
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Radiative Models of Neutrino Mass, Dark Matter, and Related Phenomena

Permalink
https://escholarship.org/uc/item/55f6k2xc

Author
Popov, Oleg Igorevich

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/55f6k2xc
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

RIVERSIDE

Radiative Models of Neutrino Mass, Dark Matter, and Related Phenomena

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Physics

by

Oleg Popov

September 2017

Dissertation Committee:

Dr. Ernest Ma, Chairperson
Dr. Hai-bo Yu
Dr. Jose Wudka



Copyright by

Oleg Popov

2017



The Dissertation of Oleg Popov is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am grateful to my advisor, Dr. Ernest Ma, without whose help, I would not have

been here. I am really thankful for his patience during those times when he was

teaching and explaining me new things. I would like also to thank all of my commity

members, Dr. Jose Wudka, Hai-bo Yu, Gail Hanson for being with me during this

interesting and hard PhD path. I would like to thank all my teachers who have pa-

tiently tought me all new interesting and hard things that I have learned. Seperate

thanks to My advisor, Hai-bo Yu, Philip Tanedo for helping me with participating

and being involved with physics conferences, workshops, and summer schools during

my PhD path which helped me with meeting new collaborators, friends, start new

projects, learn and participate in new research. I would like also to thanks my re-

search group members,Muhammadreza Zakeri, Sean Fraser, Alexander Natale, Corey

Kownacki, Nickolas Pollard with whom I have worked and studied during this not

easy path and with whom we have passed through many difficult and challenging

tasks and problems. Separate thanks to Jhon Gonzales for help with administrative

guidance with travell during my visit to conferences, etc. A lot of thnaks to Derek

Beving who have always helped me with administrative paperwork. I would like to

also thanks UCR high energy theory group members with whom I have spent a lot

of time working, in the high energy pheno group office. A special thanks goes to my

advisor, Dr. Ernest Ma, for always keeping me busy with new work, projects, and

tasks. I would also like to thank my mother for all the support and patience that she

iv



has done over this long and not easy path.

v



To my mother and all my teachers for all the support.

vi



ABSTRACT OF THE DISSERTATION

Radiative Models of Neutrino Mass, Dark Matter, and Related Phenomena

by

Oleg Popov

Doctor of Philosophy, Graduate Program in Physics

University of California, Riverside, September 2017

Dr. Ernest Ma, Chairperson

In this thesis I will summarize the research and the work I have contributed with,

during the years of my PhD pursue. The focus of research includes the mysteri-

ous origin of Neutrino masses, the nature of Dark Matter, relation between exis-

tence of Dark Matter and the character of Neutrino mass mechanism, origin of the

PontecorvoMakiNakagawaSakata (PMNS) matrix, CP violation in the leptonic sector

and their relation to physics at high energy scale. Models simultaneously explaining

several of the above have been developed. Study of these models’ phenomenology

and possible discovery channels at Large Hadron Collider (LHC) and International

Linear Collider (ILC) in the future have been performed as well. Study of new models

unifying all fundamental forces have been also pursued, leading to the prediction of

new exotic particles interacting through new forces of nature.

vii



Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Scotogenic Inverse Seesaw Model of Neutrino Mass[1] 3

3 Neutrino Mixing and CP Phase Correlations[2] 14

4 Type II Radiative Seesaw Model of Neutrino Mass with Dark Matter[3] 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Type II Radiative Seesaw Neutrino Masses . . . . . . . . . . . . . . . 29

4.3 Doubly Charged Higgs Production and Decay . . . . . . . . . . . . . 32

4.4 Dark Matter Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Phenomenology of the Utilitarian Supersymmetric Standard Model[4] 40

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Gauge Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Scalar Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Physical Scalars and Pseudoscalars . . . . . . . . . . . . . . . . . . . 50

5.6 Diphoton Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



5.7 Scalar Neutrino and Neutralino Sectors . . . . . . . . . . . . . . . . . 57

5.8 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Gauge B − L Model of Radiative Neutrino Mass with Multipartite
Dark Matter[5] 65

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Radiative Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Multipartite Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Scalar Sector for Symmetry Breaking . . . . . . . . . . . . . . . . . . 73

6.6 Gauge Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.7 Leptoquark Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.9 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Pathways to Naturally Small Dirac Neutrino Masses[6] 78

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Four specific tree-level realizations . . . . . . . . . . . . . . . . . . . . 81

7.3 Two generic one-loop realizations . . . . . . . . . . . . . . . . . . . . 84

7.4 Scotogenic Dirac neutrino mass in left-right model . . . . . . . . . . . 87

7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 One Leptoquark to unify them? Neutrino masses and unification in
the light of (g − 2)µ, RD(?) and RK anomalies[7] 92

9 Quartified Leptonic Color, Bound States, and Future Electron-Positron
Collider[8] 123

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2 The BMW model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.3 Gauge coupling unification and the leptonic color confinement scale . 129

9.4 Thermal history of stickons . . . . . . . . . . . . . . . . . . . . . . . 130

ix



9.5 Formation and decay of stickballs . . . . . . . . . . . . . . . . . . . . 131

9.6 Revelation of leptonic color at future e−e+ colliders . . . . . . . . . . 133

9.7 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10 Dark Gauge U(1) Symmetry for an Alternative Left-Right Model[9]141

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.3 Gauge sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.4 Fermion sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10.5 Scalar sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

10.6 Present phenomenological constraints . . . . . . . . . . . . . . . . . . 151

10.7 Dark sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10.8 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.9 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

11 Conclusion 162

Bibliography 165

x



List of Figures

2.1 One-loop generation of inverse seesaw neutrino mass. . . . . . . . . . 5

2.2 One-loop generation of seesaw neutrino mass with heavy Majorana N . 8

3.1 One-loop generation of inverse seesaw neutrino mass. . . . . . . . . . 17

3.2 sin2(2θ23) versus λ in normal ordering. . . . . . . . . . . . . . . . . . 20

3.3 δCP versus λ in normal ordering. . . . . . . . . . . . . . . . . . . . . . 21

3.4 sin2(2θ23) versus δCP in normal ordering. . . . . . . . . . . . . . . . . 22

3.5 sin2(2θ23) versus λ in inverted ordering. . . . . . . . . . . . . . . . . . 23

3.6 δCP versus λ in inverted ordering. . . . . . . . . . . . . . . . . . . . . 24

3.7 sin2(2θ23) versus δCP in inverted ordering. . . . . . . . . . . . . . . . 24

4.1 One-loop Z2 scotogenic neutrino mass. . . . . . . . . . . . . . . . . . 28

4.2 One-loop neutrino mass from L = 0 Higgs triplet. . . . . . . . . . . . 29

4.3 LHC Production cross section of ξ++ξ−− at 13 TeV. . . . . . . . . . . 33

xi



4.4 Number of e±e±µ∓µ∓2s12s∗1 events for 13 TeV at luminosity 100 fb−1. 36

4.5 Allowed values of λ12 plotted against ms1 from relic abundance assum-

ing λ11 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 One-loop production of S3 by gluon fusion. . . . . . . . . . . . . . . . 52

5.2 One-loop decay of S3 to two photons. . . . . . . . . . . . . . . . . . . 52

5.3 Allowed region for diphoton cross section of 6.2± 1 fb. . . . . . . . . 56

6.1 Radiative generation of neutrino mass through dark matter. . . . . . 69

6.2 Radiative generation of ν − S ′ mixing. . . . . . . . . . . . . . . . . . 71

6.3 Radiative generation of S ′ mass. . . . . . . . . . . . . . . . . . . . . . 72

7.1 Dirac neutrino mass with a Dirac singlet fermion insertion. . . . . . . 81

7.2 Dirac neutrino mass with a Dirac triplet fermion insertion. . . . . . . 82

7.3 Dirac neutrino mass with a Dirac doublet fermion insertion. . . . . . 82

7.4 Dirac neutrino mass with a doublet scalar insertion. . . . . . . . . . . 83

7.5 Dirac neutrino mass in one loop with trilinear scalar coupling. . . . . 84

7.6 Dirac neutrino mass in one loop with quadratic scalar mixing. . . . . 86

7.7 Scotogenic Dirac neutrino mass in left-right symmetry. . . . . . . . . 90

9.1 Moose diagram of [SU(3)]4 quartification. . . . . . . . . . . . . . . . 127

xii



10.1 Relic-abundance constraints on λ0 and f0 for mζ = 150 GeV and vari-

ous values of mχ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiii



List of Tables

4.1 Events observed by CMS at 8 TeV with integrated luminosity 19.5 fb−1. 34

5.1 Particle content of proposed model. . . . . . . . . . . . . . . . . . . . 64

6.1 Particle content of proposed model. . . . . . . . . . . . . . . . . . . . 77

7.1 SU(2)L × U(1)Y assigments of ψ, η, and χ. . . . . . . . . . . . . . . . 85

7.2 S = Z2 assigments of η, ψR, ψL, and χ. . . . . . . . . . . . . . . . . . 85

7.3 Particle content of proposed left-right gauge model. . . . . . . . . . . 88

7.4 Scotogenic additions to the proposed left-right gauge model. . . . . . 89

9.1 Particle content of proposed model. . . . . . . . . . . . . . . . . . . . 128

9.2 Partial decay widths of the hemionium Ω. . . . . . . . . . . . . . . . 140

10.1 Particle content of proposed model of dark gauge U(1) symmetry. . . 160

10.2 Particle content of proposed model under (T3R + S)× Z2. . . . . . . . 161

xiv



Chapter 1

Introduction

The Standard Model of particle interactions have been successful for the last 50

years, it explains such things as the confinement of quarks into proton, neutron, it

explains weak and electromagnetic interactions and there unification, since 2012 the

newly discovered Higgs particles was the last part to complete the Standard Model,

and which also seponsible for the particles’ masses and electroweak (EW) symmetry

breaking. Despite all these achievements, there excist many open questions that re-

quire us to go beyond the Standard Model of particle interactions in order to attempt

to resolve those questions. Some of this questions are the non-zero value of neutrino

masses, excistance of Dark Matter in the Universe, unification of forces at high scales,

the symmetry responsible for the generation of CKM and PMNS matricies and the

origin of structure in flavor sector, unification of quarks and leptons are higher scale,

etc. These are just some of the many puzzles that are waiting there to be solved. In
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this text we will attempt to touch on some of this questions.

Since 1979 it is known that the dimension-5 operator[19] to produce Majorana neu-

trino mass is (νiφ
0)(νjφ

0). The simplest ways to realize this operator at the tree

level were shown[20] 1998 for the first time. They are known as seesaw I,II,III type

mechanisms[21, 22, 23]. Many higher loop order realizations of this operator also ex-

ist: radiatively at a one loop order [24, 20, 25, 1, 10, 7], or at higher orders[11, 12, 7].

Moreover, in order to achieve specific pattern of mixing angles in the lepton sector,

there excist many models [1, 13, 14, 15, 16, 17] in the literature.

Another question to address is the unification of quarks and leptons of standard model

of interactions at higher scales. Restoring symmetry between quarks and leptons, be-

tween right and left sectors of the stadard model have been studied in many variations

in the literature [29, 184, 185, 186, 169, 18].
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Chapter 2

Scotogenic Inverse Seesaw Model

of Neutrino Mass[1]

Sean Fraser, Ernest Ma, and Oleg Popov

Department of Physics and Astronomy, University of California,

Riverside, California 92521, USA

Abstract

A variation of the original 2006 radiative seesaw model of neutrino mass through dark

matter is shown to realize the notion of inverse seesaw naturally. The dark-matter

3



candidate here is the lightest of three real singlet scalars which may also carry flavor.
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In 1998, the simplest realizations of the dimension-five operator [19] for Majo-

rana neutrino mass, i.e. (νiφ
0)(νjφ

0), were discussed systematically [20] for the first

time. Not only was the nomenclature for the three and only three tree-level see-

saw mechanisms established: (I) heavy singlet neutral Majorana fermion N [21], (II)

heavy triplet Higgs scalar (ξ++, ξ+, ξ0) [22], and (III) heavy triplet Majorana fermion

(Σ+,Σ0,Σ−) [23], the three generic one-loop irreducible radiative mechanisms involv-

ing fermions and scalars were also written down for the first time. Whereas one such

radiative mechanism was already well-known since 1980, i.e. the Zee model [24], a

second was not popularized until eight years later in 2006, when it was used [25] to

link neutrino mass with dark matter, called scotogenic from the Greek scotos mean-

ing darkness. The third remaining unused mechanism is the subject of this paper. It

will be shown how it is a natural framework for a scotogenic inverse seesaw model of

neutrino mass, as shown in Fig. 1. The new particles are three real singlet scalars

Figure 2.1: One-loop generation of inverse seesaw neutrino mass.
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s1,2,3, and one set of doublet fermions (E0, E−)L,R, and one Majorana singlet fermion

NL, all of which are odd under an exactly conserved discrete symmetry Z2. This

specific realization was designated T1-3-A with α = 0 in the compilation of Ref. [26].

Note however that whereas (E0, E−)L is not needed to complete the loop, it serves

the dual purpose of (1) rendering the theory to be anomaly-free and (2) allowing E

to have an invariant mass for the implementation of the inverse seesaw mechanism.

The notion of inverse seesaw [27, 28, 29] is based on an extension of the 2×2 mass

matrix of the canonical seesaw to a 3 × 3 mass matrix by the addition of a second

singlet fermion. In the space spanned by (ν,N, S), where ν is part of the usual lepton

doublet (ν, l) and N,S are singlets, all of which are considered left-handed, the most

general 3× 3 mass matrix is given by

Mν =




0 m2 0

m2 mN m1

0 m1 mS



. (2.1)

The zero ν − S entry is justified because there is only one ν to which N and S may

couple through the one Higgs field φ0. The linear combination which couples may

then be redefined as N , and the orthogonal combination which does not couple is S.

If mS,N is assumed much less than m1, then the induced neutrino mass is

mν '
m2

2mS

m2
1

. (2.2)

This formula shows that a nonzero mν depends on a nonzero mS, and a small mν

is obtained by a combination of small mS and m2/m1. This is supported by the

6



consideration of an approximate symmetry, i.e. lepton number L, under which ν, S ∼

+1 and N ∼ −1. Thus m1,2 conserve L, but mS breaks it softly by 2 units. Note

that there is also a finite one-loop contribution from mN [30, 31].

Other assumptions about m1,mS,mN are also possible [32]. If m2,mN << m2
1/mS

and m1 << mS, then a double seesaw occurs with the same formula as that of the

inverse seesaw, but of course with a different mass hierarchy. If m1,m2 << mN and

m2
1/mN << mS << m1, then a lopsided seesaw [32] occurs with mν ' −m2

2/mN

as in the canonical seesaw, but ν − S mixing may be significant, i.e. m1m2/mSmN ,

whereas ν −N mixing is the same as in the canonical seesaw, i.e.
√
mν/mN . In the

inverse seesaw, ν −N mixing is even smaller, i.e. mν/m2, but ν − S mixing is much

larger, i.e. m2/m1, which is only bounded at present by about 0.03 [33]. In the double

seesaw, the effective mass of N is m2
1/mS, so ν − N mixing is also

√
mν/mN . Here

mS >> mN , so the ν − S mixing is further suppressed by m1/mS.

In the original scotogenic model [25], neutrino mass is radiatively induced by heavy

neutral Majorana singlet fermions N1,2,3 as shown in Fig. 2. However, they may be

replaced by Dirac fermions. In that case, a U(1)D symmetry may be defined [34],

under which η1,2 transform oppositely. If Z2 symmetry is retained, then a radiative

inverse seesaw neutrino mass is also possible [35, 36]. We discuss here instead the

new mechanism of Fig. 1, based on the third one-loop realization of neutrino mass

first presented in Ref. [20]. The smallness of mN , i.e. the Majorana mass of NL,

7



νL νLNR

η0 η0

φ0 φ0

Figure 2.2: One-loop generation of seesaw neutrino mass with heavy Majorana N .

may be naturally connected to the violation of lepton number by two units, as in

the original inverse seesaw proposal using Eq. (1). It may also be a two-loop effect

as first proposed in Ref. [37], with a number of subsequent papers by other authors,

including Refs. [38, 39, 40].

In our model, lepton number is carried by (E0, E−)L,R as well as NL. This means

that the Yukawa term N̄L(E0
Rφ

0 − E−Rφ+) is allowed, but not NL(E0
Lφ

0 − E−Lφ+). In

the 3× 3 mass matrix spanning (Ē0
R, E

0
L, NL), i.e.

ME,N =




0 mE mD

mE 0 0

mD 0 mN



, (2.3)

mE comes from the invariant mass term (Ē0
RE

0
L+E+

RE
−
L ), mD comes from the Yukawa

term given above connecting NL with E0
R through 〈φ0〉 = v, and mN is the soft lepton-

number breaking Majorana mass of NL. Assuming that mN << mD,mE, the mass

8



eigenvalues of ME,N are

m1 =
m2
EmN

m2
E +m2

D

, (2.4)

m2 =
√
m2
E +m2

D +
m2
DmN

2(m2
E +m2

D)
, (2.5)

m3 = −
√
m2
E +m2

D +
m2
DmN

2(m2
E +m2

D)
. (2.6)

In the limit mN → 0, E0
R pairs up with E0

L cos θ + NL sin θ to form a Dirac fermion

of mass
√
m2
E +m2

D, where sin θ = mD/
√
m2
E +m2

D. This means that the one-loop

integral of Fig. 1 is well approximated by

mν =
f 2m2

DmN

16π2(m2
E +m2

D −m2
s)

[
1− m2

s ln((m2
E +m2

D)/m2
s)

(m2
E +m2

D −m2
s)

]
. (2.7)

This expression is indeed of the form expected of the inverse seesaw.

The radiative mechanism of Fig. 1 is also suitable for supporting a discrete flavor

symmetry, such as Z3. Consider the choice

(νi, li)L ∼ 1, 1′, 1′′, s1 ∼ 1, (s2 + is3)/
√

2 ∼ 1′, (s2 − is3)/
√

2 ∼ 1′′, (2.8)

with mass terms m2
ss

2
1 + m′s

2(s2
2 + s2

3), then the induced 3 × 3 neutrino mass matrix

is of the form

Mν =




fe 0 0

0 fµ 0

0 0 fτ







I(m2
s) 0 0

0 0 I(m′s
2)

0 I(m′s
2) 0







fe 0 0

0 fµ 0

0 0 fτ




=




f 2
e I(m2

s) 0 0

0 0 fµfτI(m′s
2)

0 fµfτI(m′s
2) 0



, (2.9)
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where I is given by Eq. (7) with f 2 removed. Let liR ∼ 1, 1′, 1′′, then the charged-

lepton mass matrix is diagonal using just the one Higgs doublet of the standard

model, in keeping with the recent discovery [41, 42] of the 125 GeV particle. To

obtain a realistic neutrino mass matrix, we break Z3 softly, i.e. with an arbitrary

3× 3 mass-squared matrix spanning s1,2,3, which leads to



1 0 0

0 1/
√

2 i/
√

2

0 1/
√

2 −i/
√

2



OT




I(m2
s1) 0 0

0 I(m2
s2) 0

0 0 I(m2
s3)



O




1 0 0

0 1/
√

2 1/
√

2

0 i/
√

2 −i/
√

2



,

(2.10)

where O is an orthogonal matrix but not the identity, and there can be three different

mass eigenvalues ms1,s2,s3 for the s1,2,3 sector. The assumption of Eq. (8) results in

Eq. (10) and allows the following interesting pattern for the neutrino mass matrix

Mν . The Yukawa couplings fe,µ,τ may be rendered real by absorbing their phases

into the arbitrary relative phases between E0
R and νe,µ,τ . If we further assume fµ = fτ ,

then Mν is of the form [43]

Mν =




A C C∗

C D∗ B

C∗ B D



, (2.11)

where A and B are real. Note that this pattern is protected by a symmetry first

pointed out in Ref. [44], i.e. e → e and µ − τ exchange with CP conjugation, and

appeared previously in Refs. [45, 46]. As such, it is also guaranteed to yield maximal

νµ − ντ mixing (θ23 = π/4) and maximal CP violation, i.e. exp(−iδ) = ±i, whereas

θ13 may be nonzero and arbitrary. Our scheme is thus a natural framework for this
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possibility. Further, from Eq. (7), it is clear that it is also a natural framework for

quasi-degenerate neutrino masses as well. Let

F (x) =
1

1− x

[
1 +

x lnx

1− x

]
, (2.12)

where x = m2
s/(m

2
E +m2

D), then Eq. (7) becomes

mν =
f 2m2

DmN

(m2
E +m2

D)
F (x). (2.13)

Since F (0) = 1 and goes to zero only as x → ∞, this scenario does not favor a

massless neutrino. If fe,µ,τ are all comparable in magnitude, the most likely outcome

is three massive neutrinos with comparable masses.

Since the charged leptons also couple to s1,2,3 through E−, there is an unavoidable

contribution to the muon anomalous magnetic moment given by [47]

∆aµ =
(g − 2)µ

2
=

f 2
µm

2
µ

16π2m2
E

∑

i

|Uµi|2G(xi), (2.14)

where

G(x) =
1− 6x+ 3x2 + 2x3 − 6x2 lnx

6(1− x)4
, (2.15)

with xi = m2
si/m

2
E and

U = O




1 0 0

0 1/
√

2 1/
√

2

0 i/
√

2 −i/
√

2



. (2.16)

To get an estimate of this contribution, let xi << 1, then ∆aµ = f 2
µm

2
µ/96π2m2

E. For

mE ∼ 1 TeV, this is of order 10−11f 2
µ, which is far below the present experimental

11



sensitivity of 10−9 and can be safely ignored. The related amplitude for µ → eγ is

given by

Aµe =
efµfemµ

32π2m2
E

∑

i

U∗eiUµiG(xi). (2.17)

Using the most recent µ→ eγ bound [48]

B =
12π2|Aµe|2
m2
µG

2
F

< 5.7× 10−13, (2.18)

and the approximation
∑
i U
∗
eiUµiG(xi) ∼ 1/36 (based on tribimaximal mixing with

x1 ∼ 0 and x2 ∼ 1) and mE ∼ 1 TeV, we find

fµfe < 0.03. (2.19)

Let fe,µ,τ ∼ 0.1, mN ∼ 10 MeV, mD ∼ 10 GeV, mE ∼ 1 TeV, then the very reasonable

scale of mν ∼ 0.1 eV in Eq. (7) is obtained, justifying its inverse seesaw origin.

Since NL is the lightest particle with odd Z2, it is a would-be dark-matter candi-

date. However, suppose we add NR so that the two pair up to have a large invariant

Dirac mass, then the lightest scalar (call it S) among s1,2,3 is a dark-matter candidate.

It interacts with the standard-model Higgs boson h according to

−Lint =
λhS
2
vhS2 +

λhS
4
h2S2. (2.20)

If we assume that all its other interactions are suppressed, then the annihilations

SS → h → SM particles and SS → hh determine its relic abundance, whereas its

elastic scattering off nuclei via h exchange determines its possible direct detection in

underground experiments. A detailed analysis [49] shows that the present limit of

12



the invisible width of the observed 125 GeV particle (identified as h) allows mS to be

only within several GeV below mh/2 or greater than about 150 GeV using the recent

LUX data [50]. Note that the vector fermion doublet (E0, E−) is not the usually

considered vector lepton doublet because it is odd under Z2 and cannot mix with the

known leptons.

In conclusion, we have shown how neutrino mass and dark matter may be con-

nected using a one-loop mechanism proposed in 1998. This scotogenic model is natu-

rally suited to implement the notion of inverse seesaw for neutrino mass, allowing the

scale of new physics to be 1 TeV or less. The imposition of a softly broken Z3 flavor

symmetry yields an interesting pattern of radiative neutrino mass, allowing for max-

imal θ23 and maximal CP violation. The real singlet scalars in the dark sector carry

lepton flavor, the lightest of which is absolutely stable. Our proposal provides thus a

natural theoretical framework for this well-studied phenomenological possibility.

This work is supported in part by the U. S. Department of Energy under Grant

No. DE-SC0008541.
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Chapter 3

Neutrino Mixing and CP Phase

Correlations[2]

Ernest Ma, Alexander Natale, and Oleg Popov

Department of Physics and Astronomy,

University of California, Riverside, California 92521, USA

Abstract

A special form of the 3× 3 Majorana neutrino mass matrix derivable from µ− τ

interchange symmetry accompanied by a generalized CP transformation was

14



obtained many years ago. It predicts θ23 = π/4 as well as δCP = ±π/2, with θ13 6= 0.

Whereas this is consistent with present data, we explore a deviation of this result

which occurs naturally in a recent proposed model of radiative inverse seesaw

neutrino mass.
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A special form of the 3 × 3 Majorana neutrino mass matrix first appeared in

2002 [45, 46], i.e.

Mν =




A C C∗

C D∗ B

C∗ B D



, (3.1)

where A,B are real. It was shown that θ13 6= 0 and yet both θ23 and the CP

nonconserving phase δCP are maximal, i.e. θ23 = π/4 and δCP = ±π/2. Subsequently,

this pattern was shown [44] to be protected by a symmetry, i.e. e → e and µ ↔ τ

exchange with CP conjugation. All three predictions are consistent with present

experimental data. Recently, a radiative (scotogenic) model of inverse seesaw neutrino

mass has been proposed [51] which naturally obtains

Mλ
ν =




1 0 0

0 1 0

0 0 λ



Mν




1 0 0

0 1 0

0 0 λ



, (3.2)

where λ = fτ/fµ is the ratio of two real Yukawa couplings.

This model has three real singlet scalars s1,2,3 and one Dirac fermion doublet

(E0, E−) and one Dirac fermion singlet N , all of which are odd under an exactly

conserved (dark) Z2 symmetry. As a result, the third one-loop radiative mechanism

proposed in 1998 [20] for generating neutrino mass is realized, as shown below.

The mass matrix linking (N̄L, Ē
0
L) to (NR, E

0
R) is given by

MN,E =



mN mD

mF mE


 , (3.3)
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Figure 3.1: One-loop generation of inverse seesaw neutrino mass.

where mN ,mE are invariant mass terms, and mD,mF come from the Higgs vacuum

expectation value 〈φ0〉 = v/
√

2. As a result, N and E0 mix to form two Dirac fermions

of masses m1,2, with mixing angles

mDmE +mFmN = sin θL cos θL(m2
1 −m2

2), (3.4)

mDmN +mFmE = sin θR cos θR(m2
1 −m2

2). (3.5)

To connect the loop, Majorana mass terms (mL/2)NLNL and (mR/2)NRNR are as-

sumed. Since both E and N may be defined to carry lepton number, these new

terms violate lepton number softly and may be naturally small, thus realizing the

mechanism of inverse seesaw [27, 28, 29] as explained in Ref. [51]. Using the Yukawa

interaction fsĒ0
RνL, the one-loop Majorana neutrino mass is given by

mν = f 2mR sin2 θR cos2 θR(m2
1 −m2

2)2
∫ d4k

(2π)4

k2

(k2 −m2
s)

1

(k2 −m2
1)2

1

(k2 −m2
2)2

+ f 2mLm
2
1 sin2 θL cos2 θR

∫ d4k

(2π)4

1

(k2 −m2
s)

1

(k2 −m2
1)2

17



+ f 2mLm
2
2 sin2 θR cos2 θL

∫ d4k

(2π)4

1

(k2 −m2
s)

1

(k2 −m2
2)2

− 2f 2mLm1m2 sin θL sin θR cos θL cos θR

∫ d4k

(2π)4

1

(k2 −m2
s)

1

(k2 −m2
1)

1

(k2 −m2
2)
.(3.6)

It was also shown in Ref. [51] that the implementation of a discrete flavor Z3 symme-

try, which is softly broken by the 3× 3 real scalar mass matrix spanning s1,2,3, leads

to Mλ
ν of Eq. (2).

To explore how the predictions θ23 = π/4 and δCP = ±π/2 are changed for λ 6= 1,

consider the general diagonalization of Mν , i.e.

Mν = EαUEβMdEβU
TEα, (3.7)

where

Eα =




eiα1 0 0

0 eiα2 0

0 0 eiα3



, Eβ =




eiβ1 0 0

0 eiβ2 0

0 0 eiβ3



, Md =




m1 0 0

0 m2 0

0 0 m3



.

(3.8)

Hence

MνM†
ν = EαUM2

dU
†E†α. (3.9)

We then have

Mλ
ν(Mλ

ν)
† = EαU [1 + ∆]M2

λd[1 + ∆†]U †E†α, (3.10)

where

∆ = U †




0 0 0

0 0 0

0 0 λ− 1



U, M2

λd =




m2
1 0 0

0 m2
2 0

0 0 λ2m2
3



. (3.11)

18



We now diagonalize numerically

[1 + ∆]M2
λd[1 + ∆†] = OM2

newO
T , (3.12)

where O is an orthogonal matrix, andM2
new is diagonal with mass eigenvalues equal

to the squares of the physical neutrino masses. Let us define

A = (1 + ∆)−1O, (3.13)

then

AM2
newA

† =M2
λd. (3.14)

Since U is known with θ23 = π/4 and δ = ±π/2, we know ∆ once λ is chosen. The

orthogonal matrix O has three angles as parameters, so A has three parameters. In

Eq. (14), once the three physical neutrino mass eigenvalues of M2
new are given, the

three off-diagonal entries of M2
λd are constrained to be zero, thus determining the

three unknown parameters of O. Once O is known, UO is the new neutrino mixing

matrix, from which we can extract the correlation of θ23 with δCP . There is of course

an ambiguity in choosing the three physical neutrino masses, since only ∆m2
32 and

∆m2
21 are known. There are also the two different choices of m1 < m2 < m3 (normal

ordering) and m3 < m1 < m2 (inverted ordering). We consider each case, and choose

a value of either m1 or m3 starting from zero. We then obtain numerically the values

of sin2(2θ23) and δCP as functions of λ 6= 1. We need also to adjust the input values

of θ12 and θ13, so that their output values for λ 6= 1 are the preferred experimental
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Figure 3.2: sin2(2θ23) versus λ in normal ordering.

values.

We use the 2014 Particle Data Group values [52] of neutrino parameters:

sin2(2θ12) = 0.846± 0.021, ∆m2
21 = (7.53± 0.18)× 10−5 eV2, (3.15)

sin2(2θ23) = 0.999




+0.001

−0.018


 , ∆m2

32 = (2.44± 0.06)× 10−3 eV2 (normal),(3.16)

sin2(2θ23) = 1.000




+0.000

−0.017


 , ∆m2

32 = (2.52± 0.07)× 10−3 eV2 (inverted),(3.17)

sin2(2θ13) = (9.3± 0.8)× 10−2. (3.18)

We consider first normal ordering, choosing the three representative values m1 =

0, 0.03, 0.06 eV. We then vary the value of λ > 1. [The case λ < 1 is equivalent to

λ−1 > 1 with µ− τ exchange.] Following the algorithm already mentioned, we obtain

numerically the values of sin2(2θ23) and δCP as functions of λ. Our solutions are fixed

by the central values of ∆m2
21, ∆m2

32, sin2(2θ12), and sin2(2θ13). In Figs. 2 and 3 we
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Figure 3.3: δCP versus λ in normal ordering.

plot sin2(2θ23) and δCP respectively versus λ. We see from Fig. 2 that λ < 1.15 is

required for sin2(2θ23) > 0.98. We also see from Fig. 3 that δCP is not sensitive to

m1. Note that our scheme does not distinguish δCP from −δCP . In Fig. 4 we plot

sin2(2θ23) versus δCP . We see that δCP/(π/2) > 0.95 is required for sin2(2θ23) > 0.98.

We then consider inverted ordering, using m3 instead of m1. We plot in Figs. 5, 6,

and 7 the corresponding results. Note that in our scheme, the effective neutrino mass

mee measured in neutrinoless double beta decay is very close to m1 in normal ordering

and m3 +
√

∆m2
32 in inverted ordering. We see similar constraints on sin2(2θ23) and

δCP . In other words, our scheme is insensitive to whether normal or inverted ordering

is chosen. Finally, we have checked numerically that θ23 < π/4 if λ > 1, and θ23 > π/4

if λ < 1. As we already mentioned, the two solutions are related by the mapping
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Figure 3.4: sin2(2θ23) versus δCP in normal ordering.

λ→ λ−1.
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Figure 3.5: sin2(2θ23) versus λ in inverted ordering.

In conclusion, we have explored the possible deviation from the prediction of

maximal θ23 and maximal δCP in a model of radiative inverse seesaw neutrino mass.

We find that given the present 1σ bound of 0.98 on sin2(2θ23), δCP/(π/2) must be

greater than about 0.95.

This work is supported in part by the U. S. Department of Energy under Grant

No. DE-SC0008541.
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Figure 3.6: δCP versus λ in inverted ordering.
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Figure 3.7: sin2(2θ23) versus δCP in inverted ordering.
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Chapter 4

Type II Radiative Seesaw Model of

Neutrino Mass with Dark

Matter[3]

Sean Fraser, Corey Kownacki, Ernest Ma, and Oleg Popov

Department of Physics and Astronomy, University of California,

Riverside, California 92521, USA
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Abstract

We consider a model of neutrino mass with a scalar triplet (ξ++, ξ+, ξ0) assigned

lepton number L = 0, so that the tree-level Yukawa coupling ξ0νiνj is not allowed.

It is generated instead through the interaction of ξ and ν with dark matter and the

soft breaking of L to (−1)L. We discuss the phenomenological implications of this

model, including ξ++ decay and the prognosis of discovering the dark sector at the

Large Hadron Collider.
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4.1 Introduction

Nonzero neutrino mass is necessary to explain the well-established phenomenon of

neutrino oscillations in many experiments. Theoretically, neutrino masses are usually

assumed to be Majorana and come from physics at an energy scale higher than that

of electroweak symmetry breaking of order 100 GeV. As such, the starting point of

any theoretical discussion of the underlying theory of neutrino mass is the effective

dimension-five operator [19]

L5 = −fij
2Λ

(νiφ
0 − liφ+)(νjφ

0 − ljφ+) +H.c., (4.1)

where (νi, li), i = 1, 2, 3 are the three left-handed lepton doublets of the standard

model (SM) and (φ+, φ0) is the one Higgs scalar doublet. As φ0 acquires a nonzero

vacuum expectation value 〈φ0〉 = v, the neutrino mass matrix is given by

Mν
ij =

fijv
2

Λ
. (4.2)

Note that L5 breaks lepton number L by two units.

It is evident from Eq. (2) that neutrino mass is seesaw in character, because it is

inversely proportional to the large effective scale Λ. The three well-known tree-level

seesaw realizations [20] of L5 may be categorized by the specific heavy particle used to

obtain it: (I) neutral fermion singlet N , (II) scalar triplet (ξ++, ξ+, ξ0), (III) fermion

triplet (Σ+,Σ0,Σ0). It is also possible to realize L5 radiatively in one loop [20] with

the particles in the loop belonging to the dark sector, the lightest neutral one being
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the dark matter of the Universe. The simplest such example [25] is the well-studied

“scotogenic” model, from the Greek ’scotos’ meaning darkness. The one-loop diagram

is shown in Fig. 1. The new particles are a second scalar doublet (η+, η0) and three

νL νLNR

η0 η0

φ0 φ0

Figure 4.1: One-loop Z2 scotogenic neutrino mass.

neutral singlet fermions NR. The dark Z2 is odd for (η+, η0) and NR, whereas all

SM particles are even. This is thus a Type I radiative seesaw model. It is of course

possible to replace N with Σ0, so it becomes a Type III radiative seesaw model [53].

What then about Type II?

Since L5 is a dimension-five operator, any loop realization is guaranteed to be

finite. On the other hand, if a Higgs triplet (ξ++, ξ+, ξ0) is added to the SM, a

dimension-four coupling ξ0νiνj− ξ+(νilj + liνj)/
√

2+ ξ++lilj is allowed. As ξ0 obtains

a small vacuum expectation value [54] from its interaction with the SM Higgs doublet,

neutrinos acquire small Majorana masses, i.e. Type II tree-level seesaw. If an exact

symmetry is used to forbid this dimension-four coupling, it will also forbid any possible

loop realization of it. Hence a Type II radiative seesaw is only possible if the symmetry
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used to forbid the hard dimension-four coupling is softly broken in the loop, as recently

proposed [55].

4.2 Type II Radiative Seesaw Neutrino Masses

The symmetry used to forbid the hard ξ0νν coupling is lepton number U(1)L under

which ξ ∼ 0. The scalar trilinear ξ̄0φ0φ0 term is allowed and induces a small 〈ξ0〉,

but ν remains massless. To connect ξ0 to νν in one loop, we add a new Dirac fermion

doublet (N,E) with L = 0, together with three complex neutral scalar singlets s

with L = 1. The resulting one-loop diagram is shown in Fig. 2. Note that the hard

νL νLs s

N N

ξ0

×

Figure 4.2: One-loop neutrino mass from L = 0 Higgs triplet.

terms ξ0NN and sν̄LNR are allowed by L conservation, whereas the ss terms break

L softly by two units to (−1)L. A dark Z2 parity, i.e. (−1)L+2j, exists under which

N,E, s are odd and ν, l, ξ are even. Hence the lightest s is a possible dark-matter

candidate. The three s scalars are the analogs of the three right-handed sneutrinos in
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supersymmetry, and (N,E)L,R are the analogs of the two higgsinos. However, their

interactions are simpler here and less constrained.

The usual understanding of the Type II seesaw mechanism is that the scalar

trilinear term µξ†ΦΦ induces a small vacuum expectation value 〈ξ0〉 = u if either µ is

small or mξ is large or both. More precisely, consider the scalar potential of Φ and ξ.

V = m2Φ†Φ +M2ξ†ξ +
1

2
λ1(Φ†Φ)2 +

1

2
λ2(ξ†ξ)2 + λ3|2ξ++ξ0 − ξ+ξ+|2

+ λ4(Φ†Φ)(ξ†ξ) +
1

2
λ5[|
√

2ξ++φ− + ξ+φ̄0|2 + |ξ+φ− +
√

2ξ0φ̄0|2]

+ µ(ξ̄0φ0φ0 +
√

2ξ−φ0φ+ + ξ−−φ+φ+) +H.c. (4.3)

Let 〈φ0〉 = v, then the conditions for the minimum of V are given by [54]

m2 + λ1v
2 + (λ4 + λ5)u2 + 2µu = 0, (4.4)

u[M2 + λ2u
2 + (λ4 + λ5)v2] + µv2 = 0. (4.5)

For µ 6= 0 but small, u is also naturally small because it is approximately given by

u ' −µv2

M2 + (λ4 + λ5)v2
, (4.6)

where v2 ' −m2/λ1. The physical masses of the L = 0 Higgs triplet are then given

by

m2(ξ0) ' M2 + (λ4 + λ5)v2, (4.7)

m2(ξ+) ' M2 + (λ4 +
1

2
λ5)v2, (4.8)

m2(ξ++) ' M2 + λ4v
2. (4.9)
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Since the hard term ξ0νν is forbidden, u by itself does not generate a neutrino mass.

Its value does not have to be extremely small compared to the electroweak breaking

scale. For example u ∼ 0.1 GeV is acceptable, because its contribution to the precisely

measured ρ parameter ρ0 = 1.00040 ± 0.00024 [56] is only of order 10−6. With the

soft breaking of L to (−1)L shown in Fig. 2, Type II radiative seesaw neutrino masses

are obtained. Let the relevant Yukawa interactions be given by

LY = fssν̄LNR +
1

2
fRξ

0NRNR +
1

2
fLξ

0NLNL +H.c., (4.10)

together with the allowed mass terms mE(N̄N + ĒE), m2
ss
∗s, and the L breaking

soft term (1/2)(∆m2
s)s

2 +H.c., then

mν =
f 2
s urx

16π2
[fRFR(x) + fLFL(x)], (4.11)

where r = ∆m2
s/m

2
s and x = m2

s/m
2
E, with

FR(x) =
1 + x

(1− x)2
+

2x lnx

(1− x)3
, (4.12)

FL(x) =
2

(1− x)2
+

(1 + x) lnx

(1− x)3
. (4.13)

Using for example x ∼ fR ∼ fL ∼ 0.1, r ∼ fs ∼ 0.01, we obtain mν ∼ 0.1 eV for

u ∼ 0.1 GeV. This implies that ξ may be as light as a few hundred GeV and be

observable, with µ ∼ 1 GeV. For fs ∼ 0.01 and mE a few hundred GeV, the new

contributions to the anomalous muon magnetic moment and µ→ eγ are negligible in

this model.

In the case of three neutrinos, there are of course three s scalars. Assuming

that the L breaking soft terms |(∆m2
s)ij| << |m2

si
− m2

sj
| for i 6= j, then the 3 × 3
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neutrino mass matrix is diagonal to a very good approximation in the basis where

the s mass-squared matrix is diagonal. This means that the dark scalars sj couples

to Uijli, where Uij is the neutrino mixing matrix linking e, µ, τ to the neutrino mass

eigenstates ν1,2,3.

4.3 Doubly Charged Higgs Production and Decay

The salient feature of any Type II seesaw model is the doubly charged Higgs

boson ξ++. If there is a tree-level ξ++l−i l
−
j coupling, then the dominant decay of ξ++

is to l+i l
+
j . Current experimental limits [57] on the mass of ξ++ into eµ, µµ, and ee

final states are about 490 to 550 GeV, assuming for each a 100% branching fraction.

In the present model, since the effective ξ++l−i l
−
j coupling is one-loop suppressed,

ξ++ → W+W+ should be considered [58] instead, for which the present limit on

m(ξ++) is only about 84 GeV [59]. A dedicated search of the W+W+ mode in the

future is clearly called for.

If m(ξ++) > 2mE, then the decay channel ξ++ → E+E+ opens up and will

dominate. In that case, the subsequent decay E+ → l+s, i.e. charged lepton plus

missing energy, will be the signature. The present experimental limit [60] on mE,

assuming electroweak pair production, is about 260 GeV if ms < 100 GeV for a 100%

branching fraction to e or µ, and no limit if ms > 100 GeV. There is also a lower

threshold for ξ++ decay, i.e. m(ξ++) sufficiently greater than 2ms, for which ξ++
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decays through a virtual E+E+ pair to ssl+l+, resulting in same-sign dileptons plus

missing energy.
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Figure 4.3: LHC Production cross section of ξ++ξ−− at 13 TeV.

In Fig. 3 we plot the pair production cross section of ξ++ξ−− at the Large Hadron

Collider (LHC) at a center-of-mass energy of 13 TeV. We assume that ξ+ and ξ0 are

heavier than ξ++ so that we can focus only on the decay products of ξ±±. The W±W±

mode is always possible and should be looked for experimentally in any case. However,

as already noted, a much more interesting possibility is the case m(ξ++) > 2mE, with

the subsequent decay E+ → l+s. This would yield four charged leptons plus missing

energy, and depending on the linear combination of charged leptons coupling to s,

there could be exotic final states which have very little SM background, becoming

thus excellent signatures to search for. Suppose s1 is the lightest scalar, and s2,3 are

heavier than E+, then E+ decays to s1
∑
Ui1l

+
i . Hence the decay of ξ++ξ−− could
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Selected CMS results OSSF0 Nτhad = 0 , Nb = 0

signal regions HT > 200 GeV HT < 200 GeV

≥ 4 leptons /ET (GeV) Obs. Exp.(SM) Obs. Exp.(SM)

SR1 (100,∞) 0 0.01+0.03
−0.01 0 0.11+0.08

−0.08

SR2 (50, 100) 0 0.00+0.02
−0.00 0 0.01+0.03

−0.01

SR3 (0, 50) 0 0.00+0.02
−0.00 0 0.01+0.02

−0.01

3 leptons /ET (GeV) Obs. Exp.(SM) Obs. Exp.(SM)

SR4 (100,∞) 5 3.7± 1.6 7 11.0± 4.9

SR5 (50, 100) 3 3.5± 1.4 35 38± 15

SR6 (0, 50) 4 2.1± 0.8 53 51± 11

Table 4.1: Events observed by CMS at 8 TeV with integrated luminosity 19.5 fb−1.

yield for example e+e+µ−µ− plus four s1 (missing energy) in the final state.

Recent LHC searches for multilepton signatures at 8 TeV by CMS [61] and AT-

LAS [62] are consistent with SM expectations, and are potential restrictions on our

model. In particular, the CMS study includes rare SM events such as e+e+µ−µ− and

e+e+µ−. Due to the absence of opposite-sign, same-flavor (OSSF) l+l− pairs, both

events are classified as OSSF0 where lepton l refers to electron or muon. Leptonic tau

decays contribute to the electron and muon counts, and this determines the OSSFn

category. Details from CMS are shown in Table 1. The CMS study estimates a neg-
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ligible SM background for SR1-SR3, and in our simulation we use the same selection

criteria. We impose the cuts on transverse momentum pT > 10 GeV and psuedora-

pidity |η| < 2.4 for each charged lepton, with at least one lepton pT > 20 GeV. In

order to be isolated, each lepton with pT must satisfy
∑
i pT i < 0.15pT , where the sum

is over all objects within a cone of radius ∆R = 0.3 around the lepton direction.

We implement our model with FeynRules 2.0 [63]. Using the CTEQ6L1 parton

distribution functions, we generate events using MadGraph5 [64], which includes the

Pythia package for hadronization and showering. MadAnalysis [65] is then used with

the Delphes card designed for CMS detector simulation. Generated events intially

have 4 leptons. About half are detected as 3 lepton events, but the constraints from

signal regions SR4-SR6 are less restrictive than SR1-SR3. The number of detected

events in the OSSF0 ≥ 4 lepton category is almost the same as e±e±µ∓µ∓2s12s∗1 with

very few additional leptons from showering or initial/final state radiation.

To examine the production of e±e±µ∓µ∓ we take the mass of s1 to be 130 GeV,

which allows s1 to be dark matter as discussed in the next section. We use the values

fR = fL = 0.1 and fs = 0.01, although the results are not sensitive to the exact

values due to on-shell production and decay. The effects due to u ∼ 0.1 GeV may be

neglected.

For our model, we scan the mass range of ξ++ and E+. In Fig. 4 we plot contours

showing the expected number of detected events in the OSSF0 ≥ 4 lepton category

for 13 TeV at luminosity 100 fb−1 assuming a negligible background as for the 8 TeV
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case. A similar analysis performed for 8 TeV at 19.5 fb−1 excludes the region with

more than about 15 events in Fig. 4.
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Figure 4.4: Number of e±e±µ∓µ∓2s12s∗1 events for 13 TeV at luminosity 100 fb−1.

4.4 Dark Matter Properties

The lightest s, say s1, is dark matter. Its interaction with leptons is too weak to

provide a large enough annihilation cross section to explain the present dark matter
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relic density ΩM of the Universe. However, it also interacts with the SM Higgs

boson through the usual quartic coupling λss
∗sΦ†Φ. For a value of λs consistent with

ΩM , the direct-detection cross section in underground experiments is determined as

a function of ms. A recent analysis [66] for a real s claims that the resulting allowed

parameter space is limited to a small region near ms < mh/2.

In our model, we can evade this constraint by evoking s2,3. The mass-squared

matrix spanning s∗i sj is given by

(M2
s)ij = m2

ij + λijv
2, (4.14)

whereas the coupling matrix of the one Higgs h to s∗i sj is λijv
√

2. Upon diagonalizing

M2
s, the coupling matrix will not be diagonal in general. In the physical basis, s1

will interact with s2 through h. This allows the annihilation of s1s
∗
1 to hh through

s2 exchange, and contributes to ΩM without affecting the s1 scattering cross section

off nuclei through h. This mechanism restores s1 as a dark-matter candidate for

ms > mh.

To demonstrate the scale of the values involved, we consider the simplifying case

when ms2 = ms3 and λ12 = λ13. The additional choice m2
s2,3

= m2
s1

+ m2
h ensures

that s2,3 are heavier than s1, and is convenient because then the relic abundance

requirement no longer depends explicitly on m2
s2,3

. Taking into account that s1 is a

complex scalar, we use σ × vrel = 4.4 ×10−26cm3s−1 [67] and in Fig. 5 we plot the

allowed values for λ12 and ms1 taking λ11 = 0 for simplicity to satisfy the LUX data.
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Figure 4.5: Allowed values of λ12 plotted against ms1 from relic abundance assuming
λ11 = 0.

Another possible scenario is to add a light scalar χ with L = 0, which acts as a

mediator for s self-interactions. This has important astrophysical implications [68,

45, 69, 70, 71, 72]. In this case, s1s
∗
1 annihilating to χχ becomes possible.

4.5 Conclusion

We have studied a new radiative Type II seesaw model of neutrino mass with dark

matter [55], which predicts a doubly charged Higgs boson ξ++ with suppressed decay

to l+l+, thereby evading the present LHC bounds of 490 to 550 GeV on its mass. In
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this model, ξ++ may decay to two charged heavy fermions E+E+, each with odd dark

parity. The subsequent decay of E+ is into a charged lepton l+ and a scalar s which

is dark matter. Hence there is the interesting possibility of four charged leptons, such

as µ−µ−e+e+, plus large missing energy in the final state. We show that the LHC at

13 TeV will be able to probe such a doubly charged Higgs boson with a mass of the

order 400 to 500 GeV.

This work is supported in part by the U. S. Department of Energy under Grant

No. DE-SC0008541.

39



Chapter 5

Phenomenology of the Utilitarian

Supersymmetric Standard

Model[4]

Sean Fraser, Corey Kownacki, Ernest Ma, Nicholas Pollard,

Oleg Popov, and Mohammadreza Zakeri

Department of Physics and Astronomy,

University of California, Riverside, California 92521, USA

40



Abstract

We study the 2010 specific version of the 2002 proposed U(1)X extension of the

supersymmetric standard model, which has no µ term and conserves baryon number

and lepton number separately and automatically. We consider in detail the scalar

sector as well as the extra ZX gauge boson, and their interactions with the

necessary extra color-triplet particles of this model, which behave as leptoquarks.

We show how the diphoton excess at 750 GeV, recently observed at the LHC, may

be explained within this context. We identify a new fermion dark-matter candidate

and discuss its properties. An important byproduct of this study is the discovery of

relaxed supersymmetric constraints on the Higgs boson’s mass of 125 GeV.
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5.1 Introduction

Since the recent announcements [73, 74] by the ATLAS and CMS Collaborations

at the Large Hadron Collider (LHC) of a diphoton excess around 750 GeV, numerous

papers [75] have appeared explaining its presence or discussing its implications. In

this paper, we study the phenomenology of a model proposed in 2002 [45], which

has exactly all the necessary and sufficient particles and interactions for this purpose.

They were of course there for solving other issues in particle physics. However, the

observed diphoton excess may well be a first revelation [76] of this model, including

its connection to dark matter.

This 2002 model extends the supersymmetric standard model by a new U(1)X

gauge symmetry. It replaces the µ term with a singlet scalar superfield which also

couples to heavy color-triplet superfields which are electroweak singlets. The lat-

ter are not ad hoc inventions, but are necessary for the cancellation of axial-vector

anomalies. It was shown in Ref. [45] how this was accomplished by the remarkable

exact factorization of the sum of eleven cubic terms, resulting in two generic classes

of solutions [77]. Both are able to enforce the conservation of baryon number and

lepton number up to dimension-five terms. As such, the scalar singlet and the vector-

like quarks are indispensible ingredients of this 2002 model. They are thus naturally

suited for explaining the observed diphoton excess. In 2010 [78], a specific version was

discussed, which will be the subject of this paper as well. An important byproduct of
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this study is the discovery of relaxed supersymmetric constraints on the Higgs boson’s

mass of 125 GeV. This is independent of whether the diphoton excess is confirmed or

not.

5.2 Model

Consider the gauge group SU(3)C × SU(2)L × U(1)Y × U(1)X with the particle

content of Ref. [45]. For n1 = 0 and n4 = 1/3 in Solution (A), the various superfields

transform as shown in Table 1. There are three copies of Q, uc, dc, L, ec, N c, S1, S2;

two copies of U,U c, S3; and one copy of φ1, φ2, D,D
c. The only allowed terms of the

superpotential are thus trilinear, i.e.

Qucφ2, Qdcφ1, Lecφ1, LN cφ2, S3φ1φ2, N cN cS1, (5.1)

S3UU
c, S3DD

c, ucN cU, ucecD, dcN cD, QLDc, S1S2S3. (5.2)

The absence of any bilinear term means that all masses come from soft supersymmetry

breaking, thus explaining why the U(1)X and electroweak symmetry breaking scales

are not far from that of supersymmetry breaking. As S1,2,3 acquire nonzero vacuum

expectation values (VEVs), the exotic (U,U c) and (D,Dc) fermions obtain Dirac

masses from 〈S3〉, which also generates the µ term. The singlet N c fermion gets a

large Majorana mass from 〈S1〉, so that the neutrino ν gets a small seesaw mass in

the usual way. The singlet S1,2,3 fermions themselves get Majorana masses from their
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scalar counterparts 〈S1,2,3〉 through the S1S2S3 terms. The only massless fields left

are the usual quarks and leptons. They then become massive as φ0
1,2 acquire VEVs,

as in the minimal supersymmetric standard model (MSSM).

Because of U(1)X , the structure of the superpotential conserves both B and

(−1)L, with B = 1/3 for Q,U,D, and B = −1/3 for uc, dc, U c, Dc; (−1)L odd for

L, ec, N c, U, U c, D,Dc, and even for all others. Hence the exotic U,U c, D,Dc scalars

are leptoquarks and decay into ordinary quarks and leptons. The R parity of the

MSSM is defined here in the same way, i.e. R ≡ (−)2j+3B+L, and is conserved. Note

also that the quadrilinear terms QQQL and ucucdcec (allowed in the MSSM) as well

as ucdcdcN c are forbidden by U(1)X . Proton decay is thus strongly suppressed. It

may proceed through the quintilinear term QQQLS1 as the S1 fields acquire VEVs,

but this is a dimension-six term in the effective Lagrangian, which is suppressed by

two powers of a very large mass, say the Planck mass, and may safely be allowed.

5.3 Gauge Sector

The new ZX gauge boson of this model becomes massive through 〈S1,2,3〉 = u1,2,3,

whereas 〈φ0
1,2〉 = v1,2 contribute to both Z and ZX . The resulting 2× 2 mass-squared

matrix is given by [79]

M2
Z,ZX

=




(1/2)g2
Z(v2

1 + v2
2) (1/2)gZgX(v2

2 − v2
1)

(1/2)gZgX(v2
2 − v2

1) 2g2
X [(1/9)u2

1 + (4/9)u2
2 + u2

3 + (1/4)(v2
1 + v2

2)]


 .

(5.3)
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Since precision electroweak measurements require Z−ZX mixing to be very small [80],

v1 = v2, i.e. tan β = 1, is preferred. With the 2012 discovery [41, 42] of the 125 GeV

particle, and identified as the one Higgs boson h responsible for electroweak symmetry

breaking, tan β = 1 is not compatible with the MSSM, but is perfectly consistent here,

as shown already in Ref. [78] and in more detail in the next section.

Consider the decay of ZX to the usual quarks and leptons. Each fermionic partial

width is given by

Γ(ZX → f̄f) =
g2
XMZX

24π
[c2
L + c2

R], (5.4)

where cL,R can be read off under U(1)X from Table 1. Thus

Γ(ZX → t̄t)

Γ(ZX → µ+µ−)
=

Γ(ZX → b̄b)

Γ(ZX → µ+µ−)
=

27

5
. (5.5)

This will serve to distinguish it from other Z ′ models [81].

At the LHC, limits on the mass of any Z ′ boson depend on its production by u

and d quarks times its branching fraction to e−e+ and µ−µ+. In a general analysis of

Z ′ couplings to u and d quarks,

L =
g′

2
Z ′µf̄γµ(gV − gAγ5)f, (5.6)

where f = u, d. The cu, cd coefficients used in an experimental search [57, 60] of Z ′

are then given by

cu =
g′2

2
[(guV )2 + (guA)2]B(Z ′ → l−l+), cd =

g′2

2
[(gdV )2 + (gdA)2]B(Z ′ → l−l+), (5.7)
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where l = e, µ. In this model

cu = cd =
g2
X

4
B(Z ′ → l−l+). (5.8)

To estimate B(Z ′ → l−l+), we assume ZX decays to all SM quarks and leptons with

effective zero mass, all the scalar leptons with effective mass of 500 GeV, all the scalar

quarks with effective mass of 800 GeV, the exotic U,D fermions with effective mass

of 400 GeV (needed to explain the diphoton excess), and one pseudo-Dirac fermion

from combining S̃1,2 (the dark matter candidate to be discussed) with mass of 200

GeV. We find B(Z ′ → l−l+) = 0.04, and for gX = 0.53, a lower bound of 2.85 TeV

on mZX
is obtained from the LHC data based on the 7 and 8 TeV runs.

5.4 Scalar Sector

Consider the scalar potential consisting of φ1,2 and S1,2,3. Whereas there are 2

copies of S3 and 3 copies each of S1,2, we can choose one copy each to be the one with

nonzero vacuum expectation value. We then assume that the superpotential linking

them is given by

W = fS3φ1φ2 + hS3S2S1, (5.9)

which is of course missing some terms. We have neglected them for simplicity. Its

contribution to the scalar potential is

VF = f 2(Φ†1Φ1 + Φ†2Φ2)S∗3S3 + h2(S∗1S1 + S∗2S2)S∗3S3 + |fΦ†1Φ2 + hS1S2|2, (5.10)
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where φ1 has been redefined to Φ1 = (φ+
1 , φ

0
1). The gauge contribution is

VD =
1

8
g2

2[(Φ†1Φ1)2 + (Φ†2Φ2)2 + 2(Φ†1Φ1)(Φ†2Φ2)− 4(Φ†1Φ2)(Φ†2Φ1)]

+
1

8
g2

1[−(Φ†1Φ1) + (Φ†2Φ2)]2

+
1

2
g2
X

[
−1

2
Φ†1Φ1 −

1

2
Φ†2Φ2 −

1

3
S∗1S1 −

2

3
S∗2S2 + S∗3S3

]2

. (5.11)

The soft supersymmetry-breaking terms are

Vsoft = µ2
1Φ†1Φ1 + µ2

2Φ†2Φ2 +m2
3S
∗
3S3 +m2

2S
∗
2S2 +m2

1S
∗
1S1

+ [m12S
∗
2S

2
1 + AffS3Φ†1Φ2 + AhhS3S2S1 +H.c.]. (5.12)

In addition, there is an important one-loop contribution from the t quark and its

supersymmetric scalar partners:

Vt =
1

2
λ2(Φ†2Φ2)2, (5.13)

where

λ2 =
6G2

Fm
4
t

π2
ln

(
mt̃1mt̃2

m2
t

)
(5.14)

is the well-known correction which allows the Higgs mass to exceed mZ .

Let 〈φ0
1,2〉 = v1,2 and 〈S1,2,3〉 = u1,2,3, we study the conditions for obtaining a

minimum of the scalar potential V = VF + VD + Vsoft + Vt. We look for the solution

v1 = v2 = v which implies that

µ2
1 = µ2

2 + λ2v
2 (5.15)

0 = µ2
1 + Affu3 + f 2(u2

3 + v2) +
1

2
g2
X

(
v2 +

1

3
u2

1 +
2

3
u2

2 − u2
3

)
+ fhu1u2.(5.16)
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We then require that this solution does not mix the Re(φ1,2) and Re(S1,2,3) sectors.

The additional conditions are

0 = Aff + (2f 2 − g2
X)u3, (5.17)

0 =
1

3
g2
Xu1 + fhu2, (5.18)

0 =
2

3
g2
Xu2 + fhu1. (5.19)

Hence

u1 =
√

2u2, fh =
−
√

2g2
X

3
. (5.20)

The 2× 2 mass-squared matrix spanning [
√

2Re(φ0
1),
√

2Re(φ0
2)] is

M2
φ =




κ+ g2
Xv

2/2 −κ+ g2
Xv

2/2 + 2f 2v2

−κ+ g2
Xv

2/2 + 2f 2v2 κ+ g2
Xv

2/2 + 2λ2v
2


 , (5.21)

where

κ = (2f 2 − g2
X)u2

3 +
2

3
g2
Xu

2
2 +

1

2
(g2

1 + g2
2)v2. (5.22)

For λ2v
2 << κ, the Higgs boson h ' Re(φ0

1 + φ0
2) has a mass given by

m2
h '

(
g2
X + 2f 2 + λ2

)
v2, (5.23)

whereas its heavy counterpart H ' Re(−φ0
1 + φ0

2) has a mass given by

m2
H ' (4f 2 − 2g2

X)u2
3 +

4

3
g2
Xu

2
2 + (g2

1 + g2
2 − 2f 2 + λ2)v2. (5.24)

The conditions for obtaining the minimum of V in the S1,2,3 directions are

0 = m2
3 + g2

Xu
2
3 +

(
3h2 − 4

3
g2
X

)
u2

2 +

√
2Ahhu

2
2

u3

, (5.25)

0 = m2
2 + 2m12u2 +

(
2h2 +

8

9
g2
X

)
u2

2 +
(
h2 − 2

3
g2
X

)
u2

3 +
√

2Ahhu3, (5.26)

0 = m2
1 + 2m12u2 +

(
h2 +

4

9
g2
X

)
u2

2 +
(
h2 − 1

3
g2
X

)
u2

3 +
1√
2
Ahhu3. (5.27)
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The 3 × 3 mass-squared matrix spanning [
√

2Re(S1),
√

2Re(S2),
√

2Re(S3)] is given

by

m2
11 =

4

9
g2
Xu

2
2 −

1√
2
Ahhu3 +

1

3
g2
Xv

2, m2
22 = 2m2

11 − 2m12u2, (5.28)

m2
12 = m2

21 = 2
√

2m12u2 + Ahhu3 + 2
√

2
(
h2 +

2

9
g2
X

)
u2

2 −
√

2

3
g2
Xv

2, (5.29)

m2
33 = 2g2

Xu
2
3 −
√

2Ahhu
2
2/u3 + (2f 2 − g2

X)v2, (5.30)

m2
13 = m2

31 = Ahhu2 + 2
√

2
(
h2 − 1

3
g2
X

)
u3u2, (5.31)

m2
23 = m2

32 =
√

2Ahhu2 + 2
(
h2 − 2

3
g2
X

)
u3u2. (5.32)

The 5×5 mass-squared matrix spanning [
√

2Im(φ0
1),
√

2Im(φ0
2),
√

2Im(S1),
√

2Im(S2),
√

2Im(S3)]

has two zero eigenvalues, corresponding to the would-be Goldstone modes

(1, 1, 0, 0, 0) and (v/2,−v/2,−
√

2u2/3,−2u2/3, u3), (5.33)

for the Z and ZX gauge bosons. One exact mass eigenstate is A12 = [2Im(S1) −
√

2Im(S2)]/
√

3 with mass given by

m2
A12

= −6m12u2. (5.34)

Assuming that v2 << u2
2,3, the other two mass eigenstates are A ' −Im(φ0

1)+Im(φ0
2)

and AS ' [u3Im(S1) +
√

2u3Im(S2) +
√

2u2Im(S3)]/
√
u2

2 + 3u2
3/2 with masses given

by

m2
A ' (4f 2 − 2g2

X)u2
3 +

4

3
g2
Xu

2
2, (5.35)

m2
AS
' −Ahh

(
3u3√

2
+

√
2u2

2

u3

)
, (5.36)
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respectively. The charged scalar H± = (−φ±1 + φ±2 )/
√

2 has a mass given by

m2
H± = (4f 2 − 2g2

X)u2
3 +

4

3
g2
Xu

2
2 + (g2

2 − 2f 2)v2. (5.37)

5.5 Physical Scalars and Pseudoscalars

In the MSSM without radiative corrections,

m2
H± = m2

A +m2
W , (5.38)

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Zm

2
A cos2 2β

)
, (5.39)

where tan β = v2/v1. For v1 = v2 as in this model, mh would be zero. There is of

course the important radiative correction from Eq. (14), but that alone will not reach

125 GeV. Hence the MSSM requires both large tan β and large radiative correction,

but a significant tension remains in accommodating all data. In this model, as Eq. (23)

shows, m2
h ' (g2

X + 2f 2 + λ2)v2, where v = 123 GeV. This is a very interesting and

important result, allowing the Higgs boson mass to be determined by the gauge U(1)X

coupling gX in addition to the Yukawa coupling f which replaces the µ parameter,

i.e. µ = fu3. There is no tension between mh = 125 GeV and the superparticle mass

spectrum. Since λ2 ' 0.25 for m̃t ' 1 TeV, we have the important constraint

√
g2
X + 2f 2 ' 0.885. (5.40)

For illustration, we have already chosen gX = 0.53. Hence f = 0.5 and for u3 = 2

TeV, fu3 = 1 TeV is the value of the µ parameter of the MSSM. Let us choose u2 = 4
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TeV, then mZX
= 2.87 TeV, which is slightly above the present experimental lower

bound of 2.85 TeV using gX = 0.53 discussed earlier.

As for the heavy Higgs doublet, the four components (H±, H,A) are all degenerate

in mass, i.e. m2 ' (4f 2−2g2
X)u2

3 +(4/3)g2
Xu

2
2 up to v2 corrections. Each mass is then

about 2.78 TeV. In more detail, as shown in Eq. (37), m2
H± is corrected by g2

2v
2 = m2

W

plus a term due to f . As shown in Eq. (24), m2
H is corrected by (g2

1 + g2
2)v2 = m2

Z

plus a term due to f and λ2. These are exactly in accordance with Eqs. (38) and

(39).

In the S1,2,3 sector, the three physical scalars are mixtures of all three Re(Si)

components, whereas the physical pseudoscalar A12 has no Im(S3) component. Since

only S3 couples to UU c, DDc, and φ1φ2, a candidate for the 750 GeV diphoton

resonance must have an S3 component. It could be one of the three scalars or the

pseudoscalar AS, or the other S3 without VEV. In the following, we will consider the

last option, specifically a pseudoscalar χ with a significant component of this other S3.

This allows the χUU c, χDDc and χφ1φ2 couplings to be independent of the masses

of U , D, and the charged higgsino. The other scalars and pseudoscalars are assumed

to be much heavier, and yet to be discovered.
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5.6 Diphoton Excess

In this model, other than the addition of N c for seesaw neutrino masses, the only

new particles are U,U c, D,Dc and S1,2,3, which are exactly the ingredients needed to

explain the diphoton excess at the LHC. The allowed S3UU
c and S3DD

c couplings

enable the one-loop gluon production of S3 in analogy to that of h. The one-loop decay

g

g

S3

U,D

U,D

Figure 5.1: One-loop production of S3 by gluon fusion.

of S3 to two photons comes from these couplings as well as S3φ1φ2. In addition, the

γ

γ

S3

U,D, φ

U,D, φ

Figure 5.2: One-loop decay of S3 to two photons.
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direct S1S2S3 couplings enable the decay of S3 to other final states, including those

of the dark sector, which contribute to its total width. The fact that the exotic

U,U c, D,Dc scalars are leptoquarks is also very useful for understanding [82] other

possible LHC flavor anomalies. In a nutshell, a desirable comprehensive picture of

possible new physics beyond the standard model is encapsulated by this existing

model. In the following, we assume that the pseudoscalar χ is the 750 GeV particle,

and show how its production and decay are consistent with the present data.

The production cross section through gluon fusion is given by

σ̂(gg → χ) =
π2

8mχ

Γ(χ→ gg)δ(ŝ−m2
χ). (5.41)

For the LHC at 13 TeV, the diphoton cross section is roughly [83]

σ(gg → χ→ γγ) ' (100 pb)× (λg TeV)2 ×B(χ→ γγ), (5.42)

where λg is the effective coupling of χ to two gluons, normalized by

Γ(χ→ gg) =
λ2
g

8π
m3
χ. (5.43)

Let the χQ̄Q coupling be fQ, where Q is a leptoquark fermion, then

λg =
αs
πmχ

∑

Q

fQF (m2
Q/m

2
χ), (5.44)

where [84]

F (x) = 2
√
x

[
arctan

(
1√

4x− 1

)]2

, (5.45)
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which has the maximum value of π2/4 = 2.47 as x → 1/4. Let f 2
Q/4π = 0.21 and

F (m2
Q/m

2
χ) = 2.0 (i.e. mQ = 380 GeV) for all Q = U,U,D, then λg = 0.49 TeV−1.

For the corresponding

Γ(χ→ γγ) =
λ2
γ

64π
m3
χ, (5.46)

the φ± higgsino contributes as well as U,D. However, its mass is roughly fu3 = 1

TeV, so F (xφ) = 0.394, and

λγ =
2α

πmχ

∑

ψ

NψQ
2
ψfψF (xψ), (5.47)

where ψ = U,U,D, φ± and Nψ is the number of copies of ψ. Using f 2
φ/4π = 0.21

as well, λγ = 0.069 TeV−1 is obtained. We then have Γ(χ → γγ) = 10 MeV and

Γ(χ → gg) = 4.0 GeV. If B(χ → γγ) = 2.5 × 10−4, then σ = 6 fb, and the total

width of χ is 40 GeV, in good agreement with data [73, 74].

Note the important fact that we have considered 380 GeV for the mass of the

leptoquark fermions. If they are leptoquark scalars, then their mass would be con-

strained by LHC data to be above 1 TeV or so. As fermions, Q has odd R parity,

and must decay into the lightest supersymmetric particle, which is discussed in more

detail below. We assume 200 GeV for this particle, hence there is no useful bound

on mQ at present.

As mentioned earlier, there are 2 copies of S3 and 3 copies each of S1,2. In addition

to the ones with VEVs in their scalar components, there are 5 other superfields. One

pair S̃1,2 may form a pseudo-Dirac fermion, and be the lightest particle with odd R
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parity. It will couple to χ, say with strength fS which is independent of all other

couplings that we have discussed, then the tree-level decay χ→ S̃1S̃2 dominates the

total width of χ and is invisible.

Γ(χ→ S̃1S̃2) =
f 2
S

8π

√
m2
χ − 4m2

S. (5.48)

For mχ = 750 GeV and mS = 200 GeV, we find Γ = 36 GeV if fS = 1.2. These

numbers reinforce our numerical analysis to support the claim that χ is a possible

candidate for the 750 GeV diphoton excess. Note also that λg and λγ have scalar

contributions which we have not considered. Adding them will allow us to reduce the

fermion contributions we have assumed and still get the same final results.
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Figure 5.3: Allowed region for diphoton cross section of 6.2± 1 fb.

If we disregard the decay to dark matter (fS = 0), then the total width of χ is

dominated by Γ(χ → gg), which is then less than a GeV. Assuming that the cross

section for the diphoton resonance is 6.2 ± 1 fb [83], we plot the allowed values of

f 2
Q/4π versus mQ for both fS = 1.2 which gives a total width of about 40 GeV for χ,
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and fS = 0 which requires much smaller values of f 2
Q/4π. Since χ must also decay

into two gluons, we show the diject exclusion upper limits (∼ 2 pb) from the 8 TeV

data in each case as well. Our choice of the pseudoscalr χ to be the 750 GeV diphoton

resonance is motivated by the necessity of large couplings to U,D leptoquark fermions

for explaining the large width of about 40 GeV observed by ATLAS. If we take the

evidence of CMS that this width is narrow, then as Fig. 3 shows, we can have much

smaller couplings and much greater masses for U,D. In that case, we can use a

physical scalar, with mass-squared matrix given in Eqs.(28) to (32), which is directly

associated with the µ term.

5.7 Scalar Neutrino and Neutralino Sectors

In the neutrino sector, the 2× 2 mass matrix spanning (ν,N c) per family is given

by the well-known seesaw structure:

Mν =




0 mD

mD mN


 , (5.49)

where mD comes from v2 and mN from u1. There are two neutral complex scalars

with odd R parity per family, i.e. ν̃ = (ν̃R + iν̃I)/
√

2 and Ñ c = (Ñ c
R + iÑ c

I )/
√

2. The
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4× 4 mass-squared matrix spanning (ν̃R, ν̃I , Ñ
c
R, Ñ

c
I ) is given by

M2
ν̃,Ñc =




m2
ν̃ 0 ADmD 0

0 m2
ν̃ 0 −ADmD

ADmD 0 m2
Ñc + ANmN 0

0 −ADmD 0 m2
Ñc − ANmN




. (5.50)

In the MSSM, ν̃ is ruled out as a dark-matter candidate because it interacts elastically

with nuclei through the Z boson. Here, the AN term allows a mass splitting between

the real and imaginary parts of the scalar fields, and avoids this elastic-scattering

constraint by virtue of kinematics. However, we still assume their masses to be

heavier than that of S̃1,2, discussed in the previous section.

In the neutralino sector, in addition to the 4×4 mass matrix of the MSSM spanning

(B̃, W̃3, φ̃
0
1, φ̃

0
2) with the µ parameter replaced by fu3, i.e.

M0 =




M1 0 −g1v1/
√

2 g1v2/
√

2

0 M2 g2v1/
√

2 −g2v2/
√

2

−g1v1/
√

2 g2v1/
√

2 0 −fu3

g1v2/
√

2 −g2v2/
√

2 −fu3 0




, (5.51)

there is also the 4× 4 mass matrix spanning (X̃, S̃3, S̃2, S̃1), i.e.

MS =




MX

√
2gXu3 −2

√
2gXu2/3 −

√
2gXu1/3

√
2gXu3 0 hu1 hu2

−2
√

2gXu2/3 hu1 0 hu3

−
√

2gXu1/3 hu2 hu3 0




. (5.52)
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The two are connected through the 4× 4 matrix

M0S =




0 0 0 0

0 0 0 0

−gxv1/
√

2 −fv2 0 0

−gXv2/
√

2 −fv1 0 0




. (5.53)

These neutral fermions are odd under R parity and the lightest could in principle

be a dark-matter candidate. To avoid the stringent bounds on dark matter with the

MSSM alone, we assume again that all these particles are heavier than S̃1,2, as the

dark matter discussed in the previous section.

5.8 Dark Matter

The 5 × 5 mass matrix spanning the 5 singlet fermions (S̃1, S̃2, S̃1, S̃2, S̃3), corre-

sponding to superfields with zero VEV for their scalar components, is given by

MS̃ =




0 m0 0 0 m13

m0 0 0 0 m23

0 0 0 M3 M2

0 0 M3 0 M1

m13 m23 M2 M1 0




. (5.54)

Note that the 4×4 submatrix spanning (S̃1, S̃2, S̃1, S̃2) has been diagonalized to form

two Dirac fermions. We can choose m0 to be small, say 200 GeV, and M1,2,3 to be

large, of order TeV. However, because of the mixing terms m13,m23, the light Dirac
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fermion gets split into two Majorana fermions, so it should be called a pseudo-Dirac

fermion.

The dark matter with odd R parity is the lighter of the two Majorana fermions, call

it S̃, contained in the pseudo-Dirac fermion formed out of S̃1,2 as discussed in Sec. 6.

It couples to the ZX gauge boson, but in the nonrelativistic limit, its elastic scattering

cross section with nuclei through ZX vanishes because it is Majorana. It also does

not couple directly to the Higgs boson h, so its direct detection at underground

search experiments is very much suppressed. However, it does couple to AS which

couples also to quarks through the very small mixing of AS with A. This is further

suppressed because it contributes only to the spin-dependent cross section. To obtain

a spin-independent cross section at tree level, the constraint of Eqs. (17) to (19) have

to be relaxed so that h mixes with S1,2,3.

Let the coupling of h to S̃S̃ be ε, then the effective interaction for elastic scattering

of S̃ with nuclei through h is given by

Leff =
εfq
m2
h

S̃S̃q̄q, (5.55)

where fq = mq/2v = mq/(246 GeV). The spin-independent direct-detection cross

section per nucleon is given by

σSI =
4µ2

DM

πA2
[λpZ + (A− Z)λn]2, (5.56)

where µDM = mDMMA/(mDM + MA) is the reduced mass of the dark matter. Us-
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ing [85]

λN =


∑

u,d,s

fNq +
2

27


1−

∑

u,d,s

fNq




 εmN

(246 GeV)m2
h

, (5.57)

with [86]

fpu = 0.023, fpd = 0.032, fps = 0.020, (5.58)

fnu = 0.017, fnd = 0.041, fns = 0.020, (5.59)

we find λp ' 3.50×10−8 GeV−2, and λn ' 3.57×10−8 GeV−2. Using A = 131, Z = 54,

and MA = 130.9 atomic mass units for the LUX experiment [87], and mDM = 200

GeV, we find for the upper limit of σSI < 1.5× 10−45 cm2, the bound ε < 6.5× 10−4.

We have already invoked the χS̃1S̃2 coupling to obtain a large invisible width for

χ. Consider now the fermion counterpart of χ, call it S̃ ′, and the scalar counterparts

of S̃1,2, then the couplings S̃ ′S̃1S2 and S̃ ′S̃2S1 are also fS = 1.2. Suppose one linear

combination of S1,2 , call it ζ, is lighter than 200 GeV, then the thermal relic abun-

dance of dark matter is determined by the annihilation S̃S̃ → ζζ, with a cross section

times relative velocity given by

σ × vrel =
f 4
ζm

2
S′

√
1−m2

ζ/m
2
S

16π(m2
S′ +m2

S −m2
ζ)

2
. (5.60)

Setting this equal to the optimal value [88] of 2.2 × 10−26 cm3/s, we find fζ ' 0.62

for mS′ = 1 TeV, mS = 200 GeV, and mζ = 150 GeV. Note that ζ stays in thermal

equilibrium through its interaction with h from a term in VD. It is also very difficult

to be produced at the LHC, because it is an SM singlet, so its mass of 150 GeV is

allowed.
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5.9 Conclusion

The utilitarian supersymmetric U(1)X gauge extension of the Standard Model of

particle interactions proposed 14 years ago [45] allows for two classes of anomaly-free

models which have no µ term and conserve baryon number and lepton number auto-

matically. A simple version [78] with leptoquark superfields is especially interesting

because of existing LHC flavor anomalies.

The new ZX gauge boson of this model has specified couplings to quarks and

leptons which are distinct from other gauge extensions and may be tested at the LHC.

On the other hand, a hint may already be discovered with the recent announcements

by ATLAS and CMS of a diphoton excess at around 750 GeV. It may well be the

revelation of the singlet scalar (or pseudoscalar) S3 predicted by this model which

also predicts that there should be singlet leptoquarks and other particles that S3

must couple to. Consequently, gluon fusion will produce S3 which will then decay to

two photons together with other particles, including those of the dark sector. This

scenario explains the observed diphoton excess, all within the context of the original

model, and not an invention after the fact.

Since S3 couples to leptoquarks, the S3 → l+i l
−
j decay must occur at some level. As

such, S3 → e+µ− would be a very distinct signature at the LHC. Its branching fraction

depends on unknown Yukawa couplings which need not be very small. Similarly, the

S3 couplings to φ1φ2 as well as leptoquarks imply decays to ZZ and Zγ with rates
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comparable to γγ.

An important byproduct of this study is the discovery of relaxed supersymmetric

constraints on the Higgs boson’s mass of 125 GeV. It is now given by Eq. (23), i.e.

m2
h ' (g2

X + 2f 2 + λ2)v2, which allows it to be free of the tension encountered in the

MSSM. This prediction is independent of whether the diphoton excess is confirmed

or not.

Most importantly, since S3 replaces the µ parameter, its association with the 750

GeV excess implies the existence of supersymmetry. If confirmed and supported by

subsequent data, it may even be considered in retrospect as the first evidence for the

long-sought existence of supersymmetry.

Acknowledgement : This work was supported in part by the U. S. Department of

Energy Grant No. DE-SC0008541.
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Table 5.1: Particle content of proposed model.

Superfield SU(3)C SU(2)L U(1)Y U(1)X

Q = (u, d) 3 2 1/6 0

uc 3∗ 1 −2/3 1/2

dc 3∗ 1 1/3 1/2

L = (ν, e) 1 2 −1/2 1/3

ec 1 1 1 1/6

N c 1 1 0 1/6

φ1 1 2 −1/2 −1/2

φ2 1 2 1/2 −1/2

S1 1 1 0 −1/3

S2 1 1 0 −2/3

S3 1 1 0 1

U 3 1 2/3 −2/3

D 3 1 −1/3 −2/3

U c 3∗ 1 −2/3 −1/3

Dc 3∗ 1 1/3 −1/3
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Abstract

We propose an extension of the standard model of quarks and leptons to include

gauge B − L symmetry with an exotic array of neutral fermion singlets for anomaly

cancellation. With the addition of suitable scalars also transforming under U(1)B−L,

this becomes a model of radiative seesaw neutrino mass with possible multipartite

dark matter. If leptoquark fermions are added, necessarily also transforming under

U(1)B−L, the diphoton excess at 750 GeV, recently observed at the Large Hadron

Collider, may also be explained.
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6.1 Introduction

It is well-known that a gauge B−L symmetry is supported by a simple extension

of the standard model (SM) of quarks and leptons with the addition of one singlet

right-handed neutrino per family, so that the theory is anomaly-free. For convenience

in notation, let these three extra neutral fermion singlets N be left-handed, then their

charges under U(1)B−L are (1,1,1). Their additional contributions to the axial-vector

anomaly and the mixed gauge-gravitational anomaly are respectively

(1)3 + (1)3 + (1)3 = 3, (1) + (1) + (1) = 3, (6.1)

which cancel exactly those of the SM quarks and leptons. On the other hand, it has

been known for some time [89] that another set of charges are possible, i.e.

(−5)3 + (4)3 + (4)3 = 3, (−5) + (4) + (4) = 3. (6.2)

Adding also three pairs of neutral singlet fermions with charges (1,−1), naturally

small seesaw Dirac masses for the known three neutrinos may be obtained [95], and a

residual global U(1) symmetry is maintained as lepton number. A further extension

in the scalar sector allows for the unusual case of Z3 lepton number [90] with the

appearance of a scalar dark-matter candidate which is unstable but long-lived and

decays to two antineutrinos. Here we consider another set of possible charges for

the neutral fermion singlets, such that tree-level neutrino masses are forbidden. New

scalar particles transforming under U(1)B−L are then added to generate one-loop
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Majorana neutrino masses. The breaking of B −L to Z2 results in lepton parity and

thus R parity or dark parity [55] which is odd for some particles, the lightest neutral

one being dark matter. A closer look st the neutral fermion singlets shows that one

may be a keV sterile neutrino, and two others are heavy and stable, thus realizing the

interesting scenario of multipartite dark matter. If color-triplet fermions with both

B and L are added, the diphoton excess [73, 74] at 750 GeV, recently observed at the

Large Hadron Collider (LHC), may also be explained.

6.2 Model

The extra left-handed neutral singlet fermions have charges (2, 2, 2, 2,−1,−1,−3),

so that

4(2)3 + 2(−1)3 + (−3)3 = 3, 4(2) + 2(−1) + (−3) = 3. (6.3)

Since there is no charge +1 in the above, there is no connection between them and

the doublet neutrinos ν with charge −1 through the one Higgs doublet Φ which

has charge zero. Neutrinos are thus massless at tree level. To generate one-loop

Majorana masses, the basic mechanism of Ref. [25] is adopted, using the four fermions

with charge +2, but because of the U(1)B−L gauge symmetry, we need both a scalar

doublet (η+, η0) and a scalar singlet χ0. The U(1)B−L gauge symmetry itself is broken

by ρ0
2 with charge −2 and by ρ0

4 with charge −4. The leptoquark fermions D1,2 and

Dc
1,2 are not necessary for neutrino mass, but are natural extensions of this model
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if the diphoton excess at 750 GeV requires an explanation. The complete particle

content of this model is shown in Table 1.

6.3 Radiative Neutrino Mass

Using the four N ’s, radiative Majorana masses for the three ν’s are generated

as shown in Fig. 1. [A systematic study of this mechanism under B − L (with

only one fermion and three scalars) has recently appeared [91] but does not include

our case, which has four scalars.] Note that N, η, χ all have odd R parity, so that

νi νjNk Nk

η0 η0

ρ02

ρ04

χ0 χ0φ0 φ0

Figure 6.1: Radiative generation of neutrino mass through dark matter.

the lightest neutral particle among them is a dark-matter candidate. This is the

scotogenic mechanism, from the Greek ’scotos’ meaning darkness. In addition to the

η†Φχ trilinear coupling used in Fig. 1, there is also the η†Φχ†ρ2 quadrilinear coupling,

which may also be used to complete the loop. There are 4 real scalar fields, spanning
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√
2Re(η0),

√
2Im(η0),

√
2Re(χ0),

√
2Im(χ0). We denote their mass eigenstates as

ζ0
l with mass ml. Let the νiNkη

0 coupling be hνik, then the radiative neutrino mass

matrix is given by [25]

(Mν)ij =
∑

k

hνikh
ν
jkMk

16π2

∑

l

[(yRl )2F (xlk)− (yIl )
2F (xlk)], (6.4)

where
√

2Re(η0) =
∑
l y

R
l ζ

0
l ,
√

2Im(η0) =
∑
l y

I
l ζ

0
l , with

∑
l(y

R
l )2 =

∑
l(y

I
l )

2 = 1,

xlk = m2
l /M

2
k , and the function F is given by

F (x) =
x lnx

x− 1
. (6.5)

6.4 Multipartite Dark Matter

Since the only neutral particles of odd R parity are N, η0, χ0, there appears to be

only one dark-matter candidate. However as shown below, there could be two or even

four, all within the context of the existing model.

First note that ρ0
2,4 have exactly the right U(1)B−L charges to make the (S, S, S ′)

fermions massive. The corresponding 3× 3 mass matrix is of the form

MS =




mS1 0 m13

0 mS2 m23

m13 m23 0



, (6.6)

where mS1,mS2 come from 〈ρ0
2〉 = u2 and m13,m23 from 〈ρ0

4〉 = u4. If all these

entries are of order 100 GeV to a few TeV, then there are three extra heavy singlet

neutrinos in this model which also have even R parity. They do not mix with the
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light active neutrinos ν at tree level, but do so in one loop. For example, S ′ mixes

with ν as shown in Fig. 2. Similarly S will also mix with ν, using the SNχ0 Yukawa

ν S ′N N

η0 χ0

φ0

ρ04

Figure 6.2: Radiative generation of ν − S ′ mixing.

coupling. However, these terms are negligible compared to the assumed large masses

for (S, S, S ′) and may be safely ignored.

Consider now the possibility that m13,m23 << mS1,mS2 in MS, then S ′ obtains

a small seesaw mass given by

mS′ ' −
m2

13

mS1

− m2
23

mS2

. (6.7)

Let this be a few keV, then S ′ is a light sterile neutrino which mixes with ν only

slightly through Fig. 2. Hence it is a candidate for warm dark matter. Whereas the

usual sterile neutrino is an ad hoc invention, it has a natural place here in terms of

its mass as well as its suppressed mixing with the active neutrinos.

We now have the interesting scenario where part of the dark matter of the Universe
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is cold, and the other is warm. This hybrid case was recently also obtained in a

different radiative model of neutrino masses [92]. Within the present context, there

is a third possibility. If we assign an extra Z2 symmetry, under which S1,2 are odd

and all other particles even, then the only interactions involving S1,2 come from their

diagonal U(1)B−L gauge couplings and the diagonal Yukawa terms f1S1S1(ρ0
2)∗ and

f2S2S2(ρ0
2)∗. This means that both S1 and S2 are stable and their relic abundances

are determined by their annihilation cross sections to SM particles. In this scenario,

dark matter has four components [93].

Since S1,2 are now separated from S ′, the m13 and m23 terms in MS are zero

and there is no tree-level mass for S ′. However, there is a one-loop mass as shown

in Fig. 3. This makes it more natural for S ′ to be light. A detailed study of the

S ′ S ′N N

χ0 χ0

ρ02

ρ04

Figure 6.3: Radiative generation of S ′ mass.

dark-matter phenomenology of this multipartite scenario will be given elsewhere.
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6.5 Scalar Sector for Symmetry Breaking

In this model, there is only one Higgs doublet Φ which breaks the SU(2)L×U(1)Y

electroweak symmetry, whereas there are two Higgs singlets ρ2 and ρ4 which break

U(1)B−L to Z2. The most general Higgs potential consisting of Φ, ρ2, ρ4 is given by

V = µ2
0Φ†Φ + µ2

2ρ
∗
2ρ2 + µ2

4ρ
∗
4ρ4 +

1

2
µ24[ρ2

2ρ
∗
4 +H.c.] +

1

2
λ0(Φ†Φ)2 +

1

2
λ2(ρ∗2ρ2)2

+
1

2
λ4(ρ∗4ρ4)2 + λ02(Φ†Φ)(ρ∗2ρ2) + λ04(Φ†Φ)(ρ∗4ρ4) + λ24(ρ∗2ρ2)(ρ∗4ρ4). (6.8)

Let 〈φ0〉 = v, 〈ρ2〉 = u2, 〈ρ4〉 = u4, then the minimum of V is determined by

0 = µ2
0 + λ0v

2 + λ02u
2
2 + λ04u

2
4, (6.9)

0 = µ2
2 + λ02v

2 + λ2u
2
2 + λ24u

2
4 + µ24u4, (6.10)

0 = u4(µ2
4 + λ04v

2 + λ24u
2
2 + λ4u

2
4) +

1

2
µ24u

2
2. (6.11)

The would-be Goldstone bosons are φ±,
√

2Im(φ0), corresponding to the breaking of

SU(2)L×U(1)Y to U(1)em, and
√

2[u2Im(ρ2)+2u4Im(ρ4)]/
√
u2

2 + 4u2
4, corresponding

to the breaking of U(1)B−L to Z2. The linear combination orthogonal to the latter is

a physical pseudoscalar A, with a mass given by

mA =
−µ24(u2

2 + 4u2
4)

2u4

. (6.12)

The 3×3 mass-squared matrix of the physical scalars [
√

2Re(φ0),
√

2Re(ρ2),
√

2Re(ρ4)]

is given by

M2 =




2λ0v
2 2λ02vu2 2λ04vu4

2λ02vu2 2λ2u
2
2 u2(2λ24u4 + µ24)

2λ04vu4 u2(2λ24u4 + µ24) 2λ4u
2
4 − µ24u

2
2/2u4



. (6.13)

73



For v2 << u2
2,4,
√

2Re(φ0) = h is approximately a mass eigenstate which is identified

with the 125 GeV particle discovered at the LHC.

6.6 Gauge Sector

Since φ0 does not transform under U(1)B−L and ρ2,4 do not transform under

SU(2)L × U(1)Y , there is no tree-level mixing between their corresponding gauge

bosons Z and ZB−L. In our convention, M2
ZB−L

= 8g2
B−L(u2

2 + 4u2
4). The LHC

bound on MZB−L
comes from the production of ZB−L from u and d quarks and its

subsequent decay to e−e+ and µ−µ+. If all the particles listed in Table 1 are possible

decay products of ZB−L with negligible kinematic suppression, then its branching

fraction to e−e+ and µ−µ+ is about 0.061. The cu,d coefficients used in the LHC

analysis [57, 60] are then

cu = cd =

[(
1

3

)2

+
(

1

3

)2
]
g2
B−L ×B(ZB−L → e−e+, µ−µ+) = 1.36× 10−2 g2

B−L.

(6.14)

From LHC data based on the 7 and 8 TeV runs, a bound of about 2.5 TeV would

correspond to gB−L < 0.24.
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6.7 Leptoquark Fermions

The singlet leptoquark fermions D1,2 have charge −1/3 and the following possible

interactions:

D1d
cχ∗, D2d

cχ, D1D
c
2ρ
∗
2, D2D

c
1ρ2. (6.15)

Hence they mix in a 2× 2 mass matrix linking D1,2 to Dc
1,2 with 〈ρ2〉 = u2, and decay

to d quarks + χ(χ∗). Now χ mixes with η0, so it decays to neutrinos (ν) and dark

matter (N), which are invisible. The search for D1,2 at the LHC would be similar to

the search for scalar quarks which decay to quarks + missing energy. However, if we

assume that N has a mass of about 200 GeV, then there is no useful limit at present

on the mass of D1,2 from the LHC.

Consider now the pseudoscalar A of Eq. (12). Let the two mass eigenstates in the

(D1,2, D
c
1,2) sector be ψ1,2, then A couples to them according to

Lint = f1ψ̄1γ5ψ1 + f2ψ̄2γ5ψ2, (6.16)

where f1,2 are rearranged from their original D1D
c
2ρ
∗
2 and D2D

c
1ρ2 couplings. Hence

A decays to two gluons as well as to two photons in one loop through ψ1,2. It may

also decay to dark matter, say NN , at tree level. It is thus a possible candidate for

explaining the 750 GeV diphoton excess recently observed [73, 74] at the LHC. The

numerical analysis of this model runs parallel to that of a recent proposal [94], and

will not be repeated here. Note again that these leptoquark fermions are not essential

for the radiative generation of neutrino masses based on B − L.
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6.8 Conclusion

Using gauge U(1)B−L symmetry, we have proposed a new anomaly-free solution

with exotic fermion singlets, such that neutrino mass is forbidden at tree level. We add

a number of new scalars so that neutrino masses are obtained in one loop through

dark matter, i.e. the scotogenic mechanism. Because of the structure of the new

singlets required for anomaly cancellation, we find a possible dark-matter scenario

with four components. Three are stable cold Weakly Interaction Massive Particles

(WIMPs) and one a keV singlet neutrino, i.e. warm dark matter with a very long

lifetime. If leptoquark fermions are added, transforming under U(1)B−L, the recently

observed 750 GeV diphoton excess may also be explained.
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Table 6.1: Particle content of proposed model.

Particle SU(3)C SU(2)L U(1)Y B L B − L copies R parity

Q = (u, d) 3 2 1/6 1/3 0 1/3 3 +

uc 3∗ 1 −2/3 −1/3 0 −1/3 3 +

dc 3∗ 1 1/3 −1/3 0 −1/3 3 +

L = (ν, e) 1 2 −1/2 0 1 −1 3 +

ec 1 1 1 0 −1 1 3 +

N 1 1 0 0 −2 2 4 −

S 1 1 0 0 1 −1 2 +

S ′ 1 1 0 0 3 −3 1 +

Φ = (φ+, φ0) 1 2 1/2 0 0 0 1 +

η = (η+, η0) 1 2 1/2 0 1 −1 1 −

χ0 1 1 0 0 1 −1 1 −

ρ0
2 1 1 0 0 2 −2 1 +

ρ0
4 1 1 0 0 4 −4 1 +

D1 3 1 −1/3 1/3 1 −2/3 1 −

D2 3 1 −1/3 1/3 −1 4/3 1 −

Dc
1 3∗ 1 1/3 −1/3 −1 2/3 1 −

Dc
2 3∗ 1 1/3 −1/3 1 −4/3 1 −
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Abstract

If neutrinos are truly Dirac fermions, the smallness of their masses may still be

natural if certain symmetries exist beyond those of the standard model of quarks

and leptons. We perform a systematic study of how this may occur at tree level and

in one loop. We also propose a scotogenic version of the left-right gauge model with

naturally small Dirac neutrino masses in one loop.
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7.1 Introduction

If neutrinos are Majorana fermions, then it has been known [19] since 1979 that

they are described by a unique dimension-five operator beyond the standard model

of quarks and leptons, i.e.

L5 = −fij
2Λ

(νiφ
0 − liφ+)(νjφ

0 − ljφ+) +H.c. (7.1)

Neutrino masses are then proportional to v2/Λ, where v = 〈φ0〉 is the vacuum expec-

tation value of the Higgs doublet (φ+, φ0). This formula is necessarily seesaw because

Λ has already been assumed to be much greater than v in the first place. It has also

been known [20] since 1998 that there are three specific tree-level realizations (denoted

as Types I,II,III) and three generic one-particle-irreducuble one-loop realizations.

If neutrinos are Dirac fermions, then the termmDν̄LνRφ̄
0 is desired but (mN/2)νRνR

must be forbidden. This requires the existence of a symmetry, usually taken to

be global U(1)L lepton number. This may be the result of a spontaneously bro-

ken U(1)B−L gauge symmetry where the scalar which breaks the symmetry carries

three [95] and not two units of B−L charge. On the other hand, global U(1)L is not

the only possibility. The notion of lepton number itself may in fact be discrete. It

cannot of course be Z2, then mN would be allowed and neutrino masses are Majorana.

However, it may be Z3 [90, 96] or Z4 [97, 98, 99], but then new particles must appear

to legitimize this discrete lepton symmetry. Since there are three neutrinos, a flavor

symmetry may also be used to forbid the νRνR terms [100].
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To obtain a naturally smallmD, there must be another symmetry which forbids the

dimension-four ν̄LνRφ̄
0 term, but this symmetry must also be softly or spontaneously

broken, so that an effective mD appears, at tree level or in one loop, suppressed by

large masses. The symmetry used to achieve this is model-dependent. Nevertheless

generic conclusions may be obtained regarding the nature of the necessary particles

involved, as shown below.

7.2 Four specific tree-level realizations

Assume a symmetry S under which νL and φ0 do not transform, but νR does.

There are then four and only four ways to connect them at tree level through the soft

breaking of this symmetry.

• Insert a Dirac fermion singlet N which does not transform under S, then break

S softly by the dimension-three ν̄RNL term.

νL NR NL νR
× ×

φ0

Figure 7.1: Dirac neutrino mass with a Dirac singlet fermion insertion.
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• Insert a Dirac fermion triplet (Σ+,Σ0,Σ−) which does not transform under

S, then break S and SU(2)L × U(1) together spontaneously to obtain the

dimension-three ν̄RΣ0
L term.

νL Σ0
R Σ0

L
νR

× ×

φ0

Figure 7.2: Dirac neutrino mass with a Dirac triplet fermion insertion.

• Insert a Dirac fermion doublet (E0, E−) which transforms as νR under S, then

break S softly by the dimension-three (Ē0νL + E+e−) term.

νL E0
R E0

L
νR

××

φ0

Figure 7.3: Dirac neutrino mass with a Dirac doublet fermion insertion.
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• Insert a scalar doublet (η+, η0) which transforms as νR under S, then break S

softly by the dimension-two (η−φ+ + η̄0φ0) term.

νL

η0
νR

× φ0

Figure 7.4: Dirac neutrino mass with a doublet scalar insertion.

In Figs. 1 to 3, the mechanism which makes mD small is the Dirac seesaw [101].

The 2 × 2 mass matrix linking (ν̄L.ψ̄L) to (νR, ψR), where ψ = N,Σ0, E0, is of the

form

Mνψ =




0 m1

m2 Mψ


 . (7.2)

Since Mψ is an invariant mass, it may be assumed to be large, whereas m1,2 come

from either electroweak symmetry breaking or S breaking and may be assumed small

in comparison. Hence mD ' m1m2/Mψ is naturally small as desired.

In Fig. 4, the mechanism is also seesaw but in the scalar sector, as first pointed

out in Ref. [102]. Using the small soft S breaking term η̄0φ0 together with a large

mass for η, a small vacuum expectation value 〈η0〉 is induced to obtain mD [103].

This may also be accomplished by extending the gauge symmetry [104, 105].
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7.3 Two generic one-loop realizations

Suppose the new particles considered previously for connecting νL with νR at

tree level are not available, then a Dirac neutrino mass may still occur in one loop.

Assuming that this loop consists of a fermion line and a scalar line, then the external

Higgs boson must couple to either the scalar line or the fermion line, yielding two

generic diagrams.

• Consider the one-loop connection shown below. Since νR transforms under S

νL νRψR ψL

η χ

φ0

Figure 7.5: Dirac neutrino mass in one loop with trilinear scalar coupling.

and νL and φ0 do not, a Dirac neutrino mass is only generated if S is broken

softly by either the dimension-three ψ̄LψR term or the dimension-three η̄χφ0

term. There are an infinite number of solutions for the new fermion ψ and

the new scalars η and χ. Under the electroweak SU(2)L × U(1)Y , the three

simplest solutions are listed in Table 1. Note that solutions also exist with

ψ, χ, η all carrying color. Let S be Z2 as an example, then the assignments
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Table 7.1: SU(2)L × U(1)Y assigments of ψ, η, and χ.

solution ψ η χ

A (1,0) (2,−1/2) (1,0)

B (2,1/2) (1,0) (2,1/2)

C (2,−1/2) (1,−1) (2,−1/2)

of η, ψR, ψL, and χ under S are given in Table 2. The solutions A1 and B1

Table 7.2: S = Z2 assigments of η, ψR, ψL, and χ.

solution η ψR ψL χ ψ̄LψR η̄χφ0

A1 − − − + + −

A2 − − + − − +

B1 + + + − + −

B2 − − + − − +

C1 + + + − + −

C2 − − + − − +

must be discarded, because χ and η are neutral scalar singlets which are even

under Z2 respectively. As such, they will acquire vacuum expectation values

from interactions with Φ. From the trilinear coupling η̄χφ0, this in turn would

induce a vacuum expectation value for η and χ in A1 and B1 respectively.
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Hence the loop of Fig. 5 would collapse to a tree as shown in Figs. 1 and 3.

The solutions A2(B2) should also be discarded because ψR,L transform exactly

as νR,L, thus collapsing to Fig. 4. However, these solutions could be reinstated

with the scotogenic mechanism to be discussed later.

• Consider now the other possible connection. The only soft term here is the

νL νRη χ

ψR ψL

φ0

×

Figure 7.6: Dirac neutrino mass in one loop with quadratic scalar mixing.

quadratic η̄χ term which must be odd under S = Z2. If η and χ are neutral,

then again they must have vacuum expectation values, thus collapsing the loop

of Fig. 6 to a tree. Hence η and χ must be charged or colored, and if χ ∼ ±

under S, then ψL,R, η ∼ ∓. An example of such a model is Ref. [106]. It has

also been implemented in left-right gauge models many years ago [29, 107].

In the above, there must be of course also a symmetry which maintains lepton

number. This symmetry may propagate along the fermion line in the loop, which is the

conventional choice, but it may also propagate along the scalar line in the loop. If the

86



latter, then lepton number may serve as the stabilizing symmetry of dark matter [55].

The reason is very simple. For the lightest scalar, say η, having lepton number which is

conserved, it can only decay into a lepton plus a fermion which has no lepton number,

say ψ, and vice versa. Hence the lightest ψ or the lightest η is dark matter. This

means that the loop diagrams of Figs. 5 and 6 could be naturally scotogenic, from the

Greek ’scotos’ meaning darkness. This mechanism was invented 10 years ago [25]. The

unconventional assignment of lepton number to scalars and fermions also reinstates

the solutions A,B considered earlier, because now the particles in the loop have odd

dark parity, as discussed in Ref. [108, 109]. This application of the one-loop diagram

for Dirac neutrino mass using scalars carrying lepton number is actually well-known

in supersymmetry, where the exchange of sleptons and neutralinos contributes to

charged-lepton masses. Here we show that the generic idea is also applicable without

supersymmetry.

7.4 Scotogenic Dirac neutrino mass in left-right

model

The absence of a tree-level Dirac neutrino mass may be due to the underlying

gauge symmetry and the scalar particle content. Consider the following left-right

gauge mode based on SU(3)C × SU(2)L × SU(2)R × U(1)X together with a discrete

Z2 symmetry. It extends the standard model (SM) to include heavy charged quarks

87



and leptons which are odd under Z2, but no scalar bidoublet [110] as shown in Table

3. Its fermion content is identical to a recent proposal [111] at this point.

Table 7.3: Particle content of proposed left-right gauge model.

particles SU(3)C SU(2)L SU(2)R U(1)X Z2

(u, d)L 3 2 1 1/6 +

uR 3 1 1 2/3 +

dR 3 1 1 −1/3 +

(ν, e)L 1 2 1 −1/2 +

eR 1 1 1 −1 +

(U,D)R 3 1 2 1/6 −

(ν, E)R 1 1 2 −1/2 −

UL 3 1 1 2/3 −

DL 3 1 1 −1/3 −

EL 1 1 1 −1 −

(φ+
L , φ

0
L) 1 2 1 1/2 +

(φ+
R, φ

0
R) 1 1 2 1/2 +

The breaking of SU(2)L,R is accomplished by the Higgs doublets ΦL,R. The SM

quarks and charged leptons obtain masses from ΦL. The heavy quarks and charged

leptons obtain masses from ΦR. They are separated by the Z2 symmetry and do not
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Table 7.4: Scotogenic additions to the proposed left-right gauge model.

particles SU(3)C SU(2)L SU(2)R U(1)X Z2 ZD
2

NL,R 1 1 1 0 + −

(η+
L , η

0
L) 1 2 1 1/2 + −

(η+
R , η

0
R) 1 1 2 1/2 − −

χL 1 1 1 0 + −

χR 1 1 1 0 − −

χ0 1 1 1 0 − +

mix. Both νL and νR are massless and separated by Z2. To link them with a Dirac

mass, this Z2 has to be broken. This is implemented as shown in Table 4 using the

unbroken symmetry ZD
2 for dark matter, under which N, ηL,R, χL,R are odd and all

others are even. The symmetry Z2 is assumed to be respected by all dimension-three

terms as well, so there is no Q̄LqR or ĒLeR term. Hence VCKM remains unitary as

in the SM. It is broken only by the unique dimension-two term χLχR. The resulting

scotogenic diagram for Dirac neutrino mass is shown in Fig. 7. The connection be-

tween the heavy fermions of the SU(2)R sector and the SM fermions is χ0 with the

allowed dimension-four Yukawa couplings χ0Q̄LqR and χ0ĒLeR. Now χ0 mixes only

radiatively with the SM Higgs boson, a phenomenon discovered only recently [76], and

decays to SM particles but its lifetime may be long. At the Large Hadron Collider,
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νL νRNR NL

η0L η0R

φ0
L φ0

R

χL χR×

Figure 7.7: Scotogenic Dirac neutrino mass in left-right symmetry.

the heavy SU(2)R quarks are easily produced if kinematically allowed. The lightest

will decay to a SM quark and χ0 which may escape the detector as missing energy.

This has the same signature as dark matter. The true dark matter is of course the

lightest neutral fermion or boson with odd ZD
2 .

7.5 Concluding remarks

The notion that neutrino masses are Dirac is still viable in the absence of incon-

trovertible experimental proof of the existence of neutrinoless double beta decay. The

theoretical challenge is to understand why. In this paper we study systematically how

the smallness of Dirac neutrino masses may be achieved at tree level (four specific

cases) and in one loop (two generic cases). We also propose a scotogenic left-right

gauge model.
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Abstract

Leptoquarks have been proposed as a possible explanation of anomalies in

B̄ 7→ D∗τ ν̄ decays, the apparent anomalies in (g − 2)µ experiments and a violation

of lepton universality. Motivated by this, we examine other motivations of

leptoquarks: radiatively induced neutrino masses in the presence of a discrete

symmetry that prevents a tree level see-saw mechanism, gauge coupling unification,

and vacuum stability at least up to the unification scale. We present a new model

for radiatively generating a neutrino mass which can significantly improve gauge

coupling unification at one loop. We discuss this, and other models in the light of

recent work on flavour anomalies.
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I. INTRODUCTION

Recently there has been a lot of interest in leptoquarks as a possible explanation

for some striking deviations from the standard model [1–12] including anomalous B

decays observed in BaBar [13, 14], Belle [15] and LHCb [16–18], a violation in lepton

universality [19] and a deviation from the standard model prediction of (g − 2)µ

[20]. A particularly interesting claim was that all three anomalies could be explained

via the addition of a single leptoquark [4]. Specifically they chose a single ∼ TeV

scale leptoquark, φ, that is a colour triplet and an SU(2)L singlet with hyper charge

−1/3. The correction to the standard model Lagrangian due to the existence of this

leptoquark is Lagrangian

L 3 (Dµφ)†Dµφ−M2
φφ

2 − ghφ|Φ|2|φ|2

+ Q̄cλLiτ2Lφ
? + ūcRλReRφ

? + h. c. (1)

where Φ is the standard model Higgs doublet. We will denote such a leptoquark by

its gauge quantum numbers (3, 1,−1/3). The attempt to explain lepton universality

with such a leptoquark was brought into significant doubt recently [21] (who explain

the anomaly with a leptoquark with quantum numbers (3, 2, 1/6)). However it has

been recently demonstrated that the (3, 1,−1/3) leptoquark indeed can explain all

three anomalies [22].

Leptoquarks are also of theoretical interest as the tend to appear in various grand

unified theories (GUTs). Indeed the particular choice of leptoquark used in ref. [4]

appears in E6 GUTs [23, 24] and the (3, 2, 1/6) leptoquark arises for example in an

95



SU(5) GUT. Leptoquarks have also been proposed as a non-supersymmetric catalyst

of gauge coupling unification [25–28] and a cause of neutrino masses via radiative cor-

rections [27, 29–39]. These explanations of the neutrino mass are phenomenologically

attractive as unlike the see saw mechanism, these models have predictions at much

lower energies.

It is of interest to us whether using these leptoquarks to explain these flavour anoma-

lies is compatible with some of these theoretical motivations and if not what is the

minimal extension needed for such compatibility. Specifically we look at radiatively

induced neutrino masses, gauge coupling unification, and vacuum stability. We will

consider both the (3, 1,−1/3) and (3, 2, 1/6) representations and propose a model for

each that radiatively induces Weinberg dim-5 operator (LLHH/Λ) to produce Majo-

rana neutrino mass at one and two loops respectively. This requires the introduction

of new particles for both cases. For the 1-loop case the addition of heavy d-type

quarks is needed, 1 per family. We show a sample parameter space that avoids exper-

imental bounds and gives neutrino masses of the correct order. As for 2 loop scenario

with (3, 1,−1/3) leptoquark we include heavy scalar diquarks with different isospin

structure for the loop completion. Proton decay is also of interest when one considers

unification. However, the (3, 2, 1/6) easily avoids constraints on proton decay and

the (3, 1,−1/3) Leptoquarks are similarly safe in the presence of a discrete symmetry

where SM leptons and the leptoquark have opposite parity.

For gauge coupling unification we find two paths - first through the (3, 2, 1/6)

case without the extra particles required to radiatively induce a neutrino mass - and
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second through the introduction of both the (3, 1,−1/3) leptoquark and new par-

ticles required to generate the neutrino mass at one loop. A third more difficult

path also becomes manifest in the case of a (3, 1,−1/3) leptoquark through large

leptoquark couplings. However, this puts constraints on the leptoquark couplings

which partly conflict with the constraints on leptoquark coupling given in [4] as they

had λRx << λLx which is generically the opposite condition to what gauge coupling

unification requires. One in principle has enough freedom left to achieve gauge cou-

pling unification although this requires some couplings to be brought close to the

perturbativity bound. This makes the calculation susceptible to high theoretical er-

ror. Most of this tension is due to one of the anomalies - the observed violation of

lepton universality. This is precisely the anomaly that is difficult to explain via the

(3, 1,−1/3) leptoquark [21]. By contrast, vacuum stability is substantially boosted

due to the improved running of the Higgs quartic coupling when the portal coupling

is non-negligible. This is true for both leptoquark representations. Furthermore the

extra fermions used to generate a neutrino mass at 1 loop will only contribute to

the running of the Higgs quartic at two loop. For the case where gauge coupling

unification is achieved through large leptqoaruk couplings one requires a larger Higgs

portal coupling to maintain stability.

The structure of this paper is as follows. We discuss minimal modifications to achieve

neutrino masses aside from the tree level term in section II. In sections III and IV

we discuss the modification to the running of the gauge coupling constants and the

Higgs quartic coupling respectively, thereby discussing the viability of gauge coupling
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unification and vacuum stability in this model. We then discuss how compatible these

constraints are with collider constraints and the need to simultaneously explain vio-

lations of lepton universality, anomalies in B decays and the measurement of (g−2)µ

experiments in section V. We conclude in section VI

II. POSSIBLE EXTENSIONS OF THE LEPTOQUARK MODEL FOR THE

NEUTRINO MASS GENERATION

To generate Neutrino mass using the leptoquark model discussed above, we need

to go beyond this model and include more particles/fields. Depending on the content

added, a neutrino mass can be generated at 1 or 2 loop level. There are several

examples in the literature that generate neutrino mass through the use of multiple

leptoquarks fields [27, 29–39]. If Dirac Neutrino Mass is generated then potentially

additional symmetries, global or gauged, are needed to forbid tree level Neutrino mass

generation. Here we briefly discuss 2 extensions of the leptoquark model to generate

the effective Majorana neutrino mass at the 1 and 2 loop order through an effective

d-5 Weinebrg operator[56] LLHH/Λ with only one leptoquark field in the model.

A. 2 loop Majorana Neutrino Mass

Generating a Majorana neutrino mass at 2 loop order from the leptoquark model

mentioned in the present work requires the addition of extra colored charged scalar

multiplets. Figure 1 shows 2 different variants of Majorana neutrino mass with an
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< H > < H >νL

dL dL

νL

φ−1/3 φ−1/3

χ−2/3

ρ−2/3

1

< H >

< H >νL

dL dL

νL

φ−1/3 φ−1/3

χ−2/3

ρ−2/3

1

FIG. 1: 2 loop Majorana Neutrino Mass through effective d-5 Weinberg operator.

effective Weinberg operator. In the first diagram, external Higgs fields are coupled

symmetrically at the center vertex to the charged scalar line, and another one having

one of Higgs field coupled to the leptoquarks at the top vertex and the second Higgs

field coupled at the center. Both diagrams require the LQφ coupling, fields added to

complete the loops do not couple to the Leptons and Quarks simultaneously and so

do not effect the results of the anomaly calculations done in [4] at the leading order

calculations. The first diagram requires the minimal addition of 2 diquarks, which

have the following representations (6,1, -2/3), (6,3,-1/3) which are all color sextets.

The charged scalar field coupled to the leptoquarks must be an iso-singlet where as the

charged scalar field coupled to SM quark doublets is a triplet under SU(2)L. Lepton
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number is broken at the soft dim-3 φφχ∗ term by 2 units. The second diagram of

Fig.1 is similar to the first diagram but now χ ∼(6,2,1/6) is a doublet under SU(2)L

and ρ ∼(6,3,2/3) is an-iso triplet as in the first diagram. The Lepton number is

broken at the only dim-3 soft term by 2 units.

If the φ ∼(3,2,1/6) leptoquark representation is used instead of (3,1,-1/3), then

we get d̄RLφ operator instead of LQφ. Then the required fields for the first 2-loop

completion are χ ∼(6,3,1/3) and ρ ∼(6,1,2/3). For the second 2-loop diagram the

required scalar diquark fields are χ ∼(6,2,7/6) and ρ ∼(6,1,2/3).

B. 1 loop Majorana Neutrino Mass through Lepotoquark and dR mixing

< H >< H >

νL dcL dcR acL acR νcL

φ−1/3

1

FIG. 2: 1 loop Neutrino Mass Diagram through d quark mixing with effective d-5

Weinberg operator.

Here we briefly discuss another extension of the leptoquark model mentioned above

to generate Majorana Neutrino Mass at 1 loop level shown in Fig. 2. Table I shows

the field contents of the model. Besides the SM and a leptoquark field, we add 3

generations of heavy vectorlike quark doublets with a hypercharge -5/6 to to complete
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Particle SU(3)c SU(2)L U(1)Y Flavour

Q 3 2 1/6 3

dcR 3∗ 1 +1/3 3

ucR 3∗ 1 -2/3 3

L 1 2 -1/2 3

ecR 1 1 +1 3

AR,L 3 2 -5/6 3

H 1 2 1/2 1

φ 3 1 -1/3 1

TABLE I: Particle content of the model generating Neutrino mass at 1 loop order.

the loop. The new Lagrangian terms are shown below. To break the Lepton number

softly we need the right-handed heavy quark fields to carry 2 units of L number and

the Left-handed heavy quark fields to carry no L number.

LYnew,4D ⊂ y1Qc
LLφ

∗ + y2 ucReRφ
∗

+ y3ARLφ+ yεdRALH + h.c. (2)

L3D ⊂ MAAA (3)

V (H,φ) = −m2
1 |H|2 +

λ1

4
|H|4 +m2

2 |φ|2

+
λ2

4
|φ|4 + ghφ

(
H†H

)
|φ|2 (4)

The yε Yukawa term is the mixing of SM d type quarks and heavy quarks and required
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to be small. The effective mass matrix for the d type quark mixing is shown below,

where the top left entry is the usual Higgs mass of the SM and the bottom right entry

is the invariant mass of the heavy quarks, where as the off-diagonal term is the source

of mixing of SM quarks and the heavy quarks.

Leff mix =

(
dL a

−1/3
L

)
Mda




dR

a
−1/3
R


+ h.c. (5)

Mda =



ydν 0

yεν MA


 (6)

Diagonalizing this mass matrix, we obtain the following mass eigenstates

mD1 = cLcRydν/
√

2 + sLcRyεν/
√

2 + sLsRMA, (7)

mD2 = cLcRMA + sLsRydν/
√

2− cLsRyεν/
√

2, (8)

where the c/s stand for Cos/Sin and L/R subscripts stand for Left/Right mixing

angles of the Left/Right chiral components of the fermion fields. The mixing is given

by following relations
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

D1L

D2L


 = UL ×




dL

a
−1/3
L


 (9)



D1R

D2R


 = UR ×




dR

a
−1/3
R


 (10)

tan(2θL) =
2γ2ydyε

γ2 (y2
d − y2

ε )− 1
(11)

tan(2θR) =
2γyε

γ2 (y2
d + y2

ε )− 1
(12)

with γ =
ν√

2MA

. (13)
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FIG. 3: Deviation of 2 mass eigenvalues from their unmixed values for MA=1TeV

and MA=10TeV with Yukawa’s set to 1 and mφ=1TeV.

Fig. 3 shows the deviations of mass eigenstates, light d quark and heavy a−1/3

state, from their unmixed values for different values of yε and MA for Yakawa’s set

to 1 and mφ=1TeV.

1 loop radiative neutrino mass given in Fig. 2 can be evaluated to
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mν =
y1y3mφsRcL

16π2
x1

[
2log

(
x2

x1

)
+ f(x2)− f(x1)

]
(14)

where xi = mDi/mφ and f(x) =
log(x)

x2 − 1
(15)
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FIG. 4: Neutrino mass spectrum for different values of yε and MA with Yukawa’s set

to 1 and mφ=1TeV.

Fig. 4 shows a sample parameter space that gives the correct neutrino mass order for

different values of yε and MA, Yukawa’s are set to 1, mφ=1TeV.

The heavy quark searches set limits on the mixing of d-type quarks and the masses

of the heavy quarks. Leptoquark searches set limits on the leptoquark couplings to

LQ and Leptoquark masses. Possible CP violating phases might occur in the 6×6

d-type mass matrix.
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III. GAUGE COUPLING UNIFICATION

When one examines how the three gauge coupling constants of the standard model

run, they come close to intersecting at a high energy scale. It is of course now known

that they do not unify without some new physics entering in at a lower scale, often

at a testable scale just above the weak scale. The Leptoquarks change the running

of gauge coupling constants and it was first suggested that a weak scale Leptoquark

could cause gauge coupling unification to manifest in ref. [25] and as mentioned in

the introduction this has become a major motivation and attraction for considering

low scale leptoquarks. It is therefore of interest whether this is feasible in a model

where a leptoquark is used to simultaneously explain flavour anomalies and neutrino

masses.

We will find that by itself the (3, 1,−1/3) representation makes gauge coupling

unification worse unless the leptoquark couplings are large enough to make a difference

at two loops. This however puts criteria on the leptoquark couplings that are in

tension with both perturbativity and constraints needed to explain flavour anomalies.

This is also in contrast with the (3, 2, 1/6) leptoquark. It was recently shown that

lepton flavour universality and gauge coupling unification are compatible via the

(3, 2, 16) leptoquark [40]. However, when one adds the particles required to radiatively

generate a neutrino mass, we find that such particles tend to make unification worse

for the (3, 2, 1/6) leptoquark. In contrast the additional fermions required to generate

a neutrino mass at one loop, AL,R, can easily improve gauge coupling unification for

the (3, 1,−1/3) representation.
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The one loop beta functions changes when one extends the standard model by a

leptoquark. Defining the parameter bi as

∂gi
∂µ

= − bi
16π2

g3
i (16)

it is straightforward to derive a measure of unification [58]

δU =
α−1

3 (µ)− α−1
2 (µ)

α−1
2 (µ)− α−1

1 (µ)
− b2 − b3

b1 − b2

(17)

where a low value of |δU | indicates one is close to unification. Choosing µ = 1 TeV

one has for the standard model δU = 0.19. It is of course well known that the

(3, 2, 1/6) leptoquark improves unification. Introducing such leptoquarks at 1 TeV

and running the standard model couplings up to the TeV scale using the numerical

package SARAH [41] gives a value of δU = (0.13, 0.06,−0.02) for (1, 2, 3) generations

respectively. On the other hand, adding the leptoquark defined in equation 1 modifies

these values of bi such that b1 = −25/6 b3 = 41/6 and b2 remains unchanged. Again

running the standard model couplings up to the TeV scale one finds that for the

leptoquark extension one has δU = 0.21, worse than the standard model. The reason

for this is that one needs to change b2 faster than one changes 1
2
(b1 + b3) in order to

achieve unification but the leptoquark is an isospin singlet.

In principle the 2-loop corrections to the beta functions can drive gauge coupling

unification. The leptoquark couplings λL and λR affect the two loop beta functions

for gauge coupling constants at two loop level as follows
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βg1 3
1

(4π)2

25g3
1

6
− 1

(4π)4

(30Tr[λLλ
†
L]− 78Tr[λRλ

†
R])

30
g3

1

βg2 3 −
1

(4π)2

19g3
2

6
− 1

(4π)4
(3Tr[λLλ

†
L])g3

2

βg3 3 −
1

(4π)2

41g3
3

6
− 1

(4π)4

(30Tr[λLλ
†
L] + 15Tr[λRλ

†
R])

30
g3

3. (18)

Note that the Higgs portal coupling does not effect the running. The Higgs portal

coupling is the major player in achieving a boost to the stability of the vacuum so two

constraints - vacuum stability and gauge coupling unification - are only moderately

correlated. Typically raising the left handed coupling constants takes one further

away from coupling unification whereas raising the right handed coupling gets one

closer. If all left handed couplings are null then gauge coupling unification is achieved

when

Tr
[
λRλ

†
R

]
∼ 4. (19)

This number rises if the left handed leptoquark couplings rises.

If the leptoquark is used to explain the apparent violation of lepton universality,

it turns out to be difficult to avoid at least one leptoquark coupling being large,

namely the λLcµ coupling. This raises the required value of the right handed leptoquark

coupings. Fig. 5 shows the running of the gauge couplings for leptoquark couplings

chosen to satisfy all phenomenology constraints as well as explaining all three flavour

anomalies. As before, we take all standard model couplings at weak scale and use

the standard model RGEs defined to two loop to run all parameters from the weak

scale to the mass of the leptoquark (which we set to be 1 TeV). In principle, there is
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enough freedom left over from these constraints to achieve gauge coupling unification

if some couplings are made sufficiently large. The results however should be taken

with a heavy grain of salt because the running of the leptoquark couplings are such

that they increase and approach the perturbativity bound. Therefore the calculation

is expected to have a high amount of uncertainty.

Next let us turn to the extra particle content required to produce a neutrino mass at

one and two loop respectively. For the two loop case we need two additional particles

including an isospin triplet. This is true for both representations of leptoquark that

we consider. This particle makes too dramatic a change to b2 to assist unification

unless its mass is quite high≈ O(1013) GeV. For the case where one induces a neutrino

mass at one loop, the new particles change the values of bi as follows

δb1 =

(
−5

6

)
Ng (20)

δb2 = (−2)Ng (21)

δb3 =

(
−4

3

)
Ng (22)

where Ng is the number of generations active at that mass scale. For a single gen-

eration active from 1 TeV up to around the GUT scale one essentially has unifica-

tion δU = 0.015. Similarly one achieves unification if two generations of AL,R with

masses around 10 − 1000 TeV and the third generation near the GUT scale. The

masses of the lightest two generations can be within a wide range of values however.

Varying their masses between 10 and 1000 TeV one finds that |δU | ranges between

0.05 . |δU | . 0.08. If one has three generations of these fermions it is unavoidable
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that at least one generation is very heavy. By contrast, the analogous fermions used

to generate a neutrino mass at one loop for the (3, 2, 1/6) leptoquark makes gauge

coupling unification worse because they are isospin singlets.

Let us conclude this section with a summary of this section. The extra A particles

make unification at 1 loop fairly straightforward for the (3,1,1/6) model. Without

such particles one can in principle achieve unification at 2 loops with very large

couplings, a result that is in some tension with flavour anomalies but not stability. By

contrast, while the (3,2,1/6) model achieves unification without a radiatively induced

neutrino mass, introducing such extra particles is in tension with unification.

IV. VACUUM STABILITY

The recent discovery of a Higgs like Boson at 125 GeV [42, 43] has led to the

realization that the standard model vacuum is likely metastable [44–47]. This is

because the Higgs quartic coupling becomes negative at large energy scales. This has

motivated research on how to improve the stability of the electroweak vacuum through

addition to the standard model. There are two ways of getting a boost improve the

stability of the vacuum

• improved running through corrections to the standard model RGEs. This has

been done numerously in singlet extensions to the standard model [48–52]

• extended scalar sector, for adding a real singlet that acquires a vacuum expec-

tation value. The result can be that the Higgs quartic coupling can be larger
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than its standard model value [53].

The leptoquark cannot have a vacuum expectation value at zero temperature so the

only option is through improved running [54]. The beta functions for the Higgs quartic

coupling will get a correction compared to the standard model which we denote δλ1

and δλ2 for one and two loop contributions respectively. The one loop correction to

the standard model RGE for the higgs quartic coupling receives contributions from

the portal coupling only

βλ
(4π)2

3 6

16π2
g2
Hφ . (23)

Note that the one loop correction is positive which makes a boost to stability possible

in the first place. So if the portal coupling is large then the leptoquark contributes to

improving the stability of the vacuum. This is true of both leptoquark representations

that we consider. The two loop correction can be significant enough to justify a

careful analysis. For the sake of simplicity the leptoquark coupling to one generation

dominates. This is simply to show the structure of the two loop beta functions more

clearly - our numerical calculations consider all generations. We can then write the

dominant contribution as

βλ
(4π)4

3 1

256π4

×
{

6

5
gHφg

4
1 − 30λg2

Hφ +
16

5
g2

1g
2
Hφ + 64g2

3g
2
hφ − 24g3

Hφ

+ g2
Hφλ

2
L,3

(
24 + 9λy2

b − 12y4
b − 12y4

τ

+9λy2
t − 24y2

τy
2
t − 12y4

t

)

+g2
HφλR,3

(
12− y4

τ + 9λy2
t − 24y2

t y
2
τ − 12y4

t

)}
(24)
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Typically this is strongly negative if the leptoquark couplings are large which drives

up the value of ghφ needed to make the higgs quartic coupling remain non-negative

up to the unification scale. To achieve gauge coupling unification with all left handed

leptoquark couplings set to zero, right handed leptoquark couplings need to be large.

Also, one of the left handed leptoquark coupling constants has to be quite large to

explain the violation of lepton universality. This means that several right handed

leptoquark couplings have to be quite large to make gauge coupling unification man-

ifest which pushes up the required value of ghφ to a moderate value. In Fig. 6 we

again the numerical package SARAH [41] to run standard model parameters up to

the scale of the leptoquark mass (which we choose to be 1 TeV) and then run all

parameters including the leptoquark parameters up to the a high scale. For a value

of gφ ∼ 0.5 the Higgs quartic coupling never goes negative. Finally we note that

the extra fermions introduced to radiatively induce a neutrino mass at one loop only

affect the running of the Higgs quartic at 2 loops.

V. LEPTOQUARKS AND FLAVOUR ANOMALIES

In this section we consider the constraints on the parameter space due to both

collider constraints and the proposal to have such a leptoquark explaining the afore

mentioned anomalies. We should note that some doubt has been raised on whether

this leptoquark representation can provide an explanation for the RK anomaly [21].

However, further inspection does indeed seem to confirm the original claim that this

leptoquark can explain the apparent violation of lepton flavour universality [22] and
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recent work has indeed argued that it can indeed provide an explanation for the

RD∗ anomaly and the (g − 2)µ anomaly [57]. We will focus on briefly reviewing the

parameter space proposed in [4] and find that there is tension between the parameter

space they propose and unification. The parameter space discussed in [22] will has

similar features to the parameter space in [4].

Let us begin by cataloguing the constraints from the anomalies. The constraints

are written in terms of the leptoquark couplings written in the mass basis. To convert

from the mass basis to the weak basis we make use of both the CKM matrix and the

PMNS matrix as well as the relations

λLue = UT
u λLUe, λ

L
dν = UT

d λL, λ
R
ue = V T

u λRVe (25)

We will begin with the requirement that the leptoquark provide an explanation for

anomalous B decays which gives the following condition on the leptoquark couplings

λL∗cτ λ
L
bντ = 3.5× 10−7M2

φ (26)

λR∗cτ λ
L
bντ = −3× 10−8M2

φ (27)

These constraints cause two left handed couplings to be around 0.6 and the right

handed coupling λRcτ about 0.05. Since we require the trace of the right handed

leptoquark coupling matrix to be significantly larger than the trace of the left handed

leptoquark matrix this already constrains the parameter space somewhat. Next we

turn to the anomalous measurement of (g − 2)µ. This leads to the condition

(1 + 0.17 ln 10−3Mφ)Re(λRcµλ
L∗
cµ )

+ 20.7(1 + 1.06 ln 10−3Mφ)Re(λRtµλ
L∗
tµ ) ≈ 8× 10−8M2

φ (28)
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This does not put much constraint on the right handed couplings as we can just tune

the left handed couplings down. The apparent violation of lepton universality, by

contrast, puts the most severe constraint on the parameters as it inevitably leads to

some coupling constants being large. Specifically the constraints are

∑

i

|λLuiµ|2Re

∑
j λ

L
bνj
λL∗sνj

VtbV ∗ts
− 1.74|λLtµ|2 ≈ 1.25× 10−5M2

φ (29)

∑
j λ

L
bνj
λL∗sνj

VtbV ∗ts
≈ (1.87 + 0.45i)× 10−3Mφ (30)

The second constraint is straightforward to satisfy because it requires that the sum

of a set of left handed couplings must come to the small value of 0.076 which is

consistent with gauge coupling unification. Combining this with the first constraint

though says that the square of two couplings, |λuµ|2 + |λcµ|2 must add to about

6.7. This is obviously impossible to satisfy without making at least one of these

couplings very large. It can be more dangerous phenomenologically to have large

leptoquark couplings to first generation quarks or leptons, so in reality this will lead

to the coupling |λcµ| ≈ 2.4 for a leptoquark mass of around a TeV. This puts a very

sharp constraint on the ability of this leptoquark to simultaneously give rise to gauge

coupling unification and explain the apparent violation of lepton universality. Note

that only the violation of lepton univerality requires a condition that conflicts with

gauge coupling unification.

Let us next turn our attention to the phenomological constraints. We can get con-

straints on the leptoquark mass from reference [55]. The lower bound for leptoquarks

that decay into bottom quarks is 625 GeV and the lower bound for leptoquarks de-
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caying into muons with a significant branching ratio is 850 GeV. The latter bound

is more relevant if one is indeed desiring to explain an observed violation of lepton

universality. For convenience we will catalogue all other relevant collider constraints

in a single list

− 1.2× 10−6M2
φ < Re

∑
j λ

L
bνj
λL∗sνj

VtbV ∗ts
< 2.25× 10−6M2

φ

√
|λLcµ|2|λRuµ|2 + |λLuµ|2|λRcµ|2 < 1.2× 10−9M2

φ

|λLcµλLuµ
∗

+ λRcµλ
R
uµ

∗| < 5.1× 10−8

√
|λLcµ|2 + |λLuµ|2 <

3.24× 10−3Mφ√
1 + 0.39 ln 10−3Mφ

|λLtµ| <
1.22× 10−3Mφ√

1 + 0.76 ln 10−3Mφ[∣∣∣∣(1 + 0.17 ln 10−3Mφ)(λRcµλ
L∗
cµ )

+ 20.7(1 + 1.06 ln 10−3Mφ)(λRtµλ
L∗
tµ )− 0.015

∑

i

λL∗uiµλ
L
uiτ

∣∣∣∣
2

+ (L↔ R)

]1/2

< 1.7× 10−8M2
φ (31)

The constraints in the above list are, in order of their appearance

• B− → K−νν̄ and B− → K−∗νν̄ decays.

• Next two are from the bound on branching ratio of D0 → µ+µ−.

• Next two are from constraints on the partial width of Z → µ+µ−.

• Last is a bound on the branching ratio of τ → µγ

The constraint from the B− → K−νν̄ and B− → K−∗νν̄ decays put no constraints

on right handed couplings but can be satisfied with arbitrarily small left handed
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couplings. The constraint from the branching ratio of D0 → µ+µ− forces one ΛR to

be small. It is satisfied if the left handed couplings are very small, the right handed

couplings if they are equal can be ∼ 0.23. Note that lepton universality means that

the λLcµ coupling has to be≈ 2.5 which is fine if λLuµ is small. The constraints due to the

partial width of Z → µ+µ− leads to no constraint on the right handed couplings but is

satisfied for arbitrarily small left handed couplings. Lepton universality requires that

λLcµ left handed coupling to be large, ∼ 2.5, but this is compatible with the constraint

so long as other left handed couplings appearing in the constraint are suppressed

which we desire anyway.

The last constraint due to the branching ratio of τ → µγ is the most dangerous if

one desires the addition of a TeV scale leptoquark to lead to gauge coupling unification

at two loops. There is a relative sign in the equation which means in principle that one

can find a fine tuned region to the parameter space where a fortuitous cancellation

occurs. But let us concentrate on the non-fine tuned region of parameter space.

Recalling that the apparent violation of lepton universality leads to λLcµ ∼ 2.4, this

leads to λRµνi and λRτνi needing to be have a value of approximately ∼ 0.08. So we

have 7 right handed couplings set to be small in principle. However, a loophole is

just to set 3 of them to be very small. To give maximum freedom set right handed

λRcτ , λ
R
cµ, λRuµ to be small as well as λRtµ. This will satisfy all of the above constraints

without significant fine tuning. Finally let us conclude this section by summarizing

one of the recent works which called into question whether this leptoquark can explain

the observed violation of lepton universality. Ref. [57] found that using this type of
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leptoquark to explain the RD(?) anomaly requires λ2j
L

λ3i
Lλ

23
R
?

2MLQ/GeV
= −0.26× 23/2GFVcb (32)

λ33
L λ

23
R
?

2M2
LQ/GeV

2
= ±0.64× 23/2GFVcb (33)

which is in serious tension with the requirement that λLcµ is large.

VI. DISCUSSION AND CONCLUSION

In this work we have considered some of the most intriguing experimental signa-

tures that suggest a departure from standard model physics and attempted to see

how a minimal explanation for them fits into the bigger picture of Unification. Im-

provement in vacuum stability via improved running is straightforward to realize.

However, the attempt to explain a violation of lepton universality has some tension

with using this leptoquark to achieve gauge coupling unification.

One way or another, we find that new physics is probably needed before the GUT

scale. Achieving gauge coupling unification requires pushing leptoquark couplings up

such that they are near the perturbativity bound at a high scale and neutrino masses

cannot be achieved through this leptoquark alone. Both require additional paricle

content (although if a tree level right handed neutrino mass is not forbidden by a

discrete symmetry, the usual see-saw mechanism is of course sufficient). The single

leptoquark model is insufficient to neutrino masses at any loop level. We proposed

some minimal extensions by either introducing some gauge multiplets to generate a

Majorana mass at two loops or including a heavy quark doublet with a hyper charge
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of −5/6 to generate such a mass at one loop. The latter is through d type mixing.
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FIG. 5: Gauge coupling unification(α−1) achieved via strong right handed

leptoquark couplings. With a single generation the couplings get precariously close

to the perturbativity bound, a problem accentuated if one wishes to explain a

violation in lepton univerality, adding in a great deal of theoretical uncertainty

which can be alleviated with extra generations of leptoquarks.
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FIG. 6: Vacuum stability achieved through improved running of the Higgs quartic

coupling due to moderately large portal couplings (ghφ = 0.5). This is compatible

with low energy phenomology as well as explaining anomalies in the value of

(g − 2)µ, B decays and violation of lepton universality.

124



Chapter 9

Quartified Leptonic Color, Bound

States, and Future

Electron-Positron Collider[8]

Corey Kownacki, Ernest Ma, Nicholas Pollard, Oleg Popov, and

Mohammadreza Zakeri

Physics and Astronomy Department,

University of California, Riverside, California 92521, USA

125



Abstract

The [SU(3)]4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed

in 2003, predicts a confining leptonic color SU(2) gauge symmetry, which becomes

strong at the keV scale. It also predicts the existence of three families of

half-charged leptons (hemions) below the TeV scale. These hemions are confined to

form bound states which are not so easy to discover at the Large Hadron Collider

(LHC). However, just as J/ψ and Υ appeared as sharp resonances in e−e+ colliders

of the 20th centrury, the corresponding ’hemionium’ states are expected at a future

e−e+ collider of the 21st century.
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9.1 Introduction

Fundamental matter consists of quarks and leptons, but why are they so different?

Both interact through the SU(2)L×U(1)Y electroweak gauge bosons W±, Z0 and the

photon A, but only quarks interact through the strong force as mediated by the

gluons of the unbroken (and confining) color SU(3) gauge symmetry, called quantum

chromodynamics (QCD). Suppose this is only true of the effective low-energy theory.

At high energy, there may in fact be three ’colors’ of leptons transforming as a triplet

under a leptonic color SU(3) gauge symmetry. Unlike QCD, only its SU(2)l subgroup

remains exact, thus confining only two of the three ’colored’ leptons, called ’hemions’

in Ref. [169] because they have ±1/2 electric charges, leaving the third ones free as

the known leptons.

The notion of leptonic color was already discussed many years ago [170, 171], and

its incorporation into [SU(3)]4 appeared in Ref. [172], but without full unification.

Its relevance today is threefold. (1) The [SU(3)]4 quartification model [169] of Babu,

Ma, and Willenbrock (BMW) is non-supersymmetric, and yet achieves gauge-coupling

unification at 4 × 1011 GeV without endangering proton decay. This unification of

gauge couplings is only possible if the three families of hemions have masses below

the TeV scale. Given the absence of experimental evidence for supersymmetry at the

Large Hadron Collider (LHC) to date, this alternative scenario deserves a closer look.

(2) The quartification scale determines the common gauge coupling for the SU(2)l
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symmetry. Its extrapolation to low energy predicts that it becomes strong at the

keV scale, in analogy to that of QCD becoming strong at somewhat below the GeV

scale. This may alter the thermal history of the Universe and allows the formation

of gauge-boson bound states, the lightest of which is a potential warm dark-matter

candidate [173]. (3) The hemions (called ’liptons’ previously [171]) have ±1/2 electric

charges and are confined to form bound states by the SU(2)l ’stickons’ in analogy

to quarks forming hadrons through the SU(3)C gluons. They have been considered

previously [174] as technifermions responsible for electroweak symmetry breaking.

Their electroweak production at the LHC is possible [175] but the background is large.

However, in a future e−e+ collider (ILC, CEPC, FCC-ee), neutral vector resonances

of their bound states (hemionia) would easily appear, in analogy to the observations

of quarkonia (J/ψ, Υ) at past e−e+ colliders.

9.2 The BMW model

Under the [SU(3)]4 quartification gauge symmetry, quarks and leptons transform

as (3, 3̄) in a moose chain linking SU(3)q to SU(3)L to SU(3)l to SU(3)R back to

SU(3)q as depicted in Fig. 1.
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l lc

Figure 9.1: Moose diagram of [SU(3)]4 quartification.

Specifically,

q ∼ (3, 3̄, 1, 1) ∼




d u h

d u h

d u h



, l ∼ (1, 3, 3̄, 1) ∼




x1 x2 ν

y1 y2 e

z1 z2 N



, (9.1)

lc ∼ (1, 1, 3, 3̄) ∼




xc1 yc1 zc1

xc2 yc2 zc2

νc ec N c



, qc ∼ (3̄, 1, 1, 3) ∼




dc dc dc

uc uc uc

hc hc hc



. (9.2)

Below the TeV energy scale, the gauge symmetry is reduced [169] to SU(3)C ×

SU(2)l × SU(2)L × U(1)Y with the particle content given in Table 1. The elec-

tric charge Q is given by Q = I3L + Y as usual. The exotic SU(2)l doublets x, y

have ±1/2 charges, hence the name hemions. Whereas the quarks and charged lep-

tons must obtain masses through electroweak symmetry breaking, the hemions have

invariant mass terms, i.e. x1Ly2L − x2Ly1L and x1Ry2R − x2Ry1R. This is important

because they are then allowed to be heavy without disturbing the electroweak oblique

parameters S, T, U which are highly constrained experimentally. In the following, the
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Table 9.1: Particle content of proposed model.

particles SU(3)C SU(2)l SU(2)L U(1)Y

(u, d)L 3 1 2 1/6

uR 3 1 1 2/3

dR 3 1 1 −1/3

(x, y)L 1 2 2 0

xR 1 2 1 1/2

yR 1 2 1 −1/2

(ν, l)L 1 1 2 −1/2

νR 1 1 1 0

lR 1 1 1 −1

(φ+, φ0) 1 1 2 1/2

mass terms from electroweak symmetry breaking, i.e. x̄LxRφ̄
0 and ȳLyRφ

0, will be

assumed negligible.
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9.3 Gauge coupling unification and the leptonic

color confinement scale

The renormalization-group evolution of the gauge couplings is dictated at leading

order by

1

αi(µ)
− 1

αi(µ′)
=

bi
2π

ln

(
µ′

µ

)
, (9.3)

where bi are the one-loop beta-function coefficients,

bC = −11 +
4

3
NF , (9.4)

bl = −22

3
+

4

3
NF , (9.5)

bL = −22

3
+ 2NF +

1

6
NΦ, (9.6)

bY =
13

9
NF +

1

12
NΦ. (9.7)

The number of families NF is set to three, and the number of Higgs doublets NΦ

is set to two, as in the original BMW model. Here we make a small adjustment by

separating the three hemion families into two light ones at the electroweak scale MZ

and one at a somewhat higher scale MX . We then input the values [176]

αC(MZ) = 0.1185, (9.8)

αL(MZ) = (
√

2/π)GFM
2
W = 0.0339, (9.9)

αY (MZ) = 2αL(MZ) tan2 θW = 0.0204, (9.10)

131



where αY has been normalized by a factor of 2 (and bY by a factor of 1/2) to conform

to [SU(3)]4 quartification. We find

MU = 4× 1011 GeV, αU = 0.0301, MX = 486 GeV. (9.11)

We then use bl to extrapolate back to MZ and obtain αl(MZ) = 0.0469. Below the

electroweak scale, the evolution of αl comes only from the stickons and it becomes

strong at about 1 keV. Hence ’stickballs’ are expected at this confinement mass scale.

Unlike QCD where glueballs are heavier than the π mesons so that they decay quickly,

the stickballs are so light that they could decay only to lighter stickballs or to photon

pairs through their interactions with hemions.

9.4 Thermal history of stickons

At temperatures above the electroweak symmetry scale, the hemions are active

and the stickons (ζ) are in thermal equilibrium with the standard-model particles.

Below the hemion mass scale, the stickon interacts with photons through ζζ → γγ

scattering with a cross section

σ ∼ 9α2α2
l T

6

16M8
eff

. (9.12)

The decoupling temperature of ζ is then obtained by matching the Hubble expansion

rate

H =
√

(8π/3)GN(π2/30)g∗T 4 (9.13)
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to [6ζ(3)/π2]T 3〈σv〉. Hence

T 14 ∼ 28

38

(
π7

5[ζ(3)]2

)
GNg∗M16

eff

α4α4
l

, (9.14)

where 6M−4
eff =

∑
(M i

xy)
−4. For Meff = 110 GeV and g∗ = 92.25 which includes all

particles with masses up to a few GeV, T ∼ 6.66 GeV. Hence the contribution of

stickons to the effective number of neutrinos at the time of big bang nucleosynthesis

(BBN) is given by [177]

∆Nν =
8

7
(3)

(
10.75

92.25

)4/3

= 0.195, (9.15)

compared to the value 0.50 ± 0.23 from a recent analysis [178]. The most recent

PLANCK measurement [179] coming from the cosmic microwave background (CMB)

is

Neff = 3.15± 0.23. (9.16)

However, at the time of photon decoupling, the stickons have disappeared, hence

Neff = 3.046 as in the SM. This is discussed in more detail below.

9.5 Formation and decay of stickballs

As the Universe further cools below a few keV, leptonic color goes through a phase

transition and stickballs are formed. If the lightest stickball ω is stable, it may be a

candidate for warm dark matter. It has strong self-interactions and the 3→ 2 process

determines its relic abundance. Following Ref. [180] and using Ref. [173], we estimate
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that it is overproduced by a factor of about 3. However, ω is not absolutely stable.

It is allowed to mix with a scalar bound state of two hemions which would decay to

two photons. We assume this mixing to be fωmω/Mxy, so that its decay rate is given

by

Γ(ω → γγ) =
9α2f 2

ωm
5
ω

64π3M4
eff

, (9.17)

where Meff is now defined by 6M−2
eff =

∑
(M i

xy)
−2. Setting mω = 5 keV to be

above the astrophysical bound of 4 keV from Lyman α forest observations [181] and

Meff = 150 GeV, its lifetime is estimated to be 4.4 × 1017s for fω = 1. This is

exactly the age of the Universe, and it appears that ω may be a candidate for dark

matter after all. However, CMB measurements constrain [182] a would-be dark-

matter lifetime to be greater than about 1025s, and x-ray line measurements in this

mass range constrain [183] it to be greater than 1027s, so this scenario is ruled out. On

the other hand, if mω = 10 keV, then the ω lifetime is 1.4×1016s, which translates to

a fraction of 2×10−14 of the initial abundance of ω to remain at the present Universe.

Compared to the upper bound of 10−10 for a lifetime of 1016s given in Ref. [182], this

is easily satisfied, even though ω is overproduced at the leptonic color phase transition

by a factor of 3.

At the time of photon decoupling, the SU(2)l sector contributes no additional

relativistic degrees of freedom, hence Neff remains the same as in the SM, i.e. 3.046,

coming only from neutrinos. In this scenario, ω is not dark matter. However, there are

many neutral scalars and fermions in the BMW model which are not being considered

134



here. They are naturally very heavy, but some may be light enough and stable, and

be suitable as dark matter.

9.6 Revelation of leptonic color at future e−e+ col-

liders

Unlike quarks, all hemions are heavy. Hence the lightest bound state is likely to

be at least 200 GeV. Its cross section through electroweak production at the LHC

is probably too small for it to be discovered. On the other hand, in analogy to the

observations of J/ψ and Υ at e−e+ colliders of the last century, the resonance produc-

tion of the corresponding neutral vector bound states (hemionia) of these hemions is

expected at a future e−e+ collider (ILC, CEPC, FCC-ee) with sufficient reach in to-

tal center-of-mass energy. Their decays will be distinguishable from heavy quarkonia

(such as toponia) experimentally.

The formation of hemion bound states is analogous to that of QCD. Instead of

one-gluon exchange, the Coulomb potential binding a hemion-antihemion pair comes

from one-stickon exchange. The difference is just the change in an SU(3) color factor

of 4/3 to an SU(2) color factor of 3/4. The Bohr radius is then a0 = [(3/8)ᾱlm]−1,

and the effective ᾱl is defined by

ᾱl = αl(a
−1
0 ). (9.18)
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Using Eqs. (3) and (5), and αl(MZ) = 0.047 with m = 100 GeV, we obtain ᾱl = 0.059

and a−1
0 = 2.2 GeV. Consider the lowest-energy vector bound state Ω of the lightest

hemion of mass m = 100 GeV. In analogy to the hydrogen atom, its binding energy

is given by

Eb =
1

4

(
3

4

)2

ᾱ2
lm = 0.049 GeV, (9.19)

and its wavefunction at the origin is

|ψ(0)|2 =
1

πa3
0

= 3.4 GeV3. (9.20)

Since Ω will appear as a narrow resonance at a future e−e+ collider, its observation

depends on the integrated cross section over the energy range
√
s around mΩ:

∫
d
√
s σ(e−e+ → Ω→ X) =

6π2

m2
Ω

ΓeeΓX
Γtot

, (9.21)

where Γtot is the total decay width of Ω, and Γee, ΓX are the respective partial widths.

Since Ω is a vector meson, it couples to both the photon and Z boson through its

constituent hemions. Hence it will decay to W−W+, qq̄, l−l+, and νν̄. Using

〈0|x̄γµx|Ω〉 = εµΩ
√

8mΩ|ψ(0)|, (9.22)

the Ω→ e−e+ decay rate is given by

Γ(Ω→ γ, Z → e−e+) =
2m2

Ω

3π
(|CV |2 + |CA|2)|ψ(0)|2, (9.23)

where

CV =
e2(1/2)(−1)

m2
Ω

+
g2
Z(− sin2 θW/4)[(−1 + 4 sin2 θW )/4]

m2
Ω −M2

Z

, (9.24)

CA =
g2
Z(− sin2 θW/4)(1/4)

m2
Ω −M2

Z

. (9.25)

136



In the above, Ω is assumed to be composed of the singlet hemions xR and yR with

invariant mass term x1Ry2R−x2Ry1R (case A). Hence Γee = 43 eV. If Ω comes instead

from xL and yL with invariant mass term x1Ly2L − x2Ly1L (case B), then the factor

(− sin2 θW/4) in CV and CA is replaced with (cos2 θW/4) and Γee = 69 eV. Similar

expressions hold for the other fermions of the Standard Model (SM).

For Ω→ W−W+, the triple γW−W+ and ZW−W+ vertices have the same struc-

ture. The decay rate is calculated to be

Γ(Ω→ γ, Z → W−W+) =
m2

Ω(1− r)3/2

6πr2

(
4 + 20r + 3r2

)
C2
W |ψ(0)|2, (9.26)

where r = 4M2
W/m

2
Ω and

CW =
e2(1/2)

m2
Ω

+
g2
Z(− sin2 θW/4)

m2
Ω −M2

Z

(9.27)

in case A. Because of the accidental cancellation of the two terms in the above, CW

turns out to be very small. Hence ΓWW = 3.2 eV. In addition to the s−channel decay

of Ω to W−W+ through γ and Z, there is also a t−channel electroweak contribution

in case B because xL and yL form an electroweak doublet. Replacing (− sin2 θW/4)

with (cos2 θW/4) in CW , and adding this contribution, we obtain

Γ(Ω→ W−W+) =
m2

Ω(1− r)3/2

6πr2
[(4 + 20r + 3r2)C2

W

+ 2r(10 + 3r)CWDW + r(8− r)D2
W ]|ψ(0)|2, (9.28)

where

DW =
−g2

4(m2
Ω − 2M2

W )
. (9.29)
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Thus a much larger ΓWW = 190 eV is obtained. For Ω → ZZ, there is only the

t−channel contribution, i.e.

Γ(Ω→ ZZ) =
m2

Ω(1− rZ)5/2

3πrZ
D2
Z |ψ(0)|2, (9.30)

where rZ = 4M2
Z/m

2
Ω and DZ = g2

Z sin4 θW/4(m2
Ω − 2m2

Z) in case A, with sin4 θW

replaced by cos4 θW in case B. Hence ΓZZ is negligible in case A and only 2.5 eV in

case B.

The Ω decay to two stickons is forbidden by charge conjugation. Its decay to

three stickons is analogous to that of quarkonium to three gluons. Whereas the latter

forms a singlet which is symmetric in SU(3)C , the former forms a singlet which is

antisymmetric in SU(2)l. However, the two amplitudes are identical because the

latter is symmetrized with respect to the exchange of the three gluons and the former

is antisymmetrized with respect to the exchange of the three stickons. Taking into

account the different color factors of SU(2)l versus SU(3)C , the decay rate of Ω to

three stickons and to two stickons plus a photon are

Γ(Ω→ ζζζ) =
16

27
(π2 − 9)

α3
l

m2
Ω

|ψ(0)|2, (9.31)

Γ(Ω→ γζζ) =
8

9
(π2 − 9)

αα2
l

m2
Ω

|ψ(0)|2. (9.32)

Hence Γζζζ = 4.5 eV and Γγζζ = 1.1 eV. The integrated cross section of Eq. (21)

for X = µ−µ+ is then 3.8 × 10−33 cm2-keV in case A and 2.1 × 10−33 cm2-keV in

case B. For comparison, this number is 7.9 × 10−30 cm2-keV for the Υ(1S). At a

138



high-luminosity e−e+ collider, it should be feasible to make this observation. Table 2

summarizes all the partial decay widths.

We should point out that the generic idea of SU(2)l leptonic color [170, 171,

172] is applicable to our discussion in this section. What distinguishes the BMW

model [169] is its insistence that the four fundamental gauge couplings be unified.

This in turn requires the existence of three hemion families below the TeV scale and

that the leptonic color confining scale to be keV. Without these constraints, there is

no guarantee that hemionia would be observable at a future e−e+ collider, but then

there is also no reason to forbid them. Note also that the value of αl is predicted in

the BMW model, whereas in a generic leptonic color model, it is not.

9.7 Discussion and outlook

There are important differences between QCD and QHD (quantum hemiodynam-

ics). In the former, because of the existence of light u and d quarks, it is easy to

pop up uū and dd̄ pairs from the QCD vacuum. Hence the production of open charm

in an e−e+ collider is described well by the fundamental process e−e+ → cc̄. In the

latter, there are no light hemions. Instead it is easy to pop up the light stickballs from

the QHD vacuum. As a result, just above the threshold of making the Ω resonance,

the many-body production of Ω + stickballs becomes possible. This cross section is

presumably also well described by the fundamental process e−e+ → xx̄. In case A,
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the cross section is given by

σ(e−e+ → xx̄) =
2πα2

3

√

1− 4m2

s

[
(s+ 2m2)

s2
+

x2
W

2(1− xW )2

(s−m2)

(s−m2
Z)2

+
xW

(1− xW )

(s−m2)

s(s−m2
Z)
− (1− 4xW )

4(1− xW )

m2

s(s−m2
Z)

]
, (9.33)

where xW = sin2 θW and s = 4E2 is the square of the center-of-mass energy. In case

B, it is

σ(e−e+ → xx̄) =
2πα2

3

√

1− 4m2

s

[
(s+ 2m2)

s2
+

(s−m2)

2(s−m2
Z)2

− (s−m2)

s(s−m2
Z)

+
(1− 4xW )

4xW

m2

s(s−m2
Z)

]
. (9.34)

Using m = 100 GeV and s = (250 GeV)2 as an example, we find these cross sections

to be 0.79 and 0.44 pb respectively.

In QCD, there are qq̄ bound states which are bosons, and qqq bound states which

are fermions. In QHD, there are only bound-state bosons, because the confining

symmetry is SU(2)l. Also, unlike baryon (or quark) number in QCD, there is no such

thing as hemion number in QHD, because y is effectively x̄. This explains why there

are no stable analog fermion in QHD such as the proton in QCD.

The SM Higgs boson h couples to the hemions, but these Yukawa couplings could

be small, because hemions have invariant masses themselves as already explained. So

far we have assumed these couplings to be negligible. If not, then h may decay to two

photons and two stickons through a loop of hemions. This may show up in precision

Higgs studies as a deviation of h → γγ from the SM prediction. It will also imply
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a partial invisible width of h proportional to this deviation. Neither would be large

effects and that is perfectly consistent with present data.

The absence of observations of new physics at the LHC is a possible indication

that fundamental new physics may not be accessible using the strong interaction, i.e.

quarks and gluons. It is then natural to think about future e−e+ colliders. But is

there some fundamental issue of theoretical physics which may only reveal itself there?

and not at hadron colliders? The BMW model is one possible answer. It assumes a

quartification symmetry based on [SU(3)]4. It has gauge-coupling unification without

supersymmetry, but requires the existence of new half-charged fermions (hemions)

under a confining SU(2)l leptonic color symmetry, with masses below the TeV scale. It

also predicts the SU(2)l confining scale to be keV, so that stickball bound states of the

vector gauge stickons are formed. These new particles have no QCD interactions, but

hemions have electroweak couplings, so they are accessible in a future e−e+ collider,

as described in this paper.
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Table 9.2: Partial decay widths of the hemionium Ω.

Channel Width (A) Width (B)

νν̄ 11 eV 123 eV

e−e+ 43 eV 69 eV

µ−µ+ 43 eV 69 eV

τ−τ+ 43 eV 69 eV

uū 50 eV 175 eV

cc̄ 50 eV 175 eV

dd̄ 10 eV 147 eV

ss̄ 10 eV 147 eV

bb̄ 10 eV 147 eV

W−W+ 3.2 eV 190 eV

ZZ 0.02 eV 2.5 eV

ζζζ 4.5 eV 4.5 eV

ζζγ 1.1 eV 1.1 eV

sum 279 eV 1319 eV
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Chapter 10

Dark Gauge U(1) Symmetry for an

Alternative Left-Right Model[9]

Corey Kownacki, Ernest Ma, Nicholas Pollard, Oleg Popov, and

Mohammadreza Zakeri

Department of Physics and Astronomy,

University of California, Riverside, California 92521, USA

Abstract

An alternative left-right model of quarks and leptons, where the SU(2)R lepton

doublet (ν, l)R is replaced with (n, l)R so that nR is not the Dirac mass partner of
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νL, has been known since 1987. Previous versions assumed a global U(1)S symmetry

to allow n to be identified as a dark-matter fermion. We propose here a gauge

extension by the addition of extra fermions to render the model free of gauge

anomalies, and just one singlet scalar to break U(1)S. This results in two layers of

dark matter, one hidden behind the other.
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10.1 Introduction

The alternative left-right model [29] of 1987 was inspired by the E6 decomposition

to the standard SU(3)C×SU(2)L×U(1)Y gauge symmetry through an SU(2)R which

does not have the conventional assignments of quarks and leptons. Instead of (u, d)R

and (ν, l)R as doublets under SU(2)R, a new quark h and a new lepton n per family

are added so that (u, h)R and (n, e)R are the SU(2)R doublets, and hL, dR, nL, νR

are singlets.

This structure allows for the absence of tree-level flavor-changing neutral currents

(unavoidable in the conventional model), as well as the existence of dark matter.

The key new ingredient is a U(1)S symmetry, which breaks together with SU(2)R,

such that a residual global S ′ symmetry remains for the stabilization of dark matter.

Previously [184, 185, 186], this U(1)S was assumed to be global. We show in this paper

how it may be promoted to a gauge symmetry. To accomplish this, new fermions are

added to render the model free of gauge anomalies. The resulting theory has an

automatic discrete Z2 symmetry which is unbroken, as well as the global S ′, which is

now broken to Z3. Hence dark matter has two components [93]. They are identified

as one Dirac fermion (nontrivial under both Z2 and Z3) and one complex scalar

(nontrivial under Z3).
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10.2 Model

The particle content of our model is given in Table 1, where the scalar SU(2)L ×

SU(2)R bidoublet is given by

η =



η0

1 η+
2

η−1 η0
2


 , (10.1)

with SU(2)L transforming vertically and SU(2)R horizontally. Without U(1)S as a

gauge symmetry, the model is free of anomalies without the addition of the ψ and χ

fermions. In the presence of gauge U(1)S, the additional anomaly-free conditions are

all satisfied by the addition of the ψ and χ fermions. The [SU(3)C ]2U(1)S anomaly is

canceled between (u, h)R and hL; the [SU(2)L]2U(1)S anomaly is zero because (u, d)L

and (ν, l)L do not transform under U(1)S; the [SU(2)R]2U(1)S and [SU(2)R]2U(1)X

anomalies are both canceled by summing over (u, h)R, (n, l)R, (ψ0
1, ψ

−
1 )R, and (ψ+

2 , ψ
0
2)R;

the addition of χ±R renders the [U(1)X ]2U(1)S, U(1)X [U(1)S]2, [U(1)X ]3, and U(1)X

anomalies zero; and the further addition of χ0
1R and χ0

2R kills both the [U(1)S]3 and

U(1)S anomalies, i.e.

0 = 3[6(−1/2)3 − 3(−1)3 + 2(1/2)3 − (1)3]

+ 2(2)3 + 2(1)3 + 2(−3/2)3 + (−1/2)3 + (−5/2)3, (10.2)

0 = 3[6(−1/2)− 3(−1) + 2(1/2)− (1)]

+ 2(2) + 2(1) + 2(−3/2) + (−1/2) + (−5/2). (10.3)

Under T3R + S, the neutral scalars φ0
R and η0

2 are zero, so that their vacuum
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expectation values do not break T3R+S which remains as a global symmetry. However,

〈σ〉 6= 0 does break T3R+S and gives masses to ψ0
1Rψ

0
2R−ψ−1Rψ+

2R, χ+
Rχ
−
R, and χ0

1Rχ
0
2R.

These exotic fermions all have half-integral charges [187] under T3R + S and only

communicate with the others with integral charges through W±
R ,
√

2Re(φ0
R), ζ, and

the two extra neutral gauge bosons beyond the Z. Some explicit Yukawa terms are

(ψ0
1Rφ

−
R + ψ−1Rφ̄

0
R)χ+

R, (ψ+
2Rφ

0
R − ψ0

2Rφ
+
R)χ−R, (10.4)

(ψ0
1Rφ

0
R − ψ−1Rφ+

R)χ0
2R, (ψ+

2Rφ
−
R + ψ0

2Rφ̄
0
R)χ0

1R. (10.5)

This dichotomy of particle content results in an additional unbroken symmetry of the

Lagrangian, i.e. discrete Z2 under which the exotic fermions are odd. Hence dark mat-

ter has two layers: those with nonzero T3R+S and even Z2, i.e. n, h,W±
R , φ

±
R, η

±
1 , η

0
1, η̄

0
1,

ζ, and the underlying exotic fermions with odd Z2. Without ζ, a global S ′ symmetry

remains. With ζ, because of the ζ3σ∗ and χ0
1Rχ

0
1Rζ terms, the S ′ symmetry breaks to

Z3.

Let

〈φ0
L〉 = v1, 〈η0

2〉 = v2, 〈φ0
R〉 = vR, 〈σ〉 = vS, (10.6)

then the SU(3)C × SU(2)L× SU(2)R ×U(1)X ×U(1)S gauge symmetry is broken to

SU(3)C × U(1)Q with S ′, which becomes Z3, as shown in Table 2 with ω3 = 1. The

discrete Z2 symmetry is unbroken. Note that the global S ′ assignments for the exotic

fermions are not T3R + S because of vS which breaks the gauge U(1)S by 3 units.
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10.3 Gauge sector

Consider now the masses of the gauge bosons. The charged ones, W±
L and W±

R ,

do not mix because of S ′(Z3), as in the original alternative left-right models. Their

masses are given by

M2
WL

=
1

2
g2
L(v2

1 + v2
2), M2

WR
=

1

2
g2
R(v2

R + v2
2). (10.7)

Since Q = I3L + I3R +X, the photon is given by

A =
e

gL
W3L +

e

gR
W3R +

e

gX
X, (10.8)

where e−2 = g−2
L + g−2

R + g−2
X . Let

Z = (g2
L + g2

Y )−1/2

(
gLW3L −

g2
Y

gR
W3R −

g2
Y

gX
X

)
, (10.9)

Z ′ = (g2
R + g2

X)−1/2(gRW3R − gXX), (10.10)

where g−2
Y = g−2

R + g−2
X , then the 3 × 3 mass-squared matrix spanning (Z,Z ′, S) has

the entries:

M2
ZZ =

1

2
(g2
L + g2

Y )(v2
1 + v2

2), (10.11)

M2
Z′Z′ =

1

2
(g2
R + g2

X)v2
R +

g4
Xv

2
1 + g4

Rv
2
2

2(g2
R + g2

X)
, (10.12)

M2
SS = 18g2

Sv
2
S +

1

2
g2
S(v2

R + v2
2), (10.13)

M2
ZZ′ =

√
g2
L + g2

Y

2
√
g2
R + g2

X

(g2
Xv

2
1 − g2

Rv
2
2), (10.14)

M2
ZS =

1

2
gS
√
g2
L + g2

Y v
2
2, (10.15)

M2
Z′S = −1

2
gS
√
g2
R − g2

Xv
2
R −

gSgRv
2
2

2
√
g2
R + g2

X

. (10.16)
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Their neutral-current interactions are given by

LNC = eAµj
µ
Q + gZZµ(jµ3L − sin2 θW j

µ
Q)

+ (g2
R + g2

X)−1/2Z ′µ(g2
Rj

µ
3R − g2

Xj
µ
X) + gSSµj

µ
S , (10.17)

where g2
Z = g2

L + g2
Y and sin2 θW = g2

Y /g
2
Z .

In the limit v2
1,2 << v2

R, v
2
S, the mass-squared matrix spanning (Z ′, S) may be

simplified if we assume

v2
S

v2
R

=
(g2
R + g2

X + g2
S)2

36g2
S(g2

R + g2
X − g2

S)
, (10.18)

and let

tan θD =

√
g2
R + g2

X − gS√
g2
R + g2

X + gS
, (10.19)

then 

D1

D2


 =




cos θD sin θD

− sin θD cos θD






Z ′

S


 , (10.20)

with mass eigenvalues given by

M2
D1

=
√
g2
R + g2

X

√
g2
R + g2

X + g2
S

v2
R

2
√

2 cos θD
, (10.21)

M2
D2

=
√
g2
R + g2

X

√
g2
R + g2

X + g2
S

v2
R

2
√

2 sin θD
. (10.22)

In addition to the assumption of Eq. (18), let us take for example

2gS =
√
g2
R + g2

X , (10.23)

then sin θD = 1/
√

10 and cos θD = 3/
√

10. Assuming also that gR = gL, we obtain

g2
X

g2
Z

=
sin2 θW cos2 θW

cos 2θW
,

gS
gZ

=
cos2 θW

2
√

cos 2θW
, (10.24)

v2
S

v2
R

=
25

108
, M2

D2
= 3M2

D1
=

5 cos4 θW
4 cos 2θW

g2
Zv

2
R. (10.25)
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The resulting gauge interactions of D1,2 are given by

LD =
gZ√

10
√

cos 2θW
{[3 cos 2θW j

µ
3R − 3 sin2 θW j

µ
X + (1/2) cos2 θW j

µ
S ]D1µ

+ [− cos 2θW j
µ
3R + sin2 θW j

µ
X + (3/2) cos2 θW j

µ
S ]D2µ}. (10.26)

Since D2 is
√

3 times heavier than D1 in this example, the latter would be produced

first in pp collisions at the Large Hadron Collider (LHC).

10.4 Fermion sector

All fermions obtain masses through the four vacuum expectation values of Eq. (6)

except νR which is allowed to have an invariant Majorana mass. This means that

neutrino masses may be small from the usual canonical seesaw mechanism. The

various Yukawa terms for the quark and lepton masses are

−LY =
mu

v2

[ūR(uLη
0
2 − dLη+

2 ) + h̄R(−uLη−2 + dLη
0
1)]

+
md

v1

(ūLφ
+
L + d̄Lφ

0
L)dR +

mh

vR
(ūRφ

+
R + h̄Rφ

0
R)hL

+
ml

v2

[(ν̄Lη
0
1 + l̄Lη

−
1 )nR + (ν̄Lη

+
2 + l̄Lη

0
2)lR]

+
mD

v1

ν̄R(νLφ
0
L − lLφ+

L) +
mn

vR
n̄L(nRφ

0
R − lRφ−R) +H.c. (10.27)

These terms show explicitly that the assignments of Tables 1 and 2 are satisfied.

As for the exotic ψ and χ fermions, they have masses from the Yukawa terms of

Eqs. (4) and (5), as well as

(φ0
1Rψ

0
2R − ψ−1Rψ+

2R)σ∗, χ−Rχ
+
Rσ, χ0

1Rχ
0
2Rσ. (10.28)
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As a result, two neutral Dirac fermions are formed from the matrix linking χ0
1R and

ψ0
1R to χ0

2R and ψ0
2R. Let us call the lighter of these two Dirac fermions χ0, then it

is one component of dark matter of our model. The other will be the scalar ζ, to

be discussed later. Note that χ0 communicates with ζ through the allowed χ0
1Rχ

0
1Rζ

interaction. Note also that the allowed Yukawa terms

d̄RhLζ, n̄LνRζ (10.29)

enable the dark fermions h and n to decay into ζ.

10.5 Scalar sector

Consider the most general scalar potential consisting of ΦL,R, η, and σ. Let

η =



η0

1 η+
2

η−1 η0
2


 , η̃ = σ2η

∗σ2 =




η̄0
2 −η+

1

−η−2 η̄0
1


 , (10.30)

then

V = −µ2
LΦ†LΦL − µ2

RΦ†RΦR − µ2
σσ
∗σ − µ2

ηTr(η
†η) + [µ3Φ†LηΦR +H.c.]

+
1

2
λL(Φ†LΦL)2 +

1

2
λR(Φ†RΦR)2 +

1

2
λσ(σ∗σ)2 +

1

2
λη[Tr(η

†η)]2 +
1

2
λ′ηTr(η

†ηη†η)

+ λLR(Φ†LΦL)(Φ†RΦR) + λLσ(Φ†LΦL)(σ∗σ) + λRσ(Φ†RΦR)(σ∗σ) + λση(σ
∗σ)Tr(η†η)

+ λLηΦ
†
Lηη

†ΦL + λ′LηΦ
†
Lη̃η̃

†ΦL + λRηΦ
†
Rη
†ηΦR + λ′RηΦ

†
Rη̃
†η̃ΦR. (10.31)

Note that

2|det(η)|2 = [Tr(η†η)]2 − Tr(η†ηη†η), (10.32)
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(Φ†LΦL)Tr(η†η) = Φ†Lηη
†ΦL + Φ†Lη̃η̃

†ΦL, (10.33)

(Φ†RΦR)Tr(η†η) = Φ†Rη
†ηΦR + Φ†Rη̃

†η̃ΦL. (10.34)

The minimum of V satisfies the conditions

µ2
L = λLv

2
1 + λLηv

2
2 + λLRv

2
R + λLσv

2
S + µ3v2vR/v1, (10.35)

µ2
η = (λη + λ′η)v

2
2 + λLηv

2
1 + λRηv

2
R + λσηv

2
S + µ3v1vR/v2, (10.36)

µ2
R = λRv

2
R + λLRv

2
1 + λRηv

2
2 + λRσv

2
S + µ3v1v2/vR, (10.37)

µ2
σ = λσv

2
S + λLσv

2
1 + λσηv

2
2 + λRσv

2
R. (10.38)

The 4× 4 mass-squared matrix spanning
√

2Im(φ0
L, η

0
2, φ

0
R, σ) is then given by

M2
I = µ3




−v2vR/v1 vR v2 0

vR −v1vR/v2 v1 0

v2 v1 −v1v2/vR 0

0 0 0 0




. (10.39)

and that spanning
√

2Re(φ0
L, η

0
2, φ

0
R, σ) is

M2
R =M2

I + 2




λLv
2
1 λLηv1v2 λLRv1vR λLσv1vS

λLηv1v2 (λη + λ′η)v
2
2 λRηv2vR λσηv2vS

λLRv1vR λRηv2vR λRv
2
R λRσvRvS

λLσv1vS λσηv2vS λRσvRvS λσv
2
S




. (10.40)

Hence there are three zero eigenvalues inM2
I with one nonzero eigenvalue−µ3[v1v2/vR+

vR(v2
1+v2

2)/v1v2] corresponding to the eigenstate (−v−1
1 , v−1

2 , v−1
R , 0)/

√
v−2

1 + v−2
2 + v−2

R .

In M2
R, the linear combination H = (v1, v2, 0, 0)/

√
v2

1 + v2
2, is the standard-model
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Higgs boson, with

m2
H = 2[λLv

4
1 + (λη + λ′η)v

4
2 + 2λLηv

2
1v

2
2]/(v2

1 + v2
2). (10.41)

The other three scalar bosons are much heavier, with suppressed mixing to H, which

may all be assumed to be small enough to avoid the constraints from dark-matter

direct-search experiments. The addition of the scalar ζ introduces two important new

terms:

ζ3σ∗, (η0
1η

0
2 − η−1 η+

2 )ζ. (10.42)

The first term breaks global S ′ to Z3, and the second term mixes ζ with η0
1 through

v2. We assume the latter to be negligible, so that the physical dark scalar is mostly

ζ.

10.6 Present phenomenological constraints

Many of the new particles of this model interact with those of the standard model.

The most important ones are the neutral D1,2 gauge bosons, which may be produced

at the LHC through their couplings to u and d quarks, and decay to charged leptons

(e−e+ and µ−µ+). As noted previously, in our chosen example, D1 is the lighter of

the two. Hence current search limits for a Z ′ boson are applicable [57, 60]. The cu,d

coefficients used in the data analysis are

cu = (g2
uL + g2

uR)B = 0.0273 B, cd = (g2
dL + g2

dR)B = 0.0068 B, (10.43)
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where B is the branching fraction of Z ′ to e−e+ and µ−µ+. Assuming that D1

decays to all the particles listed in Table 2, except for the scalars which become the

longitudinal components of the various gauge bosons, we find B = 1.2× 10−2. Based

on the 2016 LHC 13 TeV data set, this translates to a bound of about 4 TeV on the

D1 mass.

The would-be dark-matter candidate n is a Dirac fermion which couples to D1,2

which also couples to quarks. Hence severe limits exist on the masses of D1,2 from

underground direct-search experiments as well. The annihilation cross section of n

through D1,2 would then be too small, so that its relic abundance would be too big

for it to be a dark-matter candidate. Its annihilation at rest through s-channel scalar

exchange is p-wave suppressed and does not help. As for the t-channel diagrams, they

also turn out to be too small. Previous studies where n is chosen as dark matter are

now ruled out.

10.7 Dark sector

Dark matter is envisioned to have two components. One is a Dirac fermion χ0

which is a mixture of the four neutral fermions of odd Z2, and the other is a complex

scalar boson which is mostly ζ. The annihilation χ0χ̄0 → ζζ∗ determines the relic

abundance of χ0, and the annihilation ζζ∗ → HH, where H is the standard-model

Higgs boson, determines that of ζ. The direct ζζ∗H coupling is assumed small to
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avoid the severe constraint in direct-search experiments.

Let the interaction of ζ with χ0 be f0ζχ0Rχ0R +H.c., then the annihilation cross

section of χ0χ̄0 to ζζ∗ times relative velicity is given by

〈σ × vrel〉χ =
f 4

0

4πmχ0

(m2
χ0
−m2

ζ)
3/2

(2m2
χo
−m2

ζ)
2
. (10.44)

Let the effective interaction strength of ζζ∗ with HH be λ0, then the annihilation

cross section of ζζ∗ to HH times relative velicity is given by

〈σζ × vrel〉ζ =
λ2

0

16π

(m2
ζ −m2

H)1/2

m3
ζ

. (10.45)

Note that λ0 is the sum over several interactions. The quartic coupling λζH is as-

sumed negligible, to suppress the trilinear ζζ∗H coupling which contributes to the

elastic ζ scattering cross section off nuclei. However, the trilinear couplings ζζ∗Re(φ0
R)

and Re(φ0
R)HH are proportional to vR, and the trilinear couplings ζζ∗Re(σ) and

Re(σ)HH are proportional to vS. Hence their effective contributions to λ0 are pro-

portional to v2
R/m

2[
√

2Re(φ0
R)] and v2

S/m
2[
√

2Re(σ)], which are not suppressed.

As a rough estimate, we will assume that

〈σ × vrel〉−1
χ + 〈σζ × vrel〉−1

ζ = (4.4× 10−26 cm3/s)−1 (10.46)

to satisfy the condition of dark-matter relic abundance [88] of the Universe. For given

values of mζ and mχ0 , the parameters λ0 and f0 are thus constrained. We show in

Fig. 1 the plots of λ0 versus f0 for mζ = 150 GeV and various values of mχ0 . Since
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Figure 10.1: Relic-abundance constraints on λ0 and f0 for mζ = 150 GeV and various
values of mχ0 .

mζ is fixed at 150 GeV, λ0 is also fixed for a given fraction of Ωζ/ΩDM . To adjust for

the rest of dark matter, f0 must then vary as a function of mχ0 according to Eq. (44).

As for direct detection, both χ0 and ζ have possible interactions with quarks

through the gauge bosons D1,2 and the standard-model Higgs boson H. They are

suppressed by making the D1,2 masses heavy, and the H couplings to χ0 and ζ small.

In our example with mζ = 150 GeV, let us choose mχ0 = 500 Gev and the relic

abundances of both to be equal. From Fig. 1, these choices translate to λ0 = 0.12
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and f0 = 0.56.

Consider first the D1,2 interactions. Using Eq. (26), we obtain

gVu (D1) = 0.0621, gVd (D1) = 0.0184, gζ(D1) = 0.1234, (10.47)

gVu (D2) = −0.1235, gVd (D2) = −0.0062, gζ(D2) = 0.3701. (10.48)

The effective ζ elastic scattering cross section through D1,2 is then completely de-

termined as a function of the D1 mass (because MD2 =
√

3MD1 in our example),

i.e.

LVζq =
(ζ∗∂µ − ζ∂µζ∗)

M2
D1

[(−7.57× 10−3)ūγµu+ (1.51× 10−3)d̄γµd]. (10.49)

Using the latest LUX result [188] and Eq. (25), we obtain vR > 35 TeV which trans-

lates to MD1 > 18 TeV, and MWR
> 16 TeV.

The χ̄0γµχ0 couplings to D1,2 depend on the 2× 2 mass matrix linking (χ1, ψ1) to

(χ2, ψ2) which has two mixing angles and two mass eigenvalues, the lighter one being

mχ0 . By adjusting these parameters, it is possible to make the effective χ0 interaction

with xenon negligibly small. Hence there is no useful limit on the D1 mass in this

case.

Direct search also constrains the coupling of the Higgs boson to ζ (through a pos-

sible trilinear λζH
√

2vHζ
∗ζ interaction) or χ0 (through an effective Yukawa coupling ε

from H mixing with σR and φ0
R). Let their effective interactions with quarks through
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H exchange be given by

LSζq =
λζHmq

m2
H

ζ∗ζq̄q +
εfq
m2
H

χ̄0χ0q̄q, (10.50)

where fq = mq/
√

2vH = mq/(246 GeV). The spin-independent direct-detection cross

section per nucleon in the former is given by

σSI =
µ2
ζ

πA2
[λpZ + (A− Z)λn]2, (10.51)

where µζ = mζMA/(mζ +MA) is the reduced mass of the dark matter, and [85]

λN =


∑

u,d,s

fNq +
2

27


1−

∑

u,d,s

fNq




 λζHmN

2mζm2
H

, (10.52)

with [86]

fpu = 0.023, fpd = 0.032, fps = 0.020, (10.53)

fnu = 0.017, fnd = 0.041, fns = 0.020. (10.54)

For mζ = 150 GeV, we have

λp = 2.87× 10−8λζH GeV−2, λn = 2.93× 10−8λζH GeV−2. (10.55)

Using A = 131, Z = 54, and MA = 130.9 atomic mass units for the LUX experi-

ment [188], and twice the most recent bound of 2× 10−46 cm2 (because ζ is assumed

to account for only half of the dark matter) at this mass, we find

λζH < 9.1× 10−4. (10.56)

As noted earlier, this is negligible for considering the annihilation cross section of ζ

to H.
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For the H contribution to the χ0 elastic cross section off nuclei, we replace mζ

with mχ0 = 500 GeV in Eq. (51) and λζH/2mζ with ε/
√

2vH in Eq. (52). Using the

experimental data at 500 GeV, we obtain the bound.

ε < 9.6× 10−4. (10.57)

From the above discussion, it is clear that our model allows for the discovery of dark

matter in direct-search experiments in the future if these bounds are only a little

above the actual values of λζH and ε.

10.8 Conclusion and outlook

In the context of the alternative left-right model, a new gauge U(1)S symmetry

has been proposed to stabilize dark matter. This is accomplished by the addition

of a few new fermions to cancel all the gauge anomalies, as shown in Table 1. As a

result of this particle content, an automatic unbroken Z2 symmetry exists on top of

U(1)S which is broken to a conserved residual Z3 symmetry. Thus dark matter has

two components. One is the Dirac fermion χ0 ∼ (ω,−) and the other the complex

scalar ζ ∼ (ω,+) under Z3 × Z2. We have shown how they may account for the relic

abundance of dark matter in the Universe, and satisfy present experimental search

bounds.

Whereas we have no specific prediction for discovery in direct-search experiments,

our model will be able to accommodate any positive result in the future, just like
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many other existing proposals. To single out our model, many additional details

must also be confirmed. Foremost are the new gauge bosons D1,2. Whereas the LHC

bound is about 4 TeV, the direct-search bound is much higher provided that ζ is a

significant fraction of dark matter. If χ0 dominates instead, the adjustment of free

parameters of our model can lower this bound to below 4 TeV. In that case, future

D1,2 observations are still possible at the LHC as more data become available.

Another is the exotic h quark which is easily produced if kinematically allowed. It

would decay to d and ζ through the direct d̄RhLζ coupling of Eq. (29). Assuming that

this branching fraction is 100%, the search at the LHC for 2 jets plus missing energy

puts a limit on mh of about 1.0 TeV, as reported by the CMS Collaboration [189]

based on the
√
s = 13 TeV data at the LHC with an integrated luminosity of 35.9

fb−1 for a single scalar quark.

If the d̄RhLζ coupling is very small, then h may also decay significantly to u and a

virtual W−
R , with W−

R becoming n̄l−, and n̄ becoming ν̄ζ∗. This has no analog in the

usual searches for supersymmetry or the fourth family because WR is heavy (> 16

TeV). To be specific, the final states of 2 jets plus l−1 l
+
2 plus missing energy should be

searched for. As more data are accumulated at the LHC, such events may become

observable.
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Table 10.1: Particle content of proposed model of dark gauge U(1) symmetry.

particles SU(3)C SU(2)L SU(2)R U(1)X U(1)S

(u, d)L 3 2 1 1/6 0

(u, h)R 3 1 2 1/6 −1/2

dR 3 1 1 −1/3 0

hL 3 1 1 −1/3 −1

(ν, l)L 1 2 1 −1/2 0

(n, l)R 1 1 2 −1/2 1/2

νR 1 1 1 0 0

nL 1 1 1 0 1

(φ+
L , φ

0
L) 1 2 1 1/2 0

(φ+
R, φ

0
R) 1 1 2 1/2 1/2

η 1 2 2 0 −1/2

ζ 1 1 1 0 1

(ψ0
1, ψ

−
1 )R 1 1 2 −1/2 2

(ψ+
2 , ψ

0
2)R 1 1 2 1/2 1

χ+
R 1 1 1 1 −3/2

χ−R 1 1 1 −1 −3/2

χ0
1R 1 1 1 0 −1/2

χ0
2R 1 1 1 0 −5/2

σ 1 1 1 0 3
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Table 10.2: Particle content of proposed model under (T3R + S)× Z2.

particles gauge T3R + S global S ′ Z3 Z2

u, d, ν, l 0 0 1 +

(φ+
L , φ

0
L), (η+

2 , η
0
2), φ0

R 0 0 1 +

n, φ+
R, ζ 1 1 ω +

h, (η0
1, η
−
1 ) −1 −1 ω2 +

ψ+
2R, χ

+
R 3/2,−3/2 0 1 −

ψ−1R, χ
−
R 3/2,−3/2 0 1 −

ψ0
1R, ψ

0
2R 5/2, 1/2 1,−1 ω, ω2 −

χ0
1R, χ

0
2R −1/2,−5/2 1,−1 ω, ω2 −

σ 3 0 1 +
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Chapter 11

Conclusion

In conclusion, many different studies has been presented here which study various

expentions of the standard model in order to incorporate several new physics effects

into current state of known theoretical high energy physics. In one of the studies, the

radiative inverse neutrino model is explained. It illustrates how standard model of el-

ementary particles and interactions is enlarged to generate naturaly small Majorana

neutrino masses. The neutrino mass generating mechanism here naturaly includes

dark matter candiates which are phenomenologicaly accesible at the current, Large

Hadron Collider, and future colliders. In this work another interesting open question

was also addressed. This study introduces totaly new and intriguing flavor symmetry,

Cobimaximal symmetry, in the context of Z3 symmetry, which could be responsible

for the origin of PMNS matrix, mixing matrix in the lepton sector. According to co-

bimaximal mixing, Atmospheric mixing angle, θ23 and CP vilating phase is predicted
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to be maximal, in agreement with current experimental data.

In one of the following works, in the context of the study discussed in the paragraph

above, the deviation from cobimaximal scenario was analysed. It was shown that

there exists a correlation between the deviations of θ23 and CP phase from the cobi-

maximal case. This will allow us to determine the second, if one of this observables

is measured in the future experiments.

In one of another studies, a new radiative Type II seesaw model with dark matter

generating a neutrino mass has been presented. It has been shown in the context of

this model, that this could lead to a unique discovery signatures, same flavour same

sign 4 lepton in the final state channel, at the Large Hadron Collider.

Other project focuses on the study of different generations of Dirac neutrino mass

in the case that double beta decay data disfavors Majorana case in the future. In

the scope of this work, it has been shown that there exists 4 and only 4 tree level

realizations of Dirac neutrino mass and only 2 one loop level mechanisms. The study

also includes the one loop scotogenic Dirac neutrino mass generation in the context

of left-right gauge model.

In the Quartification study the question of unification of all gauge couplings and its

low energy phenomenology was addressed. In this study, by restoring the symmetry

between standard model quarks and leptons, in the context of non-supersymmetric

[SU(3)]4 gauge symmetry group, all gauge coupling constants are shown to unify at

the unification scale. As a consequence, the particles called Hemions are introduced.
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These heavy hemions confine at the keV scale into bound states called hemionium,

which might be light and show themselfs as resonances in the future e+e− collider.

In one of the recent studies, we have explored the new variation of long studied left-

right models. A new gauged version of alternative left-right model of quarks and

leptons, where right-handed electron is pared into a right-handed doublet with a new

paricle n. As a consequence of this gauge symmetry, new particles are predicted

which transfrom non-trivialy under new Dark symmetry. This symmetry stabilize

dark matter. In order to render this dark gauge symmetry anomaly free, new exotic

fermions are predicted, which leads to another rezidual symmetry. As a result 2 sep-

arate discrete symmtries, Z2 and Z3, allow for the existance of 2 components of dark

matter which would transform differently under duscrete symmtries mentioned. The

observation of newly predicted gauge particles at the Large Hadron Collider,or lack

of it, will favor or disfavor this model in the future experiments.
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