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Abstract 

The stability of isolated and interacting internal gravity wave beams to three-dimensional 

perturbations is studied, based on the beam–mean-flow interaction equations derived in 

Kataoka and Akylas (2015). These two-dimensional states are found to be unstable as a 

result of modulational instability, a purely inviscid mechanism, as well as due to a 

streaming effect brought about by viscous attenuation along the beam propagation 

direction. 

1  Introduction 

Internal gravity wave beams (IGWB) are time-harmonic plane waves with general spatial 

profile. Such disturbances are manifestations of the anisotropy of internal wave motion in 

fluids with continuous vertical stratification, and may be regarded as the analogues of 

cylindrical wavefronts in isotropic media. IGWB are of considerable geophysical interest, 

as they form the backbone of the internal tide in oceans and can also arise in the 

atmosphere due to thunderstorms. 

Most prior studies of IGWB have focused on two-dimensional (2D) disturbances in an 

inviscid Boussinesq fluid with constant buoyancy frequency. Under these flow conditions, 

isolated uniform IGWB happen to be exact nonlinear states irrespective of the beam 

profile (Tabaei and Akylas 2003), and significant nonlinear interactions may occur in 

connection with reflections at boundaries and possibly due to collisions of beams (Tabaei 

et al. 2005). However, the three-dimensional (3D) propagation of IGWB differs 

fundamentally from its 2D counterpart: 3D variations enable resonant transfer of energy, 

through the action of Reynolds stresses, to the flow mean vertical vorticity, resulting in 

strong nonlinear coupling between an IGWB and its induced mean flow. This 3D 

interaction mechanism is governed asymptotically by two coupled nonlinear amplitude 

equations (Kataoka and Akylas 2015, hereinafter referred to as KA), which account for the 

observed strong horizontal mean flow accompanying a forced 3D IGWB in laboratory 

experiments (Bordes et al. 2012). According to this theoretical model, the mean flow 
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arises from two distinct effects: (i) the presence of 3D beam variations, much as the mean 

flow induced by a nonlinear modulated wavepacket, where viscous dissipation plays no 

role (Tabaei and Akylas 2007); and (ii) viscous attenuation along the beam propagation 

direction, similar to the acoustic streaming due to dissipating wavetrains (Lighthill 1978). 

Here, we use the beam–mean-flow interaction model derived in KA to examine the 

stability of IGWB to 3D perturbations. This also makes it possible to explore the role of 

the two mean-flow generation mechanisms identified above in causing instability. 

2  Theoretical Model 

The asymptotic model of KA applies to small-amplitude thin beams with large-scale 

along-beam and transverse variations. Briefly, assuming that nonlinear, dispersive and 

viscous damping effects are weak and equally important, the beam–mean-flow interaction 

equations (in normalized form such that the dependence on the beam inclination to the 

horizontal is scaled out) are 
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Here, ),,,( TZXU   is the complex amplitude of the beam velocity component in the 

along-beam ( X -) direction, ),,( TZXV  is the induced mean-flow component in the 

across-beam ( -) direction, Z  is the transverse horizontal coordinate and T  is the slow 

(relative to the beam period) evolution time. Also, H  stands for the Hilbert transform in 

Z , * denotes complex conjugate and the parameter   controls viscous dissipation. 

Equations (1), (2) form a closed system for U  and V , to be solved subject to the 

boundary conditions 

                         )(0dd  
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
 

U ,       (3) 

which ensure that the beam velocity field remains locally confined in the beam vicinity, 

)1(O . On the other hand, V , which is uniform in  , must be matched to a far-field 

( 1 ) mean-flow solution, that ultimately decays away from the beam. Detailed 

derivation of (1)–(3) and this matching procedure are presented in KA. 

It should be noted that transverse ( Z -) beam variations are key to the nonlinear coupling 
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of U  and V  in (1), (2). Moreover, the two terms on the right-hand side of (2) represent, 

respectively, the modulation and viscous streaming mechanisms of mean-flow generation, 

noted in §1. In the following, we discuss how each of these mechanisms may instigate 3D 

instability of IGWB.  

3  Modulational Instability 

Throughout this section we focus on the inviscid limit ( 0 ), where from (2) 
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The induced mean flow is thus ‘slaved’ to the beam amplitude evolution, which is 

governed by (1) with V  given by (4).  A particular 2D solution of this reduced system is 

                     bT
B bXGFUU ie)()(   ,  0V .       (5) 

This represents the superposition of two nearly parallel free uniform beams with profiles 

F , G  and slightly different frequencies, controlled by the choice of the constant b . 

We wish to examine the stability of the 2D state (5) to infinitesimal 3D perturbations. 

Since BU  is independent of Z  and periodic in T , by Floquet theory, the perturbed state 

is taken in the form 
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Upon substituting (6) in (1), (4) and linearizing with respect to the perturbation, we obtain 

an eigenvalue problem (EVP) for nu , nu  and nv  (  n ), with ir  i  

being the eigenvalue. This EVP can be greatly simplified by introducing the Fourier 

transform in X  and  , 

           ),(~),( lkuXu nn  ,  ),(~),( lkuXu nn   ,  )(~)( kvXv nn  .      (7) 

Then, it is possible to eliminate nu~  and nu ~  and finally obtain the following EVP for nv~  

(  n ) alone: 
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It should be noted that the right-hand side of (8) vanishes when the two beams propagate 

in opposite directions because the beam profiles F , G  involve only wavenumbers of 

opposite signs (Tabaei et al. 2005), so 0)(
~

)(
~

)(
~

)(
~ **  lGlFlGlF . The eigenvalue 

condition in this instance then reduces to 

                                0),( I ,        (10) 

for given k . Moreover, 
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Thus, the eigenvalues  , determined by (10), as well as the eigenmode nv~  in (11) are 

independent of the parameter b , and hence the difference in inclination to the horizontal 

of the two beams. Although at first sight this may seem counterintuitive, we recall that the 

induced mean flow, which is responsible for an instability, extends far from the vicinity of 

the beams.  

When the two beams propagate in the same direction, the right-hand side of (8) does not 

vanish and the solution of the EVP is more complicated. However, in the simplest case of 

two parallel beams ( 0b ), the eigenmode nv~  is still given by (11) and the eigenvalue 

condition takes the form 

                      



 llKlJI d),,(),,(),(  .       (12) 

The EVP solution for 0b  will be discussed elsewhere. 

First, we report results on the stability of two interacting beams propagating in opposite 

directions, where there is no dependence on b. We specifically consider two identical 

Gaussian beams: 

                        )()(  GUF  ,  )()( *  GUG  ,       (13) 

where 
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with 0U  being a parameter that controls the beam peak amplitude. The eigenvalues 

ir  i  were computed numerically from (10), with 0i  implying instability. 

The growth rates i  versus   are plotted in figure 1. Only results of the greatest 

growth rate i , corresponding to the most unstable mode, for given 0U  and   are 

presented. 

Next, we show results on the stability of two parallel ( 0b ) beams propagating in the 

same direction. Specifically, we consider two identical Gaussian beams separated by a 

distance D : 

                    2/)( DUF G   ,   2/)( DUG G   .       (15) 

The eigenvalues ir  i  were computed numerically from (12), and the growth 

rates i  versus   are plotted in figure 2 for D 2, 4 and 10. As expected, both for 

beams propagating in the same and opposite directions, the predicted instability becomes 

stronger as the beam amplitude is increased. Also, for parallel beams propagating in the 

same direction, instability arises for D  larger than about 1.5 and the maximum growth 

rate is reached when 4D . On the other hand, surprisingly enough, neither b  nor D  

affects the stability of two counterpropagating beams. 

We also studied the transient development of forced beams by solving numerically (1) and 

(4), with the addition of the following forcing terms on the right-hand side of (1): 

            )(d)()(i XGF 


    for 2D calculation,        (16) 

             ZXGF 


cos03.01)(d)()(i    for 3D calculation.      (17) 

The results of our simulations are summarized in figure 3. From the results in figures 1 

and 2, two parallel beams of amplitude 20 U  separated by a distance 4D  are 

expected to be unstable to 3D perturbations, and this is clearly confirmed in figure 3(b, c). 

It should be noted that the instability is brought about solely by the beam interaction, as a 

single forced beam, in the presence of the same 3D perturbation, propagates stably (figure 

3a). Moreover, the result of this 3D instability is quite dramatic as it destroys the identity 

of the interacting beams.  
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Figure 1: Computed growth rates i  versus   for two beams propagating in opposite directions. The 

beam peak amplitudes are chosen to be U0 = 0.5, 1, and 2. Here, the stability results are independent of the 
inclination parameter b, as well as the separation distance D if the two beams are parallel (b = 0). 
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Figure 2: Computed growth rates i  versus   for two parallel (b = 0) beams separated by a distance D 

and propagating in the same direction: (a) D = 2, (b) D = 4, (c) D = 10. The beam peak amplitudes are 
chosen to be 0U 0.5, 1 and 2. 
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Figure 3: Vertical flow slice at Z = 0 of beam amplitude U (only the real part is shown) for (a) single 
propagating beam (at time T = 7), (b) two parallel beams (D = 4) propagating in opposite directions (at time 
T = 2), (c) two parallel beams (D = 4) propagating in the same direction (at time T = 7). In all cases the beam 
peak amplitude U0 = 2. The top and bottom figures are, respectively, 2D calculation with the forcing term 
(16) and 3D calculation with the forcing term (17). Viscous effects are ignored ( = 0). 
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Figure 4: Vertical flow slice at Z = 0 of beam amplitude U (only the real part is shown) for viscous parameter 
 = 0.1 and (a) single propagating beam (at time T = 7), (b) two parallel beams (D = 4) propagating in 
opposite directions (at time T = 4), (c) two parallel beams (D = 4) propagating in the same direction (at time 
T = 7). In all cases the beam peak amplitude U0 = 2. The top and bottom figures are, respectively, 2D 
calculation with the forcing term (16) and 3D calculation with the forcing term (17). 
 

4  Effects of Streaming 

The effects of viscosity on the transient behavior of forced beams were explored by 

solving numerically (1) (with the addition of the forcing terms (16) or (17)) and (2), for 

three different values of the parameter  0.01, 0.1 and 1. It turns out that the effects of 

viscous streaming –– represented by the second term on the right-hand side of (2) –– are 

most dramatic for the moderately viscous case 1.0 . The corresponding simulation 

results are shown in figure 4. It is seen that viscous streaming leads to significant 

distortion even for a single propagating beam which is stable in the inviscid limit (figure 

3a). 

5  Conclusion 

The preceding analysis has shown that, depending on the beam profile and amplitude, a 

single isolated uniform IGWB as well as two interacting uniform IGWB which propagate 

in the same or opposite directions, can be subject to 3D modulational instability brought 

about by a purely inviscid nonlinear mechanism. Moreover, for moderate viscous 

dissipation, the mean flow induced by a mechanism analogous to acoustic streaming can 

cause significant distortion, leading to breakdown, of forced IGWB with small lateral 

amplitude variations. These findings suggest that modulational and streaming instabilities 
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are central to 3D IGWB dynamics, in constrast to the widely-studied PSI of sinusoidal 

wavetrains (Staquet and Sommeria 2002), which is most relevant to beams with nearly 

monochromatic profile only (Karimi and Akylas 2014). 
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