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Abstract

In this paper we introduce fuzzy forests, a novel machine learning algorithm for rank-
ing the importance of features in high-dimensional classification and regression problems.
Fuzzy forests is specifically designed to provide relatively unbiased rankings of variable
importance in the presence of highly correlated features, especially when p >> n. We
introduce our implementation of fuzzy forests in the R package, fuzzyforest. Fuzzy forests
works by taking advantage of the network structure between features. First, the features
are partitioned into separate modules such that the correlation within modules is high
and the correlation between modules is low. The package fuzzyforest allows for easy use
of Weighted Gene Coexpression Network Analysis (WGCNA) to form modules of features
such that the modules are roughly uncorrelated. Then recursive feature elimination ran-
dom forests (RFE-RFs) are used on each module, separately. From the surviving features,
a final group is selected and ranked using one last round of RFE-RFs. This procedure
results in a ranked variable importance list whose size is pre-specified by the user. The
selected features can then be used to construct a predictive model.

Keywords: Random Forests, WGCNA, machine learning, R, networks, p >> n, big data,
variable selection, variable importance, variable ranking.

1. Introduction

In the era of high-throughput technologies such as multi-color flow cytometry and next gen-
eration sequencing, high dimensional data has become increasingly common in biomedical
research. However, the ability to generate data has vastly outpaced our ability to analyze
it. In the biomedical sciences as well as the ’Omics fields it is common for the number of
parameters to be much larger than the number of observations, the so-called p >> n problem.
This problem is exacerbated by the fact that the features are often highly correlated and the
correlation structure is often unknown a priori.

Identifying important features in this situation has been an area of intense research within the
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statistics and machine learning community. While model based feature selection algorithms
such as the LASSO or SCAD may detect important features in the presence of correlation
(Raskutti et al. 2010), this comes at the cost of making parametric assumptions that may not
hold in practice. If p >> n, the LASSO can select at most n features. In the setting where
there are groups of highly correlated features, the LASSO has a tendency to arbitrarily pick
one of the features from a group and shrink the others towards zero (Bondell and Reich 2008).

Random forests are a popular ensemble machine learning algorithm. Random forests are
non-parametric, non-linear, embarrassingly parallelizable, easy to implement, and have been
described as one of the best “off-the-shelf” classifiers (Dua et al. 2014). Random forest vari-
able importance measures (VIMs) offer a flexible alternative to model based feature selection
algorithms (Breiman 2001). While random forest VIMs have demonstrated the ability to
accurately capture the true importance of features in settings where the features are indepen-
dent, it is well-known that random forest VIMs are biased when features are correlated with
one another (Strobl et al. (2007, 2008); Nicodemus and Malley (2009)).

Fuzzy forests handle correlated features by taking a piecewise approach. We first estimate
the network structure of the data and partition the set of features into distinct modules
such that the correlation within each module is high and the correlation between modules
is low. In this regard, we utilize the functionality of Weighted Gene Coexpression Network
Analysis, a rigorous framework for detecting correlation networks (Zhang and Horvath 2005).
We then use Recursive Feature Elimination Random Rorests (RFE-RFs) as in (Dı́az-Uriarte
and De Andres 2006) to select the most important features from each module. One final
RFE-RF is then applied to the remaining features, selecting and ranking the most important
ones.

The article is organized as follows. In section 2 of this article, we briefly review random forests,
WGCNA, and introduce the fuzzy forests algorithm. In section 3, we introduce the R package
fuzzyforest. In section 4, we conduct simulations comparing fuzzy forests to random forests.
In section 5, we use fuzzy forests to determine which immunologic factors are important in
determining a patient’s response to HIV infection. Section 6 ends the article with a discussion
and summary of our results.

2. Variable Importance Measures and the Fuzzy Forests Algorithm

2.1. Variable Importance Measures

In this section, we introduce basic notation and discuss variable importance measures. We
assume that our data comes in the form of n independently and identically distributed (iid)
pairs (X,Y ) ∼ G(X,Y ). Here, X is a p dimensional feature vector and Y is a scalar outcome.

Let X
(v)
i denote the value of the vth feature for the ith subject and let Xi = (X

(1)
i , . . . , X

(p)
i )

be the feature vector for the ith subject. Signifying the set of values for feature v across all

n subjects, we set X(v) = (X
(v)
1 , . . . , X

(v)
n ). Finally, the marginal distributions of X and X(v)

are written as GX and GX(v) , respectively.

In the case of both classification and regression, we are interested in modeling the conditional
mean of Y given a feature vector X. We denote this conditional mean as E[Y |X] or f(X).
In the case of regression, we assume that Y |X has distribution f(X) + ε, where the ε are
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independent of X and iid with variance σ2. In the regression setting, Y is continuous. In
binary classification, if Y is restricted to take the value 0 or 1 then Y |X is a Bernoulli
trial with mean E[Y |X = x] = P (Y = 1|X = x). For regression, a prediction for a new
observation Xnew would obtained by evaluating the conditional mean at Xnew: f(Xnew). In
the case of binary classification, the predicted outcome for a new observation would be 1 if
f(Xnew) = P (Y = 1|X = Xnew) > 0.5, and 0 otherwise. Note that random forests can easily
be generalized to handle the case of multi-class classification.

If the goal were to predict a new outcome Y based off of the features, X, a good estimate
of f(X) would suffice. The problem of feature selection requires more than a “black box”
estimate of f(X). It requires an understanding of how f(X) depends on each individual
feature.

If p is low dimensional (p = 1, 2), we can simply plot our estimate of f(X) to understand how
it varies as function of X. On the other hand, if p is moderate or large, the estimate of f(X)
may be difficult to interpret. This problem of interpretability may be alleviated by assuming
f(X) has a specific parametric form such that fγ(X) is known up to a finite dimensional

parameter γ. In the case of linear regression, where fγ(Xi) =
∑p

v=1 γvX
(v)
i , γ is a vector of

regression coefficients and we may measure the importance of one feature versus another by
examining the absolute magnitude of their corresponding coefficients (assuming the features
have all been standardized).

However, we rarely believe that fγ(X) = f(X) for some γ. Rather, fγ(X) is often thought of
as a parametric approximation to f(X). Unfortunately, this parametric approximation may
fail to capture salient characteristics of f(X) for a variety of reasons. Notably, fγ(X) might
miss important interactions between features, or, in the case of the above linear regression
model, the true f(X) may be nonlinear in such a way that the best linear approximation
fails to capture. In contrast, random forests are non-linear and non-parametric. Therefore,
the resulting random forest VIMs, defined below, naturally take interactions and non-linear
structure into account.

2.2. An Introduction to Random Forests

Random forests is a popular ensemble method that has been applied in the setting of both
classification and regression. The random forests algorithm works by combining the predic-
tions of an ensemble of classification or regression trees. Each tree is grown on a separate
bootstrap sample of the data. The number of trees grown in this manner is denoted as ntree.
The subjects that are not selected in a particular bootstrap sample are said to be “out of
bag.” Note that roughly one third of observations will be out of bag for each tree. These
samples play the important role of serving as a test set for each tree, allowing the user to
obtain estimates of the prediction error that are not overly optimistic.

Call the kth tree f̂k(X). In the case of regression trees, f̂(X) = 1
ntree

∑ntree
k=1 f̂k(X). In the

case of classification, f̂(X) is the majority vote of the ntree predictions given by f̂k(X). Each
regression tree, by itself, may be highly unstable, leading to high variability estimates of
f(X), however, by averaging multiple trees over many bootstrap samples, the variance of our
estimate for f(X) may be significantly reduced. The algorithm described thus far is known
as bagging (bootstrap-aggregating). This algorithm is a special case of random forests.

A further element of randomness is introduced by random forests. Before a node in a particular



4 fuzzyforest: Fuzzy Forests in R

tree is split, a subset of features is chosen at random. The best splitting rule, involving only
these randomly selected features, is then used to split the node. The number of randomly
selected features at each stage is commonly called mtry. High values of mtry tend to lead
to just a few important features getting selected at the majority of nodes. If mtry = p, then
random forests are equivalent to bagging. Lower values of mtry allow more features to play
a role in the estimation f(X). In the case of regression, a common default value of mtry is
bp/3c. In the case of classification

√
p is common choice.

Random forest VIMs are obtained by testing how predictive accuracy suffers when the values
of an individual feature are randomly permuted. Suppose a particular feature is important
in determining the outcome, Y . Permuting the values of this feature destroys its relationship
with the outcome. Because this important relationship has been destroyed, there should be a
subsequent decrease in predictive accuracy if a random forest is fit to this permuted data set.
If there was no relationship to begin with, the predictive accuracy of the random forest fit to
the permuted data should remain unaffected. VIMs measure the average decline in predictive
performance for each feature across multiple trees.

The VIM for the vth feature is calculated as follows below. Let OOBk ⊂ {1, . . . , n} be the
indices for the out of bag sample from the kth tree. Let πk = (πk1, . . . , πkn) be a random

permutation of OOBk and let X̃i = (X
(1)
i , . . . , X

(v)
πki , . . . , X

(p)
i ) be the feature vector for the

ith subject where the vth feature has been permuted. In the case of regression, the variable
importance of the vth feature from the kth tree is defined as

V̂ IMk(v) =

∑
i∈OOBk

(yi − f̂k(X̃i))
2 − (yi − f̂k(Xi))

2

|OOBk|
(1)

The variable importance for the entire random forest is defined as

V̂ IM(v) =

∑ntree
k=1 V̂ IMk(v)

ntree
(2)

2.3. A Brief Review of WGCNA

In biology, statistical network models play a significant role in uncovering important regulatory
mechanisms or processes. WGCNA, first developed to detect networks of highly correlated
genes, has seen great success in many such biological applications. The R package WGCNA
is a robust and well-documented implementation of the WGCNA framework (Langfelder and
Horvath 2008). We expect that researchers already familiar with WGCNA will easily adopt
the fuzzy forests algorithm and we expect that newcomers to WGCNA will be able to make
good use of the help file in fuzzyforest as well as WGCNA’s fine documentation and tutorials.

To construct a network, we first need a similarity function. This similarity function is often
closely related to the Pearson correlation. We then weight them to emphasize strong correla-
tions and punish weak ones by taking the absolute value and raising to the power β. These
weighted correlations measure the connection strength, c between the features in the network.
By adding up these connection strengths for each feature, we get the connectivity. This de-
scribes how strongly each feature v is connected to the other features in the network. The
adjacency matrix is the matrix of connection strengths. Next, we identify groups of features
with high topological overlap. A pair of features has high topological overlap if both vari-
ables are strongly connected to the same group of features. After calculating the topological
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overlap for each pair of features, we use hierarchical clustering to identify modules of densely
interconnected features. The correlation of features within each module is high, while the
correlation of features between modules is low.

Formally, the user first specifies a similarity function suv = S(X(u), X(v)) for features u and
v, taking values between 0 and 1. Both unsigned and signed networks are possible. If the
features are continuous, the most common choice of similarity function is |Corr(X(u), X(v))| or
1+Corr(X(u),X(v))

2 according to whether the network is unsigned or signed, respectively (Zhang
and Horvath 2005).

This similarity matrix is then transformed into an adjacency matrix A = [auv]. The adjacency
function determine how similarities translate into properties of the network. For example, in
a hard-thresholded network, where nodes are either connected or unconnected, the adjacency
function determines how high the correlation has to be in order for two nodes to be connected.

This hard threshold function, denoted by signum(suv, τ), where τ is defined to be the thresh-
old, is the simplest choice of adjacency function. If suv ≥ τ then auv = signum(suv, τ) = 1,
otherwise auv = 0. Nodes are either then classified as connected or unconnected. In practice,
a soft-thresholded network is often more plausible than a hard-thresholded one. The power
function auv = sβuv is common choice of soft-thresholding adjacency function. Large values of
β yield behavior closer to a hard-thresholded network. Setting β = 1 is equivalent to using the
similarity function alone. Once an adjacency function is calculated, a hierarchical clustering
tree algorithm is used to define the clusters of features.

It is common to apply this hierarchical clustering algorithm to the topological overlap matrix
rather than the adjacency matrix. The topological overlap between two nodes is defined as

ωuv =
quv + auv

min{cu, cv}+ 1− auv
(3)

where quv =
∑p

r=1 airarj and ci =
∑p

r=1 air (Horvath 2011). The topological overlap between
two nodes can be high even if auv is low. This occurs when the two nodes are strongly
connected to the same set of nodes. Use of topological overlap rather than the adjacencies
may lead to more distinct modules (Zhang and Horvath 2005).

In many biological contexts, it is suspected that only a few features are highly connected.
This prior knowledge leads to the scale-free criterion for determining which value of q to
select. A network is said to have a generalized scale-free topology if c(z) ∝ zθ, where c(z) is
the frequency function for the connectivity and θ is non-negative real number. log10(c(z)) ∝
log10(z) (Zhang and Horvath 2005). If the scale-free topology criterion is suspected to hold,
one should select a value of β such that the R2 between log10(c(z)) and log10(z) is high.

2.4. The Fuzzy Forests Algorithm

The fuzzy forests algorithm is an extension of random forests designed to obtain less biased
variable importance rankings in the presence of correlated features. In the following section,
we describe the motivation behind fuzzy forests and explain why it provides relatively unbiased
rankings of VIMs. In this section, we describe the algorithm.

The fuzzy forests algorithm reduces the parameter space in two steps: a screening step and
a selection step. The screening step works in a piecewise fashion to screen out unimportant
features once the features have been assigned to modules. The screening step takes as input
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a module or partition of the features such that the correlation within each module is high.
Our package, fuzzyforest, facilitates the use of WGCNA to determine the modules although,
it is possible to use alternative methods to partition the features, if this is known a priori.
Denote this partitioning of the features by the set P = {P1, . . . , Pm}. Let pl = |Pl| so that∑m

l=1 pl = p.

The screening step operates independently on each partition. For each element of the par-
tition Pl, Recursive Feature Elimination Random Forests (RFE-RF) is used to screen out
unimportant features. Starting with all features in partition Pl, a random forest is fit and
the least important features are then eliminated. Call the reduced set of features in Pl, after

the first random forest, P
(1)
l . For example, the features with VIM in the bottom 25% might

be dropped at each step. A 2nd random forest is then fit using features in P
(1)
l . The least

important features from this latest random forest are then eliminated leading to a further

reduced set of features P
(2)
l ⊂ P

(1)
l ⊂ Pl. The subset obtained after iteration t is denoted as

P
(t)
l and let p

(t)
l be the number of features in P

(t)
l . Features are eliminated in this manner

until a user-specified stopping criteria is reached. For example, features may be eliminated
until 5% of the original features in Pl remain.

The user must specify a few tuning parameters at the screening step. First, the user must
specify how many features are to be dropped after each step of the RFE-RF. We call this
fraction the drop fraction. The user must also specify a stopping criteria. In fuzzyforest the
user specifies what percentage of the original pl features to retain. This percentage is called
the keep fraction. The first time the number of features drops below keep fraction ∗ pl, the
RFE-RF stops and the top bkeep fraction ∗ plc features are selected. More precisely, for the

first iteration t such that p
(t)
l < keep fraction ∗ pl, we retain the top bkeep fraction ∗ plc

features from P
(t−1)
l .

For each random forest RFE-RF, mtry and ntree must be appropriately selected. Since the
number of features varies across random forests, mtree and ntree must be a function of the
current number of features. Suppose we are at iteration t and are about fit a random forest to

obtain P
(t+1)
l ⊂ P (t)

l . In the case of regression, fuzzyforest sets mtry =

√
p
(t)
l ∗mtry factor.

For classification fuzzyforest sets mtry =
⌊
p
(t)
l /3

⌋
∗mtry factor. In both cases, mtry factor

must be pre-specified by the user, with the default being 1. The parameter ntree must be
set high enough to be able to pick up the effects of important variables, however if ntree is
set too high, the iterative series of random forests could increase the run time. The package

fuzzyforest sets ntree = max(min ntree, p
(t)
l ∗ ntree factor).

The selection step consists of one last RFE-RF to allow for interactions between modules.
This RFE-RF is applied to all features that have been selected at the screening step. Note
that a separate choice of drop fraction, mtry factor, min tree, and ntree factor may be
used. In the package fuzzyforest, keep fraction is implicitly defined by user, as the user
specifies how many features they would like in the final selection step.

2.5. Motivation for Fuzzy Forests Algorithm

The selection step of fuzzy forests is motivated by the following observations concerning
the theoretical properties of VIMs. Permutation VIMs provide a means of summarizing
the importance of individual features without making parametric assumptions. In the case of
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regression, the random forest permutation VIM of feature v estimates the following parameter:

V IM(v) = E(f(X
(1)
i , . . . , X

(v)
i , . . . , X

(p)
i )− f(X

(1)
i , . . . , X̃

(v)
i , . . . , X

(p)
i ))2. (4)

The above expression deserves further explanation. First, note that the expression is the
same for all choices of index, i, because the (Xi, Yi) are iid with distribution G(X,Y ). Next
note that f is fixed and the expectation is with respect to the random variables Xi =

(X
(1)
i , . . . , X

(v)
i , . . . , X

(p)
i ) and X̃

(v)
i . The random vector Xi has distribution GX and X̃

(v)
i ,

generated independently of Xi, has distribution GX(v) . Here, X̃
(v)
i can be thought of as

an independently generated realization from X
(v)
i . If the value of f(Xi) changes greatly

when X
(v)
i is replaced by X̃

(v)
i , it implies that the vth feature is important. In the case

where fγ(X) =
∑p

v=1 γvX
(v) is a linear model, with standardized features (var(X

(v)
i ) = 1),

V IM(v) = γ2v .

This form of the VIM is given in a slightly different form in Gregorutti et al. (2013) and Zhu
et al. (2012). Gregorutti et al. (2013) present a similar expression for the case of classification.
These authors also discuss conditions under which the estimate of the permutation VIM
derived from random forests is consistent.

Let GP (l) denote the joint distribution of the features in partition P (l) and let XP (l) ∼ GP (l) .
In general, the conditional expectation, E[A|B], of one random variable A with respect to
another random variable, B, is defined as the function h(B) that minimizes E[(A − h(B))2]
or, written more compactly, argminhE[(A− h(B))2]. When random forests are fit using only
the features in module P (l), the estimated regression function converges to

argminhE[(Y − h(XP (l)
))2] = argminhE[(f(X) + ε− h(XP (l)

))2] (5)

= argminhE[ε2 + 2ε(f(X)− h(XP (l)
)) + (f(X)− h(XP (l)

))2]
(6)

= argminhE[2ε(f(X)− h(XP (l)
)) + (f(X)− h(XP (l)

))2] (7)

= argminhE[(f(X)− h(XP (l)
))2] (8)

= E[f(X)|XP (l)
]. (9)

Note that the E[2ε(f(X)− h(XP (l)
))] = 0 because ε is indpendent of X and has mean 0.

Suppose that features in separate modules XP (1)
, . . . , XP (m)

are independent and suppose
that f(X) =

∑m
j=1 fj(X

P (j)
). The regression function f(X) allows for interactions within

modules and no interactions between modules. We now demonstrate that if we fit a random
forest using only the features in P (l), we are no longer estimating E[Y |X] = f(X), instead
we are estimating

E[f(X)|XP (l)
] =

m∑
j=1

E[fj(X
P (j)

)|XP (l)
] = fl(X

P (l)
) +

m∑
j 6=l

EX
P (l)

[fj(X
P (j)

)]. (10)

As a result, the VIMs obtained by fitting a separate random forest to each module P (l), are
equal to the VIMs obtained by fitting a random forest to the full set of features.
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This is seen by the following argument. Thus,

E[Y |XP (l)
] = argminhE[(Y − h(XP (l)

))2] (11)

= argminhE[{(Y − f(X))− (h(XP (l)
)− f(X))}2] (12)

.

This last term equals:

argminh{E[(Y −f(X))2]−2E[(Y −f(X))(h(XP (l)
)−f(X))]+E[(h(XP (l)

)−f(X))2]}. (13)

Now, the first of the above expectations does not depend on g. The second expectation equals
0:

E[(Y − f(X))(h(XP (l)
)− f(X))] = E[E[(Y − f(X))(h(XP (l)

)− f(X))|X]] (14)

= E[(h(XP (l)
)− f(X))E[(Y − f(X))|X]] (15)

= 0. (16)

This leaves only the third expectation remaining. Thus, E[Y |XP (l)
] = argminhE[(h(XP (l)

)−
f(X))2]. By the definition of conditional expectation, this last term equals E[f(X)|XP (l)

].

Note that by the independence of the modules, we have E[fj(X
P (j)

)|XP (l)
] = EX

P (l)
[fj(X

P (j)
)]

for all j 6= i. This yields equation (10).

Suppose feature v is in partition P (l). The variable importance obtained by fitting a random
forest to only those features in P (l) is estimating the following quantity:

V IM∗(v) = E(fl(X
(l1)
i , . . . , X

(v)
i , . . . , X

(lm)
i )− fl(X

(l1)
i , . . . , X̃

(v)
i , . . . , X

(lm)
i ))2. (17)

Here, X lk
i is the kth element of partition P (l). As in equation (4), X(v) and X̃(v) are iid from

GX(v) . We see from this equation that V IM∗(v) = V IM(v) if the true regression function is
additive across modules and if the modules are independent of one another. If our assumptions
are met, the VIMs obtained by analyzing each module separately are asymptotically the same
as those that would have been obtained if VIMs were obtained by analyzing all features at
once.

Therefore, the selection step of fuzzy forests achieves two goals. First of all, it reduces the
number of features that have to be analyzed at one time. Second, the finite sample bias
caused by correlated features is alleviated. In (Nicodemus and Malley 2009), it is observed
that insignificant features that are correlated with a significant feature are more likely to
be chosen at the root of tree than uncorrelated significant features. The high importance of
these insignificant correlated features comes at the cost of the significant uncorrelated features.
When we analyze each module separately, features in different groups no longer competing
against one another.

These observations suggest that if we can assume strict additivity and independence of the
modules, then obtaining VIMs from each module separately should suffice. However, if these
assumptions are not met, then the VIMs obtained by analyzing each module separately are,
in general, different than the VIMs obtained by fitting a single random forest.

Fuzzy forests relaxes these overly restrictive assumptions. Fuzzy forests allows for interactions
between features that were found to be important within modules. In biological applications,
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modules might represent different biological components, or demographic information about
the subjects. Thus, it is reasonable to allow these systems to interact with one another.
Fuzzy forests is implicitly making the assumption that the features that have high VIMs
within modules are also most likely to be the features involved in interactions across modules.

It is important to note that RFE-RF is applied at the final selection step. When features from
separate modules are combined, the potential for bias due to correlation between features is
re-introduced. The iterative random forests, in practice, manage to eliminate unimportant
predictors which are correlated with important ones. While the ranking of the VIMs obtained
from fuzzy forests are less biased than those derived from random forests, the estimated VIMs
may still be biased and thus we do not recommend interpreting the estimate of the VIMs too
closely.

3. The fuzzyforest package

The package fuzzyforest has two functions for fitting fuzzy forests. The first is wff, the second
is ff. The function wff automatically carries out a WGCNA analysis on the features. Then
it uses these newly derived modules as input to fuzzy forests. The WGCNA analysis is carried
out via the blockwiseModules function, from the package WGCNA.

The second function ff assumes that the features have already been partitioned into separate
modules either via a previous network analysis such as WGCNA, or a priori knowledge. The
function ff is able to carry out the fuzzy forests algorithm using the output of WGCNA.

A number of tuning parameters must be specified before fuzzy forests can be run. These
tuning parameters are organized into separate control objects. Tuning parameters related to
WGCNA are specified with an S3 object of type WGCNA_control. Similarly, tuning parameters
related to the screening step and the selection step are specified through objects of type
screen_control and select_control.

We demonstrate the workings of fuzzyforest with an analysis of a data set of gene expression
in liver tissue in female mice. The data set can be found in the tutorial website for WGCNA:
http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.
The number of mice is 131 and the number of genes is 3,600. We examine how the expression
of these genes correlates with the weight(g) of the mice. In the following code, the data set
is called Liver_Expr.

> weight <- Liver_Expr[, 1]

> expression_levels <- Liver_Expr[, -1]

We first use WGCNA to select the power that leads to a network with approximately scale-
free topology. We set β = 6 (β is equivalent to power in the code below) and set other tuning
parameters for WGCNA in the following call. Note that the resulting number of modules can
be sensitive to minModuleSize.

> WGCNA_params <- WGCNA_control(power = 6, TOMType = "unsigned", minModuleSize = 30,

+ numericLabels = TRUE, pamRespectsDendro = FALSE)

Then we set tuning parameters for the selection step and the screening step:
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> mtry_factor <- 1; drop_fraction <- .25; number_selected <- 10

> keep_fraction <- .05; min_ntree <- 5000; ntree_factor <- 5

> final_ntree <- 5000;

> screen_params <- screen_control(drop_fraction = drop_fraction,

+ keep_fraction = keep_fraction,

+ min_ntree = min_ntree, mtry_factor = mtry_factor,

+ ntree_factor = ntree_factor)

> select_params <- select_control(drop_fraction = drop_fraction,

+ number_selected = number_selected,

+ min_ntree = min_ntree, mtry_factor = mtry_factor,

+ ntree_factor = ntree_factor)

>

Finally, we use wff to fit fuzzy forests to the data set.

> wff_fit <- wff(expression_levels, weight, WGCNA_params=WGCNA_params,

+ screen_params = screen_params,

+ select_params = select_params,

+ final_ntree = final_ntree,

+ num_processors = 4)

The function wff returns an object of type fuzzy_forest. Objects of type fuzzy_forest

have the usual generic methods. The function print returns the list of selected features. The
function predict(fuzzy_forest, new_data) takes in a data.frame or matrix and produces
predictions based on the selected features.

> print(wff_fit)

feature_name variable_importance module_membership

1 MMT00026944 1.0712 6

2 MMT00019254 0.8624 6

3 MMT00067823 0.8081 10

4 MMT00065159 0.6716 10

5 MMT00030931 0.5934 7

6 MMT00078732 0.5416 6

7 MMT00078851 0.5270 6

8 MMT00002575 0.5261 7

9 MMT00006001 0.5231 7

10 MMT00021649 0.5185 1

Before the analysis is run, the user selects the desired number of important features as the
end output of fuzzy forests. The number of features selected can be thought of as a tuning
parameter. The predictive accuracy of a test set can then be used to determine the optimal
number of features to select.

As it is often useful to ascertain which modules are contributors to the signal of the outcome,
we create a visual representation of all modules and the distribution of important features
across the modules. The function modplot yields a visual display of which modules are
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> modplot(wff_fit)
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Figure 1: modplot demonstrates the relative importance of modules

important. The grey bars represent what percentage of the total p features fall into a particular
module. The blue bars represent the percentage of selected features that fall into each module.
Applying the function modplot to the object wff_fit above, we obtain the graph in Figure
1.

A variable importance plot can be obtained using the function varImpPlot from the package
randomForest. Note that final_rf is the final random forest fit using the selected features.

4. Simulations

In this section, we demonstrate the performance of fuzzy forests in a number of simulation
scenarios. These simulations are designed to compare fuzzy forests to random forests when the
features are correlated. We also demonstrate the effects of user specified tuning parameters
mtry factor and keep fraction.

In all simulations, the sample size is set to 100. In the first scenario, p = 100, Yi = X ′iγ + εi,
and Xi is generated from a multivariate normal distribution, with mean 0 and variance 1.
The error terms, εi are normal with mean 0 and standard deviation 0.5. Each feature has
mean 0 and variance 1. Let X(1) through X(75) be correlated and let the last 25 features be
independent. Among the group of correlated features, {X(1), . . . , X(25)}, {X(26), . . . , X(50)},
and {X(51), . . . , X(75)} constitute 3 distinct modules each containing 25 features. The corre-
lation between features within the same module is 0.8. The correlation between features in
different modules is 0. The features in the final module, {X(76), . . . , X(100)}, are independent
of one another and independent of features in the previously mentioned modules.

To evaluate the results of fuzzy forests and random forests, we compute the proportion of
times the non-zero features were selected over 100 simulation runs. For random forests, the
features with permutation VIM in the top 10 were selected. Among the correlated features
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> varImpPlot(wff_fit$final_rf, type = 2, main="Variable Importance Plot")
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we have γ1 = γ2 = 5 and γ3 = 2. Among the group of independent features, γ76 = γ77 = 5
and γ78 = 2. All other elements of γ were set to 0. The results are displayed in Figure 2.

In the second scenario, we have the same setup as before except we increase p to 1000 while
leaving n at 100. The group of correlated features now contains 900 features, grouped into
the following modules:
{X(1), . . . , X(100)}, . . . , {X(801), . . . , X(900)}. Again, the correlation between features in the
same module is 0.8. The correlation of features from different modules is 0. The remaining
module, {X(901), . . . , X(1000)}, consists of independent features. Once again, γ1 = γ2 = 5 and
γ3 = 2. The first 3 independent features are also non-zero: γ901 = γ902 = 5 and γ903 = 2. As
seen in Figure 3, when p = 1, 000, random forests largely ignore the independent features.

5. Application

We demonstrate a typical analysis by using fuzzyforest to discover immunologic profiles that
predict if an HIV infected patient will have a suboptimal immune response to antiretroviral
therapy (ART). The subjects in the study were enrolled in either the Options Project or the
SCOPE project, both longitudinal cohorts based at the University of California, San Francisco
(UCSF). In this particular analysis, we wish to identify novel immunologic signatures that
are predictive of whether a patient will be an immunologic responder or a controller, which
we define as being able to achieve undetectable levels of the virus (< 50 copies/ml) without
ART. Similarly, an immunologic responder is an aviremic patient with undetectable levels of
the virus and CD4+ T cell counts above 350 cells/mm3.

In this dataset there were 125 immunologic responders, 92 controllers, and 313 features. The
features are derived flow cytometry, measuring T cell maturation, activation, dysfunction,
senescence, antigen-specificity and proliferation as well as patient demographics and clinical
characteristics. Flow cytometry measures up to 14 different markers on a cell. The data
are labeled “n” for negative and “p” for positive indicating the presence or absence of the
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Figure 2: Fuzzy forests compared to random forests with p = 100. Each bar represents the
probability of each feature being selected. X1 through X4 are correlated features and X76

through X79 are independent features. X1 through X3 and X76 through X78 are non-zero in
the true model.

marker on the cell. This yields up to 214 possible binary combinations of markers. Due to
cost, not all permutations were done. Due to the nature of flow-cytometery, many features
are subsets of other features and hence highly correlated. Mean florescence intensity was also
measured using flow cytometry, but in this case the measure is continuous. We were also given
information on clinical and demographic characteristics of the subjects such as gender, age,
ART regimen, and route of transmission. Because we have many highly correlated features we
used WGCNA to identify modules within the feature space. We used the scale-free topology
criterion to determine the power of the adjacency function and set β = 8 based on the results
of Figure 4. We found 11 modules. The largest module was the “grey” module, the features
that are independent of the other modules, with 140 features. It is commonly the case that
the grey module is larger than the other modules. The smallest module was of size 10.

Here is description of modplot.

We used the resulting modules memberships as input to the function ff. Because of the
small size of the modules we set keep_fraction to 0.25. We tested multiple values of for
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Figure 3: Fuzzy forests compared to random forests with p = 1, 000. Each bar represents the
probability of each feature being selected. X1 through X4 are correlated features and X901

through X904 are independent features. X1 through X3 and X901 through X903 are non-zero
in the true model.

number_selected. The ranking of features was robust to settings of this parameter. We
display the results when selecting 10 features.

The strongest predictors of virologic control without ART were HIV GAG-specific response
and higher levels of immune activation. This replicates findings from earlier work Hunt et al.
(2008). Interestingly immune responders had higher percentages of CD4 positive cells that
express both CCR5 and CD38, but not HLA-DR. Immune responders also had higher levels
of CD31 positive naive cells.

6. Discussion

In this paper we have presented the fuzzy forests algorithm as an extension of random forests
that can provide less biased feature selection in the presence of correlation between features
especially when p >> n. Under these conditions fuzzy forests is expected to outperform
random forests. We found that, as expected, random forest variable importance measures
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Figure 4: The following plot shows that 8 is the smallest power such that the scale free
topology criterion is approximately met.
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Figure 5: The height of the bars represents the proportion features in each module. The
proportion of each bar colored in red represents the proportion of features that are selected
as important within each module.

were biased towards correlated features. Indeed when p = 1, 000 while n = 100, random
forests essentially ignored the independent variables that were a priori important in the true
model while fuzzy forests found them. The fuzzy forests algorithm is useful for screening large
numbers of parameters or when it is desirable to find the top number of features contributing
to the signal. Of course, this reduced list can be expected to have slightly better predictive
performance, although this was not the original intent of the algorithm.

We introduced an implementation of fuzzy forests in the fuzzyforest package. The fuzzyforest
package has two functions for fitting the fuzzy forests algorithm. The first implementation,
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Variable Importance for Predicting
         Controllers versus Responders
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Figure 6: The following plot displays the importance of the top 10 selected features after
fitting a fuzzy forest. The variables are ranked from top to bottom.

wff automatically carries out WGCNA to partition the features into separate modules. These
modules are then used by the fuzzy forests algorithm for feature selection. The second im-
plementation, ff lets the user determine how features should be partitioned before the fuzzy
forests algorithm is used for feature selection.

We then used fuzzy forests to investigate how immunologic profiles determine a patient’s
response to HIV both with and without ART. We used the scale free topology to determine
the power β of the adjacency function. Then we used the ff function for feature selection. The
set of important features was stable with respect to mtry factor and other tuning parameters.
The set of features found by fuzzy forests is biologically plausible and in part confirms findings
from in vivo and other clinical studies, suggesting that fuzzy forests found the true underlying
signal in the data. It is expected that fuzzy forests will be useful in a wide variety of application
from gene studies, to flow cytometry to other studies where the data has high correlation and
many potential predictors.
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