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Abstract 

Similarity is often regarded as a fundamental construct 
underlying stimulus generalization in category learning and 
many other domains.  The key assumption of this approach is 
that multidimensional differences between stimuli are 
summarized by a single value before entering the decision 
process.  The present study challenges this assumption by 
showing that category judgments depend on the full 
relationship between present and past stimuli, in a way that 
cannot be mediated by a unidimensional similarity measure.  
Approaches based on response generalization, knowledge 
partitioning, and distributional representations are also shown 
to be insufficient to account for our findings. 

Introduction 
Similarity has long been held to underlie a wide range of 
cognitive processes.  Seminal work by Shepard (1957) 
showed that stimulus generalization in conditioning and 
identification tasks can be explained in terms of similarity 
between stimuli.  This approach has since been extended to 
many other tasks, including categorization (Medin & 
Schaffer, 1978) and inductive reasoning (Osherson, Smith, 
Wilkie, Lopez, & Shafir, 1990).  An important finding has 
been that similarity is not constant; rather, it changes 
systematically as a function of which stimulus attributes are 
relevant to the task (Heit & Rubinstein, 1994; Nosofsky, 
1986).  However, it is still generally assumed that similarity 
is well defined for any one judgment, context, and 
attentional set.  This critical assumption holds not only for 
spatial models of similarity, but also for feature-set models 
(Tversky, 1977) and approaches based on internal relational 
structure (Markman & Gentner, 1993). 

The present study challenges the assumption that 
generalization is based directly on similarity.  We describe 
an experiment using a four-category classification task in 
which subjects must attend to two dimensions 
simultaneously, but must use these sources of information in 
different ways.  The principal finding is that multiple  
generalization gradients are simultaneously active for 
different aspects of the category judgment.  Thus 
performance in this task cannot be explained in terms of a 
single similarity function (even one that changes from trial 
to trial).  We argue that the failing of the similarity approach 
is that it assumes the relationships between 
multidimensional stimuli are reduced to a single value 
before this information is passed to the decision process.  
That is, similarity acts as a mediator or sufficient statistic.  
Instead, it appears that people use the full multidimensional 
relationship between stimuli, and in particular the alignment 

between stimulus differences and category differences, in 
making category judgments. 

Recency approach to generalization  
Jones, Love, and Maddox (2006) demonstrate how 

stimulus generalization can be directly measured during a 
probabilistic classification task through analysis of 
decisional recency effects.  Specifically, they found that 
responses are biased towards the feedback given on the 
previous trial, and that the strength of this bias is directly 
determined by the difference between present and previous 
stimuli.  The effect of the previous feedback thus represents 
generalization from the previous stimulus to the current one. 

Jones, Maddox, and Love (2005) found that when one 
stimulus dimension is predictive of the category label and 
another dimension is irrelevant, generalization becomes 
selectively dependent on the diagnostic dimension (Fig. 1).  
This finding is consistent with accounts of selective 
attention that assume similarity adapts to weight task-
relevant dimensions more heavily (Kruschke, 1992; 
Nosofsky, 1986).  In other words, stimuli differing along the 
diagnostic dimension become less similar than stimuli 
differing along the irrelevant dimension.  This adaptation of 
generalization is directly observable through analysis of 
recency effects, as elaborated below. 
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Figure 1:  Selective generalization in a 2-category 
classification task (Jones et al., 2005, Expt. 1, Condition 
F).  Horizontal axes indicate the difference between 
successive stimuli.  Vertical axis shows strength of 
generalization, defined as the effect (in log-odds) of the 
previous feedback on the response to the present stimulus.   
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Empirical Investigation 
The assumption that generalization is based on similarity 
was tested using a four-category probabilistic classification 
task.  The structure of the categories used is illustrated in 
Figure 2.  Stimuli in the task are Gabor patches, varying in 
frequency and orientation.  Frequency is predictive of 
whether a stimulus lies in category A or C versus B or D, 
whereas orientation is predictive of A or B versus C or D.  
Therefore both dimensions are equally relevant to the task, 
but subjects’ responses can be decomposed into components 
that, normatively, each depend on only one dimension.  
Each component is isomorphic to a two-category 
classification task with one diagnostic and one irrelevant 
dimension.   

Data were analyzed according to this decomposition, and 
separate generalization gradients were obtained for each 
subtask, following the same approach as Jones et al. (2005).  
Importantly, the subtasks are merely constructs for the 
purposes of data analysis.  On each trial the subject gives a 
single response from among the four categories, with 
responses for each subtask inferred at the time of analysis.  
Moreover, subjects were not given any instructions about 
the structure of the categories; they were merely told that 
there would be four categories for them to learn.  In other 
words, the two subtasks are facets of the same judgment, 
and thus any similarity-based account must predict that they 
rely on the same similarity function.  Therefore , if 
generalization is determined by similarity, then the 
generalization gradients from the two subtasks should be 
identical.  However, if generalization is based on the full 
multidimensional relationship between present and past 
stimuli, then it might adapt in opposite directions for the 
two subtasks.  We term this the split-selective attention 
effect, because it would indicate subjects are allocating their 
attention in different ways for different aspects of the task. 

Method 
Participants.  Forty members of the University of Texas, 

Austin, participated for payment or course credit. 
Stimuli.  Stimuli were 6-cm square Gabor patterns (sine-

wave gratings within a Gaussian envelope), varying in the 
frequency and orientation of the grating.  The primary 
category structure involved 113 stimuli, arranged as shown 
in Figure 2.  In addition, 13 extreme stimuli from each 
category, not pictured, were used during training. 

Design.  Every subject was tested on the same category 
structure (Fig. 2).  The structure is fully probabilistic, such 
that every stimulus has a positive probability of occurring in 
any category.  Outcome probabilities follow a logistic 
function along each dimension; for example, the probability 
that a stimulus lies in category C is given by 

1
.

)()( )]1)(1[(]C[ orioriorifreqfreqfreq −−− ++= µσµσ SS eeP  Here Sfreq 

and Sori are the dimension values of the stimulus, µfreq and 
µori are the centers of the stimulus ranges, and σfreq and σori 
are constants set such that the maximal outcome probability 
for each category is 90%. 
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Figure 2:  Experiment design.  Dark circles indicate 
stimuli.  Letters and blurred grey lines indicate category 
structure, although feedback is fully probabilistic. 

Procedure.  The experiment consisted of a training phase 
followed by a testing phase.  The training phase used 13 
extreme stimuli for each category and lasted 100 trials .  
Feedback during training was deterministic.  This phase was 
necessary because piloting showed subjects perform very 
poorly on the probabilistic four-category task if they are not 
first taught the general arrangement of the categories.  The 
testing phase used the 113 stimuli shown in Figure 2 and 
lasted 400 trials.  Feedback during this phase was 
probabilistic, following the formula given above.  At the 
start of the testing phase subjects were told that the 
categories were the same but that they would now be shown 
borderline items. 

On each trial, a stimulus was randomly selected from the 
pool for the current phase and presented in the center of a 
43-cm computer monitor on a black background.  The 
subject then responded by pressing one of four keys on a 
keyboard.  The word “Correct” or “Wrong,” together with 
the correct category for that trial, was then presented below 
the stimulus for 1s.  The monitor went blank for .5s before 
the start of the next trial. 

Analysis  
Responses and feedback from each trial were decomposed 
into two subtasks as shown in Table 1.  Each subtask 
contains data from every trial but collapses the four 
categories to two.  The effective categories are A∪C and 
B∪D in Subtask F and A∪B and C∪D in Subtask O.  
Therefore each subtask is logically identical to a two-
category task with only one relevant dimension: frequency 
in Subtask F and orientation in Subtask O.  The derived data 
for each subtask were analyzed using the sequential 
generalization model of Jones et al. (2005, 2006).  
Para meters obtained from fits of this  model provide an 
estimate of the empirical generalization gradient. 
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Table 1:  Decomposition of 4-category task into subtasks 
  

  Category/Response  
Subtask A B C D  
F 0 1 0 1 
O 1 1 0 0  

Notes:  Entries indicate how each category is coded for 
each subtask.  For Subtask F, only frequency is relevant; 
for Subtask O, only orientation is relevant. 
 
The formal characterization of the sequential 

generalization model is  as follows (for details and empirical 
validation, see Jones et al., 2006): 
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This formula expresses the current response log-odds as a 
sum of short- and long-term contributions.  The first term on 
the right side of Equation 1 represents generalization from 
the previous trial.  The strength of generalization is given by 
Γ, which is a function of the present and previous stimuli Sn 
and Sn-1.  The direction of the generalization effect is 
determined by the previous feedback Fn-1, which is coded 
here as  ±1.  Thus the present response tends towards the 
previous feedback to an extent determined by Γ.  The 
remainder of Equation 1 represents the effect of long-term 
knowledge, which is included in the model to allow 
unbiased estimates of short-term generalization (Jones et al., 
2006).  Here Sn,i represents the value of stimulus n on 
dimension i, wi are association weights, and w0 is an 
intercept or response bias term.  The previous stimulus is 
included to model perceptual contrast effects, represented 
by c. 

Two approaches are useful for estimating the 
generalization gradient Γ .  First, Γ can be treated as a non-
parametric function of the (vector) diffe rence between Sn 
and Sn-1, by estimating a separate value for every possible 
difference.  This approach yields a non-parametric mapping 
of the empirical generalization gradient (as in Fig. 1).  The 
only assumption is that the two-dimensional gradient can be 
expressed as a product of gradients on each dimension 
(Nosofsky, 1986).   

Second, Γ can be estimated from a parametric family.  In 
the present study, parametric estimation of Γ follows 
previous research showing that generalization in category 
learning is  best modeled by a Gaussian function of the 
distance between stimuli (Jones et al., 2005, 2006;  
Nosofsky, 1986).  Therefore Γ is taken to be of the form 

∑ −−α−
− +=Γ

2
,1, )(

1, )( inini SS
nn kemSS . (2) 

The intercept term m is included because of the finding of 
negative generalization between highly dissimilar stimuli 
(Jones et al., 2006).  The α parameters determine the degree 
to which generalization depends on discrepancies along 
each dimension.  Selective generalization corresponds to 

changes in α in response to the category structure, with 
larger values for more diagnostic dimensions (Jones et al., 
2005).  According to accounts of generalization based on 
similarity and selective attention, a large value of α 
represents increased attention to the corresponding 
dimension, which produces a decrease in similarity between 
stimuli differing on that dimension (Nosofsky, 1986). 

To summarize, the sequential generalization model allows 
measurement of the pattern of generalization from the 
previous trial as a function of the relationship between 
present and previous stimuli.  This is accomplished by 
assessing the effect of the previous feedback while 
controlling for the contribution of long-term knowledge.  
Comparison of the gradients obtained for the two subtasks 
of the present study provides a test of whether 
generalization was uniform across different components of 
the category judgment.  This in turn tests the claim that 
generalization is based on similarity. 

In all analyses, frequency and orientation were 
transformed to lie on a common scale, ranging from 1 to 15 
in integer steps.  All model fits are based on data from the 
testing phase only, and are based on maximum likelihood. 

Results and discussion 
The sequential generalization model (Eqs. 1 & 2) was 
applied to the derived data for each subtask, both for the 
group and for each subject.  First, the nonparametric version 
of the model was applied to the group data to obtain 
nonparametric generalization gradients for each subtask.  
Long-term knowledge (w and c parameters) was allowed to 
vary among subjects.  The gradients obtained for each 
subtask are displayed in Figure 3.  As can be seen, the 
gradient for Subtask F is steeper along the frequency 
dimension than along the orientation dimension; the 
opposite pattern holds for Subtask O.  Thus generalization 
for each subtask depends relatively more on the 
corresponding diagnostic dimension.  To test the reliability 
of this difference, data from both subtasks were fit 
simultaneously, with the constraint that the two gradients 
were identical.  The goodness of fit of this model was 
significantly worse than the combined fits of the previous 
models, χ2(29) = 61.05, p < .001.  Therefore the 
generalization gradients differed between subtasks. 

Second, the parametric version of the model (Eq. 2) was 
fit separately for each subject.  To compare generalization 
between subtasks, a selective generalization measure was 
computed, separately for each subject and subtask, as β = 
αfreq/(αfreq + αori).  This variable measures the relative 
influence of the two dimensions in determining strength of 
generalization, and is constrained to lie between 0 and 1.  
The difference in β between the two subtasks is a measure 
of the split-selective attention effect.   

Average values of β for each subtask, along with primary 
parameters from the long-term component of the model, are 
presented in Table 2.  As can be seen, β is greater in Subtask 
F than Subtask O, again indicating that generalization for 
each  subtask  depends  relatively   more   on  the corresponding  
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Figure 3:  Non-parametric generalization gradients for 
each subtask.  In both cases, generalization is weaker 
when successive stimuli differ on the diagnostic 
dimension (frequency for F, orientation for O) than when 
they differ along the irrelevant dimension. 

 
diagnostic dimension.1  This difference is significant by a 
paired-samples t-test, t(39) = 1.80, p < .05 (one-tailed).  
Furthermore, the strength of the split-selective effect is 
positively correlated to long-term knowledge of the 
category structure, defined as                (with superscripts 
indicating subtask), r = .417, p < .01.  Therefore the more 
subjects learned the category structure, the more they were 
able to differentially allocate their attention in the two 
subtasks. 

                                                                 
1The fact that β is further from .5 in Subtask F than in Subtask O 

is merely a scaling effect – overall, generalization depends more 
on frequency than on orientation.  This is also evident in the non-
parametric gradients (Fig. 3).  This observation and the fact that 
long-term cue use (w) was stronger for frequency in Subtask F than 
for orientation in Subtask O (see Table 2) suggest that frequency 
enjoys greater baseline salience for these stimuli. 

Table 2:  Primary measures from individual model fits 
   
Subtask β wfreq wori  
F .618 .299 .003 
O .473 .011 .195  

Notes:  β is selective generalization measure; greater 
values indicate more attention to frequency over 
orientation.  w parameters measure long-term cue use. 

Simulation 
A series of simulations was conducted to test whether a 
similarity-based model can account for the pattern of 
generalization found in the present experiment.  The 
simulations were based on ALCOVE, an influential model 
of category learning that has been used to explain a wide 
variety of classification phenomena (Kruschke, 1992).  
ALCOVE categorizes stimuli based on their similarity to 
exemplars stored in memory.  Associations between stored 
exemplars and categories are updated by error-driven 
learning.  This iterated updating produces recency effects, 
which are moderated by the similarity between successive 
stimuli (Jones & Sieck, 2003).  That is, ALCOVE predicts 
similarity-based generalization from the previous trial.  
Furthermore, ALCOVE includes an attentional learning 
mechanism that modifies its similarity function, or 
generalization gradient, to improve performance.  Thus 
ALCOVE is also able to explain the selective generalization 
effect found by Jones et al. (2005).  ALCOVE therefore 
seems  one of the most likely candidates to explain the split-
selective attention effect from within the similarity 
framework. 

Two versions of ALCOVE were simulated (see Fig. 4).  
The first is the standard version, in which each category is 
represented by a single output node.  We refer to this 
version as the unified model .  The second version, the split-
task model, assumes that categories are explicitly 
represented in terms of the subtask decomposition used in 
the empirical analyses, with a pair of output nodes for each 
subtask.  Response probabilities are calculated in the same 
manner as in the unified model (see Eq. 3 of Kruschke, 
1992), but separately for each subtask.  These values are 
then multiplied to obtain response probabilities for the overt 
categories (e.g., P[A] = P[A∪B]⋅P[A∪C]). 

The simulations showed that ALCOVE is unable to 
explain the split-selective attention effect.  For all parameter 
values tested, the generalization gradients obtained from the 
two subtasks were statistically identical, with each 
depending equally on both dimensions.  This is true even for 
the split-task version of the model, in which the 
classification response is explicitly generated from separate 
decisions on the two subtasks.  The split-task version of 
ALCOVE fails to exhibit split-selective attention because 
decisions on the two subtasks still depend on the same 
attentional weights and hence the same similarity function.  
The activation of each hidden node, and hence the 
information passed to the output layer, only indicates the 
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Figure 4:  Illustrations of the two versions of ALCOVE 
used in simulations.  See text for explanation.  

 
similarity of that node’s exemplar to the presented stimulus; 
it does not separately indicate their difference on each 
dimension.  Prior to running the simulations it seemed 
possible that ALCOVE would exhibit split-selective 
attention via sequential effects from iterated learning, 
similar to the mechanisms by which it produces short-term 
generalization in the first place.  However, this  is not the 
case.  Of course, our findings could be modeled by fully 
separating the processing for the two subtasks, by assuming 
two complete and independent copies of the model.  
However, allowing for separate similarity functions 
whenever an incompatibility arises, especially in such a 
post-hoc manner, undermines the predictive power of the 
similarity approach and renders it largely meaningless.  
Moreover, this approach abandons the assumption that 
relationships among stimuli are collapsed to a single 
similarity measure, and is more in line with our position that 
generalization is based on multidimensional information. 

General Discussion 
In one of the first empirical studies of categorization, 
Shepard, Hovland, and Jenkins (1961) investigated whether 
category learning can be explained by similarity-based 
generalization.  Based on comparisons of error patterns 
between identification and categorization tasks, they 
concluded that it cannot.  This conclusion was seemingly  
overturned by Nosofsky (1986), who showed how category 
learning can be well modeled by similarity-based 
generalization, given the additional assumption that 
similarity is systematically altered by selective attention.  
Using the sequential method for directly measuring 
generalization gradients in category learning, Jones et al. 
(2005) found that subjects learning different category 
structures exhibit different gradients, but again it could be 
assumed that this is due to shifts in attention leading 
subjects in different conditions to use different similarity 
metrics.  Thus it could be argued that for each subject at 

each stage of learning, there exists a well-defined similarity 
metric underlying generalization. 

The present study presents a much stronger challenge to 
similarity-based accounts of generalization, by 
demonstrating two different generalization gradients 
simultaneously active within the same judgment.  The four-
category classification task used here can be thought of as a 
superposition of two, two-category structures, each with a 
different relevant dimension (see Fig. 2).  Just as was found 
when these structures were run separately, between subjects 
(Jones et al., 2005), generalization in each subtask was 
selectively more dependent on the relevant dimension.  
However, because in this study the two subtasks were in 
reality aspects of a single judgment, the differing gradients 
cannot be explained by a shift in similarity due to selective 
attention.  This finding, termed the split-selective attention 
effect, demonstrates that the cognitive processes underlying 
generalization are more sophisticated than similarity 
accounts allow for.  This conclusion is further supported by 
the simulations with ALCOVE, which is unable to exhibit 
split-selective attention. 

An additional implication of this study is that subjects 
systematically generalize among categories.  Extant models 
of category learning assume that observation of a stimulus 
in a given category is used as evidence regarding the 
membership of subsequent stimuli in that same category, 
but not as  evidence about other categories (except indirectly, 
through response competition).  However, in the present 
experiment it was seen that observation of a stimulus in one 
category can be taken as evidence in favor of other 
categories.  For example, observation of a stimulus in 
category A led to an increased tendency to place the 
following stimulus in category B, provided the two stimuli 
were similar in orientation. 

The idea that reinforcement of one response can increase 
the tendency for other responses is termed response 
generalization, and was predicted by Shepard's (1957) 
original generalization model.  The present study 
demonstrates that response generalization is an important 
component of category learning.  However, response 
generalization alone is not sufficient to explain our results.  
Shepard's model of stimulus and response generalization 
assumes that the two processes occur independently.  
Presentation of a stimulus activates knowledge about other 
stimuli based on their similarity, and the resulting response 
tendencies generalize to other responses, again based on 
similarity.  Thus the degree to which observation of 
stimulus X lying in category A will be used as evidence for 
classifying stimulus Y into category B is a function of the 
similarities between X and Y and between A and B.  In 
contrast, generalization in the present experiment was 
determined by the correspondence between the relationship 
between successive stimuli and the relationship between 
successive categories.  Specifically, generalization is strong 
only when the dimensions on which the stimuli differ are 
the same as those on which the categories differ.  Collapsing 
the multidimensional differences into unidimensional 
similarities before combining information about stimuli with 
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that about responses eliminates information about this 
critical correspondence. 

Our proposal, then, is that generalization is based on 
alignment of stimulus differences with response differences, 
much like in analogy formation (Gentner, 1983).  For each 
dimension, if the difference between present and previous 
stimuli is small, then categories are favored that are close to 
the previously reinforced category on that dimension.  If the 
difference is large then categories that differ on that 
dimension are favored.  This process is consistent with the 
pattern of generalization seen with unidimensional stimuli 
(Jones et al., 2006), and in that case is equivalent to an 
explanation based on similarity.  However, the two 
explanations diverge in the multidimensional case, because 
similarity does not contain the information necessary to 
support generalization decisions on multiple dimensions 
simultaneously. 

We suggest that the similarity approach has been 
successful to date because it was only tested in relatively 
simple tasks, generally involving only two categories.  The 
present task goes beyond past research in that it includes 
multiple categories having different relationships to one 
another.  Therefore the relevance of one stimulus’ category 
membership to that of another is  not a unitary proposition, 
but varies between the different aspects of the judgment. 
These relevancies cannot be summarized by any global 
similarity metric, but depend on the detailed, 
multidimensional relationship between the two stimuli. 

Two other theoretical approaches deserve mention as they 
relate to split-selective attention.  First, theories based on 
general recognition theory (Ashby & Townsend, 1986) 
assume that categories are represented in terms of their 
distributional properties, such as mean and variance on each 
dimension.  If different categories are associated with 
different variance structures, then generalization of different 
category labels might be assumed to follow different 
gradients.  However, categories in the present experiment all 
depended equally on both dimensions.  Moreover, the 
pattern of generalization found did not vary according to 
individual categories but according to the relationship 
between pairs of categories (i.e., generalization between A 
& B and between C & D depended more on orientation, 
whereas generalization between A & C and between B & D 
depended more on frequency). 

Second, Yang and Lewandowsky (2003) propose that 
people faced with a complex categorization task develop 
separate parcels of knowledge each applicable to a subset of 
the stimulus space.  This strategy is referred to as 
knowledge partitioning.  Knowledge partitioning can lead to 
more complex patterns of generalization than simpler 
similarity-based theories (e.g., Kruschke, 1992; Nosofsky, 
1986), as attention might be allocated differently depending 
on which context is activated.  However, knowledge 
partitioning cannot explain split-selective attention, because 
the phenomenon does not involve different generalization in 
different contexts, but rather different generalization for 
different aspects of the same judgment. 
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