposons organized by size class.
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Figure 5. 
Loss of NRPE1 causes changes in protein coding gene expression. (a) Boxplots (whiskers 

extend +/−1.5 IQR) of log2 ratios of normalized RNA-seq read counts for nrpe1 mutants 

over those for wild type plants for protein coding genes with an NRPE1 site in their 

promoter. Each boxplot represents a subclass of those genes based on the distance between 

the TSS and the NRPE1 site. * indicates P<0.05 (Mann-Whitney Test). (b) Metaplot 

showing the normalized RNA-seq reads for different RdDM mutants at and around the TSS 

of protein coding genes with an NRPE1 site within 50 bp upstream of the TSS.
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Figure 6. 
NRPE1 is enriched at transposons that are relatively new in the A. thaliana genome. (a) 

NRPE1-associated transposons are enriched for transposons unique to A. thaliana 

(P<2.2e-16, Fisher’s Exact Test). (b) Relative transposon abundance (transposons per 

promoter/total number transposons of that type) at NRPE1-associated (+) and non-NRPE1-

associated (−) promoters. (c) Metaplot showing the ChIP-seq read ratios over unique and 

ancient transposons. (d) Log2 ratio of RNA-seq reads in nrpe1 mutants compared to WT. (e) 

NRPE1 is significantly enriched at “unique” transposons found at promoters as compared to 

either all promoter-associated transposons or “ancient” promoter-associated transposons 

(P<2.2e-16, Mann-Whitney Test).
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