
UCSF
UC San Francisco Previously Published Works

Title
Statistical Guidelines for Handling Missing Data in Traumatic Brain Injury Clinical Research

Permalink
https://escholarship.org/uc/item/55j4q8s8

Journal
Journal of Neurotrauma, 38(18)

ISSN
0897-7151

Authors
Nielson, Jessica L
Cooper, Shelly R
Seabury, Seth A
et al.

Publication Date
2021-09-15

DOI
10.1089/neu.2019.6702
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/55j4q8s8
https://escholarship.org/uc/item/55j4q8s8#author
https://escholarship.org
http://www.cdlib.org/


Statistical Guidelines for Handling Missing Data
in Traumatic Brain Injury Clinical Research

Jessica L. Nielson,1,2 Shelly R. Cooper,3 Seth A. Seabury,4 Davide Luciani,5 Anthony Fabio,6

Nancy R. Temkin,7 Adam R. Ferguson8,9; and the TRACK-TBI Investigators*

Abstract

Missing data is a persistent and unavoidable problem in even the most carefully designed traumatic brain injury (TBI)

clinical research. Missing data patterns may result from participant dropout, non-compliance, technical issues, or even

death. This review describes the types of missing data that are common in TBI research, and assesses the strengths and

weaknesses of the statistical approaches used to draw conclusions and make clinical decisions from these data. We review

recent innovations in missing values analysis (MVA), a relatively new branch of statistics, as applied to clinical TBI data.

Our discussion focuses on studies from the International Traumatic Brain Injury Research (InTBIR) initiative project:

Transforming Research and Clinical Knowledge in TBI (TRACK-TBI), Collaborative Research on Acute TBI in Intensive

Care Medicine in Europe (CREACTIVE), and Approaches and Decisions in Acute Pediatric TBI Trial (ADAPT). In

addition, using data from the TRACK-TBI pilot study (n = 586) and the completed clinical trial assessing valproate (VPA)

for the treatment of post-traumatic epilepsy (n = 379) we present real-world examples of typical missing data patterns and

the application of statistical techniques to mitigate the impact of missing data in order to draw sound conclusions from

ongoing clinical studies.

Keywords: assessment tools; missing data; statistical guidelines; TBI

Introduction

Traumatic brain injury (TBI) research is entering a new

phase of data-intensive studies that expands the horizon for

knowledge-based discovery. This special issue of the Journal of

Neurotrauma focuses on data analysis and statistical concerns at-

tendant to this era of big data, as part of the International Traumatic

Brain Injury Research (InTBIR) Initiative. In this article, we focus

on the issue of missing data and discuss its implications for clinical

inference and outcome prediction in TBI research. Missing data is a

major and largely unrecognized factor that likely helps explain

imprecision in TBI research, contributing noise to outcome pre-

diction and limiting the likelihood of sensitive and accurate de-

tection of therapeutic efficacy in clinical trials.1 We will discuss the

brief history of missing data as a topic of statistical science, and

provide a review of best practices for measuring the impact of

missing data and of mitigation approaches that help ensure the

robustness of statistical inferences made in the face of missing data.

Using concrete examples from real-world TBI data, this review

focuses on practical application of statistical methods, rather than

intensive mathematics, with the goal of offering TBI researchers

guidelines and best practices for dealing with missing values.

The field of missing data as a statistical problem is fairly young,

having only been developed since the early 1970s, when computer

programs began to help statisticians carry out complex calculations

unapproachable by hand. This gave rise to a set of methods known

collectively as missing values analysis (MVA). The seminal re-

search for MVA was first described by Rubin in 1976,2 followed

by a comprehensive set of guidelines for application of methods

for MVA in 2002.3,4 Since its inception, MVA has been widely

adopted to make sense of population statistics when portions of the

data are missing.
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There are only a handful of published studies discussing MVA’s

application to missing data specifically for TBI. Childs and co-

workers attempted to describe and categorize why data were miss-

ing in TBI patients who were monitored for both brain temperature

and intracranial pressure (ICP), and identified several etiologies,

including sensor failures resulting from disconnections.5 A second

article by Feng and coworkers assessed the feasibility of dealing

with missing brain temperature and ICP data, focusing on the po-

tential value of re-using old monitoring data that had previously

excluded from analyses because they were not complete.6 A third

article by Zelnick and coworkers focused on imputing outcome

data as measured by the Glasgow Outcome Scale Extended (GOS-

E) in order to maximize the usefulness of the GOS-E as a primary

outcome even if participants dropped out.7 A very recent systematic

review by Richter and coworkers revealed that TBI clinical re-

search rarely addresses the issue of missing data despite the fact that

missing data are common.8 Accordingly, the latest edition of the

highly cited clinical prediction modeling textbook by Steyerberg

devotes two chapters to dealing with missing data, including a

general overview with references to TBI, and a chapter devoted to

a case study of MVA in TBI from the International Mission for

Prognosis and Analysis of Clinical Trials in TBI (IMPACT-TBI)

study.9,10 The present article complements this prior work and re-

views additional approaches for dealing with missing data. In ad-

dition, we illustrate the impact of missing data using participant-

level analysis of two recent TBI studies, a clinical trial of valproate

(VPA) and the Transforming Research And Clinical Knowledge for

TBI Pilot study (TRACK-TBI Pilot).

Here, we ask readers to imagine a scenario in which patients are

enrolled in a clinical study to develop prediction models for prognosis

and long-term outcome following TBI based on factors that are in-

herent both in an individual’s pre-existing medical history, and as-

pects of the neurocritical care received after admission to the

emergency room. Throughout the course of this study, some data are

missing for nearly every patient. Common problems include loss to

follow-up, comorbid conditions that prevent data collection for a

specific time point, and instrumentation problems, among others.

Some of these sources of missingness may be random, such as lack of

follow-up data resulting from unforeseen circumstances in patients’

lives. Examples of this from the TRACK-TBI Pilot study included

participants who were homeless and therefore either unwilling to

come in for follow-up testing, or could not be reached. Others may be

systematic, such as lack of follow-up care caused by infrastructure

problems at the hospital (e.g., insufficient staff coverage, equipment

failures, or magnetic resonance imaging (MRI) scanner out of service

). Failure to account for the explanation of the missing data could

introduce bias, limiting both the generalizability and reproducibility

of the findings, and in fact, may be problematic for deriving conclu-

sions about the primary outcomes: prognoses and long-term outcome.

At the completion of the study, how should one handle the missing

data? How may we assess the significant missing patterns in our study

while maximizing the contribution that may otherwise be lost when

patients are excluded simply because some of their data are missing?

Diagnosing Missingness and MVA

The initial steps in any approach are to analyze whether data are

missing at random (MAR) or completely at random (MCAR), or,

most commonly in TBI research, whether data are missing not at

random (MNAR). The first incidence of missing data is flagged

using the ‘‘missingness’’ label and coded as a binary variable

(yes = 1 vs. no = 0). MCAR indicates that missingness is uncorre-

lated with other variables in the data set. MAR indicates that

missingness is correlated with some variables, but not key variables

of interest to analysis. NMAR indicates that missingness is asso-

ciated with key variables (e.g., outcome). Many studies have sim-

ply described data MNAR as being ‘‘problematic,’’ with no clear

guidelines for how to fill in the missing data patterns, other than by

modeling.11 More frequently, MNAR is simply overlooked and

unreported.

The Little’s test is a descriptive analytic tool to assess whether

data are MCAR.12 A variable (e.g., cognitive outcome) with

MCAR has a pattern of missingness that is not associated with other

variables (e.g., age, gender, socioeconomic status, or poor func-

tion), but is rather a random occurrence of missingness that cannot

otherwise be explained. Commonly used statistical software pack-

ages, such as SPSS (IBM, Inc.), have MVA modules for deter-

mining whether the data are MCAR. To run a Little’s test in SPSS,

the variables of interest are selected within the missing values

analysis module, and analyzed using the expectation maximization

(EM) function. The resulting output will return a significance test

under the EM means generated. If p < 0.05, then the data fail the

Little’s test and the data are not MCAR. If this is the case, some

statisticians have recommended that nothing more be done to fill in

the missing data patterns, and that only complete-case analyses can

be used.13 This is potentially problematic, however, because it can

introduce bias in the data set by not accounting for the reason for the

missingness, and violating assumptions about the sample popula-

tion being studied.14 Alternative models known as sensitivity an-

alyses15 can be performed when data are not missing at random

(NMAR), which will be discussed subsequently.

If the data are MCAR or MAR, data modeling approaches help

test whether missing values impact statistical results (discussed in

detail subsequently). Simple methods include t tests or logistic

regression analyses on incidence of missingness to determine if

variables such as early poor performance, age, gender, or education

level can explain differences about whether data were collected or

not. More advanced methods involve using non-missing values to

predict individual missing values. Noise is added to the predicted

value to avoid awarding unwarranted precision to the values. This

is done multiple times, with the analyses repeated on each set; the

final analysis takes into account both the individual tests and how

much they differ from one another.12,16 This enables researchers to

indirectly measure the probability that missing values impact the

statistical results.

Methods for Handling Missing Data for Analysis

Once missingness has been diagnosed, a number of methods

exist to mitigate the impact of missing values (Table 1). Richter and

coworkers put together a practical decision tree helping researchers

handle missing data.8 Our Table 1 provides recommondations that

align with this decision tree; however, we extend this prior work

with examples of additional methods reviewed subsequently in

detail.

Complete-case analysis

The simplest way to analyze data that have missing values is to

drop any patients who do not have the complete set of variables

collected, and test the patterns of the raw data. This approach,

known as ‘‘listwise deletion,’’ is the default for most statistical

packages when researchers apply traditional analytics including

regression approaches, analysis of variance, t tests, and odds-

ratios tests among others. Although this type of analysis appears

HANDLING MISSING DATA IN TBI RESEARCH 2531



straightforward, it creates a biased sampling of the population

based on potential latent variables or patterns that could explain the

source/cause for the missing data, if the data are MAR or NMAR.

Because listwise deletion is the default for most statistical analyses,

it is likely that researchers are often unaware of biases introduced

by complete-case analyses. This method of data analysis is not

recommended for TBI clinical research, and can lead to biased and

unreliable findings.

Partial deletion

Partial deletion approaches may be useful to maximize the raw

data by only including variables that have the most complete data

across the study population. Most statistical software packages

have an option for most types of statistical tests to delete cases in

either a listwise or a pairwise fashion. Listwise deletion will au-

tomatically drop patients from the analysis if they are missing one

or more data points from the list of variables included in the model,

whereas pairwise deletion will still include patients who may have

some missing data points in the included variables. The analysis

will exclude those variables when the data are missing, while still

completing analysis of other variables and cases with complete

data. However, partial deletion approaches make the assumption

that the data are either MCAR or MAR and does not apply for data

that are NMAR.

Mean and mode substitution

Other methods involve replacing missing values based on ob-

served values; for example, using mean or mode substitution. The

reliability of these methods to accurately model the missing data is

questionable, as they may skew the data if the values that are

missing do not truly fall within the same distribution of the group

mean or mode of the variable. This type of method does not rely

on the relationships in the covariance matrix of the existing data

patterns, but rather replaces any missing values within each vari-

able with either the mean or mode value for that variable. This is

problematic for the following reasons.

Here, we ask readers to imagine that there are data missing

on the same 6-month outcome measure—the Wechsler Adult

Intelligence Scale (WAIS)—from two different patients for dif-

ferent reasons. One of the patients may not have data because that

individual was so low functioning as to be unable to perform the

WAIS assessment, and, therefore, no data were collected. The

other patient may have been so high functioning that the indi-

vidual had no interest in returning for follow-up assessment and

therefore also does not have WAIS data collected. If only the data

within WAIS are taken into account when filling in the missing

data, either based on the mean or the mode, both patients would

get the same score, despite that had their data been collected, they

would have scored very differently from each other.

Multiple imputation (MI)

When it is determined that the data are MCAR or MAR, EM can

be used for a partial imputation of the data. The benefit of a more

rigorous approach, known as MI, is that missing values are replaced

with data based on the known relationships that exist in the com-

pleted data. These relationships are then used to make assumptions

about how specific patients would score on the missing measures,

compared with how the patient population performed collectively.

As noted, EM is a method that iterates through the data to find the

maximum likelihood estimation that can estimate the parameters

of a statistical model, given specific observations in the data. This

method assumes that unobserved latent variables are in the model,

and the combination of expectation and maximization of the log-

likelihood is used to derive the latent variable distribution (e.g., the

missing data). However, if a complete imputation is desired, MI can

be performed to fill in missing information in order to boost the

analytical sample size. Investigators may then potentially infer

what value the missing data may have.

Previous recommendations for multiple imputation originally

described by Rubin4 suggested that approximately three to five

imputations are sufficient in order to fill in missing data. Although

imputing data with only three to five iterations may not change the

sample mean or standard error and the general inferences that can

be drawn from the imputed results, others have suggested that if

effect sizes in the data set are low, having fewer total imputations

runs the risk of decreasing the statistical power of the analyses, and

therefore reducing the ability to detect statistical significance be-

tween groups.17 Additionally, the proportion of missing data is

a factor in deciding how many imputations to use to maximize

efficiency and yield accurate inferences for power and effect

sizes. Monte Carlo simulations were performed by Graham and

colleagues17 to estimate the appropriate number of imputations

needed, based on the proportion of missing data, to yield results

approaching the power that the study would have were there no

missing data (Fig. 1). Theoretically, it is possible to include data

that are missing at high percentages of the total data, but in order to

maximize power, the number of necessary imputations increases

according to the amount of data missing. Multi-level modeling

approaches such as modern linear mixed-effect models provide

mechanisms to extend imputation to multi-level nested designs, in

which missingness may occur in the pattern of higher-order inter-

actions. A full review of these methods is beyond the scope of the

present review, but we refer interested readers to prior work by

Goldstein and colleagues.18 Similarly, advanced methods exist to

Table 1. Summary of Missing Values Analyses (MVA) Recommended

for Traumatic Brain Injury (TBI) Clinical Research

Type of MVA Assumptions Recommended for TBI

Complete-case analysis None No
Partial deletion MCAR or MAR No
Mean or mode substitution MCAR or MAR No
Expectation maximization (EM) MCAR or MAR No
Multiple imputation (MI) MCAR or MAR Yes, combined with appropriate modeling through SA
Sensitivity analysis (SA) NMAR Yes
Inverse probability weighting (IPW) NMAR Yes, with appropriate modeling of confounders of missingness

MCAR, missing completely at random; MAR, missing at random; NMAR, not missing at random.
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assess latent trajectory classes in time series data that apply mixture

modeling to missingness in time series data, and these approaches

have recently been applied to TBI outcomes.19 Extended discussion

of these approaches is beyond the scope of the current review, but

we refer interested readers to prior work.20

Sensitivity analyses

Sensitivity analysis is an in silico method used in clinical trials to

assess whether certain aspects of the study results can be altered

simply by arbitrarily changing a single parameter of the experi-

mental design.15 For example, here we ask readers to consider a

hypothetical TBI study that finds that hyperthermia produces worse

outcome, while controlling for common covariates such as sex.

Sensitivity analysis may involve statistically correcting for sex,

and assessing whether this dramatically alters the pattern of sig-

nificance. If sensitivity analysis reveals that the sex covariate dra-

matically changes the observed relationship, this would suggest

that the results are highly sensitive to the sex variable and may not

generalize to another population with a different distribution of

males versus females.

A similar method is useful when there may be biases as to why

data are missing. Here, sensitivity analysis involves using a mixture

modeling approach to compare data distributions when data are

missing and non-missing. First, variables are imputed using the

MAR assumption by applying machine learning tools such as EM

or regression modeling to estimate and fill in missing data points.3

Then, the data distributions and descriptive statistics for significant

differences between the raw, unimputed data set and the imputed

data set2–4 are tested. Significant differences between imputed and

non-imputed data sets indicate that missing data cannot be ignored,

establishing that they are NMAR. This analysis can be expanded by

introducing variables affected by imputation as covariates to test

their impact as candidate NMAR mechanisms and establish the

threshold at which data cannot be imputed. In TBI, for example, if

blood pressure has a significant impact on functional recovery, but

blood pressure data are known to be NMAR, a model can be de-

veloped to determine the threshold at which blood pressure data can

be imputed that both doesn’t significantly change the data distri-

butions and maintains precision in outcome prediction. The Mul-

tivariate Imputation by Chained Equations (MICE) package in R

can be used for these purposes, where mulitiple imputation can be

nested within a sensitivity analysis to test for these sensitivity

thresholds when performing MI.21,22 Unfortunately, the results of

these types of analyses are not prominently reported in medical

journals in general, and even less so in randomized controlled

clinical trials.15 However, multiple experts in the field of MVA

agree that when data are NMAR, which is the case in most clinical

trials and research, performing sensitivity analysis is crucial to

reduce unintended bias.23 This procedure can be implemented in

combination with MI, provided that the influence of the missing

data and its source can be accurately modeled.24,25

Inverse probability weighting

Inverse probability weighting allows inverse weighting to be

applied to certain patients in the data set who are skewing results

because of missingness and/or dropout. If the source of the missing

or confounding data is known, it can be used to weight the data

similarly to regression analyses to remove the influence on the

study results.26,27 This is also similar to sensitivity analysis. These

approaches look at confounding when comparing groups that differ

in incidence of missingness, and the missingness is related to both

group assignment and outcome (i.e., NMAR).

Practical Application of MVA to Real-World TBI
Participant-Level Clinical Research Data

Although the modeling approaches we recommend (sensitivity

analysis, inverse probability weighting, and, to a lesser extent,

multiple imputation) may be applied post hoc, the optimal method,

described subsequently, is to provide detailed codes regarding why

data is missing at each stage of the study so that they can be in-

cluded in statistical models that aim to account for the impact that

the missing confounders have on outcome.

In this section, we present data from real-world examples of

missing values analysis applied in the context of past and ongoing

TBI clinical studies. We first explore missing data patterns in the

TRACK-TBI Pilot study,28 in which the cause of missing data

patterns was not known. The second example tests hypotheses

about the potential causes of missing data in the completed clinical

trial assessing VPA for the treatment of post-traumatic epilepsy,29

in which similar outcomes were collected and specific coding was

included in the study design to account for why data were not

collected for each patient at each phase of the study.

Figure 2 shows how patients recover on measures of verbal

learning either measured by the California Verbal Learning Task

FIG. 1. Monte Carlo simulations for number of imputations needed to maximize effect sizes based on percentages of missing data
(adapted from Graham and coworkers17). Color image is available online.
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FIG. 2. Recovery curves for cognitive function as measured by verbal learning tasks grouped by first reported measure of Glasgow
Outcome Scale (GOS). (A–C) Top row are data from Study 1 (Transforming Research and Clinical Knowledge in Traumatic Brain
Injury [TRACK-TBI] pilot) assessing neuropsychological testing measured by the California Verbal Learning Task (CVLT) norma-
tive data, blocked by their first GOS-Extended (GOS-E) rating at 3 months post-TBI, looking at either complete case analysis (A), or
with missing data filled in by either expectation maximization (EM) (B), or multiple imputation (MI) (C). The bottom row are data
from Study 2 (valproate [VPA]) using similar outcomes, in which the verbal learning was assessed using a Selective Reminding task
and an older version of the GOS in which functional deficits were previously grouped into single categories for mild (green),
moderate (blue), and severe (red) disability, with similar comparisons across complete case analysis (D), or EM-filled (E) or MI-filled
(F) data sets. Color image is available online.

FIG. 3. Missing data patterns for verbal learning tasks blocked by Glasgow Outcome Scale (Extended) (GOS[E]) score at each of the
three time points for each study. (A–C) Percent of missing data for the California Verbal Learning Task (CVLT) in study 1 (Transforming
Research and Clinical Knowledge in Traumatic Brain Injury [TRACK-TBI) Pilot) between 6 and 12 months based on GOS-E scores at
either 3 months (A), 6 months (B), or 12 months (C) post-TBI. (D–F) Percent of missing data for Selective Reminding in study 2
(valproate [VPA]) among 1, 6, and 12-months post-TBI based on GOS scores at those same time points. Patients with less disability (green
lines) show a marked increase in missing data at the final time point when blocked by their GOS(E) at 1, 3, or 6 months, with a flat line at
the 12-month mark indicating that the higher functioning patients did not have data for the final time point. Also of note are the black and
gray lines that represent patients who either died (GOS[E] 1) or were in a vegetative state (GOS[E] 2) before the first time point and
therefore show no change in missing data over time, with the exception of more data being collected over time for patients starting out at a
GOS score of 2 at 1 month, and presumably improving and therefore being able to have Selective Reminding assessed. +GOS scores 3, 4,
and 5 are an older version of the GOS-E, where 3/4, 5/6, and 7/8 have since been extended, respectively. Color image is available online.
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(CVLT) in the TRACK-TBI Pilot study, or the Selective Re-

minding Task in the VPA study, blocked by their initial score on the

GOS or GOS-E in the TRACK-TBI Pilot. Patients are also grouped

based on changes in GOS(E) over the course of each study. There is

a similar pattern of recovery between the two studies, providing a

rationale for potential conclusions to be drawn about patient re-

covery, and potential sources of missingness. For this analysis of

neurocognitive outcomes, we limited the analysis to GOS(E) scores

beyond persistent vegetative state (GOS[E] >2). Comparisons

are shown in Figure 2 for how these recovery curves differ be-

tween either complete case analysis (Fig. 2A,D), EM-filled data

(Fig. 2B,E), or MI-filled data (Fig. 2C,F). The results demonstrate

important features of missing values analysis: (1) the method used

to impute data can have a large potential impact on the estimated

variance as well as the estimated means (Fig.2B vs. Fig.2C), and (2)

multiple imputation can recapitulate fundamental patterns in raw

data while reducing error variance, which has the potential to boost

statistical power (Fig.2A vs. 2C). However, the findings also raise

cautionary points. By compairing the percent missing (Fig. 3) with

the filled case analysis (Fig.2C, F) it is clear that EM and MI

approaches assigned values for some patients who were untestable

for central nervous system (CNS) reasons (or death). In this sense,

the MI glossed over the poor functioning of this subset of subjects.

Indeed, the primary authors of Study 2 report that if the examiners

gave the word list and waited a minute for the person to respond,

most of the GOS 3s who were untestable for CNS reasons would

have recalled none of the words and recieved a score of 0. It is worth

mentioning that the original analysis of this study assigned 1 (CNS)

or 2 (Death) points less than the worst observed score, to ac-

knowledge the poor functional level of these patients, and ranked

analysis was used. This reflects a powerful alternative approach for

handling missing data, which reflects deep domain knowledge and a

priori planning for handling missing data at the study design stage.

Figure 3 shows the proportion of missing data at each time point

for each study on the verbal learning task data blocked again by

disability severity measured on the GOS(E). Again, we see similar

patterns between the two studies, suggesting that we may be able

to make predictions about the cause of missing data in the

TRACK-TBI Pilot that were not specifically coded, as was done in

the VPA study. This is explored in Figure 4, where specific codes

were documented regarding the reason for missing data on the

Selective Reminding task at each phase of the study. Reasons

included death, inability to perform the task because of either

physical or CNS complications, being unreachable or unwilling to

return for follow-up, and English being a second language (ESL),

thus preventing subjects from accurately performing the task in

English. The studies’ similar patterns for recovery curves and

rates of missing data from global disability and verbal learning

measures may permit us to retrospectively perform sensitivity

analyses on the TRACK-TBI Pilot data to more accurately model

the confounding factors contributing to missing data patterns and,

in turn, help fill in missing data. Examples include assumptions

about patients with a higher score on the GOS-E (7 or 8) pre-

sumably performing very well on the CVLT at 6 and 12 months

when data are otherwise missing because patients are unwilling to

return for follow-up. Conversely, lower scores on the GOS-E (3 or

4) may include assumptions about poor performance resulting

from underlying brain pathology causing CNS complications so

severe that the patients are unable to perform the task, providing

more information about the pathophysiology of their injuries.

Conclusion

In conclusion, careful attention to TBI trial design to prevent, as

far as possible, missing data from occurring, is ideal, but planning

ahead with detailed coding protocols to account for the reasons for

missingness acknowledges and mitigates the reality of human re-

search. When possible, sensitivity analysis should be conducted to

account for confounding factors that are contributing to the missing

data and thus impacting outcome. Being able to specifically label

why data are missing allows that information to be included in the

statistical models where confounding variables can be corrected

for, and additional meaningful sources of missingness can be con-

sidered as their own outcomes. This is particularly so when they

FIG. 4. Study 2 (valproate [VPA]) had codes for the reason for the missing data measured at 1 month (A), 6 months (B), and 12 months
(C) to confirm hypotheses about why outcome data were missing for different groups of patients in the Transforming Research and
Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot, blocked by Glasgow Outcome Scale (GOS) severity. As expected,
patients from the VPA study who were higher functioning (green) were less likely to participate in follow-up care, potentially a as a result
of a lack of interest in staying in the study because they did not have a measurable disability. Whereas patients with severe disability (red)
were more likely to have missing data because of central nervous system (CNS) problems preventing them from performing the task.
Patients who started in a vegetative state (white) at 1 month generally could not be assessed because of CNS complications, with,
presumably, patients moving to either the red category (out of a vegetative state, severe disability), or into the black category (dead).
Color image is available online.
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affect patients’ ability to be helped or harmed by their treatment

and participation in the research.23 As with TBI clinical care,

prevention is the key to future success.
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