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Abstract

Data-driven Approaches to Flexible Systems Design
by
Long He
Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research
University of California, Berkeley
Professor Zuo-Jun Max Shen, Chair

This dissertation studies the data-driven approaches to flexible systems design problems
under uncertainty. We discuss real applications in various contexts with flexibility: the ca-
pability to satisfy different types of customer demands (e.g. one-way and round trips in the
context of car sharing systems); the geographical demand distribution estimation and associ-
ated inventory allocation; and the freedom in production plans to fulfill uncertain customer
demands (e.g. flexible recipes in continuous production process).

The problems we consider have different objectives and more importantly several degrees
of richness in data availability. We develop data-driven optimization models accordingly.
Specifically, in the case of new market expansion for example, the firm has to make one-shot
decision with limited or side information. The focus of data-driven approach in this case
is on the portability of information. Distributionally-robust optimization methodologies are
applied to derive strategic decisions that hedge the risks. At the tactical level, e.g. re-
source planning, the firm deploys planning with ample historical data. For online retailers,
geographical demand distributions need to be estimated from historical sales and serve as
key input to their regular inventory allocation decisions. Furthermore, operational decisions
generally require more detailed data, especially the continuous data for real-time decisions.
We study the problem where routine production plans are chosen together with raw material
investment decisions when periodic demand data may be available.

In the first part of the dissertation, we study the planning problem faced by urban elec-
tric vehicle (EV) sharing systems, that offer both one-way and round trips, in designing
the geographical service region. This decision encompasses the trade-off between maxi-
mizing customer adoption by covering travel needs, and controlling fleet operations costs.
We develop a mathematical programming model that incorporates details of both customer
adoption behavior and fleet management (including EV repositioning and charging) opera-
tions under spatially-imbalanced and time-varying travel patterns. To address uncertainty
in customer adoption, we employ a distributionally-robust optimization framework that in-



forms robust decisions to avoid possible ambiguity (or lack) of data. Mathematically, the
problem is approximated by a mixed integer second-order cone program (MISOCP), which
is computationally-tractable. Applying this approach to the case of Car2Go’s service in San
Diego, California, with real operations data, we investigate several planning questions and
suggest potential for future development of the service.

To make better inventory allocation to distribution centers, understanding of the geo-
graphical demand distribution is essential to online retailers who possess historical sales data
that might be contaminated and/or with missing data. The second part of the dissertation
presents two models: the first model estimates the geographical demand distribution; the
second model integrates the demand estimation together with inventory optimization. In
the first model, we study the missing geo-demand data completion problem for a national
online retailer. We formulate the problem as a low-rank tensor recover problem in a convex
optimization framework. An alternating direction augmented Lagrangian (ADAL) method
has been developed and tailored for solving the tensor recovery problem with partial obser-
vations. We first discuss efficiency and effectiveness of the algorithm via experiments with
synthetic data. We then apply the framework with observed geo-demand from the online
retailer. Finally, the benefits of the missing geo-demand data completion are summarized
based on computational experiment results. We have shown that the recovered geo-demand
distributions possesses more smoothness over time and rendered better generalization perfor-
mance than the observed geo-demand upon integrated into the existing learning framework.
We also integrate the missing data recovery with the data-driven newsvendor model which
provides estimation of demands as well as optimal order quantity. A preliminary analysis
shows that the proposed model preserves the condition for optimal order quantity as it is in
the data-driven newsvendor model. Future work directions are also discussed.

The last part of this dissertation focuses on the inventory investment, recipe selection
and resource allocation decisions in continuous process systems with flexible recipes under
demand uncertainty. Due to variations in both raw material quality and market conditions,
variations in the recipes are used in continuous production processes. Such flexibility is not
on design but on the operation that allows adjustments of recipe items aiming to achieve
better input utilization than traditionally fixed recipes. We develop a two-stage stochastic
mixed integer program formulation and propose a heuristic to the second stage allocation op-
timization problem. In the first stage, the model determines inventory levels for each period
based on past demand data. After demand arrivals are realized, the second stage recourse
makes recipe selection and allocation decisions in production. With available historical de-
mand data, a simulation-based approach based on SAA algorithm is developed to solve the
stochastic program. The results of numerical study show the performance of the approach
on various cost settings as well as the benefits of flexible recipes over fixed recipes. In the
proposed approach, we focus on the application of the sample average approximation (SAA)
algorithm and use Bootstrap sampling as the default in demand simulation. A direction of
future improvement is to incorporate better techniques in the simulation of future demand



arrivals based on historical demand data. Those techniques may consider some properties
of the demand, such as seasonality and autocorrelation. Also, with limited demand infor-
mation, a robust optimization model might be developed that considers the worst cases.
Moreover, since our model assumes any inventory leftover at the end of each period is dis-
posed, the extension that relaxes this assumption and introduces inventory holding cost in
multi-period setting should also be investigated.
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Chapter 1

Service Region Design for Urban
Electric Vehicle Sharing Systems

1.1 Introduction

Sustainable transportation initiatives are gaining increasing attention in recent years as the
public awareness of environmental issues grows. In 2012, the transportation sector accounted
for 28% of total U.S. greenhouse gas (GHG) emissions [87]. Meanwhile, about 70% of U.S.
oil consumption can be attributed to transportation activities [92]. To reduce emissions by
transportation, innovative solutions in sustainable transportation have been gaining traction.
Innovative technological solutions, such as those centered on energy-efficient electric vehicles
(EVs), provide realistic alternatives to traditional modes of transportation based on internal
combustion engine (ICE) vehicles, while reducing dependence on oil. EVs have no tailpipe
emissions, and, when powered by efficient and more diverse sources of electricity (e.g., solar
and wind power), can significantly improve on well-to-wheel energy efficiency and emission
levels over ICE counterparts. The diversity of power sources also makes EV operations less
sensitive to the depletion of fossil fuels as well as supply uncertainty of crude oil. From the
consumer’s viewpoint, EV enjoys low operational costs: the fuel cost per mile for passenger
EVs is around 4 cents in the U.S., compared with 12 cents for ICE vehicles [29]. Despite the
potential of EVs, the consumers are not ready to own EVs at a massive scale due to several
major hurdles including the short driving ranges coupled with the insufficient charging facil-
ities, the high upfront purchase cost and the possible higher depreciation rate due to faster
technology development.

Interestingly, the combo of EVs with car sharing operations emerges globally as a viable
alternative to car ownership for urban dwellers [27, 47]. Currently, Car2Go, a subsidiary
of Daimler AG, is operating a car sharing system with a full EV fleet in San Diego (USA),
Amsterdam (Netherlands) and Stuttgart (Germany). In several other cities including Austin
(USA), Vancouver (Canada) and Berlin (Germany), Car2Go offers both EVs and ICEs to its
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car sharing members [22]. DriveNow, operated by BMW, serves San Francisco Bay Area with
all EVs, and also provides combination of EVs and ICEs in Berlin (Germany) and Munich
(Germany) [36]. Autolib have deployed over 2,000 electric vehicles in Paris (France) through
its EV sharing service [7]. This innovative operational model offers potential to overcome the
major barriers against EV adoption. First, as car sharing systems operate in well-defined
urban service areas, concerns over the range limitation are alleviated. The concentration
of a sizable fleet within a dense urban area also makes charging infrastructure deployment
more amendable. Second, car sharing effectively allows a pool of users to amortize the high
fixed costs of purchasing EVs (and maintenance) to usage-based variable costs over their
collective consumption of the service. By pooling their driving needs, EVs in sharing fleets
can enjoy higher utilization, and thus the average costs can be reduced compared with the
case of individual ownership. Third, by retaining ownership, the firm effectively eases the
consumers’ concerns over technological risks, future resale values, or depreciation.

In addition to introducing EVs to car sharing systems, Car2Go, DriveNow and Autolib
also differ from those early car sharing systems, e.g., Zipcar and City CarShare, by allowing
both round trips and one-way trips. Specifically, Car2Go allows customers to check out and
return cars anywhere within the service region at any street parking slot, while DriveNow
and Autolib allow customers to check out and return at any of their stations. This flex-
ibility allows customers to use the service for regular trips with long stopover times (e.g.,
commuting to office or school) which are typically not economic feasible under Zipcar and
City CarShare. Figure 1.1 shows the frequencies of trips classified by distances between
origins and destinations (i.e., O-D distances), for Car2Go’s operations in San Diego over a
one month period. One can observe that the majority of trips are one way, i.e., the O-D
distance is beyond walking distance (e.g., > 2km).

Although the one-way car sharing system opens up a broader potential customer base, it
makes fleet operations more difficult. One key strategic planning involved in this innovative
car sharing system is to determine service region. On one hand, expanding geographical
coverage entails significant operational challenges, such as the repositioning of cars to ensure
availability under unbalanced demand and, in the case of EVs, the scheduling of recharge.
On the other hand, customer adoption critically depends on service coverage, as travel needs
can only be covered when both the trip origins and destinations are within the service region.
Hence, a more extensive service region encourages adoption by covering higher proportions
of travel needs, and thereby improves potential revenue.

Here, we address the strategic planning problem of service region design for one-way EV
sharing systems. This problem encompasses several challenges. First, the travel pattern and
adoption behavior of potential customers are highly uncertain to the firm at the planning
stage. Moreover, before entering a new city, the firm does not possess accurate data to
describe the uncertainty in terms of probability distributions, which further augments the
planning challenge. As strategic commitments such as the acquisition of land for stations
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Figure 1.1: Histogram of Origin-Destination Distances (in meters)

and charging outlets are made in conjunction with service region design, a robust planning
methodology is imperative. Secondly, the operation details of EV car sharing such as repo-
sitioning of EVs are dependent on not only the size but also the shape of service region.
Hence, the service provider must also conscientiously account for operational cost drivers
when determining service region in the face of limited data. In this work, we make the
following contributions to the literature.

e We formulate an integrated service region planning model taking into account cus-
tomers’ satisficing behavior in service adoption, together with various operational
characteristics of one-way EV sharing system. Our approach deliberately addresses
data uncertainty and ambiguity with regard to customers’ travel patterns. Using a
distributionally-robust optimization framework, our model can be approximated by a
computationally-efficient mixed integer second-order cone program (MISOCP).

e Using real operations data from Car2Go, travel characteristic data from the California
Household Travel Survey and EV charging station deployment data from the U.S.
Department of Energy, we perform a case study of Car2Go’s service region design in
San Diego. We address several planning questions and obtain the following findings:

1. EV sharing systems bring more environmental benefits, e.g., savings in CO, emis-
sions, than replacing personal gasoline cars with EV ownership.
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2. Smaller regional variations in demographics, e.g., population and income levels,
suggest more spread-out service region.

3. Charging technology advances that improve charging speed will lead to fleet size
reduction and service region expansion, while the marginal impacts on service
region coverage is diminishing.

Literature Review

Our work contributes to the expanding research on sustainable operations management that
covers a wide range of topics [55, 73]. There are two streams of literature in sustainable oper-
ations related to ours: EV business models and vehicle sharing operations. Lim et al. (2014)
[61] aim to evaluate performances of business practices toward the goal of mass adoption and
study the impact of range and resale anxieties. Similarly, Avci et al. (2014) [8] highlight the
key mechanisms driving adoption and use of EVs in a battery swapping system. Particu-
larly, they build a behavioral model of motorist use and adoption. Calibrating with real data,
they find that such system may not be beneficial to the environment. Besides the insights
from business model analysis, infrastructure planning and charging coordination issues are
also studied. Mak et al. (2013) [65] develop distributionally-robust optimization models
that helps the planning process for deploying battery swapping infrastructure. Moreover,
a couple of papers in transportation optimize the operations of charging station networks
and coordinate the recharging scheme through area pricing or routing [41, 81]. Under the
EV sharing system setting, we consider the EV charging operations together with customer
adoption of the service instead of EV ownership.

While there are several major hurdles to achieve mass EV adoption, EV sharing is an al-
ternative for customers to enjoy the benefits of EVs without ownership. By EV sharing, the
high fixed costs of EV ownership is transformed to a usage-based cost of service. Researchers
have used the terminology servicizing to describe a business model that offers the functional-
ity of the products instead of selling the product itself. Agrawal and Bellos (2013) [3] assess
the potential of servicizing business models as an environmentally sustainable strategy and
draw insights into when and how servicizing is environmentally beneficial. Related to this
study, Bellos et al. (2013) [9] determine the OEM’s optimal pricing strategy and the optimal
fleet size when it offers car sharing in conjunction with conventional sales. Their analysis
reveals the discrepancy between profitability and environmental sustainability. Since the
car sharing system in their model only allows round trips, they are able to focus the fleet
operations of each station individually as a single server; whereas in our model, the EV
sharing system is designed to support one-way trips and fleet repositioning is necessary in
the presence of imbalanced trip flows.

The work closest to ours is Shu et al. (2013) [85] which consider the detailed bicycle
sharing operations in a network context. They develop a network flow model with propor-
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tionality constraints to estimate the flow of bicycles within the network and the number
of trips supported. Using transit data from the train operator in Singapore, they examine
the bicycle deployment, utilization and the value of bicycle redistribution. Due to the short
range of bicycles, they restrict the trips within two transit stops and assume that bicycles
are immediately available for next customers upon arrivals. However, in EV sharing sys-
tems, there is risk that the arriving EVs are at low battery level and need to be placed out
for recharging. Our work considers redistribution of vehicles by modeling the repositioning
(a.k.a. rebalancing) of fleet as a stochastic process while in Shu et al. (2013) [85] the sys-
tem restores the bicycle distribution among all locations on a regular basis. Furthermore,
their model assumes that the bicycle sharing station locations are given and demands follow
known Poisson processes. In our problem, we aim to design a service region under incomplete
information about the demands.

Since the service providers need to determine the service region before the system is in
operation and customers join the membership, demand uncertainty becomes a big concern.
It is therefore critical to make a robust service region design under various scenarios. The
literature on robust optimization [10, 11, 12, 13| provides approaches to inform solutions that
are robust with respect to perturbations in the model parameters. For problems where some
limited distributional information, for example the mean and covariance of key parameters,
may be available at the planning stage, it is possible to utilize the distributionally-robust
optimization approaches discussed in Ghaoui et al. (2003) [39], Chen et al. (2007, 2010)
[31, 30], Goh and Sim (2010) [44] and Natarajan et al. (2011) [70]. An advantage of this
methodology is that it is often possible to preserve computational tractability using conic
programming formulations. A recent application in EV infrastructure planning can be found
in Mak et al. (2013) [65]. With some limited information, such as the moments of demand
parameters, they develop distributionally-robust models for EV battery swapping station
deployment. Their formulations are tightly approximated by mixed integer second-order
cone programs (MISOCPs) which are readily solvable by commercial solvers. Several other
applications include appointment scheduling in healthcare [57, 66], warehouse operations [6],
supply chain management [67], inventory control [83] and portfolio management [69].

1.2 The Model

We consider an urban EV sharing service provider, e.g., Car2Go, that designs its service
region in a metropolitan area, e.g., San Diego. An overview of the current service region of
Car2Go San Diego in Figure 1.2 shows that it consists of the downtown San Diego, Chula
Vista as well as San Diego State University (SDSU). An distinctive feature that differentiates
Car2Go from other car sharing systems is that it allows one-way trips and offers free street
parking. Customers can start trips anywhere inside the service region wherever there’s a car
available, and end trips wherever there is qualified parking space available. Customers can
visit outside the service region during reservations but they are required to bring the car
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back to the service region to end the trips [22].

cAR
={c{sl SAN DIEGO HOME AREA

KEY
BN HOME AREA

I DESIGNATED
PARKING ONLY

CAR260 MAY NOT PARK IN FACULTY/STAFF RESERVED SPOTS.

Figure 1.2: Current Service Region of Car2Go San Diego [24]

Due to the one-way nature of the service, a well-planned service region balances the
goals of inducing more adoptions and maintaining cost-effective fleet operations. From the
customers’ perspective, it is more favorable to adopt and use the EV sharing service if the
service region covers more of their preferred destinations. Nevertheless, a larger service re-
gion may result in more complex operations and thus higher operational costs to the service
provider. Hence, it is crucial to model the interrelationships between customer adoption,
fleet operations, and service region design. However, it is difficult in practice to obtain ac-
curate estimations of individual valuations on coverage of destinations. In the model, we try
to depict the aggregate customer adoption levels of the EV sharing service and propose an
optimization model that strategically supports the service region design under uncertainty
of customer travel patterns and preferences.

We consider the following satisficing model of service adoption. Each customer has a
set of utilities of being able to travel to the set of destinations enabled by the service. For
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instance, traveling to destination j brings a utility a;; to a customer in region 7. The values
of a;; are heterogencous among customers. Hence, at an aggregate level, they are random
variables from the service provider’s point of view. Under satisficing behavior in service
adoption [86], a customer adopts the service when the total utility from all served destina-
tions exceeds his or her aspirational level. We consider customers to be categorized into K
groups, indexed by k =1,--- , K, by their aspirational levels by.

The firm plans the service region by selectng among pre-defined candidate regions. Such
decisions can be modeled by binary decision variables x; with value 1 denoting the covering of
candidate region j. Given the service region design, the total utility provided to a customer
in region 7 is Zje ; a;jzj. The adoption decision for a customer is then expressed by the
following indicator function, with a value of 1 representing the adoption of the service:

1, if > . yax; > by
1 o> 0) = ’ jer 4igti =
(Za”% > bi) { 0, otherwise.
jel
By taking expectation over the indicator function, we have the adoption rate g; of
customer group k in region i:

Qik = E[l(z a;x; > by)]
jeI
= Prob( Z a;jT; > bk).
jE€I

The firm earns profit from two parts: membership revenue and operational profit. Each
customer who sign up for the service has to pay a fixed membership fee f and is charged
at ¢ per minute of usage. There is also a fixed cost g; of covering region 7, which may
include investments in charging infrastructure or payments to charging service providers, and
payments to city governments for street parking. Our model maximizes the expected total
profit in Equation (1.1), which is defined as total revenue less fixed coverage cost, operational
costs such as charging cost, repositioning cost and fleet investment. For notational brevity,
the operational profit is represented by a function O(x;, g, &) with service level guaranteed
to be « (i.e., customers will find available EVs with at least « probability). We will provide
an explicit formulation for ©(+) in Section 1.2. The service region design model is formulated
as follows:

max > Y fQugik — P giti + O, qir, ) (1.1)

QikTi

icl keK icl
s.t.
Gk < PTOb(ZaijiEj >b),Viel,Vke K (1.2)
jel

z; € {0,1},Vi € I.
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The membership revenue ), ;> fQirgix in objective function (1.1) is computed
from the membership fee and total customer adoption, where ;1 is the size of customer
group k in region 7. Constraint (1.2) represents the adoption rate in probability constraints.
Furthermore, constraint (1.3) states the fact that no customers will adopt the service if their
origins are not in the service region. Appendix A.1 summarizes the notation used throughout
the paper.

Adoption Rate Model

In this section, we focus on dealing with the probability constraint (1.2). In order to evaluate
the exact adoption rate the firm needs the complete information on the joint distribution
of a;;. However, in reality, perfect information is often unavailable to the firm. Specifically,
as the firm is in the planning stage with limited operations data (e.g., from pilot studies
or household travel surveys), it is often difficult to fit the joint distribution of travel pat-
terns with confidence. Furthermore, from the tractability standpoint, the term ) je1 WijT;
may still be hard to evaluate even for known distributions of a;;, especially with correlations
among a;;’s. To this end, it is practical to consider a model that possesses both distributional
robustness and computational tractability under limited information.

In particular, we relax the data requirement by assuming knowledge of only descriptive
statistics of a;j, i.e., their means and covariance matrix. We construct a robust model
that delivers the worst-case adoption rate, i.e., the lowest adoption rate among all possible
distributions P of the utility parameters a;;’s that satisfy the known mean and covariance
matrices:

g < inf Prob( ) ajx; > by). (1.4)

jeI

The utility parameter a;; is nonnegative by nature. Suppose the mean vector a; = [a;;]
and covariance matrix I'; = [cov(a;j, , a;j,)] for each region i are known. We further assume

the covariance matrix is positive definite: I'; > 0. The second moment matrix ¥J; is given
by:

T
. a; a; S A 7 L =2aT
Zi.—E{l}{l} _[aiT 1],WhereSZ.—FZ—|—aZai.

Since I'; = 0, the covariance matrix ¥; is also positive definite. With fixed x;’s, the worst-
case adoption rate can be obtained by solving the convex optimization formulation with
copositive constraints, as shown in Lemma 1.

Lemma 1. In problem (1.1), given the mean vector a; and the covariance matriz I'; for each
region i € 1, worst-case probability constraint (1.4) for each qu, is equivalent to the following
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formulation with copositive constraints with known values of x;’s.

(Mg, X)) <1 — qux

Mik ico O
0 dix
: -
Mzk + dikT -1 - Qlebk ~_co 0
— px < dik
dix < px

TiL€ + p(x — 6) S dik
dik < Tire + p(e — x)
Tik > 0

where x = (z;), a large scalar p, ¥; the second moment matriz and the vector of ones e
are known parameters; the symmetric matriz My, 7, dix are decision variables; and inner
product (A, By = trace(BA).

Proof. Proof of Lemma 1. Please see Appendix B.1. ]

A matrix A is called a copositive matrix (A =, 0) if it satisfies vZ Av > 0,Vv € R".. For
more details on copositive matrices, please refer to Burer (2009) [18].

The formulation in Lemma 1 is not readily solvable by commercial solvers, due to the com-
bination of copositive constraints and mixed integer decision variables. A natural approach
to deal with copositive constraints is to approximate them by tractable convex relaxations,
e.g., a series of linear and semidefinite constraints that can be further transformed into
second-order cone constraints. We provide a lower bound formulation that is computation-
ally tractable in Proposition 1.

Proposition 1. The following formulation with second-order cone constraints provides a
lower bound on the worst-case adoption rate q;, in Lemma 1.

AXTX + (=g — Y gyl 2i, + 266 > A5z —bi— > Oijupn2igs)’

(j1,d2)EIXT jel (j1,j2)ETXT
SA—qr+ Y. GGz, — 2k Y ayTi H0E+ Y i)’ (1.5)
(j1,j2)EIXT jel (j1,j2)ETXT
Zjrja € Z(xjuxh)?vjl’]é el (1.6)
(24, qir) € Xin
Qi < T

where Z(xj,,x;,) and Xy, are sets of linear constraints defined in Appendiz B.2 Equations
(B.4) and (B.5).
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Proof. Proof of Proposition 1. Please see proof in Appendix B.2. O

Although there are K customer groups, the average adoption rate in each region can be
aggregated by population weighted sum of adoption rates ¢;;. Let the weight of group k& be
m. The population aggregated adoption rate is then
c i

g = Uam, Vi€ I

keK

Similarly, let ¢;; be the proportion of outbound trips by group k among total outbound
trips from region i. The outbound trip weighted adoption rate among total outbound trips is
given by

g =Y Vg, Vi € 1.

keK

Operational Profit Model

In the model (1.1), the operational profit is represented by a function ©(x;, g, ) with
guaranteed EV availability (service level) a for each covered region. The EV availability is
defined as the probability for customers to find EVs available at their origins. To improve
the EV availability, repositioning is essential to even though it might be costly. In fact,
Car2Go employs “street teams” to redistribute vehicles aiming to ensure even availability
through the service region [20].

We model fleet operations in the EV sharing system as a closed queueing network where
EVs go through queues (nodes in the network) that represent stochastic waiting times for
customers and lead times for repositioning and recharging. For instance, consider an EV
sharing system that serves only two regions: indexed by 1 and 2, which can be modeled
as a closed queueing network in Figure 1.3. Nodes 1 and 2 represent EVs staying in the
two regions, available (and waiting) for customer orders. Flows entering dummy nodes 1"
and 2" are the EVs to be repositioned (incurring a stochastic delay) upon arrival at regions
1 and 2, respectively. Similarly, flows entering dummy nodes 1¢ and 2¢ are the EVs to be
directed to charging stations (incurring a stochastic down time) upon arrival at regions 1
and 2 respectively.

We consider the arrivals of EVs in region i that are able to serve next customers (i.e., with
sufficient battery levels and are not repositioned) as demand arrivals at queue ¢ with effective
rate A;. The regions are acting as servers with service rates equal the customer demand rates;
that is, when a customer arrives, the first EV in the queue finishes its delay at the server
and departs the queue. Once the battery level of an EV falls below a prespecified level, e.g.,
20% in Car2Go, the EV will need to be recharged. Consequently, an arriving EV has P,
probability to be re-directed to a charging facility and placed out of service until the car is
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Figure 1.4: EV Sharing Operations as Open Queueing Network

fully charged. Given the service region design, a customer trip from ¢ has lf’ij = %
probability of heading for destination j, where Pj; is the probability of an i-originated trip
ending in j when all destinations are served. To ensure long-run availability of cars, balance
of inflow and outflow rates of a region must be maintained by repositioning EVs as necessary.
The repositioning policy is defined by «;; which is the probability of an arriving EV at j
is repositioned to region [ upon arrival. As the rate of customers driving from 7 to j is

AZPU- = A;;, the rate of redirecting arriving EVs at j to region [ that are originating from
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¢ is then ¢;;; = Ayjv;i. The external EV inflows to the system are denoted by A; for region
1. The effective EV arrival rate A; that are ready to serve next customers in steady state is
described by the flow balance equations:

A = )\i+ZAjz'(1 —PC—Z%Z)ﬂLZZAjm’YmuW el

jel lel j€I mel
=
ZAU = A +ZAji(1 - P)— ZZ%@J +Zz¢jmi,Vi el (1.8)
jel jel jel lel jel mel

An EV has four possible states at any time: idle on street (i.e., available for customers),
serving a customer, being recharged, and being repositioned. Hence, the inequality 1 — P, —
> ier Vit = 0 must hold. By multiplying both sides with Aj;, it is equivalent to

Z¢jil <A;(1-PF,).

lel

For the trips to destinations j and k from origin ¢, the trip distribution follows the rationing
based on the travel pattern which is described in the constraint below.
Aijilj'k A

ikLj . .
= I I I.
P P Niel,jel ke

After recharge, the fully recharged EVs replenish the fleet. Over time, the inflow rates
of recharged EVs equal the outflow rates of EVs to the charging stations. A conservative
charging policy is to recharge P. proportion of the maximum EV arrivals at all regions:

i = Zﬂjq]'ipc (1-9)

jed
where ¢j; = ¢; Pj;z; is the adoption rate for trips from j to 7.

To guarantee the EV availability, fleet size is an important consideration that needs to be
determined at the cost of fleet investment. Generally, the larger service region requires more
EVs. Using the fixed population mean (FPM) approximation introduced in Whitt (1984,
2002) [96, 97], we derive the population in the closed queueing network from the associated
open queueing network. The key idea is to approximate the steady-state performance of a
closed queueing network by the steady-state performance of an associated open queueing
network in which the mean population is set to the specified population (which is fixed)
in the closed network. In the case of the EV sharing system, the population in the closed
queueing network is the fleet size. We approximate the closed queueing network with an
associated open queueing network and each region works as a M/M/1 queue (i.e., assuming
EVs being checked out by customers following first-come, first-served order). For instance,
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the associated open queueing network in Figure 1.4 considers the flows to charging stations
as departures of the system and the flows from charging stations as the external inflows. We
obtain the fleet size by deriving the expected number of EVs with all possible status that can
be calculated from Little’s Law. There are ¢;;A;; EVs en route from i to j with average travel
time ¢;;. Suppose the average charging time is ., then \;t. EVs are in charging facilities in
region . Lastly, let 7,,,; be the travel time of repositioning trips from m to j, it is generally
no larger than the travel time by customers ¢;;, since the street team repositions EVs without
intermediate stops. Therefore, coming from ¢ to m, 7,,;¢im; EVs are in repositioning trip to
region 7 upon arrival at m. With EV availability «, the expected number of available EVs
awaiting for customers in region i is L; = ;%= based on the M/M/1 queue assumption. The
desired fleet size N must be no less than the expected number of EVs in the steady state:

szij/\ij-l—zlzﬂi+Z>\itc+ZZZij¢imj < N. (1.10)

jel iel iel el i€l mel jel

We are now able to characterize the operational profit ©(x;, ¢, @) that consists of four
parts: operational revenue, charging cost, repositioning cost as well as fleet investment. The
major car sharing systems charge customers r per unit time of usage, e.g., per minute for
Car2Go. The operational revenue is the total revenue from EV usage > ;> e, rtijAij
gained from all OD pairs. Similarly, suppose the charging cost is ¢ per unit time and the
charging time is Z., the firm pays total charging cost ) ._; cA\it.. Moreover, it takes the
street team 7;,, time units to reposition an EV from j to m with cost 1 per unit time.
The corresponding total repositioning cost is then >, ;> ;> c; NTjm®ijm. Lastly, the
annually amortized EV purchase cost is calculated as h, based on the price and typical life
span in EV sharing fleet. Therefore, the operational profit is explicitly formulated as:

@(l’i, qik, Oé) = Z Z rtiinj — Z th)\i — Z Z Z nijQbijm — hN
jel iel el i€l jel mel

Combining the adoption rate and operational profit models with the model, the service
region design problem is formulated as a mixed integer second-order cone program (MIS-
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D DLYED FEED ) SUNNED SR ) 9) DeR N A(ED
kTN % iel jel el iel iel jel mel
s.t.
gir < Prob( Y aya; > b),Vi€ I,Vk € K (1.12)
jel
jel jel
Nij < piqi, Vi€ 1 (1.14)
g = Uhau, Vi€l
keK
= taqu, Vi € T
keK
¢ <z ,Viel

i = qPijx;,viel,jeJ

ZAij:)\i—i_ZAJ’i - C)_Zz¢jil+zz¢jmi,Vi€I

jeI jer jel lel jel mel
Z¢]11<A]z — )VZEI]GI

lel
)\7; = ZﬂijiPmVi el

jeJ
DD it Y Liwi D Aite+ DD Y Tmidimi <N
jel el icl iel icl mel jeJ
Aijxk Az’kﬂfj . .
= Niel,jel kel
P, By

ANj>0Viel jel
bij >O0,Viel,kel,jel
r; € {0,1},Vi € I.

The objective function is the annual total profit including the membership revenue and
operational profit. In computation, the worst-case probability constraint (1.12) is replaced
by constraints (1.5) and (1.7) in Proposition 1. The service level constraint (1.13) guaran-
tees at least « service level, while constraint (1.14) ensures the stationary condition of the
queueing network by limiting the EV arrival rates not exceeding the customer request rates.
The rest are either explained before or are nonnegativity and integrality constraints.

In practice, the customer travel patterns, including both the trip distribution F;; and
outbound trip rates p;, are time-varying. The average system performance can be captured
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by the pointwise stationary approximation [46] approach as if the travel patterns are station-
ary at that point in time. We partition the 24 hours into 7" periods of a day with stationary
travel patterns, by considering, e.g., Pf] and pf. The following proposition summarizes the
formulation in the presence of time-varying travel pattern.

Proposition 2. Given time-varying travel patterns, e.q. Pfj and pt, the service region design
problem can be formulated as a mized integer second-order cone program with constraints for

multiple periods.
Proof. Proof of Proposition 2. Please see proof in Appendix B.3. m

One further point that warrants some discussion is the integration of the adoption rate
and operational profit submodels. Following Proposition 1, the worst-case adoption rate can
be represented by (one minus) the ¢, variables; subject to a set of linear and second order
conic constraints (1.5), in the absence of other constraints. However, when the constraints
characterizing the queueing network dynamics, which involve the ¢;; variables, are added,
there is no guarantee that (1.5) is tight at the optimal solution. In light of this, we provide
Proposition 3 that suggests a sufficient condition for the constraints to be tight.

Proposition 3. Given the service region design decisions x;’s, the probability constraint
(1.12) is tight for candidate region i € I if the following sufficient condition holds:

T thjpz] — CtCPC —n Z Z ijfjij’)/jm — h(z tz’jﬁ)ij + tCPC -+ Z Z ijfjij’)/jm) Z 0
jel jel mel J€el jeI mel

That is, the marginal operational profit, which is marginal revenue less the marginal increase
in charging cost, repositioning cost and fleet size investment, of outbound trips from all
regions © € I are nonnegative.

Proof. Proof of Proposition 3. Please see proof in Appendix B.4. O]

Therefore, as long as all the candidate regions brings non-negative marginal operational
profits, tightness of constraint (1.5) is guaranteed.

1.3 Case Study: Car2Go in San Diego

We demonstrate the service region design framework with a case study of Car2Go in San
Diego, the first city in North America where Car2Go operates all-EV fleet under the free
floating model discussed before. We begin the case study with description of data used and
estimation of key parameters that depict customer adoption behaviors and travel patterns.
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Parameter Estimation

We conduct the computational experiments with cost parameters collected from Car2Go
website and amortized to annual costs based on a 5-year planning horizon. The firm earns
annual membership fee at f = $8 and usage rate at » = $0.16/min adjusted with variable
costs. Based on the technical specifications of Smart Electric Drive, the EV model in Car2Go
fleet, the cost to fully charge from 20% battery level is determined to be ¢ = $0.5/hr with
charging time of 6 hours. Since Car2Go’s policy requires the EVs to be recharged when
the battery is below 20%, the probability that an arriving EV needs charging is set to
P. = 0.2. In the case of imbalanced flows, the street team has to reposition the EVs at the
cost $0.16/min. The total repositioning cost depends on the repositioning frequency and
distance completed. Moreover, in our experiments, a = 80% EV availability is guaranteed
in each selected candidate regions. In the estimation of parameters and computational
experiments, we use the following data sets.

1. Car2Go San Diego operations data. This data set contains one-month time stamp
record of all idle EVs in the current EV sharing system of Car2Go San Diego at every
5-minute level. The record includes time, location, battery levels and charging status.
Through preprocessing of the data, we identify 25,875 trips in total with the current
fleet size of 379 EVs.

2. San Diego geographic information and census data. The travel distances and times
between all OD pairs are provided by ArcGIS, a geographic information system, with
road network map from SanGIS data warehouse [79]. The census data is from 2010
American Community Survey [1] with zip code level working population as well as per
capita income.

3. 2010 California Household Travel Survey (CHTS). The CHTS collects travel informa-
tion from households in all of California’s 58 counties [19]. All participating households
were first recruited to record their travel in a diary for a pre-assigned 24-hour period.
For our purposes, we focus on the households in San Diego county. We use the tables
such as household, persons and places with interested attributes including age, income
level, zip codes and modes of trips. In the sample of 1999 individuals at working age
in San Diego county, we identify 6,562 trips out of which 5,335 trips were by car.

4. EV charging station information. We use the EV charging station data from [5] with
attributes such as location, zip code, charger number and EV network. We focus on
the charging stations in the current service region under EV charging network called
Blink, the partner of Car2Go.

We observe time-varying travel patterns, e.g. total outbound trip rates, from the trips
summarized from the operations data shown in Figure 1.5. We partition the 24 hours of
a day into 2 periods: daytime from 7TAM to 21PM and night from 21PM to 7TAM, which
minimizes the sum of squared errors of the outbound trip rates for all candidate regions. For
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Figure 1.5: Partition of Time-varying Travel Patterns

each period, gravity models for trip distributions in transportation literature are applied to
estimate the travel pattern and utilities of the potential customers, based on the sample trips
from Car2Go operations data, census data and geographic information. The utility threshold
to adopt is analyzed from the CHTS data with the trip modes of sampled population. From
the current EV charging station information, we estimate the desired number of chargers
for each candidate region and thus infer the corresponding region coverage cost. For details,
please refer to Appendix C.

Optimal Service Region and Fleet Size

We solve the MISOCP in Equation (1.11) using CPLEX solver on Intel Core i5-3550 CPU at
3.30 GHz to obtain the optimal service region and fleet size for San Diego county with 61 can-
didate regions at zip code level. The results are shown in Figure 1.7 in comparison with the
current Car2Go service region shown in Figure 1.6 that covers 32.57% working population.
Both solutions agree to cover downtown San Diego. Although the region is geographically
small, it is densely populated as central business and university districts. Car2Go data show
that 49.88% of the trip observations happened within that region. The major discrepancy
is to choose the north or south county. The current service region contains Chula Vista in
the south. However, based on the Car2Go data, it is related to only 1.12% of the trip ob-
servations. The proposed solution tend to cover the north county, which is the second most
populous region in the county and is well known for its tourism [71]. Based on the gravity
models, the north county generates more trips because of higher population and income. In
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practice, the firm needs to negotiate the free parking agreement with city governments for
specific zones. The proposed service region may be grouped and rearranged into cluster of
cities and exclude improper areas, e.g., mountains and forest. With additional clustering
constraints for some adjacent regions that must be covered together, we result the optimal
solution in Figure 1.8.

Furthermore, the optimal service region in Figure 1.7 suggests an expansion to 33 zip
codes with 485 cars needed. Compared to the current fleet size, by adding only 28% more
EVs, Car2Go can serve 62.60% more population. Finally, both the proposed service regions
in Figure 1.7 and Figure 1.8 suggest future expansion opportunities to the north.

The Environmental Benefits

Based on the optimal solution in Figure 1.7.b, we conduct the analysis by estimating the
savings of GHG emissions from operating an EV sharing system. For consistency with the re-
lated research, we choose to focus on CO, emissions as the measure of environmental impacts.

Observation 1. Supporting customers’ travel needs with zero emission, deploying E'V shar-
ing service with 485 EVs gains similar COs emission savings from replacing 2312 gasoline
cars with EV ownership. That is, each EV in the sharing fleet, on average, brings similar
environmental benefits as converting 4.77 individually-owned gasoline cars into EVs.

The EV sharing system supports 1,340,875 trips annually with total mileage of 26,147,915
miles. The U.S. Environmental Protection Agency determines an annual CO4 emissions per
mile to be 4.20 x 10~% metric tons. Hence, the annual CO, emission savings from Car2Go is

Figure 1.6: Current Service Region
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Figure 1.8: Optimal Service Region with Clustering

calculated as 10,982.12 metric tons. To visualize the savings, we find the number of gasoline
cars that would cause equivalent CO, emissions. Given the annual passenger vehicle COq
emissions as 4.75 metric tons, the savings from Car2Go fleet of 485 EVs is similar to the
savings from replacing 2312 individually-owned gasoline cars with EVs. The advantage of
EV sharing over individual EV ownership mainly comes from the higher vehicle utilization
in sharing fleet. In fact, the adoption of EV sharing is generally easier than mass adoption
of individual EV ownerships. As a result, EV sharing systems will realize GHG emission
savings earlier and create more cumulative environmental benefits through early adoption.
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Impacts of Demographic Factors

We now examine how demographic changes provide may affect the optimal service region
coverage. We aim to provide some insights to cities with different demographic configura-
tions, e.g., New York city versus San Diego. Even for the same city, the demographic factors
change over time due to factors such as migration and economic development. In the exper-
iments, we consider two alternative scenarios: 1. the population is more evenly distributed
among the regions; 2. the income disparity between regions is reduced. For both scenarios,
we first generate new population and income levels as follows. Let pop, be the population of
region i, and pop be the mean over all regions. Then, we let the new population of region ¢
be pop + 0.25(pop; — pop). That is, we keep the average population unchanged and shrink
the standard deviation by 75%. The new income level scenario is generated similarly. We
then simulate the trip distributions through the same gravity models used in Section 1.3.

Observation 2. Decreases in regional demographic variations lead to a more spread-out
service region. Such impact is primarily attributed to customers’ travel pattern change caused
by smaller variations in destinations’ attractiveness.

With less regional variations in population and income levels, the proposed solutions in
Figure 1.9, Figure 1.10 and Figure 1.11 suggest larger service region. The reason is that the
trip distributions become more balanced as the population is more evenly spread and income
disparity is reduced, following the gravity model.

From the customers’ perspective, the attractiveness of destinations become more similar
and thus the trip distributions become less concentrated, leading to the need to cover a larger
service region. This finding suggests that the service region would be more concentrated in
cities like New York, which is ranked as the metropolitan area of highest income inequality
in the United States [94].

Implications of Charging Technology Advances

As the battery and charging technology improves, the charging speed for EVs are expected
to be faster in the future. In fact, there exists fast charging technology in practice, e.g.,
supercharging for Tesla. We analyze how and to what extent the charging speed affects the
optimal service region design. With faster charging speed, the charging time is equivalently
reduced, if the battery capacity remains unchanged, which offers the potential to increase
utilization of the EVs.

We vary

current charging time — future charging time

Y

P= current charging time
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Figure 1.10: Reduced Population Variation: Area coverage=>53.74%; Selected zip codes= 35

from 0.1 up to 1. Apparently, the larger p represents faster charging speed.

Observation 3. Improvements in charging speed from the status quo brings significant ben-
efits to the system with expanded service region and generally smaller fleet size. However,
the increase in region coverage exhibits diminishing marginal effects.

Not surprisingly, Figure 1.12 shows that more advanced charging technology enables the
firm to serve a larger region with a smaller fleet. The major reduction in fleet size comes
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Figure 1.11: Reduced Income Disparity: Area coverage=43.87%; Selected zip codes= 37

from the decreasing queues of EVs at charging stations. In the extreme case of p = 1
when no charging time is required, the solution suggests the largest service region with the
minimum fleet size. We notice that the change in optimal service region is diminishing as p
becomes sufficiently high. This indicates that service region design is insensitive to charging
technology advances as long as the charging speed is fast enough, e.g., 60% improvement
in charging time from status quo. This suggests that charging speed is indeed one obstacle
against service expansion, but as charging technology improves significantly, other obstacles
such as fixed costs and demand imbalance will factor in to impede further region expansion.
However, cost savings can still be achieved from reduction in fleet size.
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Figure 1.12: Service Region Design on Charging Speed

1.4 Summary

In this work, we study the service region design problem for an one-way EV sharing system.
As customer adoption depends on the service coverage at their preferred destinations, we
explicitly model the adoption decision, which primarily determines the firm’s revenue, in
a probabilistic form. Under limited information on the utility parameters of destinations,
we first develop a distributionally-robust optimization model to evaluate the adoption rate
aiming to maximize the expected profit. We further model the fleet operations, including
repositioning and recharging, and determine the fleet size to guarantee the EV availability in
the service region using queueing networks. We provide a lower bound on the expected profit
by a computationally tractable MISCOP formulation. Several computational experiments
are then conducted to demonstrate the model in a case study of Car2Go San Diego based
on real operations data.

Our proposed solutions suggest expansion opportunities under properly selected service
region and optimized fleet size. Because of higher vehicle utilization, EV sharing systems
bring more environmental benefits, e.g., savings in COs emissions, than replacing personal
gasoline cars with EV ownership. We further examine how the service region changes along
demographics, e.g., variations in population and income levels of the candidate regions. The
recommended service region for a city with smaller regional variation in demographics is
found to be more spread-out. Moreover, our results show that charging technology advances
help to reduce the fleet size and expand the service region. While faster charging is always
beneficial to fleet size reduction, it shows diminishing marginal impacts on service region
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design.

Currently, Car2Go customers are able to book the cars on the website, smartphones or
right on the street and allowed a 30-minute period to commence a trip after the vehicle is
reserved without penalty [25]. Such reservation rule may be welcomed by the customers but
may not be optimal to maintain EV utilization and availability. A future research direction
will be to explore the dynamic grace period setting for reservation that helps to improve
EV utilization, availability and profitability. For example, in peak hours, allowing 30-minute
grace period may turn down many on-street demands that would have been able to utilize the
cars immediately. Another possible research direction is dynamic pricing for vehicle sharing
systems. To better matching supply and demand, Uber, a ridesharing service provider, is
implementing “surge pricing” that increases rates to get more cars on the road and ensures
reliability during the busiest times [95]. Despite the debatable performance of such pricing
policy [74], it provides an idea of using dynamic pricing to coordinate the supply and demand
in fleet operations. For the operations of EV sharing systems, such practice has potential
to balance the trip distributions that leads to less repositioning activities and thus improves
the service level.
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Chapter 2

Demand Estimation and Inventory
Allocation for Online Retailers

2.1 Introduction

Our motivating business problem comes from a major online retailer that makes inventory
allocation decisions for a quarter million items among tens of distribution centers (DCs)
across the country. It is important to optimize the allocation of inventory among the DCs in
order to better utilize warehouse capacities as well as to save delivery costs for fulfilling cus-
tomer orders from across the country. Inventory allocation (or positioning) decisions have to
answer the following questions: 1) Which DCs within the network should fulfill the demand
of a given item, and which customer zones should each DC be responsible for? 2) How much
inventory should be on-hand in each DC in each planning period?

With the advances of information technology, firms are collecting more data and making
decisions based on them. In particular, for online retailing, the firms rely on abundant sales
data to understand customers and act on business plans. Therefore, such data-driven busi-
ness decisions highly depend on the quality of sales data. In many cases, the sales data are
incomplete and/or noisy with errors due to several reasons. For instance, a zero sales record
may be erroneous and thus treated as missing data for reasons such as information system
failures, product selling discontinued or inventory stock-outs. Hence, we are trying to make
inventory decisions under poor data quality, e.g. with missing data.

In this chapter, we present models that facilitate inventory allocation for online retail-
ers who possess abundant data of possibly poor quality. The first model aims to recover
the missing data and remove outliers simultaneously to improve the data quality for data-
driven business decision making. The second model provides ordering decisions for multiple
products in the classic newsvendor setting.
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Literature

Recent development in tensor-based multilinear data analysis has shown that tensor models
are capable to provide better understanding and more precision from multilinear structures.
Tensor decomposition is a type of multilinear data analysis method that commonly takes two
forms: CANDECOMP/PARAFAC (CP) decomposition [26, 49] and Tucker decomposition
[91]. Generally, tensor decomposition resembles Principal Component Analysis (PCA) for
matrices. In particular, Tucker decomposition is also known as higher-order SVD (HOSVD)
[34]. In many situations, even though the observed data may not be low-rank because of
outliers and arbitrary errors, the underlying tensor data is often low-rank. That is, the
variation in the data is greatly attributed to a relatively small number of latent factors.
In view of this, robust tensor decompositions can be achieved from reconstructing the low-
rank part of the observed sales data. Built upon Principal Component Pursuit (PCP) for
Robust PCA [21] and Tensor Completion [43, 62, 90], robust low-rank tensor recovery has
been formulated as a convex optimization model and efficient algorithms are discussed [45].
These methodologies have been widely implemented in image processing but are rarely seen
in demand forecasting applications.

There are also work dealing with censored data as well as missing data in inventory liter-
ature that are related to our second model. Conrad (1976) [33] discuss the probability distri-
bution of the demand from sales data with the Poisson arrival assumption. Nahmias (1994)
[68] estimates Normal demand distribution and examine three estimators for the mean and
standard deviation for lost sales inventory systems. Assuming the demand follows negative
binomial distribution, Agrawal and Smith (1996) [2] develop parameter estimation method-
ology and demonstrate its effectiveness. Lu et al. (2008) [64] investigate the multiperiod
inventory system of a perishable product and updates the demand distribution parameters
periodically using the Bayesian approach based on the censored historical sales data. Most of
the papers assume certain probability distributions of the demands. However, no one knows
the exact forms of the demand distributions. Recent developments in data-driven approaches
help to address the problems without such assumptions. Meanwhile, the tremendous scale
of business data in industry brings the trend of “Big Data” in operations literature. In
the stream of nonparametric “data-driven” approaches in newsvendor problems, Levi et al.
(2007) [58] propose the Sample Average Approximation (SAA) based approach and establish
the bounds on the number of samples required to guarantee the performance to be close to
the scenario with known demand distributions. Other data-driven approaches in newsvendor
settings have been discussed as well. Liyanage and Shanthikumar (2005) [63] introduce the
operational statistics, a statistic of historical demand, for the newsvendor problem with am-
biguous demand by integrating the estimation and optimization. In the context of censored
demand data, Huh et al. (2011) [52] is the first application of the Kaplan-Meier estimator
within an adaptive optimization algorithm. Besbes and Muharremoglu (2013) [15] show that
the impact of censoring differs in the continuous and discrete demand cases and discuss that
collecting even minimal information about lost sales can yield significant value.
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Another stream of literature provides Bayesian perspectives. Li et al. (2014) [59] consider
parameter estimation, parameter uncertainty characterization, and decision optimization for
an inventory control problem with a demand model that includes customer choice with
stochastically changing covariates, missing observations and auxiliary information. How-
ever, different from Bayesian models, e.g. Li et al. (2014) [59], our model is based on
multilinear structure of the demands.

Furthermore, with the ambiguity of demand distribution, minimax approaches are con-
sidered to maximize the worst-case profit over possible demand distributions with known
mean and variance in Scarf (1958) [80] and several extensions in Gallego and Moon (1993)
[42]. With partial information available, e.g. mean, variance, symmetry and unimodality,
Perakis and Roels (2008) [72] provide tractable formulations and derive the order quantities
that minimize the newsvendor maximum regret of not acting optimally.

Recent ideas in machine learning have been brought into data-driven inventory studies
as well. The work close to ours is Rudin and Vahn (2014) [77]. They propose both machine
learning and kernel optimization approaches for optimal order quantity in newsvendor set-
ting under “big data”. Their work is an extension of the empirical model in He et al. (2012)
[51], in which only two features, e.g. information on number of cases and information on
types of cases, are made available. Their results demonstrate the impacts of data availability
in newsvendor performance.

However, we consider multiple products so that the historical sales of products can pro-
vide “side information” on each others’ demands that are usually highly correlated for same
category products. Our model can be viewed as implicitly feature-based where side informa-
tion might not be available and/or the firm is not sure what features the demands depend
on.

2.2 Understand Geo-demand from Past Sales

In this section, we try to achieve better understanding of the demand distribution for various
products across the country. To have a sound inventory allocation plan, item-location-time
specific demand (geo-demand) distribution estimation from past sales data becomes critical.
The geo-demand distributions serve as the guiding analytics for inventory allocation opti-
mization. The sales data are pre-processed and organized in a tensor with three dimensions:
item, location and time. However, the challenge of geo-demand estimation arises from the
sales data that is noisy and sparse. The sales data acquired from the major online retailer
have only 11.75% sales observations. The zero sales records are treated as missing data for
the reasons discuss above. Moreover, the historical sales data is contaminated with noise
coming from impulsive purchases and sporadic promotions. This kind of noise is, in general,
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non-Gaussian, which renders traditional least-squares-based method inappropriate. There-
fore, we aim to recover the underlying “true” geo-demand distributions that govern the sales
observations via a convex optimization-based approach called robust low-rank tensor recov-
ery [45].

Here, we formulate the missing geo-demand data completion problem as a robust low-
rank tensor recovery problem in a convex optimization framework. We then develop an
alternating direction augmented Lagrangian (ADAL) method that is easy to implement for
solving the tensor recovery problem with partial observations. The algorithm efficiency and
effectiveness are demonstrated with synthetic data. With a set of real-world sales data from
a major online retailer, we investigate the performance of the framework both quantitatively
and qualitatively through computational experiments. Finally, we conclude the benefits of
the missing geo-demand data completion application for online retailing business.

Notation and Tensor Basics

We first introduce the mathematical notation and basic tensor operations following similar
conventions in [45]. A tensor is denoted by boldface Euler script letters, e.g., X', a matrix by
boldface capital letters, e.g., X, vectors by boldface lowercase letters, e.g., x, and scalars by
lowercase letters, e.g., x. The order N of a tensor is the number of dimensions (a.k.a. ways
or modes). An Nth-order tensor is denoted by X € RI*/2-xIn = A fiber is a column vector
defined by fixing every index of X but one. The mode-i unfolding or matricization of the
tensor & is denoted by the matrix X; that is a rearrangement of the mode-i fibers as the
columns of the matrix in lexicographical order. The vectorization of X" is denoted by vec(&X').

The inner product of two tensors in same dimensions X,Y € R >IN js defined as
(X,Y) = vec(X)Tvec(Y), and the Frobenius norm of X is defined as | X| = /(X X).
The nuclear norm (or trace norm) [|X|. of a matrix X is the sum of its singular values,
ie. [|X|l« := >, 04, where the SVD of X = Udiag(s)V’. The L; norm of a vector x is
defined as ||x||; := ), |#;|. Likewise, for a matrix X and a tensor X, || X||; := ||vec(X)]|1,
and [| X[ := ||lvec(X)||;.

We use symbol o to denote vector outer product. The outer product of N vectors,

a™ e R n=1,---, N is an N-th-order tensor, defined as
(aMoa®o...oa®™) =M@ ... oMV
11121 N 1 2 N
The multiplication of a tensor X of size I; x I, X --- x Iy with a matrix A € R7*/» in

mode n is denoted by X x, A = Y € Rivx>xn-1xIxlnrrx-xIn “and is defined in terms of
mode-n unfolding as Y,) := AX,).

We further use capital letters in calligraphic font to denote linear operators, e.g. A, and
A(X) as the result of applying the linear operator A to the tensor X. A* is the adjoint of
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A.

We then define a homogeneous tensor array (or tensor array for short) as the tensor
obtained by stacking a set of component tensors of the same size along the first mode.

29}

An N-component tensor array is defined as X := : € RNToxXIN ig g “yector” of
Xn

homogeneous tensor and written as TArray(&X},---,Xy). A linear operator defined on a

tensor array operates at component tensor level. For example, consider the linear (sum-
mation) operator A : RNxxIv _y RICxIn guch that A(X) == SN | ;. Tts adjoint is
then the linear operator that reverts the operations A* : RIv >IN s RN-TixxIn gych that
A*(X) := TArray(&X,--- ,&). The non-calligraphic A denotes the matrix corresponding
to the equivalent operation carried out by A on the mode-1 unfolding }_((1) of X, where
X(l) = TArray(Xy 1), -+, Xn,1)). Therefore, A = ( I - 1 ) € RI*N-Ii iy this example.

Tensor Decompositions

The Tucker decomposition decomposes the tensor into the product of a small core tensor
and a set of matrices. It approximates X as

X%gX1U(1) X2U(2)XNU(N)

where G € R %"~ ig the core tensor, and the factor matrices U™ € RIn*™n =1, ... N
are all column-wise orthonormal, where (r; X -+ X ry) are given integers. The n-rank (or
mode-n rank) of X', denoted by rank,(X), is the column rank of X(,y. The set of N n-ranks
of a tensor is also called the Tucker rank. If X is of rank-(ry, - - - , ), then the approximation
holds with equality, and for n = 1,--- , N, U™ is the matrix of the left singular vectors of
X(n). Figure 2.1 illustrates the procedure. The Tucker decomposition is formulated as a non-
convex optimization problem. To compute the factor matrices, the higher-order orthogonal
iteration (HOOI) [35] is usually deployed, which is essentially an alternating least-squares
(ALS) algorithm [89] based on computing the dominant left singular vectors of each X(,).

Robust PCA

In the context of matrices, PCA provides the optimal low-dimensional estimate with additive
i.i.d. Gaussian noise. However, it is known to be susceptible to gross corruptions and
outliers. To over come this challenge, robust PCA (RPCA) has been developed to robustify
the solution to large errors and outliers. Candes et. al. [21] proposed a RPCA approach via
Principal Component Pursuit (PCP) that decomposes a given observation (noisy) matrix
B into a low-rank component X and a sparse component E by solving the optimization
problem minx g {rank(X) + A|E|lo | X+ E = B}. Since it is NP-hard, [21] uses the nuclear
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Figure 2.1: Tlustration of Tucker decomposition. [56]

norm and the L; norm to replace the rank and cardinality (]| - ||o) functions, and solves the
following convex optimization problem:

win {|X||. + A|E[, | X + E = B}. (2.1)
The optimal solution to problem (2.1) has been shown to exactly recover the low-rank matrix

from sufficiently sparse errors E relative to the rank of X, or more precisely, under the
following condition [21]:

pr max(n,m)

rank(X) <

Ello < psmn,
~ p(log min(n,m))?’ 1Ello < psmn

where p, and ps are positive constants, and p is the incoherence parameter.

Higher-order RPCA

Robust tensor recovery, or higher-order RPCA (HoRPCA), is a generalization of RPCA to
tensors that exploit the low-rank structure in all dimensions of the data. We regularize
the Tucker rank Trank(X) and lead to the following tensor PCP optimization problem:
miny ¢ {Trank(X) + A||E]lo, s.t. X + & = B}. This problem is also NP-hard to solve and
we replace Trank(X) by the convex surrogate CTrank(X), and [|€]|p by ||€]|: to make the
problem tractable:

r;(ngl {CTrank(X) + A[|E]l | X + € = B}. (2.2)

The model (2.2) is called Higher-order RPCA (HoRPCA) [45]. In our model, the tensor
rank regularization term is the sum of the N nuclear norms || X; ||« of the mode-i unfoldings,
i=1,---,Nof X ie CTrank(X):=", ||Xl-

Estimating Geo-demand Distribution

Our algorithm is motivated by the inventory allocation problem faced by a major U.S. online
retailer that ships hundreds of thousand items across the country from tens of its DCs. The
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guiding analytics for optimal inventory allocation (or positioning) is the geo-demand distri-
bution of each item sold on the retailer’s web-site. It is critical to learn the item-location-time
specific demand (geo-demand) distribution collaboratively from historical sales data and to
generalize well. Specifically, the geo-demand distribution provides estimation of the percent-
age of the demand, [, in each customer zone s relative to the total demand of a particular
item r in time t: for example, in week 10, the demand of the Apple iPhone 6 in customer
zone 20 counts for 5% of the total demand nationwide. The historical sales data, after it
is normalized location-wise, is organized in tensor B with three dimensions: items, demand
zones, and time (in weeks). However, only a small percentage of the entries in B have posi-
tive observations. The zero sales entries in B are not “trustful” and hence treated as missing
data due to several reasons including system error, item stock out or zero demand. The goal
of our algorithm is to recover the missing data by identifying the “true” values and noises
to help estimate the geo-demand distributions {3, }.

Suppose B contains R items, S demand zones and T weeks of geo-demand records.
Naturally, the tensor B is of dimension: R x S x T. Furthermore, since B is obtained by
normalizing the past sales location-wise, we have Zle B s = 1, for all item r and week ¢.

Application of Robust Tensor Recovery

Suppose the observed geo-demand tensor B can be decomposed to the “true” geo-demand
distribution ) and an error tensor e: B =) 4. We then formulate the following optimiza-
tion problem for robust tensor recovery.

N

minye D AVl + Aelel (2.3)
=1

s.t.

YV+e=8
Zy(r,s,t) =1,VreRteT
seS
y=>0

where N = 3, ); is given penalty on the rank of mode-i unfolding of ) and A, is the penalty
on /; norm of the error tensor €. In the formulation, the objective function (2.3) is to mini-
mize the rank of tensor ) in all modes together with the /; norm of the error tensor €. The
first constraint ensures that the resulting “true” tensor ) and error tensor € are consistent
with the observed tensor B. The rest are simplex constraints so that the recovered ) is in
probability space.



CHAPTER 2. DEMAND ESTIMATION AND INVENTORY ALLOCATION FOR
ONLINE RETAILERS 32

To take the advantage of the problem structure, we apply variable-splitting to ) and
introduce three auxiliary variables X} = --- = Xy = ). Moreover, let the set {2 denote
the the indices of positive observations. That is, the entry in B with index (r,s,t) € Q has
positive value: B4 > 0,V(r,s,t) € . We then enforce the consistency on the observed
data through linear projection operator Ag: RF*S*T s R™ that selects the set of m elements
of positive observations (€2) from B. The problem (2.3) can be reformulated into

N
mingye Y Ml Xl + Aclelh (24)
i=1
s.t.
XL:y)VZ:17 aN
Ag(y + 8) = Bq

Zy(r,s,t) =1,VreRteT

seS

Y =0.

Following the same spirit in Goldfarb and Qin (2014) [45], we assume [¢]q = 0, where
is the complement of €2. Otherwise, it is impossible to recover ¢, since some of corrupted
tensor elements are not observed. Similarly, we need to define several operations before we
develop the optimization algorithm for solving problem (2.4). fold;(X’) returns the tensor
Z such that Z;) = X. 7,(X) is the matrix singular value thresholding operator: 7,(X) :=
Udiag(a)VT, where X = Udiag(c)V? is the SVD of X and ¢ := max(c — j1,0). We define
Tiu(X) := fold; (T (X)) Su(X) is the shrinkage operator on vec(X) and returns the result
as a tensor. The vector shrinkage operator is defined as S,(x) := sign(x) max(|x| — y, 0),
where the operations are all element-wise.

Solution Scheme

We adopt the alternating-direction augmented Lagrangian (ADAL) (or alternating-direction
method of multipliers (ADMM)) [38, 17, 45] to solve the structured linearly-constrained op-
timization problem (2.4).

Define the simplex constraint set by A == {¥ : >° _¢¥rsp = 1,Y > 0}. Keeping the

simplex constraints for ), the partial augmented Lagrangian formulation for (2.4) is given

by:
;C(XH y < A, g, FZ', 9)

N N
1
=DMl Xl + Acllelh + Z(ZII& = VIIP = (T, & = )
i=1 i=1

1
+ EHAQO’ +¢&) = Ball* = (0, Aa(Y + €) — Bq)
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where I'; € RFP**T and § € R™, given m observations.

We start by solving the subproblem for Aj:

I

<>\_i7Xi -) (2.5)

1
min|| X; ¢ ||+ + m”xi - Y|I> -

Given Y, the optimal A&; is obtained by solving the first-order condition (FOC) for the convex
subproblem (2.5):

X = Tipn (Wl + )
We then proceed to solve the subproblem for e:
min X le]|; + iHAQ(y +e) = Bal? = (6, Aq(Y + €) — Bq)
= min iAol + 2 Aa(e) + Aa(Y — B) — i
Similarly, by taking the FOC, the optimal solution for ¢ is given by:
e =S (AG(Aa(B = Y) + ub))

Given X; and ¢, the subproblem for ) can be rearranged as
Ay 1
. 2 2

min 2 SIED) + DI + Sl 4e(Y) + Aa(e = B) — b

where C(Y) :=TArray(Y,...,)) and D :=TArray(ul'y — X1, ..., uI'y — Xn).
Its FOC is then
0€CC(Y)+C(D)+ AjA(Y) + AZAa(e — B) — AL (1b)
N
=0 € NV + ) _(uTi — X)) + Ay Aa(Y) + ApAa(e — B) — Ay (u)

i=1

Given €2, we can find the closed form expression for the elements of y in two cases: If
(r,s,t) € Q, then we have

N
YO = (B e L A (u0) 0 = 3 (g7 XN (N +1) (26)

=1
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If (r,s,t) ¢ Q, then we have

N r,8,t r,8,t
y*(rvsrt) — ZlZI(X’L( : — /’l/yl( ))

N (2.7)

The results obtained from (2.6) and (2.7) are then projected onto the simplex A. The
Euclidian projection onto the simplex can be solved for efficiently by an O(nlogn) algorithm
proposed in [37].

By integrating the projection method developed in Duchi et al. (2008) [37], we summarize
the HORPCA-GD algorithm for geo-demand estimation.

Experiments

We investigate the performance of the proposed algorithm through experiments with both
synthetic and past sales data. The experiments are implemented in R with package rTensor
[60] which contains basic tensor operations, e.g. folding/unfolding, multiplication of a tensor
and a matrix.

Synthetic Data

Based on the approach in Tomioka et al. (2010) [90], we generate a random rank-(5,5,5) ten-
sor of size (50,50,20) by drawing the core tensor of size (5,5,5) from the uniform distribution
U(5,15) and multiplying each mode of the core tensor by an orthonormal matrix of appro-
priate dimensions. The generated tensor is verified to have the desired Tucker rank. 10% of
the tensor elements are randomly corrupted by additive i.i.d. noise from the uniform distri-
bution U(—5,5). We then randomly selected a fraction 50% of the noisy tensor elements to
be the given observations Bg. Let the penalty parameters be A\; = v/50, Ay = v/50, A3 = v/20
and A\, = 1.

Given the output Y and the “true” tensor X , we define the relative error as a performance
measure below:

1Y — |

Eq] (28)

relative error =

The algorithm reports a relative error at 0.34% after 100 iterations. Figure 2.2 shows the
algorithm converges quickly, e.g. at 80 iterations. The algorithm effectively and efficiently
delivers good recovery results in small number of iterations for the simplex-constrained low-
rank tensor recovery problem.
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Algorithm 1 HoRPCA-GD

1: Given B, A, p. Initialize Xi(o) =0 = FEO) =0Vie{l,.,N},;Y=0and 6 =0.
2: for k=0,1,... do
3: fort=1:N do
Y e T, (s + Y®)
end for
S S, (Af(Aa(B — V) + 10))
Update Y element-wise:
If (r,s,t) € Q, then

N
(rys,t) .8 (r,s,t) * s k) (rss:1) k1) (rst)
y () :(B( s _ (k1) AL (@)t Z(M%( ) — Xi( 1) )/ (N +1)

i=1
9: If (r,s,t) ¢ Q, then

N k+1 (r,8,t) k (r,8,t)
y Do) S (X
N

10:  Projection to the simplex:
11: For each item r and week ¢,
sort vector y(r,:,t) into v : vy > vy > ... > vg.
12: Findp:max{s:vs—l(zslvn—l) >O}.

s

13: 9:l< f Um— 1
p m=
14: Update Y s.t. y(r, s,t) = max{v; — 0,0}.
15:  for i=1:N do
16: Fz(k+1) - ng) _ i(/yz‘(k-i_l) _ y(k+1))

17 end for

18 R g0 — L (Ag(YFHD D) — Bg)
19: end for

20: return (%(XL, 47), &)
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Figure 2.2: Convergence with Synthetic Data

h“\pm

| I [ ! !
200 400 600 800 1000
Iteration
Figure 2.3: Convergence with Sample Geo-Demand
T T T T 1
200 400 600 800 1000

lteration

36



CHAPTER 2. DEMAND ESTIMATION AND INVENTORY ALLOCATION FOR
ONLINE RETAILERS 37

Real Sales Data

The algorithm is then applied to past sales data of the top 100 best selling items. The
identities of the items, weeks, and customer locations have been masked and replaced by
numerical indices. There are 57.9% of entries with positive observations in the sales data
tensor with dimensions: 100 items, 125 zones and 26 weeks respectively. Since we are
interested in geo-demand distribution, the sales data tensor is normalized along the zone
dimension and leads to sample geo-demand tensor B. In reality, we do not know the “true”
geo-demand distribution. Therefore, with the output Y, we modify the stopping criterion
measure as
relative distance = % (2.9)
We set the penalty parameters as A\; = v/100, Ao = v/125, A3 = v/26 and )\, = 1. Figure
2.3 shows that the output ) converges after 100 iteration.

Qualitative Analysis

We discuss the performance of our framework by comparing the recovered geo-demand distri-
bution Y for year 2012 and the observed geo-demand distribution from year 2013. We start
by picking item 1 and zone 1 where the data for first two weeks in 2012 and the majority
of 2013 data are missing. Figure 2.4 shows the recovered geo-demand from 2012 correctly
predict the geo-demand in 2013. Moreover, the recovered geo-demand for 2013 shows similar
pattern as the observed geo-demand in 2012.

Moreover, as shown in Figure 2.5, there are smoothing effect on the geo-demand distribu-
tion. The recovered geo-demands for both years agree with each other and represent smaller
volatility over time compared to the observed geo-demands.

Consider a demand zone where usually has relatively small geo-demand, a sudden peak
of the demand in previous year can not be the signal of large demand in this year. Figure
2.6 shows that high demands are observed for several weeks in 2012. However, the recovered
geo-demand still suggests low geo-demand that coincides with the observed geo-demand in
2013. One of the benefits of geo-demand recovery is to identify “false” demand peak and
avoid mistakenly allocate more inventory to distribution centers serving that demand zone.

Quantitative Analysis

The resulting tensor Y was then multiplied to the item-week aggregation of the original sales
tensor B to obtain ‘re-distributed’ sales tensor [S’, which was then input into the multinomial
Bayesian framework [75] as the evidence data. In Qin et al. (2014) [75], the geo-demand dis-
tributions estimation problem is approached as learning the probability distribution {f,s}
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Figure 2.4: Geo-Demand of Item 1 in Zone 1

o

&

8 —

= —— Beforerec 2012

’:T ——  Afterrec 2012

uw

5 | / —— Beforerec 2013
=

o

After rec 2013

Sales Proportion
0.0010
1

[Ty
o
o -
o
=}
o
(=]
o 4
e
[=]
0
Weeks
Figure 2.5: Geo-Demand of Item 10 in Zone 10
Ty ]
8 —— Before rec 2012
e —— Afterrec 2012
—— Beforerec 2013
§ _ After rec 2013
o
§ w
2 2
2 o
[
o
i“'; o
& 2
[Ty
=]
S
(=]
(=]
o
8 -
e T T T T T
0 5 10 15 20 25

Weeks



CHAPTER 2. DEMAND ESTIMATION AND INVENTORY ALLOCATION FOR
ONLINE RETAILERS 39

Figure 2.6: Geo-Demand of Item 3 in Zone 11
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for an order of item r arising from demand zone s at time ¢. The set of sales data for item
r at time t across all demand zones is assumed to follow the Multinomial distribution with
parameters {f,s}. The high-level work flow is show in Figure 2.7. The final geo-demand
distributions were estimated by the posterior multinomial distributions. It is well known
that the quality of the evidence has strong impact on the posterior of a Bayesian framework.
By using the ‘denoised’ evidence data B of 2012, we were able to improve the estimation
for 2013 by various extents. Figures 2.8, 2.9, and 2.10 compare the generalization results of
using B as the evidence data to those using the raw historical sales data. The values being
plotted are the difference between the two, with negative values indicating improvements.
The mean absolute error (MAE) by week (Figure 2.8) was reduced for all the weeks except
one within the test horizon of 26 weeks. The MAE’s were also improved for the majority
of the items under consideration according to Figure 2.9. From the inventory positioning
and control perspective, it is also beneficial to have smaller week-over-week volatility of the
geo-demand distributions, in addition to smaller MAE’s. The reason comes in two folds:
1) The distribution center operations require smooth ramp-up and ramp-down. A smaller
week-over-week volatility would result in a smoother allocation plan of the inventory across
time. 2) In the classical EOQ paradigm [28], a smaller demand volatility generally results in
lower safety stock requirement, and hence, a lower inventory level. We measured the week-
over-week volatility by the average demand distribution variation of two consecutive weeks
for a given customer zone for each item, same as the penalty function in the fused-Lasso
[88]. Figure 2.10 shows that the fused-Lasso norm decreases for most of the items under
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Figure 2.7: Integration of HORPCA-GD with existing framework
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consideration, suggesting a smoother evolution of the demand distributions.

2.3 A Multi-product Newsvendor Model with
Missing Data

The Newsvendor Problem

Consider a firm that sells perishable goods with both understock backordering and overstock
holding costs denoted by b and h respectively. In the single period setting, the firm’s objective
is to minimize its expected costs C(q) by ordering ¢ quantity in the face of uncertain demand
D that follows some distributions. Given the realization of demand D, the total costs is
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Figure 2.8: Comparison of MAE across time
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provided by:
C(q, D) =b(D —q)" +h(g—D)" (2.10)
Thus, the expected costs is as follows:

min EC(q, D)

q>0

When the demand distribution F' is provided, it is well known that the optimal order
quantity is given by the critical fractile, e.g. b/(b+ h), that is

* e . b
¢ =inf{y: F(y) > —b+h}
The Data-driven Newsvendor Problem

In reality, the firm usually does not have access to the demand distribution. The traditional
data-driven formulation assumes that the firm has only access to well-maintained historical
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Figure 2.9: Comparison of MAE across items
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demand observations d(T') = [di, ..., dr] regarding to a specific item for T" periods. The firm
is then able to minimize the sample average cost C(¢; d(7")) by choosing the right quantity
q based on d(7") only:

T
o 1
min C(g;d(T)) = = > _[b(dr — )" + hlg = d)"]
= t=1
L I
Utrg1;1>0 C(q;d =7 ; [buy + hoy (2.11)
s.t.

UtZdt—QvtET
Ot Z q_dt,‘v’t eTl
Ut, O Z O,Vt eT

With the order statistics of historical demand observations d(t), Bertsimas and Thiele
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Figure 2.10: Comparison of fuse-Lasso norm across items
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(2005) [14] shows that the optimal order quantity satisfies:

q" = dg
where
b
= [——T1.
J [b+h |

However, when the historical demand data contains missing data, if the firm treats miss-

ing data as zero demands, the above approach provides a lower ordering quantity and putting
the the firm at a higher risk of stock out.

Basic Model

The demands of items in the same category are usually highly correlated. For example, in
the category of tablets, the demands of Apple iPad and Microsoft Surface are influenced by
several same factors: holidays, promotions and technology advances, etc. However, due to
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various reasons, such as system down, stock out and zero demand, there will be no demand
observations (sales) for some items and some periods. When there is missing data of a item,
the demand observations of other items can provides some hints of the the missing demands.
Meanwhile, impulsive purchase and sporadic promotions of some items brings noises in the
observations. In the following model, we jointly identify the noise, recover the missing data
and optimize the order quantity.

Given sales observation § for I items in the same category over T' periods and is organized

as a matrix below:
S11 ... S1T
S = : Sit :

Sri .- SIT

where s;; is the sales observation of item i in period ¢.

Following the convention in geo-demand model, let 2 denote the the indices of positive
sales. Similarly, let D be the “true” underlying demand matrix. We can write

d11 le
D= ( Coody )
dr ... dpr

where d;; is the “true” demand of item ¢ in period t.

The difference between the “truth” and observation can be summarized by the noise
matrix € and the following equation holds:

D+e=S8

Specifically, for the positive sales observations s;; > 0, we are able to identify the noise
e;; such that

dit + €t = Sz‘t,V@,t) € Q

By introducing the linear projection operator Ag: R — R™ that selects the set of m
elements of positive sales (£2) from S, we can simply write:

AQ(D + 6) = SQ

Following Candes et al. (2011) [21], we use the nuclear norm and the L; norm to replace
the rank and cardinality functions. That is, the low rankness for the “true” demand matrix
D is enforced by ||D]|« < A, where A, is the low rankness parameter and the regulariza-
tion over noise is expressed by A.||e||; where A, is the corresponding regularization parameter.



CHAPTER 2. DEMAND ESTIMATION AND INVENTORY ALLOCATION FOR
ONLINE RETAILERS 45

We are then able to write the data-driven newsvendor problem with missing data as:

I T
i S Sl o)+ A 212
s.t.
A(D +¢) = Sq
ID[ls < Ar

Wi > dip — q;, Vi, t
Oit > q; — dgt, Vi, t
Wiz, 05 > 0, V1,1
D>0

To solve the optimization problem in Equation (2.12), an alternating direction multiplier
method (ADMM) may be developed in the light of Candes et al. (2011) [21]. Through care-
ful examination of the formulation, we see that the minimization objective in the expected
profit is in line with the low rankness of the “true” demand where the demand are assumed
to be smoother than the sales we observed. The following proposition depicts the fact that
the data-driven model with missing data in (2.12) preserved the optimal order quantity in
the classic model in (2.11).

Proposition 4. For any feasible solution to the Tecovered demand D > 0, the optimal order
quantity qf for item v satisfies the critical fractile of the ordered statistics d(yy for each
1. That is,

b+h

b

(H—hﬂ-

q; = dry, where t* =

When the regularization parameter A, — oo, the sales observations are treated as “true”

demand observation without recovery and the noise matrix € is set to zero. As a result, the
model (2.12) becomes equivalent to the classic data-driven newsvendor model (2.11).

2.4 Summary

In this chapter, we present two models that deals with sales data in the context of online
retailer. An ADAL method for robust tensor recovery in high dimensional data and ADMM
in matrix completion are proposed in the two models respectively.

In the first model, we study the missing geo-demand data completion problem for a na-
tional online retailer. We formulate the problem as a low-rank tensor recover problem in a
convex optimization framework. An alternating direction augmented Lagrangian (ADAL)
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method has been developed and tailored for solving the tensor recovery problem with partial
observations. We first discuss efficiency and effectiveness of the algorithm via experiments
with synthetic data. We then apply the framework with observed geo-demand from the
online retailer. Finally, the benefits of the missing geo-demand data completion are summa-
rized based on computational experiment results. We show that the recovered geo-demand
distributions possesses more smoothness over time and rendered better generalization perfor-
mance than the observed geo-demand upon integrated into the existing learning framework.

We also integrate the missing data recovery with the data-driven newsvendor model which
provides estimation of demands as well as optimal order quantity. A preliminary analysis
shows that the proposed model preserves the condition for optimal order quantity as it is
in the data-driven newsvendor model. An ADMM algorithm may be developed as a solving
solution to the formulation. As a future work, the choices of key parameters, e.g. A, and A,
can be discussed.
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Chapter 3

Continuous Process Systems with
Flexible Recipes

3.1 Introduction

Oil consumption has been escalating in the past decades, especially in emerging economies re-
gions, such as Asia. Meanwhile, the dramatically increasing oil price is impeding the growth
of the world economy. Despite its increasing trend, oil price also exhibits high volatility. Af-
ter it reached the record peak US$ 145 in July 2008, it fell significantly to US$ 30.28 a barrel
on December 23, 2008. Such increasing trend together with jumps of prices also prevails in
other commodities over the past decades as shown in Figure 3.1. This phenomenon leads to
higher manufacturing costs as well as more difficulties in supply chain management under
price uncertainty among many industries.

Facing such challenges, joint inventory investment and allocation decision making be-
comes an important tool that makes the manufacturing systems robust. Consider an oil
refinery that converts crude oil into profitable petroleum products such as gasoline, diesel,
kerosene, heating oil and asphalt. Those products are actually inputs for further manu-
facturing processes. Generally, it operates in 3 phases: crude oil unloading and blending,
fractionation and reaction processes and product blending and shipping. In the first phase,
crude oil of different grades is transported by crude oil marine vessels from different regions.
Since the properties of crude oil highly depend on its origins, there are usually dedicated
storage tanks for crude oil of different grades. In many situations, before crude oil enters
distillation, the first step of production, different grades are blended to achieve certain prop-
erties, such as viscosity and density, in order to meet the production requirements.

The manufacturing process presented above belongs to continuous process (a.k.a. batch
process) that primarily schedules short production runs of products [32]. Continuous process
industries often obtain their raw materials from mining or from agricultural industries. These
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Figure 3.1: Selected Commodity Prices in Past 20 Years.

raw materials have natural variations in quality [78]. Some common continuous processes
can be found in fields such as oil refining, agricultural, chemicals and fertilizers. Schuster and
Allen (1998) [82] illustrates how Welch’s Inc manages grape-processing among plants using
linear program models. In that case, grapes are usually processed in plants located near
growing areas. To maintain national consistency, Welch’s often transfers juice for blending
between plants. The selection of recipes is a key decision that affects the profitability via
both operational costs and production capacity. The nature of variations in both raw ma-
terial quality and market conditions often lead to the variations in the recipes. Such recipe
flexibility is not on design but on the operation that allows adjustments of recipe items
aiming to achieve better performance than traditionally fixed recipes. Here, flexible recipe
refers mainly to the adjustments of recipe items as input of continuous process in response
to market conditions, i.e. demand arrivals.

In this work, we simplify the system by considering three types of goods: raw materials,
ingredients and final products. In the grape-processing case, we regard grapes from different
growing areas as raw materials, intermediate juice of different concentration as ingredients
and packaged juice on market as final products. The continuous process is simplified into
two phases: separation and blending. Since different raw material grades have various con-
centration of desired ingredients, in the separation stage, those ingredients are separated
first from raw materials. Then a combination of ingredients are blended into final products
that meet certain specifications.
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Literature

There are mainly two streams of literature related to our work. In the first stream, given the
structure of the system, optimal investment decisions are analyzed under demand uncertainty
and/or inventory procurement cost variability. Fine and Freund (1990) [40] investigate the
optimal capacity investment problem in single period by two-stage stochastic programming
with discrete demand distribution. Their study focuses on the case with two products, two
dedicated resources, one flexible resource. While in our study, we allow the demand distri-
bution to be unknown and the system handles multiple raw materials and final products.
Following the lead of Fine and Freund (1990) [40], under a two-product firm, Van Mieghem
(1998) [93] analyze the optimal investment in flexible resources as a function of margins, costs
and multivariate demand uncertainty. Contrary to the previous work, they show that it can
be advantageous to invest in flexible resource even with perfectly positively correlated prod-
uct demands. Harrison and Van Mieghem (1999) [48] study the optimal investment strategy
with a multi-dimensional newsvendor model and conclude a critical fractile property for the
optimal investment levels. Given the structure of an assemble-to-order system, Akgay and
Xu (2004) [4] formulate the join inventory replenishment and component allocation problem
into a two-stage stochastic program and propose an order-based component allocation rule
for the second stage problem.

In the second stream, the applications of flexible recipes in continuous processes are
mostly studied. Rutten and Bertrand (1998) [78] study the balancing of safety stock costs
and recipe flexibility costs for continuous industries with high customer service requirements.
They conclude that under certain circumstances the use of recipe flexibility can lead to lower
costs when compared to using fixed recipes. Keesman (1993) [54] investigate the application
of flexible recipes for continuous process optimization and applies an adaptive feedforward
control strategy for a priori known disturbances in the process inputs. Furthermore, a new
framework that fully exploits the inner flexibility of continuous processes at the plant level
is developed by Romero et al. (2003) [76]. Their framework considers a continuous recipe
model that interacts with a plant-wide model to constitute the flexible recipe model. The
most related work to ours, under continuous process manufacturing, is done by Karmarkar
and Rajaram (2001) [53]. They formulate the grade selection and blending problem as a
nonlinear mixed-integer program with fixed cost for grade selection and inventory holding
cost. However, they assume the annual demand is known and constant for each final prod-
ucts.

Our work is different from the literature mainly in two ways. First, in our model, the
recipe flexibility is embedded in the operations of continuous processes, rather than the
system design as seen in literature on process flexibility. Second, we study the decisions of
inventory investment, recipe selection and resource allocation in an integrated model.
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3.2 An Application Example

In this section, we briefly illustrate the application of flexible recipes in continuous process.
Consider a manufacturer, i.e. refinery or food processing factory, whose operations can be
categorized as separation and blending stages. There are 3 final products made from 3 raw
materials. The raw material inventory is given as Z = (z; = 200, 2o = 300, z3 = 400) units,
where z; is the inventory of raw material i. The raw material cost is C' = (¢; = 6,¢c3 =
4,c3 = 3) dollars per unit, where ¢; is the purchase cost of raw material ¢ per unit. In the
continuous process, raw materials are separated first into 3 ingredients, depending on their
concentration in raw materials. The ingredient concentration matrix for raw materials is

0.6 0.3 0.1
P = (0.4 0.4 0.2)
0.3 04 0.3

where row ¢ represents raw material ¢ and column j represents ingredient j.

The element on row ¢ and column j, denoted by p;;, is the proportion of ingredient j
contained in a unit of raw material 2. Then in the blending stage, final products are blended
from those ingredients. The ingredient requirement matrix for final products is

0.8 02 0
A= (O.? 0.2 O.l)
0.6 03 0.1

where row k represents final product k£ and column j represents ingredient j. The element
on row k and column j, denoted by oy, is the proportion of ingredient j required in a unit
of final product k.

In a system that implements fixed recipes, it determines the optimal fixed recipe before
any demand arrivals. The resulting optimal fixed recipe in this case is:

0.53 0.44 1.03
B = (0.40 0.18 1.29)
0.32 0.11 1.22

where row k represents final product k£ and column ¢ represents raw material . This matrix
is similar to BOM. That is, the element on raw k& and column ¢, denoted by by, is the amount
of raw material ¢ required in a unit of final product k.

For simplicity, we assume that the demand for each final product follows Bernoulli dis-
tribution with 0.5 probability equals 100 units and 0.5 probability equals 200 units. When
the system sees demand arrivals, it determines the optimal flexible recipes that maximize its
revenue with R = (r; = 10,7, = 8,r3 = 6) dollars, where ry represents the revenue of a unit
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Table 3.1: Expected Profit Summary (in dollars)

Flexible Recipes (R1) Fixed Recipes (R2) Improvements= =12
Current Setting 3525 2904.6 21.36%
Demand x2 4350 3199.8 35.95%
Demand x0.8 2880 2643.7 8.94%

final product k.

Table 3.1 summarizes the computational results of expected profit and shows that the
flexible recipes enable the system to achieve higher profit via better resource utilization,
especially under the presence of large demand variance.

3.3 The Generic Model

As shown in Figure 3.2, the continuous manufacturing process consists of two stages: in
the separation stage, raw materials are processed into a set of ingredients(or intermediate
products); in the blending stage, a selection of ingredients are blended into final products
to fulfill the demands. In oil refinery industry, for instance, the raw materials are different
crude oil grades. The three most quoted oil grades are North America’s West Texas In-
termediate crude (WTI), North Sea Brent Crude, and the UAE Dubai Crude.! Depending
on the mixture of hydrocarbon molecules, crude oil varies in color, composition and consis-
tency. Different oil-producing areas yield significantly different varieties of crude oil.2 The
ingredients are the intermediate products such as light ends, naphtha, kerosene, distillate,
atmospheric residua, vacuum gas oil and vacuum residua. Final products are various gaso-
line types, lubricants, petrochemicals, diesel, asphalt, etc,.

Our model considers a single period inventory investment problem. Hence, there is no in-
ventory cost. Moreover, there is no salvage value of leftover raw materials. We also assume
linear cost structure. There are basically three types of costs: raw material procurement
cost, grade selection cost and final product revenue. Similar to the definition by Karmarkar
and Rajaram(2001) [53], the grade selection cost incurs when a grade is selected by a recipe
into separation stage and varies by grades. Hence, the assessment of grade selection cost
highly depends on the categorization of separation stage. In the oil refinery case, the grade
selection cost can be the fixed set-up cost for the machine to process particular grade or
operating cost of pre-process blending and transportation if applicable. Raw material pro-
curement cost can be the price from real option or spot market. On the other hand, in
grape-processing case, if we see the concentrated juice (intermediate products) in different
growing areas as raw materials, the selection cost can be defined as the transfer cost among

http://en.wikipedia.org/wiki/List_of_crude_oil_products
’http://pascagoula.chevron.com/home/abouttherefinery/whatwedo/typesofcrudeoil . aspx
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Raw Materials Ingredients Final Products

Separation Blending

Figure 3.2: Simplified Continuous Process System

those areas. The model we propose is able to optimize investment on raw materials to-
gether with flexible recipe selection for production when the system sees demands. It can
be easily extend to the systems with many separation and blending stages in serial structure.

Demand D
arrives Earn revenue, 1 Xy

Raw material Recipe Selection};; f;y;
Investment};; ¢;z;

Figure 3.3: Event Sequence Diagram

The event sequence is illustrated in Figure 3.3. The system first invests in raw material
inventory with total procurement cost ) .c;z;, where ¢; is the unit cost of raw material
and z; is the amount of raw material ¢ purchased. After the system sees the demand arrivals
D = (di), where dj, is the demand of final product k, it then selects the optimal recipe to
satisfy the demands. Under the presence of grade selection cost, it is not always profitable to
satisfy as much demand as possible. As discussed above, the recipe selection cost is the sum
of grade selection costs, given by . f;y;, where f; is the grade selection cost of raw material i
and y; is the selection decision of raw material ¢. Lastly, the fulfillment of demands generates
total revenue ), 7y, where 7y is the unit revenue of final product & and zy, is the fulfilled
demand of final product k. Another assumption is that the material loss in separation and
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blending stages are negligible. Indeed, if the loss is consistent and fractional in the process,
we can introduce some discount factors in the formulation so that the structure of the model
is still preserved.

The decision making process for the system with flexible recipes differentiates itself from
the newsvendor model with the postponement in final product blending. In the newsvendor
model, the final products are produced ahead and the total manufacturing cost can be as-
sessed before demand arrivals. As a result, in the newsvendor model, the critical fractiles
and subsequently the raw material inventory levels can be determined in advance. While in
a continuous process with flexible recipes, the system makes tradeoffs between revenue and
recipe selection cost after demand arrivals.

We formulate the generic model as a two-stage stochastic program:

II =maxEpn(Z,D) — Z CiZi (3.1)

where
7(Z, D) :maXZrkxk - Z fivi (3.2)
k i

s.t.

A(z1, 29, ...y i) < P(z191, 22Y2, vy 21Y2) (3.3)
T < dk,Vk e K
ye {0,1),¥ie I

Uppercase is for vectors while lowercase is for scalars. The first stage of the formulation
maximizes the expected total profit of the system. Given raw material inventory vector Z =
(21, 29, ..., z1) and demand arrival vector D = (dy,ds, ..., df), the second stage with recourse
maximizes the total revenue minus total grade inclusion cost as shown in subproblem (3.2).
In constraint (3.3), A(xy,22,...,2k) is a material transformation function that calculates
the ingredient requirement vector given the demand fulfillment vector X = (x, z, ..., Tx).
P(z1y1, 229, .., 21y2) is another material transformation function that calculates ingredient
supply vector given the recipe selection Y = (yi, 92, ...,y7) and raw material inventory Z.
Because the initial inventory investment is sunk cost, (z1y1, 22¥2, ..., 21ys) shows that the
system chooses to use up all selected raw materials. This constraint states that the supply of
each ingredient must be no less than the ingredient requirement for producing X amount final
products. Constraint (3.4) represents that demand fulfillment can not exceed the demand
arrivals. The recipe selection is determined by the binary decision vector Y expressed in
constraint (3.5).
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3.4 Analysis of Special Cases

The generic model (3.1) is a Stochastic Mixed Integer Program (SMIP) which may not be
easy to solve. In this section, we study some special cases to explore structural properties of
the system.

Case 1: System with Zero Grade Selection Cost

In the absence of grade selection cost, we can eliminate the binary decision variables in the
formulation as all available raw materials will be considered in the recipe and result in the
following linear program.

— _ 7
1= maxEpm(Z, D) - "2 (3.6)
where
7(Z,D) = max Z TET (3.7)
keK
s.t.
> wwony <z Vi€ T
ek iel

T < Dk,Vk e K

Lemma 2. Given the raw material inventory Z and demand realization D, the subproblem
w(Z, D) is a concave function in Z.

Proof. Consider the subproblem (3.7), suppose X! and X? are the optimal solutions to
7(Z', D) and w(Z?, D) respectively. Then, a X!+ (1 —a)X? is a feasible solution to w(aZ! +
(1 —«)Z?, D). As aresult, ar(Z',D) + (1 — a)n(Z* D) < n(aZ' + (1 — ) Z?, D), since
m(aZ' + (1 — a)Z?, D) is a maximization problem. O

In fact, the flexible recipe system with zero grade inclusion cost can be transformed to the
multi-dimensional newsvendor model presented in Van Mieghem (1999) [48]. Their model
optimizes the capacity investment when the firm is facing random demands. If we view the
ingredient amounts as the capacity investment L for final product manufacturing, let

P'Z =1L
Problem (3.6) can then be rewritten as:

II =maxEpn(L,D) — C(L)
L>0
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where
7(L, D) = max RTX
s.t.
ATX <L
X<D
and

C(L) =min C*Z
s.t.

PTZ > L

Z >0

It is well-known that C'(L) is convex. Though the results in Van Mieghem (1999) [48] are
derived from linear investment cost function, they can be directly generalized to any convex
function C'(L).

Problem (3.6) is essentially a two-stage stochastic linear program. Therefore, by Lemma
2, the optimality condition for problem (3.6) is:

Ce VEDW(Z, D)

where VEpm(Z, D) is the subgradient of Epm(Z, D).

Since m(Z, D) < oo by the finiteness of demands, the problem has relatively complete
recourse. Use the argument (Corollary 12, pp.96) in [16], we can then interchange differen-
tiation and integration to rewrite the optimality condition as:

C € EpVr(Z, D)

where V7(Z, D) is the subgradient of 7(Z, D).

The subgradient V7 (Z, D) for given Z and D is simply the optimal shadow prices given
by the dual of constraint 3.7:

min \" PTZ + " D (3.8)
s.t.
AN+ u>R

The subgradient of the optimal profit function 7 (Z, D) with respect to Z is:
Vn(Z,D) = PXZ,D)
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where A\(Z, D) is the optimal solution to the dual problem (3.8).

Following the statement in Harrison and Van Mieghem (1999) [48], we have a similar
result below.

Proposition 5. Let the demand D is continuous and finite with probability 1, the expected
profit function BEpm(Z, D) is differentiable. Therefore, the optimality condition is given by:

PEpA(Z,D) = C (3.9)

Case 2: Single Final Product

When the firm only sells single final product, we only need to consider raw material in-
vestment decision for that final product. We call a system decentralized if the system is
decomposed into several flexible recipe systems with single final product. The total optimal
raw material investment is simply the sum of investment for each decentralized system. As
a result, though it does not provide full flexibility, the decentralized system can be viewed
as an approximation to the original system with flexible recipe. Apparently, such ignorance
leads to higher raw material investment requirement to maintain same service level as that
of original system.

Consider the flexible recipe system with single final product (FRSF), the corresponding
optimal expected profit is:

I = max By (Z, d) — ctz (3.10)
where
w(Z,d) = maxroz— Z fivi (3.11)
i€l
s.t.
el
r<d (3.13)

y; €{0,1},Vie I
Proposition 6. The second stage allocation optimization in FRSF is NP-complete.

Proof. First, we argue that the FRSF is in NP, since given a solution (z, y1, ..., yr), a certifier
can efficiently check that x is no greater than d and ajx is no greater than ., pi;zy; for
all j € J in |J| + 1 time. Moreover, set cover problem is a special instance of the FRSF
by setting the revenue per unit to a large number (i.e.1000), the grade selection cost and
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demand to one, and 3;; = Z% to either zero or one. The second stage formulation is reduced
J

to the set cover problem:

minZyi
s.t.
1< Zﬁijyiaw €J

i€l

yi € {0,1},Vie I

It is known that set cover problem is NP-complete. The reduction indicates that second
stage allocation optimization in FRSF is NP-complete. O

Lemma 3. In a flezible recipe system with single final product, let I' = {i € I|z; > 0}, for
any I" C I, there is r minj{2i+jmjzi} — D e fi <rx minj{z%jmm} — > iep fi- That
is, in second stage allocation optimization, the mazximum profit that I' generates is always
larger than the mazimum profit that its subset I" generates.

el fi > T*minj{—ziGij”zi}_
> icp fi- Since I" C I', we have minj{—z"ef;;pijzi} < minj{—Ziegjpijzi}. Ifd < minj{—Zieg;pijZi},
we use at most I” to satisfy the demand. If d € [minj{z%jp”zi}, minj{z%jmjzi}], we still
use I” to satisfy the demand, because r xd — ., fi < 7 * minj{zi%jmm} — D ier fi <
r *minj{izi%jp”zi} = e fi- I d > minj{z"%jp”zi}, the set I” is again preferable over I’
because 1 * minj{2+fﬂ} — D e Ji ST minj{z:i%jp”z"} — > ;e fi- This implies that

we never select raw material ¢ € I\ I”. We should then set z; = 0,Vi € I"\ I”. This reduces
I’ to I"”. Contradiction. Therefore, we conclude the result above. a

Proof. Proof by contradiction. Suppose r*minj{w}—z
J

Lemma 3 implies that if the system chooses or has to not fully satisfy the demand, it
selects a set of raw materials that outperforms all its subset.

Two Raw Materials and One Final Product

We start with the most simple case to investigate the role of flexible recipes in continuous
process. The system we consider here consists of only 2 kinds of raw materials and 1 final
product. The two-stage stochastic program can be explicitly expressed as:

IT = max Eym (21, 20, d) — c121 — C229
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where

(21, 22,d) =maxrz — fiy1 — fay
s.t.
a;x < Z pij(2:y:),Vj € J
i=1,2
xr <d,
v € {0,1},i=1,2

Let the upper bound of the demand be d and define p; = min; {22} and p, = min; {2}
J J
Without loss of generality, we further assume that f; < f;. Based on Lemma 3, we have

? z
max{rp121 — f1,7paz2 — fa} <7 % mln{w
J

}—fi— (3.14)

J

This result enables us to further summarize the optimal selection of raw materials in the

second stage allocation optimization based on the regions of z; and z, and the realized
demand intervals.

Table 3.2: Optimal Selection in System with Two Raw Materials and One Final Product

Regions Boundary Optimal Selection for demand intervals
I {rpiz1 — f1 <0, de0, 2]« 0
TPQZQ—f2>0} dE[prZ +f1]<—{2}
d e [0222+f1 d +{1,2}
II {rpiz1 — f1 >0, dclo, {}]<—®
rpeze — fo < 0} de [%,P121+%] <~ {1}
de[pizm+L£2,d « {1,2}
11 {rp1z1 — f1r >0, d €0, fl](—@
T’ngQ—f2>O, de [ﬁ?plzl—i-b]%{l}
rp1z1 — fi > 1paza — fa} de [P121+f2 d + {1,2}
v {rpr21 — f1 >0, de|o, {}] 0
T'pQZQ—f2>O, de [ p 21 +f2_fl]<—{1}
rp1z1 — fi < rpaze — fo} d € [prza1 + L flaﬂz + ] {2}
d e [022’2+f1 ]<—{1 2}
Vv {rplzl — fl <0, de [0 f1+f2] — 0
TpP2z9 — f2 < 0} de [f1+f2 7] — {1,2}

In Table 3.2, we can see different roles that each raw material plays in optimal selection.
In region I, raw material 2 acts as a primary resource while raw material 1 is supplementary
that is only selected together with raw material 1 when the demand is large. Similarly, in
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region II and III, raw material 1 acts as a primary resource while raw material 2 is supple-
mentary. In region IV, raw material 1 and 2 serves as primary resource alternatively. In
region V, it is profitable only when raw material 1 and 2 are selected together. We conclude
that only the raw material with positive value of rp;z; — f; can become primary. That is,
the primary resource should provide positive profit when it is selected as the only source.
When both raw materials give positive value of rp;z; — f;, the one with smaller f; serves as
primary for small demand and the one with larger rp;z; — f; is primary for larger demand
before both raw materials are selected.

Given the parameters pi, p2, the region partition is illustrated in Figure 3.4. Here, dif-

ferent regions are separated by lines: z; = L, = 2 and rp1z1 — fi = rpeza — fo.

rp1 rp2

22 A

rp1Zy — f1 =Tpazy — fy

v

fi Z

Z1 =
rpq

Figure 3.4: Region Partition

Figure 3.5 shows an example of the performance of different investment in raw material
1 and 2. We then try to find the extreme point with highest expected profit.

Suppose that demand is continuously distributed with pdf ¢(d), concave cdf ®(d) and
support [0,d],i.e. truncated Normal distribution. Upon the knowledge of region partition,
we try to find the optimal z afd z5. In the analysis, we first define a new de%ision(control)

zla pzj 22 } o

. o i P1j . . . Op &
variable p(z1,22) = min;{ which is concave in z; and zo. Define 5o and 32 as

the subgradients associated with z; and 2.

Lemma 4. The subgradients satisfy: 5)7” > p1 and BB—Z’; > pa.

1 =
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Figure 3.5: Average Profit over All Regions

Proof. Let Az, be a small increase in raw material 1 inventory, 7/ = arg minj{%}
J
and j* = arg minj{p”(zﬁijl)ﬂ%”}. Then we have
(21 + Azp) + pojez 21+ Dojiz i+
plzr + Az, z) = 22 & DRRCIE I SRR R N LN p(21 + 2) + Az
Oéj* Oéj/ Ozj*
As a result, a%% > 2 (Z1+AZI’AZ;1)7’) (z122) > p1 Similarly, we have a%% > po. O

Lemma 5. II is concave in each region.

Proof. Given the concavity of ®(d) and p(z1, 22), one can write II explicitly and check the
concavity in each region by second order subgradients. O

A Search Algorithm to First Stage Investment Optimization

For the system with two raw materials and one final product, we can determine the opti-
mal solution by solving local optimal solutions in all regions and then determine the global
optimal solution simply by comparison. Since the number of region partition grows expo-
nentially in the number of raw materials, it is inefficient to find every optimal solution in
each region and then determine the global optimal solution. It is important to determine in
which region(s) the global optimal solution can be found. We start the heuristic with sorting
of grade selection cost and individual profitability of each raw materials:
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Step 1 Sorting the grade selection costs in ascending order, e.g. f1 < fo;

Step 2 Start from the point (L= f—Q) If ;—1 < ;—z, search optimal solution Z in Region II

rp1’ Tp2
and IIT; If % > Z—z, search optimal solution Z in Region IV.

Step 3 Compare Z with (27,0) and (0, 23), where (z},0) is the optimal solution assuming
use raw material 1 only and (0, z3) is the optimal solution assuming use raw material
2 only and determine the optimal solution.

By Lemma 5, the optimal solution in each region can be solved by its concavity. The
explicit expected profit function and its subgradients in each region are derived as below:

1. Region II and III:

p121 p1Z1+f72
H(Zl, 2’2) :T/ th(t)dt + 7"/ p12’1¢<t)dt

4 piz1

(21,22) d

p1Z1—|-f72 p(z1,22)
fi fo
- fi(1— @(7)) — fo(1 = ®(p121 + 7)) — 121 — C222
oIl 0
=l + ) — ez + - e

p(z1 + €, 22) — p(z1, 22) [
€

~rp @z 12) @) 4 1= d(p(er, )] — 1

Ol 9p(21,22)
822 =r 822 [1 - (I)<p(zl7 22))] — C2

NTP(ZL 2o +€) — p(z1, 22) [

€

1= ®(p(z1, 22))] — c2,

where € is a small step size.
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2. Region IV:
p121 pra+8220 p2z2
M(24, 2) —r / to(t)dt + 7 / b (B)dt + / to(t)dt
‘f71 p121 p1Z1-i-f2—fT1
pQZ2+f71 p(z1,22) d
or [ pmotwden s [ woatrr [ e mot
p222 P222+f71 p(z1,22)
Al + 2 el - et
— fo(1 = @(p121 + f2 ; fl)) — C121 — C229
oIl - 0
o =rmle(a + 20 e - a0 -
- + ) - )
~rp1[@(prz1 + £ . fl) — Q(p121)] + e Z2i e [1=®(p)] —a
o J1 dp
o =rp2|®(p2z2 + " ) — ®(p222)] + "o [1—@(p)] — 2
) + - )
~rpal®(paza + 1) — ()] 4 AL LTI PR gy,

where € is a small step size.
3. Use raw material ¢ only: The first stage expected total profit
pizi d f
= pizi r

and the the optimal z; is

2 = max{0, ——— %~}

We compare the results of the heuristic with the solutions obtained by numerical search.

0.6 0.3 0.1)

In the simulation, we assume that demand is uniformly distributed, P = (O 9 04 04

and A = (0.5 0.2 0.3). The results are summarized as follows:

In Table 3.3, we notice that the gap between the average profit obtained from the heuristic
and that from numerical search is small. Moreover, decrease of fixed cost improves the
average profit significantly by comparison of Run 1 and Run 3. When the revenue is small,
as shown in Run 4, the system’s optimal decision is not to satisfy demand at all. Moreover,
the fixed costs f are generally positively correlated to purchase costs c¢. As a result, the case
of Run 2 will rarely happen in reality.
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Table 3.3: Average Profit of Selected Runs
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Parameters: Run 1 Run 2 Run 3 Run 4
C:(Cla 62) (476) (6a4) (476) (476)
R 20 20 20 10
F=(f1, f2) (50,100) | (50,100) | (20,50) | (50,100)
Heuristic 344.33 320.46 | 417.20 0
Numerical Search | 349.39 343.39 | 419.37 0
Optimality Gap 1.4% 6.7% 0.5% 0

3.5 The Linear Model

When material transformation processes are linear, the generic model (3.1) can be simplified
as a stochastic mixed-integer linear program by writing constraint (3.3) with matrices A and
P.

1T = maxEpm(Z,D) = > ez (3.15)
i€l
where
7(Z, D) = max Z TRTl — Z fivs (3.16)
keK iel
s.t.

Z Ty < Zpijziyiavj eJ (3.17)

keK i€l
vy, €{0,1},Vie I (3.19)

Similar to the generic model, the objective of the basic model is also to achieve the
maximum expected profit expressed in objective function (3.15). Given Z and D, the system
maximizes its profit in the second-stage subproblem (3.16). Under the two assumptions,
constraint (3.17) is an explicit expression of constraint (3.3). Here ay; is the amount of
ingredient j required to produce a unit of final product k and p;; is the amount of ingredient
j contained in a unit of raw material 7. The remaining constraints are the same as those in
the generic model.

A Heuristic to Second Stage Allocation Optimization

According to Proposition 6, the second stage allocation problem is NP-hard. Hence, a
heuristic solution might be needed when the system is of large scale. In the following, we
present two heuristics for the mixed-integer subproblem.



CHAPTER 3. CONTINUOUS PROCESS SYSTEMS WITH FLEXIBLE RECIPES 64

Lagrangian Relaxation Algorithm

The second stage is a fixed-charge problem with fixed cost of selection f. We first pro-
pose a lagrangian relaxation algorithm. Relaxing constraint (3.17) provides the resulting
Lagrangian subproblem:

/\;l(f)livl}ejmax TRTE — Z fiyi + Z )‘j(z WijYi — Z TpCigs)
>0,

ke K il Jes el ke K
= E (rg — E QpjAj)T) + E (E Ajwij — fi)yi
ke K Py el et

s.t.
T < dp,Vk € K
yie {0,1},Viel

where Wi = Piji-

By observation, we are able to identify the opportunity to separate the problems for x;
and y; respectively into the following subproblems:

1. Subproblem 1:

maxg (rp — E Qi) Tk
keK jeJ

s.t.
T < dk,V/ﬁ e K

Optimal solution: if r, — Z]EJ ag;Aj > 0, set xp = di; Otherwise, set x, = 0.

2. Subproblem 2:
maxZ(Z Ajwig — fi)yi
iel jeJ
s.t.
y; € {0,1},Vie [

Optimal solution: if > ._; A\jw;; — fi > 0, set y; = 1; Otherwise, set y; = 0.

jed
The remaining part of the algorithm follows the standard lagrangian relaxation algorithm
to update the lagrangian multipliers.

“Greedy Add” Algorithm

The “greedy add” algorithm iteratively improves the solution by gradually adding a raw
material into production and achieve profit increments by improving demand fulfillments.
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The algorithm starts with no selection of raw materials. In each iteration, it does a what-if
analysis to find the selection of raw material that increases the profit the most. The ter-
mination condition is that all demands are satisfied or all raw materials are selected or no
further improvement can be obtained. The detailed algorithm is as follows:

e [teration 0: initialize t =0, S; = I and y; = 0,Vi € S;; Since there is no raw material
included into production, 7%(Z, D) = 0.

e Iteration t = t + 1: set S = S U {i} where i € T\ S*!; For all S}, solve the
continuous knapsack problem,

keK ieS?
s.t.
E Trog; < E 2ipij, V] € J
keK i€S?

T < Dk,Vk e K

o If max{r!{(Z,D),Vi € I\ S '} > n71(Z,D), set 7*(Z,D) = max{ri(Z,D),Vi €
St=1} and S* = S U {arg max;ep -1 m(Z,D)}; Otherwise, stop and set 7¢(Z, D) =
7Y Z D) and S = St

Performance of “Greedy Add” Algorithm for 2nd Stage Allocation Optimization

We test the heuristic on a system consists of 20 raw materials, 3 ingredients and 5 final
products. Given the raw material inventory, the system makes raw material selection deci-
sions and further allocation decisions. In the experiment, we try two sets of grade selection
costs: the homogeneous and the heterogeneous selection costs. In the first case, all selection
costs are set to be 100; while in the latter case, the selection costs are set to be 50 for
odd indexed raw materials and 100 for even indexed raw materials. The inventory of each
raw material is equally set to be 100. Moreover, the ingredient concentration matrix and
ingredient requirement matrix are specified as inputs. The demands for final products are
independent and equally likely to be {100, 200, 300, 400, 500}. We solved the system for all
3125 demand scenarios by the heuristic and compare the sample average profit with exact
solution provided by CPLEXMILP solver. The results are summarized in Table 3.4:

Table 3.4: Performance of “Greedy Add” Algorithm

f = 100 fodd = 50, feven = 100
Expected revenue by exact solution (dollars) | 7453.6 7853.5
Expected revenue by heuristic (dollars) 7412.6 7806.7
Gap 0.55% 0.60%
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3.6 Simulation-based Optimization

In this section, we focus on solving the linear model with exact solutions to the second-stage
allocation problem. Our solution approach to the proposed two-stage stochastic mixed-
integer program consists of two modules: demand simulator and SAA optimizer, as shown
in Figure 3.6. Given the available historical demand data, the demand simulator generates
simulated demand arrivals. There are several ways to simulate or forecast demands based
on previous information. Here, we use Bootstrap sampling in the demand simulator.

Output:
inventory
levels

Input: Demand SAA

historical ] L
data simulator optimizer

Figure 3.6: Solution Approach

With the simulated demand arrivals, the second module finds the optimal inventory levels
by Sample Average Approximation (SAA), an simulation-based approach. The algorithm is
modified from the SAA method provided in Akgay and Xu (2004) [4]. A detailed introduc-
tion of the SAA method can be found in Shapiro and Homem-de Mello (1998) [84].

Let TI(Z*) be the optimal solution to the two-stage stochastic program in the linear
model (3.15) and Z* be the associated optimal inventory levels. We start with generating M
independent samples of random vector D from the demand simulator, each of size N. That is,
D' = (D', D2, ..., DYV is the realization of the [th sample, where DY = (5", ds", ..., d\]")
with di” as the realization of demand for final product k in the hth vector of the Ith sample
realization. We solve the SAA problem referring to each sample, as below:

N
max {HN(ZZ) = % ; w(Z!, D) — ; cizf} (3.20)
s.t.
Constraints (3.17) — (3.19) for each D" h=1,...N (3.21)
where Z! = (2,24, ..., 2%)

For | = 1,..,M, let IV (Z') be the corresponding optimal solution to the above SAA
problem and Z! be the associated optimal inventory investment. Since Z* is always a feasible
solution to problem (3.20), we have TV (Z!) > TI(Z*) for all [ = 1, ..., M. We then have,

M
_ _ 1 ~
E[IN] > 11(Z*), where ITV = 7 > 1N (Z
=1
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Therefore, E[ITV] is used as the estimate of an upper bound of IT1(Z*).

In order to have an unbiased estimator of H(Z '), we again generate one large number of
independent sample from the demand simulator, DY = (D', D2, ..., DV'). Then, for each
inventory level vector Z!, compute the estimate of I1(Z!) by

N/

At A 1 A
Y (zh = - > w2, DM =D el

h=1 icl

where W(Zl, D) is the optimal solution to the second stage allocation optimization with
inventory vector Z' and demand realization D".

The estimated optimal inventory vector Z* is then determined by choosing the one that
gives the largest IV /(Zl) among all candidate inventory vectors Z! with sampled demand
realizations, as follows:

Z* € argmax{II"'(Z"),1 = 1,..., M}

Since Z* is a feasible solution to the linear model (3.15), we further have

E[IIY(2)] < 1(Z")

As a result, £ [fIN '(2*)] can serve as a lower bound of II(Z*). Thus, the difference between
E[MIN] and E[IIV'(Z*)] is an estimate of the optimality gap of SAA solution. In brief, the
SAA method works in the following procedure:

Step 0 Determine appropriate values for N, M and N’, and initialize [ = 0;

Step 1 Set [ =1+ 1 and generate an independent sample D! = (DW, D42, .. DYYY); Solve
the SAA problem (3.20)-(3.21) for Z! and TIV(Z'); If | < M, go to Step 1; otherwise,
go to Step 2;

Step 2 Generate an independent sample DY = (D', D2, ..., DN'); Initialize | = 0;

Step 3 Set [ = [+ 1 and solve the SAA problem with DV and Z' for ﬂN/(Zl); Ifl < M,
go to Step 2; otherwise go to Step 4;

Step 4 Choose Z* € argmax{IIN'(Z!),l =1,...,M};

The quality of the solution, measured by the optimality gap, improves as the sample
sizes N and N’ grow. However, larger sample sizes require higher computational capacity.
Therefore, tradeoff between sample sizes and computational effort need to be considered.
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3.7 Numerical Study

In this section, we apply the proposed approach to a real-world flour manufacturing system
with one-year demand data and some scaled cost values. The system produces 18 kinds of
flour “A” to “R” for different uses from 3 grades of wheat numbered “1” to “3” from different
origins. The ingredients are mainly starch, protein and fiber. The wheat with higher protein
concentration costs more. The costs, ingredient concentration, and requirement matrices are
summarized in Table 3.5.

Table 3.5: Parameters in Numerical Study

c($/kg) f(10°%) | r ($/kg) | Starch (100%) Protein (100%) Fiber (100%)

Wheat 1 2.10 2.0 0.80 0.10 0.10
Wheat 2 1.83 2.5 N/A 0.60 0.15 0.25
Wheat 3 1.78 3.0 0.50 0.30 0.20
Flour A 2.63 0.98 0 0.02
Flour B 2.43 0.95 0 0.05
Flour C 2.21 0.72 0.1 0.18
Flour D 2.38 0.88 0 0.12
Flour E 2.40 0.88 0.02 0.1
Flour F 2.19 0.8 0 0.2
Flour G 2.15 0.68 0.15 0.17
Flour H 2.41 0.93 0 0.07
Flour I 2.06 0.75 0 0.25
Flour J N/A N/A 1.79 0.65 0 0.35
Flour K 1.77 0.2 0.7 0.1
Flour L 2.33 0.76 0.1 0.14
Flour M 2.13 0.57 0.2 0.23
Flour N 2.37 0.57 0.33 0.1
Flour O 2.23 0.33 0.52 0.15
Flour P 2.41 0.3 0.65 0.05
Flour Q 2.36 0.09 0.87 0.04
Flour R 1.48 0 1 0

The sample demand arrivals are generated by the demand simulator module, which im-
plements Bootstrap sampling in the current setting. The SAA optimizer module is realized
via CPLEX solver with N = 100, M = 30 and N’ = 500. We compute the average profit,
inventory investment in dollar value and gaps for various parameter settings listed in Ta-
ble 3.6. As mentioned in the SAA algorithm, the gap is defined as the difference between
the upper and lower bounds. The upper bound is estimated by IV = % 2;\11 v (Z’) and

the lower bound is estimated by %Zi\; m(Z*, D") — Y icr CiZ . For current parameter
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setting, the optimal solution given by our approach is $2721.74x10° with inventory levels
[5718.194;0;4041.851] for wheat 1, 2 and 3 respectively. We summarize the computational
results of run 1 to 5 for flexible recipe system in Table 3.7.

Table 3.6: Experiment Setting of Selected Runs

Wheat costs Grade selection costs
Run 1 | [1.680;1.464;1.424] [2;2.5;3]
Run 2 | [1.890;1.647;1.602] [2:2.5;3]
Run 3 | [2.100;1.830;1.780] [2;2.5;3]
Run 4 | [2.310;2.013;1.958] (2;2.5;3]
Run 5 | [2.520;2.196;2.136] [2;2.5;3]

Table 3.7: Results for Flexible Recipes

Avg. profit (10°¢) TInv. (10°$) Gap
Run 1 6750.69 17631.84 1.82%
Run 2 4666.52 18948.49 0.91%
Run 3 2721.74 19275.04 0.05%
Run 4 938.55 18000.56 0.41%
Run 5 30.22 3310.80 0.15%

For the selected run 1 to 5, all gaps are less than 2%. This suggests the good perfor-
mance of the simulation-based approach with our choice of N, M and N’. If the gap is big,
the number of samples N and N’ should be increased accordingly. Besides, both the average
profit and total inventory investment decrease convexly as the raw material cost increases.
This implies that the system tends to stock less inventory when raw materials cost is high.
Recall that in newsvendor model, the critical fractile decreases linearly with production cost
and thus the inventory level also decreases convexly if the demand distribution is concave,
i.e. Normal distribution.

The impact of large grade selection cost is illustrated in Figure 3.7. The increasing grade
selection costs decrease the average profit at a mild rate. Meanwhile, grade selection cost
increase does not change the inventory investment significantly. Since the grade selection
costs are only scaled by multipliers, their relative ranking among different raw materials are
not changed. As a result, the preference among wheat are not much affected. This makes
the inventory investment decision and average revenue almost unchanged. Therefore, the
average profit, which equals average revenue less inventory investment and grade selection
costs, decreases linearly in the multipliers of grade selection costs.
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Figure 3.7: Average Profit and Inventory Investment for Different Grade Selection Costs

Table 3.8: Comparison of Flexible Recipes and Fixed Recipes

Run 1 Run 2 Run 3 Run 4 Run 5
Flexible | Avg. Profit (106$) 6750.69 4666.52 2721.74 938.55 30.22

recipe Inv. (1O6$ ) 17631.84 18948.49 19275.04 18000.56 3310.80
Flexible | Avg. Profit (10°$) | 4869.70  3244.55  1695.32 448.34 0
recipe: Ratio 72.14% 69.53% 62.29% A47.77% 0%
wheat 1 Inv. (106$ ) 14188.77 14384.60 14035.47 11636.23 0
Flexible | Avg. Profit (106$) 5834.94  3551.48  1595.87 85.50 0
recipe: Ratio 86.43%  76.11%  58.63% 9.11% 0%

wheat 2 Inv. (1058 ) 18140.89 18677.88 19062.30  7330.68 0
Flexible | Avg. Profit (10°%) | 5039.26 ~ 3151.62 1786.61  695.27 29.62
recipe: Ratio 74.65%  67.54%  65.64%  74.08%  98.02%
wheat 3 Inv. (10°$) 16165.77 14579.06 12421.80 10315.34 3256.07

We consider three simple fixed recipes. That is, fixed recipes with single source: wheat
1, 2 or 3. Table 3.8 summarizes the computational results of the average profit, inventory
investment as well as the ratio between average profit of the flexible recipes and those of the
fixed recipes. For all experiments, flexible recipes can always achieve larger average profit
than fixed recipes. For example, in run 1, the “best” fixed recipe can at most generate 86.43%
of the average profit of flexible recipe. Meanwhile, in run 5, which is an extreme case, wheat
1 and 2 are too costly to be used as raw materials. This leaves wheat 3 as the only choice as
raw material for the flexible recipe. Therefore, in run 5, the flexible recipe is equivalent to
the fixed recipe with wheat 3. In addition, as we see from run 1 to 3, the optimal solution
of the flexible recipes requires not much more or even significantly less inventory investment
than the “best” fixed recipes. That is, flexible recipes achieve higher average profit with
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lower inventory investment than fixed recipes.

3.8 Summary

In this chapter, we propose a two-stage stochastic mixed-integer program to an inventory
management problem in continuous process with flexible recipes. In the first stage, the model
determines inventory levels for each period based on past demand data. After demand ar-
rivals are realized, the second stage recourse makes recipe selection and allocation decisions
in production. With available historical demand data, a simulation-based approach based
on SAA algorithm is developed to solve the stochastic program. The results of numerical
study show the performance of the approach on various cost settings as well as the benefits
of flexible recipes over fixed recipes.

In the proposed approach, we focus on the application of the SAA algorithm and use
Bootstrap sampling as the default in demand simulation. A direction of future improvement
is to incorporate better techniques in the simulation of future demand arrivals based on
historical demand data. Those techniques may consider some properties of the demand,
such as seasonality and autocorrelation. Also, with limited demand information, a robust
optimization model might be developed that considers the worst cases. Moreover, since our
model assumes any inventory leftover at the end of each period is disposed, the extension
that relaxes this assumption and introduces inventory holding cost in multi-period setting
should also be investigated.
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A.1 Summary of the Notation

Table A.1: Notation

Parameters Symbol Units Definition
aij [0,1] Utility of serving destination j for a customer in region i
bi [0,1] Utility threshold for a customer in group k to adopt the service
f fixed membership fee
r $ per unit of time Usage based price of the service
i $ per unit of time Repositioning cost
c $ per unit of time Charging cost
a (0,1) EV availability (service level)
Qik Customers Population of customer group k in region ¢
Gi $ Fixed coverage cost of region ¢
Qij [0,1] Expected value of a;
T Covariance matrix of a;; for region ¢
Wi Trips per unit of time Outbound trip rate from region ¢
P, [0,1] Probability of an arrival EV needs recharge
P;; [0,1] Proportion of customer flows to destination j from origin ¢
te minute Average charging time
tij minute Travel time to destination j from origin 4
Tij minute Reposition time to destination j from origin ¢
L; EVs Expected available EVs in region ¢
Wik [0,1] Population weight of customer group k in region ¢
Vik [0,1] Proportion of outbound trips by customer group k in region 14
Decision Variables Symbol Units Definition
Z; {0,1} 1 if region ¢ is served; 0 otherwise.
Qik [0,1] Expected adoption rate of customer group k in region &
A; EVs per unit of time Arrival rate of EVs available for customers in region
Ai EVs per unit of time External EV arrival rate to region i from Charging Stations
it [0,1] Probability of an EV arrival at j is repositioned to [
Diji EVs per unit of time Repositioning trip rate of EV arrivals from ¢ at j to [
N EVs Fleet size
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Appendix B

Proofs of Analytical Results

B.1 Proof of Lemma 1

We begin the proof with the computation of worst-case probability constraint (1.4). For the
ease of computation, it is safe to temporarily drop the index ¢ € [ and k € K. Given the ser-
vice region decision x, the worst-case probability constraint V(x) = sup Prob(}_,; ai;z; <
bx) can be obtained by solving:

max E[/(a)]
s.t.

/ﬂ%i[?] H]Tp(a)da:z

where p € P is the probability density function and I(a) is the indicator function defined as

L if Y. ;a2 <D
_ ) jeg Wity =
Ia) { 0, otherwise

We write the Lagrange function with symmetric multiplier matrix M € §,41

L(p, M) = /Ri I(a)p(a)da + <M,E - /R1 { ?] { ?rp(a)da>

= (M,Y) +/ (I(a) — l(a))p(a)da

Ry
where [(a) = a” 1 ]M[a 1]7. Since 3 = 0, strong duality holds. Therefore, we have

V(x) = inf sup L(p, M)

M=MT pep
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where
sup Lip. M) = (M.5) + sup | , (@) = 1(@)p(a)ia

[ (M,%), if I(a) —I(a) <0,Vae R}
| +oo, otherwise.

V(x) is finite if and only if I(a) — [(a) < 0,Va € R"}. There are two cases:
1. l(a) > 0,Va € R%. Equivalently, M >, 0.

2. l(a) > 1,Va € R such that ZJEJ ajz; < b. That is, there exist a scalar 7 > 0 such

0 X

— Ty — i
that, I[(a) > 1 — 27(a’x — b). Equivalently, M + T 1 —9rp | Zeo 0.

The worst-case probability constraint V' (x) is then the solution to the following copositive
program (CP):

V(x) =min(M, ¥)
s.t.
720
M =0

0 X

.
M+|:TXT —1—27b} Zeo U-

We then complete the proof by restoring the indices ¢ € [ and k € K to the probability
constraint and replacing the worst-case probability constraint V' (x) < ¢ with the above CP:

maXN Z Z fQirGir — Z g:ix; + O(x;, ¢ir,, )

BTN ST kek icl
s.t.

(M, i) <1 — g, Vi € I,Vk € K
T > 0, Vi e ILVk € K
M = 0,Vi € [,Vk € K
M, + { nkOxT ;) Zik;nkbk } = 0.Vi € IVk € K
G < z;,Vie [,Vk e K
z; € {0,1},Vi € 1.
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The last step is to linearize the term 7;x. Since x is a binary vector and 7; is continuous, we
can replace the term 7, X by vector d; with the following constraints:

— px < d;
d; < px

e+ p(x—e) <d;
d; < e+ p(e — x)

where p is a large scalar and e is the vector of ones. This completes the proof.

B.2 Proof of Proposition 1

By restricting the copositive constraints with semidefinite constraints, we obtain a lower
bound to the optimal solution to the formulation with copositive constraints in Lemma 1.
When ©(x;, ¢k, @) is linear, the following formulation is a mixed integer semidefinite program
(MISDP):

max D> [Quain — Y giwi + (@i, g, )

i€l keK el
s.t.
(Mg, Xig) < 1 —qa, Vi€ I,Vk € K (B.1)
My, = 0,Vi e ILVk e K
Mik+[ OT i }zovm[wcez(
di" —1—27;.bs ’ ’

—px <dy,ViecI,Vke K

di < px,Vie I,Vke K

e + p(x —e) < dy,Vi € [,Vk € K

dix < Tipe +ple —x),Vie I,Vk € K

Tk > 0,Vie I,Vk e K (B.2)
qir < z;,Vi € [,Vk e K

z; € {0,1},Vj € J.

El Ghaoui et al. (2003)[39] provide a closed-form expression to the semedifinite con-
straints above. Let P be the set of probability distributions with mean p and covariance
matrix I' > 0. Let € € (0,1] and v € R given. The following propositions are equivalent.

Lo/ E=VXTTix — p'x < v
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2. There exist a symmetric matrix M and 7 € R such that
(M, %) < Te
M=0
0 X
M+ |:XT —T+2’y:| =0
T7>0

where X is the second-moment matrix.

We are then able to rewrite the semidefinite constraint (B.1) to (B.2) into

Gk JXTT,X —alx+0;< 0

I — qix

xTFix
_ { 1— Qik Z (éfx—bk)2+XTFiX (BB)

éZTX—bk Z 0.

In the case of alx — b, < 0, the worst case probability constraint is 1, because there
exists a two-point distribution of al'x with both value less than b;. To allow such possibility,
we further introduce a set of disjunctive constraints. When é;fpx — b <0, we set ¢ to 0.
Therefore, we have either al’x > b, or 1 — ¢ > 1. By introducing new variables, we can
express the disjunctive constraints as the feasible set

( 1« aTa. )

UZZk < 0k

ujy, +ufy =1
Sik < X

o <1 —qip
Uiy, iy > 0

X = § (@i, qir) -

\ /

Moreover, we linearize the term x; x;, with z; ;, defined in

Zj1j2 < Ly

2152 < L jo

Ljy + Ljy — 1< Zj1j2
>0

Z(xjy,5,) = § Zjuga - (B.5)

Zj1j2

Lastly, the first inequality in constraint (B.3) can be expressed as (1 — g, + (a7 x — by )* +

x'Tix)? > 4x'Tix+ (1 — g — (al x — b;)* —xTT';x)%. Since 2,5, = x;,7;, in (B.5), we further

linearize the terms (E_iZTX)Q and XTFiX as Z(jl,jg)GIXl &ijldihzjm and Z(jl,jz)GIXI Oij1j2 %5172
respectively and results the second-order cone constraint (1.5).
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B.3 Time-varying Travel Pattern

Suppose there are T’ periods in a day within which the travel patterns are approximately
stationary, e.g. Pt and pf, then we formulate the problem as

o, 3 Q= S g+ S S A 2 S N S S ST S ity — N

Qik, x’L -
1€l teT jel el teT el tET i€l jel mel
s.t.

qix < PrOb(Zaijxj >b),Viel,ke K
jeI

ZAZJ- > auiquj,Vi el,teT

jeI jeI

t
Ay <pigvielteT
4 = Z Vixdin, Vi € 1

keK

= Zwik%kaVi €l
keK
¢ <x,Viel
;= P} :cj,VzeIgeJteT

DIA=NAY N A=P) =D D) i+ D b ielteT

jerl jel jel lel J€I mel
Zgbﬂl<At —P)Yiel,jel,teT
lel

=> pq P VielteT

jeJ

SOt Y L+ > Mo+ Y D> 7ol SN VEET

jel el iel iel iel mel jeJ
Ay Apa;
P; B
A >0Viel,jel,teT
¢Zk]>OVz€I kel,jel,teT
x; € {0,1},Vi e I.

NViel,jel, kel teT

B.4 Proof of Proposition 3

From charging flow constraint (1.9), it is straightforward that A; is linearly increasing in ¢,
for n € I. With any fixed repositioning probability ~;;, the flow balance constraint (1.8) can
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be rewritten as

jerI lel mel

Since (1 — P, — > ,c;7va) = 0, A; is increasing in )\; and subsequently increasing in ¢,. By
summing up the flow balance equations (B.6) for all i € I, we get

D=2 N NAU=P)Y P A D D Pivat D 8 DD By

el el Jel el J€el i€l lel jel mel el
=S n+ Y A0
el J€el
icl i€l

Furthermore, under the profit maximization objective, fleet size constraint (1.10) is always
binding. Given the service region decisions x;’s, a sufficient condition for the probability
constraints to be binding is to have a non-decreasing operational profit O(z;, ¢, @).

O (25, Gir, Z Z r— tszipij — (c+ h)t. Z Ai — Z Z Z(U + h)TjkAiPij’ij — hz L;x;.

jel iel i€l el jel mel iel

Apparently, a neccessary condition for © to be non-decreasing is » > h. To derive a sufficient
condition, by taking derivative regarding to ¢,, we have

5 OA; O3 s N
8% ZZ (r — h)t;; zga — (c+ h)t.—=— Ze] ZZ (m+h)( Zij i Yjm) aqn

jel el el jel mel
8Ai 0 A; O\
= Y WPy (e WP, sz = S S+ W P o
jel el el jel mel n
— Z [(r—h) Z tijﬁ’l-j — (c+ h)t.P.— (n+ h)( Z Z Tim zﬂgm 6A
icl jerI jeI mel n
. . . 8A
= Z [7' Z tijljij - thpc -0 Z Z ijPij’yjm - h(z tij + t P + Z Z T]m 7,]7]771 aqn
el jel jel mel jel jel mel
>0

when the sufficient condition holds.
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Appendix C

Estimation of Key Parameters

C.1 Adoption Requirement

The minimum utility threshold to adopt b for group k is evaluated based on the mode
choice data in CHTS. We summarize the mode choice distribution in 4 categories: non-
moto (including walking and cycling, etc,.), private car (including driver, passenger, car
rental and carpool, etc,.), bus (including bus and shuttle, etc,.), and rail ( including subways
and light rail, etc,.). We focus on motorized trips and group bus and rail modes to public
transportation. By K-means clustering approach in Hartigan and Wong (1979)[50], we group
the individuals into 5 clusters with different mode choice distributions as shown in Table C.1.

Table C.1: Mode Choice Distribution

Group | Car Public | b (7 Vg
1 0 1.00 0 3.95% 0%
2 0.33 0.67 |0.33| 0.45% | 0.13%
3 0.52 048 |0.52| 0.70% | 0.21%
4 0.72 0.28 |0.72| 0.50% | 0.49%
5) 1.00 0 1 94.40% | 99.17%

For instance, the potential car buyers from group 2 will choose to drive for 33% of their
trips after they acquire cars. We hence assume that group 2 customers will switch to Car2Go
if the service region covers at least by = 33% of their destinations. After adoption, customers
will use Car2Go service regularly with destinations that are in the service region. Group 2
has population weight 15 = 0.45% and is accounted for 15 = 0.13% of total trips by car of
the entire population. Specially, group 1 is a group that is not a target of Car2Go because
those customers do not drive. In addition, group 5 is also not the target group since they rely
on cars so heavily that requires 100% service coverage to adopt and they might already own
private cars. As a result, the target groups 2, 3 and 4 count 1.65% of the entire population
with relative ratio among them 2 : 3 : 2. Due to the limited sample sizes at zip code level,
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we assume all zip codes share the same mode choice distribution. In the following sections,
we set the default market size to 1.65%.

C.2 Utility Parameters

We use the trip distributions that describe customers preferences over destinations as utility
parameters a;;. Our study focuses on the 61 candidate zip codes in San Diego county,
excluding remote and military areas. We estimate the trip distributions for the 61 candidate
zip codes from Car2Go San Diego operations data and the customer group information in
previous section. We partition the current service region into 18 zip codes. The sample daily
trips for each OD pair in the 18 zip codes are counted and the outbound (inbound) trips
from (to) each zip code are summarized in Table C.2.

Table C.2: Sample Daily Outbound(Inbound) Trips for Current Car2Go Service Region

91910 91911 92101 92102 92103 92104
7.92 (819) | 3.10 (3.27) | 334.04 (335.23) | 55.69 (54.77) | 144.04 (144.04) | 81.69 (80.5)
92105 92106 92107 92108 92109 92110
11.23 (10.35) | 45.89 (45.65) | 54.23 (54.92) | 50.77 (51.92) | 84.08 (33.96) | 44.92 (46)
92111 92113 92115 92116 92120 92123
0.35 (0.35) | 1.23 (1.19) | 14.62(14.85) | 60.08 (58.73) | 1.12 (1.19) | 0.12 (0.08)

Table C.2 suggests a large variation in trip demands of the 18 zip codes. The majority of
the trips were generated in the downtown San Diego with zip codes 92101 and 92103 while
few trip demands observed from zip codes 92111 and 92123. To better capture the demand
pattern, we exclude zip codes with very low demands, e.g., 91911, 92111, 92113, 92120 and
92123, in the regression analysis.

Since the travel patterns are time-varying, we partition the 24 hours of a day into 2
periods: daytime from 7AM to 21PM and night from 21PM to 7TAM, which minimizes the
sum of squared errors of the outbound trip rates. To simulate the trip distributions for
both day and night between all OD pairs of the 61 candidate regions, we first apply the
classic gravity model for trip distributions. Besides the population factor in the classic
gravity model, we also test other socialeconomic factors, such as per capita income, business
establishments, students enrollments and workplace population, that may affect the trip
distributions. The only statistical significant factor we find is per capita income. Similarly,
Wills (1986)[98] integrates income as a destination-attribute variable in his trip distribution
models. Hence, we fit the gravity model for the trips with destinations different from the
origins as follows:

Pin]nci?Incj
=0—— (C.1)

J dzstfj
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where P; is the working population and Inc; is the per capita income in 7. The number of trips
generated from ¢ is proportional to FP; while P; and Inc; are indicators of the attractiveness
of destination j.

Normalized with the market size 1.65% estimated in Section C.1, we compute the sample
daily trip distribution for 18 zip codes. We then apply log-linear regression and obtain
the gravity model in (C.1) for the aggregated daily trip distribution below with adjusted
R-squared 0.7515 and residual standard error 0.9227.

Hijnc?'%?’Inc?'Mg

T,; = exp(—62.212
J eXP( ) dist?j013

(C.2)

For the trips within a zip code, we fit the following model to take same socialeconomic
factors into account:

T, = aPi[nci-’.

We use the sample daily trip distribution adjusted with the market size to obtain the coef-
ficients @ and b. The regressed model has adjusted R-squared 0.7845 and residual standard
error 0.707 as below:

Ty = exp(—43.194) P, Inc 1. (C.3)

With the residual standard errors provided by the regressions, we randomly generate
1000 sample trip distributions for thw 61 candidate zip codes using the gravity models (C.2)
and (C.3). In each sample k, the utility parameter is estimated by the trip proportion from
normalization on outbound trips:

Tk
A 2,
a*. ]

ij = —/\k
2 jer Tij

The mean of utility parameter a;; is then estimated by its sample average of &fj. We also
construct the estimated diagonal covariance matrix I'; for each i with o2 to be sample
variance of dfj.

We further apply similar method to get the trip distributions for the time-varying travel

pattern case with 2 periods defined as day and night.

J

C.3 Coverage Costs

The fixed coverage cost associated with serving region ¢ includes investments in infrastructure
such as partnership with charging service provider. As planned in 2011, Car2Go’s fleet of
300 Smart Fortwo plug-ins can be recharged at 1000 Blink EV charging stations [23]. We
use the EV charging station data from U.S. Department of Energy (DOE)[5] to estimate
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the number of chargers desired in each region to support the EV sharing system. For each
zip code in the current service region, we compute the charger density (CD) by dividing
the number of chargers (CG) with the land area (LA). By fitting linear regression with
various socialeconomic factors, we find that number of business establishment (BE) is the
only significant factor to CD with the fitted model as below

CD; = 3.19exp(—11)BE;
and the number of chargers needed for each candidate zip code is then approximated as
CGZ = maX{CDZ», 0} X LAl

Suppose the investment in each charger by Car2Go through partnership with Blink is h,.
(e.g., $800), then the coverage cost for region i is approximated by

gi = h.CG;
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