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Model Reduction for Stochastic CaMKII Reaction Kinetics
in Synapses by Graph-Constrained Correlation Dynamics

Todd Johnson1, Tom Bartol2, Terrence Sejnowski2, and Eric Mjolsness3

April 7, 2015

Abstract

A stochastic reaction network model of Ca2+ dynamics in synapses [1] is expressed and simu-
lated using rule-based reaction modeling notation in Dynamical Grammars and in MCell. The model
tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically
intensive simulations is used to train a reduced model that, out of sample, correctly predicts the
evolution of interaction parameters characterizing the instantaneous probability distribution over
molecular states in the much larger fine-scale models. The novel model reduction method, “Graph-
Constrained Correlation Dynamics” (GCCD), requires a graph of plausible state variables and in-
teractions as input. It parametrically optimizes a set of constant coefficients appearing in differential
equations governing the time-varying interaction parameters that determine all correlations between
variables in the reduced model at any time slice.

1 Introduction
Given a stochastic reaction network, even one specified by high-level “parameterized reactions” or
“rule-based” notation [2-6], there is a corresponding Chemical Master Equation (CME) for the evo-
lution of probability distributions over all possible molecular states of the system. These states are
ultimately described in terms of discrete-valued random variables. Unfortunately as the number of
such random variables grows, the number of molecular states appearing directly in the CME grows
exponentially. On the other hand even for a dynamical system that is nonlinear in its observable vari-
ables, the CME is a (very large) system of linear differential equations for time-evolving probabilities.
The exponential explosion of state space size with number of random variables can often be bypassed
in sampling-style simulation (such as the Gillespie Stochastic Simulation Algorithm (SSA) [7] and its
many variants), and also to a lesser extent for reaction rate inference, provided that enough trajecto-
ries are sampled to evaluate a required expected value. But the sampling approach requires a lot of
computing power to sample enough trajectories, and also poses substantial obstacles for analysis.

The problem of state space growth is compounded in the case of rule-based stochastic models
[2,5,6,4] since in that case even the number of molecular species suffers an exponential growth in
terms of natural problem size parameters such as the number of binding sites in a molecular complex.
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Then the state space described in the master equation grows doubly exponentially in such problem
size parameters, and it can be hard to really understand the resulting stochastic dynamical system.
And yet, molecular complexes with combinatorially many states (such as transcription complexes,
signal transduction complexes, and allosteric enzyme complexes) are ubiquitous in biology, so the
problem cannot simply be avoided. For example, the signal transduction cascade in response to
calcium influx through NMDA receptors in synapses, which plays a key role in synaptic plasticity in
spatial learning and memory in mice, has such combinatorially generated number of local states of
molecular complexes involving calcium, calmodulin, CaMKII and phosphorylation sites, as will be
described in section 3.1 below ([1,8], and references therein). Each of the many possible states of each
complex is itself a "molecular species" with associated reaction channels.

To address these problems of model size and state space size, reduced models may have sub-
stantial advantages. In general, model reduction replaces a large model with a smaller and more
tractable model that approximates the large model in some relevant aspect. The ideas of model
“size”, “tractability”, “approximation”, and “relevant aspect” can be defined in various ways. We
will suggest one framework for these definitions in section 2.1 below. In sections 2.2 and 2.3 be-
low we use this framework to introduce a new model reduction method for stochastic biochemical
networks which in our target application are also rule-based, though they need not be.

Our method can be viewed as a form of "moment closure" method as will be explained in sec-
tion 2.4, which also contains further comparisons to related work. Compared to other methods of mo-
ment closure we seek a much more aggressive reduction in the model size, as counted by the number
of degrees of freedom (chemical or biological variables with dynamically changing values) required
even in a sampling approach, such as SSA, to the original unreduced biochemical model. This claim
is substantiated in sections 2.4 and 3.4 below. Such a strategy may be appropriate to the eventual
goal of finding usable “phenomenological” but mechanistically well-founded approximate models
of fine-scale subsystems to place within yet larger super-system models, for example placing calcium
signal pathway reduced models within neuronal-level synaptic plasticity simulations, although we
have not yet attempted such an application of this method. Unlike most but not all other moment
closure approaches, we retain (approximations to) correlations of arbitrarily high order rather than
truncating them to zero. Our approach applies naturally to the case of rule-based models. And per-
haps most importantly from the biological point of view, it is based on a problem-specific graph of
possible interactions between key system variables. Such a graph is a natural place to impose human
biological expertise on the approximate model reduction method.

2 Theory

2.1 Model reduction criteria
Figure 1 illustrates our general setting. The basic idea is that the results of following the red arrows
around from earlier to later observations, by way of a fine-scale predictive dynamical model as one
would do in an ordinary simulation, should approximately agree with the results of following the
green arrows around through a coarse-scale model instead. Since the coarse-scale model is smaller,
following the green arrows could be cheaper computationally and also more amenable to human
understanding of the dynamics. To define this possibility technically, figure 1 also includes mappings
M and P̂ directly between the fine-scale and coarse-scale model state spaces.

All vectors and maps defined below are assumed to be defined in the sense of probability distri-
butions, so that for example the fine-scale system state vector S(t) is a distribution over all possible
individual microscopic states s. In the deterministic limit that distribution could be a delta function
that picks out one winning microstate. Likewise maps M, ∆ f [∆t] etc. take distribution vectors to
distribution vectors. The forward time-evolution maps ∆ f [∆t] and ∆c[∆t] are linear on probability
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Figure 1: Commutative diagram for model reduction. Fine-scale system S with state
S(t) at time t evolves according to fine-scale dynamics ∆ f [∆t] (lower horizontal arrow)
to some new state S(t + ∆t) at time t + ∆t after (finite or infinitesimal) time interval
∆t. Likewise, reduced or coarse-scale system R with state R(t) at time t evolves under
reduced coarse-scale dynamics ∆c[∆t] (upper horizontal arrow). There is a model reduc-
tion or restriction map M (vertical arrows), and a prolongation map P̂ right-inverse to M.
Comparison for approximation (≈) may be made in some relevant third space O, which
could specialize (as we assume below) to be the same as S or R. The black arrow quadri-
lateral comprising two short paths from S(t) to R(t + ∆t) corresponds to approximation
equations (1) and (2). Approximation equations (3) and (4) correspond in their left hand
sides to the green highlighted path and in their right hand sides to the red highlighted
path. In principle multiple copies of this diagram can be composed, either horizontally
or vertically.

distributions, and thus preserve mixtures, but in this paper we do not assume linearity of M or the
other maps introduced below.

Fine-scale and (reduced) course-scale dynamics are illustrated in figure 1. A model-reduction
or “restriction” map M should ideally commute, at least approximately, with time-evolution maps
∆ f [∆t] and ∆c[∆t]; thus for example

∆c[∆t] ◦M · S(t) ≈ M ◦ ∆ f [∆t] · S(t), (1)

for all S(t) or more strongly for almost all possible S, which in operator space could be stated as

∆c[∆t] ◦M ≈ M ◦ ∆ f [∆t]. (2)

We will omit operator-space variants of the approximation statements below but they should be clear
if the same vector appears at the rightmost end of each side of the approximation. Here and in this
section the sense of approximation ≈ has yet to be defined but it requires aggregating some measure
of error over microstates s, r, or o. For deterministic systems, sum-of-squares error over dynamical
variables is plausible; for stochastic systems, an asymmetric Kullback-Leibler (K-L) divergence or
relative entropy between two distributions over system states is plausible. The K-L divergence is
useful when approximating probability distributions because (a) it measures the extra information
contained in one distribution beyond what is in a second distribution, and (b) it takes its minimal
value, zero, when the two distributions are equal almost everywhere.

Equations (1) and (2) are not entirely satisfactory since they provide no control over the space
in which approximation comparisons are to be made. Alternatively to equation (1), and adopting
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terminology used in multigrid/multiscale algorithms [9,10], one could introduce a “prolongation”
map P̂ that is exactly or approximately right-inverse to M (so that M ◦ P̂ = I or M ◦ P̂ ≈ I), and
make the commutativity comparison in the fine-scale system space, S, rather than course-scale, R.
But a more general scheme that encompasses both alternatives is to compare time-evolved states
or probability distributions on states in a third space of significant “observables”, O(t), as shown,
using restriction maps RS : S→ O (and its right powerset inverse or prolongation map PS for which
RS ◦ PS = I) and RR : R → O (and its right powerset inverse or prolongation map PR for which
RR ◦ PR = I if space R is not smaller than O so that RR can be surjective) that predict the targeted
observables based on the current state of each system. Then we seek

RR ◦ ∆c[∆t] ◦ PR ·O(t) ≈ RS ◦ ∆ f [∆t] ◦ PS ·O(t), (3)

as illustrated by the red and green three-arrow paths in figure 1. This, or the corresponding operator
statement in the O space:

RR ◦ ∆c[∆t] ◦ PR ≈ RS ◦ ∆ f [∆t] ◦ PS (4)

is our most general statement of the commutation condition.
If we initialize O(t) = RS · S(t), and assume for consistency the triangular commutation relation

PR ◦ RS = M, and define the projection operator ΠS = PS ◦ RS, then equation (3) becomes

RR ◦ ∆c[∆t] ◦M · S(t) ≈ RS ◦ ∆ f [∆t] ◦ΠS · S(t). (5)

Two special cases are salient for our computational experiments. In the special case O = S, which
we will use, then RS = I, RR = P̂, PS = I and PR = M, (note RR and PR exchange roles so that
RR ◦ PR 6= I but instead PR ◦ RR = M ◦ P̂ = I), and we deduce ΠS = I and the foregoing condition
becomes

P̂ ◦ ∆c[∆t] ◦M · S(t) ≈ ∆ f [∆t] · S(t). (6)

And in the special case O = R, which we will also use, RR = I, RS = M, PR = I, and PS = P̂, so
equation (3) reverts to

∆c[∆t] · R(t) ≈ M ◦ ∆ f [∆t] ◦ P̂ · R(t), (7)

which is closely related to (1).
In all cases some measure of difference or distance is required to define approximation ≈; such a

measure may operate directly on microstates s, r, o, or on probability distribution state vectors S, R, O
over these microstates as we assume below. Particular definitions of≈will be made in section 3.3 (for
O = R) and Appendix section 6.1 (for (O = S). The foregoing considerations apply to any dynamical
system including stochastic, deterministic, and mixed stochastic/deterministic ones.

2.2 Fine- and Coarse-Scale Dynamics
To apply the foregoing framework we need to define fine scale dynamics, coarse scale dynamics, ob-
servables, mappings between them, and a sense of approximation (“≈” in figure 1). As in equation 7
above, we will report on the results of taking O = R. The approximation metrics will be defined in
section 3.3. We now define fine and coarse scale models.

For a Master Equation derived from a large fine-scale reaction network (whether rule-based or
not) we seek reduced coarse-scale models in the form of a Boltzmann distribution over states at each
time point, with successive time points linked by an artificial and approximating dynamics on the
“coupling constant” or interaction parameters (now time-varying rather than constant) appearing in
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the Boltzmann energy function formula. In machine learning terms, our prolongation map P̂ is given
at each instant in time by a probability distribution on fine-scale variables specified by a Markov
Random Field (MRF) [11]. The MRF comprises a set of “clique potentials” or “interaction potentials”.
Each interaction potential is a function, usually a monomial or polynomial, of just a few random
variables. Each such potential function is multiplied by a scalar interaction potential strength, which
we will call an “interaction parameter”. The sum of all the potentials (including their interaction
parameter multiplicative factors) yields the energy function in the Boltzmann distribution. Unlike the
potentials, the energy function depends on all the random variables. The way we apply this standard
apparatus is as follows: The MRF random variables are interpreted as the fine-scale variables, and
the MRF interaction parameters are taken to be the coarse-scale model dynamical variables. Only
these interaction parameters can vary with time, and in our model they will vary continuously in
time. Otherwise, the structure of each interaction potential is fixed and independent of time. Thus,
the energy function and the MRF model depend on time only through the interaction parameters
which are the coarse-scale dynamical variables.

Without the constraint between successive time points enforced by coarse-scale dynamics on the
interaction parameters, the classic Boltzmann Machine Learning Algorithm (BMLA) [12] can be used
separately at each time point to optimize these unknown interaction parameters to fit samples drawn
from many simulations of the full model. This learning algorithm optimizes the K-L divergence
or relative entropy between sampled and modeled distributions, thereby defining a sense for the
approximation relationship in section 2.1, but only for one instant in time. We slightly generalize
the BMLA learning algorithm so that it allows for weight-sharing (components of the µ interaction
parameter vector that are constrained eg. to be equal) and for polynomial interaction potentials of
degree higher than two.

Coupling many such interaction-parameter inference problems together by insisting that the
inferred interaction parameters µ all evolve according to imposed Ordinary Differential Equation
(ODE) dynamics, with a further set of learnable model-specifying meta-parameters θ defined in sec-
tion 2.3 below, results in the (GCCD) method presented here and in [13].

A large space of stochastic dynamical systems (S, ∆ f [∆t]) which can specialize to determinis-
tic ones is specified by the Master Equation governing (possibly singular) probability distributions
p(s, t) :

dp(t)
dt

= W · p(t), (8)

where W is some linear operator acting on the state space of all distributions p over S and obey-
ing conservation of probability, 1 ·W = 0. Even though the Master Equation is linear, its effect on
moments such as 〈si〉p(t) may be highly nonlinear.

For stochastic chemical kinetics the Master Equation specializes to the Chemical Master Equation
(CME) which can be written:

d
dt

p([ni], t) = ∑
r

kr

[(
∏

j
(nj − S(r)

j )
m(r)

j

)
p([ni − S(r)

i ]), t)−
(
∏

j
(nj)m(r)

j

)
p([ni], t)

]
(9)

where [ni] is the vector of numbers ni of molecules of each type i; also in each reaction r, the stoi-
chiometry of the reaction is defined by the following integers: m(r)

j copies of molecule j are destroyed

and n(r)
j are created resulting in a net change of S(r)

j = n(r)
j −m(r)

j in the number of molecules of type
j; also the notation (n)m means the falling factorial n!/(n− m)!, and kr is the reaction rate for reac-
tion number r. This fully defines the fine-scale stochastic system for a mass-action chemical reaction
network. Using the same notation, the chemical reaction network itself may be expressed as:

∀r ∑
j

m(r)
j Aj

kr−→∑
j

n(r)
i Ai, (10)
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where Ai represents reacting chemical species number i and the sums are to be interpreted chemically
rather than mathematically.

The Plenum implementation of Dynamical Grammars [2,4] and the MCell Monte Carlo simula-
tion software [3] can be used to express rule-based models and thereby to concisely define combi-
natorially many elementary reactants and reactions for molecular complexes such as CamKII (which
will be introduced in section 3.1 below) and to efficiently simulate them. In addition, spatial diffusion
processes can be added. Plenum uses computer algebra to express high-level biological models in-
cluding those in which the number of compartments varies dynamically and hybrid stochastic/ODE
systems. MCell has strong stochastic spatial capabilities and has been used extensively for synapse
and neuronal simulations.

For coarse-scale approximate models, if we assume that the state space of the reduced model
can be described as the product of state spaces for a fixed set of variables r = {µα}, then we may
consider coarse-scale dynamical systems that through prolongation P̂ induce an instantaneous fine-
scale probability distribution p̃(s, t) defined by some Boltzmann distribution

p̃(s|t, µ) = exp
[
−∑

α

µα(t)Vα(s)
]
/Z(µ(t)), (11)

where Z(µ) normalizes p̃. This formula separates the time-evolution (which can only affect interac-
tion parameters µα) from the correlation-controlling structure of interactions Vα. If there are as many
values of α as elements in the full state space of s, then any distribution can be described, but gener-
ally we choose a far sparser set of interaction terms. In general equation (11) has nonzero moments of
all orders, though only a few moments −∂ log Z[µ]/∂µα = 〈Vα(s)〉 can be controlled independently
by varying the µα interaction parameters. This control would be exercised eg. when one derives
equation (11) by maximizing entropy subject to equality constraints on these moments 〈Vα(s)〉 and
on total probability. All other moments (which effectively have µα′ = 0) would fall where they may,
following the principle of constrained maximum entropy obeyed by the Boltzmann distribution.

The essential information about the coarse-scale dynamics is contained in equation (11) above
and equation (12) in section 2.3 below. In this setting, prolongation P̂ from coarse to fine is obtained
by sampling from the Boltzmann distribution p̃(r|t, µ). The model reduction map M will be defined
by statistical inference, from a sample of S to µ. Unlike the time-evolution maps ∆ f [∆t] and ∆c[∆t],
neither M nor P̂ must necessarily be linear on distributions, and in the special case of optimization al-
gorithms such as Maximum Likelihood (ML) inference, Maximum A Posteriori (MAP) inference, and
BMLA, M would be nonlinear due to its optimization of an objective function that is not quadratic
in both p and p̃. In sections 2.3 and 3 we will specialize and then apply the theory to stochastic
biochemical networks.

2.3 Basis Functions, Smoothing, Test Cases
To define the coarse-scale stochastic model in terms of the time-evolving Boltzmann distribution of
equation (11), we hypothesize that even though any particular sample of the stochastic nonlinear
system will in general undergo discontinous evolution, the probability distribution governing the
ensemble of such samples are likely to evolve continuously in time (as does the Master Equation
itself) even when projected down to distributions described by the statistical interaction parame-
ters µ. We therefore further hypothesize continuous and deterministic ODE dynamics for the µ(t)
interaction parameters:

d
dt

µα(t) = fα(µ(t)) = ∑
A

θαA fA(µ(t)), (12)

which is linear in new trainable model meta-parameters θαA (referred to below as “model parame-
ters”, and which must be distinguished from the interaction parameters µ) that are constant in time,
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unlike the time-varying interaction parameters µ. For basis functions fαA(µ) we use bases that arose
in elementary solvable examples (two- and four-state binding models mentioned at the end of this
subsection and described in [13]):

fA(µ) ∈
⋃
α,β

{1, eµα , e−µα , µk
α,

1
(µα + 1)

, e(µα−c)2/2, µαµβ, e2(µα−µβ)
2
, e2(µα+µβ)

2}, (13)

for k ∈ {1, . . . , 5} and c ∈ {−3, . . . ,+3}. Machine learning model selection algorithms (such as the
“lasso” algorithm of section 3.3 below) can be used to encourage sparsity in the use of bases i.e. in
the matrix θ, which in turn favors good generalization performance. Many other forms for trainable
ODE dynamics could be used in this “system identification” subproblem, such as (nonlinear in θ)
neural networks.

Like the Markovian equation (8), the deterministic equation (12) is differential in time so that
the evolution of the coarse scale dynamical interaction parameters µ depends only on their state at
the current time and not directly on their state at earlier times. However as remarked in [14], many
consistent non-Markovian stochastic processes can be obtain from Markovian ones by integrating out
extra degrees of freedom not otherwise needed. Similar phenomena obtain for differential equations.
In GCCD it may be possible to do this by adding extra “hidden” interaction parameters and/or extra
random variables to the GCCD graph.

As a postprocessing step, the BMLA-learned trajectories of µα(t) interaction parameters could be
smoothed in time t by convolution with a Gaussian in t and then differentiated with respect to time
to get dµ/dt; what we actually do is the mathematically equivalent operation of convolving with the
analytic derivative of a Gaussian.

The solvable examples used to derive the basis functions in equation (13) were: (1) a two-state
binding site model in which ligand binds to and unbinds from a site, and (2) a four-state, two-
site cooperative binding model, both obeying detailed balance. The K-L divergence minimization
algorithm derived in the Appendix solved both of these problems correctly to high accuracy. Un-
fortunately, with these basis functions, the GCCD K-L divergence minimization algorithm exhibited
numerical instability and failure to converge on the realistic CaMKII problem outlined below. It is
possible that this problem could be solved by variations such as more extensive stacking (defined in
the Appendix), which would allow the use of more training data, or a different form for the ODEs
such as different basis functions and/or ODEs nonlinear in θ. In particular the ODE right hand sides
could take the mathematical form of trainable nonlinear neural networks. Multilayer neural net-
works with a final linear layer would generalize equation (12) to include trainable basis functions. In
section 3 below we report on the results of a different strategy, which is to optimize approximation
in the O = R or µ space (as in equation (1) or (7)) rather than the O = S space (as in equation (6)).

2.4 Previous work
If we multiply the appropriate Master Equation (equation (9) above) by monomials in key observ-
ables such as numbers of molecules of selected species in a chemical reaction network, and then sum
over all states, we find ordinary differential equations for the time-evolution of various moments of
the distribution over states. Unfortunately these equations do not close: the time derivative of lower-
degree moments depends on the present value of higher-degree moments recursively, generating a
countable infinity of coupled differential equations.

The goal of “moment closure” methods [15-27] is to obtain explicit though approximate dy-
namics for some finite subset of the first-order moments Ci = 〈si〉p(t), the second-order moments
Cij = 〈sisj〉p(t), and higher moments Ck

i1...ik
= 〈si1 . . . sik〉p(t) of a collection of random variables si un-

der some dynamics of their joint probability distribution p(~s, t). Many approximate moment closure
schemes have been developed starting from k = 1 mean field theory (MFT) (systematicaly replacing
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〈sisj〉p(t) with a function 〈si〉p(t)〈sj〉p(t) of the first-order moments as would be correct for indepen-
dent distributions) from which one recovers ordinary deterministic chemical kinetics, and escalating
to second-order (k = 2) moment closures that consistently keep track only of means and variances
(as would be correct for a Gaussian joint distribution) in chemical reaction networks [15,16], or in
population biology reaction-diffusion models [17] explicitly, or by means of the Fokker-Planck equa-
tion [18] or stochastic differential equations such as the Chemical Langevin Equation [19] which may
sometimes be further reduced [20].

A slightly higher order scheme is the Kirkwood Superposition Approximation (KSA) that retains
〈sisj〉p(t) (k = 2) but approximates triple correlations (k = 3) by a function of second-order corre-
lations, is derivable from [21,22] a constrained maximum-entropy sense of approximation ≈, and
has been used in multicellular stochastic modeling [23]. Fully dynamic higher order cutoffs to the
moment hierarchy for k > 2 include setting higher cumulants to zero [24], dropping higher order
terms from the Kramers-Moyal expansion [25] using moment closure functions that would be cor-
rect for log-normal rather than Gaussian distributions [26], and “equation-free” moment closure [27]
by sparingly invoking fine-scale simulations.

Each of these moment closure methods has the character, when compared to a sampling algo-
rithm, of first exponentially expanding the space in which dynamics are formulated using the Mas-
ter Equation, and then trying to cut the exponentially large space back down to size. Typical results
start from a small reaction network with n < 10 molecular species (and thus chemical/biological
degrees of freedom if there is a single well-stirred compartment), and produce a more efficient algo-
rithm for determining low-order moment trajectories for a possibly reduced model of between about
n/2 and n molecular species, yielding model size reductions on the order of a factor of 1 to 2. The
initial combinatorial explosion is not fully mitigated. This is an unpromising route if the goal is to
find a large model reduction beyond what one already had at the fine scale (though not an impos-
sible one, due to the need to run sampling simulations many times). We are proposing a different
strategy for moment closure which more naturally results in model reduction with fewer chemi-
cal/biological degrees of freedom. From the moment closure point of view, what we are proposing is
an arbitrary-order method particularly suited to approximating the Chemical Master Equation and
possibly related master equations, by a time-dependent variant of a Boltzmann distribution.

Additional model reductions for stochastic chemical kinetics, other than moment closure meth-
ods, include the classic strategy of using separation of time scales to eliminate fast degrees of freedom
as carried out in eg. the Quasi-Steady State Approximation [28], in adiabatic course-graining [29],
and with power law scaling of time with respect to an overall problem size parameter, differentially
for different subsets of molecular species [30]. Another strategy for molecular species with small ex-
pected population sizes is the Finite State Projection method which proposes an adaptive truncation
of the state space followed by analytic solution or bounding of the (exponentially big, were it not
truncated) master equation [31]. Other reaction network model reduction methods are restricted to
deterministic models [32,33] including a reduction from 42 to 29 molecular species [34]. The most
comparable method in terms of problem size may be [35] which like GCCD applies to rule-based
reaction networks. We will quantitatively compare degrees of model reduction of these methods to
GCCD in section 3.4.

As in the case of moment closure methods, all of these methods have advantages and interesting
ideas but none that we know of are as yet in the same class of radical model size reduction as GCCD,
in terms of fraction of molecular species retained after reduction, in a stochastic biochemical network
model.
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3 Computational Experiments
Molecular complexes in general, and signal transduction complexes in particular often have state
space explosions that pose problems for simulation and modeling. One such macromolecular com-
plex is Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synapses, which is activated when
it binds to multiple calmodulin (CaM) molecules that in turn bind to multiple calcium ions. These
processes trigger a cascade of reactions in a signal transduction pathway following Ca2+ influx in re-
sponse to activation of ligand-gated n-methyl D-aspartate receptors (NMDARs), supporting memory
formation and learning.

We applied GCCD to this system as modeled by [1] and as simulated by the Plenum implemen-
tation of Dynamical Grammars [2,4] and also in a much larger spatial simulation using MCell [3].

3.1 CaMKII System
The synaptic signal transduction pathway that starts with calcium ion (Ca2+) influx through voltage-
dependent calcium channels (VDCCs) and N-methyl D-aspartate receptors (NMDARs) leads ulti-
mately to functional consequences including long-term potentiation (LTP), long-term depression
(LTD), and spike-timing dependent plasticity (STDP) underlying learning and memory formation
in the hippocampus. The pathway as studied and modeled in [1] is structurally a bit involved. It
begins with an externally imposed influx of calcium ion Ca2+. Calcium ions bind to the calmod-
ulin protein (CaM), which has four calcium-binding sites, two at the N-terminal end and two at the
C-terminal end. CaM in any state of calcium-loading can then bind to unphosphorylated CaMKII
monomer (which has one phosphorylation site relevant for activation). However, the binding and
unbinding rates for calcium ion to CaM depends on the state of the other binding sites of the CaM
protein, and also on whether or not that CaM is bound to CaMKII. Likewise the binding and un-
binding rates for CaM to unphosphorylated CaMKII monomer depend on the state of CaM. Two
CaMKII monomers, each loaded with CaM in any calcium-binding state, but at most one of which is
phosphorylated, may then dimerize (again with state-dependent rates). Dimers may phosphorylate
one of their constituent subunits and promptly dissociate; autophosphorylated monomer CaMKII
is taken to be the pathway output. Our goal is to produce a reduced stochastic model simplifying
the structure of this fine-scale model as formulated in the MCell and Plenum models (model files
in Supplementary Information) that aim to implement stochastic versions of the reaction network of
[1].

Many subsequent stages of the biological pathway are thereby omitted, notably the formation of
a CaMKII holoenzyme comprising a ring of six dimers in dodecameric complex. This holoenzyme
structure implies an even greater combinatorial explosion of states that poses a future modeling
challenge, that may best be met by aggressive model reduction methods such as the GCCD method
proposed here. Further downstream components of the pathway beyond CaM and the CaMKII
holoenzyme are outlined in [8]. However we leave such explorations, which could aim to extract
novel biological consequences from combinatorially large stochastic reaction network models of the
NMDA receptor pathway by applying the GCCD model reduction technique, to future research.

3.2 Boltzmann machine preprocessing step
Figure 2 shows part of the assumed Boltzmann distribution model interaction graph, or Markov
Random Field, of binary-valued random variables (circles) and monomial interaction potentials of
degree 1, 2, and 3 (hexagons). The first row of variables represent the binding of calcium to calmod-
ulin (CaM). With subscripts these ±1-valued random variables are labelled “CaMc/n,a,i”. They are
indexed by the C-terminus vs the N-terminus of the calmodulin protein (c or n), the numerical index
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Figure 2: Markov Random Field or Boltzmann distribution model of interaction degree
3 assumed for the CaMKII model. Diagram shows the graph-structure of the interaction
terms µαVαγ (hexagons) of degrees 1, 2, and 3 assumed between all the binary-valued
random variables (colored labelled circles) described in the text. The left and right sides
of the graph correspond to two CaMKII subunits that may dimerize (bottom variable),
each of which may be phosphorylated (third row of variables) and/or bind a calmod-
ulin (second row of variables) which in turn may bind calcium at its N-terminus or C-
terminus and at site 1 or 2 at each end (first row). Omitted from the figure are extra
factors that ensure each binding site is occupied by either zero or one molecules and not
more. This figure comprises a template for the labelled graph of all random variables
and their interactions in this application of "graph-constrained correlation dynamics".

of the binding site on that end (a = 1 or 2), and the numerical index i (i = 0 or 1 illustrated; i ∈ {0, 1, 2}
used in Plenum simulations below) of a calmodulin molecule which may bind to a CaMKII subunit
(indexed by j = 0 or 1 illustrated; j ∈ {0, . . . 8} used in Plenum simulations below). The second row
of variables “boundi,j” records the state of binding of CaM to CaMKII subunits. The third row of
variables “phosj”, also written (in the notation of the MCell model) as “Kkpj”, records the binary
phosphorylation state of each CaMKII subunit, and the fourth row of variables “dimerjj′” records
whether or not two such subunits dimerize. Not shown are additional cardinality-fixing or winner-
take-all interactions enforcing the constraints that (if it occurs) binding is an exclusive relationship
between CaM molecules and CaMKII subunits, and likewise for dimerization between two CaMKII
subunits.

Weight-sharing is an important strategy in machine learning, widely used to reduce the number
of trainable parameters and thereby increase generalization power for a given amount of data. Our
weight-sharing scheme shares interaction parameters µα within categories of monomial interactions
that seem likely, according to testable human intuition, to have similar interaction strengths if trained
separately on far more data. We now introduce some notation for the weight-sharing. Let I =

{0, . . . #CaM− 1} and J = {0, . . . #CaMKIIsubunits− 1}. We have the following categories of ±1-
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valued random variables sI :

CaMc/n,a,i (∀c/n ∈ {c, n})(∀a ∈ {1, 2})(∀i ∈ I)
boundi,j (∀i ∈ I)(∀j ∈ J )

Kkpj (∀j ∈ J )

dimerjj′ (∀j < j′|j, j′ ∈ J )

We have used the following eight categories of monomial interactions sI , sIsJ , or sIsJsK (all taking
values in {±1}):

CaMc,a,i (∀a ∈ {1, 2})(∀i ∈ I)
CaMn,a,i (∀a ∈ {1, 2})(∀i ∈ I)

CaMc,1,iCaMc,2,i (∀i ∈ I)
CaMn,1,iCaMn,2,i (∀i ∈ I)

boundi,jCaMc,1,iCaMc,2,i (∀i ∈ I)(∀j ∈ J )

boundi,jCaMn,1,iCaMn,2,i (∀i ∈ I)(∀j ∈ J )

Kkpjboundi,j (∀i ∈ I)(∀j ∈ J )

KkpjKkpj′dimerjj′ (∀j < j′|j, j′ ∈ J )

We number these weight-sharing categories α ∈ {1, . . . 8}. Different categories α have different num-
bers nα of monomial interactions depending on which bound indices a, i, j, j′ they run over. We take
the potential function Vα for each category to be the category-average of the constituent monomials
Vα,γ = sI , sIsJ , or sIsJsK given above, so that Vα = (1/nα)∑nα

γ=1 Vα,γ .
The resulting Boltzmann distribution can be sampled by standard Monte Carlo methods such as

Metropolis-Hastings or Gibbs sampling. We use the “Dependency Diagrams” software [13] (avail-
ability described in Supplementary Information) to do this. A crucial wrinkle on our use of such
sampling algorithms is that we have two different biological conditions under which they get used:
external calcium influx can be “on” or “off”. We train four different sets of coarse-scale dynami-
cal model parameters θ as described in section 3.3 below, for four phases (early and late phases for
calcium influx on and for calcium influx off), and for pulsatile or periodic calcium influx we cycle
through the four trained (or partly trained) models, while preserving the interaction parameters µ

through each instantaneous phase-switching event. Once trained, these four models predict dynam-
ical responses to any other temporal pattern of calcium influx switching including the use of periodic
switching with frequencies not in the training set.

A logical alternative to this procedure would be to use just two phases for calcium on and off, and
to add the binary calcium-influx variable into the GCCD graph of figure 2 with suitable connections
to allow the switch variable to join in modulating some or all of the potentials Vα. However, we
were not able to get this somewhat cleaner approach to work numerically. Just switching between
two phases (Ca2+ influx on vs. off) rather than four phases without modifying the GCCD graph also
produced less robust behavior.

For the MCell simulations below the waveform for calcium influx was a pulse train or rectangular
wave, with the “on” duration being 16 msec. For the Plenum simulations we used the “alpha model”
theoretical calcium influx profile [37].

In figures 3 and 4, the inferred trajectories of µ time-varying interaction parameters are shown
for the non-spatial Plenum [2] model (figure 3) and the spatial MCell [3] model (figure 4). The cor-
responding moments 〈Vα〉 ∈ [−1, 1] are shown in figures 6 and 7 of the Supplementary Information,
where their relation to concentrations is discussed. From figures 3 and 4 it is evident that the inferred
µα interaction parameter trajectories are remarkably continuous in time, empirically justifying the
assumption of ODE dynamics in equation (12).
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Figure 3: Time series of eight BMLA-inferred µα(t) interaction parameter statistics, from
the simulation data generated by the Plenum model in section 7.4 of the Supplementary
Information text. Seven successive periods of an 8 Hz pulse train (alpha model waveform
[37]) of calcium influx are plotted. In each pulse period the µ dynamics switches through
four phases: fast calcium-on (1.6 msec), slow calcium-on (14.4 msec), fast calcium-off (8
msec), slow calcium-off (the rest of the period), with different sets of trained weight θ for
each phase, while maintaining continuity of µ values through the switching events. The
legend shows the color of plot line associated to each of eight potentials Vα indicated by
the given triples of state variables. Time course traces are labelled by random-variable
monomials following the indexing of figure 2, although the actual graph is larger due
to increased range of indices a, i, j, j′ as defined in the text. Weight-sharing allows many
different potential-function monomials Vα,γ differing only by the value of their indices γ

(mapped to various combinations of a, i, j, j′ as defined in the text), to share weights µα.
The corresponding moments 〈Vα〉(t) are plotted in figure 6, Supplementary Information
text.
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Figure 4: Time series of eight BMLA-inferred µα(t) interaction parameter statistics, from
the simulation data generated by the MCell model in section 7.4 of the Supplementary
Information text, with 8 Hz rectangular wave pulse train of Ca2+ influx. Other plotting
details are as in figure 3. Results differ significantly from those of figure 3 because the
MCell model is extended over space, includes diffusion of reactants, and models a larger
volume with more molecules of each species. The corresponding moments 〈Vα〉(t) are
plotted in figure 7, Supplementary Information text.

3.3 GCCD
The resulting time series (such as figures 3 and 4) are convolved with the analytic temporal deriva-
tive of a Gaussian filter in order to smoothly estimate the rates of change dµα/dt of the interaction
parameters µα(t). Such temporal smoothing is useful since taking derivatives of a noisy time series
tends to enhance the noise, and in the absence of smoothing that occurs for our time series [13]. The
resulting smoothed time derivatives are fit to equation (12) using either (1) online minimization of the
K-L divergence as outlined in Appendix I for which O = S, or (2) lasso-regularized linear regression
[36] for which O = R, and which performs model selection on the bases of equation (13) as discussed
there. Here we report numerical results for the second method, which also defines a meaning for
the ≈ symbol in section 2.1 as the lasso-regularized (L1-regularized) sum of squared differences for
the time derivatives of the µα(t) statistical interaction parameters (summed over α, discretized t, and
over any set of initial conditions and/or other input conditions c such as calcium influx frequency).
Thus, we optimize the model parameters θαA by minimizing the score

S([θαA]) = ∑
α,tdiscr ,c

∣∣∣∣∣∣∣∣dµα(t)
dt

∣∣∣
f it
[θαA]−

dµα(t)
dt

∣∣∣
BMLA

∣∣∣∣∣∣∣∣2 + λ ∑
αA
|θαA|. (14)

(defining a sense of approximation ≈ as needed in section 2.1 ) which by equation (12) is equivalent
to

S([θαA]) = ∑
α,tdiscr ,c

∣∣∣∣∣
∣∣∣∣∣dµα(t)

dt

∣∣∣
BMLA

−∑
A

θαA fA(µ)

∣∣∣∣∣
∣∣∣∣∣
2

+ λ ∑
αA
|θαA|, (15)

a form that is explicitly lasso-regularized least squares optimization of the trainable interaction pa-
rameters θ. The single scalar hyperparameter λ was set using leave-one-out cross validation, with
each calcium influx spike held out in turn. 150 out of 253 model bases parameters were always re-
jected by the lasso algorithm, and the remaining 103 bases were used sparsely depending on the µα
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Figure 5: Dynamics of µ for coarse-scale GCCD model tested out-of-sample (red lines),
plotted along with BMLA inferred values of µ (other colors) from Plenum stochastic sim-
ulations of Ca2+/CaM/CaMKII network, using the alpha model [37] for calcium influx.
Panels A, B and C visually separate pairs of (model, data) curves that would otherwise
overlap, for ease of visual comparison. A high degree of overlap between (model, data)
curve pairs is evident. Quantitative comparison of each (model,data) pair is given in Ta-
ble 1. Simulation is out-of-sample in that the calcium influx bursts occur with frequency
8 Hz, though GCCD was trained at frequencies 2, 4, and 10 Hz.

derivative being fit, which of the four phases was being fit, and which BMLA experiment data set
was being used.

The resulting constrained time-evolution of ODE-constrained interaction parameters µα(t) eval-
uated out-of-sample (i.e. using different data than was used for training the model parameters) was
almost indistinguishable from the unconstrained values of optimal interaction parameters obtained
by BMLA, as a function of time over several calcium influx cycles, as shown in figure 5.

Numerical errors in figure 5 are shown in Table 1, computed as root mean squared error (RMSE)
and also as normalized root mean squared error, in which the normalization is done by finding the
average of the absolute value of each target BMLA time course, and dividing both the target and
corresponding prediction time course by this average absolute value before computing the RMSE as
usual.

The results show good out-of-sample quantitative agreement for all 8 time series.

3.4 Discussion of Results
In quantitative terms, the degree of model reduction obtained by GCCD in the CaMKII example is
large. Eight dynamical variables (the interaction parameters µ) suffice to predict key outputs such
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Normalized RMS errors in figure 5
Interaction parameter RMS Error Normalized RMS Error

CaM(c,1,0) rms1 = 0.062 cvrms1 = 0.132
CaM(n,1,0) rms2 = 0.070 cvrms2 = 0.174
CaM(c,1,0) CaM(c,2,0) rms3 = 0.096 cvrms3 = 0.170
CaM(n,1,0) CaM(n,2,0) rms4 = 0.075 cvrms4 = 0.141
bound(0,0) CaM(c,1,0) CaM(c,2,0) rms5 = 0.068 cvrms5 = 0.044
bound(0,0) CaM(n,1,0) CaM(n,2,0) rms6 = 0.061 cvrms6 = 0.118
Kkp0 bound(0,0) rms7 = 0.090 cvrms7 = 0.133
Kkp0 Kkp1 dimer(0,1) rms8 = 0.044 cvrms8 = 0.023

as the global degree of CaMKII phosphorylation, each of which can be computed from expecta-
tions of random variables s in the Boltzmann distribution of equation (11). But the fine-scale set
of dynamical variables is much larger. In the MCell simulations we may conservatively count it as
the integer-valued populations of the following classes of molecular species: free Ca2+, free CaM
(3× 3 + 1 = 10 species), monomeric CaMKII subunit which can bind CaM in any of its states and
can also be phosphorylated (3× 3× 2 = 18 species), and dimerize if at most one subunit is phospho-
rylated (9× 9 + 9× 10/2 = 126 species; phosphorylated dimers dissociate before they can doubly
phosphorylate) for a total of 155 species each of which has a dynamical random variable, and there-
fore a total reduction from 155 to just 8 dynamical variables, which is very large.

In one sense this reduction in the number of dynamical variables strongly understates the situa-
tion, because in the actual MCell simulation (though not in the Plenum simulations), every individual
chemical species has its own independent three-dimensional position which is also a dynamical ran-
dom variable. Given that a typical molecular population excluding Ca2+ is 145 CaM + 385 CaMK =
530, and including each 24-unit Ca2+ pulse is still greater, and that the number of position degrees of
freedom is three times greater (1590 or more), the reduction to just 8 dynamical variables µ1 through
µ8 as listed in figures 3-5 is even more remarkable.

Comparable figures for the (deliberately non-spatial and well-mixed) Plenum simulations are
again 155 molecular species reduced down to 8. An intermediate step is the formulation of the graph
in figure 2 which has just eight interaction parameters (associated with the hexagonal interaction
nodes) due to weight sharing, but it has many more molecular binding variables (circular nodes
in figure 2). For the Plenum model we can count these variables as follows: Due to the smaller
simulated volume than for the MCell model, the index i for CaM and the index j for CaMKII run from
0 to 2 and 0 to 8 respectively. If we replicate the circular nodes in the graph of figure 2 accordingly,
there are 4 × 3, 3 × 9, 9, and 9 × 10/2 variables respectively in rows 1-4 of the full version of the
graph illustrated in figure 2, for a total of 93 fine-scale binary-valued variables in a highly structured
pattern.

As stated in section 2.4, most current results for stochastic model reduction start from a small
reaction network with handful of chemical species, and produce a more efficient (sometimes much
more efficient) modeling algorithm for a possibly reduced model with model size reductions on the
order of a factor of 1 to 2. The authors of [35], a stochastic and rule-based model reduction method
as is GCCD, achieve a larger model reduction in an EGF signal transduction model from 2768 to
609 molecular species, for a 4.5× reduction factor or a 0.81-power relation of reduced to full model
(609 ' 27680.809). We have demonstrated for GCCD at least 155 to 8 for a 19.5× reduction factor,
or a .41-power relation (8 ' 1550.412). This factor of almost 20 breaks decisively out of the pattern
of model size reductions on the order of a factor of just 1 to 2 in number of chemical or biological
degrees of freedom. Exploring tradeoffs between accuracy of approximation and amount of model
size reduction (whether measured in direct ratios, or powers, of number of degrees of freedom before
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and after reduction ) for increasingly large models would therefore seem to be an attractive topic for
future work.

To what features of GCCD or the present problem do we owe these very substantial reductions in
model size? Future work could disentangle the following seemingly relevant factors: (1) GCCD can
be applied to rule-based models, which are highly structured in that (as shown in the Plenum model
code in the Supplementary Information text) a small number of rules can combinatorially code for a
much larger molecular species-level reaction network. Thus an underlying simplicity is available. (2)
The use of weight-sharing may make it possible to exploit such underlying simplicity in the problem
domain. (3) The machine learning components of GCCD (BMLA and the new procedures for de-
termining GCCD model parameters θ) generalize directly from specific simulation data rather than
algebraically and in full generality from the mathematical form of the fine-scale model. So currently
available computer power is used effectively. (4) The Boltzmann distribution is a natural form for
prolongation from coarse to fine models since by constrained entropy maximization it doesn’t add
any more information than is given by constraints on whatever moments were chosen for use in
the GCCD graph structure. (5) The graph structure of GCCD is a good mechanism for importing
biological knowledge and expertise into the model reduction process.

4 Conclusion
We propose a nonlinear model reduction method particularly suited to approximating the Chem-
ical Master Equation for stochastic chemical reaction networks (including highly structured ones
resulting from “parameterized” or “rule-based” reactions), by a time-dependent variant of a Boltz-
mann distribution. The resulting Graph-Constrained Correlation Dynamics (GCCD) method can be
an accurate nonlinear model reduction method for stochastic molecular reaction networks involving
a combinatorial explosion of states, such as the CaMKII signal transduction complex that is essen-
tial to synaptic function, particularly in neuronal learning processes such as long-term potentiation.
The GCCD method could be further developed in many directions, including application to model-
reduction for the Master Equation semantics of more challenging molecular complexes such as the
CaMKII dodecamer, use of the resulting reduced models to extract novel biologically relevant predic-
tions, and generalizing the method to yet more general reaction-like biological modeling formalisms
capable of expressing multiscale models in developmental biology [4].
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6 Appendices

6.1 Online learning derivations
We begin with the definition of KL divergence,

DKL( p̃‖p) = −
∫

p̃ log( p
/

p̃ ) (16)

(or equivalently,
∫

p̃ log( p̃
/

p )). We could equally well begin with the divergence in the other di-
rection, as −

∫
p log( p̃

/
p ); the analogous derivation in that case is similar to what follows (and is

performed in Appendix A of [13]) but in our experience the resulting training algorithm produced
slightly less reliable results.

Our approach will be to compute the derivative ∂DKL
/

∂µα , then take the time-derivative of this
term, and minimize that. Minimization of ∂DKL

/
∂µα corresponds to matching the distribution p̃ to

p at an initial time point, and we will need to take for granted the ability to do this well once, as an
initialization. Then, if we have done a good job of that, keeping the change in this term 0 – setting
the derivative of this term equal to zero and solving for the parameters of a GCCD model – will track
the optimal solution as the two distributions change in time.

Though we have so far defined X to be a discrete space, we use the integral notation throughout
this derivation, as integration specializes to summation on a discrete domain, but the converse is not
true.

The first few steps here are just pulling apart terms, starting from the definitions of the Markov
Random Field (MRF), as follows:

DKL(µ(t)) = −
∫

p̃(x; µ(t)) log
(

p(x; t)
p̃(x; µ(t))

)
dx

so

DKL(µ(t)) = −
∫

p̃(x; µ(t))

(
cliques

∑
β=1

µβ(t)Vβ(x) + log (Z(µ(t))) + log (p(x; t))

)
dx.

Now evaluate the derivative ∂ [DKL(µ(t))]
/

∂µα . Beginning with the product rule, we have

∂DKL(µ(t))
∂µα

=−
∫ (

∂

∂µα
p̃(x; µ(t))

)
(17)

×
(

cliques

∑
β=1

µβ(t)Vβ(x) + log (Z(µ(t))) + log (p(x; t))

)
dx

−
∫

p̃(x; µ(t)) (18)

× ∂

∂µα

(
cliques

∑
β=1

µβ(t)Vβ(x) + log (Z(µ(t))) + log (p(x; t))

)
dx. (19)

Breaking this expression down, we begin by evaluating ∂
∂µα

p̃(x; µ(t)).

∂

∂µα
p̃(x; µ(t)) =

∂

∂µα

∏β e−µβVβ(x)

Z(µ(t))
= p̃(x) (〈Vα〉 −Vα(x)) . (20)

Unless otherwise noted, all expectations are with respect to the distribution p̃.
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Plugging this result back into Equation (19), and using ∂ log (p(x; t))/∂µα = 0, along with the
evaluation of ∂ log (Z(µ(t)))

/
∂µα as −〈Vα〉, we have

∂DKL(µ(t))
∂µα

=−
∫

p̃(x; µ(t)) (〈Vα〉 −Vα(x))

×
(

cliques

∑
β=1

µβ(t)Vβ(x) + log (Z(µ(t))) + log (p(x; t))

)
dx

−
∫

p̃(x; µ(t))

× ∂

∂µα

(
cliques

∑
β=1

µβ(t)
(
Vβ(x)− 〈Vα〉

))
dx. (21)

If we separate the second integral, we see that the two halves cancel:∫
p̃(x; µ(t)) (Vα(x)− 〈Vα〉)dx =

∫
p̃(x; µ(t))Vα(x)dx−

∫
p̃(x; µ(t))〈Vα〉dx

=
∫

p̃(x; µ(t))Vα(x)dx− 〈Vα〉
∫

p̃(x; µ(t))dx

= 〈Vα〉 − 〈Vα〉 = 0.

We can now absorb the leading minus sign, leaving

∂DKL(µ(t))
∂µα

=
∫

p̃(x; µ(t)) (Vα(x)− 〈Vα〉)

×
(

cliques

∑
β=1

µβ(t)Vβ(x) + log (Z(µ(t))) + log (p(x; t))

)
dx.

(22)

Now we wish to find the derivative of equation (22) with respect to time. In order to accomplish
this, we first name pieces of equation (22). Let A = p̃(x; µ(t)) (Vα(x)− 〈Vα〉), B = ∑

cliques
β=1 µβ(t)Vβ(x),

C = log Z(µ(t)), D = log p(x; t). Then we can write the desired derivative as

d
dt

∂DKL(µ(t))
∂µα

=
∫ [

A
∂

∂t
B + A

∂

∂t
C + A

∂

∂t
D + (B + C + D)

∂

∂t
A
]

dx. (23)

Concentrating on the first two of these terms,
∫
[A ∂

/
∂t B + A ∂

/
∂t C]dx, we see that ∂B

/
∂t =

∑β(∂µβ

/
∂t )Vβ and, using the chain rule, ∂C

/
∂t = ∑β(∂µβ

/
∂t )(∂ log Z

/
∂µβ ). Thus,

∫
[A

∂

∂t
B + A

∂

∂t
C]dx =

∫
A

[
∑
β

∂µβ

∂t
(
Vβ − 〈Vβ〉

)]
dx

=
∫

p̃(x; µ(t))∑
β

∂µβ

∂t
(
Vβ − 〈Vβ〉

)
(Vα − 〈Vα〉)dx.

Shifting the integral inside the sum, we recognize the expression for the covariance between func-
tions Vα and Vβ, where 〈(x− 〈x〉)(y− 〈y〉)〉 = Cov(x, y) = 〈xy〉 − 〈x〉〈y〉, so

∫
[A

∂

∂t
B + A

∂

∂t
C]dx =

cliques

∑
β=1

∂µβ(t)
∂t

Cov(Vα, Vβ)

=
cliques

∑
β=1

∂µβ(t)
∂t

(
〈VβVα〉 − 〈Vα〉〈Vβ〉

)
.

(24)
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Turning our attention now to the fourth term of equation (23) :∫ (
∂

∂t
( p̃(x; µ(t)) (Vα(x)− 〈Vα〉))

)
×
((

cliques

∑
β=1

µβ(t)Vβ(x)

)
+ log (Z(µ(t))) + log (p(x; t))

)
dx,

applying product and chain rules to equation (20), the time derivative of A, where

∂
/

∂t A = ∂ [ p̃(x; µ(t)) (Vα(x)− 〈Vα〉)]
/

∂t ,

is

∂

∂t
A = ∑

β

[
∂µβ

∂t
p̃(x)

(
〈Vβ〉 −Vβ(x)

)
(Vα(x)− 〈Vα〉)

]
− p̃(x; µ(t))

∂

∂t
〈Vα〉

= − p̃(x; µ(t))∑
β

∂µβ

∂t
(
Vβ(x)− 〈Vβ〉

)
(Vα(x)− 〈Vα〉)

+ p̃(x; µ(t))∑
β

∂µβ

∂t
(
〈VαVβ〉 − 〈Vα〉〈Vβ〉

)
(25)

Note that the covariance between Vα and Vβ has appeared again, and that it is being subtracted
from terms which have the same form as the terms inside a covariance. That is, integrating over
the first part of equation (25) would again produce the covariance between Vα and Vβ, times the
derivative of µ.

Terms such as Vβ(x) − 〈Vβ〉 recur regularly throughout this derivation. Therefore, we define a
new notation. Let ∆x ≡ x− 〈x〉. Then we can rewrite the covariance in equation (24) as

cliques

∑
β=1

∂µβ(t)
∂t

(
〈VβVα〉 − 〈Vα〉〈Vβ〉

)
=

cliques

∑
β=1

∂µβ(t)
∂t
〈∆Vα∆Vβ〉.

Additionally, equation (25) fits the same pattern, with

x =
(
Vβ(x)− 〈Vβ〉

)
(Vα(x)− 〈Vα〉) = (∆Vα∆Vβ).

So, we may rewrite this as

∂

∂t
A = − p̃(x; µ(t))∑

β

∂µβ

∂t
∆(∆Vα∆Vβ).

Plugging this in and copying the definitions for B, C, and D, we have

∫
(B + C + D)

∂

∂t
Adx = −

∫
p̃(x; µ(t))∑

β

∂µβ

∂t
∆(∆Vα∆Vβ)

(
cliques

∑
γ=1

µγ(t)Vγ(x)

)
dx

−
∫

p̃(x; µ(t))∑
β

∂µβ

∂t
∆(∆Vα∆Vβ) log Z(µ(t))dx

−
∫

p̃(x; µ(t))∑
β

∂µβ

∂t
∆(∆Vα∆Vβ) log p(x; t)dx.
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In the second of these terms, the factor log Z(µ(t)) is not a function of x. As a result, when the
integral is evaluated, the resulting expected values all cancel. So this term is zero, leaving

∫
(B + C + D)

∂

∂t
Adx = −

∫
p̃(x; µ(t))∑

β

∂µβ

∂t
∆(∆Vα∆Vβ)

(
cliques

∑
γ=1

µγ(t)Vγ(x)

)
dx

−
∫

p̃(x; µ(t))∑
β

∂µβ

∂t
∆(∆Vα∆Vβ) log p(x; t)dx. (26)

Once again, we break apart equation (26) and consider the parts individually. Beginning with the
first integral, we regroup the terms of the multiplication so that there is just one double-sum over
cliques, then move terms which don’t depend on x outside of the integral, and integrate. This leaves
another expected value.

−
∫

p̃(x; µ(t))∑
β

∂µβ

∂t
∆(∆Vα∆Vβ)

(
cliques

∑
γ=1

µγ(t)Vγ(x)

)
dx

= −
cliques

∑
β=1

cliques

∑
γ=1

µγ(t)
∂µβ(t)

∂t
〈Vγ∆

(
∆Vα∆Vβ

)
〉.

(27)

This expression belies some of the symmetry of this term. Note that, if X = Vγ and Y =(
∆Vα∆Vβ

)
, the inner most term is 〈X∆Y〉. From the definitions of ∆ and expectation, this is equivalent

to 〈XY〉− 〈X〉〈Y〉, which once again is Cov(X, Y). Of course, covariance relationships are symmetric,
so this is also Cov(Y, X), which from the preceding argument is 〈Y∆X〉. Thus,

〈X∆Y〉 = Cov(X, Y) = 〈Y∆X〉. (28)

Applying this transformation to equation (27), we have finally

−
cliques

∑
β=1

cliques

∑
γ=1

µγ(t)
∂µβ(t)

∂t
〈Vγ∆

(
∆Vα∆Vβ

)
〉 = −

cliques

∑
β=1

cliques

∑
γ=1

µγ(t)
∂µβ(t)

∂t
〈∆Vα∆Vβ∆Vγ〉. (29)

Turning to the second half of equation (26), the steps are similar, but the Vγ terms are replaced
with log p(x) terms:

−
∫

p̃(x; µ(t))∑
β

∂µβ

∂t
∆(∆Vα∆Vβ) log p(x; t)dx = −

cliques

∑
β=1

∂µβ(t)
∂t
〈∆Vα∆Vβ∆ log p(x; t)〉 (30)

The final piece of equation (23) is∫
A

∂

∂t
Ddx =

∫
p̃(x; µ(t)) (Vα(x)− 〈Vα〉)

∂

∂t
log p(x; t)dx

= 〈∆Vα
∂

∂t
log p(x; t)〉. (31)

Now that we have analyzed each of the parts of equation (23), we can set it equal to zero and
move the terms with a sum over cliques across the equals sign. Then we have as a solution

〈∆Vα
∂

∂t
log (p(x; t))〉 =

cliques

∑
β=1

∂µβ(t)
∂t

(
〈∆Vα∆Vβ∆ log (p(x; t))〉 − 〈∆Vα∆Vβ〉

+
cliques

∑
γ=1

µγ(t)〈∆Vα∆Vβ∆Vγ〉
)

.

(32)
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Following the Master Equation for the derivative of p, and setting ∂µβ(t)
/

∂t ≡ fβ(µ(t)) this
expression becomes

〈∆Vα
(W · p(; t))(x)

p(x; t)
〉 =

cliques

∑
β=1

fβ(µ(t))

(
〈∆Vα∆Vβ∆ log p(x; t)〉 − 〈∆Vα∆Vβ〉

+
cliques

∑
γ=1

µγ(t)〈∆Vα∆Vβ∆Vγ〉
)

.

Then, using equation (12) to define a linear form for fβ, we have

〈∆Vα
(W · p(; t))(x)

p(x; t)
〉 =

cliques

∑
β=1

bases

∑
A=1

θβA fA(µ(t))

(
〈∆Vα∆Vβ∆ log p(x; t)〉 − 〈∆Vα∆Vβ〉

+
cliques

∑
γ=1

µγ(t)〈∆Vα∆Vβ∆Vγ〉
)

.

The p expressions in numerator and denominator may be evaluated using the BMLA-trained ap-
proximation of p(x, t) at time t. Then, these expressions are finally in a form which can be evaluated
during Monte Carlo simulations of p̃, resulting in an online learning algorithm in the spirit of BMLA
itself, though more complicated. To this end we now define a vector B with α entries

Bα = 〈∆Vα
(W · p(; t))(x)

p(x; t)
〉, (33)

and a structured α-by-(β, A) matrix A with entries

Aα,(β,A) = fA(µ(t))

(
〈∆Vα∆Vβ∆ log p(x; t)〉 − 〈∆Vα∆Vβ〉+

cliques

∑
γ=1

µγ(t)〈∆Vα∆Vβ∆Vγ〉
)

. (34)

Then B = A · θ, where the dot product is taken over the compound index (β, A). Finally, by calculating
values for A and B we can solve for optimal θ.

It will generally be true that this system of equations is under-determined, as the dimensions of
the matrix A are n × (n × m), where n is the number of potentials in the MRF and m is the total
number of bases, and vector B has length n. Therefore, it is useful to build larger A and B matrices
by stacking together in a block fashion several copies of equations (33) and (34) together which have
been computed using different distributions p and p̃, coming from different initial conditions or
other input conditions as suggested in the operator approximations of equations (2) and (4), and
characterized by different values of µ. As long as these copies are linearly independent this procedure
can produce a fully constrained system of equations.

23



7 Supplementary Information
Title: Model Reduction for Stochastic CaMKII Reaction Kinetics in Synapses by Graph-Constrained
Correlation Dynamics

Authors: Todd Johnson, Tom Bartol, Terrence Sejnowski, and Eric Mjolsness
Journal: Physical Biology, 2015

7.1 Further Plots
Further experimental results are shown in figures 6-8 below. Figures 6 and 7 show the average of all
the moments controlled by each interaction parameter in the corresponding figures 3 and 4. Figure 8
shows the in-sample fitting of GCCD dynamics to a long pulse train.
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Figure 6: BMLA-inferred moments 〈Vα〉(t) for the Plenum model corresponding to the
interaction parameters µα(t) of figure 3. Each moment is an average over all interac-
tion monomials of the corresponding form as labelled in figure 2, i.e. an average over a
weight-sharing category α of interactions. Since all binary variables take values ±1, the
resulting monomials Vα,γ and their weight-sharing category averages Vα (without scalar
factor µα) have ensemble-average values i.e. moments 〈Vα〉 in the interval [−1,+1].

7.1.1 Relation to concentrations

We now discuss lower and upper bounds for concentrations in the trained coarse-scale model. The
evolving moments 〈Vα〉(t) plotted in figures 6 and 7 all take values in the interval [−1, 1] because they
are averages (both within weight-sharing category α and under the Boltzmann distribution) of mono-
mials Vα(s) that take values in {−1,+1}, which in turn is because each constituent Vα,γ(s) is a product
of random variables sI that take values in {−1,+1}. (Here the generic index I stands for any of the
multi-indices used in the main text, e.g. (c/n, a, i) in CaMc/n,a,i.) On the other hand these fine-scale
variables sI represent Boolean distinctions (unbound/bound, unphosphorylated/phosphorylated,
and undimerized/dimerized) that are more conventionally assigned indicator variables wI taking
values in {0, 1}. An advantage of the {0, 1} encoding is that single-variable moments become prob-
abilities: 〈wI〉Pr = Pr(wI = 1). Fortunately there is a trivial affine map from s to w: wI = (sI + 1)/2
and inversely si = 2wi− 1. This mapping will likewise take every 〈Vα,γ(s)〉 ∈ [−1, 1] (by substitution
of the inverse mapping) to a linear combination of 〈Vα,γ(w)〉 ∈ [0, 1] and lower-degree moments,
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Figure 7: BMLA-inferred moments 〈Vα〉(t) for the MCell model corresponding to the
interaction parameters µα(t) of figure 4. Other details as in figure 6.

Figure 8: In-sample trained evolution of interaction parameters µ for the MCell model
over a long pulse train (7 cycles at 8 Hz) using a pulse train (rectangular wave) for cal-
cium influx. Compared to out-of-sample plots in Figure 5, here the exact waveforms are
fitted more accurately; but predictive power is only demonstrated out-of-sample.

and therefore will also take every 〈Vα(s)〉 ∈ [−1, 1] to a linear combination of 〈Vα(w)〉 ∈ [0, 1] and
lower-degree moments. Degree-one single-variable moments 〈CaMc,a,i〉 and 〈CaMn,a,i〉 simply get
remapped to site occupancy probabilities (averaged over weight-sharing category) taking values in
[0, 1] rather than [−1, 1], which for those two moments would just change the labeling of the verti-
cal axis in figures 6 and 7. Other single-variable moments could be computed from the Boltzmann
distribution equation (11) and plotted in a similar manner.

Converting such moments into concentrations requires multiplying the known global concen-
tration of a particular molecule that has binding sites (or other modification sites), such as CaM or
CaMKII subunit monomer, by the probability of that molecule being in the binding state (and/or
other micro-states) of interest. The latter probability can be calculated using moments as above,
or more directly using the Boltzmann distribution, or estimated using Monte Carlo sampling algo-
rithms, all using the known values of interaction parameters µ(t) shown in figures 3-5. By equation
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(11) for the Boltzmann distribution they are all normalized probabilities that must be in the inter-
val [0,1]. Therefore the required concentration will always be in the interval between zero and the
upper bound given by the known global concentration for that species if its binding sites and phos-
phorylation states are all ignored, i.e. summed over. In the CaMKII model, the global concentration
(summed over binding sites and phosphorylation states) is fixed for CaM and for CaMKII subunit,
though CaMKII subunits are dynamically partitioned into monomer and dimer super-species each
of which has many such micro-states. By conservation of CaMKII subunits, the population of each
CaMKII dimer state is more tightly upper bounded by the maximum possible number of dimers,
which is half the maximum number of CaMKII monomers in the volume studied, rounded down to
the nearest integer.
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7.2 Alpha model parameters
The alpha model waveform is [37]

α(t|τ1, τ2) = c exp(−t/τ1)(1− exp(−t/τ2) (35)

and we have used c = 5747.53 micro molar, τ1 = 5.9 msec, τ2 = 1244.55 msec. With these parameters,
this function attains a maximum value of 10 micromolar at t = 5.89 msec.
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7.3 Source codes
The software used to compute the results in this paper is of several different kinds, all of which we
make available for pure research. (1) MCell [3] is well established and available at :

http://www.mcell.org/download.html

It is used for fine-scale simulations as described in the main text. It implements a general-purpose
declarative biological modeling language, and thus requires a model file which is largely presented
below. (2) Plenum [2] is the UC Irvine PhD thesis code of Guy Yosiphon and is available at :

http://computableplant.ics.uci.edu/theses/guy/downloads/DGPublications.html

It is used for fine-scale simulations as described above. It implements a general-purpose declarative
biological modeling language, and thus requires a model file which is largely presented below. (3)
Dependency Diagrams [13] is part of the UC Irvine PhD code of the first author and is available at:

http://computableplant.ics.uci.edu/sw/dd/

It is used to implement a standard Monte Carlo (heat-bath) algorithm for sampling the Boltzmann
distribution over binary-valued random variables, including cardinality constraints on binding site
variables, in the GCCD method according to equation (11). (4) Special-purpose GCCD code. This
code implements: (a) the restriction map by modified BMLA algorithm, using the junction tree algo-
rithm (standard in machine learning) to evaluate exactly the gradient of KL divergence followed in
BMLA, rather than using sampling to evaluate the gradient stochastically; (b) the time-evolution of
the interaction parameters µα according to equation (12), and for the generation of data files corre-
sponding to figures 3-5 and 6-8. It assumes that values for the trainable parameters θ are presented as
input; (c) the GCCD code also implements the training of model parameters θ by lasso-regularized
linear regression as described in [13], the UC Irvine PhD thesis of the first author. GCCD code is
available at:

http://computableplant.ics.uci.edu/sw/gccd/

But all this GCCD-specific code is also available as a separate Supplementary Information file with
the present paper. Codes (2)-(4) above are written using, and require, the commercially available
“Mathematica” computer algebra system. Code (4) also requires the Python and R computer lan-
guages, both available non-commercially.
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7.4 Plenum model
The Plenum [2] (Dynamical Grammars) model file for CaMKII model [1] has parameterized reactions
or “rules” specified as follows:

(* this keeps track of time in the simulation, so we can have timed spikes *)
c==clock[time,state] -> c, solving[time’==1/timeMultiplier],

(* add Ca if it’s time to do so *)
{c==clock[time,s], Ca[ii]} -> {clock[time,1], Ca[spikeTrainSize]},
with[If[ii < spikeTrainSize, spikeOn[time,s]/timeMultiplier, 0]],

(* remove Ca if it’s time to do so *)
{c==clock[time,s], Ca[ii]} -> {clock[time,0], Ca[baseSize]},
with[If[ii > 0,spikeOff[time,s]/timeMultiplier, 0]],

(* Ca binding/unbinding CaM *)
{Ca[ii], CaM[n,c]} -> {Ca[ii], CaM[n+1,c]},

with[ii * If[n < amax, kloadn[n,c], 0]/timeMultiplier],
{Ca[ii], CaM[n,c]} -> {Ca[ii], CaM[n-1,c]},

with[If[n > 0, kunloadn[n,c], 0]/timeMultiplier],
{Ca[ii], CaM[n,c]} -> {Ca[ii], CaM[n,c+1]},

with[ii * If[c < amax, kloadc[n,c], 0]/timeMultiplier],
{Ca[ii], CaM[n,c]} -> {Ca[ii], CaM[n,c-1]},

with[If[c > 0, kunloadc[n,c], 0]/timeMultiplier],

(* Ca binding/unbinding CaM bound to CaMKII *)
{Ca[ii], Kk[a0,b0,0]} -> {Ca[ii], Kk[a0+1,b0,0]},

with[ii*If[a0<amax, kload2n[a0,b0,0], 0]/timeMultiplier],
{Ca[ii], Kk[a0,b0,0]} -> {Ca[ii], Kk[a0,b0+1,0]},

with[ii*If[b0<amax, kload2c[a0,b0,0],0]/timeMultiplier],
{Ca[ii], Kk[a0,b0,0]} -> {Ca[ii], Kk[a0-1,b0,0]},

with[If[a0>0,kunload2n[a0,b0,0],0]/timeMultiplier],
{Ca[ii], Kk[a0,b0,0]} -> {Ca[ii], Kk[a0,b0-1,0]},

with[If[b0>0,kunload2c[a0,b0,0],0]/timeMultiplier],

(* CaM binding/unbinding free CaMKII *)
{CaM[n,c], CaMKII[num]} -> {Kk[n,c,0], CaMKII[num-1]},

with[num*kon2[n,c,p0]/timeMultiplier],
{Kk[a0,b0,0], CaMKII[num]} -> {CaM[a0,b0], CaMKII[num+1]},

with[koff2[a0,b0,0]If[a0>=0&&b0>=0,1,0]/timeMultiplier],

(* Dimerization *)
{Kk[a0,b0,p0], Kk[a1,b1,p1]} -> {Dimer[a0,b0,p0,a1,b1,p1]},

with[If[p0<1||p1<1 && a0<=a1,
kdimerize[a0,b0,p0,a1,b1,p1]/timeMultiplier,0]],

{Dimer[a0,b0,p0,a1,b1,p1]} -> {Kk[a0,b0,p0],Kk[a1,b1,p1]},
with[kundimerize[a0,b0,p0,a1,b1,p1]/timeMultiplier],

(* phosphorylation *)
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Dimer[a0,b0,p0,a1,b1,p1] -> {Kk[a0,b0,1],Kk[a1,b1,p1]},
with[If[a0>=0&&b0>=0&&p0<1,kautotop[a0,b0,a1,b1,p1],0]/timeMultiplie],

Dimer[a0,b0,p0,a1,b1,p1] -> {Kk[a0,b0,p0],Kk[a1,b1,1]},
with[If[a1>=0&&b1>=0&&p1<1,kautobot[a0,b0,p0,a1,b1],0]/timeMultiplier]

This model file requires also definitions of the functions

spikeOn, spikeOff, kloadn, kunloadn, kloadc, kunloadc,
kload2n, kload2c, kunload2n, kunload2c, kon2, koff2,
kdimerize, kundimerize, kautotop, kautobot

which are determined by the published model [1] and defined in the full model notebook and sup-
port files, available with the source code for this paper. The more arguments appear in such rate
functions, the greater the degree of combinatorial notational compaction that is afforded by parame-
terized reactions, or rules with rates, over ordinary reaction notation.
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7.5 MCell model
MCell model file for CaMKII model [1] has parameterized reactions or “rules” specified as follows:

DEFINE_MOLECULES
{

// Calcium
Ca {DIFFUSION_CONSTANT = DCa}

// mCaMKII
K {DIFFUSION_CONSTANT = DK CUSTOM_SPACE_STEP = lr_mCaMKII}

// CaM, 9 states
// Fig. 2, Pepke et al., 2011 PLoSCompBio
CaM0N0C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM1N0C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM2N0C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM0N1C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM1N1C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM2N1C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM0N2C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM1N2C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}
CaM2N2C {DIFFUSION_CONSTANT = DCaM CUSTOM_SPACE_STEP = lr_CaM}

// KCaM, 9 states
// Fig. 2, Pepke et al., 2011 PLoSCompBio
KCaM0N0C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM1N0C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM2N0C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM0N1C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM1N1C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM2N1C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM0N2C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM1N2C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
KCaM2N2C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}

// pKCaM, 9 states
// Fig. 6, Pepke et al., 2011 PLoSCompBio
pKCaM0N0C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM1N0C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM2N0C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM0N1C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM1N1C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM2N1C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM0N2C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM1N2C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}
pKCaM2N2C {DIFFUSION_CONSTANT = DKCaM CUSTOM_SPACE_STEP = lr_KCaM}

31



// KCaM-KCaM dimers, 45 states
// Fig. 6, Pepke et al., 2011 PLoSCompBio
KCaM0N0C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N0C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N0C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N0C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N1C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N1C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N1C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N1C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N1C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N1C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N1C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N1C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N1C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N1C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N1C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N1C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N1C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N1C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N1C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N2C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N2C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM0N2C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N2C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM1N2C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
KCaM2N2C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}

// pKCaM-KCaM dimers, 81 states
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// Fig. 6, Pepke et al., 2011 PLoSCompBio
pKCaM0N0C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N0C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N0C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N0C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N1C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N1C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
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pKCaM2N1C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N1C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM0N2C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM1N2C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM0N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM1N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM2N0C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM0N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM1N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM2N1C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM0N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM1N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}
pKCaM2N2C_KCaM2N2C {DIFFUSION_CONSTANT = Ddimer CUSTOM_SPACE_STEP = lr_dimer}

}

DEFINE_REACTIONS
{

// Calcium interaction with CaM, 12 rxns
// Fig. 2, Pepke et al., 2011 PLoSCompBio
Ca + CaM0N0C <-> CaM1N0C [>Kon1N, <Koff1N]
Ca + CaM1N0C <-> CaM2N0C [>Kon2N, <Koff2N]
Ca + CaM0N0C <-> CaM0N1C [>Kon1C, <Koff1C]
Ca + CaM1N0C <-> CaM1N1C [>Kon1C, <Koff1C]
Ca + CaM2N0C <-> CaM2N1C [>Kon1C, <Koff1C]
Ca + CaM0N1C <-> CaM1N1C [>Kon1N, <Koff1N]
Ca + CaM1N1C <-> CaM2N1C [>Kon2N, <Koff2N]
Ca + CaM0N1C <-> CaM0N2C [>Kon2C, <Koff2C]
Ca + CaM1N1C <-> CaM1N2C [>Kon2C, <Koff2C]
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Ca + CaM2N1C <-> CaM2N2C [>Kon2C, <Koff2C]
Ca + CaM0N2C <-> CaM1N2C [>Kon1N, <Koff1N]
Ca + CaM1N2C <-> CaM2N2C [>Kon2N, <Koff2N]

// CaM interaction with mCaMKII (K), 9 rxns
// Fig. 2, Pepke et al., 2011 PLoSCompBio
K + CaM0N0C <-> KCaM0N0C [>KonCaM0N0C, <KoffCaM0N0C]
K + CaM1N0C <-> KCaM1N0C [>KonCaM1N0C, <KoffCaM1N0C]
K + CaM2N0C <-> KCaM2N0C [>KonCaM2N0C, <KoffCaM2N0C]
K + CaM0N1C <-> KCaM0N1C [>KonCaM0N1C, <KoffCaM0N1C]
K + CaM1N1C <-> KCaM1N1C [>KonCaM1N1C, <KoffCaM1N1C]
K + CaM2N1C <-> KCaM2N1C [>KonCaM2N1C, <KoffCaM2N1C]
K + CaM0N2C <-> KCaM0N2C [>KonCaM0N2C, <KoffCaM0N2C]
K + CaM1N2C <-> KCaM1N2C [>KonCaM1N2C, <KoffCaM1N2C]
K + CaM2N2C <-> KCaM2N2C [>KonCaM2N2C, <KoffCaM2N2C]

// Calcium interaction with KCaM, 12 rxns
// Fig. 2, Pepke et al., 2011 PLoSCompBio
Ca + KCaM0N0C <-> KCaM1N0C [>KonK1N, <KoffK1N]
Ca + KCaM1N0C <-> KCaM2N0C [>KonK2N, <KoffK2N]
Ca + KCaM0N0C <-> KCaM0N1C [>KonK1C, <KoffK1C]
Ca + KCaM1N0C <-> KCaM1N1C [>KonK1C, <KoffK1C]
Ca + KCaM2N0C <-> KCaM2N1C [>KonK1C, <KoffK1C]
Ca + KCaM0N1C <-> KCaM1N1C [>KonK1N, <KoffK1N]
Ca + KCaM1N1C <-> KCaM2N1C [>KonK2N, <KoffK2N]
Ca + KCaM0N1C <-> KCaM0N2C [>KonK2C, <KoffK2C]
Ca + KCaM1N1C <-> KCaM1N2C [>KonK2C, <KoffK2C]
Ca + KCaM2N1C <-> KCaM2N2C [>KonK2C, <KoffK2C]
Ca + KCaM0N2C <-> KCaM1N2C [>KonK1N, <KoffK1N]
Ca + KCaM1N2C <-> KCaM2N2C [>KonK2N, <KoffK2N]

// KCaM autophosphorylation:
// Scheme, Fig. 6, Pepke et al., 2011 PLoSCompBio
// Rates, Table S1, Pepke et al., 2011 PLoSCompBio

// KCaM autophosphorylation of KCaM, 45 combinations, 126 rxns:
KCaM0N0C + KCaM0N0C <-> KCaM0N0C_KCaM0N0C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM0N0C -> pKCaM0N0C + KCaM0N0C [2*KpCaM0N0C]
KCaM0N0C + KCaM1N0C <-> KCaM0N0C_KCaM1N0C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM1N0C -> pKCaM0N0C + KCaM1N0C [KpCaM0N0C]
KCaM0N0C_KCaM1N0C -> KCaM0N0C + pKCaM1N0C [KpCaM1N0C]
KCaM0N0C + KCaM2N0C <-> KCaM0N0C_KCaM2N0C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM2N0C -> pKCaM0N0C + KCaM2N0C [KpCaM0N0C]
KCaM0N0C_KCaM2N0C -> KCaM0N0C + pKCaM2N0C [KpCaM2N0C]
KCaM0N0C + KCaM0N1C <-> KCaM0N0C_KCaM0N1C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM0N1C -> pKCaM0N0C + KCaM0N1C [KpCaM0N0C]
KCaM0N0C_KCaM0N1C -> KCaM0N0C + pKCaM0N1C [KpCaM0N1C]
KCaM0N0C + KCaM1N1C <-> KCaM0N0C_KCaM1N1C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM1N1C -> pKCaM0N0C + KCaM1N1C [KpCaM0N0C]
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KCaM0N0C_KCaM1N1C -> KCaM0N0C + pKCaM1N1C [KpCaM1N1C]
KCaM0N0C + KCaM2N1C <-> KCaM0N0C_KCaM2N1C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM2N1C -> pKCaM0N0C + KCaM2N1C [KpCaM0N0C]
KCaM0N0C_KCaM2N1C -> KCaM0N0C + pKCaM2N1C [KpCaM2N1C]
KCaM0N0C + KCaM0N2C <-> KCaM0N0C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM0N2C -> pKCaM0N0C + KCaM0N2C [KpCaM0N0C]
KCaM0N0C_KCaM0N2C -> KCaM0N0C + pKCaM0N2C [KpCaM0N2C]
KCaM0N0C + KCaM1N2C <-> KCaM0N0C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM1N2C -> pKCaM0N0C + KCaM1N2C [KpCaM0N0C]
KCaM0N0C_KCaM1N2C -> KCaM0N0C + pKCaM1N2C [KpCaM1N2C]
KCaM0N0C + KCaM2N2C <-> KCaM0N0C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N0C_KCaM2N2C -> pKCaM0N0C + KCaM2N2C [KpCaM0N0C]
KCaM0N0C_KCaM2N2C -> KCaM0N0C + pKCaM2N2C [KpCaM2N2C]
KCaM1N0C + KCaM1N0C <-> KCaM1N0C_KCaM1N0C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM1N0C -> pKCaM1N0C + KCaM1N0C [2*KpCaM1N0C]
KCaM1N0C + KCaM2N0C <-> KCaM1N0C_KCaM2N0C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM2N0C -> pKCaM1N0C + KCaM2N0C [KpCaM1N0C]
KCaM1N0C_KCaM2N0C -> KCaM1N0C + pKCaM2N0C [KpCaM2N0C]
KCaM1N0C + KCaM0N1C <-> KCaM1N0C_KCaM0N1C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM0N1C -> pKCaM1N0C + KCaM0N1C [KpCaM1N0C]
KCaM1N0C_KCaM0N1C -> KCaM1N0C + pKCaM0N1C [KpCaM0N1C]
KCaM1N0C + KCaM1N1C <-> KCaM1N0C_KCaM1N1C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM1N1C -> pKCaM1N0C + KCaM1N1C [KpCaM1N0C]
KCaM1N0C_KCaM1N1C -> KCaM1N0C + pKCaM1N1C [KpCaM1N1C]
KCaM1N0C + KCaM2N1C <-> KCaM1N0C_KCaM2N1C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM2N1C -> pKCaM1N0C + KCaM2N1C [KpCaM1N0C]
KCaM1N0C_KCaM2N1C -> KCaM1N0C + pKCaM2N1C [KpCaM2N1C]
KCaM1N0C + KCaM0N2C <-> KCaM1N0C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM0N2C -> pKCaM1N0C + KCaM0N2C [KpCaM1N0C]
KCaM1N0C_KCaM0N2C -> KCaM1N0C + pKCaM0N2C [KpCaM0N2C]
KCaM1N0C + KCaM1N2C <-> KCaM1N0C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM1N2C -> pKCaM1N0C + KCaM1N2C [KpCaM1N0C]
KCaM1N0C_KCaM1N2C -> KCaM1N0C + pKCaM1N2C [KpCaM1N2C]
KCaM1N0C + KCaM2N2C <-> KCaM1N0C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N0C_KCaM2N2C -> pKCaM1N0C + KCaM2N2C [KpCaM1N0C]
KCaM1N0C_KCaM2N2C -> KCaM1N0C + pKCaM2N2C [KpCaM2N2C]
KCaM2N0C + KCaM2N0C <-> KCaM2N0C_KCaM2N0C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM2N0C -> pKCaM2N0C + KCaM2N0C [2*KpCaM2N0C]
KCaM2N0C + KCaM0N1C <-> KCaM2N0C_KCaM0N1C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM0N1C -> pKCaM2N0C + KCaM0N1C [KpCaM2N0C]
KCaM2N0C_KCaM0N1C -> KCaM2N0C + pKCaM0N1C [KpCaM0N1C]
KCaM2N0C + KCaM1N1C <-> KCaM2N0C_KCaM1N1C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM1N1C -> pKCaM2N0C + KCaM1N1C [KpCaM2N0C]
KCaM2N0C_KCaM1N1C -> KCaM2N0C + pKCaM1N1C [KpCaM1N1C]
KCaM2N0C + KCaM2N1C <-> KCaM2N0C_KCaM2N1C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM2N1C -> pKCaM2N0C + KCaM2N1C [KpCaM2N0C]
KCaM2N0C_KCaM2N1C -> KCaM2N0C + pKCaM2N1C [KpCaM2N1C]
KCaM2N0C + KCaM0N2C <-> KCaM2N0C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM0N2C -> pKCaM2N0C + KCaM0N2C [KpCaM2N0C]
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KCaM2N0C_KCaM0N2C -> KCaM2N0C + pKCaM0N2C [KpCaM0N2C]
KCaM2N0C + KCaM1N2C <-> KCaM2N0C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM1N2C -> pKCaM2N0C + KCaM1N2C [KpCaM2N0C]
KCaM2N0C_KCaM1N2C -> KCaM2N0C + pKCaM1N2C [KpCaM1N2C]
KCaM2N0C + KCaM2N2C <-> KCaM2N0C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N0C_KCaM2N2C -> pKCaM2N0C + KCaM2N2C [KpCaM2N0C]
KCaM2N0C_KCaM2N2C -> KCaM2N0C + pKCaM2N2C [KpCaM2N2C]
KCaM0N1C + KCaM0N1C <-> KCaM0N1C_KCaM0N1C [>KonCaMKII, <KoffCaMKII]
KCaM0N1C_KCaM0N1C -> pKCaM0N1C + KCaM0N1C [2*KpCaM0N1C]
KCaM0N1C + KCaM1N1C <-> KCaM0N1C_KCaM1N1C [>KonCaMKII, <KoffCaMKII]
KCaM0N1C_KCaM1N1C -> pKCaM0N1C + KCaM1N1C [KpCaM0N1C]
KCaM0N1C_KCaM1N1C -> KCaM0N1C + pKCaM1N1C [KpCaM1N1C]
KCaM0N1C + KCaM2N1C <-> KCaM0N1C_KCaM2N1C [>KonCaMKII, <KoffCaMKII]
KCaM0N1C_KCaM2N1C -> pKCaM0N1C + KCaM2N1C [KpCaM0N1C]
KCaM0N1C_KCaM2N1C -> KCaM0N1C + pKCaM2N1C [KpCaM2N1C]
KCaM0N1C + KCaM0N2C <-> KCaM0N1C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N1C_KCaM0N2C -> pKCaM0N1C + KCaM0N2C [KpCaM0N1C]
KCaM0N1C_KCaM0N2C -> KCaM0N1C + pKCaM0N2C [KpCaM0N2C]
KCaM0N1C + KCaM1N2C <-> KCaM0N1C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N1C_KCaM1N2C -> pKCaM0N1C + KCaM1N2C [KpCaM0N1C]
KCaM0N1C_KCaM1N2C -> KCaM0N1C + pKCaM1N2C [KpCaM1N2C]
KCaM0N1C + KCaM2N2C <-> KCaM0N1C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N1C_KCaM2N2C -> pKCaM0N1C + KCaM2N2C [KpCaM0N1C]
KCaM0N1C_KCaM2N2C -> KCaM0N1C + pKCaM2N2C [KpCaM2N2C]
KCaM1N1C + KCaM1N1C <-> KCaM1N1C_KCaM1N1C [>KonCaMKII, <KoffCaMKII]
KCaM1N1C_KCaM1N1C -> pKCaM1N1C + KCaM1N1C [2*KpCaM1N1C]
KCaM1N1C + KCaM2N1C <-> KCaM1N1C_KCaM2N1C [>KonCaMKII, <KoffCaMKII]
KCaM1N1C_KCaM2N1C -> pKCaM1N1C + KCaM2N1C [KpCaM1N1C]
KCaM1N1C_KCaM2N1C -> KCaM1N1C + pKCaM2N1C [KpCaM2N1C]
KCaM1N1C + KCaM0N2C <-> KCaM1N1C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N1C_KCaM0N2C -> pKCaM1N1C + KCaM0N2C [KpCaM1N1C]
KCaM1N1C_KCaM0N2C -> KCaM1N1C + pKCaM0N2C [KpCaM0N2C]
KCaM1N1C + KCaM1N2C <-> KCaM1N1C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N1C_KCaM1N2C -> pKCaM1N1C + KCaM1N2C [KpCaM1N1C]
KCaM1N1C_KCaM1N2C -> KCaM1N1C + pKCaM1N2C [KpCaM1N2C]
KCaM1N1C + KCaM2N2C <-> KCaM1N1C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N1C_KCaM2N2C -> pKCaM1N1C + KCaM2N2C [KpCaM1N1C]
KCaM1N1C_KCaM2N2C -> KCaM1N1C + pKCaM2N2C [KpCaM2N2C]
KCaM2N1C + KCaM2N1C <-> KCaM2N1C_KCaM2N1C [>KonCaMKII, <KoffCaMKII]
KCaM2N1C_KCaM2N1C -> pKCaM2N1C + KCaM2N1C [2*KpCaM2N1C]
KCaM2N1C + KCaM0N2C <-> KCaM2N1C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N1C_KCaM0N2C -> pKCaM2N1C + KCaM0N2C [KpCaM2N1C]
KCaM2N1C_KCaM0N2C -> KCaM2N1C + pKCaM0N2C [KpCaM0N2C]
KCaM2N1C + KCaM1N2C <-> KCaM2N1C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N1C_KCaM1N2C -> pKCaM2N1C + KCaM1N2C [KpCaM2N1C]
KCaM2N1C_KCaM1N2C -> KCaM2N1C + pKCaM1N2C [KpCaM1N2C]
KCaM2N1C + KCaM2N2C <-> KCaM2N1C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N1C_KCaM2N2C -> pKCaM2N1C + KCaM2N2C [KpCaM2N1C]
KCaM2N1C_KCaM2N2C -> KCaM2N1C + pKCaM2N2C [KpCaM2N2C]
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KCaM0N2C + KCaM0N2C <-> KCaM0N2C_KCaM0N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N2C_KCaM0N2C -> pKCaM0N2C + KCaM0N2C [2*KpCaM0N2C]
KCaM0N2C + KCaM1N2C <-> KCaM0N2C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N2C_KCaM1N2C -> pKCaM0N2C + KCaM1N2C [KpCaM0N2C]
KCaM0N2C_KCaM1N2C -> KCaM0N2C + pKCaM1N2C [KpCaM1N2C]
KCaM0N2C + KCaM2N2C <-> KCaM0N2C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM0N2C_KCaM2N2C -> pKCaM0N2C + KCaM2N2C [KpCaM0N2C]
KCaM0N2C_KCaM2N2C -> KCaM0N2C + pKCaM2N2C [KpCaM2N2C]
KCaM1N2C + KCaM1N2C <-> KCaM1N2C_KCaM1N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N2C_KCaM1N2C -> pKCaM1N2C + KCaM1N2C [2*KpCaM1N2C]
KCaM1N2C + KCaM2N2C <-> KCaM1N2C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM1N2C_KCaM2N2C -> pKCaM1N2C + KCaM2N2C [KpCaM1N2C]
KCaM1N2C_KCaM2N2C -> KCaM1N2C + pKCaM2N2C [KpCaM2N2C]
KCaM2N2C + KCaM2N2C <-> KCaM2N2C_KCaM2N2C [>KonCaMKII, <KoffCaMKII]
KCaM2N2C_KCaM2N2C -> pKCaM2N2C + KCaM2N2C [2*KpCaM2N2C]

// pKCaM autophosphorylation of KCaM, 81 combinations, 162 rxns:
pKCaM0N0C + KCaM0N0C <-> pKCaM0N0C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM0N0C -> pKCaM0N0C + pKCaM0N0C [KpCaM0N0C]
pKCaM0N0C + KCaM1N0C <-> pKCaM0N0C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM1N0C -> pKCaM0N0C + pKCaM1N0C [KpCaM1N0C]
pKCaM0N0C + KCaM2N0C <-> pKCaM0N0C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM2N0C -> pKCaM0N0C + pKCaM2N0C [KpCaM2N0C]
pKCaM0N0C + KCaM0N1C <-> pKCaM0N0C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM0N1C -> pKCaM0N0C + pKCaM0N1C [KpCaM0N1C]
pKCaM0N0C + KCaM1N1C <-> pKCaM0N0C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM1N1C -> pKCaM0N0C + pKCaM1N1C [KpCaM1N1C]
pKCaM0N0C + KCaM2N1C <-> pKCaM0N0C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM2N1C -> pKCaM0N0C + pKCaM2N1C [KpCaM2N1C]
pKCaM0N0C + KCaM0N2C <-> pKCaM0N0C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM0N2C -> pKCaM0N0C + pKCaM0N2C [KpCaM0N2C]
pKCaM0N0C + KCaM1N2C <-> pKCaM0N0C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM1N2C -> pKCaM0N0C + pKCaM1N2C [KpCaM1N2C]
pKCaM0N0C + KCaM2N2C <-> pKCaM0N0C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N0C_KCaM2N2C -> pKCaM0N0C + pKCaM2N2C [KpCaM2N2C]
pKCaM1N0C + KCaM0N0C <-> pKCaM1N0C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM0N0C -> pKCaM1N0C + pKCaM0N0C [KpCaM0N0C]
pKCaM1N0C + KCaM1N0C <-> pKCaM1N0C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM1N0C -> pKCaM1N0C + pKCaM1N0C [KpCaM1N0C]
pKCaM1N0C + KCaM2N0C <-> pKCaM1N0C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM2N0C -> pKCaM1N0C + pKCaM2N0C [KpCaM2N0C]
pKCaM1N0C + KCaM0N1C <-> pKCaM1N0C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM0N1C -> pKCaM1N0C + pKCaM0N1C [KpCaM0N1C]
pKCaM1N0C + KCaM1N1C <-> pKCaM1N0C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM1N1C -> pKCaM1N0C + pKCaM1N1C [KpCaM1N1C]
pKCaM1N0C + KCaM2N1C <-> pKCaM1N0C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM2N1C -> pKCaM1N0C + pKCaM2N1C [KpCaM2N1C]
pKCaM1N0C + KCaM0N2C <-> pKCaM1N0C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM0N2C -> pKCaM1N0C + pKCaM0N2C [KpCaM0N2C]

38



pKCaM1N0C + KCaM1N2C <-> pKCaM1N0C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM1N2C -> pKCaM1N0C + pKCaM1N2C [KpCaM1N2C]
pKCaM1N0C + KCaM2N2C <-> pKCaM1N0C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N0C_KCaM2N2C -> pKCaM1N0C + pKCaM2N2C [KpCaM2N2C]
pKCaM2N0C + KCaM0N0C <-> pKCaM2N0C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM0N0C -> pKCaM2N0C + pKCaM0N0C [KpCaM0N0C]
pKCaM2N0C + KCaM1N0C <-> pKCaM2N0C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM1N0C -> pKCaM2N0C + pKCaM1N0C [KpCaM1N0C]
pKCaM2N0C + KCaM2N0C <-> pKCaM2N0C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM2N0C -> pKCaM2N0C + pKCaM2N0C [KpCaM2N0C]
pKCaM2N0C + KCaM0N1C <-> pKCaM2N0C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM0N1C -> pKCaM2N0C + pKCaM0N1C [KpCaM0N1C]
pKCaM2N0C + KCaM1N1C <-> pKCaM2N0C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM1N1C -> pKCaM2N0C + pKCaM1N1C [KpCaM1N1C]
pKCaM2N0C + KCaM2N1C <-> pKCaM2N0C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM2N1C -> pKCaM2N0C + pKCaM2N1C [KpCaM2N1C]
pKCaM2N0C + KCaM0N2C <-> pKCaM2N0C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM0N2C -> pKCaM2N0C + pKCaM0N2C [KpCaM0N2C]
pKCaM2N0C + KCaM1N2C <-> pKCaM2N0C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM1N2C -> pKCaM2N0C + pKCaM1N2C [KpCaM1N2C]
pKCaM2N0C + KCaM2N2C <-> pKCaM2N0C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N0C_KCaM2N2C -> pKCaM2N0C + pKCaM2N2C [KpCaM2N2C]
pKCaM0N1C + KCaM0N0C <-> pKCaM0N1C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM0N0C -> pKCaM0N1C + pKCaM0N0C [KpCaM0N0C]
pKCaM0N1C + KCaM1N0C <-> pKCaM0N1C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM1N0C -> pKCaM0N1C + pKCaM1N0C [KpCaM1N0C]
pKCaM0N1C + KCaM2N0C <-> pKCaM0N1C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM2N0C -> pKCaM0N1C + pKCaM2N0C [KpCaM2N0C]
pKCaM0N1C + KCaM0N1C <-> pKCaM0N1C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM0N1C -> pKCaM0N1C + pKCaM0N1C [KpCaM0N1C]
pKCaM0N1C + KCaM1N1C <-> pKCaM0N1C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM1N1C -> pKCaM0N1C + pKCaM1N1C [KpCaM1N1C]
pKCaM0N1C + KCaM2N1C <-> pKCaM0N1C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM2N1C -> pKCaM0N1C + pKCaM2N1C [KpCaM2N1C]
pKCaM0N1C + KCaM0N2C <-> pKCaM0N1C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM0N2C -> pKCaM0N1C + pKCaM0N2C [KpCaM0N2C]
pKCaM0N1C + KCaM1N2C <-> pKCaM0N1C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM1N2C -> pKCaM0N1C + pKCaM1N2C [KpCaM1N2C]
pKCaM0N1C + KCaM2N2C <-> pKCaM0N1C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N1C_KCaM2N2C -> pKCaM0N1C + pKCaM2N2C [KpCaM2N2C]
pKCaM1N1C + KCaM0N0C <-> pKCaM1N1C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM0N0C -> pKCaM1N1C + pKCaM0N0C [KpCaM0N0C]
pKCaM1N1C + KCaM1N0C <-> pKCaM1N1C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM1N0C -> pKCaM1N1C + pKCaM1N0C [KpCaM1N0C]
pKCaM1N1C + KCaM2N0C <-> pKCaM1N1C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM2N0C -> pKCaM1N1C + pKCaM2N0C [KpCaM2N0C]
pKCaM1N1C + KCaM0N1C <-> pKCaM1N1C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM0N1C -> pKCaM1N1C + pKCaM0N1C [KpCaM0N1C]
pKCaM1N1C + KCaM1N1C <-> pKCaM1N1C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
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pKCaM1N1C_KCaM1N1C -> pKCaM1N1C + pKCaM1N1C [KpCaM1N1C]
pKCaM1N1C + KCaM2N1C <-> pKCaM1N1C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM2N1C -> pKCaM1N1C + pKCaM2N1C [KpCaM2N1C]
pKCaM1N1C + KCaM0N2C <-> pKCaM1N1C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM0N2C -> pKCaM1N1C + pKCaM0N2C [KpCaM0N2C]
pKCaM1N1C + KCaM1N2C <-> pKCaM1N1C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM1N2C -> pKCaM1N1C + pKCaM1N2C [KpCaM1N2C]
pKCaM1N1C + KCaM2N2C <-> pKCaM1N1C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N1C_KCaM2N2C -> pKCaM1N1C + pKCaM2N2C [KpCaM2N2C]
pKCaM2N1C + KCaM0N0C <-> pKCaM2N1C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM0N0C -> pKCaM2N1C + pKCaM0N0C [KpCaM0N0C]
pKCaM2N1C + KCaM1N0C <-> pKCaM2N1C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM1N0C -> pKCaM2N1C + pKCaM1N0C [KpCaM1N0C]
pKCaM2N1C + KCaM2N0C <-> pKCaM2N1C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM2N0C -> pKCaM2N1C + pKCaM2N0C [KpCaM2N0C]
pKCaM2N1C + KCaM0N1C <-> pKCaM2N1C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM0N1C -> pKCaM2N1C + pKCaM0N1C [KpCaM0N1C]
pKCaM2N1C + KCaM1N1C <-> pKCaM2N1C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM1N1C -> pKCaM2N1C + pKCaM1N1C [KpCaM1N1C]
pKCaM2N1C + KCaM2N1C <-> pKCaM2N1C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM2N1C -> pKCaM2N1C + pKCaM2N1C [KpCaM2N1C]
pKCaM2N1C + KCaM0N2C <-> pKCaM2N1C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM0N2C -> pKCaM2N1C + pKCaM0N2C [KpCaM0N2C]
pKCaM2N1C + KCaM1N2C <-> pKCaM2N1C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM1N2C -> pKCaM2N1C + pKCaM1N2C [KpCaM1N2C]
pKCaM2N1C + KCaM2N2C <-> pKCaM2N1C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N1C_KCaM2N2C -> pKCaM2N1C + pKCaM2N2C [KpCaM2N2C]
pKCaM0N2C + KCaM0N0C <-> pKCaM0N2C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM0N0C -> pKCaM0N2C + pKCaM0N0C [KpCaM0N0C]
pKCaM0N2C + KCaM1N0C <-> pKCaM0N2C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM1N0C -> pKCaM0N2C + pKCaM1N0C [KpCaM1N0C]
pKCaM0N2C + KCaM2N0C <-> pKCaM0N2C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM2N0C -> pKCaM0N2C + pKCaM2N0C [KpCaM2N0C]
pKCaM0N2C + KCaM0N1C <-> pKCaM0N2C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM0N1C -> pKCaM0N2C + pKCaM0N1C [KpCaM0N1C]
pKCaM0N2C + KCaM1N1C <-> pKCaM0N2C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM1N1C -> pKCaM0N2C + pKCaM1N1C [KpCaM1N1C]
pKCaM0N2C + KCaM2N1C <-> pKCaM0N2C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM2N1C -> pKCaM0N2C + pKCaM2N1C [KpCaM2N1C]
pKCaM0N2C + KCaM0N2C <-> pKCaM0N2C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM0N2C -> pKCaM0N2C + pKCaM0N2C [KpCaM0N2C]
pKCaM0N2C + KCaM1N2C <-> pKCaM0N2C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM1N2C -> pKCaM0N2C + pKCaM1N2C [KpCaM1N2C]
pKCaM0N2C + KCaM2N2C <-> pKCaM0N2C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM0N2C_KCaM2N2C -> pKCaM0N2C + pKCaM2N2C [KpCaM2N2C]
pKCaM1N2C + KCaM0N0C <-> pKCaM1N2C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM0N0C -> pKCaM1N2C + pKCaM0N0C [KpCaM0N0C]
pKCaM1N2C + KCaM1N0C <-> pKCaM1N2C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM1N0C -> pKCaM1N2C + pKCaM1N0C [KpCaM1N0C]
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pKCaM1N2C + KCaM2N0C <-> pKCaM1N2C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM2N0C -> pKCaM1N2C + pKCaM2N0C [KpCaM2N0C]
pKCaM1N2C + KCaM0N1C <-> pKCaM1N2C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM0N1C -> pKCaM1N2C + pKCaM0N1C [KpCaM0N1C]
pKCaM1N2C + KCaM1N1C <-> pKCaM1N2C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM1N1C -> pKCaM1N2C + pKCaM1N1C [KpCaM1N1C]
pKCaM1N2C + KCaM2N1C <-> pKCaM1N2C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM2N1C -> pKCaM1N2C + pKCaM2N1C [KpCaM2N1C]
pKCaM1N2C + KCaM0N2C <-> pKCaM1N2C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM0N2C -> pKCaM1N2C + pKCaM0N2C [KpCaM0N2C]
pKCaM1N2C + KCaM1N2C <-> pKCaM1N2C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM1N2C -> pKCaM1N2C + pKCaM1N2C [KpCaM1N2C]
pKCaM1N2C + KCaM2N2C <-> pKCaM1N2C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM1N2C_KCaM2N2C -> pKCaM1N2C + pKCaM2N2C [KpCaM2N2C]
pKCaM2N2C + KCaM0N0C <-> pKCaM2N2C_KCaM0N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM0N0C -> pKCaM2N2C + pKCaM0N0C [KpCaM0N0C]
pKCaM2N2C + KCaM1N0C <-> pKCaM2N2C_KCaM1N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM1N0C -> pKCaM2N2C + pKCaM1N0C [KpCaM1N0C]
pKCaM2N2C + KCaM2N0C <-> pKCaM2N2C_KCaM2N0C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM2N0C -> pKCaM2N2C + pKCaM2N0C [KpCaM2N0C]
pKCaM2N2C + KCaM0N1C <-> pKCaM2N2C_KCaM0N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM0N1C -> pKCaM2N2C + pKCaM0N1C [KpCaM0N1C]
pKCaM2N2C + KCaM1N1C <-> pKCaM2N2C_KCaM1N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM1N1C -> pKCaM2N2C + pKCaM1N1C [KpCaM1N1C]
pKCaM2N2C + KCaM2N1C <-> pKCaM2N2C_KCaM2N1C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM2N1C -> pKCaM2N2C + pKCaM2N1C [KpCaM2N1C]
pKCaM2N2C + KCaM0N2C <-> pKCaM2N2C_KCaM0N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM0N2C -> pKCaM2N2C + pKCaM0N2C [KpCaM0N2C]
pKCaM2N2C + KCaM1N2C <-> pKCaM2N2C_KCaM1N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM1N2C -> pKCaM2N2C + pKCaM1N2C [KpCaM1N2C]
pKCaM2N2C + KCaM2N2C <-> pKCaM2N2C_KCaM2N2C [>KonCaMKIIp, <KoffCaMKIIp]
pKCaM2N2C_KCaM2N2C -> pKCaM2N2C + pKCaM2N2C [KpCaM2N2C]

}
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