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Abstract 

Extracting damage-sensitive features plays an important role in all structural health monitoring (SHM) 

applications, as it determines the metrics on which to base decision-making with regard to operation, 

maintenance, damage state, etc. This paper adopts the widely-employed frequency response function (FRF), 

both its magnitude and phase, as the selected feature source, and demonstrates how the damage types and 

locations are able to be classified by means of Bayesian recursive confidence updating. The features are 

estimated from the in-situ acquired vibration data on a rotating machinery test-bed, and the probabilistic 

models that quantify feature uncertainty are the likelihood functions in a Bayesian framework, which informs 

the most plausible decisions based on the collected evidence. The damage classification effort in this paper 

specifically calculates the posterior probability, considering the prior and likelihood of data observations; 

posterior probabilities are then fed back as prior probabilities in the next iteration as new test data are 

observed. There are three ball-bearing damage conditions applied to the rotary machine test-bed, and the 

correct model representing the correct damage types will be selected by the model with the maximum 

posterior confidence. Classification via posterior probability is shown in this paper to outperform traditional 



likelihood evaluations, and the Bayesian recursive implementation distinguishes all three conditions in this 

work. 

Keywords: Damage Classification, Rotating Machinery, Structural Health Monitoring, Condition-Based 

Monitoring, Ball Bearing, Bayes’ Theorem 

 

1. Introduction 

As the operating life cycles of all sorts of machinery and infrastructure systems get more demanding, both 

offline nondestructive evaluation (NDE) and in-situ structural health monitoring (SHM) play an increasingly 

important role in overall life cycle management. This NDE/SHM paradigm aims to provide state awareness 

by detecting, localizing, and classifying damage, as well as to forecast the trend in the damage progression. In 

a lot of occasions, NDE is conducted in an offline fashion after precursors to damage have been flagged from 

online SHM systems 1. The origin of the four-step SHM process may trace back to Rytter’s doctoral thesis 

where the aforementioned four levels are described as 2: 

• Existence: detection of the presence of the defects that could affect the system functionality 

• Location: determination of the damage position  

• Extent: identification of the damage details, such as type(s) and severity 

• Prediction: prognosis of the structural defects 

The application of this process aims to enable system owners to convert from the traditional event- and/or 

time-based maintenance scheduling to condition-based scheduling. Another partition is often adopted in terms 

of pre- and post-event analysis, namely, diagnosis and prognosis, in which the former deals with the first three 



levels, and the latter concerns the fourth level prior-event analysis 3. In the context of SHM, the damage to be 

identified is defined as “changes introduced into a system that adversely affect its current or future 

performance 4.” Despite this performance-based concept of damage, there are other related terminologies with 

subtly different meanings. Worden et al. deliberate the difference and conclude with a hierarchical 

relationship between different notations 1: fault is when the system is not operating satisfactorily as it is 

designed to; damage is when the operation is not ideal but is still functioning satisfactorily in a suboptimal 

manner; and defect means unknown inherent imperfections that might cause problems in the future. Other 

than the abovementioned SHM-related concepts, condition monitoring (CM) and Condition-Based 

Maintenance (CBM) often exist in the literature as well, and may refer to the relevant activities but have 

slightly different emphases. CM is mostly used in the field of rotating and manufacturing machineries, and the 

CM data cover a very broad range beyond just structural health assessment 1 3. CBM, which literally 

emphasizes maintenance scheduling, is essentially the same idea as SHM, and is interpreted as the flow of 

data acquisition, processing, and post decision-making, targeting the capability of damage diagnosis and 

prognosis. A thorough survey on CBM and SHM endeavors is available in Ref. 3 and 5. 

Among all the interpretations of the four-level SHM, the most well-accepted description is given by Farrar et 

al., which addresses the process as a statistical pattern recognition paradigm, and the entire flow is partitioned 

into four steps: operational evaluation, data acquisition and cleansing, feature extraction, and statistical model 

development 6. Inspired by the data-based framework and statistical pattern recognition idea, a large body of 

research has been deployed in interpreting SHM signals assisted with physics-based system modeling 5, and 

this paper will later on classify bearing damages with respect to statistics-rooted classification by means of 

Bayesian model selection. 



From a more general perspective, a great number of SHM components are essentially discretizing continuous 

problems into a finite number of states, and decisions are made among those pre-defined choices. For instance, 

damage detection is the process of discriminating the damaged system from undamaged state, which is a 

binary labeling. Damage localization may be regarded as the selection among finite candidate positions in the 

spatial domain. Specifically to the scope of this paper, classifying the type of damage is thereby a finite-state 

mapping, in which all possible damaged conditions are grouped into a discretized damage space. Among the 

four levels of SHM, the first two levels (detection and localization) may only consider information from 

undamaged state (an unsupervised learning scenario). For the classification on the third level, according to the 

SHM axioms, the algorithms have to involve information from other candidate states as a supervised learning 

process, and the information is acquired from either testing measurements or physical modeling 5,7. 

Apparently, classification of different types of damages falls into the scenario of supervised learning 

implementation, and knowledge of each candidate damaged condition should be available before deploying 

the proposed framework in this paper. A substantial body of work over the past couple of decades has been 

targeted to identify the types and locations of potential defects and/or damages, by means of modeling and 

analyzing the in-situ acquired time series in the time domain 8–11, or in the time-frequency domain 12–15. 

Moreover, as the complexity of SHM implementations getting higher, modern data-acquisition and processing 

methodologies are also widely adopted in CBM and SHM for damage diagnosis and classification, such as 

compressive sensing, Markov chain, Bayesian inference, etc., as reported in Refs. 16–24. 

In this specific paper, damage classification of rotating machinery will be the focus, which forms a 

subcategory of the abovementioned general damage identification activities. There are numerous forms of 

rotating machinery widely spanning the mechanical and aerospace engineering domains, such as power 

generators/transmissions, vehicle engines, turbines, propellers, compressors/pumps, gyroscopes, and so on. 



The most common components of rotary machines being monitored are bearings and gears, whose SHM 

features are often interpretable physically, and the aforementioned general algorithms have been employed to 

enhance their reliability and maintenance quality. As a very well-developed technique, the four characteristic 

fault frequencies are able to differentiate most of the monitored conditions and may be utilized to localize the 

fault location, namely, inner race, outer race, ball, or cage. Those fundamental frequencies include the Ball 

Pass Frequency of Inner Race (BPFI), Ball Pass Frequency of Outer Race (BPFO), Fundamental Train 

Frequency (FTF) and Ball Spin Frequency (BSF) respectively, and are determined by bearing geometry and 

operating speed 25. The damage classification via four characteristic fault frequencies is based on the change 

of rattling pattern, extracted from the power spectra of vibrational data, when different damage cases occurred. 

Other traditional detector and classifiers for bearing and gearbox damages are also widely adopted, such as 

vibration statistics and frequency response analysis. Kurtosis (fourth order statistical moment) is employed as 

a method for rolling element bearing damage identification 26, and point-defects of bearings on inner/outer 

race, or general roughness changes are classified facilitated by frequency response analysis 27. In addition to 

extracting the straightforward features, the abovementioned state-of-the-art diagnosis methodologies for 

general applications are also applied in the rotary machine SHM implementations. For instance, Wigner-Ville 

distribution is adopted in gearbox condition monitoring and based on statistical and neural pattern recognition, 

local tooth faults of spur gears may be detected 28. Wavelet-based methodologies for rotating machine damage 

diagnosis are reviewed in Ref. 29, and the theory and applications of wavelets are summarized, as well as the 

new research trends, such as wavelet finite element, dual-tree complex wavelet transform, wavelet function 

design and selection. Empirical mode decomposition (EMD) and autoregressive (AR) model are adopted for 

more complicated feature extraction of operating ball bearings. The former one decomposes the non-

stationary vibration data into a series of intrinsic mode function (IMF) components, and AR coefficients and 



the residual variance of the AR models are selected as damage indexes. By means of the data-driven process, 

the patterns of different types of damages are studied for damage classification 30. Facilitated by the machine 

learning technologies, Relevance Vector Machine (RVM) and Support Vector Machine (SVM) are adopted to 

process rotary machine condition monitoring data 31, 32, as well as the Hidden Markov Modeling and Hilbert-

Huang Transform 17,33. A Bayesian network is adopted in 34 to diagnose the damages in a gear train system, in 

which six features, including waveform factor, crest, impulse, allowance, kurtosis and skewness, are selected 

as the damage features as well as the input to the Bayesian network, and six damage classes, namely 

undamaged baseline, worn gear, broken tooth, rough surface, rough surface with broken tooth, and rough 

surface with worn gear, are selected as the output of the Bayesian network. The probability terms in the 

framework in Ref. 34 are obtained via empirical training. 

For any realistic SHM application, uncertainty from various sources is inevitable. Lots of effort is expended 

to suppress the influence from these sources of uncertainty, such as measurement noise, environment 

fluctuation, operational variability, and other factors from feature estimation algorithms. However, 

uncertainty always exists in the SHM applications, and quantifying the existed uncertainty makes a different 

perspective of SHM performance enhancement. Probabilistic models are established in previous research and 

the analytically derived probability density functions for several transfer-function-based features are given in 

Ref. 35 and 36. Instead of modeling the likelihood of feature measurement via empirical training, or assuming 

Gaussian process or Gaussian distributed prediction error, as most people do, this paper takes advantage of 

available closed-forms of probability density of transformed features, and applies the accurate solution of 

distribution as the likelihood to a Bayesian recursive model selection process, in order to classify the 

types/locations of bearing damages. The proposed procedure in this paper employs the updated posterior 

probability as the selection index, and compared to the traditional accumulated likelihood in diagnosis, the 



posterior distinguishes different damage classes in a more sensitive and specific way. Moreover, the posterior 

evaluated in the Bayesian framework is bounded between 0 and 1, different from the unbounded accumulated 

likelihood that has only relative meaning from case to case. Ball bearings, as the key component of rotary 

machines, are focused in this work and multiple bearing damages are successfully classified in terms of 

maximum posterior. In addition, the adopted Bayesian recursive updating is generic; therefore it may be 

applied to any classification applications if the feature likelihood is available. The rest of this paper is 

organized as follows: section 2 will sketch the theoretic framework of the Bayesian damage classification 

procedure, and section 3 will apply the framework on a rotary machine test-bed. In section 4, a brief summary 

will be given to conclude the paper. 

 

2. Bayesian Damage Classification via FRF Features 

Bayes’ theorem describes the relation between prior probability and posterior probability via the likelihood of 

data observation. In the context of SHM, there is always a confidence level regarding the system status before 

and after analyzing acquired data. Specific to the problem of damage classification, multiple choices of the 

system status are pre-defined, and the goal is to make the correct decision among the choices, such as 

undamaged/damaged condition (a simple binary decision) or what type of damage (regression or in the 

discrete case, classification). In the context of in-situ SHM, data are collected in a sequential fashion and so 

does feature evaluation. Any prior confidence of the system status (even uninformed representations of prior 

information) simply gets modified by the feature likelihood (based on the most current data set) to result in a 

posterior probability, which can then be used as a prior information probability for the next iteration.  

Equation (1) illustrates the Bayesian model selection process in the mathematical way: 



, (1) 

in which is the prior confidence of selecting the j-th model from the entire pool M, and 

 is the updated posterior given data D observed. In more detail, the prior describes the 

confidence or the probability of condition Mj before testing results or observations are acquired, and the 

posterior is the updated confidence of Mj being true after informed by the particular collected data. The data 

term D here is a general representation for all the information acquired from the monitoring, and it may refer 

to the raw time series, as well as the SHM features transformed from the original raw signal. In the rest of this 

paper, D will be referred as the processed features, although raw signals could be used as the “data”, D, to 

update the confidence. 

In Equation (1),  is the likelihood of observing D given the j-th model Mj is true. The 

denominator of Equation (1) is called total evidence for feature set D, since it is the likelihood of D under all 

possible situations contained in M, as expressed in Equation (2) for a discrete model space: 

, (2) 

where n is the dimension of the ensemble M of all model classes being considered in the classification. 

For in-situ damage classification, the model space M is interpreted as the superset of all possible damage 

types and/or locations (all the possible discrete labels that need to be identified), and Mj is therefore the j-th 

choice of the damage classes. The data observation and/or extracted features, expressed as D in Equation (2) 
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are acquired and evaluated in an online fashion, as mentioned. Thus, Equation (1) may be evaluated in a 

recursive way, such that the posterior probability from the previous step becomes the prior in the next step. 

Once the data sample is available and its likelihood is evaluated, the confidence is updated and output as the 

new posterior of this iteration. If there is a consistent partition of the classification space and information to 

support the decision-making is (at least weakly) stationary, the posterior will tend towards 

unity (highly plausible) or zero (implausible) as the number of iterations is sufficient. The initial value of the 

prior is not critical, since the updating process will adjust the inaccuracy from any naïve guess at the very 

beginning, provided the prior at least spans the classification space. The saturation of posterior confidence to 

unity or zero indicates the acceptance or rejection of the j-th model candidate, i.e., the most plausible damage 

label in the context of SHM.  

This recursive flow is applicable for any type of classification in general, and the scope of this paper is to 

demonstrate the process via SpectraQuest® Machinery Fault Simulator (MFS) test-bed, using frequency 

response features evaluated from vibration data. The frequency response function (FRF), also known as the 

transfer function in a generic context, fully characterizes the (linear) system input-output dynamics in the 

frequency domain, and the strong physical meaning makes it a fundamental feature in the applications of 

system identification and SHM. During the operation of rotary machinery, noise and environmental variability 

will contaminate the signal quality and degrade the FRF estimations. Therefore, designed algorithms—often 

called estimators—are adopted to minimize the uncertainty effects. The selection among estimators is a 

technical issue, and is often implemented based on whether input or output has the better quality of signal. 

There are two estimators listed in Equation (3), called H1 and H2 estimators, 

( )| ,jp MM D



, 
(3) 

in which , ,  and  stand for the auto- and cross-power density function estimations between 

corresponding signals x (input measurement) and y (output measurement), and the caret ( ) sign denotes the 

smoothed spectral estimations instead of the true values. These smoothed estimations are often obtained via 

Welch’s averaging method 37, which has become a standard step in real applications to reduce incoherent 

noise to enhance the quality of the power density and FRF estimations. Using cross-power density  as 

example, Equation (4) shows the detail of Welch’s averaging: 

, (4) 

in which the original time series x and y are split into nd segments, or repeating x and y measurements for nd 

times, and the discrete Fourier transform (DFT) of each segment is calculated, denoted by  and . The  

sign denotes the estimation of each individual segment before averaging, and * denotes the complex conjugate. 

Averaging across all the individual estimations forms the smoothed power spectral estimation in Equation (4). 

By adopting the Welch’s algorithm illustrated in Equation (4), the estimations of power spectra are not only 

smoothed (by eliminating unbiased “noise”), but also regularized towards an increasingly Gaussian-

distributed random variables according to the central limit theorem. This paper will adopt the probabilistic 

uncertainty quantification models established in 35, and employ the models to describe likelihood of data 

sample from each iteration. At an arbitrary frequency line w, the probability density function of the FRF 

magnitude at the j-th condition, as a random variable, is described as: 
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, (5) 

in which: 

,  

, 

, 

, 

, 

and  is the error function. The order statistics , , ,  are the mean and variance of 

and , respectively, at the j-th damage condition, and all are frequency-dependent. For the sake of brevity, 

the frequency variable w is omitted in the equation. The subscripts C and A in the order statistics stand for the 

quantities about Cross- and Auto-power estimations, i.e. and . 

For the phase estimation of FRF, Equation (6) gives the probability density function at the j-th condition: 
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in which , and  and are the mean of real and imaginary parts of FRF,

 and , and is the variance of both parts. 

Equation (5) and Equation (6) characterize the distributions of single sample of FRF magnitude and phase 

estimations using an H1 estimator, and for H2 estimator, the PDF will be the same form but switch the 

coefficients for the numerator and denominator. Consider a consecutive N-sample data set: 

, the likelihood term in Equation (1) on the q-th iteration may be evaluated 

as: 

. (7) 

in which Q and z are the common notations of probability density function and its sample variable expressed 

in Equation (5) and Equation (6). Equation (7) assumes all feature samples are independent, so the total 

likelihood is therefore the product of individual sample likelihoods. Although there are inherent dynamics 

which makes the samples possibly correlated with each other, the independence assumption here works fine 

in practical implementation. This is primarily due to the relative influence from system dynamics compared to 

the influence from the randomness. In fact, in the time scale of sampling interval, the correlation between 

samples due to the system dynamics is negligible, and uncertainty dominates the sampling at this scale, 

resulting in Equation (7) being satisfied favorably. The same argument may be made in regard to the 

stationarity and spectral characteristics of time series measurement. Despite of the mathematical requirements 

of stationarity and normality in the statistical modeling of Equation (5) and (6), the work in this article shows 

the applicability of those uncertainty quantification models to a non-ideal situation, in which the acquired data 

are non-stationary in a short time scale and colored in the spectral domain.  
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By evaluation the likelihood of data observation in Equation (7), damage labels may be determined directly as 

the candidate with the maximum likelihood. In the next section, Bayesian recursive classification will be 

conducted as structured in Equation (1), or more explicitly as Equation (8): 

, (8) 

and the performance will be compared to the approach with only the likelihoods involved. 

 

3. Experimental Implementation of Damage Classification  

In this section, the proposed Bayesian classification framework is deployed on the SpectraQuest® Machinery 

Fault Simulator (MFS), where multiple types of damages occur on the ball bearing at the right-hand-side shaft 

support, as shown in Figure 1. The system runs at the speed of 1000 rpm, with a 5 kg radial loader near the 

test bearing to enhance the spectral magnitude in the response. Acceleration signals are acquired with a 

sampling rate of 10 kHz in the directions y (horizontal radial) and z (vertical radial) via National 

InstrumentsTM 9402 I/O module. In addition to the undamaged baseline condition (M1), two more cases with 

damages on balls (M2) and the outer race (M3) are included, as illustrated in Figure 2. This makes the 

problem a trinary classification, i.e. . FRFs for different damaged conditions are 

estimated based upon the acceleration data, with respect to the power spectra in the two directions y and z. 
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Figure 1: SpectraQuest® Machinery Fault Simulator (MFS) test-bed 

 

Figure 2: Ball bearings in the system and damages to be classified 

Figure 3 and Figure 4 plot the FRFs for each damaged conditions. The averages on the left are calculated via 

averaging all the data sets, i.e. after all iterations/samples are collected. On the right, observation of each 

iteration/sample, i.e. realization in the context of statistics, is plotted as well as a zoom-in view. In Figure 3 

and Figure 4, a lot of realizations from different damaged conditions overlap significantly, leading to a very 

poor distinguishability. Without a specialized classifier, only very vague classification decisions would be 

made even if a large cluster of realizations are available.  

M1: undamaged baseline
M2: ball damaged
M3: outer race damaged



As addressed previously, uncertainty in the feature estimations are characterized at each single frequency line 

via Equation (5) and Equation (6); according to Figure 3 and Figure 4, not all frequencies yield the same 

distinguishability of data clusters. As an example, Figure 5 plots the distributions of magnitude and phase 

features at an arbitrarily selected frequency line near 3.5 kHz, and despite the overlap between distributions, 

the statistical patterns are quite different. Additionally, because circular phase is a periodic function, the tails 

of its distribution do not vanish at the ±p boundaries, but smoothly connect at the wrapping point. 

Given the probability of each sample falling into different statistical models, the likelihood of entire historical 

data observation is calculated in Equation (7), and the Bayesian recursive process may be conducted 

according to Equation (8). As mentioned previously, the initial setting of prior confidence before any 

knowledge from data observations is not critical, as the Bayesian recursion will correct the final posterior 

according to likelihood seeing the data series. Particularly in the trinary damage classification of the MFS 

test-bed, the prior confidence of selecting M1 is set to be 80%, indicating more initial confidence that the 

system is undamaged. For setting the prior of selecting M2 and M3 among the remaining chance, which is 

20%, no initial preference will be given in this section, and the priors are initially set at 10% for both cases. 



 

 

 

Figure 3: FRF magnitude average and multiple samples 

 



 

 

 

Figure 4: FRF phase average and multiple samples 

 

 



 

Figure 5: PDFs of different damage cases at an arbitrary frequency line near 3.5 kHz 

 

 

 



  

Figure 6: Posterior of selecting M1 (top), M2 (middle) or M3 (bottom) at each iteration, given M2 is true 



   

Figure 7: Posterior of selecting M1 (top), M2 (middle) or M3 (bottom) at each iteration, given M3 is true 

Figure 6 and Figure 7 plot the outcome of the Bayesian recursive updating process as a function of iteration, 

i.e., the posteriors of selecting the damage types M1 (top), M2 (middle) and M3 (bottom), given that M2 or 

M3 is true, respectively. Results are shown for both FRF magnitude and phase features, and results at 

multiple frequency lines are also included as indicated by different markers. These frequency lines, as 

examples, are randomly picked with even intervals (1 picked every 10 frequency bins out of 256 total) in the 

frequency domain (up to 5 kHz Nyquist), and all selected frequencies are listed on top of Figure 6. From the 

two clusters of figures, it is obvious that starting from an arbitrary initial prior, plotted as the horizontal bar, 

the posterior probability is updated on every iteration, and for most of the frequency lines, it converges to 



either unity or zero after tens of iterations. The algorithm outputs unit posterior to accept the class, and zero to 

reject the class, as illustrated in Figure 6 and Figure 7. Considering the speed of the convergence, there are 

frequencies at which the convergence is rapid, but a few of them show obvious slow convergence, without 

saturation after 250 iterations. The different rates of converging are primarily due to the distinguishability of 

the problem itself, such as the specific vibrational nature of the changes induced by the various damage labels, 

as well as the external noise contamination. In other words, there is usually good signal quality at resonances 

which will lead to good distinguishability if the nature of damages will also cause different patterns of change, 

and on the other hand, the poor capability of classification at certainty frequency is the result of some 

combination of less-representative features and low signal-to-noise ratio at that frequency. A particular 

frequency line of the magnitude classifier in Figure 7 explains the converging rate clearly, at which the 

posteriors of selecting each model candidate do not change much deviating from the arbitrarily-set initial prior. 

This indicates that the data D do not supply any useful information to support/deny any possible damage 

types, and this may be due to the poor signal-to-noise ratio as well as the insensitivity to the damages at this 

particular frequency as abovementioned. 

Figure 8 and Figure 9 demonstrate the ensemble averages of logarithmic likelihood and posterior among all 

the frequency lines as a function of number of iterations. In each figure, the four subplots represent the two 

damage types (damaged ball and outer race) and the two classifying features (FRF magnitude and phase). 

From the curves illustrated in Figure 8, the logarithmic likelihoods for the data observation under anyone of 

the three damage classes increase monotonically, and near-linearly, although the correct model always has the 

highest likelihood. Since all logarithmic likelihood curves have a near-linear characteristic and all of them go 

up as more iterations are included, the distinguishability of different classes is all dependent on the slope 



difference and number of iterations. In other words, the classification via likelihood will only have good 

performance when the number of iterations is sufficient, or the slope of logarithmic likelihood progression is 

significant, so that the values at the end of the curves will be dramatically differentiable. On the contrary, the 

curves given by Figure 9 show a better approach, as the curves for correct and wrong decisions go in the 

opposite direction, and after 30 to 50 iterations, the posteriors are fully distinguished as almost unity and zero. 

Compared to the classification based on likelihood, the Bayesian recursive process outperforms, in terms of 

the curve trend and lower necessary number of iterations. Moreover, the Bayesian posterior is always 

bounded between 0 and 1, so the nearness/farness from an extreme can always be quantifiably understood. On 

the contrary, accumulated likelihood does not have mathematical limits as references, and the selection is 

made merely via relative difference from class to class.  
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Figure 8: Average likelihood of selecting each candidate vs. number of iterations 

 

Figure 9: Average posterior of selecting each candidate vs. number of iterations 

In these experiments, there are 250 rounds of feature evaluations from the data acquired from the MFS test-

bed, and Figure 9 just shows how the decision is made in a more decisive manner as the information is 

accumulated from the data set. After all the data set is acquired, a more straightforward illustration is 

available in Figure 10, which compares the final values of averaged likelihood and posterior for each of the 

testing conditions and classifiers.  
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Figure 10: Average likelihood and posterior after 250 iterations of selecting each candidate 

In Figure 10 there are three clusters of bars representing the likelihood and posterior of selecting among M1, 

M2 and M3, using magnitude and phase classifiers, when in reality the ball or outer race is damaged. 

Consistent with the previous analysis, both likelihood and posterior classify the two types of damage correctly, 

using both magnitude and phase features. In the figure, the average posterior gives the correct classification in 

a much more significant way, and compared to the bars in the plot on the left-hand-side, the posterior 

confidence of selecting the correct class is close to unity with only negligible probabilities suggesting 

selecting one of the other two wrong classes.  

The implementation of Bayesian recursive damage classification as a model selection process on the MFS 

test-bed is conducted in a well-controlled laboratory environment. However, in real SHM applications, the 



uncertainty from numerous sources undoubtedly degrades the performance further, and causes lots of 

ambiguity in interpreting SHM features and making decisions. In the rest of this section, a more rigorous 

situation will be considered to validate the framework, and 20% of white noise contamination in terms of 

noise-to-signal ratio will be added artificially to the original lab-acquired vibration data, in order to simulate a 

harsher operational environment. 

  

Figure 11: FRF magnitude and phase estimations with contaminated data 

Figure 11 illustrates the magnitude and phase estimations for all three conditions. Compared to Figure 3 and 

Figure 4, the estimations with noise contamination are much more dispersed and random, and the 

contamination also makes the classification impossible at any frequency just by looking at the features (the 

so-called “viewgraph norm”). Figure 12 plots the feature distributions at the same sample frequency as shown 

in Figure 5, and the curves show not only wider distributing range but also more overlap among the damage 

labels. Implementing the same flow described in Equation (8), the updated posteriors versus the number of 

iterations are plotted in Figure 13 and Figure 14, in which the clusters of posterior of selecting each damage 



class, given ball or outer race damaged, are plotted as function of iteration number. Similar to the non-

contaminated case, given an arbitrary initial prior, the posterior evaluated at a large number of frequencies 

converges to the selection of correct model. However, there are more frequency lines that have poor 

classification power. At some of these lines, the posteriors take more iterations to converge, but some of them 

will oscillate and even converge erroneously. Those frequencies with poor performance are the evidence of 

how noise contamination degrades the decision-making, because the feature evaluation at those frequencies is 

primarily dominated by the noise/uncertainty without useful information. 

 

Figure 12: PDFs of different damage cases at an arbitrary frequency line near 3.5 kHz with contaminated data 



  

Figure 13: Posterior of selecting M1 (top), M2 (middle) or M3 (bottom) at each iteration, given M2 is true, 

with contaminated data 



  

Figure 14: Posterior of selecting M1 (top), M2 (middle) or M3 (bottom) at each iteration, given M3 is true, 

with contaminated data 

Averaging the logarithmic likelihood and posterior curves across all the frequencies results in the plots shown 

in Figure 15 and Figure 16. From Figure 15, the separation of classes is still poor (if not worse), as expected, 

and with a small number of iterations, those curves may be entangled leading to an incorrect classification. 

The phase classifier in classifying the two damages shows a little enhancement as the curves for right and 

wrong model selections go to different direction, but this observed opposite direction happens randomly and 

is only specific for this experiment, as the influence from contamination is complicated and changes of 

uncertainty characteristics, such as signal-to-noise ratio, will affect the trend in an unapparent way. 



 

Figure 15: Average likelihood of selecting each candidate vs. number of iterations with contaminated data 

The contamination also degrades the performance of Bayesian recursive approach, but the same as non-

contaminated case, the curves for selecting right and wrong types converge to opposite directions. The curves 

for the contaminated case contain more variability and poorer convergence, in terms of converging time and 

final asymptotic confidence.  
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Figure 16: Average posterior of selecting each candidate vs. number of iterations with contaminated data 

 

Comparing the two decision makers, i.e. likelihood and Bayesian posterior, Figure 17 compares the final 

averaged value with extraneous noise contamination, after the entire 250 realizations have been acquired. The 

similar conclusion may be drawn that the posterior provides a much more confident decision, appropriately 

quantified. 
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Figure 17: Average likelihood and posterior after 250 iterations of selecting each candidate with contaminated 

data 

 

4. Conclusion 

This paper adopts the Bayesian recursive framework to identify ball bearing damage types/locations via the 

proposed model selection procedure. FRF magnitude and phase evaluated from the acquired vibrational data 

are selected as the SHM features. Instead of an empirical or Gaussian-related likelihood model, the likelihood 

term in the Bayesian framework presented in this paper is built up analytically, based on the closed-form 

probabilistic uncertainty quantification models established previously. Confidence of the decision, i.e. the 

types and locations of the damage, is updated recursively via the likelihood of the feature observations, and 



therefore the damage classification decision is made to the damage class with the maximum posterior 

probability. A damage classification flow is generalized as flows: 

• Discretize the damaged conditions, such as types, severities and locations, into finite states 

• Obtain  information from each of the states as a training process 

• Establish probabilistic uncertainty quantification model of the extracted SHM feature 

• Evaluate the likelihood of data acquired from in-situ testing with unknown status 

• Apply the Bayesian recursive classification process with an initial prior, and update the posterior 

confidence of each condition candidate 

In this algorithm, the idea is to classify the observed information to a category that have previously trained. 

The ensemble of all the possibilities is a finite set, so the Bayesian classification algorithm picks the most 

plausible model candidate to explain the observation, which may lead to the most similar case in the training 

set. When there are more sophisticated damage scenarios, such as a combination of multiple damage 

types/locations, the finite-state set-up of training sets should be more complicated accordingly, the required 

training cases gets exponentially increased, and multi-dimensional features should be employed as well to 

reach a valid classification. Compared to other model-based Bayesian inference approaches, this data-driven 

flow does not have any computational burden, as all the information is acquired from data observation, rather 

than a model evaluation. 

In the employed MFS test-bed, to demonstrate the recursive framework, two types of bearing damages are 

included besides the undamaged baseline, namely damaged ball and damaged outer race respectively. The 

posterior as a function of iterations gives a clear illustration on how the decisiveness is converging to the ideal 

level within tens of iterations, i.e. for the correct class the posterior converges to unity, and for the incorrect 



class not to be selected, the posterior converges to zero. The performance of damage classification via 

posterior is compared to the hypothesis testing via likelihood, and test results show a significant advantage of 

adopting the Bayesian recursive process. The likelihood accumulates without actual bounds, so that the 

likelihood-based model selection is to make decision according to the relative difference between models. For 

posterior, there is strong statistical interpretation because this probability is bounded between 0 and 1. 

Therefore, the closeness of posterior to the extremes directly indicates the decisiveness. 

To be more realistic, the vibrational data acquired from lab-scale MFS test-bed are contaminated by 20% of 

artificial white noise, in terms of noise-to-signal ratio. The performance is degraded, unsurprisingly, due to 

the contamination, for both the classification based on likelihood and posterior, but under this circumstance, 

the posterior obtained from Bayesian recursive process is still much more sensitive and specific to the damage 

classification problems. 

In this work, the damage classification decisions are made according to a naïve prior and in-situ vibrational 

data. Due to the nature of the acceleration data acquired from a rotating machinery, the normality and 

independency are not guaranteed in theory, as the rattling in a damaged gear is highly characteristic and 

cohered with the system dynamics. However, the work proves that the dependency is ignorable and the 

influence from previous state to the next state is tiny, nor does the lack of normality in the time series 

influence the classification for the reason the central limit theorem. Although the likelihood function applied 

in this work requests multiple mathematical conditions, the applicability of the probabilistic uncertainty 

quantification model in this Bayesian framework is satisfied. 
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