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The kth-order autocorrelation function of an image is formed by integrating the product of the image and k
independently shifted copies of itself: The case k = 1 is the ordinary autocorrelation; k = 2 is the triple cor-
relation. Bartelt et al. [Appl. Opt. 23, 3121 (1984)] have shown that every image of finite size is uniquely
determined up to translation by its triple-correlation function. We point out that this is not true in general for
images of infinite size, e.g., frequency-band-limited images. Examples are given of pairs of simple band-
limited periodic images and pairs of band-limited aperiodic images that are not translations of each other but
that have identical triple correlations. Further examples show that for every k there are distinct band-limited
images that have identical kth-order autocorrelation functions. However, certain natural subclasses of in-
finite images are uniquely determined up to translation by their triple correlations. We develop two general
types of criterion for the triple correlation to have an inverse image that is unique up to translation, one based
on the zeros of the image spectrum and the other based on image moments. Examples of images satisfying
such criteria include diffraction-limited optical images of finite objects and finite images blurred by Gaussian
point spreads.

1. INTRODUCTION

The autocorrelation of a real-valued function f is another
real function af created by integrating the product of f and
a shifted copy of itself: a function of the general form
af(s) = f f(x)f(x + s)dx. It is a basic and sometimes
frustrating fact of Fourier analysis that the autocorrela-
tion function (ACF) a completely identifies the amplitude
spectrum of f but provides no information about its phase
spectrum. In recent years there has been growing inter-
est in the possibility of recovering phase information from
higher-order ACF's created by integrating the product of a
function and multiple shifted copies of itself.' 9 General-
izing the concept of autocorrelation, one can construct
a sequence {ak, f: k = 1, 2 ... } of ACF's of a real function f
where the kth-order ACF a,f(S1,..-Sk) is created by an
integral of the form f f(x)f(x + l)... f(x + s)dx. In
this sequence a is the ordinary ACF and a 2 ,f is the
triple-correlation function, which has been widely applied
in optics' and is beginning to find uses in vision re-
search.4'1 0 (The Fourier transform of the triple corre-
lation is commonly known as the bispectrum, so our
numbering agrees with standard terminology in the spec-
tral domain.)

In the optics literature, application of the triple-
correlation function to phase-recovery problems is usually
justified by reference to a uniqueness theorem that is due
to Bartelt et al. showing that, if a real function f has
bounded support, a 2 , determines f up to a translation [i.e.,
up to the form f(x + c), where c is an unidentifiable cen-
tering parameter]. In other words, the triple correlation
of any image of finite size contains sufficient information
to identify both the amplitude spectrum and (except for a
centering term) the phase spectrum of that image.

A natural question is whether this is also true for im-
ages of infinite size: frequency-band-limited images, for

example, or finite images blurred by Gaussian point-
spread functions. This question does not seem to have
been directly addressed in the recent literature, but al-
gorithms for recovering infinite-duration temporal signals
from their triple correlations have appeared,12 and one
might be led to think that images with infinite support,
like finite images, are always uniquely determined up to
translation by their triple correlations.

However, simple counterexamples show that this is
not the case. Figure 1 illustrates a pair of nonnegative
band-limited integrable functions that have the same
triple-correlation function (as is shown below in Sub-
section 2.D.3) but that are not translations of each
other: The functions are sinc2(x) (1 + cos 6x) and
sinc2(x) (1 + sin 6rx), where sinc(x) = sin 7rx/7rx.
Figure 2 illustrates a pair of nonnegative periodic func-
tions with the same property: The functions are 2 +
cos 27rx + cos 6x and 2 + cos 27rx - cos 67rx. (This
example is due to Klein and Tyler.4 ) More generally, it
can be shown that for every k there are pairs of nonnega-
tive band-limited integrable functions and also pairs of
nonnegative band-limited periodic functions that have
identical kth-order ACF's but are not translations of each
other. (Examples are given in Subsections 2.D and
2.E.) Thus without the assumption of bounded support,
neither the triple-correlation function nor any other finite-
order ACF uniquely determines every image up to a trans-
lation: The best one can do is identify useful special
classes of infinite images that are so determined.

The identification of such classes is the main purpose of
this paper. We examine the uniqueness properties of
higher-order ACF's of functions that represent monochro-
matic images: nonnegative real functions defined on the
line R or the plane R2. Two general classes of image
function are considered: integrable functions (i.e.,
f E L) with bounded or infinite support (the latter being
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Fig. 1. Nonnegative integrable functions that have the same
triple-correlation function. Top: sinc2 (x) (1 + cos 67rx). Bot-
tom: sinc2(x) (1 + sin 67rx).

Fig. 2. Nonnegative periodic functions that have the same
triple-correlation function. Top: 2 + cos 27rx + cos 67rx. Bot-
tom: 2 + cos 2rx - cos 67rx.

our chief concern) and infinitely extended periodic func-
tions. For integrable images with bounded support we
re-prove the triple-correlation-uniqueness theorem of
Bartelt et al." by using a different approach, one that can
be extended to certain classes of images with infinite sup-
port. The proof of Bartelt et al. relied on the fact that the
Fourier transform of any function with bounded support
is determined, up to a translation factor, by the zeros of
its analytic continuation, which can be identified from the
zeros of the analytic continuation of its bispectrum.
That approach fails for functions with infinite support,
whose complex transforms may be nonvanishing (e.g.,
Gaussians). Our proof is based on a functional-equation
argument combined with the fact that all integrable func-
tions with bounded support are uniquely determined by
the values of their Fourier transforms in a neighborhood
of the origin (that is, by the derivatives of the transform at
zero, which determine the entire transform by means of a
Taylor series). From a functional-equation standpoint
the key fact about two images f and g with the same triple
correlation is that their Fourier transforms F and G must
satisfy a relationship of the form

F(u)F(v)F(-u - v) = G(u)G(v)G(-u - v) (1)

for all arguments u,u Thus the uniqueness properties of
the triple correlations of images are intimately related to
the solutions of Eq. (1) with F and G complex functions on
R or R2. If f and g belong to a class of functions for which
all solutions of Eq. (1) take the form

G(u) = exp(i27rc- u)F(u) (2)

for some constant c E R or R2, then f and g have the same
triple correlation if and only if g(x) = f(x + c). This is
true for all integrable image functions with bounded sup-
port, because it can be shown that Eq. (1) implies that

Eq. (2) holds for all u in some neighborhood of the origin
and the transforms of finite images are determined every-
where by their values in such a neighborhood. For in-
finite images it remains true that Eq. (1) implies Eq. (2) in
a neighborhood of the origin, but in general it is no longer
the case that the image transform is completely deter-
mined by its values in such a neighborhood. Thus for in-
finite images one needs to impose additional constraints
to guarantee that Eq. (2) is the only solution to Eq. (1).

Two kinds of constraint suggest themselves. One in-
volves restricting the zeros of the image transform in such
a way that solution (2) can be recursively extended from a
neighborhood of the origin to all values of u. From an
image-reconstruction standpoint, this approach corre-
sponds to the recursive algorithms proposed by several au-
thors for recovering the phase spectrum of an image from
that of its bispectrum.""-' 5 Such algorithms implicitly
rely on the bispectrum's having adequate support, which
is always guaranteed for finite images but not for infi-
nite ones unless the zeros of the image spectrum are
constrained.

The other approach is to use the fact that, when Eq. (2)
holds in a neighborhood of the origin, the moments of g(x)
are identical to those of f(x + c) for some c, which may be
enough to guarantee that g(x) = f(x + c). This ap-
proach to triple-correlation uniqueness corresponds to a
second type of image-reconstruction algorithm, in which
the moments of the image are recovered from moments of
its triple correlation and the image is reconstructed from
its moments. Such a reconstruction is always possible in
principle for finite images but not for infinite ones unless
the image moments are appropriately constrained.

Using these ideas, we show that the triple-correlation
function uniquely determines, up to translation, the
following types of one-dimensional (1-D) and two-
dimensional (2-D) integrable image:

(1) Images whose Fourier transforms are nonvanish-
ing everywhere (e.g., Gaussians, Gabor functions, expo-
nential and gamma densities, Cauchy densities, and any
convolution of such images).

(2) Band-limited images whose transforms have no
zeros [e.g., sinc'(x), J,'(r)/r2 ], or at most a finite number of
zeros [e.g., sinc2 (x) or Jl'(r)/r' convolved with any image of
finite size], below the frequency cutoff' 6 In two dimen-
sions the condition refers to zeros along the axes corre-
sponding to each spatial-frequency orientation. This
result implies that the triple-correlation function deter-
mines all the diffraction-limited incoherent optical im-
ages of finite objects formed with (for example) square or
circular exit pupils.

(3) Images whose transforms have at most a finite
number of zeros in every finite interval. (In two dimen-
sions, this refers to intervals along the axes corresponding
to each spatial-frequency orientation.) Examples include
any of the functions cited in condition (1) convolved with
any image of finite size, in particular, any finite image
blurred by any Gaussian point-spread function.

(4) Images with the property that every point in fre-
quency space at which the transform is not zero can be
finitely linked to a neighborhood of the origin in which
the transform is nonvanishing. This is a technical con-
dition that is not easy to state concisely but that is useful
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for establishing triple-correlation uniqueness in cases in
which the transform of a band-limited image vanishes
over an interval below the frequency cutoff. For example,
it shows that the triple correlation determines the func-
tions sinc 2 (x) (1 + cos 57rx) and sinc 2(x) (1 + sin 5irx),
which are similar to the counterexamples of Fig. 1 except
for the size of the gaps in their spectra.

(5) Images that are uniquely determined by their mo-
ments. The moments of an image fare /ln = f xf(x)dx
in one dimension and An,m = f c xy m f(x,y)dydx in
two dimensions, and f is said to be determined by its
moments if there is only one nonnegative function that
has the moment sequence {n: n = 0,1,2,.. .} or {n,m:

n = 0,1,2,...; m = 0,1,2,...}. The general problem of
characterizing all the functions that are determined by
their moments is complicated,7" 8 but one simple sufficient
condition in one dimension is limn-u supI~n/n!J /n < x.
[There is an analogous condition in two dimensions
involving the quantities M = f f-.f(x + y )/ 2

f(x, y)dydx, n = 0,1,2,....] If the moments of an image
satisfy that condition, its complex Fourier transform is
analytic in a strip containing the real axis and conse-
quently is uniquely determined for all real arguments by
its derivatives at the origin, which can be obtained from
certain derivatives of the bispectrum. [In that case the
transform cannot have infinitely many zeros in any finite
interval of the real axis, so the moments condition becomes
redundant with condition (3) above, although perhaps
easier to verify in some contexts.] However, there are also
images that are determined by their moments and thus by
their triple correlation but that do not satisfy the limit
condition: f(x) = exp(-x"l') (x 0) is a 1-D example.

Thus certain natural subclasses of integrable images
with infinite support are uniquely determined up to
translation by their triple correlations. But this is not
true of the entire class, and the imposition of limits on the
image bandwidth does not improve the situation, because
there are images with arbitrarily small bandwidths (e.g.,
rescalings of the images in Fig. 1) that are not determined
by their triple correlations. One's next hope might be
that the entire class of integrable images would be deter-
mined by the kth-order ACF for some fixed k > 2. But
that is not the case: as was noted above, for every k one
can find pairs of integrable band-limited images that are
not translations of each other but whose ACF's agree for
all orders 1 through k. However, one can show that, if
all the ACF's of two integrable images f and g are identi-
cal (i.e., a,g = ak,f for all k), then f andg must be identical
except for a translation.

We also sketch the uniqueness properties of the higher-
order ACF's of infinitely extended periodic images, draw-
ing on the work of Klein and Tyler.4 Here again two
images f and g have the same triple-correlation function if
and only if their transforms satisfy Eq. (1), but the dis-
creteness of the spectrum in this case weakens the force
of that constraint, making the uniqueness problem more
difficult. For example, it is easy to prove that every
integrable image is determined up to translation by its
entire set of ACF's of all orders, but it is not so obvious
whether this is also true of periodic images. As in the
integrable case, for every k one can find pairs of distinct
band-limited periodic images that have the same kth-
order ACF, and one can quickly show that the set of ACF's

of all orders determines any periodic image whose spec-
trum is nonvanishing at the fundamental frequency. But
we do not know whether this is true for arbitrary periodic
images, and we leave that as an open problem.'9 On the
positive side, we show that the triple correlation uniquely
determines all periodic images that satisfy conditions
analogous to condition (1) or (2) above.

The uniqueness properties of higher-order ACF's are es-
sentially the same for 1-D and 2-D images. We deal first
(in Section 2) with the 1-D case in some detail, and then
(in Section 3) we show that the same reasoning can be
readily extended to 2-D images. It will be seen that the
proofs in Section 3 are actually independent of dimension-
ality, so with natural rephrasing the theorems hold for
nonnegative real functions on RW for any n.

From a reconstruction standpoint, the fact that some
infinite images are not uniquely determined up to transla-
tion by their triple correlation raises two immediate ques-
tions, which we address in Subsection 2.F In such cases
a given triple-correlation function could have been gener-
ated by at least two disjoint families of images, say
{f(x + c)} and {g(x + c)}. What happens if one tries to
invert such a triple-correlation function? Is one of the
possible inverse-image families arbitrarily singled out, or
does the inversion procedure simply fail to give any re-
sult? (For the two inversion procedures considered here
the answer is the latter.) The other question concerns
the fact that in principle any finite portion of an infinite
image can be uniquely reconstructed from its triple corre-
lation, even though the triple correlation of the entire
image may not have a unique inverse. What effect does
the nonuniqueness of the triple correlation of the entire
image have on one's ability to reconstruct a finite portion
of it? (Basically, the answer here is that reconstruction
becomes increasingly unreliable as the size of the finite
portion grows, because one is forced to assign definite
phase values to the bispectrum at points where its abso-
lute value is suspiciously close to zero. In a sense, the
more we know about the bispectrum of such an image, the
less certain we become about the image itself.)

To avoid possible misunderstanding, it is noted explic-
itly that, while the following analysis often relies on proba-
bilistic arguments (exploiting the formal similarity
between images and probability distributions), the images
that concern us are always deterministic: the paper does
not deal with higher-order ACF's of stochastic processes.

2. HIGHER-ORDER AUTOCORRELATIONS
OF 1-D IMAGES

A. Definitions
We think of a function f :R - R as representing a 1-D
image in the sense that the total amount of light in any
interval I is f f(x)dx. We will say that f is an image func-
tion (or, simply, an image) if f is nonnegative and inte-
grable over every finite interval.2 0 If two functions f and
g have the same integral for every I so that f = g almost
everywhere, then f and g represent physically indistin-
guishable images, and we write simply f = g. In particu-
lar, if f .,f(x)dx = 0, then (since f is nonnegative) f = 0.
We consider the ACF's of two classes of image: inte-
grable and periodic. If f f(x)dx is finite, f is an inte-
grable image and its kth-order ACF is denoted ak,f and
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defined as

ak, f(S1, *Sk) = f(X)f(X + S) . f(X + Sk)dx. (3)

A probabilistic argument shows that ak,f is integrable
over Rk for all k. Let a = f Xf(x)dx. By definition a is
finite, and it is positive unless f = 0, in which case
ak,f = 0 and the claim is trivially true. Assuming that
a > 0, let pf (X) = f(x)/a. Then pf is a probability-density
function. Let x0, x1,.. , Xk be k + 1 independent random
variables, each having the density function p . Then the
probability-density function of the k-dimensional ran-
dom vector (x1 - xO,x2 - xO,...,Xk - xo) at the point
(s1,,..,s) is f -pf(x)pf(x + S).. .pf(X + sk)dx, which
equals ak,f(s,... ,s)a-'-. Since the density of the ran-
dom vector must be integrable over Rk, so is ak, f.

We say that f is a periodic image if f(x) = 2Z=,fp(x -
mp), where fp(x) is an image function defined arbitrarily
on an open interval (-p/2,p/2), with fp(x) _ 0 for
jxf 2 p/2. The kth-order ACF of a periodic image f de-
noted ak,f, is defined as

ak, f(S1*, Sk)
rw12

=lim(/w)f f(x)f(x + Sl).. f(X + Sk)dx,

which is equivalent to the definition

akf(sl,...,Sk) = (lip)
rp/2

xJ f(x)f(x + s).. .f(x + sk)dx. (4)

The function akf is periodic in Rk. Its integral over every
k-dimensional cube with sides of length p is (/p)pk+l,
where 6 is the integral of f over a single period.

[In the first paper applying higher-order ACF's to visual
perception, Klein and Tyler4 analyzed what they called
the "generalized autocorrelations" of periodic images,
which are the same as the kth-order ACF's defined by
Eq. (4) except for numbering: the "kth-order generalized
autocorrelation" in their terminology is our (k - 1)st-
order ACF ak-1,f]

B. Fourier Transforms
The Fourier transform F of an integrable image f is de-
fined as

F(u) = fexp(-i27rux)f(x)dx.

The Fourier transform of its kth-order ACF ak, f is denoted
Ak,f(u1, .. , Uk) It is related to F by the following calcula-
tion:

Ak,f(Ul, ... Uk) = | f exp(-i27r± Sjui)
f.x f. j=1
x ak,f(s1, . . ., Sk)ds, ... dSk

k x-

= ff(x)[H J exp(-i2rujsj)
_. j=1 -x

X f(x + s)dsj dx

k k
= F - uj F(ui) -

j=1 j=l
*(5)

The transforms Ak, f are called the higher-order spectra or
polyspectra of f A2,f being the bispectrum. Equation (5)
implies that integrable images f and g have the same triple
correlation if and only if their transforms F and G satisfy
Eq. (1).

If f is a periodic image with period p, its Fourier trans-
form (in the sense of generalized function theory) is

F(u) = (1/p)Fp(m/p)5(u- mp),

where () is the Dirac delta function and Fp(u) is the
transform of the single-period segment fp:

rp/2

F,(u)= exp(- i27-ux)f(x)dx.
- p/2

The Fourier transform of the kth-order ACF Ek, f of a peri-
odic image f is denoted Ak,f. A calculation analogous to
the one leading to Eq. (5) shows that

.. ~~~~~~~k
Akf(uj,...,ufa) = (1/p)Fp -ui)

k F 
x H > (1/p)Fp(m/p)8(uj- mip).

j=L m=-x

The function Ak,f is concentrated at k-dimensional lattice
points of the form (u,. .. , Uk) = (m/p,.. ., mk/p), where
the mj are integers. At those points its k-dimensional
delta has the value

(/ k I

(/) -E mj/pfII (I 1p) Fp(mj 1p) .
j=l j=l

This expression is the product of the values of the deltas of
F(u) at u = m1/p, .. , mkI/p, -=,lmj/p, so for the periodic
case the transform of the kth-order ACF of f is again de-
termined by that of f itself through a relationship of the
form of Eq. (5), i.e.,

Akjf(U1,. **,uk) = F( -u)H F(uj).
j=1 j=1

(6)

Thus two periodic images f and g have the same triple
correlation if and only if their transforms satisfy Eq. (1).

C. Basic Properties of Higher-Order ACF's
The following statements are true for both integrable and
periodic images:

(i) The kth-order ACF determines all lower orders [i.e.,
if ak,f = ak,g (kf = ak,f), then ajg = a (f = jg)for all
j < k].

(ii) Translating an image leaves all its ACF's un-
changed [i.e., if g(x) = f(x + c), then ak,g = ak,f (&k,g =

ak, f ) for all k].
(iii) If images f and g have the same kth-order ACF

and both are convolved with any third function h, the con-
volutions h * g and h * f have the same kth-order ACE

(iv) If images f and g have the same kth-order ACF, so
do the convolutions f * f and g * g.

(v) If images f(x) and g(x) have the same kth-order
ACF, so do f(ax) and g(ax) for any constant a • 0.

Properties (i)-(v) follow immediately from Eq. (5) for
integrable images or from Eq. (6) for periodic images:
(i) ak,f = 0 if f = 0, in which case ak.l,f = 0. Otherwise

J. I. Yellott and G. J. Iverson
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F(0) > 0, and Aklf can be obtained from Akf by setting
uk = 0 in Eq. (5):

F(0) Akf(U ... . Ukl, 0) = Ak-1 fJ(U1*-..,uk-1)-

For k, f the same argument holds when Eq. (6) is used.
(ii) If g(x) = f(x + c), the transform of g is exp(i27rcu) x
F(u), and in Eq. (5) [or (6)] the exponential factors in the
expression for Ak,g (Ak g) cancel one another, leaving
Ak = Akf (Ak,g = Ak,f). (iii) Suppose that a,g = ak,f.
Then, from Eq. (5),

G(-> uj) G(uj) = F ->ui)HF(uj). (7)
j=1 j=1 j=1 j=1

If h is any third function, the transforms of the convolu-
tions h * g and h * f are H(u)G(u) and H(u)F(u), respec-
tively, and if Eq. (7) holds for G and F it also holds for HG
and HF The same argument holds for periodic images
through Eq. (6). Property (iv) follows from the same rea-
soning applied to FF and GG. Property (v) follows from
the fact that, if Eq. (7) holds for the transforms of f(x) and
g(x), it also holds for the transforms of f(ax) and g(ax),
i.e., for (1/1al)F(u/a) and (Ial)G(u/a).

The following symmetry properties of the bispectrum
are also immediate consequences of Eqs. (5) and (6):

(vi)

(vii)

(viii)

A 2 f (U, v) = A2 f ( ),

A2,f(U,v) = A2,f(, u);

A 2,f(u,V) = A 2,f(u, -u-v),

A2 f(u,V) = A 2,f(u, -u-V);

A 2, f(U, v) = A 2 ,f*( -, -v),

A2, f (UV) = A 2 ,f*(-u, -V).

[The asterisks in relations (viii) denote complex conjuga-
tion.] Relations (vi)-(viii) imply that the bispectrum
A2, f(U, ) [A2, (U, v)] is determined by its values in any one
octant, e.g., the octant 0 u, 0 v u.

D. Uniqueness of Higher-Order ACF's of Integrable
Images

1. Uniqueness for Images of Finite Size
We begin by giving a new proof of the triple-correlation-
uniqueness theorem of Bartelt et al." for images with
bounded support:

Theorem 1. Suppose that f is an integrable image func-
tion and that, for some b 0, f(x) 0 for Ix > b. Then
a2,5 = a2,f for another image g if and only if g(x) =
f(x + c) for some constant c.

Proof: "If" follows from relation (ii) in Subsection 2.C.
To prove "only if, " we start with the fact that if a2 , = a 2 , f
then A2, = A2, f, so, from Eq. (5),

G(u)G(v)G(-u - v) = F(u)F(v)F(-u - v) (8)

for all u and u. We set u = v = in Eq. (8); then G(0) =
F(0)3 , so F(0) = G(0). If F(0) = 0, thenf = 0, since F(0) =
f -'.f(x)dx, and in that case g = 0 as well. So we assume
F(0) and G(0) are not zero, and without loss of generality
we can assume that their common value is 1. [If it is not,
we can divide a 2 , . by F(0)' and a2,g by G(0)' and show that
g(x)/G(0) = f(x + c)/F(0), i.e., g(x) = f(x + c), since

G(0) = F(0).] Then f and g are probability-density func-
tions, and Eq. (8) is a relationship between the character-
istic functions of these densities {i.e., the expectations
E[exp(-i27ruxf)] and E[exp(-i27ruxg)], where the random
variables Xf and xg have densities f and g}. We use two
well-known properties of characteristic functions (e.g., see
Feller,2 Chap. XV): (i) Every characteristic function is
continuous, and (ii) every probability-density function
with bounded support is uniquely determined by the
values of its characteristic function in a neighborhood of
the origin. Since F(0) = G(0) = 1, property (i) implies
that there is an interval around the origin, say (-,13), in
which both F and G are nonvanishing. Now write F and
G in exponential form: F(u) = F(u)Iexp[iPhaF(u)] and
G(u) = G(u)jexp[iPhaG(u)]. Since F(u) and G(u) are non-
vanishing and continuous for u E (-,13), PhaG(u) and
PhaF(u) are defined and continuous in that interval, and
both equal 0 at u = 0. Setting v = - in Eq. (8) shows
that G(u) = F(u)l, so if we can prove that in some neigh-
borhood of the origin PhaG(u) = PhaF(u) + 2cu for
some constant c, then G(u) = exp(i27rcu)F(u) in that neigh-
borhood. From Eq. (8) we have

PhaG(u) + PhaG(v) - PhaG(u + v)
= PhaF(u) + PhaF(v) - PhaF(u + v) + 2N(u,v) (9)

for all values of u, v and u + v for which F and G are not
zero, with N(u,v) an integer. For every fixed v' E
(-/3/2,13/2),N(u,v') is a linear combination of constants
and continuous functions of u and hence is itself continu-
ous, and N(O,v') = 0. Since N(u,v') is an integer, it must
be zero for all u (-,/2,,/2), so N(u,v) 0 0 for all u,v E
(-,/3/2,/3/2). Let D(u) = PhaG(u) - PhaF(u); D(u) is
continuous for u (-/3/2, /3/2). Rearranging Eq. (9) with
N(u,v) = 0, we have for all u,v in the interval (-,/2,,//2)

D(u + v) = D(u) + D(v). (10)

Equation (10) is the classic Cauchy functional equation.
Aczel22 shows that, if D is continuous and Eq. (10) holds
for all u, v in any interval containing the origin, then over
that interval D(u) = bu for some constant b. Setting
b = 27rc, we have PhaG(u) = PhaF(u) + 2rcu, so
G(u) = exp(i27rcu)F(u) in a neighborhood of the origin.
Consequently, in that neighborhood the characteristic
function of the probability-density function g(x) agrees
with that of some density f(x + c). Since f(x) has
bounded support, f(x + c) does also, and thus its charac-
teristic function is completely determined by its values in
a neighborhood of the origin. Thus G(u) = exp(i27rcu)F(u)
for all u, so g(x) = f(x + c), and Theorem 1 is proved.

2. Reconstruction Algorithmsfor Finite Images
Theorem 1 guarantees that every finite-sized 1-D image f
is uniquely determined up to the form f(x + c) by its
triple correlation but does not show explicitly how the
family {f(x + c)} can be recovered from a2,f. We are
aware of two basic approaches to this problem. One in-
volves a recursive reconstruction of the Fourier transform
F from the bispectrum A,f. The other uses the deriva-
tives of the bispectrum (or, equivalently, certain moments
of the triple correlation) to recover the moments of f
which determine the power-series expression for its trans-
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form. We discuss first the recursive approach and then
the one based on moments.

Equation (5) shows that the amplitude spectrum F(u)l
can be obtained immediately from A2,f(u,V) through the
relationship

IF(u) = {A2 j [(U, 0)/[A 2 , (0,0)] 113} 1/2. (11)

However, there is no analogous direct expression relating
the phase spectrum PhaF(u) to A2,f(u,v). To recover
PhaF(u), several authors" 113-5 have proposed recursive al-
gorithms based on the fact that Eq. (5) implies that the
phase of F is related to the phase of A2, f by

PhaF(u + v) = PhaF(u) + PhaF(v) - PhaA2 ,f(u,V)

(12)

for all u, v, u + v at which F does not vanish. Since A2, f

determines F only up to the form exp(i2rrcu)F(u), we can
assign one frequency an arbitrary value, say, PhaF(u ) = E)
(0 = 0 being the natural choice). Then to recover PhaF
at frequencies that are multiples of ul one could try to use
the simple recursion

PhaF(nul) = PhaF[(n - 1)ul]

+ 0 - PhaA2,f[(n - 1)ul, ul]. (13)

For example, if f is assumed to vanish outside a finite in-
terval (-w/2,w/2), one might take ul to be 1w, since in
that case the sampling theorem implies that F is de-
termined by its values on the set {n/w: n = 0, 1, ±2, .. .
If F is nonvanishing on all multiples of ul, recursion (13)
will automatically deliver all the phases PhaF(nul).
However, if F vanishes on the sequence ul,2ul,....
recursion (13) cannot be used beyond the first n for which
F(nul) = 0: at that point PhaF(nul) is undetermined,
and PhaF[(n + 1)ul] cannot be calculated from it. In
this case Pha[(n + 1)ul] may still be recoverable by means
of Eq. (12) by using some combination Pha(kul) and
Pha[(n + 1 - k)ul] with k < n: the bispectrum must be
examined to determine whether this is possible. Fail-
ing that, a finer sampling lattice can be tried. In general
one cannot specify in advance a frequency ul for which
recursion (13) is guaranteed to succeed: one needs first
to identify the zeros of F and then to find a ul for which
F(nul) is never zero and 1/ul is an adequate sampling rate
for F Bartelt et al." note that, in principle, a value of ul
that will work for all frequencies nu, up to any desired
limit can always be found, because the Fourier transform
of a function with bounded support can have only a finite
number of zeros in any finite interval. However, in prac-
tice, phase recovery for finite portions of images whose
infinite versions are not uniquely determined by their
triple correlations (e.g., those in Fig. 1) will become increas-
ingly difficult as the size of the observation window grows
and the bispectrum of the windowed portion converges to
that of the infinite version. (This point is discussed below
in Subsection 2.F.)

An alternative approach to image reconstruction can be
based on the fact that the derivatives of the bispectrum
A 2 , f(u,v) along the line v = u determine the moments of f
[more precisely, the moments of a certain member of the
family {f(x + c)}], which in turn can be used to recon-
struct the transform F(u) [up to a factor exp(i27rcu)] and

thus f itself. This approach may be too fragile for practi-
cal use, but the argument has mathematical interest
because it provides a constructive proof of Theorem 1.
To simplify matters, assume that f 'f(x) = 1 [i.e., F(O) =
A2JA f0)/3 = 1; if not, we can begin by dividing A2,f by
A2,f(0,0) and recover f(x + c)/F(0)]. Let fo(x) be the
unique member of the family {f(x + c)} for which
f xf(x + c)dx = 0. Since fo has finite support, its
transform Fo can be expressed as a Taylor series about the
origin, which is valid for all u:

Fo(u) = f exp(-i2ux)fo(x)dx = > (-i2ru),u/n!,
n-=0

(14)

where Ai is the nth moment of fo: Attn = fxfo(x)dx If
the moments nU can be determined, then Fo can be con-
structed from Eq. (14) and fo can be recovered by Fourier
inversion. We know that ,o = 1, and l,, = 0 by construc-
tion. To obtain the other moments, let Q(u) = A2, f(u, u).
From Eq. (5), Q(u) = F(u) 2 F(-2u), so Q is the characteris-
tic function of a random variable y = xl + x 2 - 2xo,
where xj, j = 0, 1, 2, are independent random variables
with common density fo; i.e., Q(u) = E{exp[-i2vru(xl +
X2- 2xo)]}. Q is nonvanishing in a neighborhood of the
origin, so log Q is defined in that neighborhood. More-
over, Q is the characteristic function of a random variable
that has finite absolute moments of all orders (since the
density of y has bounded support), so Q is infinitely dif-
ferentiable at the origin, and thus log Q is also. Now let
LQ(u) = log Q(u/-27r) and LF(U) = log Fo(-27ru). Then

LQ(u) = 2LF(U) + LX-2u),

and differentiating this equation n times yields

LQ (n)(u) = 2LF(n)(u) + (-2)nLF(n)(-2u).

Thus at u = 0

i-n LF W(0) = i-nLQ(n)(0)[2 + (-2)n]-1 (15)

for n = 2,3,.... The quantities Kn = i-nLF(n)(0) on the
left-hand side of Eq. (15) are the cumulants of the un-
known density function fo whose moments we seek, and
Eq. (15) shows that, for n 2 2, Kn can be obtained from the
known derivative LQ(n)(0). It is a fact of probability theory
that the moments An of a density function can be calcu-
lated directly from its cumulants: Al = Kl,,1 2 = K2 ,
Al3 = K3 + 3KlK2 + (K3)3..... (Lukacs23 gives a general
formula for calculating the moments of a density from its
cumulants.) Here , 1 is 0 by construction, and Eq. (15)
shows that all the remaining moments of fo can be obtained
from the successive derivatives of log A2, f (- u/27T, - u/27r).
Consequently, Fo and thus fo can be reconstructed from
A2 f, as is claimed. The argument provides a direct proof
of Theorem 1 and shows in addition that, when f has finite
support, all the information in its triple-correlation func-
tion is carried by a countable set of values: the derivatives
of A2, f(u, u) at u = 0 or, equivalently, the triple-correlation
moments that correspond to those derivatives:

f J -i2X.wrsi + s2) a2 ,j(sl,s2)dslds2 = A2,

J. I. Yellott and G. J. Iverson



394 J. Opt. Soc. Am. A/Vol. 9, No. 3/March 1992

3. Higher-OrderAutocorrelations of Infinite
Images: Examples of Nonuniqueness
Theorem 1 shows that, for integrable images of finite size,
the information available from the entire set of higher-
order ACF's of an image is already fully contained in its
triple correlation: a 2 ,j determines f up to the form
f(x + c), and, in view of relation (ii) in Subsection 2.C,
the unidentified constant c cannot be obtained from any
higher-order ACE For images with infinite support the
uniqueness situation is not so straightforward. While
Theorem 1 can be extended to certain useful classes of
infinite images, as is shown below by Theorems 3-5, in
general it is not the case that all integrable images with
infinite support are uniquely determined up to transla-
tion by their triple-correlation functions. In fact, no ACE
of any fixed order uniquely determines all the integrable
images up to translation: for every k there are images f
and g for which ak, = a,f but g(x) f(x + c) for any c.

This point is demonstrated by the following example:
For any integer k 2 the integrable images

f(x) = sinc 2(x) [1 + cos 27r(k + 1)x], (16)

g(x) = sinc 2(x) [1 + sin 2(k + 1)x] (17)

have the same kth-order ACF and clearly are not transla-
tions of each other: f is symmetric; g is not. (Figure 1
illustrates f and g for k = 2.) The fact that ak,f = a g for
Eqs. (16) and (17) follows from the fact that the trans-
forms of f and g satisfy the relationship

k j k Uj k
F(-> us)HF(uj) = G(-i u i 1 G(uj) (18)

j=l j=l j=l j=l

for all arguments (ul,..., u), and thus, from Eq. (5),
Akf = Ak,g-

The transforms of Eqs. (16) and (17) are

F(u) = A(u) + (1/2)A[u - (k + 1)]

+ (1/2)A[u + (k + 1)], (19)

G(u) = A(u) - (i/2)A[u - (k + 1)]

+ (i/2)A[u + (k + 1)], (20)

where A is the triangle function: A(u) = 1 - ulj for
ulj < 1 and 0 elsewhere. Thus f and g are band-limited
functions, and since F(0) = G(0) = 1, both are integrable.
Rockwell and Yellott 7 show that transforms (19) and (20)
satisfy Eq. (18) for any k 2, and thus Ak = Ak,g, SO
Eqs. (16) and (17) have the same kth-order ACE [For any
fixed k, Eq. (18) fails for k + 1, so Eqs. (16) and (17) do not
have identical (k + )st-order ACF's.] The proof of this
for an arbitrary k is straightforward but too long to repro-
duce here in full. To illustrate the argument we prove the
special case k = 2, showing that the images

f(x) = sinc 2
(x) (1 + cos 27r3x), (21)

g(x) = sinc2(x) (1 + sin 27r3x) (22)

have the same triple correlation. In this case Eq. (18)
holds if

F(u)F(v)F(-u - v) = G(u)G(v)G(-u - v)

for all u, v, with

F(u) = A(u) + (1/2)A(u - 3) + (1/2)A(u + 3),

G(u) = A(u) - (i/2)A(u - 3) + (i/2)A(u + 3).

Let Io denote the interval (-1, 1), I3 the interval (2, 4), I3
the interval (-4, -2), and C the complement of the union
Io U 3 U I3. Then F and G vanish on C; G(u) = F(u)
for u E Io, G(u) = -iF(u) for u E I3, and G(u) = iF(u) for

E L3. If either u E C or v E C, both sides of Eq. (23)
vanish, so the identity holds. If both u E Io and v E Io,
then -u - v is either in C and both sides of Eq. (23) van-
ish or -u - v E Io and both sides are equal factor by
factor. If u E Io and v E I3, then G(u) = F(u), G(v) =
-iF(v), and -5 < -u - v < -1, so either -u - v C
and both sides of Eq. (23) vanish or - - I 3 and
G(-u - v) = +iF(-u - v), in which case the +i and
-i factors on the G side of Eq. (23) cancel each other
and the equality holds. Similarly, if u E Io and v E -3,

then -u - v is either in C and both sides of Eq. (23)
vanish or in 13 and the i factors cancel. If u and v are
both in 3 or are both in I3, then -u - v is in C. Finally,
if u E 3 and v E I3, G(u)G(v) = F(u)F(v), and -u - v
is either in Io and G(-u - v) = F(-u - v) or in C, so
Eq. (23) holds in either case.

[The same argument can be used to show that Eqs. (21)
and (22) have the same triple correlation when sin 27r3x
in Eq. (22) is replaced by -sin 27r3x or by -cos 27r3x. A
geometrical understanding of the lack of uniqueness for
these images can be gained from Fig. 5 in Subsection 2.F,
which illustrates the common support of their bispectra.]

The proof that Eqs. (16) and (17) satisfy Eq. (18) for an
arbitrary k 2 involves the same sort of argument check-
ing on a more elaborate scale.7

When f and g have the same kth-order AC, the same is
also true of h * f and h * g for any third function h [prop-
erty (iii) in Subsection 2.C] and of f * f and g * g [prop-
erty (iv)], so functions (16) and (17) can be used to
construct an infinite variety of pairs of distinct band-
limited images f and g with identical kth-order ACF's.
And since resealing such images will not alter the identity
between their kth-order ACF's [property (v)], we can con-
struct examples of distinct band-limited functions with an
arbitrarily small bandwidth that have identical kth-order
ACF's. In view of such examples, the only completely
general uniqueness theorem that one can prove for inte-
grable images is the following:

Theorem 2. If f and g are integrable images and
ak, = ak,f for all k, then g(x) = f(x + c).

Proof: The proof of Theorem 1 shows that if a2, g = a2, f
there is a neighborhood A of the origin in which the trans-
forms G and F are nonvanishing and G(u) = exp(i27rcu) 
F(u). Since ak,g = ak,f for all k, Eq. (5) implies that
F(-ku)F(u) = G(-ku)G(u)k for all u and k. For any v E
R - A there is a u E A such that v = -ku for some k, and
since G(u) = exp(i27rcu)F(u) 0 for all u A, we have

G(v) [G(u)] = G(v) [exp(i27rcu)F(u)] k = F(v) [F(u)]k.

Dividing both sides of the second equality by [exp(i27rcu) x
F(u)]k (with ku = -v) yields G(v) = exp(i2rcv)F(v).
Since this holds for all v, g(x) = f(x + c).

J. I. Yellott and G. J. Iverson
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4. Uniqueness Theorems for Special Classes of Infinite
Images
The examples given in Subsection 2.D.3 show that, in gen-
eral, the triple-correlation function of an integrable image
with infinite support does not uniquely determine that
image up to translation. However, it is possible to extend
Theorem 1 to certain natural classes of infinite images.
One approach is to show that the relationship PhaG(u) =
PhaF(u) + 27rcu, which holds in some neighborhood of the
origin for any images f and g that satisfy a2, 5 = a2,f, can
be extended by using Eq. (9) to any point u at which F and
G are nonvanishing, provided that F has at most a finite
number of zeros below u. The following theorem summa-
rizes the results of this approach.

Theorem 3. If f is an integrable image and a2,g = a2, 
for another image g, then g(x) = f(x + c) for some con-
stant c if the Fourier transform of f satisfies any one of
the following conditions:

(a) F(u) is nonvanishing for all u.
(b) F(u) 0 for ul > some b > 0, and F(u) is nonvan-

ishing for ul < b.
(c) F(u) 0 for ul Ž some b > 0, and F(u) = 0 for at

most a finite number of values in the interval (-b, b).
(d) F(u) = 0 for at most a finite number of values in

every finite subinterval of the real line.
[Obviously, condition (c) includes condition (b) as a spe-

cial case, and likewise (d) includes (a), but we state them
separately for clarity.]

Proof: See Appendix A.
Examples of the various cases were mentioned in

Section 1. We note that, if a nonzero image has bounded
support, its transform can have only a finite number of
zeros in any finite interval, since in this case its complex
transform is an entire analytic function (e.g., see Lukacs,2 3

Theorem 7.2.3) and cannot vanish infinitely often on any
finite interval of the real axis without vanishing every-
where. Thus condition (c) implies that when, e.g., sinc2(x)
is convolved with any finite image, the resulting image is
determined up to translation by its triple correlation.
Part (d) shows that the same is true of finite images con-
volved with impulse responses whose transforms are non-
vanishing, e.g., Gaussians.

Theorem 3 excludes images whose spectra contain
nonzero regions separated by an interval of zeros.
Images (21) and (22), which are not determined by their
triple correlations, have transforms of that sort, but the
fact that the spectrum of an image contains intervals of
zeros does not necessarily mean that the image is unde-
termined by its triple correlation. The critical factor is
the size of those intervals-in particular, their size rela-
tive to the width of the neighborhood of the origin in
which the transform is nonvanishing. Let Af be that
neighborhood for an image f We say that a point u, at
which the transform F(u) • 0, can be finitely linked to Af
if there is a point p0 in Af and a sequence of numbers
a,,... *a X°n, < ai 1 such that

U ( + aiPo (24)

and at each pointp = (1 + a1 + + ai)po, F(pi) 0.
(The points pi, 0 < i < n serve as stepping stones linking
u to po.)

Theorem 4 If f is an image for which every point u at
which the transform F(u) # 0 can be finitely linked to Af
and if g is another image with a 2,g = a2jf, then g(x) =

f(x + c) for some constant c.
As an example, f(x) = sinc

2
(x) (1 + cos 57rx) has the

transform F(u) = A(u) + (1/2)A(u - 2.5) + (1/2)A(u +
2.5). Points in the interval (1.5,3.5) can obviously be
linked to the central interval (-1,1), so f is determined by
its triple correlation.

Proof: Suppose that F(u) • 0, and let pi, i = 1,..., n be
the sequence linking u to a point po in the neighborhood Af
by means of Eq. (24). The proof of condition (b) of Theo-
rem 3 shows that, for some constant c (independent of u),
G(v) = exp(i2cv)F(v) for all v in Af, in particular at v =
-po and -apo. Applying Eq. (8), we have G(pi) =
exp(i27rpD)F(pD, which (from IGI = Fj and the oddness
of the phase) implies also that G(- p) = exp(-i27rcpi) x
F(-pl). Then, if G(pj) = exp(i2rrcpj)F(pj), we have
G(-aj+lpo) = exp(-i27rca+jpo)F(-aj+ 1po) and G(-pj) =
exp(-i2c7rcp)F(pj), and applying Eq. (8) gives G(pj+1) =
exp(i2,7rcpj+i)F(pj+D. Proceeding step by step from pi,
we eventually obtain G(u) = exp(i27rcu)F(u), so g(x) =

f(x + c).
The proof of Theorem 1 shows that whenever f and g

have the same triple correlation there must be a neighbor-
hood of the origin in which G(u) = exp(i27rcu)F(u), and
Theorems 3 and 4 broaden the scope of triple-correlation
uniqueness by showing that this equality can be extended
to all u if the zeros of F satisfy certain conditions. An-
other way to generalize Theorem 1 is to note that its proof
used the assumption that f has bounded support only to
guarantee that, for every c, f(x + c) is uniquely deter-
mined by the derivatives of its transform exp(i2v-cu)F(u)
at u = 0, which agree with those of G(u), implying
g(x) = f(x + c). Bounded support is a sufficient con-
dition for this but not a necessary one. If they exist,
the derivatives of exp(i2,7rcu)F(u) are the sequence
{(-i27r)'/u&}, where n,, is the nth moment of f(x + c), i.e.,
An = f -x'-Xf(X + c)dx. When f(x) and thus f(x + c) have
bounded support, the moment sequence {jn} uniquely de-
termines a power-series expression for the transform
exp(i27rcu)F(u) and thus identifies f(x + c) itself. How-
ever, a function may be uniquely determined by its
moments even though its transform does not have a
power-series representation that is valid for all u. [This
is true, for example, of the one-sided exponential density
f(x) = exp(-x), x 2 0, as is discussed below.] Clearly if,
for every c, f(x + c) belongs to a class of functions that are
uniquely determined by their moments, then f is deter-
mined up to translation by its triple correlation. And if
f(x) itself is determined by its moments, so too is f(x + c)
for every c. [This follows from the fact that there is a
one-to-one correspondence between the moments {pn} off
and its cumulants {Kn}. If f is uniquely determined by its
moments, the same is true of its cumulants. The cumu-
lants of f(x + c) are {K + C, K2, K2, ... }, so when f is deter-
mined by its cumulants, f(x + c) is also.] Thus whenever
f is uniquely determined by its moments, it is also uniquely
determined up to translation by its triple correlation.

The problem of characterizing classes of functions that
are uniquely determined by their moments has a large lit-
erature that we will not attempt to summarize; Shohat
and Tamarkin' 7 and Akhiezer'8 provide reviews. Instead
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we describe a single condition involving moments that is
sufficient to guarantee that an image is determined by
its triple correlation. Characteristic-function theory2 3

shows that, if all the moments of an image f are finite and
satisfy the condition

lim sup(/.tnJ/n!)"" = A < a, (25)

then F(u) has a unique extension to a function F(z), with z
complex, which is analytic in an open disk Jz < 1/27A. In
this case F(z) is analytic for all z in an open horizontal
strip containing the real axis and is determined by ana-
lytic continuation for all real z by the derivatives F')(O).
Since exp(i27rcz) is an entire function for any constant c,
exp(i27rcz)F(z) will be analytic in the same strip and thus
be determined for all real z by its derivatives at zero. So
we have the following:

Theorem 5. If f is an integrable image that is uniquely
determined by its moments [for example, if its moments
satisfy Eq. (25)] and g is another image for which
a2,g = a2 ,, then g(x) = f(x + c).

[We note that an image may be uniquely determined by
its moments without satisfying Eq. (25): Shohat and
Tamarkin'7 give the example f(x) = exp(-x"1 2

), x 0.
Uniqueness in that case is established by Carleman's theo-
rem: An image is determined by its moments if
T-l, 2-1/2n" = . Shohat and Tamarkin also show that,
if the exponent 1/2 in this example is replaced with any
positive value less than 1/2, f is no longer determined by
its moments, although all the moments are finite.]

If f and g are two images whose individual transforms F
and G satisfy Eq. (25) and thus are both analytic in some
neighborhood of the real axis, the product FG is also ana-
lytic in such a neighborhood, hence determined by its
derivatives at 0, so f*g is determined up to translation by
its triple correlation. The Gaussian f(x) = exp(-ax 2 )
satisfies condition (25), so we have another proof that any
finite image convolved with a Gaussian impulse response
is determined by its triple correlation.

It was shown in Subsection 2.D.2 that all the moments
of a finite image f can be recovered from the derivatives of
A 2 f (U, u) at u = 0. The same procedure will work for any
image whose moments satisfy Eq. (25), so for all such im-
ages it is the case that all the information in the bispec-
trum A 2, f (u,) is carried by its values along the line v = u
in a neighborhood of u = 0. However, in general this
does not mean that one can directly reconstruct f by in-
verting a power-series expression for its Fourier trans-
form of the form of Eq. (14), as is always possible for finite
images. The transforms of finite images are always en-
tire functions whose power series converge for all argu-
ments [as is shown by the fact that A in Eq. (25) is zero in
this case]. But an image can satisfy Eq. (25) and thus be
uniquely determined by its moments without its trans-
form's being entire. The one-sided exponential function
f(x) = exp(-x) for x 0 is an example: here n = n!,
so A = 1, and the power series of its transform, F(u) =
(1 - i27ru)/(l + 4 2u2), converges only for u < 1/27 In
this case the values of F(u) for u 1/2v are still deter-
mined in principle by its derivatives at u = 0 (i.e., by the
moments n), but their actual calculation by analytic con-
tinuation would not be straightforward. Thus Theorem 5
guarantees that images whose moments satisfy Eq. (25)

are uniquely determined up to translation by their triple
correlations but does not provide a practical way of recon-
structing all such images from those moments.

E. Uniqueness of Higher-Order Autocorrelations of
Periodic 1-D Images
By comparison with the rich subset of integrable images
that are determined up to translation by their triple cor-
relations, the uniqueness properties of the higher-order
ACF's of infinitely extended periodic images seem rather
bleak. In general, for every integer n, there are pairs
of band-limited periodic images that are not translations
of each other but whose ACF's agree for all orders up
through n, and there do not seem to be many interesting
subclasses that escape this ambiguity. Klein and Tyler4
give the following example demonstrating the limited pos-
sibilities here: For every integer k 2 2, the functions

f(x) = 2 + cos 2x + cos 2vkx,

g(x) = 2 + cos 2x - cos 27rkx

(26)

(27)

have the same (k - 1)st-order ACE (Figure 2 illustrates
the case k = 3, where f and g have the same triple correla-
tion.) To prove this, note that the Fourier transforms of
the single-period (p = 1) segments of Eqs. (26) and (27)
are, respectively,

F(u) = 2 sinc(u) + (1/2) [sinc(u - 1) + sinc(u + 1)]
+ (1/2) [sinc(u - k) + sinc(u + k)],

G(u) = 2 sinc(u) + (1/2) [sinc(u - 1) + sinc(u + 1)]

- (1/2) [sinc(u - k) + sinc(u + )].

(28)

(29)

It follows from Eq. (4) that Ak-if = Aki, 5, and thus
aklf = akil,g, if

/ k-_k-l~j k-l k-l
F1 (I± m ji Fi(mj) = j- G mi l HO(mj) (30)

j=l j=l i j~l m)j =1

for all sets of integers mI, mk-l. For integer values of
u, F and G, vanish except at u = 0, +1, and +k, and for
those arguments F1 and G, differ only at ±k: G1(±k) =
-Fi(±k). Thus both sides of Eq. (30) vanish and the
identity is always true if M1 , . . , mk-I do not all come from
the set 0, ±1, ±k. For Eq. (30) to fail, then, the set of k
arguments MI, ... M, 1, -Ejk=lmj must contain an odd
number of occurrences of ±k, and - j*=lmj must be 0,
±1, or ±k. When that sum is 0, +k and -k must occur
equally often in the set ml, .. , m-1, since an extra k can-
not be canceled by the sum of at most k - 2 occurrences
of -1 or +1. Consequently, in this case the total number
of occurrences of +k and -k in the set Ml,.. .,mk1,
-2j -.11mj must be even, and Eq. (30) is true. The same
sort of argument can be made for the cases :*=l m = ± 1
and ±k, showing that there can never be an odd number
of occurrences of ±k in the set ml,..., ml-,, Ij^=lmj so
Eq. (30) is always true, and Aklf = Ak-l,g. [However,
Ak,f Ak, 5 , so Eqs. (26) and (27) have different kth-order
ACF's. To show this, substitute k for k - 1 in Eq. (30)
and set ml = m 2 = ... = mk = 1. Then -k=lmj = k,
making the left-hand side of Eq. (30) positive while the
right-hand side is negative.]

Since an equality between the kth-order ACF's of f and
g cannot be undone by filtering [property (iii) in
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Subsection 2.C] or rescaling [property (v)], the fact that
ak lf = ak-l,, for Eqs. (26) and (27) shows that the same is
true for any images of the forms

f(x) = L(2 + C1 cos 2kx + C2 cos 2Tkox),

g(x) = L(2 + C1 cos 2ox - C2 cos 2kox),

with k 2, L > and k > 0, and 0 < C1 ,C2 1.
Property (iv) in Subsection 2.C shows that the pair f*f and
g*g constructed from any of these functions will also have
identical ACF's of order k - 1.

In view of these examples, the only completely general
uniqueness theorem that one can hope to prove here is
that every periodic image is uniquely determined up to
translation if all its ACF's are known. We showed earlier
(Theorem 2) by a simple argument that this is true of all
integrable images, but the periodic case is more difficult
to decide one way or the other. We leave it as an open
problem9 and prove instead an easy weaker result: Every
periodic image with period p is determined up to transla-
tion by its ACF's of all orders if its spectrum is nonvanish-
ing at the fundamental frequency lp:

Theorem 6. If f is a periodic image with period p and
F(l/p) • 0, then ai, 5 = k,f for all k for another image g if
and only if g(x) = f(x + c).

Proof "If" is property (ii) in Subsection 2.C. To
show "only if," we start with the fact that 2,g = a2, 
implies, from Eq. (6), that IG(nlp)l = IF(nlp)l for all n.
Since F(1/p) • 0, F(-1/p) 0 and G(-l/p) • 0, and we
can write

G(-l/p) = IF(-lip)lexp{i[PhaG(-l/p) - PhaF(-l/p)]}
x exp[iPhaF(-1/p)]

= F(-1/p)exp(-i2vc/p),

where -2'rrcip = PhaG(-l/p) - PhaF(-1/p). So

F(-1/p)/G(-1/p) = exp(i27rc/p).

Then akg = dk, f for any k implies, from Eq. (6), that

[G( 1/p)] kG(kip) = [F(-1/p)]kF(kip),

and division yields G(k/p) = exp(i27rk/p)F(k/p). So
G(u) = exp(i27rcu)F(u) for all u, and g(x) = f(x + c).

The next result is a periodic analog to conditions (a) and
(b) of Theorem 3:

Theorem 7. If f is a periodic image with period p and
a2, 5 = i2, f for another image g, then g(x) = f(x + c) if the
transform F satisfies either of the two following condi-
tions:

(a) For every integer n, F(n/p) is not zero.
(b) For some integer M, F(n/p) _ 0 for every n > M,

and F(n/p) is not zero for any n c M.

For example, condition (a) shows that the periodic image
f(x) = Y n=-:A [(x - n)] is determined by its triple cor-
relation [since the transform is n=_ (1/7r)sinc2(n/7r) X
5(u - n), which is positive at every n]. Condition (b)
shows that the same is true of the periodic band-limited
image obtained by convolving sinc2(x/w), w > 1, with the
function f just defined.

Proof If f has period p and d2,g = a2 j, then Eq. (4)
shows that for all integers n, m at which F(n/p), F(m/p),

and F[(n + m)/p] are nonzero, we have

PhaG[(n + m)/p] - PhaF[(n + m)/p]

= PhaG(n/p) - PhaF(n/p) + PhaG(m/p)
- PhaF(m/p) + 2N, (31)

where N is an arbitrary integer. Let

D(j) = PhaG(jip) - PhaF(jp)

for integers j at which F(j/p) is nonvanishing. Then
Eq. (31) implies that D(n + m) = D(n) + D(m) + 27rN 
(n, m) for all n, m, n + m where D is defined, with N(n, m)
an integer. If D is defined for allj c M, then, forj M,
D(j) = jD(1) + 2rxo where a is a sum of integers. Thus

PhaG(j/p) = PhaF(j/p) + (jip) [PhaG(l/p) - PhaF(l/p)]

= PhaF(j/p) + 2c(j/p) + 2ro

forj ' M. So if F(n/p) • 0 for all n or for all n ' M with
F(u) 0 O for u > M/p, we have G(u) = exp(i27-cu)F(u) for
all u, and g(x) = f(x + c).

F Triple Correlation Nonuniqueness and Image
Reconstruction
Subsection 2.D.2 showed that, in principle, any image of
finite size can be reconstructed from its triple-correlation
function in two different ways: (i) determine the ampli-
tude spectrum directly from the bispectrum by using
Eq. (11) and the phase spectrum recursively by using
Eq. (12) and (ii) determine the cumulants, and from them
the moments of the image, from the derivatives of the bi-
spectrum at zero (or, equivalently, from moments of the
triple correlation), and reconstruct the image transform
from the moments. Method (ii) cannot be applied to in-
finitely extended periodic images (which always have in-
finite moments) or to the integrable images (21) and (22)
whose triple correlations were shown in Subsection 2.D.3
to be nonunique (since their even moments are all in-
finite). But there is no immediate reason why method (i)
cannot be successfully applied to periodic images (for ex-
ample, those that satisfy either condition of Theorem 7) or
to some integrable images with infinite support even if
they happen to have infinite moments (e.g., those covered
by Theorem 3 or 4). However, it must fail somehow
for images whose triple correlations do not have an in-
verse that is unique up to translation. This section ex-
plains the relationship between image reconstruction by
method (i) and the infinite images whose triple correla-
tions were shown in Subsections 2.D.3 and 2.E to be
nonunique. We show first how the method fails for such
images in cases in which the bispectrum of the entire
image is assumed to be available and then discuss what
happens when it is applied to the bispectrum of a finite
portion of an image whose infinite version has a non-
unique bispectrum. In the latter case Theorem 1 implies
that the bispectrum of the finite portion always has an
inverse that is unique up to translation, and in principle
that inverse should be recoverable by method (i) no matter
what the size of the observation window is. However,
since this is not true in the limit, one expects recovery to
become more difficult in some sense as the size of the win-
dow grows. We show by example the form that this diffi-
culty takes.
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Fig. 3. Geometrical interpretation of recursive-phase recc
struction from the bispectrum. Heavy dots represent points
the u, v plane where the bispectrum of a hypothetical 1-D image
nonzero. The zigzag dotted line connecting dots in the regi
0 ' u, 0 v u shows the recursive path for reconstructing t
phase at frequency u = 5.

Figure 3 illustrates the geometry of recursive reco
struction of the phase spectrum of an image from its I
spectrum. Large dots in the u,u plane represent poir
where the bispectrum of a hypothetical 1-D image f
nonzero. Recall that the symmetry relations (vi)-(viii)
Subsection 2.C imply that all the information in the I
spectrum is contained in the octant 0 < u, 0 < v ' u. 
focus on that region, i.e., the area bounded by the u a)
and the dotted line representing the v = u diagonal. T]
amplitude spectrum F(u)l can be recovered from values
the bispectrum A2,f(u,v) along the u axis by means
Eq. (11). Here IF(u) > 0 at u = 0,1, 2, 3, 5. The problei
then, is to recover PhaF(u) at those frequencies. TI
phase at u = 1 can be set arbitrarily, and PhaF(u)
PhaF(1) for u = 2,3, 5 can be reconstructed recursive
by using Eq. (12), which corresponds to the zigzag dotty
path connecting (1,0) to (5,0). For any given frequen
u', a necessary condition for PhaF(u') to be determinE
by the phase at some lower-frequency p by means
recursion (12), i.e., by

2 + cos 2 7rx - cos 67rx. [The lower graph in Fig. 4 shows
the normalized amplitude spectrum of the image, i.e.,
IF(u)IiF(0).] It can be seen that the frequency u = 3 fails
the test just described: PhaF(3) cannot be reconstructed
from PhaF(1) because the line from (3, 0) to the u = u di-
agonal is empty: A 2,f(p, 3 - p) is zero for allp. Thus the
bispectrum can tell us nothing about PhaF(3) - PhaF(1).

Figure 5 (heavily striped areas) shows the support of
the bispectrum of the integrable image sinc2(x)(1 +
cos 6x), whose triple correlation is the same as that of
sinc2(x) (1 + sin 67rx). Here the amplitude spectrum
IF(u)l (shown in the bottom part of the figure) is nonzero
on the intervals (0,1) and (2, 4), but there is no frequency
u' in the interval (2,4) whose phase can be reconstructed

on- from that of any frequencyp < 2, because, if u' > 2, either
in A 2 ,f(p,u'-p) is zero orp > 2. Thus in this case the fre-
is quencies in the ranges (0, 1) and (2,4) form isolated islands:

hne Knowing only the bispectrum and the phases of frequen-
cies in one island, one can infer nothing about the phase of
any frequency in the other island.

in- Figures 6 and 7 illustrate what happens when one at-
Ai- tempts to recover from the bispectrum the phase spec-
its trum of a finite portion of an infinite image whose triple
is correlation does not have a unique inverse. Here the in-
in finite image is the periodic function f(x) = 2 + cos 2x +
Ai- cos 6rx. Suppose first that we observe f(x) through a
Ve window of width 1.0 and treat the image as zero outside
:is that window, so that we compute the triple correlation of
lie
of
of

'e

ly
3d

CY
Ld
of U

1 3

PhaF(u') = PhaF(p) + PhaF(u' - p)
- PhaA2,f(pu'- P),

is that the bispectrum A2,f(u,v) be nonzero at the point
(p,u' - p), so that PhaA 2,f(p,u' - p) is defined, and at
(p, 0) and (u' - p, 0), so that PhaF(p) and PhaF(u' - p)
are defined. [PhaF(u) is defined only if A2 ,f(uO) • 0,
since A 2,f(u,0) = F2(u)F(O).] If there is no frequency p
with u'/2 p < u' for which all three conditions are sat-
isfied, then the phase at u' cannot be recursively recon-
structed from any lower frequencies. For a given u' one
can quickly check whether there is anyp that satisfies the
first two conditions by examining the bispectrum along
the line from (u', 0) to the v = u diagonal and at the point
on the u axis directly below any point (p, u' - p) at which
A 2 ,f(p,u' - p) 0.

Figures 4 and 5 illustrate how recursive-phase recon-
struction fails for images whose triple correlations do not
have inverses that are unique up to translation. The up-
per part of Fig. 4 shows the support (for uv 0) of the
bispectrum of the infinitely extended periodic image
f(x) = 2 + cos 2rx + cos 6-x, whose triple correlation
was shown in Subsection 2.E to be the same as that of

Fig. 4. Geometrical reason why the phase spectrum of the in-
finite periodic image 2 + cos 2rx + cos 6rx cannot be recon-
structed from its bispectrum. Top: bispectrum for uv 0;
heavy dots indicate points of nonzero amplitude. Bottom: nor-
malized amplitude spectrum of the image.
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Fig. 5. Geometrical reason why the phase spectrum of the in-
finite integrable image sinc 2 (x) (1 + cos 6rx) cannot be recon-
structed from its bispectrum. Top: heavy striped areas are
regions of the u,v plane (u,v 0) where the bispectrum is
nionzero. Bottom: normalized amplitude spectrum of the
image.
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1

Fig. 6. Top: bispectrum of a windowed version of the image
2 + cos 2 7rx + cos 67rx for a narrow window (width = 1). Heavy
dots indicate points where the normalized bispectrum of the win-
dowed image has an amplitude of 0.001 or more. Sampling inter-
val, 0.50; cutoff, 0.001. Bottom: normalized amplitude
spectrum of the windowed image.

V

I: **, .. ,I1~~~~
1 - - -11

Fig. 7. Top: bispectrum of the windowed version of
2 + cos 2x + cos 6&rx for a window of width 9. Sampling inter-
val, 0.10; cutoff, 0.001. Bottom: normalized amplitude spec-
trum of the windowed image.

the finite image fw(x) = rect(x)f(x) [using definition (3)
in Section 1]. The upper graph in Fig. 6 shows the sup-
port of the bispectrum of fw: The large dots indicate the
points where the normalized bispectrum A2 ,fw(u,u)i
A2 ,fW(0,0) has an absolute value of >0.001. (The bispec-
trum has been sampled at twice the Nyquist rate. The
lower graph shows the normalized amplitude spectrum of
fw.) Examination of the u axis shows that the normalized
power spectrum of fw [i.e., A2,jw(u,0) = FW(u)j2iFW(0)]
is 0.001 at frequencies 0.5, 1.0, 1.5, 2.5, 3.0, and 3.5; and
one can see from the arrangement of dots in the u, v plane
that, when PhaFW(0.5) is fixed arbitrarily, the phases at
the other frequencies can be recursively determined from
the bispectrum. Thus both the amplitudes and the
phases of the significant frequency components of fw(x)
can be reconstructed from its bispectrum.

However, as the window widens the situation deterio-
rates. Figure 7 shows the support of the bispectrum of
fw(x) = rect(x/9)f(x), i.e., f(x) seen through a window of
width 9. Again, the large dots indicate the points where
the bispectrum of fw is 0.001. (The sampling rate has
been increased to 10, still greater than the Nyquist
rate.) We see from the u axis that the normalized power
spectrum exceeds 0.001 at u = 3.0, 1.0, and numerous
points below 1.0, but the bispectrum contains no points
with absolute values 0.001 along the line from (3,0) to
the u = u diagonal. Consequently, PhaFW(3) cannot be
determined recursively from any lower frequencies, that
is, from any lower frequencies whose normalized spectral

powers are at least 0.001. In particular, there is no re-
cursive path from u = 1 to u = 3 connecting the two fre-
quencies that have sizable spectral power. Of course,
since fw has bounded support, we know that in principle
PhaFW(3) must be recursively determinable by some se-
quence of frequencies beginning at u = 1. However, it
must be a path along which the absolute values of the bi-
spectrum are all near zero. In a real-world problem such
values might be zero in fact, spuriously inflated by noise
or round-off error. The problem is that, if we use the
phases of such suspect points to reconstruct the phase re-
cursively at a frequency that does have significant spectral
power, such as u = 3 in this example, their small absolute
values are irrelevant: the recursion treats the phases of
all frequencies with equal respect, regardless of their spec-
tral amplitudes. But the reliability of the phase that it
assigns to any frequency depends on the reliability of the
phases assigned to earlier frequencies. If all the possible
recursive paths from one significant frequency to another
involve intermediate frequencies whose spectral ampli-
tudes are very small and thus likely to be actually zero
except for measurement error, the reliability of subse-
quent phase assignments must suffer accordingly.

From a practical standpoint, then, the fundamental
problem posed by the nonuniqueness of the triple correla-
tions of infinite images is essentially statistical. In prin-
ciple, with perfect measurement and computation, any
finite portion of any infinite image can be unambiguously
reconstructed from its bispectrum, even if the full image
does not have a unique inverse. But in the latter case it is
precisely the gaps in the bispectrum of the full image that
make its triple correlation noninvertable, and the bispec-
trum of a windowed version of such an image must con-
verge to zero in those gap regions as the size of the
window increases. This forces the recursion linking fre-
quencies across a gap to depend on intermediate frequen-
cies whose true spectral power is becoming vanishingly
small and, in the presence of noise, increasingly difficult
to distinguish reliably from zero. Consequently, phase re-
construction for such an image becomes increasingly un-
reliable as the observation window widens: in effect, the
more we see of its bispectrum, the less confidence we have
in our reconstruction of the image.

3. HIGHER-ORDER AUTOCORRELATIONS
OF 2-D IMAGES

A. Definitions and Basic Properties
We call a function f :R2 -> R an image function (or, sim-
ply, an image) if f is nonnegative and integrable over every
finite rectangle.2 4 We write (x1, x2) as X and denote the
integral of f(X) over the rectangle R by fRf(X)dX If
fRf(X)dX = fRg(X)dX for every R, we say f = g. If
fR2f(X)dX = 0, then f = 0. An image f is integrable
if fR2f(X)dX is finite. In that case the kth-order ACF of
f is defined to be

ak,f(Sl, ,Sk) = f f(X)f(X + S1) . .f(X + Sk)dX,

(32)

where Sj = (Sj1, sj,2) forj = 1,...,k. [For k = 2, Eq. (32)
defines the triple correlation of an integrable 2-D im-
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age.] A probabilistic argument like the one given in Sub-
section 2A shows that, for every k, ak, f is integrable over
R2k. The Fourier transform F is

F(U) = |2 exp(-i27rU. X)f(X)dX,

where U = (u1,u2) and U* X = u1x1 + U2X2. The trans-
form of ak,f is again denoted Ak,f. (A2,f is the 2-D bispec-
trum.) A calculation like the one leading to Eq. (5) shows
that

k k

Ak, f (U1,..., Uk) = F - Uj F(Uj), (33)
j=l =1

where Uj = (Uj,1, Uj,2),j = 1,.. ., k. It follows from Eq. (33)
that two integrable 2-D images f and g have the same kth-
order ACF if and only if their transforms satisfy

k k k \k

F( - U)HF(Uj) = G(- ± Uj) F G(Uj) (34)
j=l j=l j=l j=l

for all arguments.
Periodicity is a simple concept on the line but not in the

plane. We follow Klein and Tyler4 and confine our analy-
sis to periodic images constructed by defining an arbi-
trary image function within a square region centered at
the origin and then tiling the plane with it. Let cop be the
open square {(x 1 ,x 2 ):jx 1 < p/2,jx2 1 < p/2}, and let fp be
an image function defined on )p, with fp(X) 0 for
X 0- op. Then f is a periodic image if, for some cop and fp,

f(X) Efp[X + (np, mp)].
n=-- m=--

The kth-order ACF ak,f of a periodic image f is defined to
be

ak,f (S1, .. *Sk)

= (l/p2) f f(X)f(X + S).. f(X + S)dX. (35)
p

The Fourier transform Akj of &k,f is related to the trans-
form of f in the same way as in the 1-D case:

Ak, f WI, **,U) = (p2)F( I j) H Fp (Uj)III(pUj)
(j=l j=l

where Fp(U) is the transform of a single period of f,

Fp(U)= f exp(-i2rU X)fp(X)dX,
Mp

and III denotes the 2-D Dirac comb,

MM(U = j j 6(u - n,U2 - m)-
n=-= m=-

Ak, is concentrated at the 2k-dimensional lattice points
(U,..., Uk) = [(n',j1 p, nl,2 /p), . , (nklp, nk,2/p)], where
the nj,, are all integers, and at such points the value of its
delta is

k \h

(llp2)k+lF - U Uj Fp(Uj) -
j=l j=l

The transform of f is F(U) = (l/p2 )Fp(U) En M.m B(U1 - n/p,
U2- m/p), so the following 2-D analog to Eq. (6) is valid:

Akf(Ul,..., Uk) = F- Uj)H F( j).
(j=l j=l

(36)

It follows from Eq. (36) that two periodic 2-D images f and
g have the same kth-order ACF if and only if their trans-
forms satisfy Eq. (34).

Using Eqs. (33) and (36) in the same way that Eqs. (5)
and (6) were used in Subsection 2.C, one can quickly show
that ACF's have the same basic properties in two dimen-
sions as in one dimension: If f and g are integrable or
periodic images, then

(i') If ak,5 = akf (or ak,5 = akf), then ajg = a f
(alg = j) for all 1 j < k. (The kth-order ACF deter-
mines all the lower orders.)

(ii') If g(X) = f(X + C), where C = (,c 2 ), then
akg = ak,f (kg = ak,f) for all k. (Translating an image
leaves all its ACF's unchanged.)

(iii') If akg = ak,f (ik = k,f) and h is any third im-
age, the convolutions h * g and h * f have identical kth-
order ACF's.

(iv') If images fand g have the same kth-order ACF, so
dof * fandg * g.

(v') If images f(x, y) and g(x, y) have the same kth-
order ACF, so do f(ax, by) and g(ax, by) for any constants a
and b.

(A prime attached to a statement number here indicates
that it is a 2-D version of an earlier 1-D result with the
same number.)

For the triple correlation, the following symmetry rela-
tions, analogous to relations (vi)-(viii) of Subsection 2.C,
follow from Eqs. (33) and (36):

(vi')

(vii')

(viii')

A 2,f(UV) = A2,f(VU),

A2,f(UV) = A2,f(V, U);

A2,f(UV) = A 2,f(U,-U - V),

A2,f(U,V) = A 2,f(U,-U - V);

A2,f(U,V) = A2,f*(-U,-V),

A2,f(UV) = A 2,f*(U, V).

B. Uniqueness for Integrable 2-D Images

1. Finite Images
For 2-D images with bounded support in the plane we
have the following analog of Theorem 1:

Theorem 1'. Suppose that f is an integrable image and
that, for some real number b > 0, f(X) _ 0 for XI b.
Then a2,5 = a2,j for another image g if and only if
g(X) = f(X + C) for some constant C = (Cl ,C2).

Proof: "If" follows from property (ii') of Subsection 3.A
above. The proof of "only if" follows the same lines as in
Theorem 1. Here a2,5 = a2,j implies [from Eq. (33)] that
the bispectra of f and g satisfy the relationship

G(U)G(V)G(-U - V) = F(U)F(V)F(-U - V) (37)

for all UV. Thus F(O) G(O) and, in general, F(U) =
IG(U)j. If F(O) = fR2f(X)dX = 0, then f = 0, and g
must be 0 also. We assume, then, that F(O) 0, and
without loss of generality we assume that F(O) = 1 = G(O).
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Then f and g are probability densities of random vectors
Xf = (Xf, 1, Xf 2 ), Xg = (X, 1, XI,2), and F and G are the char-
acteristic functions of these densities. We rely again on
two general properties of characteristic functions: Every
characteristic function is continuous and equals 1.0 at the
origin (so F and G are both nonvanishing in some neigh-
borhood of the origin); and, if F is the characteristic func-
tion of a density with bounded support in the plane, F
is completely determined by its values in a neighbor-
hood of the origin. {For every fixed value of U. U Xf
is a 1-D random variable whose density has bounded
support on the line, so the characteristic function +(t) =
E[exp(-i27rtU Xf)] = F(tU) is determined for all t by its
derivatives at t = 0, i.e., by the values of F(U) in a neigh-
borhood of the origin. Thus (1) = F(U) is so deter-
mined, and this is true for all U.} Consequently, if
G(U) = exp(i27rC U)F(U) in a neighborhood of the
origin for some constant C, then the density g(X) must
equal f(X + C). Since F(U) and G(U) are nonvanishing
in some neighborhood U < 13, Eq. (37) implies that, for all
JUJ, lVI < 3/2,

PhaG(U) + PhaG(V) - PhaG(U + V)

= PhaF(U) + PhaF(V) - PhaF(U + V) + 2N(U,V),
(38)

with PhaG(U) and PhaF(U) both continuous and equal to
0 at U = 0. It follows that N(U, V) = 0 for UJ, VI < 3/2.
Writing D(U) = PhaG(U) - PhaF(U) and rearranging
Eq. (38), we have the 2-D Cauchy functional equation

D(U + V) = D(U) + D(V), (39)

which holds for all U, V in a neighborhood of the origin,
with D continuous. Aczel22 shows that all continuous so-
lutions to Eq. (39) take the form D(U) = B U where
B = (b1,b2 ) is a constant, so for some constant C,
PhaG(U) = PhaF(U) + 2rC U. Thus, in a neighbor-
hood of the origin, G(U) = exp(i2vC- U)F(U), so for all
X, g(X) = f(X + C).

2. Infinite Images
The 1-D counterexamples (16) and (17) in Subsection 2.D.3
also show that for every k there are 2-D images with in-
finite support that have identical kth-order ACF's but that
are not translations of each other. Consequently, the only
completely general uniqueness theorem possible here is
the following:

Theorem 2'. If f and g are integrable images and
akg = ak,f for all k, then g(X) = f(X + C) for some con-
stant C.

Proof: When the vectors U and V are substituted for ar-
guments u and v, the proof is the same as that of Theorem 2.

The following triple-correlation-uniqueness theorems
for special classes of infinite images are 2-D versions of
Theorems 3-5:

Theorem 3'. Iff is an integrable image and a2,5 = a2,f
for another image g, then g(X) = f(X + C) if the Fourier
transform of f satisfies any of the following conditions:

(a) F(U) is nonvanishing for all U.
(b) For every line Lo through the origin of the spatial

frequency plane [Lo = {(r cos , r sin 0): -oo < r < o} for
a fixed 0 (0,Tr)], there is a frequency cutoff bo 0 such

that F(r cos 0, r sin 0) 0- O for Irl b and F(r cos 0,
r sin 0) 0 for r < bo. (That is, f is band limited, and for
every spatial-frequency orientation its spectrum is non-
vanishing below the cutoff for that orientation.)

(c) For every line Lo through the origin of the spatial-
frequency plane there is a cutoff bo such that F(r cos 0,
r sin 0) _ for Irl 2 bo, and F(r cos 0, r sin 0) = 0 for at
most a finite number of values of r < bo.

(d) For every line Lo through the origin of the spatial-
frequency plane, F(U) has at most a finite number of ze-
ros in every finite interval of Lo.

Condition (a) covers, for example, 2-D Gaussians and
Gabor functions and the 2-D Cauchy function (x1, x2) =
(1 + X1

2 + x 2
2)-31 2 . Condition (b) shows that sinc 2 (x)

sinc2 (y) and J1
2 (r)ir2 , r2 = x1

2 + x2
2, are determined up

to translation by their triple correlations. These are, re-
spectively, the incoherent impulse responses of diffraction-
limited optical systems with square and circular exit
pupils.25 Condition (c) shows that the images of finite ob-
jects formed by such systems are determined up to trans-
lation by their triple correlations. This is so because,
along any line through the origin, the transform F(U) of a
2-D image of finite size has at most a finite number of
zeros. [Suppose that F(O) 0 and f has bounded support
in the plane. For any fixed 0, (D(r) = F(r cos 0, r sin O)/
F(O) is the characteristic function of a 1-D random vari-
able (cos )x1 + (sin 0 2 whose density has bounded sup-
port on the line, so FD(r) has at most finitely many zeros in
any finite interval.] Condition (d) shows that any finite
image blurred by a Gaussian (Gabor, Cauchy) impulse re-
sponse is determined by its triple correlation.

Proof The proof of Theorem 1' shows that there is a
neighborhood of the origin in which G(U) = exp(i27rC -
U)F(U) for some constant C = (c1,c2 ). For each fixed
value of 0 in [0,v) let U = (cos 0,sin 0), and write
U = rU0 for U on the line Lo. Then cI(r) = F(rU0 ) and
F(r) = G(rU0 ) are 1-D Fourier transforms and, for all p, q,

r(p)r(q)T(-p - q) = P(p)4(q)(-p - q).

Consequently, the Fourier inverses and y of 1) and F are
1-D images with a 2, = a2,,6. If F satisfies any one of
conditions (a)-(d) here, (D satisfies the same condition in
Theorem 3, and thus for some real constant c, r(r) =
exp(i27rcor)4(r) for all r. So G(rUo) = exp(i2vrcor)F(rUo)
for all r. But in a neighborhood of zero we also have
G(rUo) = exp(i27rC rU0 )F(rUo), so rc = C rUo, and for
all U on the line Lo, G(U) = exp(i27rC U)F(U). This is
true for every 0, so g(X) = f(X + C).

The next theorem involves a 2-D version of the finite
linking condition defined above in connection with
Theorem 4. As before, A is the neighborhood of the
origin (now guaranteed by the proof of Theorem 1'), where
F and G are nonvanishing and G(U) = exp(i2lTC U)F(U).
Here if F(U) 0, with U lying on a line Lo through the
origin, U is said to be finitely linked to A if there is a
sequence of points on Lo, Po E Af, Po < P < P2 < ... <
Pn_ < P = U with P = (1 + a + *- + ai)Po, < ai <
1, and F(Pi) for i = 1,...,n. Then the proof of
Theorem 4 transfers immediately to two dimensions, and
we have the following:

Theorem 4'. If f is an image for which each point U,
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where F(U) • 0, can be finitely linked to the neighbor-
hood Af, and if a2 ,5 = a2,J for another image g, then
g(X) = f(X + C) for some constant C.

Finally, we prove a 2-D version of Theorem 5. The
moment sequence(n,m: n = 0,1,...; m = 0,1,...) ofan
image f(X) is defined by X2nm = f-ox f 'xix2

mf(xl,
x2)dxdx 2 , and f is said to be determined by its moments if
it is the only image function that has the moment se-
quence (n,m). If F(u,,u 2) is the Fourier transform off
and F(nm) (ul, u 2) = anamiaunaumF(ui,u 2 ), then, whenever
it exists, I-n,m = F(nm)(0,0) (i27r)-n-m. Let (DI(u,v) =
log F(-u/27r, -u2 /27r). The cumulants Knm of f are the
quantities (i-n-m)c(D(nm)(0,0), and, just as in the 1-D case,
the cumulants of f uniquely determine its moments and
vice versa. Thus f is determined by its moments if and
only if it is determined by its cumulants. And if f(X) is
determined by its cumulants, so too is f(X + C) for any
constant C = (C1, C2), since the cumulants of the latter are
the same as those of f(X) except for K,O, which becomes
c1,0 - c, and K0,1, which becomes K0,i - C2. So if f(X) is
determined by its moments, f(X + C) is also. If f and g
are images that have the same triple correlation, the proof
of Theorem 1' shows that, for some C, G(U) = exp(i27rC -
U)F(U) in a neighborhood of the origin, so g(X) has the
same moments as f(X + C). Consequently, if f is an
image that is uniquely determined by its moments, then f
is uniquely determined up to translation by its triple cor-
relation. We state this as Theorem 5' below. Shohat and
Tamarkin' 7 discuss the general problem of characterizing
the nonnegative real functions on R2 that are uniquely de-
termined by their moments. We mention only one suffi-
cient condition, which is analogous to the earlier condition
Eq. (25). For that purpose, we define a sequence {Mn:
n = 1,2,.. .} by Mn = fR2IXinf(X)dX where XI = (xi2 +
X2

2)112, and show that f is determined by its moments if

lim supIMn/n!I"'n = A < oo. (40)
n -x

Theorem 5'. If f is an integrable image that is
uniquely determined by its moments [for example, if f sat-
isfies condition (40)] and g is another image with
a2 ,g = a2 , f, then g(X) = f(X + C) for some constant C.

Proof In view of the preceding discussion we need
show only that Eq. (40) guarantees that f is determined by
its moments. We know that, for some constant C, G(U) =
exp(i27rC U)F(U) in a neighborhood of the origin, and as
usual we assume without loss of generality that F(O) = 1.
Then F is the characteristic function of a random vector
X = (xi, X2), and for every fixed value of U = (u1, U2) and
any real number t, 'Iu(t) = F(tU) is the characteristic
function of the 1-D random variable U X = u1 x1 + U2X2-
The moments ,, of this random variable are determined
by the sequence {iun,m}, since

V.= f (u X + U2 x2 )Yf(x, X2)dxidx 2

n

= >nV/[j!(n - U2 An 
j=0

As in the proof of Theorem , the function exp(i27rtC
U)(Iu(t) is uniquely determined by analytic continuation
for all real t (in particular, for t = 1) by its values in a
neighborhood of t = 0 (i.e., by its derivatives at 0) if the

moments of U X are finite and satisfy the condition

lim sup vn/n!I 1/n = < 00.
n-x

It remains to be shown that Eq. (40) implies that this con-
dition is satisfied. Starting with

n || 2(U X)Yf(X)dX f U Xjnf(X)dX

and writing U = p(cos a, sin a) and X = q(cos 13, sin 1),
we have U X = pq(cos a - B) and U XI" s (pq)n =
JUIIXjn. Thus Ivlin!l ""< UI Mn/n!nI , so, from the as-
sumption of the theorem,

lim supIvn/n!"n c U|A = p < o.
n -x

Consequently, exp(i27rC U)F(U) is uniquely determined
by its values in a neighborhood of the origin, and
g(X) = f(X + C).

The cumulants method described in Subsection 2.D for
obtaining the moments of a 1-D image f from the deriva-
tives of A2, f(-u/2v, -u/27r) at u = 0 can be extended in a
straightforward way to 2-D images, using the derivatives
at t = 0 of A2,,(tU, tU). Thus, in the same way that the
2-D bispectrum A2, f (u, V) of any 1-D image determined by
its moments is completely characterized by its values
along the line v = u in a neighborhood of u = 0, the four-
dimensional bispectrum A2, f (U V) of any 2-D image deter-
mined by its moments is completely characterized by its
values in the plane V = U in a neighborhood of U = (0,0 ).

It should be apparent that the arguments used to prove
Theorems 1'-5' do not depend on X being in R2. If we
began instead with nonnegative real functions on R and
rephrased the conditions of the theorems in the obvious
ways, their proofs would still hold. Characteristic func-
tions of any dimension are always continuous and non-
vanishing in a neighborhood of the origin; the Cauchy
functional equation [Eq. (39)] for U V G R always has
the solution D(U) = B U with B a constant in R, and
probability-density functions with bounded support are
always uniquely determined by the values of their charac-
teristic functions in a neighborhood of the origin; so
Theorem 1' is valid for f:R -> R. Theorem 2' clearly
does not depend on dimensionality, and the proofs of
Theorems 3'-5' rely on reducing 2-D statements to 1-D
ones in ways that will work as well for n dimensions.
Thus Theorem 1', for example, shows that nonnegative
integrable functions of time and space with bounded
support in R3 are determined up to an arbitrary transla-
tion by their triple correlations, and condition (c) of Theo-
rem 3' shows that this remains true of such functions
after they are subjected to low-pass filtering.

C. Uniqueness for Periodic 2-D Images
Examples (26) and (27) in Subsection 2.E show that for
every k there are 2-D periodic images that are not trans-
lations of each other but that have identical kth-order
ACF's. Consequently, the only completely general unique-
ness result that one can hope for here is that every peri-
odic image is determined up to translation by its entire
set of ACF's of all orders. As in the 1-D periodic case, we
do not know whether that is true,19 so we prove instead a
weaker result analogous to the earlier Theorem 6:
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Theorem 6'. Suppose that f is a periodic 2-D image
with period p and F(1/p, 0) and F(O, l/p) are both nonzero.
Then dkg = ak,f for all k for another image g if and only if
g(X) = f(X + C) for some constant C.

Proof "If" is property (ii') in Subsection 3.A. To
show "only if," we take p = 1 for convenience. From
a2,5 = a2,j and Eq. (34) we have F(U) = G(U) for all U.
Since F(1, 0) • 0, neither F(-1, 0) nor G(- 1, 0) is zero, and
we can write

G(-l,0) = IF(-l,0)exp{i[PhaG(-l,0) - PhaF(-l,0)
+ PhaF(-1,0)]}

= F(-1,0)exp(-i2iTcj),

where c1 = PhaF(-l,0) - PhaG(-l,0). So

F(-1, 0)/G(-l, 0) = exp(i27rcl). (41)

Similarly,

F(O, -1)/G(O, -1) = exp(i27rC2), (42)

where C2 = PhaF(O, -1) - PhaG(O, -1). Then, since
An+m,g = An+m, f for all integers n, m, Eq. (34) with argu-
ments U= ... = Un =(-1, 0), Un+ = = Un+m=
(0, -1), implies that

[G(-1, O)] n[G(O, -1)] mGn, m)

= [F(-1, 0)] n[F(O, -1)] F(n, m),

and division using Eqs. (41) and (42) yields

G(n, m) = exp[i2r(cjn + 2 m)]F(n, m).

Thus G(U) = exp(i27rC U)F(U) for all U, and g(X) =
f(X + C).

We conclude with a 2-D version of Theorem 7:
Theorem 7'. If f is a periodic image with period p and

a2,g = 6i2, f for another imageg, then g(X) = f(X + C) if f
satisfies either one of the two following conditions:

(a) F(n/p, m/p) 0 for all integers n and m.
(b) For some integers N and M, F(n/p, m/p) 0 if

n| • N and Im M, and F(n/p, m/p) 0 otherwise.

Proof: Letp = 1, and suppose that A2, is given. Then
I F(n, m) I is determined by A2, f [(n, m), (- n, - m)]. The
phases PhaF(n, 0), PhaF(O, m) can be constructed recur-
sively from PhaA2 , up to arbitrary values for PhaF(l, 0)
and PhaF(O, 1) by using the relations

PhaF(j + 1,O) = PhaA2 j(-j,0),(-1,0)] + PhaF(jO)
+ PhaF(l, 0),

PhaF(O, k + 1) = PhaA 2, f[(0, -k), (0, -1)] + PhaF(O, k)

+ PhaF(O, 1).

Finally,

PhaF(n, m) = PhaA2 , f [(- n, 0), (0, - m)] + PhaF(n, 0)

+ PhaF(O, m),
so F(n, m) is determined in terms of F(1, 0), F(O, 1) for all
n, m for condition (a) or for n N. m < M for condition (b).

APPENDIX A: PROOF OF THEOREM 3
For condition (a) of Theorem 3, suppose that f and g have
the same triple correlation and that the transform F never

vanishes. Then from Eq. (8), G(u)l = F(u)l for all u, so G
is also nonvanishing, and the phase relationship [Eq. (9)]
holds for all u and u The continuity argument given in
the proof of Theorem 1 then shows that N(u, v) = 0 for all
u,v. Consequently, functional Eq. (10) is valid for all u,v
and PhaG(u) = PhaF(u) + 2cu for all u, so G(u) =
exp(i2,r-cu)F(u) is valid for all u and g(x) = f(x + c).

To prove condition (b), suppose that f is a band-limited
image whose transform is nonvanishing within its band-
width; i.e., F(u) 0 O for ul 2 b, and F(u) 0 for ul < b.
If g is another image with the same triple correlation as f
then G(u) is also nonvanishing for ul < b and zero for
lul 2 b, and Eq. (9) is valid for all -b/2 < u,v < b/2, with
N(u,v) _ 0. Consequently, Eq. (10) holds for u,v in
(-b/2, b/2), so PhaG(u) = PhaF(u) + 2cu in that inter-
val, and by continuity this is true also at u = ± b/2. Then
for b/2 u < b we write u = u/2 + u/2, and Eq. (10) im-
plies that PhaG(u) = PhaF(u) + 27rc(u/2) + 2c(u/2).
So PhaG(u) = PhaF(u) + 2cu for all u in (-b, b), and
thus G(u) = exp(i2vcu)F(u) for all u, so g(x) = f(x + c).

To prove condition (c), suppose that f is a band-limited
image whose transform F(u) 0 for ul 2 b, with F(u) = 0
in the interval (-b,b) at u = +Z1,±Z2,...,±ZM, where
0 < Z < Z21 < ... zml = b. If a 2,5 = a 2, for another
image g, the transform G has the same zeros as F The
proof of (b) showed that, for some constant c, PhaG(u) =
PhaF(u) + 27rcu for all u in the interval (-zl, zj). We
need to show that, for the same c,

PhaG(u) = PhaF(u) + 27rcu + 2rN (Al)

for every u at which F(u) is nonvanishing, with N an arbi-
trary integer. Suppose first that M = 2, i.e., that there is
only one zero z1 below the cutoff b. If b s 2z1 , then for all
u E (zi, b) we have u/2 < z 1. If we write u = u/2 + u/2,
Eq. (9) implies that Eq. (Al) holds for z1 < u < 2z1. If
b > 2z1 , then at 2z1 we write 2z1 = 2z1 - e + E, and
Eq. (9) shows that Eq. (8) holds at u = 2z1 . Then Eq. (Al)
can be extended to 2z < u < max{3z,, b} by writing
u = 2z1 + pzl, < p < 1. If we continue in this way,
Eq. (Al) can eventually be shown to hold for all u in the
interval (z 1, b), so G(u) = exp(-2vcu)F(u) for all u.

Now suppose that M is arbitrary. The argument above
shows that Eq. (Al) holds in the interval (Z1, Z2). We as-
sume that it holds for (zn-1 , zn) and show that this implies
that it holds for (zn, zn+1). Pick an integer N large enough
that z/N < z,, - z 1-, and write u = Zn - z/N + pz1,
with 1/N < p < 1. Then z < u < zn + z(l - 1/N),
pz 1 E (0, z1), and z - z/N E (zn-, zn), so Eq. (8) implies
Eq. (Al). Asp ranges over (1/N, 1), Eq. (Al) is extended in
this way to cover all u in [Zn, Zn + (1 - l/N)zl)]. If this
interval does not include the next zero z,,+1, then writing
z, + (1 - l/N)zl in the form u - e + E shows that
Eq. (Al) holds at that u, and we can extend the relation-
ship upward from that point by writing u = z,. + (1 -
1/N)z + pzl, with 0 < p < 1 and applying Eq. (8) again.
Repeating this process will eventually extend Eq. (Al)
over the entire interval (zn, z,+i). Thus PhaG(u) =
PhaF(u) + 2cu + 27TN for every 0 u < b at which
F(u) is not zero, and the same is true for -b < u 0 be-
cause PhaG is odd. So G(u) = exp(i27rcu)F(u) for all u,
and g(x) = f(x + c).

Finally, for condition (d), suppose that F has infinite
support but at most a finite number of zeros in any finite
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interval and that a2,5 = a2, for some g. Then, for any u,
either F(u) = G(u) = 0, so that G(U) = exp(i2ircu)F(u)
trivially, or F(u) • 0; and for 0 ' u' < u, F(u') either
never vanishes or vanishes at a finite set of points
Z1 < 2 < ... < Zn < u. The first case is equivalent to
condition (b), and in the second case the induction argu-
ment used to prove condition (c) can be used to show that
PhaG(u) = PhaF(u) + 2rcu + 2rN, where the constant c
is the same for all u at which F is nonvanishing. So again
G(u) = exp(i2'ncu)F(u) for all u, and g(x) = f(x + c).
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