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Abstract

Essays On The Competitive Commodity Storage Model
by
Ernesto A. Guerra
Doctor of Philosophy in Agricultural and Resource Economics
University of California, Berkeley
Professor Brian D. Wright, Chair

This dissertation consists of three essays on the competitive commodity storage model. This
model provides a basis for rationalizing many of the observed qualitative features of the
behavior of prices of storable commodities. I attempt to make a contribution to this model
in three dimensions: empirical (chapter 1), numerical (chapter 2), and theoretical (chapter
3).

In the first chapter, I analyze the ability of the standard commodity storage model
to replicate serial correlation in annual prices. Calendar year averages of prices induce
spurious smoothing of price spikes, a fact that has been surprisingly overlooked in several
empirical studies of the annual commodity storage model for agricultural commodities. I
present an application of a maximum likelihood estimator of the storage model for maize
prices, correcting for the spurious smoothing. My results, using this data set, imply serious
differences in magnitudes of interest. These differences include the location and skewness of
the empirical distribution of prices relative to the cutoff price of zero stocks, the likelihood
of stockouts, and the fit to data on stocks-to-use ratios.

In the second chapter, I propose an alternative numerical strategy for solving nonlinear
rational expectation models with inequality constraints. It addresses three problems ob-
served in the standard solution method: lack of robustness to scaling transformation of the
stationary rational expectation function, errors of approximation due to extrapolation within
the ergodic set, and interpolation around the kink implied by the inequality constraint. In
comparison with the standard solution method, my findings suggest that the numerical strat-
egy I propose is robust to scaling transformation, removes the approximation errors due to
extrapolation, and avoids interpolation above the kink.

Finally in the third chapter, I present a critique of a theoretical version of the compet-
itive commodity storage model that assumes a support for the speculative storage that is
bounded from below at zero, and above at a exogenous predetermined maximum capacity.
By proposing a counter-example, I show that the fixed point iteration operator proposed by
Oglend and Kleppe (2017) to solve this version of the model does not converge in general,
as they claim.
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Chapter 1

Empirical Commodity Storage Model:
The Challenge of Matching Data and
Theory

1.1 Introduction

The importance of proper empirical estimations of key parameters in agricultural commodity
markets is evident in the face of international concerns over price volatility for major food
commodities.

The commodity storage model, as originally described by Gustafson (1958) and discussed
in for example Scheinkman and Schechtman (1983), Wright and Williams (1982, 1984),
Williams and Wright (1991), Deaton and Laroque (1992, 1995, 1996), Carter et al. (2011),
and Wright (2011), recognizes the role of storage, and provides a basis for rationalizing many
of the observed qualitative features of the behavior of prices of storable commodities.

The discrete time annual storage model assumes that in each year price is formed after
the realization of a stochastic harvest, when decisions on how much to store out of the avail-
able supply are made. Price series that are appropriate for testing such a model are therefore
annual price series. The evidence on the empirical validity of the annual competitive storage
model is still mixed. Based on a Pseudo Maximum Likelihood (PML) econometric proce-
dure, Deaton and Laroque (1995, 1996) reject the practical relevance of storage arbitrage
in explaining annual prices. They conclude that the price serial correlations implied by the
annual models they estimate are significantly lower than those measured on the series of
price indices they use. Cafiero et al. (2011a, 2015) present more positive evidence for the
role of storage arbitrage. Cafiero et al. (2011a) estimate the storage model using the same
data, model specification, and PML econometric approach as Deaton and Laroque (1995,
1996), but using a much finer grid to approximate the equilibrium price function. Based
on their econometric estimations, they find that, contrary to Deaton and Laroque’s claim,
the competitive storage model generates the high degree of price autocorrelation for five
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of the twelve commodities considered by Deaton and Laroque (1995, 1996), and for seven
commodities when a marginal storage cost parameter is added into the model.

The series of real annual prices used in (for example) Deaton and Laroque (1992, 1995,
1996) and Cafiero et al. (2011a, 2011b, 2015) have been formed by taking the simple average
of prices over the calendar year, that is, from January through December, with no explicit
recognition of the fact that the actual span of the marketing season may not coincide with
the calendar year, therefore smoothing the most prominent feature of the price series in the
storage model: its price spikes.! Cafiero and Wright (2006) discuss this spurious smoothing
problem.? This data issue is particularly delicate in this literature, in which a main focus of
the discussion is in the ability of the storage model to explain observed price correlation.

The question of what annual price to use best dealing with the spurious smoothing of
price spikes leaves room for various choices. An annual price data set constructed as the
average of daily prices over the marketing year is a candidate. Alternatively, the use of
a single month per year (as in Roberts and Schlenker, 2013) avoids the complications of
inter-seasonal anticipation of information.

In this chapter I illustrate this issue using the case of US maize prices. (Maize is a major
agricultural commodity, considered in the influential papers of Deaton and Laroque 1992,
1995, 1996, and in Cafiero et al. 2011a). In the northern hemisphere, where most of maize
production is obtained, harvesting occurs from September through November (FAO, 2006,
Table 2, p. 5). I form an index of annual real prices in four different ways: as an average of
market days prices over the calendar year, over the marketing year (from September through
the next August), over a quarter (a single quarter per year), and over a month (a single month
per year). The first order serial correlation of the price series data I use is actually highest
when the price index is constructed by averaging the daily prices over the calendar year.

I focus on the price of maize in the US because there is a long series of prices for US
maize, consistently referring to the same commercial grade (US No.2). This price series is
widely considered as the traditional representative price for maize produced in the United
States, and it is also accepted to be the world’s most representative price (FAO, 2006, p. 4).

In my estimations I implement the Maximum Likelihood (ML) approach of Cafiero et
al. (2015). This estimation procedure allows for the estimation of the structural parameters
of the storage model using only price data. Cafiero et al. (2015) show that while their ML
estimator imposes no additional assumptions on the model, it has small sample properties
significantly superior to those of the PML estimator of Deaton and Laroque (1995, 1996).

!The empirical models of Miranda and Glauber (1993), Chambers and Bailey (1996), Osborne (2004),
and Roberts and Schlenker (2013) are exceptions. In particular, Osborne (2004) generalizes the standard
storage model to incorporate information on future harvests, while allowing for seasonal production, two
features important to African and other developing countries. Also, Lowry et al. (1987) present a quarterly
model that considers the allocative role of storage both within and between crop years in markets for annually
harvested field crop.

2The discussion of the challenges involved in matching data and theory for agricultural prices is not
new. For prices defined by random chains, Working (1960) noted that the use of averages induces spurious
correlation in first differences of agricultural prices.
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1.2 The model

In this section I present the model. I model a simple competitive commodity market in
which storers are risk neutral, face a constant discount rate r > 0, and have no other costs of
storage.®> Supply shocks, wy, are i.i.d.. The state variable is the total available supply at time
t, defined as z; = w; + (1 — d)xy_1, where z;_; is storage at time ¢t — 1, and 0 < d < 1 is the
physical deterioration rate of stocks. Price is formed as p, = F(¢;), where consumption at
time ¢ is given by ¢; = 2; — xy. The inverse consumption demand, F': R — R is continuous,
strictly decreasing, with EF'(w;) > 0, where E denotes the expectation taken with respect
to the random variable w;.*

A stationary rational expectations equilibrium (SREE) in this model is a price function
f which describes the current price p; as a function of the state z;, and which satisfies, for
all z;,

1—-d

pi = f(z) = max {F(zt), (1—+T> Eyf (w1 4+ (1 —d) [z — F‘l(f(zt))])} , (1.1)

where E; denotes expectation conditional on information at time t.
Since the w;’s are i.i.d., f is the solution to the following functional equation:

ey =mac{re), (F0) B a-al- e ) 02

Existence and uniqueness of the SREE, f, as well as some of its properties are given by
the following Theorem:

Theorem 1. There is a unique stationary rational expectations equilibrium f in the class of
continuous non-negative, non-increasing functions. Furthermore, if p* = (%:) Ef(w), then:

f(z2)=F(2), forz<F(p"),
f(z) > F(z), forz>F'(p). (1.3)

f is strictly decreasing whenever it is strictly positive. The equilibrium level of inventories,
is strictly increasing for z > F~(p*).

Proof of the Theorem: Deaton and Laroque (1992), Theorem 1.

3Deaton and Laroque (1992, 1995, 1996) assume zero additive physical storage cost, while Cafiero et
al. (2011a) provide non-zero (but low) estimates for marginal additive storage cost. I set such cost at zero
in my model. Since I am implementing my empirical model using detrended prices with a non-negligible
trend, fitting a (limit) stationary storage model with non-zero additive marginal storage cost would imply
the restriction that prices and storage costs share the same trend.

4This assumption implies that the model admits positive storage for a range of positive prices.
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1.3 Econometric procedure

I estimate the model described in section 1.2 assuming a linear inverse demand function,
F(c) = a+ be, with b < 0, and normal harvests. The discount rate r is set at 5%. I follow
the approach of Deaton and Laroque (1992, 1995, 1996) in using only price data. I use the
Maximum Likelihood (ML) procedure introduced by Cafiero et al. (2015). I now provide a
general overview of the estimation procedure; a detailed discussion is available in Cafiero et
al. (2015).

Given the SREE function f, for positive prices the model implicitly defines a mapping
from harvests w; to prices p;, conditional on the previous price p;_1:

pr = f(z)
= flw+

= flw+ (1 —d) (-1 = F7 (f (2-1)))]

= fla+Q—=d) (T (pee1) = F 7 (pe1))] -

For a vector of parameters # and a sample of positive prices p;, t = 0,1,--- 7T, the
likelihood function is:

T

L(Olpo, -+ ,pr) = [ dlw)l ] = Hﬁb —d)(f 7 (Pr-1) = F 7 (pe-2))|I ], (1.4)

-1

d

To identify the parameters, I adopt t]ﬁe procedure of Deaton and Laroque (1995, 1996)
and set the mean and standard deviation of the unobserved harvests at 0 and 1, respec-
tively (see Proposition 1 in Deaton and Laroque 1996). The equilibrium price function f is
approximated using a cubic spline, .5 The search for f follows an iterative procedure
based on (1.2). This requires approximating the expectations with respect to the distribu-
tion of the harvests. Assuming that the shocks w have a normal standard distribution, I use
a Gauss-Hermite quadrature formula with 10 nodes {ws}12, and weights {7 }12,. The n-th
iteration is:

where ¢ is the density of w;, and J; = (p¢) is the Jacobian of the mapping p; — wy.

71 (2) = m{ (W)mews d>[z—F1(ia+1><z>)])-ws}

(1.5)
The first iteration uses a guess f2;. on the right hand side of (1.5). Conditional on 2.,
I compute f&_ on an equally spaced grid of 1,000 points over a range of available supply z

SFor a discussion of function approximation, see Judd (1998, Chapter 6) and Miranda and Fackler (2002,
Chapter 6). For applications to the storage model, see Miranda (1985, 1997) and Gouel (2013).

6The nodes and weights are w, = {+4.8595, +-3.5818, £2.4843, +1.4660, +0.4849} and 7, = {4.3107 x
107,7.5807 x 107%,1.9112 x 1073,0.1355, 0.3446}, respectively.
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from -5 to 45. Iterations continue until the maximum difference between f2), ... and fZ,-
evaluated at each grid point is less than the preset tolerance of 10713, in absolute value.

I first use a grid-search routine to locate a candidate maximum for the log of the likelihood
function, and then use a gradient-based constrained maximization algorithm to search for a
maximum in the neighborhood of the candidate. To approximate the solution function f and
the derivatives needed to calculate J; I use the Matlab® Spline Toolbox™. To maximize the
function (1.4) I first use the Matlab® routine fminsearch, to locate a preliminary maximizer,
and then the routine fmincon, both included in the Optimization Toolbox™. The inner-loop
tolerance is fixed at 1073, while the outer-loop tolerances are fixed at 10~* and 107% for
fminsearch and fmincon, respectively. A grid of 64 vectors distributed uniformly on the
set {a = [0.3;3] x b = [-7;—0.3] x d = [0;0.3]} is fixed as the set of initial conditions for
each sample. I checked that my parameter estimates are robust to the use of two alternative
algorithms: fminunc and ktrlink from KNITRO® optimization package on MATLAB®

I impose the constraints b < 0 and d > 0, by programming the likelihood maximization
routine in terms of the set of transformed parameters n = {n;, 72,13} where: 7 = a,
1y = In(=b), and n3 = In(d). Having identified a maximum, the asymptotic variance-
covariance matrix of the estimated parameters, W, is computed as the inverse of the outer
product of score vectors, evaluated at the estimated values 7. A consistent estimate of the
variance covariance matrix V of the original parameters is obtained using the delta method,

as:
V = DWD/,

where D is a diagonal matrix of the derivatives of the transformation functions:

1 0 0
D= 0 —e™ 0
0 0 e’

1.4 Data used in the econometric estimation

I use the series of maize prices obtained from Global Financial Data described as “Corn (US),
No. 2, yellow, Chicago Board of Trade” from January 1949 to December 2012. From the
daily prices I first form monthly averages, which I divide by the January 1977 - December
1979 average, consistent with the description in Pfaffenzeller et al. (2007), to form a series
of nominal monthly price indices. I next deflate the nominal values by dividing them by the
corresponding United States Monthly Consumer Price Index reported by the US Bureau of
Labor Statistics.

The deflated monthly price index (plotted in Figure 1.1) exhibits a downward trend over
the sample period. I detrend the price index assuming a log-linear trend.” The resulting

"Detrending price series without adjusting the estimator for the trend may lead to an estimation bias.
Most papers on the estimation of the storage model do not detrend the price series. Others address the
interaction of stocks and prices using detrended prices without adjustment for the bias in the structural
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series is plotted in Figure 1.2. In my estimations using quarterly and monthly data I take the
months and quarters included in the September-December period. Calendar year averages,
marketing year averages and the December prices are plotted in Figure 1.3.8

—— Monthly real price index||
fffff Log-linear trend

| | | |
1950 1960 1970 1980 1990 2000 2010

Figure 1.1: Monthly real price index for maize.

3 T : ‘
—— Monthly real de-trended price index

| | | | |
1950 1960 1970 1980 1990 2000 2010
Figure 1.2: Monthly detrended real price index for maize.

1.5 Results

I estimate the annual storage model using eight different annual price indices, formed by
averaging prices over the calendar year, the marketing year, quarters and single months.

model (for example Cafiero et al. 2011b, Gospodinov and Ng 2013). To make my work comparable to the
literature (excluding Zeng 2012), I do not adjust my structural model of detrended prices.

8For calendar year, quarters and months, the data samples have 64 observations while for the marketing
year the data sample has 63 observations, included in the period January 1949-December 2012.
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-—=---Marketing Year
------ o-- December

\
25 W —— Calendar Year

15 ¢ S\

\ \ \ - \
1950 1960 1970 1980 1990 2000 2010
Figure 1.3: Calendar Year, Marketing Year, and December detrended real price indices for

maize.

The estimated parameters are reported in Table 1.1 along with the value of the maximized
likelihood, and the implied threshold price, p*.

To evaluate the models’ fit, I follow the method presented in Cafiero et al. (2011a),
using the estimated parameters to generate a series of 300,000 prices, and then extract from
it all possible consecutive subsamples of the same length as the observed data. On each
extracted subsample I measure various moments thus generating simulated distributions
of implied mean, median, coefficient of variation, first and second order autocorrelation,
skewness and kurtosis. I then identify, in each of the simulated distributions, the percentiles
corresponding to the values of the corresponding moments observed in the detrended price
data. In other words, from the 300.000 simulated price series: a) I extract all the possible
consecutive subsamples of 64 observations, which is the sample size of my prices data; b) for
each subsample I compute the mean, median, first and second coefficient of autocorrelation,
coefficient of variation, skewness, and kurtosis; ¢) the last step allows me to build an empirical
distribution for each of those moments using all the simulated subsamples; d) I measure the
same moments in the observed price data. e) Finally, I identify in which percentile of the
empirical simulated distributions the moments of the sample are located. Table 1.2 shows
the observed moments of the sample and the corresponding percentile of their location in
the simulated distributions. The moments measured on the price series lie, in all cases
considered, within symmetric ninety percent central confidence regions.
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Table 1.1: Parameter estimates.

a b d In(L) P

Year

Calendar 1.3210 -2.7104  0.0002  20.8921 2.5542
(0.1479)T (0.3893) (0.0218)

Marketing 1.2343 -2.8595  0.0069 13.0368 2.5299
(0.1424)  (0.4887) (0.0265)

Quarter

Sept.-Nov. 1.1110 -3.4210 0.0095 8.6427 2.7103
(0.1533)  (0.9274) (0.0292)

Oct.-Dec. 1.3555 -5.9308  0.0000% 8.1657 4.2933
(0.1935)  (1.1797) n.a.

Month

Sept. 1.0799 -3.8902  0.0204 29154 2.8822
(0.1249) (1.1251) (0.0320)

Oct. 1.0496 -3.6785  0.0081 6.6681 2.8012
(0.1467)  (1.0359) (0.0301)

Nov. 1.3193 -6.1934  0.0023  6.8834 4.3881
(0.2755)  (2.1386) (0.0357)

Dec. 1.1874 -3.6100  0.0186 7.3842 2.8313

(0.1376)  (0.6310) (0.0257)

T Asymptotic standard errors in parentheses.
¥ For the Oct.-Dec. quarter, the estimate of In(d) tends to a large negative number
as d approaches zero. I stop the procedure when the slope of the objective
function with respect to the estimate falls below the preset tolerance of 10713,
In that case I set d = 0, and re-run the estimation. See Cafiero et al. 2011a, p.
50, footnote 13, for a similar procedure.
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Table 1.2: Comparison of data features and model predictions.

Period Mean Median 1st order a.c. 2nd order a.c. Coefficient of Variation Skewness Kurtosis
Year
Calendar
Observed values  1.0529 0.941 0.7894 0.4748 0.3431 1.9196 4.3092
Percentiles T 20.39 21.76 78.11 46.68 17.51 47.15 46.11
Marketing
Observed values — 1.0458 0.9667 0.7/82 0.4284 0.3313 1.665/ 3.1468
Percentiles T 22.83 29.91 72.59 41.88 10.73 36.28 35.87
Quarter
Sept.-Nov.
Observed values  1.0212  0.9414 0.7808 0.4746 0.3841 2.0168  4.8905
Percentiles T 31.01 41.48 75.17 46.00 13.98 47.67 47.97
Oct.-Dec.
Observed values — 1.0234 0.9098 0.7812 0.5161 0.3775 2.0181 4.8297
Percentiles T 33.18 38.89 53.13 34.03 9.73 60.00 60.16
Month
Sept.
Observed values  1.0402 0.9458 0.7390 0.3853 0.3928 1.8539 4.0607
Percentiles T 24.62 34.46 72.8 36.72 10.54 37.28 37.95
Oct.
Observed values 1.0072 0.9261 0.7649 0.4642 0.3893 2.0254 4.9299
Percentiles T 37.13 48.18 66.76 39.90 13.16 50.12 50.19
Nov.
Observed values  1.0164 0.8937 0.7799 0.5139 0.3819 2.0960 5.2551
Percentiles T 31.22 36.58 54.60 35.18 9.36 60.51 60.72
Dec.
Observed values 1.0467 0.9315 0.7778 0.5469 0.3670 1.9012 4.1578
Percentiles T 18.87 23.91 82.81 68.85 9.20 38.29 37.88

t Percentiles of the location of the of the observed value in the relevant simulated distribution. I simulate a series
of 300,000 prices using the parameters estimated in Table 1.1. From the simulated series I select the set all possible
consecutive sequences of the same size as the observed sample. I then obtain the empirical distribution of each of the

relevant moments calculated for each member of this set of subsamples.
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1.6 What data to use: does it matter?

The slope of the consumption demand b is a key parameter of the storage model, related
to the sensitivity of the market price to a negative supply shock. As shown in Table 1.1,
different ways to form the index of annual prices for the series of detrended real US maize
imply large differences in b. The slope of the consumption demand estimated using calendar
year averages is —2.71, lower in absolute value than the slope estimated using marketing year
averages, —2.86, and lower in absolute value than the slopes obtained using either quarterly
or monthly data.

The different values for b imply different values for the threshold price p*. To illustrate
the implications of these differences in p*, I divide each price series by its corresponding
p*, thus providing normalized price series that measure the relative distance of prices to
each corresponding threshold price (Figure 1.4). It is striking that the two series with
the steepest slope parameters, the Oct.-Dec. quarter and the Nov. month series, exhibit
empirical histograms of normalized prices quite distinct from the other series, with most of
their probability mass well below 0.25, while most of the probability mass is above 0.25 for
the other series (the value of normalized price that corresponds to the threshold price p*).

T

—— Calendar Year
—— Marketing Year
—— Sept.-Nov. Quarter ||
—— QOct.-Dec. Quarter
------ Sept. Month

------ Oct. Month
—=— Nov. Month
----------- Dec. Month

0 0.1 02 03 04 05 06 07 0.8 0.9 1
Figure 1.4: Empirical kernels of normalized price series (based on a normal kernel).

Figure 1.5 presents the histograms of stocks implied by the parameter estimates, for each
price in the sample (divided by the maximum stock level for each series), for each of the
price samples. In symmetry with the price histograms, both the Oct.-Dec. quarter and the
Nov. month normalized stocks series exhibit empirical histograms quite distinct from the
histograms of the other series, with more of their probability mass near one (their maximum
level of stocks, given the normalization).

Although my estimates imply no stockouts in the sample data (because observed prices
are always lower than estimated p*), the histograms for normalized prices and normalized
implied stocks are coherent with the implied probabilities of stockouts in samples of the same
size as the data, drawn from the simulated series of 300,000 observations: for the Oct.-Dec.
quarter and the Nov. month series, the implied probabilities of at least 1, 5, or 10 stockouts
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Figure 1.5: Empirical kernels of implied normalized stocks (based on a normal kernel).

Table 1.3: Implied probabilities of at least n stockout, in samples of the same size as the
data.

Period n=1 n=5 n=10
Year

Calendar 0.7291 0.2333 0.0300
Marketing 0.7443 0.2442 0.0308
Quarter

Sept.-Nov. 0.6836 0.1954 0.0209
Oct.-Dec.  0.4534 0.0869 0.0061

Month

Sept. 0.7316 0.2262 0.0268
Oct. 0.6318 0.1597 0.0148
Nov. 0.4645 0.0890 0.0062
Dec. 0.7611 0.2558 0.0333

in the same sample periods used in my estimations, are much lower than for the other price
series (Table 1.3).

I calculate the price elasticity (at the sample mean) of consumption demand for maize
implied by each of the data sets. Table 1.4 shows that the price elasticities are lower (in
absolute value) than those implied by the estimates of Roberts and Schlenker (2013) for
maize, comparable to the values of elasticities for maize implied by the estimates of Deaton
and Laroque (1995, 1996)? and Cafiero et al. (2011a), within the range of values of elasticities
of export demand for maize reported by Reimer et al. (2012), and comparable to the
elasticities of demand for aggregate calories from maize, rice and soybeans and wheat in
Roberts and Schlenker (2013). Appendix A reports the procedure I use to calculate the
elasticities, from the parameter estimates.

9Replicated in Cafiero et al. (2011a).
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Table 1.4: Implied price elasticities of consumption demand for maize.

Literature Elasticity Data Interval
Deaton and Laroque (1995, 1996)1 -0.046 1900-1987
Cafiero et al. (2011a)T -0.018 1900-1987
Reimer et al. (2012) From -0.251 to -0.003 2001-2011
Roberts and Schlenker (2013)* From -0.532 to -0.244 1961-2010
Implied by my estimations

Year

Calendar -0.024 1949-2012
Marketing -0.023 1949-2012
Quarter

Sept.-Nov. -0.019 1949-2012
Oct.-Dec. -0.011 1949-2012
Month

Sept. -0.017 1949-2012
Oct. -0.017 1949-2012
Nowv. -0.010 1949-2012
Dec. -0.018 1949-2012

 Deaton and Laroque (1995, 1996) and Cafiero et al. (2011a) do not report elasticities. For this
table I calculate the elasticities implied by the estimated parameters, using the values reported
in tables 2 and 6 of Cafiero et al. (2011a), for maize.

¥This range includes the values reported in the Online Appendix of Roberts and Schlenker (2013).
They also report demand elasticities for aggregate calories from maize, rice, soybeans and wheat,
in the range -0.066 to -0.028.

Bobenrieth et al. (2013) show that although quantity data might be unreliable, data on
stocks-to-consumption can be a valuable complement to price, as warning of price spikes for
maize, rice and wheat. Following their encouraging results, I use the estimated model to
predict stock-to-use ratios (SURs), and compare them with the SURs constructed from maize
marketing-year ending stocks and consumption from USDA/PSD data, for the overlapping
period 1961-2012.1° T adjust for essential stock following the procedure in Bobenrieth et al.
(2013, pp. 5-6). More specifically, essential stocks are calculated as a fixed proportion of
the consumption matching the minimum of observed SURs.!* Figure 1.6 shows observed
SURs and price-implied SURs, for calendar year averages and the December price series.
It is encouraging that the dynamics of my predicted SURs follow the dynamics implied in

0For calendar year averages, I compare the price-implied SURs with the observed SURs constructed
using consumption and ending stocks for the same calendar year. For each of the other price series, the
comparison is with SURs constructed using consumption and ending stocks for the same marketing year of
the price data.

1 Observed SURs are constructed using re-scaled consumption and stocks, following the procedure de-
scribed in Appendix A.
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PSD data on SURs. However the goodness of fit is not homogeneous. Table 1.5 reports the
Root Mean Square Error of the difference between the price-implied SURs and the observed
SURs, for each of the price series considered. Price data constructed by taking the month
of December offers the best fit. In contrast, model-implied SURs using calendar year price
averages yield the worst fit.
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Figure 1.6: Observed SURs and the price-implied SURs for calendar year and December.

Table 1.5: Root Mean Square Error of the difference between the price-implied SURs and
the observed SURs.

Period Root Mean Square Error
Year

Calendar 0.1734
Marketing 0.1702
Quarter

Sept.-Nov. 0.0911
Oct.-Dec. 0.1024
Month

Sept. 0.0864
Oct. 0.0910
Nov. 0.1000
Dec. 0.0819

1.7 Conclusions

I present the results of application of a ML estimator of the standard annual storage model,
comparing the use of calendar and marketing year averages with quarterly and monthly
averages (one quarter and one month per year, respectively), to form annual price indices.
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The results indicate serious differences in magnitudes of practical interest, including the
location of the empirical distribution of prices relative to the cutoff price of zero stocks, the
likelihood of stockouts, and the fit to data on stocks-to-use ratios.

This chapter explores the limits of econometric estimations of the standard commodity
storage model, using annual price data. It is clear that calendar year averages are not
appropriate to test the storage model, due the bias induced by averaging two consecutive
agricultural years. Although the use of marketing year averages, quarters or months can
imply serious differences in magnitudes of policy interest, the theory of the storage model
does not provide an answer to the question of what data best represents annual prices.
However, in terms of the ability of the estimated model to fit data on SURs, price data
constructed by taking the month of December to represent the annual price provides the
best fit. In contrast, model-implied SURs using calendar year averages yields the worst fit.
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Chapter 2

The Method of Equilibrium Outcome
Grid-Points for Solving Nonlinear
Rational Expectation Models

2.1 Introduction

Numerical approximation of stationary equilibrium functions derived from Euler conditions
is often implemented to solve and estimate rational expectations models in microeconomic
and macroeconomic dynamic problems. As widely recognized within the literature, the use
of numerical techniques produces approximation errors which are one of the central prob-
lems in computational economics. There is an increasing number of papers that explore how
these errors might arise, how they propagate and what their impact is on the accuracy of the
function being approximated. I consider some of these error sources in this chapter, dividing
them into three categories: (i) errors due to stopping rules, (ii) errors due to extrapolation,
(iii) errors due to interpolation.! The first two sources of error constitute the main subject
of this chapter. To illustrate how these errors are generated, I present a version of the com-
petitive commodity storage model. This dynamic model assumes that in each time period
the commodity price is formed after the realization of a stochastic harvest, when decisions
on how much to store out of the available supply are made. In this context, the consumption
and storage are the control variables, the total available supply is the state variable, the
harvest is the stochastic shock, and the price is defined as the equilibrium outcome vari-
able.? As next section shows, in this rational expectation model the stationary equilibrium
function derived from Euler conditions has no known closed-form. Nevertheless, it can be
approximated using numerical techniques. I use this approximation to addresses the three
categories of error described above.

1Some of these error sources definitions follow those used and described by Judd (1998, pp. 39-44).
2In equilibrium, supply, including inventories from the previous period, must equal demand, including
demand for inventories to carry forward into the next period and consumption for the current period.
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Consider first errors due to stopping rules. Euler equations are commonly approximated
using iterative algorithms that generate a sequence of functions that converge to a fixed
point. Such iterative algorithms terminate after some finite number of iterations, when the
sequence of functions is within some pre-defined distance of its limit. Stopping rules provide
criteria that define this distance. The literature provides a bound for the approximation
error due to stopping rules for cases where the iterative algorithm is generated by a contrac-
tive operator. For the family of models studied in this chapter, section 2.3.1 provides such
bound and shows that it is not robust to scaling transformations of the equilibrium out-
come variable (the price).? Scaling transformations are relevant since the data used for the
econometric estimation of these models have a scale that is arbitrarily fixed. For example,
the econometric estimation approach of the commodity storage model introduced by Deaton
and Laroque (1995, 1996), also implemented by Chambers and Bailey (1996), Cafiero et
al. (2011a, 2015), Bobenrieth et al. (2013), Guerra et al. (2015), and Gouel and Legrand
(2017), uses only real price index data. Such indices are arbitrarily scaled by, for example,
some nominal price average, and/or some base-year deflator.? Section 2.3.2 introduces a new
numerical method and provides a stopping rule that is robust to scaling transformation of
the equilibrium outcome variable.

The second category of errors includes those that arise in many empirical and numeri-
cal rational expectations models where Euler conditions are approximated over a truncated
domain of the state variable (the total available supply) that does not include the entire
ergodic region. Extrapolation techniques are required to evaluate Euler conditions over the
remainder of the interval in the domain of the ergodic set. This truncation can be either
a consequence of a poor choice of the range for such domain, or simply because the er-
godic region for the state variable is unbounded while its numerical approximation has to
be implemented over a bounded support. In the first case extrapolation can be avoided
by increasing the support of the domain of the state variable, while in the second extrap-
olation is inevitable. For the family of models described in the next section, the ergodic
support for the state variable is bounded but its upper bound cannot be computed until the
equilibrium function has been approximated. However the equilibrium outcome variable lies
in an ergodic set that is bounded and implicitly defined by the support of the shocks and
the inverse consumption demand function. The numerical strategy proposed in this chapter
avoids extrapolation, suppressing the error due to extrapolation by defining a grid for the
equilibrium outcome variable (the price) instead of using a grid for the state variable as in
the standard method.

3By a scaling transformation I mean the following: if y is a real-valued variable, then its scaling trans-
L oy . i, . . ) . )
formation is given by: y = =, where A is a positive constant. If this real variable is a price series, a change

of numeraire has the same effect as a scaling transformation.
4As for example the real prices indices from Grilli and Yang (1988) and Pfaffenzeller (2007).
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The third category, error of interpolation is largely beyond the scope and purpose of the
present chapter. An extensive literature provides upper error bounds for different interpo-
lation methods. See for example Daniel (1976), Judd (1992, 1998), Cai and Judd (2012,
2013). Nevertheless, the derivation of error bounds for interpolation in Euler equations is
not straightforward (see Santos, 1999, p. 351). Alternative methods have been developed to
study the accuracy of numerical approximation of Euler conditions based on Euler equation
residuals, see for example Judd (1992), Christiano and Fisher (2000), de Haan and Marcet
(1994) and Santos (2000). For a detailed discussion (based on numerical experiments) com-
paring different interpolation methods see for example, Judd (1992, 1998), Christiano and
Fisher (2000), Miranda and Fackler (2002) and Gouel (2013). In particular, Miranda (1997)
compares various interpolation methods for the storage model without liquidity constraints
concluding that a cubic spline interpolation method is preferable to the other approaches.
The version of the commodity storage model I consider in this chapter has a liquidity con-
straint because storage cannot be negative. This liquidity constraint generates a kink in
stationary equilibrium function and its approximation. To avoid the use of interpolation
above the kink, following the method proposed by Brumm and Grill (2014) I implement an
adaptive grid for prices, as is described in section 2.3.3. Thus, an interpolation method is
implemented only below the kink when the inequality constraint is not active.

2.2 The theoretical model

In this section I present the theoretical model. Consider a simple competitive commodity
market in which storers are risk neutral, and face a constant discount rate r > 0. Supply
shocks, wy, are i.i.d., with compact support [w,@] € R. The state variable is the total
available supply at time ¢ defined as z; = w; + (1 —d)z;_1, where x;_; is storage at time t — 1,
and d € [0, 1) is the physical deterioration rate of stocks. Price is formed as p; = F(¢;), where
consumption at time ¢ is given by ¢; = z; — ;. The inverse consumer demand: F': R — R,
is strictly decreasing. The inverse consumer demand can be interpreted as the derivative of
a HARA utility function, i.e., F(c) = (A + Bc)ﬁ, for A, B, and K, real constants, such
that F(w) > 0.°

A stationary rational expectations equilibrium (SREE) in this model is a price function
f which describes the current price p; as a function of the state z;, and which satisfies, for
all z,

P = f(z) = max {F(zt), G%j) Eof(wi + (1= d) [z — F( f(zt))])} @)

®Note that particular cases are the iso-elastic, linear, and log-linear F functions. The ergodic region for
prices is bounded below and above by [F'(@), F/(w)]. Then, the condition F(&) > 0 implies that the minimum
price in the ergodic set is positive, which is a relevant assumption to avoid negative prices for example in
cases with linear demand.
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Since the w;’s are i.i.d., f is the solution to the following functional equation:%

1—d

10 =max{ PG (10 ) Ef@+ (-0l - FG@D | @)

1+7r

Existence and uniqueness of the SREE, f(z), as well as some of its properties are given by
the following Theorem:

Theorem 2. There is a unique stationary rational expectations equilibrium f in the class of
continuous non-negative, non-increasing functions. Furthermore, if p* = (%) Ef(w), then:

f(z) = F(z), for z<F ' (p*),
f(z) > F(2), for z>F(p").

f s strictly decreasing whenever it is strictly positive. The equilibrium level of inventories,
x(2), is strictly increasing for z > F~(p*).

See Deaton and Laroque (1992), Theorem 1, p. 6, for a proof of this theorem.

The assumption that harvest has a bounded support and that F(@) > 0 are crucial for
characterizing the ergodic distribution of the prices and total available supply. The fact
that the ergodic set of prices is bounded by [F(@), F(w)], is proved by Scheinkman and
Schechtman (1983) for the case of strictly convex storage cost. Bobenrieth et al. (2012)
prove boundedness in a model with positive supply response and, as here, a zero storage cost
apart from the interest rate.

Denote the total available supply at time ¢ as z;, and the support of the harvest shocks
lw, @], with w < @. Given an initial zy, the sequence {z};>0 is given by the recursive
relation 2,47 = wiy1 + (1 — d)ay. For any given w € [w,w], denote by h, the function
h,(z2) =w+ (1 —d)[z — F~*(f(2))]. Let z be the first fixed point of the function hg, that is
zZ =min{z : hz(z) = z}. Next claim show that a suitable state space for available resources
is the compact set Z = [w, Z]. Define z, as the initial total available supply.

Proposition 1: Prob[z; < Z for some t € N|zg = 2] = 1, Vz > w. Furthermore,
20 € Z = z € Z with probability one, for all t € N, and the process ® = {z:}i>0 is er-
godic.

See Bobenrieth and Bobenrieth (2010) for a proof of this proposition.
The second part of this claim establishes that if the initial total available supply (z) belongs

to the ergodic set Z, then all the elements in the sequence {z; };en remain in the ergodic set
7. If the lower and upper bounds of the ergodic set of total available supply are given by w

In the models of saving of Deaton (1991) d is the real interest rate, r is the rate of time preferences.
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and z, them the lower and upper bounds of the ergodic set of prices are given by [F(©), F(w)].

The lower bound is obtained using the first fixed point condition:

This result implies that at any finite time the maximum consumption in the ergodic set
cannot be larger than the maximum harvest shock w, and therefore the minimum price of
the ergodic set cannot be below F(@).

Consider a model exactly equal to the one presented at the beginning of this section, except

~ F
that the inverse demand function is F' = T where A is a positive constant (a scaling trans-

formation).
Proposition 2: The corresponding SREE functions f and f satisfy: f(z) = @, Vz €
[w, 2.

See Bobenrieth and Bobenrieth (2010) for a proof of this proposition.

In other words a scaling transformation of the inverse consumption demand implies the the
same scaling transformation in the SREE function.

2.3 Computation of the Stationary Rational
Expectations Equilibrium (SREE)

Since there is no known closed-form for the equilibrium price function, it is computed by
using numerical approximation. Theorem 2 of Deaton and Laroque (1992) addresses the
operator 1" which for some n € N associates with a functional iterate f.,- the subsequent
function f., 1. It is defined by:

1—d _
f<n+1>(2) = max {F(Z), <]_——|—T> Ef<n> (w + (1 - d) [Z — F 1(f<n+1><2))])} s (23)
and shows that the operator defines a contraction mapping with modulus § = }jrff

If G is a space of functions defined as:
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G={g:|w,+0[= R, g >0, g continuous, g non-increasing, g(w) = F(w)},

then, given a choice of some suitable f.o~ € G, the sequence fo~, fc1> =T fcos, -y fent1s =
T f<n~, converges to the SREE f.

The recursive equation (2.3) is updated until: || fop15(2) = fens(2)]|oo < €, for some n € N,
where || - || is the supremum norm, and € > 0 is an arbitrarily fixed error bound. Given
the contraction property of equation (2.3) the iterates of the SREE iteration satisfy the in-
equality:

||f(Z) - f<n><z)||oo S (ﬁ) ||f<n+1>(z> - f<n>(z>||oo,7 1mp1y1ng that:

1) = fens (Dloe < 15

Therefore the upper bound for the approximation error of the n-iteration is given by = 5-

As before, consider a model exactly equal to the one presented at the beginning of this sec-

~ F ~
tion, except that the inverse demand function is F' = —, and f.o~ = ﬁ, with A > 0 (a

scaling transformation in the inverse consumption demand and also in the first guess of the
SREE).

_ fent1>(2)

) , Vn € N.

Proposition 3: The functions f-pi1> and fepii> satisfy: ]7<n+1>(z)
See Appendix B for a proof of this proposition.

Hence, the scaling transformation of the inverse consumption demand and the first guess of
the SREE implies the same scaling transformation in the sequence of iterates that converge
to the scaled SREE function.

2.3.1 The standard solution method

Given a fixed inverse consumer demand function F', a probability density distribution for w,
parameters {d,r}, and an initial guess f.o~ € G, for all n > 0, fo,.1-(2) is constructed by
calculating its values at a finite grid of possible values of the state variable z.

The Algorithm:

(i) Define some monotone grid of points z; € 7 = {z1,29, ..., 21-1, 21 }-

(ii) For each element z;, equation (2.3) is solved for some price p; <,+1> that implicitly
satisfies:

"Stokey and Lucas (1989) propose this inequality.
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1—d —1
Di<n+1> = MmMax F(Zz)v m Efcn> (W + (1 - d) [Zz - F (pi,<n+1>)]> . (2-4)

(iii) Points {z;, pi<nt1>} are then used to construct fo,i1-(z) using some interpolating
approximation.

(iv) The recursive equation (2.4) is updated until || f<pi15(2) — fen=(2)]]oo < €, for some
n € N, where € > 0 is a predefined error bound.

This approximation method has three problems related with the sources of error described
in the introduction of this chapter.

Problem 1: This method is not robust to scaling transformations due to the stopping rule
error.

Without loss of generality, assume that the model is solved for a scale parameter A = 1
and the recursive equation is stopped when ||fcni11(2) — fens>(2)||oo < € as described in
the step (iv). Then, Ve > 0, 3n € N such that [|f(2) — f<n>(2)|[ec < 755. However, if the
underlying economy has a scale parameter A > 1, and the approximation of the SREE f,,(z)
is re-scaled by A, and used as the approximation of the SREE for the underlying economy;,
then proposition Proposition 3 implies that the approximation error due to the stopping
rule after scaling f,(z) is given by Ae > €. In other words, the n-iteration at which the re-
cursive equation is stopped will be different for different scales, implying a problem because

the scale is fixed arbitrarily. Changing the scale parameter has the same effect as changing e.

Problem 2: Since the choice of the range for 7 s arbitrary fived a priori there is no guar-
antee that extrapolation outside the ergodic region is avoided.

Although the lower bound of the support of z is given by the lower bound of the support
of w (equal to w), its upper bound Z cannot be computed until the SRRE function f has
been approximated since the upper bound on stocks is endogenous.® If the maximum point
of the grid, z;, is smaller than Z, then extrapolation is required for evaluation of f_,~ in the
complement interval of the domain of the erogdic set that is not included in the grid, i.e.
[21,Z]. The use of the extrapolation will inevitably induce a new source of approximation
error in the next stage iterates.

This issue is noted by Deaton and Laroque (1995, p. S20) “.. Although it would be possible
in principle to extrapolate the values of f(z) beyond the end points in either directions, we

8Since f(z) > F(w), then z < f~1(F(w)).
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regarded such extrapolation as dangerous and took pains to avoid it.”.

When the function f.,- is evaluated using extrapolation, the computation of the prices
Di<n+t1> Can contain an error ¥; <,41>. For such prices p; <+1>, the approximation of the
function f at the next stage, is constructed interpolating over the points {z;, pi <ni1> +
Vi <nt1>}. Define such interpolation f<n+1>(z), which in general is not equal to fo,i1.
Therefore, it is not guaranteed that this sequence converges to the SREE, i.e., for some
n € N, [|fani1>(2) = fans(2)ll < €, does not imply that [[fcni15(2) — fans(2)]]ee < €
If the maximum grid point of the state variable is large enough to include the ergodic re-
gion (i.e. z; > Z), it has to be true that F(@) > f(z;). The only way to avoid the use of
extrapolation is to fix z; > Z. In the standard solution method this is done by trial and error.

Deaton and Laroque (1992, p. 9) observe “...on some occasions it was necessary to run trials
to discover the range.”

In the empirical and numerical literature on the storage model, including one paper of
which I am coauthor (Guerra et al., 2015), very often the SREE function is approximated over
a grid of points that does not include the entire ergodic region, i.e., where z; < Z. Therefore,
extrapolation induces some error which is not taken into account in such approximations.
For example, in Deaton and Laroque (1995) only for 4 of the 12 commodities considered,
the parameter estimates of inverse demand function and d imply that F(@w) > f(z;). In
Cafiero et al. (2011), and for the version of the model that coincides with the one presented
in section 2,° only for 1 of the 9 commodities considered, the parameter estimates of inverse
demand function and d imply that F(@) > f(zr). Also, extrapolation is required in the set
of parameter estimates for the commodities rice, tea, and maize, presented in p. 13 Table 2
of Gouel and Legrand (2017). Finally, this is also an issue in a numerical example presented
by Michaelides and Ng (2000).

Problem 3: Since the choice of the grid points 0f7 1s arbitrary fived a priori there is no
guarantee that interpolation around the kink z* = F~1(p*) is avoided.

In order to know the the kink z* the value of p* must be know first. To compute p* it is
necessary to know the SREE first. Again, since the elements of the vector 7 are arbitrary
fixed a priori, there is no guarantee that z* will belong to 7. If it does not, interpolation
around the kink is necessary. This issue is illustrated in the left hand side panel of Figure 2.1.
Bobenrieth et al. (2011) addresses this problem and its impact on econometric estimations
of the standard competitive storage model. They compare two approximations of the SREE
for the same model. In the first approximation of the SREE they consider a sparse grid of 20

9Cafiero et al. (2011) also estimate a model with cost of storage which is not considered in this analysis.

The analysis presented here is only based on the parameter estimates reported in Cafiero et al., 2011, p. 50,
Table 4.
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equally spaced points while in the second they consider a dense grid of 1.000 equally spaced
points. Both grids are defined over the same predefined domain for the total available supply
z. By considering a more dense grid they attempt to reduce the interpolation error around
the kink z*. Figure 3 of their paper shows that the first approximation is smother than the
second. As they recognize: ”...the fine grid of 1.000 points allows for clear identification of
the kink in the price function, which occurs at a price equal to p*, and that the inaccuracy
of the approximation of the price function with a sparse grid is especially large around that
point”.

The next subsection proposed a new numerical method that addresses these problems.

2.3.2 Equilibrium outcome grid-points method

The main contribution of this chapter is to introduce an alternative solution method that
avoids the three accuracy problems in the approximation of the SREE described in the pre-
vious section.

The standard solution method proceeds as follows: given an initial guess for the SREE,
the next iteration is computed by interpolation over a given grid of points z; for the state
variable and a grid of prices (the equilibrium outcome of the model) which is obtained by
solving the Euler conditions for each z;. The method presented in this section proceeds as
follows: given an initial guess for the SREE, the next iteration is computed as the interpola-
tion over a given grid of prices (the equilibrium outcome of the model) and a grid of points
z; for the state variable, where each z; is obtained by solving the Euler conditions for each
point in the grid of prices.

A key point of this method is that as soon as the inverse consumer demand function and
the shock distribution support are known, then the ergodic region for the prices is known
beforehand, and equal to [F(w), F(@)].

Before describing this method in detail, I define a new space of functions GcCG:
G={g:[w,+oc[= R, g>0, g continuous, g strictly decreasing, g(w) = F(w)}.
Proposition 4: if g € G then Tge CN;, where T is the operator defined by equation (2.3).
Proof: See Appendix C for a proof of this proposition.

If the initial iterate f.o~ has an inverse, then all the functions of the sequences { f<n11> }nen
will have an inverse as well.
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Given a fixed inverse consumer demand function F', a probability distribution for w, pa-
rameters {d,r}, and an initial iterate f.o~» € G, for all n > 0, fo,41-(2) is constructed by
calculating the values of z at a finite grid of possible values of the equilibrium outcome.

The Algorithm:

(i) Define some monotone grid of points p; € 7= {p1,p2, .-, p1}, fixing p; = F(w) and
pr=F(@)."

(ii) For each element p;, equation (2.3) is solved for some total available supply z; <ni1>
that implicitly satisfies:

1—d

= { Flasnins). (150 ) Efens (o4 (L= Do = FA @) |- (29

(iii) Points {z; <nt1>,Di}iz1,2,. 1 are then used to construct fo,+1> using some interpolating
approximation.

(iv) The recursive equation (2.5) is updated until || Z <pi15 — 2 <ns||os < €, for some n € N,
where € > 0 is a predefined error bound.!!

Solution to Problem 1: The first advantage of this method with respect to the one pre-
sented in the previous section is its robustness to scaling transformations.

As before and without loss of generality, assume that the model is solved for a scale param-
eter A = 1 and the recursive equation is stopped when ||?<n+1> — ?<n>||OO < €. Then, if
the underlying economy has a scale parameter A\ > 1, and the approximation of the SREE
fn(z) is re-scaled by A, then the sequence of {7<n>}n€N, will be exactly the same as the
one that would be gotten by solving the model for A > 1. In other words, the n-iteration at
which the recursive equation is stopped will be the same for different scales, removing the
problem of an arbitrarily fixed scale.

Solution to Problem 2: The ergodic region of prices is know before hand and extrapolation
15 avoided.

In this method the grid of points for prices defined in step (i), includes all the ergodic region
[F (@), F(w)]. Trial and error procedure to discover the ergodic region is not longer an issue.

ONotice that p; = F(w) is the minimum price in the ergodic region when d = 0, and therefore F(@) is a
lower bound for the minimum price in the ergodic region for all d € [0,1).

"This stopping rule implies that ||f,,(2) — f(2)]|ee < %, where € = F'(w)e, and § = 72.
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Solution to Problem 3: Interpolation above the kink is avoided by using an adaptive grid
for interpolation.

This procedure is described in the next section.

2.3.3 Adaptive grid for interpolation

Brumm and Grill (2014) propose an alternative method for computing equilibria in dynamic
models with several continuous state variables and occasionally binding constraints. Their
method addresses the interpolation problem induced by the non-differentiabilities in policy
functions when constraints bind, locating the non-differentiabilities and adding interpolation
nodes there. This idea can be easily implemented in the equilibrium outcome grid method
introduced in the previous section. To do this, it is necessary to compute the kink at each it-
eration, which is equal to p ., = (%ﬁ) E fns(w) before step (i) and re-define an iteration-
dependent grid price vector as P cni1> = P, s U{pi € Dans 1 0i < Pippqs ). Since the
sequence of functions { f-,> tnen converges to f, then the sequence of kinks {p%, . }nen con-
verges to p*. Now, at each iteration, interpolation is needed only for prices below p*_, 1>,
avoiding interpolation above the kink. Figure 2.1 illustrates how this method works. The
dashed line displays a simple one-dimensional policy function with a kink. Suppose this func-
tion is approximated by linear interpolation between equidistant grid points. The resulting
interpolated policy is displayed as a solid line on the left-hand side of Figure 2.1. Clearly, the
approximation error is comparatively large around the kink, and this is just because there
is no interpolation node near the kink. If one knew the location of the kink and put a node
there, then the approximation would be much better, as the right-hand side of Figure 2.1
shows.

2.4 A numerical example

To illustrate the advantages of the equilibrium outcome grid-point method described in the
previous section, consider the heuristic speculative storage model described by Michaelides
and Ng (2000). Following the pioneering work of Deaton and Laroque (1992, 1995, 1996)
they consider a linear inverse consumer demand fixing the set of parameter {A, B, K, d,r}
at {0.6,—0.3,0,0.1,0.05}. The shock distribution is approximated by a 10 point standard
normal distribution. Based on the standard solution method they discretize the support
of the state variable z, using an equally spaced grid of 50 points in the interval |w,@/d].
Assuming this setup for the underlying economy, and fixing a predefined tolerance for the
stopping rule at 10~7, the SRRE is approximated using the standard method and the one
proposed in this chapter. Then, the same model is solved for a scaled transformation of the
inverse consumption demand, fixing A = 100000. This last approximation is re-scaled back,
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Inverse demand function =--: Correct SREE = —— Interpolated SREE
® |nterpolation Nodes © Adapted Node

Figure 2.1: Adaptive Grid principle.

using Proposition 2, in order to compare it with the approximated SREE associated to the
underlaying economy.

Figure 2.2 compares the standard solution method with the equilibrium outcome grid-
points method proposed in this chapter. In both panels the black line represents the inverse
consumption demand, the grey line represents the approximated SREE for the underlying
economy, and the black dashed line represents the approximated SREE for the scaled trans-
formation of the underlying economy. Panel (a) shows that the both approximations do not
coincide when the standard solution method is applied, reflecting the different approximated
SREEs at different scales. In contrast to panel (a), panel (b) shows that approximations of
the SRRE coincide when the new method is implemented (grey line and black dashed line
are coincident).

Figure 2.3 shows the magnitude of the errors due to extrapolation (the black dashed line)
implied by the choice of the range for the total available supply considered by Michaelides
and Ng (2000). When the standard method is applied errors due to extrapolation lie in the
range of 0 and 18 x 1077. In contrast with these values, errors due to extrapolation are
equal to zero over all the domain when the new method is implemented. Unfortunately,
Michaelides and Ng (2000) does not report the magnitude of the errors due to their stopping
rule. Nevertheless, the next figure illustrates a comparison between the magnitude of the
errors due to extrapolation and the errors due to the stopping rule that I have chosen.

Most of the attention in the numerical literature focuses on the error due to the stopping
rule, while error due to extrapolation is rarely reported. Figure 2.4 compares the magnitude
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of the errors due to extrapolation (the black dashed line) implied by Michaelides and Ng
(2000) parametrization against the magnitude of the errors due to the stopping rule (the
gray line) which I fixed arbitrarily at 1077.1? Figure 2.4 shows that the errors due to extrap-
olation can be far larger than the errors due to stopping rule.

Finally, to have an approximate measure of the adaptive grid performance, I compute the
Euler equation residuals implied by the approximated SREE for the two methods. I calculate
the Euler equation residual as the absolute value of the difference between the right and left
hand side of equation (2.2) over a grid of one millon points for the total available supply z,
and using the approximations of SREE f obtained by each method. Figure 2.5 shows how
the adaptive grid for interpolation removes the error due to interpolation for values of z that
are lower than z* and reduces the magnitude of this error below the kink to about one third
of its previous value.!

(a) Standard solution method lgb) Equilibrium outcome grid-points method

Price (p)

0 5 10 15 0 10 20 30
Total available supply (z) Total available supply (z)

—Inverse consumption demand
Approximated SREE for the underlaying economy
----Approximated SREE for the scaled transformation of the underlaying economy

Figure 2.2: Comparison between the standard method and the equilibrium outcome grid-
points method.

12Michaelides and Ng (2000) do not report the error bound they use as a stopping rule.
13In this figure I reduce the domain of 2 to [—2, 6] for a better visualization of the error around the kink.
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18 x10 : :
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Error

Qb= oo 1 | | | | | | | -
2 0 2 4 6 8 10 12 14 16 18
Total available supply (z)

Figure 2.3: Error due to extrapolation for the parametrization used by Michaelides and Ng
(2000).

7
18 x10 : :

----Error due to extrapolation /
16 H——Etrror due to stopping rule A

14 / -

10— // _

Error

o) I Lo——m==C 1 \ \ \ \ \ \ \ .
-2 0 2 4 6 8 10 12 14 16 18
Total available supply (z)

Figure 2.4: Error due to stopping rule and error due to extrapolation.



CHAPTER 2. THE METHOD OF EQUILIBRIUM OUTCOME GRID-POINTS FOR
SOLVING NONLINEAR RATIONAL EXPECTATION MODELS 29

0.015 : ‘ ‘
i —— Euler equation residuals implied by the equilibrium outcome grid-points method

i ----Euler equation residuals implied by the standard solution method

0.01 -

0.005

Euler equation residuals (in absolute value)

4 6

Total available supply (z)
Figure 2.5: Implied Euler equation residuals.

2.5 Conclusions

This chapter provides a new numerical strategy for solving nonlinear rational expectation
models with inequality constraints, and i.i.d. shocks with bounded support in cases where
the state variable is bounded. It addresses three problems of the standard solution method:
robustness to scaling transformation of the SREE function, its error of approximation due
to extrapolation in the ergodic set, and interpolation around the kink. If the assumption
of bounded support for the shocks is relaxed, the new numerical method still solves two of
the problems of the standard solution method: robustness to scaling transformation of the
SREE function, and interpolation around the kink. Addressing these problems is relevant
for numerical and empirical applications. The approach presented in this chapter can be im-
plemented for several microeconomic and macroeconomic models such as the income-saving
models described by Schechtman and Escudero (1977) and Deaton (1991).
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Chapter 3

Comments on: “On the behavior of
commodity prices when speculative
storage is bounded”

3.1 Introduction

Oglend and Kleppe (2017; OK2017 hereafter) in a paper entitled: “On the behavior of com-
modity prices when speculative storage is bounded” investigate the implications of bounded
speculative storage on commodity prices. They assume that speculative storage is bounded
from below at zero and above at an exogenous maximum capacity. Under this assumption
OK2017 addresses, in Theorem 1, the convergence of a value function iteration operator.
Such operator approximates a stationary value function that satisfies the Bellman equation
solving the consumption-storage allocation of a representative consumer in a infinite horizon
optimization problem.

Furthermore, OK2017 in Theorem 1 establishes that the derivative of this stationary
value function coincides with the stationary rational expectations equilibrium (SREE) price
function that solves the Euler conditions implied by an optimal speculation problem. This
result has also been addressed in the literature for cases where the storage has no upper
bound; see for example Benveniste and Scheinkman (1979), Coleman (1989, 1990, 1991),
Deaton (1991), Deaton and Laroque (1992, 1995), Bobenrieth et al. (2012), and Rendahl
(2015). This literature also provides iterative solution methods based either on the Bellman
equation or on the Euler equations that allow approximation of the stationary value function
or SREE respectively.

One method that allows approximation of the SREE directly is the time iteration operator
described in the next section. Deaton and Laroque (1992) and Rendahl (2015) prove that
this time iteration operator coincides with the derivative of the value function iteration
operator. Also, assuming that the modulus of the operator is less than one, they prove
that such operator satisfies Blackwell’s sufficient conditions for a contraction mapping and
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therefore convergence of this operator to the SREE follows from the application of Banach’s
fixed point theorem, also known as the contraction mapping theorem.!

As an alternative to the time iteration operator, fixed point iteration operator (also de-
scribed in the next section) is often implemented due to its generally faster convergence.
However, to my knowledge, no one has proved that this fixed point iteration operator nec-
essarily converges.

OK2017 in Theorem 2 claims that a fixed point iteration operator converges to SREE.
This claim has two problems. First, they assume that the fix point iteration operator cor-
responds to the derivative of the value function operator, and under this assumption they
claim convergence. Second, even if the derivative of the value function operator is replaced
by the time iteration operation, contraction mapping arguments and Banach’s fixed point
theorem do not apply directly to their formulation, because they consider a more general
version of the model where the modulus can take values greater than one.

In this chapter, I present a counter-example with modulus less than one, that shows
Theorem 2 in OK2017 is false. I chose a set of parameters that satisfy all the assumptions of
OK2017. However, for the chosen parameters, the fixed point iteration operator proposed by
OK2017 oscillates between two different functions. This oscillation take place over a given
domain included in the ergodic set, implying that neither discounting nor monotonicity, the
sufficient Blackwell’s sufficient conditions for a contraction mapping, are satisfied.

3.2 The theoretical model

Consider a simple competitive commodity market in which storers are risk neutral, and face a
constant discount rate r > 0. Supply shocks, wy, are i.i.d., with compact support [w, @] € R.
The state variable is the total available supply at time ¢ defined as z; = w; + (1 — d)zy_1,
where x;_; is storage at time ¢t — 1, and d € [0, 1) is the physical deterioration rate of stocks.
Price is formed as p; = F(¢;), where consumption at time ¢ is given by ¢; = z; — x;. The
inverse consumer demand: F': R — R, is strictly decreasing, and a maximum capacity for
storage C' > 0.

A stationary rational expectations equilibrium (SREE) in this model is a price function
f which describes the current price p; as a function of the state z;, and which satisfies, for
all z;,

o= ) =min { e Oy ma { Fa), (155 ) B o + (= D= () | -
Since the w;’s are i.i.d., f is the solution to the following functional equation: O
1) =min {F(: - Cpmax {F0). (152) Ef+ =) = PG |- 32)

1See Stokey and Lucas (1989) Theorem 3.3 in p.54 for a description of Blackwell’s sufficient conditions for
a contraction (discounting and monotonicity), and Theorem 3.2 in p.50 for a description of the contraction
mapping theorem.



CHAPTER 3. COMMENTS ON: “ON THE BEHAVIOR OF COMMODITY PRICES
WHEN SPECULATIVE STORAGE IS BOUNDED?” 32

Alternatively, consider the following relationship U’(z) = F(z), where U is the utility
function of a representative consumer, and the Bellman equation:

. 1
V*(z) = OISHanXCU(Z —z)+ 1——H“EV (w+ (1 —d)x),

as the solution to the optimization problem:

= 1
max —FE)U(z — 2 ,
{zm{z(m)t U o}

t=0

subject to:

O S Ty S C?
241 = Wit + (1 - d)l’t
Existence and uniqueness of the SREE, f(z), and the stationary value function V*(z),

as well as some of their properties are established by OK2017, Theorem 1, p. 55.
OK2017 in Theorem 1 also defines the relationship between V*(z) and f(z) as follows:

dV*(z)
dz

This result has been established by Benveniste and Scheinkman (1979), and extended in
more general contexts for example by Coleman (1989, 1990, 1991), Deaton (1991), Bobenri-
eth et al. (2012), and Rendahl (2015).

3.2.1 OK2017, Theorem 2

Considering the assumptions of the theoretical model presented above, OK2017 in p. 56,
Theorem 2, state the following;:

OK 2017, Theorem 2: Providing that fo(z) is a continuous, bounded and non-increasing
function, the function iteration:
) 1—d 1
for1(2) =min< F(z — C),max < F(z), T Efplw+ 1 =d)[z=F ' (ful2)]) ¢ ¢
(3.3)
converges to the SREE f(z).

In the proof of this theorem OK2017 appear to assume that in the recursive operator
described by equation (3.3), fn,11(2) = dv+;(z)’2 where V,,11(z) is the recursive operator
given by:

2Gee OK2017 pp. 65-66.
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1
Vosi(z) = ax {U(z —s)+ mEVn(w + (1 - d)s)} : (3.4)
However, if f,11(2) = dv%;(z), then:
, 1—d .
fnt1(z) =min < F(z — C), max < F(z), o, Efplw+ 1 =d)[z—=F ' (fur1(2))]) ¢ ¢ -
(3.5)

Notice that in the right hand side of equation (3.3) the function f,, appears twice, while
in the right hand side of equation (3.5) the function f,, appears only once, being replaced the
second time by f, 1. Equation (3.5) is the operator that correctly represents the derivative
of the function V,,;1. As I mentioned in the introduction of this chapter, this relationship
between V,;1 and equation (3.5) has been extensively discussed in the literature, see for
example Coleman (1989, 1990, 1991), Deaton (1991), Deaton and Laroque (1992, 1995), and
Rendahl (2015). Adopting the definitions of Rendahl (2015), I denote the operator described
by the equation (3.3) as fized point iteration operator and the operator defined by equation
(3.5) as time iteration operator.

The fixed point iteration operator is often implemented in the literature instead of the
time iteration operator to approximate the SREE described by the equation (3.2). The
reason is that the numerical procedure implied by its recursive equation is faster because
it avoids the root finding operations required by the implementation of the recursive equa-
tion of the time iteration operator. Assuming no restriction on the maximum capacity, and
that 0 < (%j) < 1, Deaton and Laroque (1992) shows that the time iteration operator of
equation (3.5) satisfies the Blackwell’s sufficient conditions for a contraction mapping and
therefore its convergence follows from the application of the Banach’s fixed point theorem.
However, to my knowledge, no one in the literature, except OK2017, has claimed the con-
vergence of the fixed point iteration operator. Deaton and Laroque (1992) explain why they
replace the time iteration operator by the fixed point iteration operator: “In practice, this is
an inconveniently slow algorithm, since it requires, at each iteration, a set of subsidiary iter-
ations to solve for the next function, which is itself going to be modified at the next step. We
have found that removing the subsidiary iterations does not prevent convergence.” (Deaton
and Laroque, 1992, p. 9). In a companion paper, they elaborate: “Note that if the innermost
fn(2) on the right hand side of equation (28) were replaced by f,11(z) the iteration would be
a contraction and convergence would be guaranteed. However, such a procedure would require
an iterative calculation for each new n, which would greatly increase computation time. And
although the iteration defined by equation (28) is not generally a contraction, the procedure

always seems to converge in practice.”® (Deaton and Laroque, 1995, p. S21). Rendahl

3Equation (28) refers to their fixed point operator, similar to the one described by the equation (3.3).
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(2015) mentions that “..there are no guarantees that the sequence of successive quesses ob-
tained under fized point iteration will eventually converge to the solution, and oscillating or
exploding sequences are frequent”, (Rendahl, 2015, p. 1119-1120).

The next section of this chapter provides a counter-example, consistent with assumptions
of OK2017, for which the fixed point iteration operator defined by equation (3.3) does not
converge to the SREE as OK2017 Theorem 2 claims. In fact, my counter-example shows
that this operator oscillates between two different functions. This oscillation take place over
a given domain included in the ergodic set.

3.3 A counter-example

Consider § = ﬁl, ford =0, and r > 0, s.t. 0 < 8 < 1, an inverse consumption demand
F(c)=c"*, p>0,C >0, and a two point distribution for w ~ [w, @], with probabilities «
and (1 — «) respectively, 0 < o« < 1, w < @. This two point distribution is in the class of

distributions considered by OK2017.

Define:
p* = PEF(w) = B[aF(g) +(1-— a)F(w)],
<= Fp) = F(BloF() + (1- 0)F@)]).

If the maximum capacity equals zero, p* is the discounted expected price. If, in addi-
tion the current price equals p*, then z* is the current total available supply and consumption.

Also, define:

p* = BlaF(w) + (1 —a)F(w - 0)],
2= Fl(pe) = B (5 [aF(w) + (1 — a)F(@ — 0)}).

If the maximum capacity is strictly positive and binding at the maximum shock real-
ization, then p** is the discounted expected price conditional on zero current stocks. More
generally, p** is an upper bound for the unconditional discounted expected price. If, in ad-
dition the current price equals p**, then z** is the current consumption.

Now, using these new definitions, I impose five assumptions that implicitly involve the
modulus 3, the maximum capacity C, the parameters of the shock distribution (w, @, «),
and the inverse consumption demand function (p).
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Assumptions: The set of parameters: w, W, a, p, B, and C are chosen such that:
A.1: w < 2* < w, which for this model is equivalent to assume that F(w) < p* < F(w).*

This assumption ensures that the discounted expected price if the maximum capacity
equals zero (p*), lies in the ergodic set of prices and that z* lies in the ergodic set of harvest
shocks.?

A.2: BEF(w+C) > F(@—C).

This assumption implies that the discounted price if storage is zero and if the distribution
of the shocks is shifted to the right by C' (BEF(w + C')), cannot be smaller than the price
implied by current consumption equal to w — C'. Also, this assumption implicitly defines an
upper bound for the maximum capacity: C <w — F~' (BEF (w + C)).

By Lemma 1 (in Appendix D) assumptions A.1 and A.2 imply that w < z** < 2* < @,
and that F(w) > p™ > p* > F(w). Hence, these two assumptions ensure that p* and p**
belong to the ergodic set of prices, and that z* and z** belong to the ergodic set of total
available supply as is shown in Figure 3.1.

A.3: C >z — 2.

This assumption explicitly defines a lower bound for the maximum capacity. In order
to make my counter-example works the maximum capacity C' cannot be smaller than the
difference between z* and z**. Assumptions A.1 and A.2 imply that such difference is a
positive number.

w+ 2"

A.4: < z*,

This assumption establishes the relative location of z** with respect to w and z*. It
implies that z** cannot be smaller than the average of w and z*.

A5: F(z) > flaF(w+z—2")+ (1 —a)F(@+ 2z — 2™ = C)], Vz s.t. 2" <z < 2%

As shown in Appendix D, the right hand side of this assumption coincides with the
analytical expression of f, evaluated in the domain [z**, z*] conditional in positive stocks.

4Notice that the first part of this assumption F(@w) < BEF(w) = p* is equivalent to the assumption in
Theorem 2, Deaton and Laroque (1992). Also, the second part of this assumption p* = SEF (w) < F(w), it
is true by construction if § < 1. However, I make this second part as an explicit assumption since Oglend
and Kleppe (2017) allow the case with 5 > 1.

5The ergodic set of the harvest shocks is a subset of the ergodic set of the total available supply.
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F@)|-

Figure 3.1: Location of z*, z**, p*, and p** implied by assumption A.1 and A.2.

Therefore, this assumption implies that f,(z) is equal to F(z), Vz € [2**,2*] and conse-
quently that the storage implied by the iterate n is equal to zero Vz € [z**, 2*].

The following theorem establishes that the fixed point operator proposed by OK2017 in
Theorem 2 does not converge.

Consider the OK2017 operator, fixing d = 0, as represented in equation (3.3):
fas1(2) =min [F(z — C),max [F(z), BEfu(w+ 2z — F'{fu(2)})]], Vn €N, (3.6)

and define the first guess for the function f,(z) as: fo(z), a continuous, bounded and non-
increasing function, Vz > w.

Theorem. Under assumptions A.1-A.5, assume that for some n € N, the function f, sat-
1sfies the following hypotheses:

(i) fn(2) = F(2), V2 st w < 2 < 27,
(ii) fu(2)=F(z—C), Vz >,
then f,y1 satisfies the following properties:
(0) fry1(2) = F(2), Vz st w <z <27,

(b) foi1(2) =p**, Vz st 2 <z < 2%,
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(C) fn-l—l(Z) = F(Z_C)7 Vz > W,

and fnio satisfies the same hypotheses as f,.

Proof: See Appendix D.

This theorem establishes that the functions differ over the domain 2** to z*, at iterations
n and n + 1, but at iteration n + 2 the function f,,2(2) equals function f,(z) over this
domain.

Figure 3.2 shows the iterate f, satisfying hypotheses (i) and (ii) and Figure 3.3 shows
the iterate f,,1 satisfying properties (a), (b), and (c). The proof proceeds in two stages.
In the first stage, I show that if iterate n satisfies hypotheses (i) and (ii) then iterate n + 1
satisfies the properties (a), (b), and (c). In the second, I show that if iterate n + 1 satisfies
properties (a), (b), and (c), then iterate n + 2 satisfies the same hypotheses as does iterate
n. In consequence, the elements of this sequence alternate between two different functions.
Therefore this sequence of functions does not converge.

Corollary 1 in Appendix D shows that for this counter-example the fixed point itera-
tion operator of OK2017 does not satisfy Blackwell’s sufficient conditions for a contraction

mapping.

F@)|-

Figure 3.2: Tterate f, satisfying hypotheses (i) and (ii).
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Figure 3.3: Iterate f,;; satisfying properties (a), (b), and (c).

3.4 Numerical Example
Let fo = F(2), V2 > w. and C' =@ — z*, Then:

fi(z) = min{F(z — C),max [F(2), BEfo(w+ 2z — F{fo(2)})] },
fi(z) = min{F(z — C),max [F(z),EF (w+z— FY{F(2)})]}
fi(z) = min{F(z — C),max |F(z),EF (w)]}.

Then:

fi(z) = p, Z<z<z4C, (3.8)

(z—=C) z>z"+C.
Notice that fi(z) satisfies the hypotheses (i), (ii) of the Theorem. Now I pick a numerical

setup that satisfies the assumptions A.1-A.5. I consider the numerical example in OK2017,
fixing d = 0, assuming a two point distribution for the shocks.

{ F(z), w<z<zh,
F

F(c) =c?, with p=4, r =0.05, C =60, w = 70, w = 220, a = 0.5. Then the implied
values are: z* = 84.0515, and 2™ = 83.5115. and assumptions A.1-A.5 are satisfied.
3.5 Conclusions

This chapter provides a counter-example that establishes that Theorem 2 of OK2017 is false;
their fixed point iteration operator does not always converge to the SREE as claimed.



39

Bibliography

Benveniste L. M., and J. A. Scheinkman (1979): “On the Differentiability of the Value Func-
tion in Dynamic Models of Economics,” Econometrica, 47(3), pp. 727-732.

Bobenrieth, J. R. A., and E. S. A. Bobenrieth (2010): “Ergodic Properties of a Commodity
Storage Model with Production Trend,” Working paper, Universidad del Bio-Bio, Pontificia
Universidad Catolica de Chile, and University of California at Berkeley.

Bobenrieth, E. S. A., Bobenrieth, J. R. A., and B. D. Wright (2012): “Strict Concavity of
the Value Function for a Family of Dynamic Accumulation Models,” The B.E. Journal of
Theoretical Economics, 12(1), 1-11.

Bobenrieth, E. S. A.; Wright, B. D., and D. Zeng (2013): “Stocks-to-use ratios and prices as
indicators of vulnerability to spikes in global cereal markets”. Agricultural Economics, 44,
43-52.

Brumm, J., and M. Grill (2014): “Computing equilibria in dynamic models with occasionally
binding constraints,” Journal of Economic Dynamics & Control, 38, 142-160.

Cafiero, C., and B. D. Wright (2006): “Is the storage model a “closed” empirical issue?,”
Agricultural Commodity Markets and Trade: New Approaches to Analyzing Market Structure
and Instability. A. Sarris and D. Hallam, Eds. Elgar Publishing, Chapter 4.

Cafiero, C., Bobenrieth, E. S. A., Bobenrieth, J. R. A., and B. D. Wright (2011a): “The
Empirical Relevance of the Competitive Storage Model,” Journal of Econometrics, 162, 44—
54.

Cafiero, C., Bobenrieth, E. S. A.; and J. R. A. Bobenrieth (2011b): “Storage arbitrage and
commodity price volatility,” Safequarding Food Security in Volatile Global Markets, ed. A.
Prakash, Chapter 15, pp. 288-313, Food and Agriculture Organization of the United Nations
(FAO).

Cafiero, C., Bobenrieth, E. S. A., Bobenrieth, J. R. A., and B. D. Wright (2015): “Max-



imum Likelihood Estimation of the Standard Commodity Storage Model: Evidence from
Sugar Prices,” American Journal of Agricultural Economics, 97(1), 122-136.

Cai, Y., and K. L. Judd (2012): “Dynamic programming with shape-preserving rational
spline Hermite interpolation,” Fconomics Letters, 117, 161-164.

Cai, Y., and K. L. Judd (2013): “Shape-preserving dynamic programming,” Mathematical
Methods of Operations Research, 77(3), 407-421.

Carter, C. A., Rausser, G. C., and A. Smith (2011): “Commodity Booms and Busts,” An-

nual Review of Resource Economics, 3, 87-118.

Chambers, M. J., and R. E. Bailey (1996): “A Theory of Commodity Price Fluctuations,”
Journal of Political Economy, 104, 924-957.

Christiano, L. J., and J. D. M. Fisher (2000): “Algorithms for solving dynamic models with
occasionally binding constraints,” Journal of Economic Dynamics & Control, 24(8), 1179—
1232.

Coleman, W. J. (1989): “An algorithm to solve dynamic models,” Washington, DC: Federal
Reserve Board.

Coleman, W. J. (1990): “Solving the stochastic growth model by policy-function iteration,”
Journal of Businessand Economic Statistics, 8(1), 27-29.

Coleman, W. J. (1991): “Equilibrium in a production economy with an income tax,” Econo-
metrica, 59(4), 1091-1094.

Daniel, J. W. (1976): “Splines and Efficiency in Dynamic Programming,” Journal of Math-
ematical Analysis and Applications, 54, 402-407.

Deaton, A. (1991): “Saving and Liquidity Constraints,” Econometrica, 59(5), 1221-1248.

Deaton, A., and G. Laroque (1992): “On the Behaviour of Commodity Prices,” Review of
Economic Studies, 59(1), 1-23.

Deaton, A., and G. Laroque (1995): “Estimating a nonlinear rational expectations commod-
ity price model with unobservable state variables,” Journal of Applied Econometrics, 10,

S9-540.

Deaton, A., and G. Laroque (1996): “Competitive Storage and Commodity Price Dynam-
ics,” Journal of Political Economy, 104(5), 896-923.



den Haan, W. J., and A. Marcet (1994): “Accuracy in simulations”, Review of Economic
Studies, 61, 3—17.

FAO (2006): “Maize: International Market Profile,” Grains Team Food and Agriculture
Organization of the United Nations Economic and Social Department Trade and Markets
Division, December.

Gospodinov, N.; and S. Ng (2013): “Commodity Prices, Convenience Yields, and Inflation,”
The Review of Economics and Statistics, 95(1), 206-219.

Gouel, C. (2013): “Comparing Numerical Methods for Solving the Competitive Storage
Model,” Computational Economics, 41(2), 267-295.

Gouel, C., and N. Legrand (2017): “Estimating the Competitive Storage Model with Trend-
ing Commodity Prices,” Journal of Applied Econometrics, 32(4), 744-763.

Grilli, E., and M. C. Yang (1988): “Primary commodity prices, manufactured goods prices,
and the terms of trade of developing countries: What the long run shows,” The World Bank
Economic Review, 2, 1-47.

Guerra, E. A., Bobenrieth, E. S. A., Bobenrieth, J. R. A., and C. Cafiero (2015): “Empirical
commodity storage model: the challenge of matching data and theory,” European Review of
Agricultural Economics, 42(4), 607-623.

Gustafson, R. L. (1958): Carryover Levels for Grains. Washington D.C.: USDA, Technical
bulletin.

Judd, K. (1992): “Projection methods for solving aggregate growth models,”
Economic Theory, 58, 410-452.

Journal of

Judd, K. (1998): Numerical Methods in Economics. MIT Press.

Lowry, M., Glauber, J., Miranda, M., and P. Helmberger (1987): “Pricing and Storage of
Field Crops: A Quarterly Model Applied to Soybeans,” American Journal of Agricultural
Economics, Agricultural and Applied Economics Association, 69(4), 740-749.

Michaelides, A., and S. Ng (2000): “Estimating the rational expectations model of spec-
ulative storage: A Monte Carlo comparison of three simulation estimators,” Journal of
Econometrics, 96, 231-266.



Miranda, M. J. (1985): “Analysis of rational expectations models for storable commodities
under government regulation,” Ph. D. thesis, University of Wisconsin, Madison.

Miranda, M. J. (1997): “Numerical strategies for solving the nonlinear rational expectations
commodity market model,” Computational Economics, 11(1-2), 71-87.

Miranda, M. J., and P. L. Fackler, (2002): Applied Computational Economics and Finance.
The MIT Press.

Miranda, M. J., and J. W. Glauber (1993): “Estimation of Dynamic Nonlinear Rational
Expectations Models of Primary Commodity Markets with Private and Government Stock-
holding,” The Review of Economics and Statistics, 75(3), 463-470.

Oglend, A., and T. S. Kleppe (2017): “On the behavior of commodity prices when specula-
tive storage is bounded,” Journal of Economic Dynamics and Control, 75,52—693.

Osborne, T. (2004): “Market News in Commodity Price Theory: Application to the Ethiopian
Grain Market,” Review of Economic Studies, 71(1), 133-164.

Pfaffenzeller, S., Newbold, P., and A. Rayner (2007): “A short note on updating the Grilli
and Yang commodity price index,” The World Bank FEconomic Review, 21, 151-163.

Reimer, J. J., Zheng, X., and M. J. Gehlhar (2012): “Export Demand Elasticity Estimation
for Major U.S. Crops”. Journal of Agricultural and Applied Economics, Southern Agricul-
tural Economics Association, 44(4), 501-515.

Rendahl, P. (2015): “Inequality Constraints and Euler Equation-based Solution Methods”.
Economic Journal, 125, 1110-1135.

Roberts, M. J., and W. Schlenker (2013): “Identifying Supply and Demand Elasticities of
Agricultural Commodities: Implications for the US Ethanol Mandate,” American Economic
Review, 103(6): 2265-2295.

Roberts, M. J., and W. Schlenker (2013): “Identifying Supply and Demand Elasticities of
Agricultural Commodities: Implications for the US Ethanol Mandate; Online Appendix,”
American Economic Review. http://dx.doi.org/10.1257/aer.103.6.2265.

Santos, M. S. (1999): Handbook of Macroeconomics, Volume 1, Part A, 311-386.

Santos, M. S. (2000): “Accuracy of numerical solutions using the Euler equation residuals,”
Econometrica, 68(6), 1377-1402.



Schechtman, J., and V. L. S., Escudero (1977): “Some Results on An Income Fluctuation
Problem,” Journal of Economic Theory, 16, 151-166.

Scheinkman, J. A., and J. Schechtman (1983): “A simple competitive model with production
and storage,” Review of Fconomic Studies, 50, 427-441.

Stokey, N. L., R. E. Lucas, Jr., and E. C. Prescott (1989): Recursive Methods in Economic
Dynamics. Harvard University Press, Cambridge.

Williams, J. C., and B. D. Wright (1991):  Storage and Commodity Markets. Cambridge
University Press.

Working, H. (1960): “Note on the Correlation of first differences of averages in a random
chain,” FEconometrica, 28, 916-918.

Wright, B. D. (2011): “The Economics of Grain Price Volatility,” Applied Economic Per-
spectives and Policy, 33(1), 32-58.

Wright, B. D.; and J.C. Williams (1982). “The Economic Role of Commodity Storage.” The
Economic Journal, 92 (367): 596-614.

Wright, B. D., and J.C. Williams (1984):. “The Welfare Effects of the Introduction of Stor-
age,” Quarterly Journal of Economics, 99(1), 169-192.

Zeng, D. (2012): “Out of sight, out of mind? Estimating commodity price dynamics using
detrended price,” Working Paper, University of California, Berkeley.



44

Appendix A

The estimated model is normalized at the mean and standard deviation of per capita maize
production, assuming net supply shocks N(0,1) and linear inverse consumption demand
F(c) = a+ be, where c is interpreted as per capita consumption. For the calculation of con-
sumption demand elasticities, I re-scale the distribution of maize production, setting its mean
and standard deviation at p and o, respectively, and use the identification Proposition of
Deaton and Laroque (1996, Proposition 1, p. 906) to correspondingly re-scale the consump-
tion demand parameters. The re-scaled inverse consumption demand is F/(c) = a — b + L.
Therefore, the price elasticity of consumption demand, evaluated at mean real detrended
price, is given by leg)/p, where p denotes the mean of detrended real prices.

Maize production data from USDA /PSD and world population data from the US Census
Bureau are available for the period 1961-2012.% Figure A.1 shows per capita production
which is detrended assuming linear trends, with three subsample periods: 1961-1970, 1971-
2000, and 2001-2012, implying three distinct intercept and slope parameters. The values
for the mean p and standard deviation ¢ used in my calculation of consumption demand
elasticities are obtained as the weighted averages of the intercepts and standard deviations
of detrended per capita production, respectively, of each of these subsample periods. Figure
A.2 shows detrended per capita production for the period 1961-2012.

Shttp://apps.fas.usda.gov/psdonline/psdQuery.aspx and
http://www.census.gov/population/international/data/idb/informationGateway.php, respectively.
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Appendix B

Consider a model exactly equal to the one presented in section 2, except that the inverse

- F ~ .
demand function is F' = T with A > 0. Also assume that f,~(z) = J< ;<2)

Proposition 3: The functions feniis and fenii> satisfy: f<n+1>(z) = ‘ﬂ%b(z)

I
=
(@]
g
<
(]

Fy -1
Proof of Proposition 3: Since <X> (p) = F~Y(\p), for g(z)

max{(l —d) Efens(w+(1—d)[z - (?)1(%2))})7 Fiz)}

“mas {2 () b 1 P o)), T2

1
3
= pmax{ (158) B+ (1= s = £ aninn ()] F

= ~fenns(2) = 9(2).
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Appendix C

Consider a storage model with a continuous and strictly decreasing inverse demand function
F(c), a sequence {w; }en of i.i.d shocks with support [w,@], and an interest rate r > 0 and
a physical deterioration rate of stocks d € [0,1). Also, consider the space:

G={g:|w,+0[= R, g >0, g continuous, g non-increasing, g(w) = F(w)} .

For any given g € é, consider the operator T defined as g — T'g, where:

Ty) = max{ (152) Ba o+ (0= d) - FHTAE)] FG)

Proposition 4: If g € G is strictly decreasing, so is T'g.

Proof of Proposition 4: Following the section (iii) Theorem 1’s proof of Deaton and
Laroque (1992), assume that g is strictly decreasing on [w, +00|, and by contradiction assume
Tg is not strictly decreasing. Since T'g is non-increasing, let [z, 2”[ be the first interval on
which Tg is constant,. i.e., such that T'g is strictly decreasing on |w, z'[, and let m the value
of T'g on this interval. Since F' is strictly decreasing then for all z € [2/, 2”[:

Tg(z) =m = BEg [w+ (1 —d)(z— F'(m))] .

The right-hand side of the above expression is constant, and since g is strictly decreasing, we
must have g [w + (1 — d)(z — F~*(m))] constant on [2/, 2”[, which contradicts the assumption
that ¢ is strictly decreasing on [w, +00].
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Appendix D

Lemma 1: w < 2" < 2* < .
Proof of Lemma 1:

By assumption A.1, w < z* < @, then:

w < 2%,
= F
= F
= F
= F

> F(z"),
> p*,
> aF
> oF
= F > oF
= F > aF
= F(w) > Bl

=w< F- 1(6

=w< F(p
= w < 2.

*

(1 —a)p,
(1 —a)(BEF(w)), (using the definition of p*)
(1—-a)(BEF(w+C)), (because C' > 0, and F' is strictly decreasing)
(1-—a)F(w-0), (by assumption A.2)

+(1-a)F@-C)]

)+ (1—)F@-C)]),

E@@@@E
@@@@
+ o+

A~ — N S

@/

B(

*T
(S

),

Also: p** > p*, (by the definition of p* and p**)
= F(p**) < F(p"),
= <2

Therefore: w < z** < z* <w, and F(w) > p™ > p* > F().
Lemma 2: Define the storage function implied by iteration n as z — F~'{f,(z)}. Then the

storage function implied by iteration n is bounded by 0 < z — F~1{f,(2)} < C, Vn € N, and
Vz > w.



Proof of Lemma 2:

F(2) < ful2) < F(z = C),

=22 F{fu(2)} 22-C,  (Applying F'Y)
= —2 < —FY{f.(2)} < —z+ C, (Multiplying by —1)
=0<z-F Hf.(2)} <C. (Adding 2)

Lemma 3: The iterate n evaluated at the maximum shock satisfies the following condition:
fn(@) = F(w—C), ¥n € N.

Proof of Lemma 3:

fat1(@) = min [F(@ — C), max [F(w), BEf, (w +w — F{f,([@)})]], VneN.

However:

BEfu(w+@ = F~{fu@)}),

> BEF(w+© = F{fu(@)}), (because fu(= > F(2), ¥z > w)

> BEF(w+ C), (because w — F~1{ [, (@)} < C, by Lemma 2)
> Fw—0C). (by assumption A.2)

Therefore, f,41(w) = F(w—C), Vn € N.

Proof of the Theorem:

First, I prove that f,; satisfies properties (a)-(c).

Properties (a) and (b):

for1(2) = F(2), Vz st w <z <z" and f,11(2) = p™, Vz s.t. 2 < z < 2% respectively.

By hypothesis (i), Vz s.t. w < 2z < 2%, f,.(2) = F(z), then:

for1(z) = min [F(z — C),max [F(2), BEf(w+ 2z — F{fu(2)})]],

fag1(2) = min |[F(z — C), max =F(z),BEfn(w+z— HF()}D]],

far1(z) = min |[F(z — C),max |F(z), BE fo(w)]],

far1(2) = min [F(z = C),max [F(z), B(afu(w) + (1 — a) fu(@))]],

far1(z) = min |[F(z — C),max |F(z2), 8(aF(w) + (1 —a)F(@ —C))],] (by hypotheses (i-ii)),
far1(2) = min [F(z — C), max [F(z),p™]]

Therefore, using assumption A.3, I conclude that: f,11(2) = F(z), Vz s.t. w < z < 2™ and
fni1(2) = p™*, Vz s.t. 2** < z < z*, thus function f,, satisfies properties (a) and (b).



Property (c):

for1(2) =F(z—C),Vz > w.

By hypothesis (ii), Vz > @, f.(z) = F(z — C), then:
fna1(z) = min {F(Z — C),max [F(2), BEfo(w + 2 — F7{fu(2)})]]
far1(2) = min[F(z — C),max [F(2),BEf,(w+2z— F{F(z-O)})]],
fat1(z) = min [F(z — C),max [F(z), BEfa(w + C)]] .

Notice that: SEf,(w+ C) > BEF(w+ C) > F(w — C), by assumption A.2 and because
fn(2) > F(z). Therefore, BEf,,(w+C) > F(z—C) > F(z),Vz > w, and fh41(z) = F(2—C),
thus function f,, satisfies property (c).

Second, I prove that f, .o satisfies hypotheses (i) and (ii).

Hypothesis (i):

Jni2(2) = F(2), Vz st w < z < 2%

Case 1: by property (a), Vz s.t. w < z < 2, f,11(2) = F(z), then:

far2(2) = min [F(z — C), max [F(2), BE fop1(w+ 2 — FY{fus1(2)})]] .

fara(2) = min |[F(z — C), max | \F(2), BEfi1(w+ 2 — FH{F(z) )” )

fn+2(z) = min =F(Z—C’),max F(Z) 6Efn+1( )H

frva(s) = min [F(z — C) max [F(2). (afuri() 4 (1 — ) furn(@)]]

fat2(2) = min [F(z — C),max [F(z), 3(aF(w) + (1 —a)F(w - C))]],
(by properties (a), (C)(, and Lemma 3)

fat2(z) = min [F(z — C),max [F(z),p™]] .

Then, Vz s.t. w < z < 2" p™ < F(2) < F(z — C), and therefore: f, 12(2) = F(2).

Case 2: by property (b) Vz s.t. 2** < z < z* foi1(2) = p**, then:

fat2(2) = min[F(z — C),max [F(2), BE frs1(w + 2z — F{fur1(2)})]]
fat2(z) = min [F(z — C),max |F(2), BE fo41(w + 2z — F~{p™})]],
fa2(2) = min [F(z — C),max [F(2), BEfps1(w + 2 —2)]]

fara(2) = F(z2).

The last step comes from the fact that: Vz s.t. 2™ < 2z < 2* BEf,11 (w +z— z**) < F(z) <
F(z — (). Since:



5Efn+1 (w +z— Z**) B afn-i—l (C_‘J‘{' Z = Z**) + (1 - a)fn-i—l (w +z - Z**)],
BEfppi(w+z—2") = BlaF(lw+z—2")+(1—-a)F@+z— 2" —C)],
(by assumption A.4 and properties (a) and (c))
F(z)(by assumption A.5).

IN

BE fri1(w+ 2z — )

Then, foi2(2) = F(2), Vz s.t. w < z < 2%, thus f,42 satisfies hypothesis (i).

Hypothesis (ii):

froao(z)=F(z—C),Vz > w.
By property (¢) Vz > @, fu+1(2) = F(z — C), then:
fn+2(z) = min F(z - C’),max F(Z>aBEfn+1 Ew +2z— F_l{fn-i-l(z)})

11
far2(2) = min [F(z — C),max [F(z), BEfpi1(w+2— FY{F(z-C)})]],
fat2(z) = min |[F(z — C),max |F(z), BE fop1(w + C)]] .

Notice that: SEf,11(w + C) > BEF(w + C) > F(w — C), because f,11(2)
and by assumption A.2. Therefore, SEf,1(w + C) > F(z — C) > F(z), Vz >
frnie(2) = F(z — C), thus f,, satisfies hypothesis (ii).

>
w, and

Corollary 1: Under assumptions A.1-A.5 the fixed point operator proposed by OK2017
does not satisfy Blackwell’s sufficient conditions for a contraction mapping: monotonicity
and discounting.

Proof of Corollary 1:

Monotonicity:

By the theorem presented in section 3.3, the sequence of functions obtained by the application
of the fixed point iteration operator of OK2017 satisfies that f,(2) < fui1(2), Vz € [z, 2*]
and f,11(2) > fai2(2) = fu(2), Vz € [2**, 2*] contradicting the monotonicity property.

Discounting:

By the theorem presented in section 3.3, the sequence of functions obtained by the application
of the fixed point iteration operator of OK2017 satisfies that f,1(2) = p*™* Vz € [z, 2%].
Take a positive constant a = F(w) — p™ and define the operator T' such that f,11(z) =
Tf.(2), ¥n € N, and for all z > w. Then:

T(for1(2) +a) = F(w) > for1(2) + Ba = p™ + Pa, Vz € [z, 2*], in contradiction to the
discounting property.





