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ABSTRACT
In this work we present the galaxy clustering measurements of the two DES lens galaxy sam-
ples: a magnitude-limited sample optimized for the measurement of cosmological parameters,
MagLim, and a sample of luminous red galaxies selected with the redMaGiC algorithm.
MagLim / redMaGiC sample contains over 10 million / 2.5 million galaxies and is divided
into six / five photometric redshift bins spanning the range 𝑧 ∈ [0.20, 1.05] / 𝑧 ∈ [0.15, 0.90].
Both samples cover 4143 deg2 over which we perform our analysis blind, measuring the an-
gular correlation function with a S/N ∼ 63 for both samples. In a companion paper (DES
Collaboration et al. 2021), these measurements of galaxy clustering are combined with the
correlation functions of cosmic shear and galaxy-galaxy lensing of each sample to place cos-
mological constraints with a 3×2pt analysis. We conduct a thorough study of the mitigation of
systematic effects caused by the spatially varying survey properties and we correct the mea-
surements to remove artificial clustering signals. We employ several decontamination methods
with different configurations to ensure the robustness of our corrections and to determine the
systematic uncertainty that needs to be considered for the final cosmology analyses. We val-
idate our fiducial methodology using log-normal mocks, showing that our decontamination
procedure induces biases no greater than 0.5𝜎 in the (Ω𝑚, 𝑏) plane, where 𝑏 is galaxy bias.
We demonstrate that failure to remove the artificial clustering would introduce strong biases
up to ∼ 7𝜎 in Ω𝑚 and of more than 4𝜎 in galaxy bias.

Key words: large-scale structure of the Universe – dark energy – cosmological parameters –
cosmology: observations

© 2021 The Authors

ar
X

iv
:2

10
5.

13
54

0v
1 

 [
as

tr
o-

ph
.C

O
] 

 2
8 

M
ay

 2
02

1



2 DES Collaboration

1 INTRODUCTION

The current Standard Model of Cosmology, ΛCDM, provides an
excellent fit to current observations, including distance measure-
ments to Type Ia supernovae (SNIa) (Riess et al. 1998; Perlmutter
et al. 1999), the cosmic microwave background (CMB) fluctuations
(Spergel et al. 2003; Planck Collaboration 2020) and the large-scale
structure of the Universe (Alam et al. 2017; Abbott et al. 2019; Alam
et al. 2021), with only six free parameters. In addition, photometric
galaxy surveys, such as the Kilo-Degree Survey (KiDS, de Jong
et al. 2013), Hyper Suprime-Cam Subaru Strategic Program (HSC-
SSP, Aihara et al. 2018) and the Dark Energy Survey (DES, The
Dark Energy Survey Collaboration 2005) are now reaching a level
of sensitivity that competes with the most precise determinations
of cosmological parameters currently available (DES Collaboration
2018a; Heymans et al. 2021). The comparison of the measurements
of the late Universe, provided by galaxy surveys, and the early Uni-
verse, provided by CMB measurements, allows for powerful tests
of the nature of cosmic acceleration and general relativity. The
precision which photometric surveys are able to reach in the deter-
mination of cosmological parameters comes from the combination
of different observables, mainly from weak lensing and clustering
of galaxies, in the so-called 3×2pt analysis, whose methodology is
described in Krause et al. (2021).

In this work, we present the clustering measurements of the
lens galaxy samples that enter in the DES Year 3 (Y3) 3×2pt (DES
Collaboration et al. 2021) and the 2×2pt (Porredon et al. 2021a;
Pandey et al. 2021; Elvin-Poole, MacCrann et al. 2021; Prat et al.
2021, in combination with the shear field or galaxy-galaxy lens-
ing) analyses. The cosmological information is extracted from the
large-scale structure (LSS) measurements using the angular two-
point correlation function that characterizes the spatial distribution
of galaxies in tomographic photometric redshift bins. However, the
measurement of the angular correlation function is affected by spa-
tially varying survey properties that must be taken into account and
corrected to extract the full cosmological power of DES. These sys-
tematic effects come from the observing conditions and translate
into changes in the selection function across the observed footprint
or with redshift.

As photometric surveys have become more extended in area,
both the impact of these survey properties or observational effects,
and the diminishing statistical errors, have spurred the development
of a variety of techniques to correct for them in clustering mea-
surements. Already in SDSS (Scranton et al. 2002; Myers et al.
2006) and 2MASS (Maller et al. 2005) cross-correlations with
different survey properties and masking were used to check for
possible sources of systematic error, which were deemed to be in-
significant given the statistical errors. Ross et al. (2011) compared
several methodologies (masking, cross-correlation correction and
computing weights for the data) in SDSS-III. The cross-correlation
correction method was applied to early DES data (DES-SV) in
Crocce et al. (2016), and was studied by Elsner et al. (2016) (there
called “template subtraction") who derived its characteristic bias.
The application of weights have increasingly become a popular
method, applied for instance in BOSS (Ross et al. 2017, 2020),
eBOSS (Laurent et al. 2017), DES-SV (Kwan et al. 2017, compar-
ing with the cross-correlation method), DES Y1 data (Elvin-Poole
et al. 2018) and DESI targets (Kitanidis et al. 2020). Rather than
applying weights to the observed data, the inverse-weights can be
applied to the random sample used for correlation function anal-
yses, as shown in Morrison & Hildebrandt (2015) and applied to
eBOSS data via a multilinear regression analysis in (Bautista et al.

2018; Icaza-Lizaola et al. 2020). These approaches have been re-
fined in recent years as the importance of addressing these spatial
systematics has grown (Vakili et al. 2020; Weaverdyck & Huterer
2021; Wagoner et al. 2021), including the development of machine
learning approaches using neural networks Rezaie et al. (2020) or
self-organizing maps Johnston et al. (2021). Some approaches have
operated only at the level of the power spectrum, including mode
projection methods (Rybicki & Press (1992) with examples of ap-
plications and further developments shown in Leistedt et al. (2013);
Leistedt & Peiris (2014); Elsner et al. (2016, 2017)). Weaverdyck
& Huterer (2021) reviewed several of the above techniques and
showed how mode projection methods operating on the pseudo-
power spectrum are related to multilinear regression methods, iden-
tifying residual biases in both approaches.

We present the methods we apply to DES-Y3 data in order to
mitigate these effects, the full set of validation tests we perform, both
on data and on simulations, and its final implementation on the data.
These corrections enable robust measurements of the clustering
amplitude of lens galaxies. The results of this analysis are used
as the clustering input for the full 3×2pt cosmological analysis in
DES-Y3 (DES Collaboration et al. 2021).

This paper is organised as follows: in Section 2 we describe
the modeling of the galaxy clustering angular correlation function
used throughout the Y3 analysis. In Section 3, we introduce the
Y3 data and the galaxy samples derived from it. In Section 4,
we present the description of different observing conditions and
their representation. In Section 5, we present the methodology, with
special attention to the decontamination pipeline (subsections 5.3.1
and 5.3.2). In Section 6, we show the galaxy clustering results after
applying the correction methods. This correction is validated in
Section 7. In Section 8, we discuss the post-unblinding findings
about the amplitude of the angular correlation functions in terms of
the considered survey properties. Finally, we present the conclusions
in Section 9.

2 MODELLING

The observed projected galaxy density contrast 𝛿𝑖obs (n̂) of galaxies
in tomography bin 𝑖 at position n̂ can be written as

𝛿𝑖
𝑔,obs (n̂) =

∫
𝑑𝜒𝑊 𝑖

𝛿 (𝜒) 𝛿 (3D)
𝑔 (n̂𝜒, 𝜒)︸                               ︷︷                               ︸

𝛿𝑖
𝑔,D (n̂)

+𝛿𝑖
𝑔,RSD (n̂) + 𝛿𝑖𝑔,𝜇 (n̂) ,

(1)

with 𝜒 the comoving distance, 𝑊 𝑖
𝛿
= 𝑛𝑖𝑔 (𝑧) 𝑑𝑧/𝑑𝜒 the normalized

selection function of galaxies in tomographic bin 𝑖. Here the first
term is the line-of-sight projection of the three-dimensional galaxy
density contrast, 𝛿 (3D)

𝑔 ; the remaining terms are the contributions
from linear redshift-space distortions (RSD) and magnification (𝜇),
which are described in Krause et al. (2021).

We model the galaxy density assuming a local, linear galaxy
bias model (Fry & Gaztanaga 1993), where the galaxy and matter
density fluctuations are related by 𝛿𝑔 (x) = 𝑏𝛿𝑚 (x), with density
fluctuations defined by 𝛿 ≡ (𝑛(x) − �̄�)/�̄�. We model the linear
galaxy bias to be constant across each tomographic bin, denoted
as 𝑏𝑖 . The validity of these assumptions to the accuracy of the Y3
3×2pt analysis is demonstrated in Krause et al. (2021).

The angular power spectrum consists of six different terms,
corresponding to auto- and cross-power spectra of galaxy density,
RSD, and magnification. At the accuracy requirements of the Y3

MNRAS 000, 1–22 (2021)
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3×2pt analysis, the commonly-used Limber approximation is in-
sufficient to evaluate these terms, and we adopt the non-Limber
algorithm of Fang et al. (2020). For example, the exact expression
for the density-density contribution to the angular clustering power
spectrum is

𝐶
𝑖 𝑗

𝛿𝑔,D 𝛿𝑔,D
(ℓ) = 2

𝜋

∫
𝑑𝜒1 𝑊

𝑖
𝛿 (𝜒1)

∫
𝑑𝜒2 𝑊

𝑗

𝛿
(𝜒2)∫

𝑑𝑘

𝑘
𝑘3𝑃𝑔𝑔 (𝑘, 𝜒1, 𝜒2) 𝑗ℓ (𝑘 𝜒1) 𝑗ℓ (𝑘 𝜒2) , (2)

with 𝑃𝑔𝑔 (𝑘, 𝑧1, 𝑧2) the 3D galaxy power spectrum; the full ex-
pressions including magnification and redshift-space distortion are
given in Fang et al. (2020). Schematically, the integrand in Eq. 2
is split into the contribution from non-linear evolution, for which
un-equal time contributions are negligible so that the Limber ap-
proximation is sufficient, and the linear-evolution power spectrum,
for which time evolution factorizes. 1

The angular correlation function is then given by

𝑤𝑖 (𝜃) =
∑︁
ℓ

2ℓ + 1
4𝜋

𝑃ℓ (cos 𝜃)𝐶𝑖𝑖
𝛿𝑔,obs 𝛿𝑔,obs

(ℓ) , (3)

where 𝑃ℓ are the Legendre polynomials.
Throughout this paper, we use the CosmoSIS framework2

(Zuntz et al. 2015) to compute correlation functions, and to infer
cosmological parameters. The evolution of linear density fluctua-
tions is obtained using the CAMB (Lewis & Bridle 2002) module3

and then converted to a non-linear matter power spectrum 𝑃𝑁𝐿 (𝑘)
using the updated Halofit recipe (Takahashi et al. 2012).

We model (and marginalise over) photometric redshift bias un-
certainties as an additive shift Δ𝑧𝑖 in the galaxy redshift distribution
𝑛𝑖g (𝑧) for each redshift bin 𝑖,

𝑛𝑖𝑔 (𝑧) → 𝑛𝑖𝑔 (𝑧 − Δ𝑧𝑖), (4)

and a stretch parameter to characterise the uncertainty on the width
for some of the tomographic bins and samples,

𝑛𝑖𝑔 (𝑧) → 𝑛𝑖𝑔

(
𝜎𝑖
𝑧 [𝑧 − 〈𝑧〉] + 〈𝑧〉

)
. (5)

The priors on the Δ𝑧𝑖 and 𝜎𝑧𝑖 nuisance parameters are mea-
sured and calibrated directly using the angular cross-correlation
between the DES sample and a spectroscopic sample, as described
in Cawthon et al. (2020). We use the same Δ𝑧𝑖 and 𝜎𝑧𝑖 as in the
Y3 3×2pt analysis for all tests of robustness of the parameter con-
straints, as listed in Table 3.

3 DATA

The Dark Energy Survey collected imaging data with the Dark
Energy Camera (DECam; Flaugher et al. 2015) mounted on the
Blanco 4m telescope at the Cerro Tololo Inter-American Obser-
vatory (CTIO) in Chile during six years, from 2013 to 2019. The
observed sky area covers ∼ 5000 deg2 in five broadband filters,
𝑔𝑟𝑖𝑧𝑌 , covering near infrared and visible wavelengths. This work
uses data from the the first three years (from August 2013 to Febru-
ary 2016), with approximately four overlapping exposures over the
full wide-field area, reaching a limiting magnitude of 𝑖 ∼ 23.3 for
S/N = 10 point sources. The data were processed by the DES Data

1 https://github.com/xfangcosmo/FFTLog-and-beyond
2 https://bitbucket.org/joezuntz/cosmosis
3 http://camb.info

Management system (Morganson et al. 2018) and, after a complex
reduction and vetting procedure, compiled into object catalogues.
The catalogue used here amounts to nearly 400 million sources
(available publicly as Data Release 14; DES Collaboration 2018b).
We calculate additional metadata in the form of quality flags, sur-
vey flags, survey property maps, object classifiers and photometric
redshifts to build the Y3 GOLD data set (Sevilla-Noarbe & Bechtol
et al., 2020).

From this catalogue, we build the different galaxy samples for
large-scale structure studies. For robustness, we decided to use two
different types of lens galaxies, MagLim and redMaGiC, which
are used as lens samples for galaxy clustering and for combination
with weak lensing for the 3×2pt analysis. These two samples are
described in the following subsections. 5

3.1 Y3 MagLim sample

The main lens sample considered in this work, MagLim, is the
result of the optimization carried out in Porredon et al. (2021b).
The sample is designed to maximize the cosmological constraining
power of the combined clustering and galaxy-galaxy lensing analy-
sis (also known as 2×2pt) keeping the selection criterion as simple
as possible. The selection cuts, based on the table columns from
Sevilla-Noarbe & Bechtol et al., (2020), are:

• flags_foreground=0 & flags_footprint=1 & bi-
tand(flags_badregions,2)=0 & bitand(flags_gold,126)=0

• Star-Galaxy separation with EXTENDED_CLASS_MASH_SOF =
3

• i < 4 · 𝑧phot + 18
• i > 17.5

The first cut is a quality flag to remove badly measured ob-
jects or objects with issues in the processing steps. It also removes
problematic regions due to astrophysical foregrounds. The second
cut removes stars from the galaxy sample. The faint magnitude cut
in the 𝑖-band depends linearly on the photometric redshift, 𝑧𝑝ℎ𝑜𝑡 ,
and selects bright galaxies. The photometric redshift estimator used
for this sample is the Directional Neighbourhood Fitting (DNF, De
Vicente et al. 2016) algorithm (see also Porredon et al. 2021a), in
particular its mean estimate using 80 nearest neighbors in colour
and magnitude space, by performing a hyperplane fit. The brighter
magnitude cut removes residual stellar contamination from binary
stars and other bright objects.

We split the sample into six tomographic lens bins, with bin
edges zphot = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. These edges
have been slightly modified with respect to Porredon et al. (2021b)
in order to improve the photometric redshift calibration (De Vicente
et al. 2016). We refer the reader to Porredon et al. (2021b) for more
details about the optimization of this sample and its comparison with
redMaGiC and other flux-limited samples. The main properties of
the sample are summarized at the top panel of Table 1.

4 https://des.ncsa.illinois.edu/releases/dr1;
5 Moreover, from Y3 GOLD we also define the BAO SAMPLE, a galaxy
sample especially defined for studies on the baryonic acoustic oscillation
scales (Carnero Rosell et al. 2021), that is not used here, but undergoes an
analogous treatment of its spatial systematics.
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MagLim

Redshift bin 𝑁𝑔 〈𝑛𝑔 〉 𝑏𝑖 𝜃 > [arcmin]

0.20 < 𝑧 < 0.40 2236462 0.150 1.5 33.88

0.40 < 𝑧 < 0.55 1599487 0.107 1.8 24.35

0.55 < 𝑧 < 0.70 1627408 0.109 1.8 17.41

0.70 < 𝑧 < 0.85 2175171 0.146 1.9 14.49

0.85 < 𝑧 < 0.95 1583679 0.106 2.3 12.88

0.95 < 𝑧 < 1.05 1494243 0.100 2.3 12.06

redMaGiC

Redshift bin 𝑁𝑔 〈𝑛𝑔 〉 𝑏𝑖 𝜃 > [arcmin]

0.15 < 𝑧 < 0.35 330243 0.022 1.7 39.23

0.35 < 𝑧 < 0.50 571551 0.038 1.7 24.75

0.50 < 𝑧 < 0.65 872611 0.059 1.7 19.66

0.65 < 𝑧 < 0.80 442302 0.030 2.0 15.62

0.80 < 𝑧 < 0.90 377329 0.025 2.0 12.40

Table 1. MagLim (top table) and redMaGiC (bottom table) characterisation
parameters: number of galaxies, 𝑁𝑔 , and number density, 〈𝑛𝑔 〉, blind galaxy
bias, 𝑏𝑖 and scales excluded per redshift bin. The number densities are in
units of arcmin−2 and the scales excluded correspond to 8 Mpc/ℎ for both
samples, as described in Krause et al. (2021). The blind galaxy bias values
correspond to the fiducial values that were assumed to create the log-normal
mocks used in this analysis, not the best-fit values from 3×2pt.

3.2 Y3 redMaGiC sample

The redMaGiC algorithm selects luminous red galaxies (LRGs)
according to the magnitude-colour-redshift relation of red sequence
galaxy clusters, calibrated using an overlapping spectroscopic sam-
ple. This sample is defined by an input threshold luminosity 𝐿min
and constant co-moving density. The full redMaGiC algorithm
is described in Rozo, Rykoff et al. (2016). redMaGiC is the algo-
rithm used for the fiducial clustering sample of the DES Y1 3×2pt
cosmology analyses (DES Collaboration 2018a; Elvin-Poole et al.
2018), with some updates improving the redshift estimates and se-
lection uniformity, besides the usage of new photometry from Y3

GOLD.
We define the Y3 redMaGiC sample in five tomographic

lens bins, selected on the redMaGiC redshift point estimate
quantity zredmagic. The bin edges used are zredMaGiC =

[0.15, 0.35, 0.50, 0.65, 0.80, 0.90]. The first three bins use a lumi-
nosity threshold of 𝐿min > 0.5𝐿∗ and are known as the high density
sample. The last two redshift bins use a luminosity threshold of
𝐿min > 1.0𝐿∗ and are known as the high luminosity sample.

The redMaGiC selection also includes the following cuts on
quantities from the Y3 GOLD catalogue and redMaGiC calibration,

• Removed objects with FLAGS_GOLD in 8|16|32|64
• Star galaxy separation with EXTENDED_CLASS_MASH_SOF ≥ 2
• Cut on the red-sequence goodness of fit 𝜒2 < 𝜒2

max (𝑧)

The main properties of the sample are summarized in the bot-
tom part of Table 1. See Sevilla-Noarbe & Bechtol et al., (2020) for
further details on these quantities.

3.3 Angular Mask

The total sky area covered by the Y3 GOLD catalogue footprint is
4946 deg2. We then mask regions where astrophysical foregrounds
(bright stars or large nearby galaxies) are present, or where there
are known processing problems ("bad regions"), reducing the total
area by 659.68 deg2 (Sevilla-Noarbe & Bechtol et al., 2020). The
angular mask is defined as a HEALPix6 (Górski et al. 2005) map
of resolution 𝑁side = 4096. Pixels with fractional coverage smaller
than 80% are removed. In addition, we require homogeneous depth
across the footprint for both galaxy samples, removing too shallow
or incomplete regions. As a summary, we use the following Y3

GOLD and redMaGiC specific map quantities to define the final
common area:

• footprint = 1
• foregrounds = 0
• badregions ≤ 1
• fracdet > 0.8
• depth 𝑖-band ≥ 22.2
• 𝑧MAX,highdens ≥ 0.65
• 𝑧MAX,highlum ≥ 0.95

where the depth for the 𝑖-band magnitude is obtained using the SOF
photometry (detailed in Sevilla-Noarbe & Bechtol et al., 2020)
(as used in MagLim) and the conditions on ZMAX are inherited
from the redMaGiC redshift span. The final analysed sky area is
4143 deg2.

4 SURVEY PROPERTIES

4.1 Survey property (SP) maps

Through their impact on the galaxy selection function, survey prop-
erties can modify the observed galaxy density field. In order to
correct these effects, we develop spatial templates for potential con-
taminants by creating HEALPix sky maps of survey properties
("SP maps"), which we then use to characterize and remove con-
tamination from the observed density fields (see Leistedt et al.
2016, for the details of the original implementation of this mapping
in DES). Each pixel of a given SP map corresponds to a summary
statistic that characterises the distribution of values of the measured
quantity over multiple observations. Table 2 summarizes the sur-
vey properties considered in this analysis along with the summary
statistics used to produce the SP maps. As foreground sources of
contamination we use a star map created with bright DES point
sources, labeled stellar_dens, and the interstellar extinction map
from Schlegel et al. (1998), sfd98 7. More detailed information on
the construction of these maps can be found in Sevilla-Noarbe &
Bechtol et al., (2020). Hereafter we will use SP map to refer to
survey property and foreground maps generically.

4.2 Reduced PCA map basis

The Y1 analysis used 21 SP maps selected a priori. However, a
reduced set of SP maps is equivalent to setting a hard prior of no

6 https://healpix.sourceforge.io
7 We have verified that substituting the DES point sources map with the
Gaia EDR3 star map (Gaia Collaboration (2020)) and the sfd98 map with
the Planck 2013 thermal dust emission map (Planck Collaboration (2014))
has no significant impact on the results.

MNRAS 000, 1–22 (2021)
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Quantity Units Statistics

airmass ∅ WMEAN, MIN, MAX

fwhm arcsec WMEAN, MIN, MAX

fwhm_fluxrad arcsec WMEAN, MIN, MAX

exptime seconds SUM

t_eff ∅ WMEAN, MIN, MAX

t_eff_exptime seconds SUM

skybrite electrons/CCD pixel WMEAN

skyvar (electron s/CCD pixel)2 WMEAN, MIN, MAX

skyvar_sqrt electrons/CCD pixel WMEAN

skyvar_uncertainty electrons/ s · coadd pixel

sigma_mag_zero mag QSUM

fgcm_gry mag WMEAN, MIN

maglim mag

sof_depth mag

magauto_depth mag

stars_1620 # stars

stellar_dens stars/deg2

sfd98 mag

Table 2. Survey properties used for the systematics mitigation effort of the
DES Y3 Key Project, along with their physical units and the statistics used
to generate SP maps from the stacking of images. As foreground sources of
contamination we use a DES bright stars map and the dust extinction map
from Schlegel et al. (1998). We use both the raw number count of DES point
sources, stars_1620, and the density, stellar_dens. We use an SP map for
each statistic in each photometric band in {𝑔, 𝑟 , 𝑖, 𝑧 } (with the exception of
stars_1620, stellar_densand sfd98), resulting in 107 total SP maps.

contamination from those SP maps that are unused, so we should be
careful to not discard spatial templates that carry unique information
about potential systematics (Weaverdyck & Huterer 2021). For Y3
we have initially increased the number of SP maps considered to
107. By expanding the library of SP maps used for cleaning, we
relax the implicit priors and adopt a more data-driven approach to
cleaning observational systematics from the clustering data.

Many of the Y3 additional SP maps we use are alternative
summary statistics for characterising the observed quantity, such as
MIN and MAX instead of the weighted mean (WMEAN), which
results in a high correlation between SP maps. We therefore create
an orthogonal set of SP maps by using the principal components of
the pixel covariance matrix across all 107 SP maps (standardised
to zero mean and unit variance) at 𝑁side = 4096. This provides an
orthornormal basis set of SP maps that can be ordered according
to the total variance they capture in the space spanned by the 107
SP maps. We will refer to these principal component maps as PC
maps to differentiate from SP maps in the standard (STD) basis,
where each map represents a single survey property (e.g., exptime).
From this point forward, we will use “SP” map to more generically
refer to maps that may be in either the PC or STD basis. We retain
the first 50 PC maps, which account for ∼ 98% of the variance
of the full 107 map basis. This allows us to capture the dominant
features of the additional maps while reducing the risk of removing

real LSS signal from overfitting. We test the impact of adjusting the
number of PC maps used in Section 8 and in App. D, finding that the
full set of 107 maps results in galaxy weights that overcorrect and
correlate significantly with LSS. The fiducial set of maps employed
to decontaminate the data are these first 50 PC maps, although we
have also run validation tests with the STD maps, as we explain in
the next sections.

5 ANALYSIS TOOLS AND METHODOLOGY

5.1 Clustering Estimator

The analysis of the galaxy clustering is performed by measuring the
angular 2-point correlation function, 𝑤(𝜃), in photometric redshift
bins. In this analysis we work with HEALPix (Górski et al. 2005)
maps of the SPs and galaxy density from log-normal mock cata-
logues. The decontamination methods generate HEALPix weight
maps as well. Weights are actually obtained for each SP pixel, so
we also work with pixelised versions of our galaxy samples, and
use a pixel-based version of the Landy-Szalay estimator (Landy &
Szalay 1993), following the notation of Crocce et al. (2016):

�̂�(𝜃) =
𝑁𝑝𝑖𝑥∑︁
𝑖=1

𝑁𝑝𝑖𝑥∑︁
𝑗=1

(𝑁𝑖 − �̄�) · (𝑁 𝑗 − �̄�)
�̄�2 Θ𝑖, 𝑗 , (6)

where 𝑁𝑖 is the galaxy number density in pixel 𝑖, �̄� is the mean
galaxy number density over all pixels within the footprint and Θ𝑖, 𝑗

is a top-hat function which is equal to 1 when pixels 𝑖 and 𝑗 are
separated by an angle 𝜃 within the bin size Δ𝜃. The fractional
coverage of each pixel is taken into account in the calculation of 𝑁𝑖

and �̄� . These correlation functions are calculated using TreeCorr8

(Jarvis et al. 2004). We verify on the data that the difference between
this pixel version of the estimator and that using random points is
negligible for the angular scales we consider.

5.2 Log-normal mocks

We rely on a set of log-normal mock realisations of the observed
data to evaluate the significance of the correlation between data and
SP maps following the methodology of Elvin-Poole et al. (2018)
and Xavier et al. (2016). For each of our galaxy samples we create
a set of 1000 mocks that matches their mean galaxy number density
and power spectrum. We generate full sky mock catalogues at a
HEALPix resolution of 𝑁side = 512, corresponding to ∼ 0.11 de-
grees pixels. We then apply the DES-Y3 angular mask. This angular
resolution is small enough to be used for the scales employed in the
cosmology analysis. The usage of these mocks is covered in Section
5.3.1. We also create sets of contaminated log-normal mocks that
we later use to validate our decontamination methods. These mocks
incorporate the effect of SP maps observed on the data. Appendix
A contains more details about their creation and contamination.

5.3 Correction methods

The observed galaxy sample has contamination from observing
conditions and foregrounds, which modify the selection function
across the survey footprint. Our goal is to correct these effects in
the lens galaxy samples. To do so, we create a set of weights to
apply to the galaxy samples, constructed from a list of SP maps.

8 https://rmjarvis.github.io/TreeCorr

MNRAS 000, 1–22 (2021)

https://rmjarvis.github.io/TreeCorr


6 DES Collaboration

The weighted sample is then used for measurements of 𝑤(𝜃) and for
combination with weak lensing measurements (DES Collaboration
et al. (2021), Porredon et al. (2021a), Pandey et al. (2021), Elvin-
Poole et al. (2021)). This approach has been successfully applied
to the angular correlation function of the DES Year 1 clustering
measurements (Elvin-Poole et al. 2018), as well as in SDSS-III (for
example, in Ross et al. 2011, 2017), eBOSS (Laurent et al. 2017;
Bautista et al. 2018; Icaza-Lizaola et al. 2020; Ross et al. 2020;
Raichoor et al. 2021) and in KiDS (Vakili et al. 2020).

Most correction procedures can be interpreted as regression
methods, with the true overdensity field corresponding to the resid-
uals after regressing the observed density field against a set of SP
maps. Adding SP maps is equivalent to adding additional explana-
tory variables to the regression, which increases the chance of over-
fitting. Such overfitting will reduce the magnitude of the inferred
overdensity field (i.e. shrink the size of regression residuals), and
thus overfitting will generically lead to a reduced clustering signal.

There are several approaches to address this. One can a priori
restrict the number of SP maps to reduce the level of false correction.
This is equivalent to asserting that there is no contamination from the
discarded SP maps, which risks biasing the data from unaccounted-
for systematic effects. A second option is to clean with all of the
SP maps and then debias the measured clustering based on an
estimate of the expected level of false correction (e.g. pseudo-𝐶ℓ

mode projection, Elsner et al. 2016, 2017; Alonso et al. 2019).
This approach can be interpreted as a simultaneous ordinary least
squares regression with a step to debias the power spectrum. Map-
level weights that may enter in the analysis of other observables,
such as galaxy-galaxy lensing, can be produced from this approach,
but they will be overly-aggressive if the number of SP maps is large.
Wagoner et al. (2021) extend this approach by incorporating the
pixel covariance and using Markov Chain Monte Carlo to include
map-level error estimates, but this again becomes less feasible if the
number of SP maps is too large. Finally, one can take an approach
between these extremes, reducing the number of SP maps used
for fitting, but doing so in a data-driven manner. We apply two
different methods that take this third approach. They make different
assumptions, but were both found to perform well in simulated tests
in Weaverdyck & Huterer (2021). The SP maps we run these two
methods on is our fiducial set of 50 PC maps that we introduced in
Section 4. In addition, we present a third method that we use to test
linearity assumptions made by the other two.

5.3.1 Iterative Systematics Decontamination (ISD)

In this subsection, we describe the fiducial correction method that
we use for DES Y3, called Iterative Systematics Decontamination
(ISD). It is an extension of the methodology applied in Y1 (Elvin-
Poole et al. 2018).

ISD is organised as a pipeline that corrects the PC map (or
any generic SP map) effects by means of an iterative process whose
steps can be summarized as i) identify the most significant PC map,
ii) obtain a weight map from it, iii) apply it to the data and iv) go
back to i). The algorithm stops when there are no more maps with an
effect larger than an a priori fixed threshold. Each step is described
in more detail in the following lines.

To begin with, we degrade each PC map to 𝑁side= 512 and
then we compute the relation between their values and 𝑛𝑜/〈𝑛𝑜〉 ,
where 𝑛𝑜 is the observed density of galaxies at a given part of the
sky and 〈𝑛𝑜〉 is the average density over the full footprint. In the
following we refer to this as the 1D relation. To obtain the statistical
significance of the observed correlations, we bin the 1D relation

into ten equal sky areas for each PC map and estimate a covariance
matrix for the 1D relation bin means of that PC map using the
set of 1000 uncontaminated mocks described in Sec.5.2. Since the
bins are defined as equal area, the statistical error associated with
each bin is similar and no one region dominates the fit. We use
this covariance matrix for determining the best-fit parameters of
a function to approximate the 1D relation, as well as to assess its
goodness-of-fit.

We fit the 1D relation to a linear function of the PC map values

𝑛o,i
〈𝑛o〉

= 𝑚 · 𝑠𝑖 + 𝑐 , (7)

by minimizing 𝜒2, which we then denote 𝜒2
model. The index 𝑖 runs

over the PC map bins. Similarly, we compute the goodness-of-fit
for the case where 𝑛𝑜/〈𝑛𝑜〉 is a constant function 𝑓 (𝑠) = 1 labeled
𝜒2

null. Finding that 𝑛𝑜/〈𝑛𝑜〉 fits well to this constant function is
equivalent to finding that this particular PC has no impact on the
galaxy density field. To calculate both 𝜒2 definitions, we make use
of the (10 × 10) covariance matrix obtained from the log-normal
mocks.

The degree of impact of a given PC map on the data is evaluated
using

Δ𝜒2 = 𝜒2
null − 𝜒2

model . (8)

To decide whether this impact is statistically significant or not,
we run the exact same procedure described above on 1000 log-
normal mock realisations. In this way, we obtain the probability
distribution of Δ𝜒2. We define Δ𝜒2 (68) as the value below which
are 68% of the Δ𝜒2 values from the mocks. Then, we consider an
SP map significant if

𝑆1𝐷 =
Δ𝜒2

Δ𝜒2 (68)
> 𝑇1𝐷 , (9)

where 𝑇1𝐷 is a significance threshold that is fixed beforehand. The
square-root of this quotient is proportional to the significance in
terms of 𝜎.

After identifying the most contaminating map, 𝑠𝑖 , the next step
is to obtain a weights map, 𝑤𝑠,𝑖 , to correct its impact. We compute
this weights map as

𝑤𝑠,𝑖 =
1

𝐹 (𝑠𝑖)
, (10)

where 𝐹 (𝑠𝑖) is a linear function of 𝑠𝑖 with which its 1D relation
is fitted. In general, this function depends on the nature of the SP
map, although the aim is to use functions as simple as possible to
prevent overfitting. In the case of PC maps, we find no significant
deviations from linearity in the 1D relations (see Appendix E).

After obtaining the weight map, the pipeline normalises it to
�̄�𝑠 = 1. Then, it is applied to the data, in such a way that 𝑁 𝑝

𝑔𝑎𝑙
→

𝑁
𝑝

𝑔𝑎𝑙
· 𝑤𝑝

𝑠 , where 𝑝 is an index that runs over the footprint pixels
at 𝑁side = 4096. The process is repeated iteratively, identifying at
each iteration the most significant PC map and correcting for it until
all the PC maps have a significance lower than 𝑇1𝐷 . At iteration 𝑖,
the weights from iterations 1 to 𝑖 have been applied. Figure 1 shows
the 1D relation of a given PC map that has been identified as a
significant contaminant (dots) and after correcting for it (triangles).

The weights associated to each significant PC map are incor-
porated multiplicatively to the total weight map, 𝑤𝑇 , that is

𝑤𝑇 =

𝑓∏
𝑖=1

𝑤𝑠, 𝑖 , (11)
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Figure 1. Example of how Iterative Systematics Decontamination (ISD)
works. We illustrate this by showing the observed pixel number density
(relative to the mean over the full footprint) as a function of a PC map pixel
value, evaluated in ten equal area bins. We refer to this as 1D relation. The
method identifies the PC map pca8 as the most significant one at iteration 0
(i.e., no weights have been applied yet) at the first redshift bin of MagLim.
The corresponding 1D relation is depicted by the red triangles and the red
line corresponds to their best fit linear function. After correcting for the
contaminating template with weights (given by equation 10) at iteration 1,
the impact of this PC map on the data is highly reduced. The blue points
and their best fit linear function (blue line) show that the 1D relation is now
compatible with no effect.

where 𝑖 runs over the number of PC maps it is necessary to weight
for. 𝑤𝑇 is then the total weight map that contains the information
about the individual contaminants. These are the weights we apply
to the data to mitigate the contamination. This total weight map is
also normalised so its mean value over the full footprint is one. The
pipeline runs this procedure for each redshift bin independently.

5.3.2 Elastic Net (ENet)

We also generated sets of weights using the Elastic Net (ENet)
method described in Weaverdyck & Huterer (2021) on the list of
50 PC maps. In this work, ENet has been used to perform robust-
ness tests. Recall that the ISD method estimates contamination
via a series of 1D regressions which are used to construct a total
weight map via Eq. 11. In contrast, ENet estimates the amplitude
of contamination for all PC maps simultaneously, by maximizing
the following log-posterior over 𝛼:

P(𝛼) ∝ − 1
2𝑁pix

| |𝛿obs − S𝛼 | |22 − 𝜆1 | |𝛼 | |1 − 𝜆2
2
| |𝛼 | |22, (12)

where 𝛼𝑖 is the contamination amplitude for PC map 𝑠𝑖 , S is a matrix
with the pixelated PC maps as columns9, and

𝛿obs, 𝑗 =
𝑓det,j𝑁 𝑗∑𝑁pix

𝑗
( 𝑓det,j𝑁 𝑗 )/𝑁pix

− 1, (13)

where 𝑓det,j is the fraction of pixel 𝑗 that is not masked. The first
term in equation 12 corresponds to the standard Gaussian likelihood
that is maximized for an ordinary least squares regression. The

9 In practice, we standardise PC maps to have mean 0 and unit standard
deviation before computing Eq. (12).

regularizing terms act as components of a mixed, zero-centered
prior on the elements of 𝛼. The mixture consists of a Laplace and
Gaussian distribution, with their precisions controlled by 𝜆1 and
𝜆2. The Laplace component is sharply peaked at zero, encouraging
sparsity in the coefficients. We determine the values of 𝜆1 and 𝜆2 by
minimizing the mean squared error of the predictions on held-out
portions of the footprint via 5-fold cross-validation. This allows the
data to pick the precision and form of the prior based on predictive
power.

We use the scikit-learn (Pedregosa et al. 2011) imple-
mentation of ElasticNetCV, with a hyperparameter space of
𝜆1/(𝜆1 + 𝜆2) ∈ {0.1, 0.5, 0.9} and 20 values of (𝜆1 + 𝜆2) spanning
four orders of magnitude (automatically determined from the input
data). We degrade all maps to 𝑁side = 512, and compute Eq. (12)
using a training mask that only includes pixels with 𝑓det ≥ 0.1 (de-
tection fraction from the Y3 GOLD STD maps which is inherited by
the PC maps). We performed many subsequent tests changing the
definition of this training mask, with little observed impact on the
final 𝑤(𝜃). Using ENet on the STD maps we also extended S to in-
clude quadratic terms of form 𝑠2

𝑖
, and/or terms of form 𝑠𝑖𝑠stellardens,

but these showed decreased predictive power on held-out samples,
suggesting that the risk of overfitting from these additional maps
dominates over additional contamination they identify.

The total weight map is computed (still at 𝑁side = 512) as

𝑤ENet
𝑇 = [𝐹ENet (S)]−1 = (1 + S�̂�)−1. (14)

The ISD and ENet methods make different assumptions and
take significantly different approaches to select important SP maps
while minimizing the impact of overcorrection. ENet neglects the
covariance of pixels, as well as the differing clustering properties
of the SP maps, but it is less dependent on the basis of SP maps
than is ISD. It avoids some of the difficulties the ISD method has
when SP maps are highly correlated or contamination is distributed
weakly across a combination of many maps, and hence missed by
1D marginal projections. We therefore expect the ENet method to
be a useful robustness test of the fiducial ISD method, and it is also
used to estimate the systematic contribution to the 𝑤(𝜃) covariance
(see Sec. 6).

5.3.3 Neural net weights (NN-weights)

To evaluate the robustness of the assumptions made and codes used
in producing galaxy-density weights, we created a third alternative
process with different choices and independent code—in particular,
abandoning the assumption that the mean galaxy density is a linear
or polynomial function of all SP maps. The basic principle remains
the same, namely that a function 𝑤(s) of the vector s of SP values is
found which maximizes the uniformity of the observed catalogue.
In this case, however, the function is realized by a neural network
(NN), in a manner very similar to that of Rezaie et al. (2020).

In contrast to ISD and ENet, we apply this method on the STD
basis of maps. In addition, two important changes to the weighting
procedure were made to avoid having the NN overtrain, in the sense
of absorbing true cosmological density fluctuations into the obser-
vational density factor 𝑤. First, the input STD maps were limited
to those which should in principle fully describe the characteris-
tics of the coadd images: the fwhm, skyvar_uncertainty, exptime
and fgcm_gry exposure-averaged values for each of the 𝑔𝑟𝑖𝑧 bands,
the sfd98 extinction estimate, and a gaia_density estimate of local
stellar density constructed from Gaia EDR3 (Gaia Collaboration
2020). We confirm that weights constructed with these STD maps
eliminate any correlation of galaxy density on airmass or depth,
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and additionally find that fgcm_gry has no significant effect, so it is
dropped, leaving 14 STD maps. The second major change to avoid
overtraining is to institute 𝑁-fold cross-validation: the footprint is
divided into healpixels at 𝑁side = 16, which are randomly divided
into 𝑁 distinct “folds.” The weights for each fold are determined by
training the NN on the other 𝑁 − 1 folds, halting the training when
the loss function for the target fold stops improving. We use 𝑁 = 3.

The weights are created on a healpixelization at 𝑁side = 4096.
With 𝑛𝑖 , 𝑓𝑖 , and𝑤𝑖 being the galaxy counts, useful-area fraction, and
weight estimate for each healpixel, the NN is trained to minimize
the binary cross-entropy

𝑆 ≡
∑︁
𝑛𝑖>0

log �̄� 𝑓𝑖𝑤𝑖 +
∑︁
𝑛𝑖=0

log (1 − �̄� 𝑓𝑖𝑤𝑖) . (15)

In a further departure from the standard weighting scheme, we
take the input vector s to be the logarithm of each input STD map
(except for sfd98, which is already a logarithmic quantity), then
linearly rescale each dimension to have its 1–99 percentile range
span (0, 1). We mask the < 1% of survey area for which any such
rescaled SP has 𝑠𝑖 outside the range (−0.5, 1.5), knowing that the
NN will fail to train properly on rare values of STD maps.

Using the Keras software10, we define the weight function for
a given galaxy bin as

log𝑤(s) = 𝜶 · s + 𝑁𝑁 (s), (16)

where 𝜶 defines a nominal power-law relationship between the STD
maps and the expected galaxy density, and 𝑁𝑁 is a three-layer
perceptron describing deviations from pure power-law behavior.
The training of all folds for all redshift bins can be done overnight
on a single compute node.

6 RESULTS

ISD returns a list of maps with significant impact on galaxy clus-
tering and that we need to weight for in each redshift bin of the
samples. We studied the impact of observing conditions at three
different significance threshold values, 𝑇1𝐷 = 2, 4, 9. Increasing
this threshold is equivalent to relaxing the strictness of the decon-
tamination, decreasing the number of significant SP maps. After
testing for over and undercorrection on mocks, the fiducial choice
of significance threshold is 𝑇1𝐷 = 2 (see Sections 7 and 8 for more
details).

We find that, in general, both samples show a similar trend and
they are more impacted by observing conditions at higher redshift.
Generally, more SP maps are significant for the MagLim sample
than for redMaGiC. The measured angular 2pt correlation func-
tions on the weighted samples can be seen in Figure 2. The S/N
11 of this detection is ∼ 63 for both samples (using only the first
four bins of MagLim). The data have been corrected for systematic
contamination by applying the ISD-PC<50 weights. After the cor-
rection they are in good agreement (green points) with the best fit
cosmology from 3×2pt. The deviation in the first redshift bin for
redMaGiC is known to come from an inconsistency between clus-
tering results and galaxy-galaxy lensing in this sample. We defer

10 https://keras.io

11 The signal-to-noise is defined as 𝑆/𝑁 ≡ 𝑤data (𝜃 )𝐶−1𝑤model (𝜃 )√
𝑤model (𝜃 )𝐶−1𝑤model (𝜃 )

,

where 𝐶 is the 𝑤 (𝜃) part of the covariance matrix and 𝑤model (𝜃) is the
best fit model from 3×2pt .

the discussion of this important result from the point of view of ob-
servational systematics to Section 8. We note also that for MagLim
we depict two best fit correlation functions: the best fit model from
3×2pt analysis using its six redshift bins (dashed black lines) and
excluding its last two bins (solid black lines). The DES fiducial
constraints are obtained without the last two bins, as explained in
Porredon et al. (2021a). The shaded regions in this figure depict the
scales excluded (see Table 1) from our data vectors. These regions
are not used to obtain constraints on cosmological parameters. The
uncorrected 𝑤(𝜃) are shown as red crosses. We note that the im-
pact of systematic corrections is easily larger than the statistical
uncertainty in the measurements, and are therefore necessary for
unbiased cosmological inference, as we will illustrate below. These
corrections are more important at higher redshift bins in both galaxy
samples. For a comparison of this correction with respect to DES
Y1 galaxy clustering, see Elvin-Poole et al. (2018).

In Figure 3, we explicitly demonstrate the importance of our
systematics correction by placing constraints onΩ𝑚 and the cluster-
ing biases 𝑏𝑖 from the galaxy clustering correlation function alone.
We do this by fitting the theory model presented in Section 2 to
the data using CosmoSIS and the PolyChord sampling software
(Handley et al. 2015a,b). The covariance that we employ is given by
CosmoLike (Krause & Eifler 2017) and it includes the systematic
contributions that we introduce in Section 8.4. We again marginalise
over shifts in the photometric redshift distributions and over their
widths. These nuisance parameters are sensitive to the clustering
amplitude. For redMaGiC the rest of the cosmological parameters
are fixed to the DES Y3 fiducial best fit cosmology and for MagLim
these are fixed to the best fit cosmology using the six redshift bins.
For this reason, this constraint on Ω𝑚 should not be taken as a true
constraint, but this illustrates how the changes in the measured 𝑤(𝜃)
can impact cosmology constraints. The priors for these cosmologi-
cal and nuisance parameters are given in Table 3. We obtain these
contours for the unweighted and ISD-weighted data. As evidence
of robustness of our choice of SP maps, we also show contours for
another configuration of ISD (ISD-STD34), where only 34 STD
maps are considered (see Section 8.1 and Appendix B of Carnero
Rosell et al. (2021) for more details on this selection of SP maps).
We see that failure to apply our systematic corrections biases the
inferred bias values as well as the recovered matter density relative
to our fiducial choice. The corrections for the two ISD configura-
tions are equivalent within the statistical uncertainty. In Figure 3,
we focus on the redshift bins with the most prominent difference in
the mean of the posteriors from uncorrected (red contours) and cor-
rected data (blue contours). We find 4.10𝜎 and 6.96𝜎 differences
in 𝑏3 and Ω𝑚, respectively, for MagLim. In the case of redMaGiC,
we find 7.69𝜎 and 6.79𝜎 differences in 𝑏4 and Ω𝑚. The effect of
not correcting is to shift the contours towards higher galaxy biases
and lower Ω𝑚 values. This highlights the importance of correcting
systematic effects.

7 WEIGHTS VALIDATION

We validate our methodology on simulated catalogues to ensure
that no biases are induced. We use unaltered log-normal mocks and
also mocks that are artificially contaminated by our SP maps (see
Appendix A for details on how we apply this contamination). We
contaminate these mocks by applying the inverse of the weights
determined from the data using ENet on the full list of 107 STD
maps. Decontamination, however, is performed using weights de-
termined by ISD-PC<50. This procedure adds an additional layer
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Figure 2. DES Y3 galaxy clustering results for MagLim (top panel) and redMaGiC (bottom panel). The green points correspond to the angular correlation
function of the ISD-PC<50 weighted data, while the red points correspond to the uncorrected data. The solid black line shows the best-fit theory prediction
from the DES Y3 3×2pt ΛCDM results of each sample (DES Collaboration et al. 2021). Note that for MagLim we also show the best-fit from the analysis
including all six redshift bins (dashed black line), although the fiducial 3×2pt cosmology results from this sample only include its first four bins. The shaded
regions correspond to the scales that are excluded for cosmological constraints.

of protection: if we contaminate mocks with the weights from one
method and decontaminate by the same method, the test is only
checking sensitivity to forms of contamination to which we a priori
know the method is sensitive to. Generating an equally plausible
realization of contamination from an alternative method adds the
benefit of potentially revealing blind spots in the method that is
being validated.

We calculate �̄�dec (𝜃) and �̄�unc (𝜃) as the mean correlation
function of 400 decontaminated and 400 uncontaminated mocks, re-
spectively. Since the log-normal mocks are generated at𝑁side = 512,
which corresponds to separation angles of ∼ 6.9 arcmin between
pixels, we compute the correlation functions at the 14 fiducial angu-
lar scales that are larger than this limit. Then we estimate the impact
of the different biases (see next two Sections) on 𝑤(𝜃) by means of
the true mean in uncontaminated mocks, �̄�unc (𝜃):

𝜒2 = (�̄�dec (𝜃) − �̄�unc (𝜃))> · 𝐶−1 · (�̄�dec (𝜃) − �̄�unc (𝜃)) . (17)

The covariance matrix, 𝐶, is the galaxy clustering part of the ana-
lytical covariance given by CosmoLike, and it is also used for the
clustering part of the 3×2pt cosmological analysis. If we find that
any bias causes a change in the joint fit to all redshift bins according
to the definition above, equivalent to 𝜒2 > 3, then we marginalise
over this bias in our final analysis. This threshold was chosen such
that the impact on 𝜒2 would be a small compared to the expected
width of the 𝜒2 distribution of the 𝑤(𝜃) data vector. As we detail
in Section 8.4, we marginalise over biases by modifying the covari-
ance matrix to account for these sources of systematic uncertainty.
The fiducial covariance matrix for DES Y3 3×2pt analysis includes
these systematic terms.

7.1 False correction test

Since we consider a large number of SP maps in this analysis,
chance correlations between the data and some of these maps could
arise, even after reducing our number of SP maps. This is more
important when using a strict significance threshold. These purely
random correlations could cause overcorrections, therefore biasing
the measured value of 𝑤(𝜃) and the inferred cosmological parame-
ters. To characterise this effect, we run ISD with 𝑇1𝐷 = 2 on a set
of 400 uncontaminated mocks and then we obtain their correlation
functions, 𝑤𝑇1𝐷

𝑤, unc, i. The false correction bias is defined as

𝑤
𝑇1𝐷
f. c. bias (𝜃) =

1
400

©«
𝑁∑︁
𝑖=1

𝑤
𝑇1𝐷
𝑤, unc, i (𝜃) −

𝑁∑︁
𝑗=1

𝑤unc, j (𝜃)
ª®¬ , (18)

where 𝑤unc, j are the correlation functions measured on the unal-
tered uncontaminated mocks.

In general, the effect of removing the systematic effects is to
diminish the amplitude of 𝑤(𝜃). Thus, a negative value of this es-
timator indicates overcorrection. In Figure 4 we show the results
of 𝑤𝑇1𝐷

f. c. bias (𝜃)/𝜎 for 𝑇1𝐷 = 2, where 𝜎 is the diagonal of the un-
modified covariance matrix. We find a very marginal indication of
overcorrection, always well below the statistical error. We also note
that this ratio has small angular dependence, as can be seen in Figure
5 which compares the mean true 𝑤(𝜃) (black line) with the mean
of the decontaminated correlation functions (blue line). Therefore,
we do not consider any contribution from the false correction bias
to the final covariance matrix. The small impact of this effect on
the cosmological parameters is highlighted in Section 7.3. Never-
theless, we note that the error bars shown in Figure 5 correspond
to the diagonal of the covariance matrix which has been modified
to account for systematic uncertainties, as it is explained in Section
8.4.
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Figure 3. Constraints on Ω𝑚 and galaxy bias before and after applying our
weighting methodology to the data for MagLim (top panel) and redMaGiC
(bottom panel). We focus on the redshift bins where the difference in the
mean posteriors of these parameters from contaminated (red contours) and
decontaminated (filled blue contours) data is the greatest. The absence of
correction strongly biases our estimations. We also show constraints for
ISD-STD34 weighted data (orange contours). We obtain similar behaviours
for the rest of the redshift bins of both samples.

7.2 Residual systematic test

Here we demonstrate that ISD effectively recovers the true corre-
lation function from a contaminated sample. We can then verify if
our approach (with 𝑇1𝐷 = 2) meets the requirements for the Y3
cosmology analysis or whether it is necessary to account for any
bias due to uncorrected contamination.

MagLim

Redshift bin Δ𝑧 𝜎𝑧

0.20 < 𝑧 < 0.40 (-0.009,0.007) (0.975,0.062)

0.40 < 𝑧 < 0.55 (-0.035,0.011) (1.306,0.093)

0.55 < 𝑧 < 0.70 (-0.005,0.006) (0.87,0.054)

0.70 < 𝑧 < 0.85 (-0.007,0.006) (0.918,0.051)

0.85 < 𝑧 < 0.95 (0.002, 0.007) (1.08,0.067)

0.95 < 𝑧 < 1.05 (0.002, 0.008) (0.845,0.073)

redMaGiC

Redshift bin Δ𝑧 𝜎𝑧

0.15 < 𝑧 < 0.35 (0.006,0.004) fixed to 1

0.35 < 𝑧 < 0.50 (0.001,0.003) fixed to 1

0.50 < 𝑧 < 0.65 (0.006,0.004) fixed to 1

0.65 < 𝑧 < 0.80 (-0.002,0.005) fixed to 1

0.80 < 𝑧 < 0.90 (-0.007,0.010) (1.23,0.054)

Both samples

Ω𝑀 𝑏𝑖

All redshifts [0.1,0.9] [0.8,3.0]

Table 3. List of prior values used to constrain Ω𝑀 and the sample galaxy
biases 𝑏𝑖 per redshift bin. The other cosmological parameters have been
fixed to the fit values in the 3×2pt analysis as described in the text. Square
brackets denote a flat prior, while parentheses denote a Gaussian prior of
the form N(𝜇, 𝜎) . The shift Δ𝑧 and stretch 𝜎𝑧 parameters are defined in
Eqs. (4,5). In some cases the latter is not marginalised over (fixed). The
redshift priors were determined in Cawthon et al. (2020).

We define the residual systematic bias as

𝑤
𝑇1𝐷
r. s. bias (𝜃) =

1
400

©«
𝑁∑︁
𝑖=1

𝑤
𝑇1𝐷
dec, i (𝜃) −

𝑁∑︁
𝑗=1

𝑤unc, j (𝜃)
ª®¬ , (19)

where the 𝑤
𝑇1𝐷
dec, i are the correlation functions measured on mocks

that have had systematic contamination added and then have been
decontaminated using ISD.

Because we are interested in the level of residual systematics
that are insufficiently captured by the weighting method, we use the
alternative method ENet with all 107 maps in the standard basis
to generate an aggressive level of contamination. We observe that
both ISD-PC107 and ENet-STD107 significantly overcorrect at the
lowest redshift bins of both galaxy samples (see Section 8), so when
using the corresponding weights to contaminate the mocks we are
introducing excessive contamination. Therefore, we expect some
degree of undercorrection when later running ISD with a sub-set
of PC maps such as with ISD-PC<50. Furthermore, by using ENet
to estimate the contamination instead of ISD, the contaminated
mocks will include possible contamination modes to which ENet
is sensitive but to which ISD may not be.

In Figure 6, we show the results for this bias with respect to the
diagonal of the unaltered analytical errors. While the highest redshift
bins of both MagLim and redMaGiC present moderate levels of
overcorrection, the lowest redshift bins of the two samples show a

MNRAS 000, 1–22 (2021)



11

Figure 4. False correction bias, 𝑤𝑇1𝐷
f. c. bias (𝜃) , for MagLim (top panel) and

redMaGiC (bottom panel) relative to the 𝑤 (𝜃) error from the unaltered
CosmoLike covariance diagonal elements. Negative values are indicative of
overcorrection. Both samples show negligible levels of overcorrection, weak
dependence with the angular scale and at most ∼ 20% of the statistical error.
The values depicted here have been calculated with significance threshold
𝑇1𝐷 = 2. Empty dots correspond to the angular scales not considered for
each redshift bin of the samples.

trend to under-correct at the small angular scales, but still above the
scales we exclude. As already mentioned, we expect some level of
undercorrection due to the aggressive contamination imprinted on
the mocks. Even under this consideration, these bins cause the 𝜒2

of the joint fit to exceed our limit, so we incorporate this bias as a
systematic contribution to our covariance matrix. This is covered in
Section 8.4. In Figure 7, we depict the mean recovered clustering
(blue lines) compared to the true clustering (black lines). We also
show the mean contaminated correlation function (red lines). It
can be seen that ISD performs a nearly unbiased decontamination
at the largest angular scales. The error bars in this Figure include
the systematic terms added to the covariance (see Figure 11 for
a comparison of the error bars with and without the systematic
contributions).

7.3 Impact on parameter estimation

Finally, as an additional evidence of robustness we check the impact
of the decontamination procedure on the estimation of cosmological
parameters. We use as data vectors i) the mean correlation function
over 400 uncontaminated mocks, ii) the mean correlation function
biased by our overcorrection estimate (Section 7.1) and iii) the mean

Figure 5. Mean angular correlation function, 𝑤 (𝜃) , from raw uncontam-
inated log-normal mocks (black lines) and from decontaminated uncon-
taminated mocks (blue lines) for MagLim (top panel) and for redMaGiC
(bottom panel) at their lowest redshift bins. Shaded region correspond to the
scales excluded at this redshift. In this redshift bin there is ∼ 20% of false
correction with respect to the statistical error due to chance correlations
between PC maps and mocks. The error bars correspond to the diagonal of
the covariance matrix with systematic terms added.

correlation function biased as by the residual systematic uncertainty
estimate (Section 7.2). To test the influence of these analysis modifi-
cations on cosmology, we recalculate the constraints on the param-
eters Ω𝑚 and 𝑏𝑖 , marginalizing as before over redshift-bin centroid
positions and widths of the redshift distributions. We use the same
priors from Table 3 and the rest of the parameters are fixed to the
values used to generate the mocks. The results that we obtain are
shown in Figure 8. It can be seen that the recovered contours from
the false correction bias case (run on uncontaminated mocks) are in
good agreement with those from the reference case, demonstrating
that biases from overcorrection in inferred cosmological parameters
are negligible. The contours corresponding to the residual system-
atic bias (run on ENet contaminated mocks) show a small level
of undercorrection that is translated to slightly higher galaxy bias
values, though this mismatch is also within the statistical uncertain-
ties given by our analytical covariance. This covariance includes a
systematic uncertainty correction that is explained in Section 8.4. In
Table 4, we present the difference in the Ω𝑚 and 𝑏𝑖 mean posteriors
in units of 𝜎 from uncontaminated mock contours. We note that all
differences are smaller than 0.5𝜎. It must be taken into account that,
since the rest of the cosmological parameters are fixed, the 1𝜎 con-
tours are smaller than for any of the final DES cosmology analyses,
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Figure 6. Residual systematic bias, 𝑤𝑇1𝐷
r. s. bias (𝜃) , for MagLim (top panel)

and redMaGiC (bottom panel) relative to the 𝑤 (𝜃) error from the unal-
tered CosmoLike covariance diagonal. The empty dots represent the scales
excluded at each bin. Both samples show similar trends: the highest redshift
bins present lower biases, while the lowest ones show important levels of
undercorrection at the smallest scales. On the other hand, the largest scales
are recovered nearly unbiased. Since the 𝜒2 of the total residual bias in all
bins is higher than 3, we add a systematic term to the covariance matrix to
marginalise over this effect.

making this test more stringent. We found that the mean 𝑤(𝜃) of
the log-normal mocks is slightly shifted to lower amplitudes from
the theory prediction with the same input values. This causes some
shifting of the contours as well, but we have verified that this does
not affect our conclusions from the decontamination methodology.

8 POST-UNBLINDING INVESTIGATIONS OF THE
IMPACT OF OBSERVATIONAL SYSTEMATICS ON (𝜽)

The DES 3×2pt analysis combines the correlation functions from
galaxy clustering, 𝑤(𝜃), galaxy-galaxy lensing (for short, gg-
lensing), 𝛾𝑡 (𝜃) and cosmic-shear, 𝜉± (𝜃), in order to improve the
individual constraining powers of each probe and to break degen-
eracies in some cosmological parameters. In addition, since each
of these 2pt functions is potentially affected by different systematic
effects, it allows for consistency checks comparing different results.
The consideration of two different lens galaxy samples for 𝑤(𝜃) and
𝛾𝑡 (𝜃) allows us to further assess the robustness of the whole cosmol-
ogy analysis. The cosmology analysis is performed blindly, that is,
we only look at the cosmology results once a set of predefined crite-

Figure 7. Mean angular correlation function, 𝑤 (𝜃) , from uncontaminated
mocks (black line) and from decontaminated mocks (blue line) for MagLim
(top panel) and for for redMaGiC (bottom panel). The red line corresponds
to the mean of the mocks with contamination added from ENet and the
shaded regions represent the scales not used for cosmological constraints.
While ISD recovers a nearly unbiased clustering at the largest angular scales,
there is an important bias at the smallest ones. For this reason, this effect is
marginalised over by adding it a systematic contribution to the error budget.
The error bars shown take into account this contribution.

ria are fulfilled, as is described in DES Collaboration et al. (2021).
During the unblinding process of redMaGiC we found that this
sample passed all the consistency tests we had a priori decided were
required for unblinding. However, after unblinding, we identified a
potential inconsistency between the amplitudes of galaxy clustering
and gg-lensing: either the former has an anomalously high ampli-
tude or the latter has an anomalously low one. This inconsistency is
explored in detail in Pandey et al. (2021).

Observational systematics from survey properties tend to in-
crease the amplitude of 𝑤(𝜃) and so one possible explanation is
that the clustering amplitude is anomalously high due to the decon-
tamination procedure failing to fully capture all contamination in
the data. Thus, the true underlying galaxy correlation function in
the data would not be correctly recovered. This led us to perform a
variety of additional tests as we describe below. It was during these
tests when some of the methods described in Sections 4 and 5 were
incorporated, such as the change in SP map basis (both expanding
the number of SP maps and decorrelating them) and the robustness
checks using ENet and the neural net. Ultimately, we found that
the difference between galaxy clustering and lensing observables
in redMaGiC remained robust to different choices in the decon-
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Figure 8. Constraints in the Ω𝑚 − 𝑏𝑖 parameter space at fixed 𝜎8 from the mean 𝑤 (𝜃) of uncontaminated mocks (black contours) and from decontaminated
mocks according to the false correction bias (violet contours) and to the residual systematic bias (blue contours). MagLim is shown in the left panel and
redMaGiC in the right one. It can be seen how both the false correction bias and the residual systematic bias lead to small shifts from the reference mocks
relative to the error given by the CosmoLike analytical covariance, which includes the systematic uncertainty contributions. We only show contours for the first
redshift bins of the two galaxy samples in this figure, but we verify that the shifts at the other bins are smaller or smaller. Because 𝜎8 and other cosmological
parameters are fixed in this test, the posterior is smaller than from any of the DES final cosmological analyses that use the 𝑤 (𝜃) data.

MagLim

Parameter False correction bias Residual systematic bias

Ω𝑚 0.36 0.08

𝑏1 -0.09 0.43

𝑏2 -0.06 0.40

𝑏3 -0.25 0.12

𝑏4 0.05 0.16

𝑏5 -0.15 -0.02

𝑏6 -0.06 -0.04

redMaGiC

Parameter False correction bias Residual systematic bias

Ω𝑚 0.39 0.31

𝑏1 -0.29 0.50

𝑏2 -0.33 0.11

𝑏3 -0.30 0.27

𝑏4 -0.32 -0.35

𝑏5 -0.19 -0.21

Table 4. Relative difference in the Ω𝑚 and 𝑏𝑖 mean of the posteriors for the
two tests on decontaminated mocks in units of 𝜎. All values are below half
a 𝜎. Note that the posteriors in this test are much smaller than in any of the
final DES cosmology analyses because all the other parameters are fixed.

tamination procedure. We also applied these additional tests to the
MagLim sample before it was unblinded. In contrast to our results
with the redMaGiC sample, once we unblinded the MagLim sam-
ple we found that its lensing and clustering signals were consistent
with one another. For this reason, MagLim is the fiducial choice for
our cosmological constraints (DES Collaboration et al. 2021). The
fiducial MagLim cosmology results use only the first four redshift
bins, as the two highest redshift bins gave inconsistent results, while
adding little constraining power. Porredon et al. (2021a) investigates
these results in detail.

8.1 ISD and ENet at the STD map basis

Before unblinding, ISD weights were obtained from a selection of
STD maps performed by setting a limit for the Pearson’s correlation
coefficient between them. This selection gave 34 representative STD
maps that were used to obtain weights with ISD (ISD-STD34). More
details on this selection can be found in Appendix B of Carnero
Rosell et al. (2021). To check whether the clustering-lensing in-
consistency found in redMaGiC was caused by an STD map not
selected in the STD34 set, we ran ISD on the full list of STD maps,
and verified that derived weights did not significantly impact the
resulting clustering signal. In Figure 9, we show the correlation
functions at the first bin of redMaGiC obtained for these two con-
figurations of ISD with STD maps.

We also checked the subtle possibility of a combination of STD
maps leading to a large systematic contribution despite no single
map being individually significant. For this reason, we ran ENet-
STD107 on redMaGiC, which simultaneously fits to all template
maps, finding a significant decrease of ∼ 1𝜎 in the amplitude of the
correlation function in the first three redshift bins. This motivated
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Figure 9. Comparison of the clustering amplitude recovered from several
methods and configurations for the first redshift bin of redMaGiC. All
methods agree within the statistical uncertainty given by the analytical co-
variance. The solid red line corresponds to the unweighted data and the
dashed purple line corresponds to the ISD-PC107 configuration. The differ-
ence between this configuration and the rest of methods is consistent with
the overcorrection observed on contaminated mocks (see Figure 10). The
solid and dashed black lines are the best fit cosmology from cosmic-shear
and gg-lensing only and from the 3×2pt analysis, respectively. The gray
shaded region represents the scales that are not used for cosmological analy-
sis. None of the various configurations produce values of 𝑤 (𝜃) approaching
the best-fit prediction from cosmic-shear and gg-lensing.

further investigation to determine whether there could be signifi-
cant residual contamination in the form of low-significance linear
combinations of SP maps that eluded the initial decontamination
procedure. We found that decorrelating the SP maps via PCA be-
fore running the ISD method and using the 107 components resulted
in much better agreement between ISD and ENet, which motivated
the change to the PC basis that has been used for the results pre-
sented in this paper (see ISD-PC107 in Figure 9). We also found
that there are no significant changes when running ENet on the PC
basis of maps (this method is less basis-dependent, since it performs
a simultaneous fit to all maps).

8.2 ISD and ENet in the PC map basis

We evaluated the impact of the ISD-PC107 weights on both un-
contaminated and ENet contaminated mocks, similar to the tests
from Sections 7.1 and 7.2. These tests revealed a significant level
of overcorrection when using the full list of PC maps with ISD,
especially when evaluated on contaminated mocks, indicating that
true LSS fluctuations were being removed in the decontamination
process. This effect can be seen in Figure 10. We observed a sim-
ilar overcorrection effect on MagLim with these ISD settings. The
overcorrection is most prominent in lower redshift bins where the
intrinsic clustering signal is larger, losing significance at higher
redshift for both samples.

These results suggest that there is a higher likelihood of chance
correlation in the PC107 basis than in the STD107 basis. We also
found that PC107 weights obtained from the data showed significant
correlations with DES 𝜅 maps (see Appendix D for details). We
therefore conclude that using all 107 principal components results
in removing not only actual systematic contamination from the data,
but also cosmological signal, causing a lower 𝑤(𝜃) amplitude.

We therefore applied a cutoff to the number of PC maps to be

Figure 10. Effect of considering different numbers of PC maps on the two-
point angular correlation function: weights obtained from 107 PC maps
cause overcorrection on 𝑤 (𝜃) (magenta line). This overcorrection ranges
from∼ 0.5−1𝜎 and is most prominent at large angular scales. This overcor-
rection can explain most of the difference in clustering between ISD-PC<50
and ISD-PC107 observed in Fig. 9. On the other hand, weights obtained
from the first 50 PC maps yield a clustering amplitude (blue line) that is in
good agreement with the mean 𝑤 (𝜃) from uncontaminated mocks (black
line), especially at the largest scales. The difference between the amplitudes
from uncontaminated and ISD-PC<50 decontaminated mocks is included as
a systematic contribution to the covariance (error bars in this figure already
include that term). Red line correspond to the ENet-STD107 contaminated
mocks.

used. To select this cutoff, we required that the weight map resulting
from running ISD with the set of the first 𝑛 PC maps should not
induce a significant overcorrection on contaminated mocks (as we
observed with ISD-PC107 weights), while still removing the con-
tamination that was applied using ENet-STD107. We found that
𝑛 = 50 principal component maps meets this requirement. The im-
pact of the ISD-PC<50 weights on contaminated mocks and finally
on the data can be seen in Figures 10 (blue line) and 9 respectively.
Then, we calculated ENet-PC<50 weights as well, finding good
agreement between the two methods with this configuration (see
Figure 9). Our adoption of this configuration was further supported
by the desire to have a comparatively small number of maps to avoid
overcorrection, as with the 107 PC maps, while still preserving most
of the variance present in the full set of 107 STD maps. We point
the reader to Appendix D for more details on the selection of this
cutoff. We found that the difference between 𝑤(𝜃) functions given
by ISD-PC<50 and ENet-PC<50 yields a 𝜒2 for the joint fit to all
redshift bins bigger than 3. Thus, we consider this difference as an
additional systematic uncertainty to be marginalised over, similar to
the difference between uncontaminated and decontaminated mocks
from Section 7.2.

For these reasons, we used ISD-PC<50 as the fiducial correc-
tion method, as described in the previous sections of this paper.
In Figure 9, we summarise the clustering amplitudes obtained from
each of the methods and configurations described in the first redshift
bin of redMaGiC. None of the methods produce a 𝑤(𝜃) consistent
with the best fit prediction from cosmic-shear and gg-lensing (solid
black line). For reference, the dashed grey line shows the best fit
prediction from the combined 3×2pt analysis.

The tests conducted to determine this cutoff were focused on
the first redshift bin of redMaGiC, but we verified that the impact
of this choice on the rest of the bins is similar, although milder,
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since the overcorrection observed at higher bins is less significant.
We also ran these tests on MagLim, obtaining similar conclusions
for the same cutoff.

8.3 Tests with neural net weights

As noted in Section 8.3, we developed an independent, nonlinear
correction method using neural networks. This was applied post-
unblinding to test the robustness of the weights, in particular to
the assumption of linearity between galaxy number density and
the systematic maps. If there is excess clustering due to nonlinear
functions of the STD maps, then we expect it to be captured by
the NN-weights. Because of the significant time required to run
the method, we did not subject it to the full extent of validation
tests on contaminated and uncontaminated mocks as we did for the
ISD and ENet methods. However as Fig. 9 shows, the changes to
𝑤(𝜃) are small when using the NN-weights, suggesting that residual
nonlinear contamination from the existing set of STD maps is not
driving a spuriously high estimate of 𝑤(𝜃).

8.4 Modifications to the covariance matrix

In this analysis, we consider the systematic uncertainty in the cor-
rection method from two sources: from the choice of correction
method, and the bias measured in contaminated mocks (as men-
tioned in Section 7.2). As noted in the previous section, the NN-
weights method did not undergo the extensive validation process
that the ISD and ENet weights did. For this reason, we focused
on the systematic uncertainty associated to the differences between
ISD-PC<50 and ENet-PC<50.
The two systematics considered are each analytically marginalised
over through an additional term in the 𝑤(𝜃) covariance matrix fol-
lowing the methodology of Bridle et al. (2002) summarised here.
If one takes an arbitrary data vector y that is biased by an additive
systematic effect s,

y′ = y + 𝐴s, (20)

where A is the amplitude of the systematic error. If the amplitude
𝐴 has a Gaussian prior of zero-mean and width 𝜎𝐴 (which can
be determined by external constraints), the parameter A can be
analytically marginalised over in the covariance matrix of y with,

Cov(y′, y′) = Cov(y, y) + 𝜎2
𝐴

ss𝑇 . (21)

In this analysis, we model the impact of the systematic uncertainty
in the correction as,

𝑤′(𝜃) = 𝑤(𝜃) + 𝐴1Δ𝑤method (𝜃) + 𝐴2𝑤
𝑇1𝐷
r. s. bias (𝜃), (22)

where Δ𝑤method (𝜃) is the difference between the ISD and ENet
methods, both using the PC<50 basis of maps as shown in Fig.
11; 𝑤

𝑇1𝐷
r. s. bias (𝜃) is the residual systematic bias measured on

Log-normal mocks in Sec. 7.2, and 𝐴1 and 𝐴2 are two arbitrary
amplitudes that describe the size of the systematic error in the
correction.

We analytically marginalise over these terms assuming a
unit Gaussian as the prior on the amplitudes 𝐴1 and 𝐴2 such that
the measured systematic size is a 1𝜎 deviation from the prior
centre, and the systematic can move 𝑤(𝜃) in either direction. The
final additional covariance term is

ΔCov(w′,w′) = 𝚫wmethod𝚫wmethod
𝑇 + wT1D

r. s. biasw
T1D
r. s. bias

𝑇
. (23)

The method difference term Δ𝑤method (𝜃) is measured on real data
and therefore contains the same noise as the 𝑤(𝜃) data vector being
used for cosmological inference. To avoid adding this noise to the
covariance term, we fit a flexible polynomial to the two 𝑤(𝜃) mea-
surements described in Appendix C. Δ𝑤method (𝜃) is the difference
between these two polynomial fits.

The mock bias term𝑤
𝑇1𝐷
r. s. bias (𝜃) is averaged over 400 mocks so

is a smooth function of 𝜃 and does not require any additional fitting.
The impact of the additional covariance terms is shown in the error
bars of Fig. 11. The systematic contribution to each tomographic
bin is treated as independent so the covariance between bins is not
modified.

8.5 Tests with Balrog

Balrog (Suchyta et al. 2016; Everett et al. 2020) is a software pack-
age which embeds fake objects in real images in order to accurately
characterize measurement effects. It is a useful tool to make inde-
pendent consistency tests of the decontamination methods. While
the galaxy samples trace the actual large-scale structure, the Bal-
rog samples are formed by galaxies that are artificially injected on a
uniform grid. What both real and Balrog samples have in common
is the impact of systematics. Therefore, any correlation between the
two after applying the weights would mean the presence of a com-
mon systematic. For this reason, we used the cross-correlation of
redMaGiC and MagLim with their associated Balrog samples
to test for the presence of an extraneous signal that would indicate
a systematic which is not being corrected by the applied weights.
These results are presented in Figure 12. The cross-correlations are
calculated in ∼ 1000 deg2 (available area of the Balrog samples).
All errors (computed with jackknife re-sampling using 100 patches
for MagLim and 50 for redMaGiC) for the cross-correlation with
the weights applied are consistent with zero signal. However, the
signal itself is small but nonzero, growing in magnitude towards
larger scales. We note that, due to its lower number density, the
points for redMaGiC are noisier than those for MagLim. The re-
duced 𝜒2 for a constant cross-correlation of 0 are 0.46, 0.96, 1.25,
3.60, 1.18 for redMaGiC and 1.13, 0.71, 0.78, 0.94, 0.65, 0.69 for
MagLim. The relative strength of the cross-correlation signal with
respect to the auto-correlation signal can be seen in the bottom rows
of each panel. In general, it is at or below 5% for the five lowest
angular bins at all redshift bins, and it is lower than 10% for scales
smaller than ∼ 30 arcmin. This relative strength gives us an indica-
tion of the size of a systematic effect that could be still unaccounted
for. Even if the redMaGiC results are noisy, those for MagLim
do not show a clear indication of uncorrected effects from imaging
systematics.

8.6 Summary of findings

We performed a series of tests post-unblinding to determine if
the observed inconsistency between the galaxy clustering and gg-
lensing signals in redMaGiC is due to residual systematic con-
tamination of the galaxy clustering signal. In particular, we investi-
gated whether expanding the set of survey property maps, adjusting
the contamination model, or changing a variety of methodological
choices for the decontamination procedure resulted in a significantly
different inferred galaxy clustering signal. We largely performed
these tests at the level of 𝑤(𝜃), without further looking at the im-
pact of these decisions on cosmological parameters. The following
list is a summary of the obtained results:
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Figure 11. Method difference term Δ𝑤method (𝜃) in real data for MagLim (top row) and redMaGiC (bottom row). The methods compared are ISD-PC<50
and ENet-PC<50 (red line). The light blue error bands correspond to the diagonal of the covariance with the additional systematic terms included, while the
yellow ones correspond to the original analytical covariance.

Figure 12. Cross-correlation between redMaGiC (top panel) and MagLim (bottom panel) samples selected in data and produced with Balrog. The cross-
correlations are shown in the top row of each panel, before weighting (red line) and after weighting (purple line) by SP maps effects, compared to the data 𝑤 (𝜃)
(blue points). The error bars have been obtained by jackknife re-sampling. The bottom row of each panel shows the relative difference (in percent) between the
cross-correlation signal and the auto-correlation one. In general, all differences are compatible with zero and well below the statistical errors showing no clear
evidence of uncorrected effects from imaging systematics, though we note that the points for redMaGiC are noisier due to its lower number density.

• Expanding the list of 34 to all 107 STD maps has negligible
impact on the resulting amplitude of 𝑤(𝜃) using the fiducial ISD
decontamination procedure. We thus conclude that the discrepancy
is not due to residual contamination from one of the previously-
discarded STD maps.

• We performed a principle component analysis of the 107 STD
maps and used the principle components as an orthonormal basis
for the decontamination procedure, i.e. ran ISD-PC107. We found
good agreement with ENet-STD107 (and ENet-PC107), resulting
in a reduction of the 𝑤(𝜃) amplitude. This was most pronounced

in the first redshift bin of redMaGiC, with a decrease in 𝑤(𝜃) of
∼ 1𝜎.

• We observed a significant overcorrection of 𝑤(𝜃) when com-
puting ISD-PC107 weights from contaminated mocks. For this rea-
son, we applied a cutoff to the number of PC maps, limiting it to
the 50 PC maps with the highest signal-to-noise. We found that
the resultant ISD-PC<50 weights produce little overcorrection and
we add a systematic contribution to our error budget corresponding
to the difference between ISD-PC<50 and ENet-PC<50. We also
add a systematic contribution for the undercorrection observed on
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contaminated mocks using only the first 50 PC maps assuming the
true contamination corresponds to the estimate of ENet-STD107.

• We implemented a nonlinear decontamination procedure using
a neural network, which also used different choices for the mask
and base set of STD maps. This resulted in differences in 𝑤(𝜃) that
were much smaller than the observed discrepancy between galaxy
clustering and gg-lensing.

• We cross-correlated both redMaGiC and MagLim with their
corresponding Balrog samples and we found no clear evidence of
uncorrected contamination of known systematic templates common
to both types of samples.

We note that the ISD-STD34 weights passed an extensive bat-
tery of validation tests, described in Section 7. However, after our
findings and comparisons between ENet and ISD we decided to use
the ISD-PC<50 weights in the fiducial analysis.

Given these findings, we conclude that the anomalous high
clustering amplitude of redMaGiC sample is unlikely to be due
to uncorrected contamination coming from any of our known tem-
plates nor from a linear combination of them. Because the clustering
remains high when using higher-order STD maps with ENet (af-
ter accounting for false correction bias) as well as using the neural
net, we are unable to identify non-linear contamination from our
SP maps as the cause (see Appendix E for additional tests). We
performed a number of further exploratory tests such as more ag-
gressive masking, including based on the leverage statistic (c.f.
Weaverdyck & Huterer 2021) and found 𝑤(𝜃) to be robust to
these choices. Applying our fiducial decontamination procedure
to MagLim does not show the same discrepancy between probes as
does redMaGiC.

9 CONCLUSIONS

We measure the angular two-point correlation of DES Y3 lens
galaxies, and study the impact of systematic errors on these mea-
surements. We use two lens samples: MagLim, a magnitude-limited
sample with enhanced number density and reliable photometric red-
shifts (Porredon et al. 2021b) and redMaGiC, a sample of luminous
red galaxies (LRGs) selected by the algorithm described in Rozo,
Rykoff et al. (2016) which also provides high quality photomet-
ric redshifts. We extend the methodology employed in DES Y1
(Elvin-Poole et al. 2018), both for correcting the data and to en-
sure its robustness. A more thorough set of survey property maps
is used and we employ them directly and through the application of
principal components analysis to the map set. Additionally, a new
weight estimation method is used in parallel (ENet, Weaverdyck &
Huterer 2021) and a cross-check of linearity assumptions is made
with a neural network framework based on recent literature (Rezaie
et al. 2020). These steps help us to avoid possible blind spots in our
validation methodology.

Our findings are as follows:

• The updated DES Y1 methodology, dubbed Iterative System-
atics Decontamination (ISD), is able to successfully remove sys-
tematic contamination, as shown by validation tests on log-normal
mocks (Figures 5 and 7) and data.

• The ENet method is a viable alternative correction method
to ISD. We evaluate several configurations and demonstrate that
both methods are in agreement within statistical precision. To be
sure that any residual difference is taken into account, we include
a systematic uncertainty in the covariance matrix as the difference
between the two results. This uncertainty is included in the final

covariance that is used for cosmological constraints, after checking
that it does not bias our results.

• The decontamination procedure does not produce a significant
bias in 𝑤(𝜃) or in the Ω𝑚 − 𝑏𝑖 parameter space.

• We find that survey properties have a significant impact on the
recovered galaxy clustering signal, particularly at high redshifts, as
compared to redMaGiC Y1 results (Elvin-Poole et al. 2018). This
contamination is corrected by applying the ISD method together
with a principal component analysis of our survey sroperty maps.
The same methodology is applied to both samples.

• We find an inconsistent clustering amplitude for the red-
MaGiC sample when combined with other 2pt lensing probes. We
study it from the point of view of the impact of SP maps, consid-
ering different methods, such as ISD and ENet, and different num-
bers, types and bases of SP maps. We find agreement between the
weighted correlation functions yielded by each method within our
errors. We also investigate weights from a neural network weighting
scheme. All our tests confirm that our systematics corrections are
robust and the template maps used in this analysis do not explain
the redMaGiC internal inconsistency.

The results presented in this work have been optimized to be
used for their combination with galaxy-galaxy lensing (Porredon
et al. 2021a; Prat et al. 2021; Pandey et al. 2021; Elvin-Poole, Mac-
Crann et al. 2021) and cosmic-shear (Amon et al. 2021; Secco,
Samuroff et al. 2021) measurements to obtain the 3×2pt cosmo-
logical results from the DES Year 3 data (DES Collaboration et al.
2021), and constitutes one of the basic pillars for this measurement.

This work highlights the importance of adequate validation
and cross-checking of this highly relevant step in the estimation of
galaxy clustering, and builds upon several developments within the
DES project and in the literature. For Y6, given the rapid devel-
opments in the field, we plan to approach the problem from the
beginning with a variety of methodologies in mind, possibly con-
sidering multi-regression approaches or assessing the feasibility of
using a wider Balrog sample, making it part of the pipeline from
the start now that the algorithm is fully developed. This will be
coupled with possibly a multi-tiered unblinding approach with ad-
ditional steps to be able to make decisions on investigating unusual
results in internal consistency tests at different stages of the process.
Additional work in parallel on the Y3 samples and survey property
maps will shed some light on possible details that the Y6 methodol-
ogy will have to address, such as understanding the overcorrection
produced by some maps or issues with the galaxy samples.
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APPENDIX A: LOG-NORMAL MOCKS

The mocks used for the systematic analysis are 2D log-normal fields
generated at a given power spectrum. We start by using Camb (Lewis
et al. 2000; Howlett et al. 2012) to obtain a matter power spectrum
and project into a galaxy clustering angular power spectrum,𝐶𝑔𝑔

𝑖
(𝑙)

following the theory modelling described in Krause et al. (2021).
To produce this power spectrum we assume our fiducial cosmology
and we fix the galaxy bias for each redshift bin to the values from
the blind bias analysis (Table 1). Then, we use this power spectrum
to generate a Gaussian random field of 𝛿𝑔 for each mock realization
on a HEALPix map (Górski et al. 2005) using the healpy package
(Zonca et al. 2019). We then apply a log-normal transformation to
the field following the methodology of Xavier et al. (2016). This
uses a skewness parameter which was derived in Friedrich et al.
(2020). We then transform the log-normal 𝛿𝑔 field to a galaxy
number counts field, 𝑁gal, using the observed number count, �̄�o,
from the galaxy sample we want to reproduce and the relation,

𝑁gal = �̄�o · (1 + 𝛿𝑔) . (A1)

We apply the angular mask to the full sky realizations. In this way,
the covariance matrices built from these mocks incorporate the same
mask effects as the real data. In order to add shot noise, we finally
Poisson sample the 𝑁gal field.

As we mention in Section 7, we also create a set of log-normal
mocks contaminated by survey properties systematics, so we can
look for biases introduced by ISD and check their impact on the
measurements. We imprint contamination on the log-normal mocks
by multiplying the galaxy number counts field by the inverse of the
weight map derived from the data, that is

𝑁
𝑝

gal, mock → 𝑁
𝑝

gal, mock · 1
𝑤𝑝

. (A2)

This step is applied before Poisson sampling the galaxy field. We
produce a set of 400 contaminated log-normal mocks following
this procedure using weights derived from ENet-STD107, as is
mentioned in Section 7. We check that the 1D relations of these
mocks reproduce in shape and amplitude those observed on the
data. An example of this can be seen in Figure A1.

APPENDIX B: INTERNAL CONSISTENCY TESTS:
ESTIMATOR BIAS TEST

In addition to the tests described in Section 7, we perform an in-
ternal consistency test that seeks to confirm no bias in 𝑤(𝜃) is

Figure A1. 1D relations for 400 MagLim ENet contaminated log-normal
mocks (shaded black lines) compared with the data (red line). The top panel
shows the 1D relations with the pca0 map at the fourth redshift bin of this
sample, whereas the bottom panel shows the 1D relations with skybrite in
𝑟 -band. The contamination observed on the data is well reproduce by these
mocks. The error bars are obtained from the uncontaminated mocks used to
calculate the 1D significance.

introduced by ISD under idealised circumstances. For this test we
contaminate and correct for the same list of SP maps, demonstrating
the Landy-Szalay estimator can recover a negligibly biased signal.
Since the focus of this test is the 𝑤(𝜃) estimator itself when ap-
plied to weighted data, independently of the origin of these weights,
we conduct it using weights from a preliminary run of ISD on the
standard SP maps, with the same threshold that we use to obtain
the weights from the data, 𝑇1𝐷 = 2. To get the magnitude of this
potential bias, we defined

𝑤est. bias (𝜃) =
1
𝑁

©«
𝑁∑︁
𝑖=𝑛

𝑤dec, i −
𝑁∑︁
𝑗=1

𝑤unc, j
ª®¬ (𝜃) (B1)

where 𝑤unc, i are the correlation functions from uncontaminated
mocks, 𝑤dec, i are those from decontaminated mocks and 𝑁 = 1000
mock realizations. Figure B1 showcases the values of 𝑤est. bias (𝜃).
As it can be seen, we see no indication of estimator bias for both lens
samples at every redshift bin. This demonstrates that the combina-
tion of our weighting methodology with the Landy-Szalay estimator
for 𝑤(𝜃) does not induce any bias on our measurements when the
list of contaminating SP maps is known.

MNRAS 000, 1–22 (2021)



21

Figure B1. Estimator bias for MagLim (top panel) and redMaGiC (bottom
panel). The negative values are due to small level of overcorrection. Empty
dots correspond to the scales excluded for each redshift bin.

APPENDIX C: POLYNOMIAL FITS FOR 𝚫(𝜽)

The additional covariance term described in Sec. 8.4 depends on the
difference between 𝑤(𝜃) measured with two different systematics
correction methods, Δ𝑤method (𝜃). As Δ𝑤method (𝜃) is measured on
real data, it contains the same noise as the 𝑤(𝜃) data vector be-
ing used for cosmological inference. To avoid adding this noise to
the covariance term, we fit a flexible polynomial to the two 𝑤(𝜃)
measurements in the form,

𝑤polyfit (𝜃) =
+3∑︁

𝑖=−3
𝐵𝑖𝜃

𝑖 (C1)

where 𝐵𝑖 are the coefficients to be fitted. The best fit polynomials
are shown in Fig. C1. We find this polynomial to be a good fit to
the data, and the difference between measured correlation functions
matches the difference in fitted polynomials well.

APPENDIX D: PRINCIPAL COMPONENT MAPS CUTOFF

In Sec. 8 we describe a set of systematics weights using only the first
50 principle component maps labelled ISD-PC<50, which are used
as the fiducial weights in the cosmology analysis. In this appendix
we provide some further justification for this choice.

In order to test for the correlation of real large-scale structure
with the weight maps, we cross-correlate the convergence, 𝜅, maps
from Jeffrey, Gatti et al. (2021) with the weight maps obtained

Figure C1. Polynomial fits to 𝑤 (𝜃) data used in estimating the systematic
terms in the 𝑤 (𝜃) covariance in Sec. 8.4. The first and third panels show
the fit residuals to the fiducial 𝑤 (𝜃) measurements for each sample. The
second and fourth panels show the difference between the polynomial fits of
the two correction methods considered in these terms, ISD and ENet both
with the first 50 principle component template maps. The bold points are the
data included by the scale cuts and included in the fit and 𝜒2 calculations.

using different methods, ISD-STD34, ISD-PC107 and ISD-PC<50.
We correlate with the convergence map for the third tomographic
source bin due to the large overlap between its lensing kernel and
the lens sample. In the absence of systematics in the 𝜅 maps, we
do not expect there to be correlations between the SP or weight
maps and the convergence maps. We show these correlations in
Fig. D2 for the five redMaGiC tomographic bins (the error bars
are estimated using jackknife methodology using 150 patches). We
find that while ISD run on only the 34 representative STD maps
does not correlate with the convergence maps, we obtain a large
correlation with the weight maps using all the PC maps, pointing to
potential leakage of cosmological structure in these weights, either
from chance correlation or real large-scale structure leaking into the
high PC maps.

To mitigate any correlation with real large-scale structure, we
restrict the weight estimation to use only the first 𝑛 PC maps. First
of all, to ensure that all dominant features of the SP maps are taken
into account, we look at the amount of variance captured up to each
component. This is shown on Figure D3. Based on this, we use
𝑛 = 50 as a starting point. PC maps up to this component explain
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Figure D1. Clustering amplitude at the first redshift bin of redMaGiC
for several PC cutoffs, ISD-PC<𝑛. The solid red line corresponds to the
unweighted data and the dashed magenta one to the weights obtained from
ISD-PC107, which lead to overcorrection. It can be seen how around 𝑛 = 50
the 𝑤 (𝜃) amplitudes converge.

∼ 98% of the total variance and we consider that it represents a
balance between including too many maps, resulting in overcorrec-
tion, and discarding too many of them, so we risk not accounting for
enough contaminants. Then, we obtain the ISD-PC<50 weights and
we observe that these weights cause no significant overcorrection
on contaminated mocks, as explained in Section 8. After this, we
verify that the ISD-PC<50 weights show negligible levels of cross-
correlation with 𝜅, similar to those from ISD-STD34. Moreover,
the recovered correlation function from these weights is in excellent
agreement with that from ISD-STD34 weights, as it is shown on
Figure 9.

In order to make the rejection of PC maps that could be caus-
ing the overcorrection as specific as possible, we cross-correlate 𝜅

directly with the maps that contribute to the overcorrecting ISD-
PC107 weights (according to the multiplicative way of ISD to make
weights). However, we do not identify any individual map or family
of maps clearly causing the excess correlation. In general, the PC
maps that have the highest 𝜅 correlation are the highest principal
components (which have the smallest contribution to the total vari-
ance of the STD maps). Given this, we decide to test removing all
PC maps above a given component. We test multiple cutoffs with
PC< 𝑛, evaluating their clustering amplitudes, as it is shown in
Fig. D1. We find that the clustering amplitudes yielded by the ISD-
PC< 𝑛weights with 𝑛 between 20 and 60 converge to similar values,
while for higher 𝑛 it jumps abruptly to lower amplitudes. This result,
together with the large amount of variance contained up to PC<50
and the impossibility of flagging a specific set of PC maps among
the highest components as the culprit ones of the overcorrection,
motivates the choice of 𝑛 = 50 as our final cutoff.

APPENDIX E: NON-LINEAR CONTAMINATION WITH
ISD

In order to look for non-linear contamination still present on the data
after applying weights, we evaluate the distribution of 𝜒2

null values
from the 1D relations of the ISD-PC<50 weighted data. This kind
of contamination could be undetected when using a linear model, as
ISD does, and would result on high 𝜒2

null values. In Figure E1, we
show the values obtained for redMaGiC. The distributions obtained

for each redshift bin are not significantly different from a 𝜒2 with
ten degrees of freedom (number of 1D bins used). We obtain similar
results for MagLim sample. Therefore, we find no clear evidence of
the presence of non-linear contamination in our weighted data that
could have been unaccounted for.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–22 (2021)



23

Figure D2. Cross-correlation of weight maps from different configurations of ISD with the convergence field, 𝜅 . The error-bars are calculated using jackknife
with 150 patches. It can be seen how the ISD-PC107 weights cross-correlate significantly with 𝜅 , while the weights from the other two configurations do not.
This suggests that the high PC template maps may correlate with LSS. An off-set has been added to the x-axis points for better visualisation.

Figure D3. Variance of each PC map (blue line) and percent of accumulated variance (orange line). For the principal component map 49 the accumulated
variance is ∼ 98%, so the remaining maps are compatible with noise.

Figure E1. 𝜒2
null distributions (blue histograms) for the ISD-PC<50 weighted redMaGiC sample compared with a 𝜒2 with ten degrees of freedom (black

lines). Given the good agreement between both distributions, we find no clear evidence of deviations from linearity in the 1D relations of the weighted data.
We find similar results for MagLim sample.
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