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Abstract:

Protein function is canonically believed to be more conserved than amino 
acid sequence, but this idea is only well supported in folded domains, where 
highly diverged sequences can fold into equivalent 3D structures. In contrast, 
intrinsically disordered protein regions (IDRs) do not fold into a stable 3D 
structure, thus it remains unknown when and how function is conserved for IDRs 
that experience rapid amino acid sequence divergence. As a model system for 
studying the evolution of IDRs, we examined transcriptional activation domains, 
the regions of transcription factors that bind to coactivator complexes. We 
systematically identified activation domains on 502 orthologs of the 
transcriptional activator Gcn4 spanning 600 MY of fungal evolution. We find that 
the central activation domain shows strong conservation of function without 
conservation of sequence. This conservation of function without conservation of 
sequence is facilitated by evolutionary turnover (gain and loss) of key acidic and 
aromatic residues, the positions most important for function. This high sequence 
flexibility of functional orthologs mirrors the physical flexibility of the activation 
domain coactivator interaction interface, suggesting that physical flexibility 
enables evolutionary plasticity. We propose that turnover of short functional 
elements, sometimes individual amino acids, is a general mechanism for 
conservation of function without conservation of sequence during IDR evolution.

Key words
Intrinsically disordered proteins; transcription; transcription factor; 

activation domains; evolution; evolutionary turnover; high-throughput assays

Introduction:
The evolution of eukaryotic transcription factor (TF) function contains a 

paradox: TF protein sequences diverge quickly but maintain function over long 
evolutionary distances. For example, the master regulator of eye development in
mice, Pax6, induces ectopic eyes in fly, and fly Pax6 (eyeless) creates ectopic 
eye structures in frogs and mice1–3. While the DNA-binding domains (DBD) are 
96% identical, eye induction requires the intrinsically disordered regions (IDRs), 
which are only 35.5% identical. These IDRs must share a conserved function 
despite substantial sequence divergence. In contrast, small sequence changes in
TFs can lead to large functional changes that drive the evolution of new traits4,5. 
Some TFs maintain function despite low conservation of sequence6, while other 
TFs drive evolutionary innovations with limited sequence changes. 

For folded domains, function is more conserved than sequence because 
highly diverged sequences can fold into the same 3D structure and maintain 
function7–9. Here, we seek an analogous framework for understanding the 
evolution of and functional constraint on IDRs. Small-scale studies have found 
examples of diverged IDRs that conserve function10–12 and diverged IDRs that do 
not conserve function13,14. Transcriptional activation domains provide an 
excellent model system for studying IDR evolution because they are one of the 
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oldest classes of functional IDRs15, they are required for TF function, and their 
activity can be measured in high throughput16. Our goal is to identify molecular 
mechanisms by which TF IDR function can be conserved in the face of rapid 
sequence divergence.

We hypothesized that TF IDRs can maintain function despite sequence 
divergence through evolutionary turnover of functional elements. Evolutionary 
turnover is repeated gain and loss of functional elements. Mutations create new 
functional elements and negative selection maintains a minimum number of 
elements, allowing ancestral elements to be lost. As a result, on long timescales, 
neutral drift will give the appearance of functional elements moving around the 
sequence. For TFs, it is unclear if the functional elements will be entire activation
domains, short linear interaction motifs (SLiMs)17, or individual amino acids. Here,
we aim to identify the functional units and test the hypothesis that evolutionary 
turnover can explain conservation of function without conservation of sequence. 

Evolutionary studies of acidic activation domains in yeast benefit from 
high-throughput data that define sequence features controlling their function16,18–

23. These data have trained neural network models for predicting activation 
domains from protein sequence18,21,23–26. Our acidic exposure model further 
provides a biophysical mechanism for the observed features: aromatic and 
leucine residues make key contacts with hydrophobic surfaces of coactivator 
complexes, but these residues can also interact with each other and drive 
collapse into an inactive state16,27–30. The acidic residues repel each other, expand
the activation domain, and promote exposure of the hydrophobic residues. In 
many cases, the aromatic and leucine residues are arranged into short linear 
motifs. Large-scale mutagenesis showed the acidic exposure model applies to 
hundreds of human activation domains31. 

We investigated the molecular mechanisms by which full-length TFs can 
maintain activator function over long evolutionary distances despite divergence 
of their amino acid sequences. As a model system, we used 502 diverse 
orthologs of Gcn4, a nutrient stress TF, and screened for activation domains with 
a high-throughput functional assay in Saccharomyces cerevisiae16. All orthologs 
contain at least one 40 AA region that functions as an activation domain, and we 
see widespread conservation of function without conservation of sequence. We 
demonstrate evolutionary turnover of entire activation domains and turnover of 
key residues within an activation domain. The N-terminal activation domains are 
repeatedly gained and lost. In contrast, the central activation domain is 
functionally conserved because of turnover of key acidic and hydrophobic 
residues. This work illustrates how functional screening can unravel the complex 
evolution of activation domains and IDRs. 

Results:
Characterization of a tiling-library of Gcn4 orthologs 

To study the evolutionary dynamics of activator function, we sought to 
experimentally map activation domains across a diverse collection of 
orthologous TFs. We and others have shown that protein fusion libraries, 
designed to tile across protein sequences with short, 30-60 amino acid peptides, 
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can faithfully measure activation domain activity16,18,19,21,22,32. Furthermore, 
because activation domain function in yeast is a reliable measure of endogenous
function in humans33, viruses34, Drosophila35,36, plants23,37,38, and other yeast 
species39, we reasoned that the activity of fungal orthologues in our assay would 
serve as a reliable measure of activity in their native context. In all subsequent 
analysis, we assume that tile activity measured in S. cerevisiae is a good proxy 
for TF function in their native species. 

As a null hypothesis, we assumed the TF function is conserved and that 
the observed diversity of sequence is the result of neutral drift. Absent strong 
evidence to the contrary, neutral drift is a strong null hypothesis40. Mutation 
processes introduce changes, and selection acts at the level of the full protein. 
Purifying (negative) selection will tolerate all changes that do not reduce function
below a minimum level. The neutral space for IDRs is potentially much larger 
than that of folded proteins because there are no structural constraints. 
Supporting this assumption, we found evidence for weak negative selection on 
the full-length TF using a high-quality set of thirty-six true Gcn4 homologs from 
the yeast gene order browser (Figure S1E)41. It follows that most of the 
sequence differences we see in extant species are neutral. We aim to find the 
(potentially rare or diffuse) sequence features that are functional and conserved.

We chose a diverse set of orthologous Gcn4 protein sequences for 
functional characterization in S. cerevisiae. We found 502 unique Gcn4 ortholog 
sequences from 129 genomes that span the Ascomycota, the largest phylum of 
Fungi, representing >600 million years of evolution42  (Figure S1, S2). While the
Gcn4 orthologs vary in length (Figure 1A), 500 have the DBD at the C-terminus, 
and the distance between the WxxLF motif and the DBD is very consistent 
(Figure 1B).

Figure 1: Screening fragments of Gcn4 orthologs for activation domain 
activity in S. cerevisiae. 
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A) Gcn4 ortholog lengths. Red arrow, S. cerevisiae. B) The distance between the 
WxxLF motif and the start of the DBD is conserved. C) The MSA of 500 orthologs 
shows the DBD binding domain is highly conserved, and the Central Activation 
Domain around the WxxLF motif is moderately conserved. D) The tiling strategy 
for oligo design and the high-throughput activation domain assay. E) The high-
throughput assay for measuring activation domain function uses a synthetic TF 
with mCherry for quantification of abundance, the Zif268 DNA binding domain 
(DBD), an estrogen response domain (ERD) for inducible activation, and a C-
terminally fused tile. Tile activity was calculated based on barcode abundance in 
eight equally sized bins of a FACS sorting experiment. Bins were set based on 
GFP/mCherry ratios. F) The distribution of measured tile activities with our 
activity threshold (top 20%). S. cerevisiae Gcn4 CAD activity is shown in orange. 

The Gcn4 multiple sequence alignment (MSA) typifies eukaryotic TF 
evolution, with a highly conserved DBD and lower conservation in the rest of the 
protein (Figure 1C). The central activation domain (CAD) shows intermediate 
levels of conservation, driven in part by the WxxLF motif (Figure 2B, S3). 
Sequence divergence is driven by insertions: 54% of columns in the MSA contain 
fewer than 1% of sequences (Figure 1C, S4). Distant pairs of sequences do not 
align outside of the DBD.
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Figure 2: In the S. cerevisiae central activation domain, residues that 
are critical for activity are poorly conserved.
A) Schematic of S. cerevisiae Gcn4 with the upstream open reading frames 
(uORFs) that regulate translation, the NAD and the CAD. Individual measured 
tiles are indicated as pink lines with a pink point at the center, and the standard 
deviation of the two replicates is shown vertically. We imputed activity at each 
position with a Loess smoothing (blue). B) Schematic of the CAD and altCAD 
(most active tile) with key motifs, α-helix, and phosphosites indicated. Mutating 
motifs, aromatic residues, or leucine residues reduced activity in all cases. C) 
The sequence logo from the 4th iteration of a search for Gcn4 orthologs in fungal
genomes with HMMER. This independent analysis confirmed the WxxLF motif is 
more conserved than the FF and MFxYxxL motifs. D) The number of active tiles 
found on each full-length TF (tiles that map to multiple orthologs can count 
multiple times in this analysis). E) There is a weak correlation between TF length 
and the number of active tiles. F-G) Combining overlapping active tiles shows 
that most TFs have 2 or more activation domains with a wide distribution of 
lengths. 

High-throughput measurement of orthologs for activation domain 
function

To study the evolution of TF function, we measured the activation domain 
activity of all the orthologs. For each of the 502 Gcn4 orthologs, we tiled across 
the full-length protein with 40 AA tiles spaced every 5 AA, and measured 
activities of all tiles in S. cerevisiae using our established high-throughput 
assay16 (Figure 1D, 1E). We recovered 18947 of 20731 designed tiles (91.4%), 
and these data were of high quality (Methods, Figure S5, S6). The tiles had a 
range of activities (Figure 1F), and mutations in control activation domains 
behaved as expected (Figure 2A, 2B, S7). As a threshold for highly-active tiles, 
we used the top 20% of sequences, but other thresholds led to similar results 
(Methods, Figure S8). Many more tiles are active than datasets that naively tile 
all TFs in a proteome, as we would expect if most Gcn4 orthologs are activators. 
Due to the divergence of the orthologs, the sequences of the active tiles are very
diverse, allowing us to study sequence-to-function relationships controlling 
activation domain function. To our knowledge, this dataset is the largest 
functional study of TF evolution to date.

6

11

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

12



Activator function is conserved across the Gcn4 orthologs 

All the Gcn4 orthologs had at least one tile that functioned as an activation 
domain in our assay, indicating that activator function is conserved across 600 
million years of evolution (Figure 2D, Supplemental note 1). A priori, it was not 
a given that all the Gcn4 orthologs would be activators, because on long 
evolutionary timescales, a family of TFs that share a conserved DBD will include 
both activators and repressors 23,31,32,38. Gcn4 activator function is highly 
conserved despite divergence of the sequence. 

The central acidic activation domain shows strong functional 
conservation.

Our finding that all the orthologs are activators combined with the 
sequence divergence in the MSA indicates there is conservation of function 
without conservation of primary amino acid sequence. We examined three 
hypotheses for this conservation of function without conservation of sequence: 
1) turnover of entire activation domains, 2) turnover of motifs within activation 
domains, and 3) turnover of key residues within activation domains. We found 
turnover of entire N-terminal activation domains and turnover of key residues 
within the central activation domain.

The central activation domain is functionally conserved across the 
orthologs. An advantage of our tiling strategy is the ability to infer the activity of 
each position in each full-length protein (Figure 3, Methods). We found that all 
orthologs had high activity in the central region (Supplemental note 1). The peak
of activity is ten AA residues upstream of the WxxLF motif (Figure 3, inset). 
Aligning on the WxxLF motif or the DBD led to similar results (Figure S9-S12). 
Projecting the activity heatmap onto the local species tree or gene tree 
illustrates how the central activation domain can drift side-to-side but stays near 
the WxxLF motif(Figure S13, S14). Intriguingly, the integral of activity across 
each ortholog was highly consistent, suggesting conservation of total activity 
(Figure S15C).

The second major result is that N-terminal activation domains come and 
go, providing evidence for turnover of entire activation domains (Figure 3). After
combining overlapping active tiles, the majority of orthologs have more than one
activation domain (Figure 2F). Projecting activity onto the MSA or sorting the 
heatmap by activity at the WxxLF motif emphasizes how the N-terminal 
activation domains come and go (Figure S11, S12). Using our stringent 
threshold for activity (top 20%), thirteen orthologs lost activity at the WxxLF 
motif, but all of these have gained additional upstream activation domains. The 
N-terminal activation domains show intermediate conservation in the MSA 
(Figure S15) and their sequences are very diverse, ruling out the possibility that
one ancestral activation domain is recurrently lost (Figure S16). Together, these
data demonstrate turnover of entire activation domains.
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Figure 3: The central acidic activation domain of Gcn4 is functionally 
conserved. 
We used the tile activity data to impute the activity of each residue in all the 
orthologs. These activities are visualized as a heatmap, with color representing 
imputed activity. The 476 shortest orthologs are sorted by length and aligned on 
the WxxLF motif. Inset, vertically averaging the heatmap. Activity is consistently 
high around the WxxLF motif, indicating deep functional conservation. Upstream,
N-terminal activity is more salt and pepper, indicating recurrent gain and loss of 
activation domains. Aligning on the DBD or including the longer sequences yields
similar results (Figure S9-11). Red arrow, S. cerevisiae. Black scale bar, 100 AA.

Conservation of function without conservation of sequence in the 
Central Acidic Activation Domain of Gcn4

The central activation domain region with high-functional conservation 
shows intermediate conservation in the multiple-sequence alignment (Figure 
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1C, S3A). We conclude that there is conservation of activation domain function 
without conservation of the sequence.To understand the sequence features 
underlying this conservation of function without conservation of sequence, we 
first describe the amino acid sequence features controlling activity of individual 
tiles and then apply these lessons to the orthologs. 

Figure 4: Highly active tiles contain many acidic, aromatic, and leucine 
residues, supporting the acid exposure model of acidic activation 
domain function. 
A) For each tile, we compute net charge and count the number of WFYL residues.
The size of the point indicates the number of tiles with the combination of 
properties. The color is the median activity of tiles with each combination. White 
star, S. cerevisiae Gcn4. B) The acidic exposure model of acidic activation 
domain function. C) Boxplots for the residues that make the largest contributions
to activity. D)  For each tile with the WxxLF motif, activity is plotted against the 
location of the W. Blue, mean and 95% confidence interval. The location of the 
motif is correlated with activity.

The sequence features of active tiles support the acidic-exposure 
model

The Gcn4 ortholog dataset contains all previously observed relationships 
between sequence and function, but many relationships are stronger and more 
visible than previously reported (Supplemental Note 1). As predicted by the 
acidic exposure model, many active tiles contain both acidic residues and WFYL 
residues (Figure 4A, 4B). These key residues make quantitatively different 
contributions to activity (Figure 4C, S17, S18). Aspartic acid (D) makes 
stronger contributions to activity than glutamic acid (E), likely because the 

9

17

261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
276
277
278
279
280

281

282
283
284
285
286
287
288
289

18



charge is slower to the backbone and better promotes exposure43 (Figure 4C, 
S18). In the control activation domains, all published motifs of aromatic and 
leucine residues made large contributions to activity, but no individual motif was 
sufficient for full activity (Figure S7). These sequence features of active tiles 
with or without the WxxLF motif are highly similar, suggesting the N-terminal 
activation domains function similarly to the central activation domain, as has 
been shown in S. cerevisiae44 (Figure 19).  Tiling orthologs reveals sequence 
rules more efficiently than tiling genomes (Figure S20).

Amino acid composition strongly contributes to activation domain 
function. Ordinary least squares (OLS) regression on single amino acids explains 
49.9% of variance in activity (Table 1, AUC = 0.9346, PRC = 0.7620, Table S9). 
Regression on dipeptides21 led to 69 significant parameters that explain 60.2% of
the variance in activity (Table 1, AUC = 0.9472, PRC = 0.8190). More complex 
sequence motifs did not improve the regression models: published motifs 
explained 33.1%, and 40 de novo motifs explained 50.5% of the variance in 
activity (Table 1). Combining the de novo motifs with single amino acids 
performed similarly to dipeptides. This result implies that complex motifs capture
very little additional information beyond adjacent pairwise amino acid 
relationships in dipeptides. 

Model
Number parameters Number of statistically 

significant parameters
Adjusted R2

Single AAs 20 16 .498

Single AAs - reduced 16 .498

Dipeptides 400 69 .651

Dipeptides - reduced 69 .608

Published Motifs 7 5 .334

de novo motifs 40 27 .502

de novo motifs - reduced 27 .500

de novo motifs + single AAs 60 37 .606

de novo motifs + single AAs 37 .604
Table 1: Ordinary Least Squares regression on tile composition explains a large fraction of the 
variance in measured activation domain activity

The WxxLF motif requires acidic context and supporting 
hydrophobic residues.

The absence of clear motifs raises the question of how the arrangement of
amino acids, the sequence grammar, controls activation domain function. As an 
anchor point, we used the WxxLF motif, which makes large contributions to 
activity in the CAD but not all tiles with this motif are active (Figure 2B, S8, 
S20). We compared tiles with the WxxLF motif that had high or low activity: 
highly active tiles were more acidic and had more WFYLM residues (Figure 
S21C,D). The first grammar signal we found is that tiles with more evenly 
intermixed acidic and W,F,Y,L residues are more active, supporting the acidic 
exposure model (Figure S21E). The strongest grammar signal is that tiles with 
the WxxLF motif near the C-terminus are active (Figure 4D, S22). The 
additional negative charge of the C-terminus may increase exposure of the motif.
Weak C-terminal effects have been seen for aromatic residues20,37. This result 
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emphasizes how even a conserved short linear motif requires an acidic context 
and supporting hydrophobic residues to create an activation domain. Together, 
our analysis indicates that yeast activation domains are nucleated by a cluster of
aromatic residues surrounded by acidic residues and supported by leucine and 
methionine residues.

The alpha helix from S. cerevisiae is dispensable for full activity.
The sequence diversity of strongly active tiles with the WxxLF motif 

strongly suggests that coupled folding and binding is not necessary for activity. 
In S. cerevisiae, the disordered CAD folds into a short alpha helix upon binding 
the Gal11/Med15 coactivator45,46. Inserting a proline into this helix has little effect
on activity16,45. The immediate vicinity of the helix in S. cerevisiae has 115 unique
sequences: 23 contain 3 prolines (20%), and 3 contain 4 prolines, e.g. 
GPSDPWYPLFPSDTA. Using a 70 residue region, we predicted alpha helix 
propensity, but only 38/138 (28%) are predicted to form a helix (Figure S23, 
methods 47). These sequences may still fold into a helix when binding to the 
cognate partner. Amphipathic helices are enriched in activation domains18,32 
because they are a convenient way to present hydrophobic residues to a partner,
but they are not the only way to create a strong activation domain. CAD function 
is more conserved than alpha helix formation. This analysis suggests the alpha 
helix is not the relevant functional unit for evolutionary turnover.

Figure 5: Evolutionary turnover of aromatic and acidic residues explains the 
conservation of function without conservation of sequence in the central 
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activation domain of Gcn4. A) For the 69 most active unique regions around the 
WxxLF motif, a bar plot showing the relative amino acid frequencies from the 
MSA. MSA positions with >90% gaps have been removed. The acidic residues, D 
and E, interchange. B) A sequence logo for the MSA. Arrows indicate the 9 
positions where F is the most abundant residue. There is some interchange 
between F and L. Black, SP motifs. See Figure S25 for the MSA.

Conservation of function without conservation of sequence in the 
Central Acidic Activation Domain of Gcn4.

The central activation domain region of the Gcn4 orthologs showed strong 
conservation of function without conservation of sequence. Our two hypotheses 
for this phenomenon were evolutionary turnover of motifs or evolutionary 
turnover of key residues. 

We found no evidence for turnover of motifs. Each of the published motifs 
contributed to activity (Figure 2B) and was enriched in active tiles (Figure 
S21A), but only the WxxLF motif was conserved (Figure 2C, S3). We did not 
detect the emergence of new instances of these motifs, so we can reject the 
motif turnover hypothesis. 

The most conserved sequence feature of the CAD region besides the 
WxxLF motif is an SP motif, which is not typically associated with activation 
domain function. The full-length orthologs contain up to 4 SP motifs upstream of 
the WxxLF motif. In S. cerevisiae, this SP is a TP (T105), which is phosphorylated 
to create a phosphodegron that shuts down the Gcn4 program during the 
recovery from starvation48,49. The majority of tiles (10752) contain an SP motif, so
it makes little contribution to activity on its own. We believe these motifs are 
conserved due to regulated degradation. However, it remains possible that 
multisite phosphorylation can increase activation domain activity50,51. For 32 tiles 
we performed a followup mutagenesis of the SP motifs to test the hypothesis 
that phosphorylation can control activity (Figure S24). These data support the 
possibility that some of the orthologs utilize phosphorylation to modulate 
activation domain function. 

We observe evolutionary turnover of acidic and F residues within the 
central activation domain. We focused on a 70 residue region around the WxxLF 
motif (W-50 : W+19) that contained many active tiles and the peak of inferred 
activity (Figure S25). The top half of sequences contain many acidic residues, 
but individual acidic positions (D and E) are not well conserved because they 
interconvert (Figure 5A,B, S26). When pooled together, D+E conservation 
matches or exceeds the conservation level of the aromatic residues. In addition, 
the F residues that are critical for high activity exhibit evolutionary turnover. 
There are only 2 positions where an F is present in the majority of sequences, 
but an additional 7 positions where F is the most common residue. The critical F 
residues experience evolutionary turnover, giving the appearance of moving 
around the activation domain. 

To this point, all of our analysis has used only the MSA, so we next 
leveraged the additional information present in the species tree. We tested the 
hypothesis that the gains of F residues precede the loss of F residues. In most 
cases, there is too much evolutionary distance between the species to answer 
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this question. However, in the high quality YGOB alignment41, we see the gain of 
an F precedes the loss of an ancestral F (Figure S27). This example of gains 
preceding loss bolster then evidence for evolutionary turnover of key residues.

The turnover and conservation patterns we observed in the Gcn4 
orthologs generalized to other systems. We reanalyzed a set of orthologs of Pdr1 
(Figure S28)18. For four TFs, we searched for orthologs in the Y1000+ collection 
and made alignments of their activation domains (Figure S28). In these MSAs, 
aromatic residues were highly conserved and acidic residues interchange at 
many positions. Some positions also showed interchange between aromatic 
residues. Other regions showed turnover of aromatic and leucine residues. We 
propose that evolutionary turnover of key aromatic, leucine, and acidic residues 
is a general feature of eukaryotic acidic activation domains. 

Machine learning insights into activation domain function
The Gcn4 orthologs provide a large, unique dataset to evaluate deep 

learning models that predict activation domains from amino acid sequence. We 
compared two first-generation neural networks18,21 with a second-generation 
model that we developed23,24. All the models can approximate the locations of 
activation domains in full-length TFs, but the new model, TADA, is substantially 
more accurate at predicting the activities of individual tiles and identifying 
activation domain boundaries (Figure S29). TADA was intentionally built to 
ignore sequence grammar by blurring the raw sequence with sliding windows 
and its high performance supporting the idea that there is very weak or very 
little grammar in these orthologs. The machine learning models cannot detect 
‘missing’ grammar, supporting the weak grammar hypothesis. The high accuracy
of these models suggests they may be ready to enable evolutionary studies. 

We used TADA to predict the contributions of F residues to activity in the 
central activation domain. The model predicts that all the F residues contribute 
to activity (Figure S30). The contributions of the most conserved F positions are
indistinguishable from recently evolved F positions (Figure S30D). This analysis 
further supports evolutionary turnover of key F residues.

Discussion:
By functionally screening protein fragments from a family of orthologous 

sequences, we demonstrate how activation domains show strong conservation of
function without conservation of sequence through turnover of critical acidic and 
phenylalanine residues. Conservation of function without conservation of 
sequence was established for full-length TFs, but here we demonstrate how this 
phenomenon emerges from turnover of entire activation domains and turnover 
of key residues within activation domains. Our results emphasize how IDR 
function can be highly conserved and constrained yet invisible in traditional 
comparative genomics.

The observed turnover of critical residues supports our acidic exposure 
model for activation domain function and explains why it is so difficult to identify 
motifs in activation domains. Multiple screens for activation domains have found 
only one recurrent motif, LxxLL motif with an acidic context, which can be 
important for binding the Kix domain17,18,21,31,52,53. These screens have also shown 
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that the 9aaTAD is not enriched in active sequences54. We argue that activation 
domains are nucleated by Clusters of W and F residues surrounded by acidic 
residues and boosted by Y, L, and M residues. Under this weak molecular 
grammar, individual residues are easily replaced, facilitating turnover. The 
WxxLF motif is one solution among many. When only a few sequences are 
examined, clusters look like motifs. Each TF family has a different conserved 
cluster of hydrophobic residues that represents a very good solution to binding 
the preferred coactivator. Each TF family will appear to have a conserved, 
essential motif, but convergent evolution of motifs is rare (Supplemental note 1).

We propose that the physical flexibility of the protein interaction interface 
between Gcn4 and Med15 allows for evolutionary plasticity. The Gcn4 CAD 
undergoes coupled folding and binding with the Med15 activation domain 
binding domains, but this interaction is a physically flexible, fuzzy 
interaction44,45,55. The short helix presents the WxxLF motif in many orientations 
to a shallow hydrophobic canyon on Med15. Molecular dynamics simulations 
suggest that these orientations interconvert46. This binding interaction imposes 
few structural constraints on the Gcn4 CAD.

The turnover of hydrophobic residues is possible because of this physical 
flexibility of the Gcn4-Med15 protein-protein interaction. The weak structural 
constraint of this interaction enables evolutionary plasticity. Binding one 
sequence in multiple orientations is a step towards binding diverse orthologs, 
which in turn is a step towards binding to many activation domains18,56,57. This 
flexibility likely requires at least one disordered partner58. Coactivators that 
impose weak structural constraints on activation domains can become engines 
for evolutionary diversification of activation domains through neutral drift, 
creating an enormous sequence reservoir for later selection. Although we favor 
the hypothesis that the observed sequence divergence in Gcn4 orthologs is 
neutral, stabilizing selection, it remains possible that there is selection to 
diversify. Acidic activation domains are highly evolutionarily successful, 
representing more than half of all known examples27. Our observation that acidic 
activation domains can easily diversify without compromising function suggests 
they are highly evolvable. This evolvability creates a diverse sequence reservoir 
that allows for rapid selection on standing variation. We speculate this 
evolvability allowed for acidic activation domains to bind new coactivators as 
they emerged with multicellularity59.

Activation domain evolution exemplifies how protein-protein interactions 
mediated by IDRs can drive evolutionary plasticity and sequence diversity. 
Another example of an IDR engaged in flexible PPIs enabling evolutionary 
plasticity is the human TRIM5 antiviral caging system, wherein short disordered 
loops make multivalent contacts with the viral capsid60. Physically flexible 
binding and avidity provide the emergent specificity to keep up in evolutionary 
arms races with fast-evolving viruses61. 

Our results fit well with findings that at long evolutionary distances, 
transcriptional regulatory networks rewire, substituting individual TFs but 
maintaining circuit logic39,62,63. Here, we examined longer evolutionary distances 
and found that all the Gcn4 orthologs are activators. This consistency of TF 
function shows that the sign of TF connections in regulatory networks are more 
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conserved than individual connections. Changes in TF function are pleiotropic, 
affecting many targets. Slow or rare changes in TF function likely make it easier 
to substitute TFs at individual regulatory elements.

Our deep dive into the evolution of one IDR family complements other 
studies of IDR evolution. Using small numbers of sequences, conservation of IDR 
function across orthologs has been observed, but often the essential residues are
unknown10. In other systems, there is functional conservation of diverged IDRs, 
but the key residues are conserved12 or motifs are conserved64. In other cases, 
functional conservation results from the composition, but not the arrangement, 
of residues through emergent properties like net charge11,65–69. The closest 
parallel to our turnover of key residues is de novo evolution of phosphorylation 
motifs70. TF IDRs are not always functionally conserved, for example in Abf113 
and the Msn2/4 IDRs have two overlapping functions, only one of which is 
conserved14. Sox family members from Chianoflagelites can substitute for Sox2 
in mouse iPSC reprogramming6. Cases where function emerges from physical 
properties may allow for even more turnover than we observe in Gcn4. There 
remains a need for better IDR-alignment algorithms or alignment-free methods 
to group functionally related IDRs.

The turnover of key hydrophobic residues in activation domain evolution 
bears strong parallels to the turnover of TF binding sites in enhancer evolution. 
In metazoans, enhancers are regulatory DNA that contain clusters of TF binding 
sites (TFBS). The DNA sequence of enhancers diverges rapidly as individual TFBS
are gained and lost while maintaining function71–73. Orthologous enhancers can 
be impossible to detect in sequence alignments but are readily identified by 
searching for clusters of TFBS74,75. Two mechanistic insights led to this predictive 
power: 1) understanding that the key functional subunit is the TFBS and 2) 
understanding that individual TFBS can turnover. This conservation of total 
binding site content enables complex of regulatory DNA to identify conserved 
enhancers74,76. We find strong parallels in the evolution of TF protein sequence. 
TF protein sequence changes rapidly and is hard to align, but activation domain 
function is conserved. Analogous to the TFBS in enhancers, the functional units 
of activation domains are individual aromatic residues. In both cases, the 
grammar is extremely flexible77. Given that TFs function by binding to enhancers,
it is striking that both the protein and the DNA are evolving in the same way. 
Turnover of TF binding sites endows enhancers with robustness to genetic 
variation, robustness to environmental stress, and evolutionary plasticity. 
Turnover of key residues in activation domains may similarly endow TFs with 
plasticity and robustness. If TFs and enhancers are evolving in the same way, it 
increases the potential for compensatory mutations, expanding the neutral 
space and creating diverse sequence reservoirs that can be selected in new 
environments. 

The primary limitation of this work is that we measured the activities of 
short fragments in one species. Measuring short uniform fragments makes the 
experiments possible but can miss longer ‘emergent’ activation domains55,78. If, 
in some species, an activation domain and cognate coactivator together 
experience many compensatory mutations, the assay will miss these sequences. 
Our analysis of Med15 coactivator conservation shows that the four activation 
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domain binding domains are conserved (Figure S31). Activity of our reporter is 
well correlated with Med15 binding affinity in vitro18. The most active tiles are 
computationally predicted to bind Med1579 (Figure S32). In the future, limited 
screening in additional species or screening tiles of multiple tile lengths would 
enrich this work. A secondary limitation is that we measured activity in just one 
condition. A future direction is to explore activity in other conditions and on other
promoters. 
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Materials and Methods

Identification of ortholog sequences
We computationally screened for Gcn4 orthologs of S. cerevisiae. We 

started with a hand-collected set of 49 orthologs, 48 of which contained the 
WxxLF motif 16,55. To find new orthologs, we used two criteria: the bZIP DNA 
binding domain (IPR004827) and the regular expression Wx[SPA]LF for the 
WxxLF motif. These criteria distinguished Gcn4 orthologs from other leucine 
zipper DNA binding domain TFs. We scanned 207 diverse and representative 
proteomes from the MycoCosm database (mycocosm.jgi.doe.gov). This 
computational screen yielded 1188 gene models from 129 genomes. These 1188
gene models combine to yield 502 unique proteins (Table S1, Figure S1, S2).). 
Of these, >99% were reciprocal Blast best hits with S. cerevisiae Gcn4. This initial
analysis was performed in 2020 by Sumanth Mutte of MyGen Informatics. 84 of 
the genomes were from MycoCosm, while the original ortholog collection 
contributed 45 species. Genomes contained 1-32 gene models and 1-11 unique 
protein sequences (Figure S1). These sequences span nearly all the 
Ascomycota, the largest phylum of Fungi, representing >600 million years of 
evolution 42. The 502 unique orthologs have variable lengths (Figure 1A), but 
the DBD is at the C-terminus in 500 orthologs, and the distance between the 
WxxLF motif and the DBD is very consistent (Figure 1B).

All species were from the Ascomycota except for five entries with three 
unique sequences from Blastocladiomycota (Figure S1). The Blastocladiomycota
orthologs are the only proteins where the WxxLF motif does not align in the MSA.
The sequence context of their WxxLF motif is H-rich instead of acidic:

e.g. AAAQHVPAADGQWLALFPHPSSIDFDFNSFHQSFSSPPPH 
The Blastocladiomycota tiles with the WxxLF motif have high activity in 

the assay. The regions of Blastocladiomycota orthologs that align to the WxxLF 
motif in the MSA have low activity in the assay. We suspect the N-terminal 
WxxLF in the Blastocladiomycota may have been gained by convergent evolution
(Supplemental note 1). 

The Yeast Gene Order Browser has reconstructed the local synteny of the 
Gcn4 locus for 37 genomes yielding a high-quality set of true homologs 41. 36/37 
species and the inferred ancestor contain one Gcn4 gene. Kazachstania 
saulgeensis CLIB1764T is missing a Gcn4 homolog. All of the post whole genome 
duplication species in this set contain only one Gcn4 homolog, suggesting there 
is no advantage of retaining two copies. All but one of the 36 the orthologs, 
Zygosaccharomyces bailiii ZYBA0L03268g, contain the WxxLF motif. Instead, Z. 
bailiii has an insertion in the WxxLF motif yielding WPSLEPLF. This sequence was
not included in our experiment but was previously measured in a 44 AA tile, 
LDQAVVDEFFVNDDAPMFELDDGASGAWPSLEPLFGEDEERVAV, and had high activity in Replicate 2 
of our previous paper 16. This example further supports the observed 
conservation of function without conservation of sequence. 

Despite substantial sequence divergence, all homologs show negative 
selection at the level of the full protein in the precomputed YGOB analysis. We 
downloaded a list of 36 pairwise Ka, Ks, and omega coefficients calculated from 
the yn00 output of Phylogenetic Analysis by Maximum Likelihood (PAML) (Table 
S14, November 2024).

We confirmed that the WxxLF motif is well conserved in fungal TFs with 
HMMER. We ran the web server for HMMER with default parameters, using 
S.cerevisiae Gcn4 as the seed sequence and restricting our search to Fungi. In 
the second, third, and fourth iterations of this search, the WxxLF motif was the 
most prominent feature of the profile HMM in the central region of the TF and 
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always much more prominent than all other published motifs 21,78. Figure 2C 
shows the pHMM from the fourth iteration.

For the full-length orthologs, MSAs were performed in Genious with the 
MAFFT algorithm (Table S2). We removed the two longest orthologs that had 
the DBD near the center. In the MSA, 54% of positions had less than 1% identity 
and 88% had less than 5% identity.

Short alignments were created with MUSCLE online (https://www.ebi.ac.uk/
Tools/msa/muscle/) or with or with MAFFT v7.526 and visualized with 
weblogo.berkeley.edu or the LogoMaker Python package.

Design of the Gcn4 oligo library
We took the 502 unique protein sequences and computationally chopped 

them into 40 AA tiles spaced every 5 AA (e.g. 1-40, 6-45, 11-50 etc.). As a result, 
if two closely related sequences contain identical regions, insertions or 
alternatives (start sites) that change the phasing, a single tile can map to 
multiple full-length orthologs. We removed duplicate tile sequences, yielding 
20679 unique tiles. We added 52 control sequences (controls were included 
twice in the oligo pool to increase the probability they were recovered in the 
plasmid pool during cloning). The controls included hand-designed mutants in 
control activation domains and a handful of sequences from our previous study 16

(Table S3, Control sequences). The final design file contained 20783 entries.
We reverse-translated tile sequences using S. cerevisiae preferred codons.

We added primer sequences for PCR amplification and HiFi cloning (‘ArrayDNA’ 
column in Table S5). We also added four Stop codons in three reading frames to
ensure translational termination, even if there were one or two bp deletions, the 
most common synthesis errors. We used synonymous mutations to remove 
instances where the same base occurred four or more times in a row to reduce 
DNA synthesis errors. The resulting oligo pool was ordered from Agilent 
Technologies. The final oligos were of the form (see primer sequences in Table 
S4): 

FullDNAseq = primer1 + ActivationDomainDNAseq + stopCodons + primer2 

Plasmid Library construction
The oligos were resuspended in 100 uL of water, yielding a 1 pM solution. 

The oligos were amplified with eight reactions of Q5 polymerase (NEB) using 1 ul 
of template, five cycles, Tm =72C and the LC3.P1 and LC3.P2 primers. The eight 
reactions were combined into a single PCR clean-up column (NEB Monarch).

The backbone was prepared by digesting 16 ug of pMVS219 with NheI-HF, 
PacI and AscI in eight reactions. We digested for seventeen hours at 37C and 
heat-inactivated for one hour at 80C. The desired 7025 bp fragment was run on a
0.8% gel, visualized with SYBR Safe (Invitrogen), and gel purified (NEB Monarch 
Kit). Note pMVS219 and pMVS142 have the same sequence, but the pMVS142 
stock developed heteroplasmy, so we repurified it as pMVS219 and submitted 
the corrected stock to AddGene. Both pMVS219 and pMVS142 correspond to 
AddGene #99049.

We used NEB HiFi 2x mastermix to perform Gibson Isothermal Assembly to
create the plasmid library. The 4x reaction volume had 328 ng of backbone and 
excess molar insert. We incubated at 50C for 15 min and assembled a backbone-
only control in parallel. The assemblies were electroporated three times each 
into ElectroMax 10b E.coli (Invitrogen 18290-015) following the manufacturer's 
protocol. A dilution series was plated and the bulk of the cells grown overnight in 
140mL LB+Amp. These cultures overgrew, so they were spundown and frozen. 
The cultures were regrown with 105 mL LB+Amp and a MaxiPrep was performed 
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(Zymo). An estimated 4.2 million colonies were collected, covering the library 
200-fold. 

To assess the quality of the plasmid library, we prepared an amplicon 
sequencing library (see below). Three independent amplicon libraries were 
prepared, and sequences present in all three were considered to be present in 
the plasmid pool with high confidence. GREP for the flanking NheI and AscI sites 
was used to pull out the designed fragments. Only perfect matches were used in 
this analysis. 20717 of 20731 designed sequences were detected (99.9%). The 
vast majority sequence abundances were within 4-fold of each other, indicating 
minimal skew in library member abundance. 

Yeast transformation
The plasmid library was integrated into the DHY213 BY superhost strain, 

MATa his1∆1 leu2∆0 ura3∆0 met15∆0 MKT1(30G) RMEI(INS-308A) TAO3(1493Q), 
CAT5(91M), MIP(661T) SAL1+ HAP1+, a generous gift from Angela Chu and Joe 
Horecka. Requests for the parent strain are best directed to them. We integrated
our library into the URA3 locus with a three-piece PCR 80. The upstream 
homology between URA3 and the ACT1 promoter was created by PCR amplifying 
the pMVS295 (Strader 6161) with the primers YP18 and CP19.P6. The 
downstream homology between the TEF terminator of KANMX and URA3 was 
amplified from pMVS196 (Strader 6768) with the primers YP7 and YP19. These 
template plasmids were a generous gift from Nick Morffy and Lucia Strader. To 
avoid PCR, the plasmid library was digested with Sal I-HF and EcoRI-HF (NEB) 
overnight, but not cleaned up. The homology arms were in 3:1 molar excess. 
1.25 ug of total DNA was used (225 ng of upstream homology 626 bp, 225 ng of 
downstream homology 665 bp, and 800 ng of digested plasmid 4583 bp). Cells 
were streaked out from the -80C on YP+Glycerol. Four transformation cells were 
grown overnight in YPD, diluted into YPD, and allowed to grow for at least two 
doublings. We performed a Lithium Acetate transformation with 30 minutes at 30
C and 60 minutes at 42 C followed by a two hour recovery in synthetic dextrose 
minimal media without a nitrogen source, as recommended by Sasha Levy. We 
integrated plasmids in seven transformation batches, which were plated 
overnight on YPD and replica-plated onto YPD+G418 (200 ug/ml). Plates were 
stored at 4 C and then scraped with water, pooled, frozen into glycerol stocks, 
and mated. We collected an estimated 100,000 colonies, approximately five-fold 
coverage of the tiles. For 6/7 pools we sequenced tiles before and after mating, 
finding that 67-97% of tiles were detected both before and after mating, 
indicating that the mating sometimes reduced library complexity. 

Yeast Mating
We mated each of the seven transformations independently to MY435 

(FY5, MATalpha, YBR032w::P3 GFP ClonNat-R (pMVS102)). Downstream 
sequencing revealed that transformations with modest numbers of colonies (e.g. 
4500) experienced no significant loss of complexity during mating, but 
transformations with more colonies (e.g. >20,000) experienced loss of 
complexity, up to 40% in one case. Subsequent matings were performed in 
larger volumes to avoid creating a bottleneck. Mated diploids were selected in 
liquid culture with YPD with 200 ug/ml G418 and 100 ug/ml ClonNat. After 
overnight selection, matings were concentrated and frozen as glycerol stocks.

Cell Sorting
The day before sorting, a glycerol stock of mated cells (~100 ul) was 

thawed into 5 mL SC+Glucose with 200 ug/ml G418 and 100 ug/ml ClonNat and 
grown overnight, shaking at 30 C. The morning, the culture was diluted 1:5 into 
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SC+Glucose with G418, ClonNat, and 10 uM ß-estradiol (Sigma). The culture was 
grown for 3.5-4 hours before sorting.

Cells were sorted on a BD Aria Fusion equipped with four Lasers (488 blue,
405 Violet, 561 Yellow-green and 640 Red) and eleven fluorescent detectors. We 
used two physical characteristics gates, first to enrich for live cells (FSC vs SSC) 
and second to enrich for single cells (FSC-Height vs FSC-Area). Cells were sorted 
by the GFP signal, the mCherry signal, or the ratio of GFP:mCherry signal. The 
ratio is a synthetic parameter that is very easy to saturate on the eighteen-bit 
scale available in the BD software. Great care was taken to change PMT voltage 
and the ratio scaling factor (5-10% depending on the day) to make the value of 
the top and bottom bins as different as possible. The dynamic range of our final 
estimate for activation domain activity is set by the value of the top and bottom 
bins. The maximum activation domain strength is 100% in the top bin, and 
assumes the value of the top bin. The minimum activation domain strength is 
100% in the bottom bin and assumes the value of the bottom bin.

We performed our sorting experiment twice. In the first run, we pooled all 
of the transformants into one sample and sorted it by GFP/mCherry ratio, GFP-
only, mCherry-only. We sorted one million cells per bin. For the ratio sort, we 
split the ratio histogram in eight approximately equal bins 16.

In the second round of sorting, we split the transformants into two pools, 
labeled A and B, so we could assess measurement reproducibility for 
independent transformants. Pool A and Pool B are true biological replicates. We 
sorted each pool by GFP/mCherry ratio, GFP-only, mCherry-only. We used the 
comparison of the A and B pool measurements to assess measurement 
reproducibility of true biological replicates. We have never previously measured 
this biological reproducibility. On this day, we sorted 250000 cells per bin.

Sorted cells were grown overnight in SC-glucose. The next morning, gDNA 
was extracted with the Zymo YeaSTAR D2002 kit, using Protocol I with 
chloroform according to the manufacturer instructions. We have previously 
shown that growing cells overnight makes the gDNA extraction easier but does 
not change the computed activation domain activity 16.

Amplicon Sequencing Library preparation
Amplicon sequencing libraries were prepared from genomic DNA in three 

steps. First, the general vicinity of the tile sequence was amplified with CP21.P14
and CP17.P12 using 100 ng of gDNA as template and yielding a 604 bp product 
that was cleaned up (Monarch PCR cleanup). In the second PCR, we added 1-4 bp
of phasing on each end and the Illumina sequencing primer in 7-10 cycles with 
SL5.F[1-4] and SL5.R[1-3]. These seven phased primers were pooled and added 
to all samples. Four nanograms of the first PCR were used as template for the 
second PCR. Two microliters of the second PCR served as template for the third 
PCR. The third PCR added unique Index1 and Index2 sequences to each sample 
with an additional 7-10 cycles. These final products were cleaned up with PCR 
columns or magnetic beads (MacroLab at UC Berkeley) and submitted for 
sequencing. We performed 2x150 bp paired end sequencing in a shared Nova-
Seq lane at the Washington University School of Medicine Genome Technology 
Access Center (GTAC). GTAC provided demultiplexed fastq files. We sequenced 
additional samples in shared Nova-seq lanes with MedGenome. 

Sequencing Analysis
After demultiplexing samples and pairing reads with PEAR, we kept only 

the reads where the tile DNA sequence contained a perfect match to a designed 
tile. For each eight bin sort, we performed two normalizations. We first 
normalized the reads by the total number of reads in each bin. Then, we 
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normalized across the eight bins to calculate a relative abundance. We then 
converted relative abundances to an activity score for each tile by taking the dot
product of the relative abundance with the median fluorescence value of each 
bin (Table S8). This weighted average is the measured activation domain 
activity. Tiles with fewer than forty-one reads were not included in the final 
dataset. These analysis scripts are available at 
github.com/staller-lab/labtools/tree/main/src/labtools/adtools. This preprocessing 
computed an activity for each tile in each experiment. Activity is uncorrelated 
with total reads (Figure S5E). The pooled ratio sort (BSY2) had 115.6 M reads. 
The Replicate A ratio sort had 934.5 M reads, and the Replicate B ratio sort had 
697 M reads. Replicate A GFP had 33.1 M reads, Replicate B GFP had 31.6 M 
reads, Replicate A mCherry had 32.8 M reads, and Replicate B mCherry had 30.3
M reads.

Measurement Reproducibility
We used the two measurements of independent transformants to assess 

the reproducibility of our measurements of true biological replicates (R = .870; 
Figure S5A-D). Reproducibility is higher (R= .919) for highly abundant tiles 
(>1000 reads). 

We combined data from the two biological replicates. For tiles present in 
both populations (n= 11797), we averaged the two measurements and used the 
standard deviation as the error bar. For tiles present in only one population, we 
used that measurement and did not report error bars. These combined data 
agree very well with the pooled sort (R= .919; Figure S5C). Activity was 
saturated for forty-nine tiles, but most of these were measured with low fidelity 
because they had low read depth, and forty-seven were present in only one 
biological replicate. We identified forty-one tiles that were very highly active in 
both replicates and had high read depth in both replicates (Table S11). These 
we recommend for CRISPR Activation studies in yeast.

We assessed whether the mating introduced biological variability. We 
remated seven pools of the integrated library to the same reporter line, selected 
for diploids, pooled them, and resorted cells. This time we sorted 500,000 cells 
per bin. This measurement agreed with the initial experiments (R = 0.920; 
Figure S5D). 

Inferred activity was not correlated with read count, which, as previously 
shown, is another indicator of high-quality data (Figure S5E).

We compared activity measurements to our previously published results 
16. Previously, we used forty-four AA regions, and here we used forty AA tiles. We 
considered any forty-four AA tile that contained one or our forty AA tiles to be 
corresponding pairs. The extra four AA can modify activity, so the 
correspondence of these measurements will not be perfect. The observed 
Pearson correlation of 0.786 and Spearman correlation of 0.731 indicate the new 
data are of high quality and consistent with previous measurements (Figure 
S5F). 

The technical reproducibility of our measurements at UC Berkeley are 
lower than the published reproducibility from sorting at Washington University in 
St. Louis 16. In both cases, we sorted the same cell population twice and created 
independent sequencing libraries. In 2018, the technical reproducibility was high,
Pearson R = 0.988. The 2018 work had a smaller library (<5000 unique 
sequences) and sorted more cells (1-2 million cells per bin). Sorting more cells 
per library member increases the technical reproducibility of the measurement. 
The sorter operator in the 2018 work was more experienced than the sorter 
operator in this work (MVS), and the machine was maintained to a higher 
standard of operation, so the sorted populations were purer. 
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The eight bin ratio activity measurements are primarily driven by the GFP 
signal. Activity (ratio) is largely separable from abundance assessed by the 
mCherry sort (Figure S5G-I) and well-correlated with the GFP sort (Figure S5J-
L). 

Determining a threshold for active tiles
The full distribution of tile activities has a peak at low activity, which, 

based on control sequences, is clearly inactive, with a heavy right shoulder and a
heavy right tail (Figure 1F). The tail contains the control sequences with known 
high activity (Figure S7). We set out to fit the inactive sequences to a Gaussian 
distribution and use this distribution to create a threshold for active sequences. 
We first bin all tiles according to their activity score such that there are ∼ 200 
tiles per bin and plot a histogram. We hypothesized tile density is highest around
inactive tiles and thus refer to all tiles to the left of the resulting histogram’s 
peak as inactive tiles. We fit a one-sided Gaussian to these inactive tiles (Figure 
S8A) and call the two-sided extension of this Gaussian the inactive tile 
distribution (Figure S8B). Treating this Gaussian inactive tile distribution as our 
null hypothesis, we calculate p-values for each tile (not including tiles earlier 
used as inactive, Figure S8D). We then correct for multiple comparisons using 
FDR 81 and Bonferroni 82 corrections. The 1% FDR threshold was 33821 (60.6% of 
tiles active). The 1% FWER threshold was 45373 (46.6% of tiles active). As a 
conservative threshold to call active sequences, we used the 1% FWER threshold
of 45,373. All of our designed inactive control sequences are below this 
threshold.

After trying many thresholds (Figure S8), we ultimately chose the top 
20% (94,031) as a threshold for high activity. The choice of threshold had very 
little effect on our results. In particular, a wide range of threshold has almost no 
effect on the number of orthologs with an active tile.

Protein sequence parameters
We computed protein sequence parameters (Net charge, local net charge, 

Kyte Doolittle Hydrophobicity, Wimley White hydrophobicity, Kappa 83) with 
localCIDER 84. The OmegaWFYL_DE mixture parameter computes the mixture 
statistic between W,F,Y,L residues and D,E residues using the 
seq.get_kappa_X(['D','E'],['W','F','Y','L']) function in localCIDER 85. We predicted 
intrinsic disorder with MetaPredict2 86. We counted motifs with regular 
expressions in Python with the “re” package.

The MAFFT algorithm aligns the WxxLF motif for all but three orthologs. 
For three orthologs, in the Full_length_ortholog_dataframe, we corrected the 
“WxxLF motif location” parameter using the coordinates from the MSA. These 
species are the only ones outside the Ascomycota that have the motif. We 
suspect the WxxLF motif convergently evolved in these distance orthologs 
because the context is very different and H rich.  Blastocladiomycota_jgi|Catan2|
1097078|CE97078_6759, Blastocladiomycota_jgi|Catan2|1466814|
fgenesh1_pg.199_#_9, and Blastocladiomycota_jgi|Catan2|1506241|
gm1.11555_g. 

To predict helical propensity of ortholog sequences, we used the Sparrow 
package in Python [https://github.com/idptools/sparrow]. A region was called 
helical if it contained five adjacent residues with over 50% chance of being 
helical. A large proportion of sequences have no residues with a >50% 
probability of being helical in this region. We consider this predictor to capture 
the propensity to form a helix in some context. To count proline residues in the 
region homologous to the known helix, we used the five AA upstream and five AA
downstream of the WxxLF motif. From the 500 orthologs in the MSA, there are 
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115 unique 15 AA regions around the WxxLF motif; twenty-three contain three 
prolines (20%) and three contain four prolines (2.6%). 

Imputing activity in the full-length orthologs
We used the tile data to impute the activity of each position in each of the 

full-length orthologs. The 19099 recovered tiles mapped to 68577 locations on 
the orthologs (each tile matched to 3.6 orthologs on average). We used a second
order Loess smoothing (20 nearest points with the loess.loess_1d.loess_1d() 
function) across tiles to impute the activities of all positions in the 502 unique 
orthologs. This quadratic smoothing can cause artifacts on the extreme ends of 
the protein, such as predicting negative activity. To remove this artifact, we 
constrained the imputed activity to be no more than the maximum measured 
and no less than the minimum measured in that ortholog.

To validate the Loess smoothing, we averaged together all activities for all
tiles that overlapped a position, equally weighing all tiles. These averages were 
more jagged because of the stepwise nature of the tiles. This simple average 
also created artifacts at the ends of the protein where only one tile is present. 
The Loess and average smoothing methods agreed well (97% had Pearson R > 
0.80) (Figure S33). 

We used the imputed activities to create the heatmaps to visualize activity
across the orthologs. We tried many variations of these heatmaps but ultimately 
found that aligning the sequences on the start of the DBD or on the WxxLF motif 
was most informative. In the main text, we removed the twenty-seven longest 
sequences to make the visualization easier to display but added most of them 
back in Figure S9.

We tested the hypothesis that insertions are enriched for active tiles by 
projecting activity onto the MSA. We defined insertions as the positions in the 
MSA with residues (non-gaps) in less than 1% of sequences (n < 5), which yielded 
880/2690 (32.7%) of positions. In a two-sided t-test of the imputed activities of the 
insertion positions compared to all other positions, insertions were less active (p < 
1e-52). We concluded that insertions are depleted for sequences with activation 
domain activity in S. cerevisiae.

To estimate the activity at the WxxLF motif, we used the integral of the 
imputed activity from -10 to +10 around the W of the WxxLF motif. When this 
integral was below our activity threshold, we called sequences inactive in this 
region. Using this integral, ninety-two unique sequences had high activity 
(>150000) and thirteen unique sequences had low activity, less than our activity 
threshold. Thirty-three had intermediate activity. 

For motif enrichment, we performed a Welch’s t-test assuming unequal 
variances stats.ttest_ind(Sequences_WITH_Motif,Sequences_WITHOUT_Motif, 
equal_var=False).

To count activation domains on each TF, we combined active overlapping 
tiles, taking the union. With this method, we found 500 ADs with the WxxLF motif 
and 415 ADs without the WxxLF motif. We required more than forty residues 
between activation domains before they were called as two separate domains. 
Calling activation domains from the imputed activity map gives slightly different 
results because some very close double peaks are split. With the smoothed data,
there are 332 ADs with the WxxLF motif and 783 ADs without the WxxLF motif.
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ANOVA 
We used ordinary least squares regression (OLS) to create a baseline 

model for how composition controls activation domain function. We used ANOVA,
OLS, and adjusted R-squared to compare models. See the Composition_ANOVA 
jupyter notebook for the full analysis. Briefly, we used the ols(formula, 
ANOVA_DF).fit() function from the statsmodels package to fit the model, find 
coefficients, and compute adjusted R-squared values. We used the 
anova_lm(model, typ=2) function to find the sum of squares explained by each 
parameter. We used a Bonferroni multiple hypothesis correction to remove non-
significant parameters and refit the model. In most cases, one iteration was 
sufficient to get a model where all parameters were significant. For the 
dipeptides, we used two interaction terms. All ANOVA parameters are in Table 
S9.

OLS regression on single amino acids explains 49.9% of variance in 
activity (Table 1, AUC = 0.9346, PRC = 0.7620, Table S9). Iteratively removing 
non-significant parameters led to sixteen residues which explain 49.9% of 
variance. We repeated the regression with 400 dipeptides and found 69 
significant parameters that explain 60.2% of the variance in activity (Table 1, 
AUC = 0.9472, PRC = 0.8190). Half the variance in activity could be explained by
composition alone and dipeptides offered ~10% improvement. 

We predicted de novo motifs using the DREAM suite and then repeated 
the OLS ANOVA analysis using the motifs. We performed de novo motif searching
on multiple slices of the data, but highly active (n=3524) vs. inactive (n=15575) 
were the most interpretable and gave the clearest signal in the ANOVA analysis. 
First, we ran the package STREME from the MEME suite to discover motifs that 
are enriched in a list of sequences relative to a user-provided control list.

For the OLS on de novo motifs, we used the motif counts provided by the 
DREAM motif prediction software (Table S10). For simplicity, in the parameter 
table, we refer to each motif as a string, but we used the PWM for actually 
finding motifs in each sequence with FIMO.

Machine learning
We predicted activities on full length orthologs using publicly available 

models, TADA, ADpred, and PADDLE18,21,23,24. All models were run on the SAVIO 
high performance computing cluster at UC Berkeley. TADA uses 40 AA windows, 
ADpred, 30 AA windows, and PADDLE 53 AA windows. For each TF, we tiled at 1 
AA increments, spanning the full proteins (e.g. 1-40, 2-41 etc). For full length TF 
analysis, we corrected the inferred activity at each position (Loess smoothing) 
with the predictions at each position. The smoothed data averages out some 
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measurement noise so all the model performance is improved on smoothed data.
For individual tile analysis, we used the center aligned score. We also tried 
maximum scores, average scores, and other variations, but chose center 
aligned. ROC and PRC analyses were performed with the sklearn python 
package. 

Predicting the impact of mutating F residues in the central activation 
domains. We tile the 138 unique 70AA central regions into 40AA tiles spaced 
every 1 amino acid. For each tile, we computationally mutated each F 
individually, all pairs, all triplets, and all sets of four or more. For each mutant, 
we predicted activity. The mutants are predicted to have less activity. For each 
mutant, we also computed the change in activity. Finally, we grouped the 
changes in activity based on the conservation of each F residue. 

Pax6 alignments
BLAST alignment of mouse Pax6 (P63015) and D. melanogaster Eyeless 

(O18381) was performed with the Uniprot canonical sequences. We calculated 
the DBD percent identity using the longest aligned region that encompassed the 
annotated DBD (5-135 and 157-187, respectively). We realigned the regions C-
terminal to the end of this DBD alignment and found three regions with modest-
to-high scores: (79+16+7)/287 = 35.5% residues identical and (88+28+11)/287 
= 44.3% residues similar in the three regions. We summed the number of 
identical or similar residues to compute similarity. We used the shorter mouse 
IDR length as the denominator, overstating conservation. Alignments are in 
Figure S34. Using the more permissive BLOSSUM90 matrix yielded a fourth 
small aligned region that increased the similarities: (79+16+14+7)/287 40.4% 
residues identical and (88+26+18+11)/287 = 50% residues similar.

Datafiles
All the raw sequencing data has been deposited at NIH SRA Accession 
#PRJNA1186961: http://www.ncbi.nlm.nih.gov/bioproject/1186961
All the analysis scripts are deposited on github via Zenodo:
10.5281/zenodo.14201918 
https://github.com/staller-lab/Gcn4-evolution 
github.com/staller-lab/labtools/tree/main/src/labtools/adtools
https://github.com/staller-lab/Gcn4-evolution
All the processed data is attached in supplemental tables (Tables S5 - S7).
Processed sequencing read counts are in Table S13.

The ‘masterDF’ dataframe contains each designed tile (Table S5). Tiles 
that were not measured have activity recorded as nan or 0. The ‘orthorlogDF’ 
dataframe contains all tiles associated with each original full-length ortholog 
(Table S6). As a result, tiles occur multiple times because they map to multiple 
orthologs. The ‘NativeLocation’ is the position of the tile relative to the first 
amino acid. The ‘NormLocation’ is the position of the tile relative to the WxxLF 

motif. Finally, the ‘FullOrthoDF’ dataframe contains one entry for each full-length 
ortholog, and each column contains an array with values for each position 
(Table S7), such as imputed activity at each position and local charge from 
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localCIDER. The location of the bZIP DNA-binding domain was identified with the 
InterPro signature (IPR004827). 

Description of python analysis scripts
● Step2_AddSeqFeaturestoDataFrame_Oct_2024.ipynb

○ Combines the data from the two replicates.
○ Computes many sequence features, like net charge.

● AD_AlignmentDists.ipynb
○ This script looks at the Edit distances between pairs of sequences. It

shows that many changes in sequence do not change activity.
● AD_properties Fall 2024.ipynb

○ This script explores how sequence properties, like AA abundance or 
motif locations, contribute to activation domain activity.

○ Contains main figure panels
● Composition_ANOVA Fall 2024.ipynb

○ ANOVA analysis of OLS regression on composition and dipeptides
● Controls_oct024.ipynb

○ Barplots for control sequences
○ Reproducibility analysis

● Full_Length_TFs_Heatmaps_Fall 2024.ipynb
○ Script to make heatmaps of full-length orthologs 

● Sensu strictu v2.ipynb
○ Plot activity traces of S. cerevisiae and closest species

● Gaussian_Threshold.ipynb
○ Analysis of inactive sequences to find activity threshold

● YeastAnalysisfunctions.py
○ Support functions for visualizing data
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Supplementary Note: Additional analysis of the 
orthologs

Selection of the Gcn4 orthologs
We chose a diverse set of orthologous Gcn4 protein sequences for 

functional characterization in S. cerevisiae. We started with a set of forty-nine 
previously identified orthologs 16,41,55. In these, 48/49 contain an WxxLF motif. 
Next, we scanned 207 representative proteomes from the MycoCosm database, 
sampling the diversity of fungal genomes (Figure S1, S2). To distinguish Gcn4 
orthologs from other basic-leucine zipper (bZIP) domain TFs, we required the 
presence of both a bZIP DNA-binding domain (IPR004827) and the WxxLF motif. 
This computational screen yielded 1188 hits in 129 genomes. There are 502 
unique Gcn4 ortholog sequences that we used for all our experiments and 
analyses (Figure S1). These sequences span nearly all the Ascomycota, the 
largest phylum of Fungi, representing >600 million years of evolution 42. The 502
unique orthologs have variable lengths (Figure 1A), but the DBD is at the C-
terminus in 500, and the distance between the WxxLF motif and the DBD is very 
consistent (Figure 1B).

The Gcn4 MSA typifies eukaryotic TF evolution, with a highly conserved 
DBD and lower conservation in the rest of the protein (Figure 1C). Sequence 
divergence is driven by insertions: 88% of columns in the MSA contain fewer 
than 5% of sequences (n<25) and 54% of columns contain <1% of sequences 
(n<5) (Figure S4). Without user input, the MAFT algorithm aligned the WxxLF 
motif in nearly all sequences (Methods). We suspect that MAFT aligned nearly all 
WxxLF motifs because the distance between this motif and the DBD is highly 
consistent. Distant pairs of sequences do not align outside of the DBD, but we 
have enough sequences to bridge the full diversity of the collection. The central 
activation domain shows intermediate levels of conservation largely driven by 
the WxxLF motif. Since we required all the orthologs to contain a WxxLF motif, 
the conservation of this motif is overstated in Figure 1C, but we independently 
verified that this motif is the most conserved sequence outside the DNA-binding 
domain using a HMMER search of fungal TFs (Figure 2C).
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All orthologs are activators
To show that all the orthologs contain at least one active tile, we used 

multiple thresholds. As an unbiased threshold for modest activity, we fit a 
Gaussian distribution to the inactive sequences. Using this highly permissive 
threshold, all orthologs have at least one tile that is active. As a stringent 
threshold for activity we doubled this threshold, or used the top 20% of 
sequences, which yielded very similar values. At the stringent threshold, there is 
only one ortholog with no active tiles, Canca1_23981 from Tortispora 
caseinolytica. This ortholog is an alternative gene model for the Canca1_57326 
protein, which contains an additional 99 N-terminal residues with twenty-three 
overlapping active tiles that comprise two activation domains, the second of 
which overlaps the WxxLF motif. The short form of the protein starts at the 
WxxLF motif. Based on improved, transcript-based gene models, the short 
version, Canca1_23981, is likely a computational annotation error. There is more 
support for the long version, Canca1_57326. Given the relatively weak evidence 
supporting the one potential exception, we conclude all of the Gcn4 orthologs 
are activators.

Alternative gene models from Tortispora caseinolytica. Canca1_23981 (red) and 
Canca1_57326 (dark blue) are alternative gene models for the same locus. 
Importantly, they are identical, so the red overlaps the dark blue. 

Activation domains per ortholog
Longer TFs often have more active tiles (Figure 2E). When we merged 

overlapping active tiles, most orthologs had more than one activation domain 
(Figure 2F). The lengths of the merged activation domains are bimodal, but 
they are generally <200 AA (Figure 2G). 

We used two methods to count activation domains on each ortholog. First, 
we aggregated overlapping active tiles. This method biases towards fewer longer
activation domains because there must be more than forty AA between active 
regions for them to be called as separate activation domains. With this method, 
245 orthologs (48.8% ) have only one activation domain, and for all these 
orthologs, the AD overlaps the WxxLF motif. In total 500 activation domains 
contained the WxxLF motif, and these were longer than N-terminal activation 
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domains. There were also many single-tile activation domains. Second, we used 
the smoothed data to find activation domains. This method averages out some 
experimental noise and shortens active regions. In this approach, there are only 
332 orthologs with an activation domain that contains the WxxLF motif, 
consistent with the peak of activity being upstream of this motif. There are more 
N-terminal activation domains, and they are shorter than activation domains with
the WxxLF motif. In both methods, the sequences of the N-terminal activation 
domains are diverse. 

Clusters of aromatic and leucine residues make large 
contributions to function

In the control activation domains, all published motifs of aromatic and 
leucine residues made large contributions to activity, but no individual motif was 
sufficient for full activity. Historically, S. cerevisiae Gcn4 is annotated with two 
activation domains: the CAD is residues 101-140, while the N terminal activation 
domain (NAD) is residues 1-100 (Figure 2A)78,87,88. There are six published 
motifs, F9 F16 (FxxxxxxF), F45 F48 (FxxF), F67 F69 (FxF), F97 F98 (FF), M107 
Y110 L113 (MxxYxxL or MFxYxxL), and W120 L123 F124 (WxxLF)78,88. The CAD 
has two motifs that make large contributions to activity78,88 (Figure 2B). The 
strongest tile from Gcn4 was the junction of the NAD and CAD (residues 90-129), 
which we call the altCAD, a region with three motifs 78 that make large 
contributions to function (Figure 2B, S7). All published motifs are enriched in 
active tiles (Figure S20A), and tiles with multiple motifs are more likely to have 
high activity (Figure S20B). However, in our sequences and an independent set 
of fungal orthologs, only the WxxLF motif is well conserved (Figure 1C, 2C, S3).
We do not see reemergence of any published motifs. The hydrophobic motifs 
essential for function in S. cerevisiae are not conserved and do not experience 
evolutionary turnover.

Sequence features of strongly active tiles
The Gcn4 ortholog tiles efficiently detected known sequence features of 

strong yeast activation domains. Acidic, aromatic, leucine, and methionine 
residues make the largest contributions to activity16,18–23,28,31 (Figure 4A, C). 
Aromatics generally increase activity, but too many aromatic residues reduces 
activity (Figure S17F,G), a non-monotonic trend previously seen only in 
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synthetic peptides18 and mutant activation domains28. This non-monotonicity is a 
key piece of evidence supporting the acidic exposure model because it shows 
how too many hydrophobic residues can overwhelm the exposure capacity of the
acidic residues26–28. Moreover, aspartic acid (D) makes much stronger 
contributions to activity than glutamic acid (E) (Figure 4C), which has only been 
seen in mutants18 and weakly in plant activation domains23. We suspect this 
effect occurs because the negative charge is closer to the peptide backbone, 
leading to a stronger solvation effect and more exposure of nearby hydrophobic 
residues 43. This modestly sized dataset gave a much clearer picture of key 
sequence properties than much larger datasets 18,21,23, indicating that orthologs 
provide a very efficient set of sequences for learning the sequence features that 
control function (Figure S20).

Evidence for negative (purifying) selection 
The Yeast Gene Order Browser (YGOB) contains a high quality set of thirty-

six true homologs inferred from chromosomal synteny. All of the species 
following the whole genome duplication contain only one Gcn4 homolog, 
suggesting there is no advantage of retaining two copies. This result suggests 
that most species will have just one true homolog. The YGOB analysis of full-
length TFs shows negative selection (Figure S1E), implying there is pressure to 
maintain a functional protein. This weak negative selection and large protein 
diversity supports the idea that the neutral space is very large and that the Gcn4
sequence can drift.

Enforcing the presence of a strict WxxLF motif left out one true homolog 
from YGOB, Zygosaccharomyces bailiii ZYBA0L03268g, which has an insertion in 
the WxxLF motif yielding WPSLEPLF. This sequence was not included in our 
current experiment but was measured as highly active in one replicate in Staller 
et al. 2018, suggesting activation domain function is also conserved in this 
ortholog. This example reinforces the idea that motifs can be flexible.

Analysis of the Gal11/Med15 coactivator
The best characterized coactivator of S. cerevisiae Gcn4 is Gal11/Med15. 

Med15 contains four regions that bind to Gcn4, the KIX domain and three 
activation domain binding domains (ABD1, ABD2, ABD3) 44. Activity of our P3 
promoter is well correlated with in vitro binding to Med15 18, indicating this 
promoter is a reliable reporter of binding to Med15. We collected a set of 653 
Gal11 orthologs from the Y1000+ genomes and created an MSA. The KIX, ABD1, 
and ABD3 domains are more conserved than the rest of the protein. ABD2 
approaches the rest of the protein. The residues of the ABD1 domain that 
contact Gcn4 45 are reasonably conserved, but not more conserved than the rest 
of ABD1 (Figure S31). Overall the conservation of Med15 is much higher than 
Gcn4. 

Analysis of the spacer sequence between the CAD and DBD
 The distance between the WxxLF motif (CAD) and the DBD is highly 

conserved and may be an entropic spacer. The amino acid sequence of this 
spacer is very poorly conserved, but both the undulating charge pattern and the 
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high degree of predicted intrinsic disorder are conserved. NMR data clearly 
indicates that S. cerevisiae Gcn4 is fully disordered in solution and that the DBD 
folds upon binding DNA and the CAD folds upon binding Med15. Predicting this 
pattern is difficult, and Gcn4 has become a stringent test for intrinsic disorder 
prediction algorithms. AlphaFold predicts the DBD correctly. AlphaFold predicts 
many short, low-confidence helices outside the DBD, but none overlap the CAD 
NMR helix. To predict intrinsic disorder of the orthologs, we used Metapredict, 
which carefully examined performance on Gcn4 during algorithm development 
86. Based on this analysis, the most disordered region in all orthologs is the 
sequence between the CAD and DBD. This region has a positive to negative 
charge undulation just before the DBD. 

Analysis of the spacer sequence between the WxxLF motif and the DBD
Left panels align position on the WxxLF motif. Middle panels align position on the
DBD. The spacer is the sequence between these landmarks. Imputed activity of 
the spacer is low. Predicted intrinsic disorder of the spacer is high 
(Metapredict2). Negative change undulates between the landmarks. The region 
right after the WxxLF is negatively charged, followed by a positively charged 
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region and another net negative region just before the positively charged DBD. 
Hydrophobicity is high throughout.

Predicted disorder in the spacer sequence peaks between the WxxLF 
motif and the DBD

We speculate this region is a conserved entropic spacer that keeps the 
activation domain away from the DBD and exposed to partners. S. cerevisiae has
uncommonly long spacing between the WxxLF and DBD (Figure 1B, red arrow). 
We tested this idea by predicting biophysical parameters with Albatross 47. We 
see that the predicted radius of gyration (estimate of ensemble size) and end-to-
end distance distributions are very tight, implying that there might be some 
selection to maintain a specific 3D spacing distance.
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Computationally predicted scaling exponents and biophysical properties
of the spacer from Sparrow.
The highly consistent predicted dimensions support they hypothesis that this 
spacer is keeping the central activation domain away from the DBD.

Additional analysis of tile sequence properties
Yeast activation domains are more reliant on aromatic residues than 

leucine residues. This difference is illustrated by the human CITED2 activation 
domain. In human cells, the aromatic residues make small contributions to 
CITED2 function, but in yeast, these residues make large contributions to 
function. Leucine residues contribute to CITED2 function in both yeast and 
human cells. The mutant of CITED2 without aromatic residues was the strongest 
sequence with no aromatic residues (Figure S7B). It is mildly surprising that 
CITED2 works in yeast because its primary coactivator partner, TAZ1, is not 
present in yeast.

Sanborn et al. argued that the Wimley White hydrophobicity (WW) score 
was well correlated with AD activity 18. We had previously used the Kyte Doolittle
hydropathy (KD) score and found no correlation in designed mutants 16. The 
largest difference between these tables is tryptophan, W, which has a high value 
on WW and moderate value on KD. Since W makes large contributions to activity,
we believe that the number of W’s drives the conclusion by Sanborn et al. 2021. 
In our Gcn4 ortholog tiles, the two hydrophobicity scores are well correlated with 
each other. Both have similar, low correlations with activity. Some 
hydrophobicity is required for activity. The combination of acidity and 
hydrophobicity is more predictive than hydrophobicity alone.
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Naturally occurring changes in sequence generally do not change 
activity

Most naturally occurring sequence changes do not change activity. 
Starting with the altCAD as an anchor, we identified related sequences with 
increasing edit distance. As sequence divergence increased, all the natural 
sequences maintained high activity. In contrast, designed mutants show that 
small changes in sequence can cause loss of activity. Large effect changes are 
absent from the evolutionary record. This result supports a model where neutral 
drift and weak negative selection maintain activation domain activity. 

Next, we compared pairs of sequences that differed by one or two amino 
acids. As a null model for differences in tile activities, we chose 10000 random 
pairs of tiles and computed the difference between their activities. The 
distribution of activity differences between tiles that differ at 1-2 amino acids is 
much smaller. 
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 In most cases, there was little-to-no change in activity. We imposed a 
strong threshold for change in activity: either one member of the pair was active 
and the other inactive, or both were active but differed in activity by more than 
50%. In the majority of cases that change activity, the sequence change was 
interpretable by our acidic exposure model: the stronger tile had additional 
acidic or hydrophobic residues. Of the 345 pairs of tiles that differ at a single 
position, 15 pairs (2.5%) had different activities and 9 supported the acidic 
exposure model. In four cases, an L or M was added that increased activity. In 
one case, an E>D change increased activity. In three cases, adding an S or G, 
which promotes disorder and expansion, increased activity. Of the 403 pairs of 
tiles that differ at two positions, 27 changed activity (7%). Two of these were 
designed mutants in the altCAD, FF>AA and LL>AA, both of which caused large 
decreases in activity (Figure S7). 17/27 cases (or 15/25 natural cases) supported 
the acidic exposure model. These data further support the mounting evidence that 
activation domains are robust enough to maintain because most single and double 
AA changes do change activity. 
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