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ABSTRACT OF THE THESIS

A comparison of tests for online experiments

by

Alan Dsouza

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Hongquan Xu, Chair

Online experiments have grown in popularity but the techniques used to evaluate them

have not adapted to the continuous stream of results. The goal of this review is to analyze

the limitations of current online experiment tests and evaluate newer techniques that are

better suited for continuous assessment. Conducting tests on simulated experiments showed

that peeking at results can cause 3 times as many false-positives when using t-test’s. The

conservative nature of multiple comparison adjustments led to rejecting over 50% of winning

ideas. Mixture Sequential Probability Ratio Tests (mSPRT) resulted in few Type-I errors

even when monitoring results continuously. Using mSPRT led to 1/6th as many Type-I

errors. There are known downsides to mSPRT including implementation complexity and

computation costs, but these are likely smaller than the value created from having a more

reliable analysis technique.
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CHAPTER 1

Introduction

In recent years, the number of online experiments conducted by consumer technology com-

panies has grown exponentially. Online experiments - also known as A/B tests, split tests,

and multivariate tests - have become an essential tool in the product development toolkit.

Minimal cost and access to large sample sizes has fueled the growth of “test and learn”.

Engineers and product managers test even the smallest of features to websites and mobile

applications to measure effectiveness. Marketers are using tests to determine which creative

resonated with consumers the most. It is worth emphasizing that learning is the key goal of

experimentation. As such, evaluators of experiments, usually analysts, rely heavily on sta-

tistical tools to separate the signal from the noise. The rapid growth in experimentation has

not been accompanied by a comparable growth in statisticians, which means that for many

of the people conducting these experiments, this will be their introduction to experiment

analysis. These first-time practitioners have access to an abundance of techniques, but the

exact implementation details are not always clear.

The good news is that there is a mountain of research that has been conducted on

experiment analysis and an accompanying amount of academic papers. What is missing is

a comparison of various techniques; so, irrespective of which test researchers choose, they

are aware of the benefits and pitfalls of the chosen approach. For example, peeking at

experiments that are intended to be evaluated using a t-test dramatically increases the odds

of Type-I errors; it is unlikely that this is widely known. Beyond declaring if treatment

performed better than the baseline experience, practitioners are also interested in why there
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might be a difference in performance. For A/B tests, more often than not, analyzing the

performance differences between sub-segments of the test population can help make sense

of the cause. For example, if a new feature performs better on mobile devices rather than

desktops, it might suggest that the mobile version is easier to use, and thus leads to better

performance. Part of this review will explore how to properly conduct multiple comparisons

to isolate differences in segments of users.

The goal of this review is to compare the techniques most commonly used to analyze

experiments. In doing so, some benefits and drawbacks of each method will become apparent.

Since we are undertaking the implementation of all of the techniques in Python, the final

toolkit will be open-sourced, making it readily accessible to practitioners [Dso].
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CHAPTER 2

Data and Exploratory Analysis

Evaluating analysis techniques requires a set of experiments where the exact details within

each experiment are known. This makes machine generated data based on industry averages

the ideal dataset for this study. Having thought through various possible outcomes (see

Simulating Experiment Data) of a test, we can use Python to randomize input parameters

and simulate hundreds of experiments, each with thousands of users. Saving the input for

each simulated experiment ensures the true parameters are known. Each test is then analyzed

using various techniques and the conclusion is compared with the real treatment effect or

lack thereof. For example, if 1,000 experiments are simulated and experiment 413 is a case

where only one sub-segment has a statistically significant treatment effect, the question is

presented: which techniques are able to accurately identify this data?

Even though the data is simulated, parameters must still be provided for the distribution

of each of the fields. These parameters are informed by prior knowledge of experiments in

the fintech space. The findings of this review are within the constraints of these parameters.

Since there are an infinite combination of parameters, it is impossible to model every scenario

and thus arrive at which technique is universally the best. The code accompanying this

review allows for simulating and testing experiments under a different set of parameters that

are more representative of other companies or industries.
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2.1 Background

The author’s experience with experimentation is based on time spent working in fintech. At

a typical fintech company, product managers, designers, and engineers work closely together

to develop new features. While analysis and research goes into designing these features, it is

still unclear if users will find it useful, which is why the feature is first tested using an online

experiment before it is rolled out. The experiment can be rolled out to a portion of users,

and these users are then split (usually evenly) between treatment and control. Control is

the current state of the application (app), while treatment is users who see the new feature

in addition to the regular app. Next, a metric on which treatment versus control can be

compared is chosen. At most companies, this will be either conversions (units) or revenue

(dollars); something that directly increases business value. For example, a fintech app that

generates revenue by referring users to financial products will count every successful referral

as a conversion. Once the experiment is live and the primary metric becomes evident,

the performance of treatment versus control is measured to see if it is meaningfully better.

If it is, the next step is to figure out why it is performing better. In most instances, the

feature resonates with a sub-segment of users, which then lifts the aggregate treatment effect.

Identifying these segments helps companies learn about which type of features resonate with

which audiences. If the treatment performs better overall, it is shipped to all users and

becomes the new default.

Since winning features usually generate more revenue for a company, there is an incentive

to conclude an experiment as soon as possible. Wait too long to conclude on a highly positive

feature and the company loses out on incremental revenue. Similarly, leave a highly negative

treatment running for too long and the company loses revenue. So clearly, speed is a valuable

feature for measuring A/B tests, but that also means an increased risk of Type-I and Type-II

errors. The ideal experiment evaluation technique allows for continuous evaluation, address

speed, and minimizes errors. In the next chapter, techniques that could provide the accuracy
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of t-tests while allowing for evaluation without having to wait to collect a predetermined

sample size are discussed.

2.2 Simulating Experiment Data

Every experiment has a minimum of three components: a randomization unit, the treatment,

and a measurable response. For online experiments, the randomization unit is usually a user,

treatments are assigned randomly, and the response is usually a business metric that is either

binomial (e.g. conversions) or continuous (e.g. revenue).

The process of simulating an experiment starts by selecting how many users are in the

experiment using a uniform distribution. Each user is then assigned a sequential identifier

(column user id in the data), whether they are in Control or Treatment using random choice

(group), and the date they were first exposed to the treatment (event date). Whether the

user converted or not is decided by sampling from a binomial distribution (convs). If they

did convert, the revenue amount is sampled from an exponential distribution (revenue). As

mentioned in the background, treatments can have varying impact on different segments of

users, so all users are assigned into some predefined set of segments (platform and scoreband).

To evaluate the various analysis techniques, their effectiveness against the outcomes com-

monly observed in online experiments are evaluated. The two most common outcomes are

that the treatment either has a statistically significant improvement in the primary metric of

interest, or the treatment has no effect or a negative effect. Another common outcome is that

the treatment might have a meaningfully positive impact, but only in a segment of users.

It is unrealistic to expect the treatment has the exact same impact across all users, which

is why evaluating experiments by segments is a common practice. Lastly, the experiment

could have a novelty effect where the treatment is positive initially but fades to zero over

time.
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2.3 Exploratory Data Analysis

The dataset is a collection of 1,000 simulated experiments. The number of users in each

experiment is randomly selected from a uniform distribution. Each user is included only

once in the experiment, irrespective of how often they use the feature. Figure 2.1 shows the

distribution of users across all the experiments. Part of this review includes evaluating the

performance of tests across various sample sizes.

Figure 2.1: Experiment count by number of users

Each experiment is made up of users who have certain user level attributes and actions

that are of interest. A sample of the data within each experiment is shown in Table 2.1.

Each user has a unique identifier, allowing for group size calculation, which is then used in

statistical tests. Next, the user is randomly assigned a group; this is the treatment effect.

This could be a single treatment, or multiple in the case of multivariate experiment. For these

experiments, 50% of users were randomly assigned a treatment called ”variant1”. Those not

assigned the treatment were tagged as ”control”.

Users were then randomly assigned attributes such as the platform they are using to
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Table 2.1: Sample of experiment result dataframe

user id group event date platform scoreband convs revenue

8 variant1 2022-03-12 iOS nearprime 1 54.56905

9 control 2022-03-19 iOS subprime 0 0.00000

10 variant1 2022-03-02 iOS subprime 0 0.00000

11 control 2022-03-17 Mweb prime 1 129.64000

12 variant1 2022-03-31 Android nearprime 0 0.00000

interact with the product and their credit score band. Figure 2.2 and Figure 2.3 show the

distribution of users across various attributes. The split amongst segments is not uniform,

and is instead distributed based on prior observations within fintech companies. When

randomizing the platform variable, it is assumed that 55% of users use iOS applications,

25% Android, 15% a mobile web browser, and 5% a desktop. For scoreband, it is assumed

that 40% of users are subprime (score less than 600), 30% are near-prime (score 600-720),

and 30% are prime (score above 720). Across companies and industries, practitioners are

likely to use many attributes, each with different distributions, when assessing experiment

results. Attributes, or dimensions, are relevant because in many instances the treatment

effect can vary across segments of users. Some experiments have been simulated to have a

lift within one of these segments. Three multiple comparison techniques are evaluated to

understand how effective they are at identifying treatment effect within segments.

Each of the simulated experiments is based on a scenario detailed in section 2.2. Figure

2.4 shows the distribution of number of experiments by true lift (as randomly selected from

a normal distribution), grouped by scenario. Experiments with no real treatment effect,

referred to as neutral, have a true effect of 0, but could still result in false-positive conclusions.

An important aspect of A/B testing is the value of knowing if the treatment is effective

as soon as possible. This inevitably leads to peeking (as discussed in Problem with peeking)

at performance and drawing conclusions. Doing so invalidates many statistics principles
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Figure 2.2: Platform distribution Figure 2.3: Scoreband distribution

and can lead to incorrect conclusions because of increased Type-I errors. Figure 2.5 is the

conversion rates for one experiment. At first glance, especially when looking at the first few

days of data, there is no clear impact from the treatment. In actuality, in this experiment,

the treatment has a 1.9% lift over control. Since peeking invalidates the statistical basis for

t-tests, we will evaluate a Bayesian approach and mixture sequential probability ratio test,

both of which allow for continuous monitoring and measurement.
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Figure 2.4: Treatment effect distribution by scenario

Figure 2.5: Treatment effect trended over time
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CHAPTER 3

Tests for Binomial Metrics

3.1 T-Test

As online experiments gained popularity in the early 2000’s, there was a need to develop

tests to measure if the observed treatment effect was real or simply random noise. Several

articles on the subject of t-test efficacy were assessed, but there is no clear explanation for

why the t-test became the test of choice. Even today, a google search for ”ab test significance

calculator” yields hundreds of results offering t-test based calculators. The popularity of a

frequentist approach is not surprising; the test needs few inputs and is easy to compute.

When dealing with a binomial metric, if the sample size of each group and the number of

group members with a successful event (e.g. conversion) are both available, the treatment

effect is calculable, as well as whether it is significant or not and the confidence interval for

the treatment effect. The formulas are given below.
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control conversion rate = pc, variant conversion rate = pv

lift = θ =
pv
pc

− 1

σc =

√
pc ∗ (1− pc)

samplec
, σv =

√
pv ∗ (1− pv)

samplev

σDiff =
√

σ2
c + σ2

v

Now that the variance of the individual independent samples as well as the variance of

their difference has been elucidated, the T statistic value is calculated and used to find the

p-value, where

T statistic =
pv − pc
σDiff

The last step is to then find the confidence interval for θ.

θ upper bound = θ + (T critical ∗ σDiff)

θ lower bound = θ − (T critical ∗ σDiff)

Even the mighty t-test has limitations, especially in the context of online experiments.

The first limitation is a misunderstanding of what p-values represent. When conducting

experiments, companies are interested in knowing whether the treatment (new feature) is

better as well as the precise value created from the treatment. Once the treatment effect,

a point estimate, is measured, analysts and business stakeholders then interpret the p-value

being the probability of the measured treatment effect being accurate. However, p-value is

defined as the probability - under the assumption of no effect or no difference (null hypothesis)
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- of obtaining a result equal to or more extreme than what was actually observed [Dah08].

This true meaning of p-value does not address what businesses need. The options are to

educate everyone in calculating and reviewing test results or to use alternative methods that

directly address what A/B testers are looking for. This limitation of t-tests is echoed by

industry expert, Chris Stucchio [Stu15]. The other limitations are discussed in the Problem

with peeking and Multiple Comparisons sections.

3.1.1 Problem with peeking

Peeking, or reviewing the results before the predetermined sample size has been collected,

is another pervasive issue with the t-test approach [JKP17]. In a business setting, speed

is money. Being able to quickly identify winning ideas and improve on them can have a

meaningful impact on revenue. Conversely, delaying decisions can cause bottlenecks, slowing

down other ideas from being tested. Combine this value of speed with the ease of continually

monitoring experiments and many situations present where experimenters check p-values

daily and call the experiment a success as soon as it reaches significance, thus undoing all

the work that went into articulating a hypothesis, establishing a minimum detectable effect,

and then calculating the required sample size.

Intuitively, the best way to think of a t-test is that it takes into account a baseline rate and

the minimum detectable effect that is expected from the treatment and then recommends a

sample size. This sample size ensures that there is enough data to plot the two distributions

and control for a maximum of 5% Type-I error. Thus, peeking, or checking before the sample

size is collected, dramatically increases the false-positive rate. Figure 3.1 shows a sample

experiment where there is no real lift, yet the p-value is statistically significant for a brief

period.

The ideal solution is not for researchers to pretend like they do not have access to real-

time metrics and should just wait until the sample size is collected. Instead, techniques that

embrace continuous evaluation should be considered. The error rate caused by peeking is

12



Figure 3.1: P-value by sample size for an experiment with no lift shows a window of sample

size where the p-value was significant

discussed in Results.

3.2 Multiple Comparisons

Multiple comparisons, or multiple testing, is a method in which multiple parameters and/or

subsets of data are analyzed for the same experiment. Multiple comparisons are a necessity

when conducting A/B experiments because, in addition to knowing if the treatment is better

or not, companies want to learn why it is better. The best way to identify the cause is by

analyzing multiple events such as clicks, applications, conversions, and revenue. It is very

common to find that certain features resonate differently amongst various segments of users.
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The more items that are compared within an experiment, the more likely it is to find some

that appear statistically different; this is known as the family-wise error rate (FWER). So

researchers need to find ways to balance uncovering insights from the data with keeping

error tolerance α within a reasonable bound. Three techniques that control for FWER are

discussed in the following subsections. The performance of each are evaluated in the Results

section.

A detailed summary of the three techniques is shown in Figure 3.2. The alpha reference

line shows the maximum amount of tolerance for each test, which leads to an increase in

Type-I errors. Benjamini-Hochberg splits the area, leading to a balance between Type-I and

Type-II errors. Holm-Bonferroni and Bonferroni are even more conservative.

Figure 3.2: Adjusted p-value difference between Bonferroni, Holm-Bonferroni, and Ben-

jamini-Hochberg assuming 12 comparisons
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3.2.1 Bonferroni Correction

The simplest multiple comparison adjustment is the Bonferroni Correction technique [Bon36]

named for famed Italian mathematician Carlo Emilio Bonferroni. This method recommends

that for an experiment with m comparisons and a desired α to use an adjusted α = α
m
. This

adjustment is built on Boole’s inequality which says that for any finite or countable set of

events, the probability that at least one of the events happens is no greater than the sum of

the probabilities of the individual events [Boo47]. It is easy to see that this approach is very

conservative. Assuming the researcher desires 12 comparisons across various metrics and

dimensions, that suggests an adjusted alpha of just 0.0041. This threshold is very difficult

to achieve, even when there is a real treatment effect. So the adjustment will definitely

reduce Type-I errors, but likely also increases Type-II errors. The benefit of this approach

is simplicity while its drawback is its strictness.

3.2.2 Holm-Bonferroni Adjustment

The Holm-Bonferroni method attempts to keep total Type-I errors under the value of α

while still minimizing Type-II errors.

The process starts with calculating the p-value for each of the m comparisons, giving us

P1, P2, ..., Pm. These are sorted from lowest-to-highest. For a desired α, using the sorted

p-values and starting at 1, calculate

Pk <
α

m+ 1− k

If true, reject Hk and continue to the next value. When the result is false, stop the loop

and fail to reject all the other comparisons. This approach is as strict as Bonferroni on the

smallest p-value, but relaxes the constraint slightly for each subsequent comparison. Due

to its lower Type-II errors than the Bonferroni correction, the Holm-Bonferroni technique

should result in better overall accuracy.

15



3.2.3 Benjamini-Hochberg Adjustment

Rather than focus on FWER, Benjamini-Hochberg proposed the False Discovery Rate (FDR)

metric [BH95]. Where FWER is concerned about getting one or more false positives in an

experiment, FDR is the proportion of discoveries that are false. The latter is a more balanced

approach to Type-I and Type-II errors. It accepts more false-positive risk (which is not

very harmful in a software experimentation setting, unlike healthcare, where the stakes are

higher), while reducing false-negatives, which could be more costly to companies since they

would reject potentially lucrative ideas.

The beginning of the process is very similar to Holm-Bonferroni. Calculate the p-value for

each of the m comparisons, giving us P1, P2, ..., Pm. These are sorted from lowest-to-highest.

For a desired α, using the sorted p-values and starting at 1, calculate

Pk ≤
k

m
∗ α

If true, reject Hk and continue to the next value. When the result is false, stop the loop

and fail to reject all the other comparisons. As seen in Figure 3.2, Benjamini-Hochberg has

a linear adjustment with more comparisons, while Holm-Bonferroni has a parabolic shape,

making it more conservative.

3.3 Bayesian Approach

Increasingly, Bayesian techniques are gaining popularity for A/B testing. By adapting to

new information and adjusting assumptions based on the observed distribution, a Bayesian

approach does not need to wait to collect some predetermined sample size, and thus reduces

Type-I errors that we discussed in the Problem with peeking section. Another benefit is

better interpretability. P-values represent the probability of seeing a result at least as extreme

as the observed effect, when in reality researchers want to know the probability of treatment

being better than control. The intuitive reasoning for using a Bayesian approach is best
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explained by Stucchio, 2015 [Stu15]. In its simplest form, it involves changing your opinion

as more evidence is collected. For an A/B test, each new sample should inform the claim

that treatment is better or not. Let λ be our treatment parameter of interest (which for this

review is conversion rate).

P (λ|evidence) = P (evidence|λ)P (λ)

P (evidence)

However, using a Bayesian approach does have a couple of drawbacks. First, it requires

the knowledge of a prior distribution. Secondly, summing up the probability is essentially

equal to finding the cumulative distribution using an integral which can get mathematically

complicated and computationally expensive. Thankfully, it can be shown that the Beta

distribution does a good job of approximating the prior distribution of a binomial parameter,

turning the integral into a less intimidating closed form equation. Detailed steps are shared

by Miller [Mil], arriving at the final equation shown below.

if α = number of successes, β = number of failures

pA ∼ Beta(αA, βA)

pB ∼ Beta(αB, βB)

Pr(pB > pA) =

αB−1∑
i=0

B(αA + i, βA + βB)

(βB + i)B(1 + i, βB)B(αA, βA)

3.4 mixture Sequential Probability Ratio Test (mSPRT)

As discussed in the Problem with peeking section, since Type-I error inflation is a pervasive

problem, researchers have been exploring alternative techniques to measure treatment effects.

One of the earliest solutions to continuous evaluation was the Sequential Probability Ratio

Test (SPRT), proposed by Abraham Wald in 1945 [Wal45]. This approach calculates the

test statistic after each sample is collected, and a ratio statistic is computed. This statistic
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is then compared to a tolerance threshold, resulting in a decision to either keep the test

running to collect more samples, or accept the treatment, or accept control.

H0 : p = p0, H1 : p = p1

Λk :=
k∏

i=1

p1(Xi)

p0(Xi)
, k = 1, 2, ...

Si = Si−1 + log Λi

After each Si is calculated, we can compare it to our tolerance threshold to see if the result

is significant, and if it is, the test can be stopped. In notation, this means,

If a < Si < b : keep running

else if Si >= b : Accept H1

else if Si <= a : Accept H0

Where a and b depend on the desired Type-I and Type-II error tolerance. The most com-

monly used Type-I and Type-II error probabilities are α = 0.05 and β = 0.2

With the rise of online experiments, the sequential technique was revisited by several

industry experts working on tools that are used by many companies [AM17]. One newer

adaptation of SPRT is the mixture Sequential Probability Ratio Test first proposed by

Herbert Robbins in 1970 [Rob70]. It has since been adapted for modern A/B testing by

Johari, Pekelis, and Walsh in partnership with Optimizely, one of the largest A/B testing

platforms[JPW19]. The proofs from the aforementioned papers (seen below) discussed and

implemented in C++ and R by Stenberg in 2019 [Ste19]. Using this implementation, the

approach was replicated in Python in order to compare the performance of mSPRT against

other approaches.
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If θ = treatment effect, then likelihood ratio Λ =
fθ1(xn)

fθ0(xn)

Let π(θ) > 0 denote mixture(prior) distribution

Λ̃n =

∫
θ∈Θ

Λnπ(θ)dθ =

∫
θ∈Θ

n∏
i=1

fθ(xi)

fθ0(xi)
π(θ)dθ

Pθ0

[
Λ̃n >

1

b
, n ≥ 1

]
≤ b for any b > 0

inf
[
n : Λ̃n < α−1

]
becomes stopping rule

p− value as pn = min
[
1,min(Λ̃−1

t : t ≤ n)
]

Pθ0 [pn ≤ α] ≤ α for any n

Notice that only α needs to be specified, which for the purpose of this review α = 0.05.

Since Type-II error probability β is not specified, the test can run for as long as needed.

Alternatively, a sample size threshold can be established after which the test is stopped.
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CHAPTER 4

Results

4.1 T-Test

Before reviewing the results, it is worth restating the various scenarios. Lift is where there

is a real treatment effect. Neutral is where there is no effect. Novelty is a situation where

there is an initial treatment effect but quickly fades away. For evaluation purposes, Novelty

should be considered the same as Neutral. The last scenario is a Segment lift, in which case

there is a real lift within a segment of users that should be detected.

Table 4.1 shows t-test results when administered after all samples are collected. Its

accuracy lives up to expectations and accurately identifies 78.6% of Lift experiments as

having a statistically significant difference in performance. The 21.4% false negative rate, or

Type-II errors, are also aligned with the expectation of 80% power. These statistics are a

good reminder that a significant difference may remain undetectable for as many as 1 in 5

ideas. In the Neutral scenario, the t-test claimed significance only 4.3% of the time. This is

expected due to the use of an α of 0.05 for our analysis. In the novelty scenario, an 18.6%

false positive rate is seen. This is not entirely surprising since there is a real lift in the

beginning, which points to the complexity of this scenario. Lastly, in the segment scenario,

the overall t-test rejects 61.2% of experiments. This is a particularly bad outcome because it

might lead to the rejection of good ideas that resonate with a subset of users. The Segment

scenario is revisited in the review of multiple comparisons results. Following is a discussion

of these same metrics while simulating peeking, where the results are checked every 3 days.
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Table 4.1: T-Test accuracy results

Scenario Num of experiments T-Test Significant Type-I Error Type-II Error

Lift 242 190 - 21.5%

Neutral 253 11 4.3% -

Novelty 237 44 18.6% -

Segment 268 104 - 61.2%

4.1.1 Peeking

As expected, Peeking, which in this case means checking the result every 3 days, increases

the chances of finding a winning effect; thus, in the true lift scenario, leads to fewer Type-II

errors (18.6% vs 21.4%). The main issue however, is the drastic increase in Type-I errors

in the Neutral scenario; 14.2% vs 4.3% - which is 3.3 times higher than the t-test! 14.2%

is also significantly higher than our alpha threshold. These results highlight the issue with

using t-tests in a continuous evaluation setting. Researchers should be motivated to find

better techniques for evaluating experiments. Peeking does especially poorly in the Novelty

scenario with a 55.7% Type-I error rate. This would lead researchers to celebrate over 50%

of ideas as winners yet fail to observe an improvement in business metrics. In the Segment

scenario, peeking’s generosity leads to fewer Type-II errors.

Table 4.2: T-Test accuracy when peeking every 3 days

Scenario Num of experiments T-Test Significant Type-I Error Type-II Error

Lift 242 197 - 18.6%

Neutral 253 36 14.2% -

Novelty 237 132 55.7% -

Segment 268 137 - 48.9%
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4.2 Multiple Comparisons

As discussed in the Multiple Comparisons section, identifying user segments where the treat-

ment resonated is valuable information that helps inform future investments. The permuta-

tion of 4 Platforms and 3 Scorebands means a total of 12 distinct segments were evaluated.

Unfortunately, as seen in Table 4.3, none of the three techniques evaluated did a particularly

good job of identifying a segment level effect. Of the 268 simulated experiments, Bonferroni

correction correctly identified the segment for 126 experiments. Holm-Bonferroni performed

identically and also identified 126 experiments. Benjamini-Hochberg, which we know is the

most forgiving approach, performed marginally better and identified 128 experiments. This

translates to a Type-II error rate of over 52%. For a business, wrongly walking away from

52% of winning ideas is extremely costly.

Table 4.3: Multiple comparison successful identification of segment with treatment effect

Num of experiments Bonf Holm-Bonf Ben-Hoch

268 126 126 128

Looking further into factors that might have impacted accuracy, Benjamini-Hochbergs

results were plotted against the true lift within the segment (Figure 4.1) and the sample

size of the experiments (Figure 4.2). As expected, the accuracy is better when the lift is

larger and/or when the sample size is larger. In these simulated instances, a lift above 6%

or sample above 80,000 users leads to fewer Type-II errors. In the future, for experiments

that do not meet these thresholds, it is important to rely more on observed data rather

than reject ideas entirely due to lack of statistical significance. Companies can undertake

a similar exercise of simulating experiments based on their baseline rate, number of users,

and expected treatment effect to understand the baseline needed for multiple comparison

techniques to be able to detect an effect.
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Figure 4.1: Benjamini-Hochberg accuracy by

lift magnitude

Figure 4.2: Benjamini-Hochberg accuracy by

sample size

Table 4.4: Bayesian test accuracy results

Scenario Num of experiments Bayesian Significant Type-I Error Type-II Error

lift 242 190 - 21.5%

neutral 253 10 4.0% -

novelty 237 44 18.6% -

segment 268 104 - 61.2%

4.3 Bayesian

The performance of the Bayesian test, as seen in Table 4.4, is near identical to the t-test. It

demonstrates a marginally lower Type-I error rate of 4%, while all other metrics are identical.

Even though the approach is dramatically different, the results are the same as the t-test.

Even when peeking, the Bayesian approach has similar results to a traditional t-test

as seen in Table 4.5. This underwhelming performance could be due to the simplifying

assumption of using a Beta distribution rather than incorporating real observed priors into

the model. Adding priors increases the complexity since researchers would have to retrieve

historical data for all the metrics they are testing, which might be infeasible. The added

complexity makes the Bayesian approach less appealing to those without the time, skills,
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Table 4.5: Peeking impact to Bayesian test accuracy

Scenario Num of exp Bayesian Peeking Sig Type-I Error Type-II Error

Lift 242 196 - 19.0%

Neutral 253 36 14.2% -

Novelty 237 131 55.3% -

Segment 268 137 - 48.9%

and resources to build an automated framework. The bottom line, however, is that since

these results are similar to a basic t-test, it does not deliver much added value when using

the Beta distribution approach.

4.4 mSPRT

mSPRT falls under the broader Bayesian umbrella but has a very different implementation,

which is why there are very different results across the board. The Type-II error rate at

35.5% is higher than all other approaches, but results show significantly lower Type-I errors

even in the Novelty scenario. In general, since mSPRT is designed for real-time evaluation,

it is the most effective approach when measured on minimizing Type-I errors. On inspecting

the Type-II errors it was found that the test ran out of sample, so the insignificant conclusion

is more a factor of running out of sample size. If tests were to be left running when needed,

fewer Type-II errors are expected. In instances where mSPRT correctly identified a treatment

effect, it did so on average with just 30% of the sample in the experiment. The ability to

conclude experiments up to 70% sooner is incredibly valuable for businesses. This speed

to result combined with continuous evaluation make mSPRT a compelling front-runner for

measuring A/B tests.

It is worth mentioning that a more practical cost of the mSPRT approach is its compute

cost. Since it is an iterative approach that calculates a statistic after each observation, it

is a computationally heavy process. While a t-test can be conducted in less than 1 second,
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Table 4.6: mixture Sequential Probability Test accuracy results

Scenario Num of experiments mSPRT Significant Type-I Error Type-II Error

Lift 242 156 - 35.5%

Neutral 253 6 2.4% -

Novelty 237 15 6.3% -

Segment 268 50 - 81.3%

mSPRT calculations ranged from 1 to 15 seconds, and scaled with the number of users in

the experiment. It would be impractical to calculate the metric after every observation, so

practitioners need to decide a reasonable frequency to check results. Daily is a reasonable

frequency.

Diving deeper into the accuracy for the mSPRT approach, the test results have been

plotted by sample size and true lift in Figure 4.3. The errors seem to occur below a 4% lift.

When the actual lift is small, a larger sample size does not seem to be improving the test

accuracy. In very large sample size scenarios, 50,000 users and above, the errors seem to

happen when the lift is below 2%. This is reassuring, since it points to the possibility of the

higher Type-II error being reduced with a larger sample size.

Figure 4.3: mSPRT accuracy plotted by experiment sample size and true lift
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4.5 True Lift Versus Point Estimate

The goal of running an online experiment is knowing ”how much better is treatment than

control?”. This topic is orthogonal to the purpose of this review, but is still worth covering.

The challenge with precise measurement is that the data only affords us the sample mean

of treatment effect and not the population mean. As such, it is critical to remember that a

point estimate is unlikely to be the exact number of the impact of the new feature. Since

the data for 242 experiments where there is a true lift is available, the difference between the

true lift (the input the data was sampled on) and the observed lift was compared in Figure

4.4. It is seen that while the median is 0, for over 20% of experiments (top and bottom

10 percentile), the difference between sample and population lift is greater than 1%. This

might not impact the business outcome, but it is something practitioners should be aware

of and account for. The best-practice should be to always share the lift as an interval rather

than a precise estimate. This is intellectually honest as well as practically beneficial, since

the business can decide if they are happy with the outcome even at the lower end of the

confidence interval.

Figure 4.4: Boxplot of the difference between observed lift and true lift shows that for over

20% of experiments, the difference is larger than 1%
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CHAPTER 5

Conclusion

T-tests deliver exactly what they promise: consistently using a 95% confidence level with

80% power will deliver 5% Type-I errors and 20% Type-II errors. The issue, however, is the

improper use of these tests. It was shown how peeking dramatically increases Type-I errors

yet most researchers are blind to this and continue to operate under the 5% assumption. It is

not their fault. Online A/B testing made large scale experimentation with real-time results

ubiquitous, yet none of the analysis tools have kept up with the rapid evolution of hypothesis

testing. While a Bayesian approach was evaluated, it was not found to provide much benefit

beyond the basic t-test. This might have looked different had pre-experiment data been

incorporated to reduce variance, which is assesable in the future. Unless a researchers has the

discipline to calculate the required sample size before starting an experiment and then wait

until that sample is collected before evaluating the results, the t-test is not the appropriate

tool for analyzing online experiments.

With businesses valuing speed to decision, the mSPRT delivers better performance for

analyzing A/B tests, which is why leading tools have adopted it[JPW19]. When evaluating

results frequently, it limits Type-I errors by being conservative. In Table 4.6, mSPRT has a

Type-I error rate that is 1/6th that of the t-test in the Neutral scenario. As the sample size

increases, the performance converges to a standard t-test. This balance of speed without

compromising the accuracy of findings makes it an excellent analysis tool.

Adopting mSPRT would also allow its use in multiple comparisons. This is great because

none of the techniques evaluated in Multiple Comparisons provided the ability to detect an
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effect unless it was very large. Potentially walking away from winning ideas 50% of the time

because of statistics is unacceptable. This overly conservative nature of multiple comparison

adjustments make them largely unusable in a business setting. While the mSPRT was not

evaluated for multiple comparisons, the execution should be identical to how it was conducted

for the overall test. The downside here would be computation cost, which is discussed below.

There are likely hurdles preventing broad adoption of mSPRT. The first is implementation

complexity. For a t-test, only a handful of summary statistics are necessary to use one of

the countless online calculators to find the p-value and confidence intervals. Meanwhile, the

mSPRT requires access to arrays with each observation, and then the ability to implement

the formulas mentioned in mixture Sequential Probability Ratio Test (mSPRT). The lack of

readily available tools, be it online or Python/R packages, makes broad adoption especially

challenging. The work by Stenberg is a step in the right direction[Ste19]. For those that solve

the implementation complexity, compute time remains an issue. mSPRT, due to its iterative

calculation after each observation, takes an order of magnitude more time to compute than a

t-test. This additional compute time slows down workflows and adds real costs in the form of

server time. Additionally, the compute time scales as more users are added to the experiment.

Regardless, the benefits far outweigh the costs, so mSPRT is still the recommended approach.
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