
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Mathematical modeling of tumor-microenvironment dynamics

Permalink
https://escholarship.org/uc/item/55d829c1

Author
Konstorum, Anna

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/55d829c1
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Mathematical modeling of tumor-microenvironment dynamics

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Anna Konstorum

Dissertation Committee:
Professor John S. Lowengrub, Chair

Professor Marian L. Waterman
Professor Natalia Komarova

2015



Portion of Chapter 2 c© 2013 American Scientific Publishers
All other materials c© 2015 Anna Konstorum



DEDICATION

This thesis is dedicated to my grandmother, Inessa Bashneva. The strength and kindness
she displayed under all the circumstances in her life have been a continuous source of

motivation and inspiration for me.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

CURRICULUM VITAE viii

ABSTRACT OF THE DISSERTATION x

Introduction 1

1 The HGF/c-Met axis in tumor growth: a multispecies model 6
1.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Cell species conservation, HGF-induced cell-spread, and cell velocity . 8
1.1.3 The mass-exchange equations . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4 Stem cell self-renewal and division . . . . . . . . . . . . . . . . . . . 11
1.1.5 Chemical Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.6 Nondimensionalized Equations . . . . . . . . . . . . . . . . . . . . . . 15
1.1.7 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Tumor progression with varying HGF feedback . . . . . . . . . . . . . 19
1.2.2 Cell Scatter and Pattern Formation . . . . . . . . . . . . . . . . . . . 22
1.2.3 Effect of negative feedback on tumor growth . . . . . . . . . . . . . . 23
1.2.4 Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Modeling mechanisms of biphasic growth factor action on tumor growth 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Tumor cell species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Stem cell self-renewal rate and division rate . . . . . . . . . . . . . . 31
2.2.3 Growth factor concentration . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Quasi-steady state Growth factor concentration . . . . . . . . . . . . 35

iii



2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Feedback control in a stem cell model can cause an Allee effect 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Analysis of the Allee-effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Dependence of the separatrix on parameters . . . . . . . . . . . . . . . . . . 52
3.4 Long-term system behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Discussion 63

Bibliography 66

Appendices 76
A Nondimensionalization of Equations (1.1) - (1.23) . . . . . . . . . . . . . . . 76

A.1 Nondimensionalized parameter values for Equations (1.24) - (1.37) . 79
B Supplementary Information for Chapter 1, ‘The HGF/c-Met axis in tumor

growth: a multispecies model.’ . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.1 Asymmetrical HGF Feedback . . . . . . . . . . . . . . . . . . . . . . 82
B.2 Early Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.3 Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C Approximation of the separatrix for System (3.7) using the Stable Manifold
Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
C.1 Affine change of coordinates . . . . . . . . . . . . . . . . . . . . . . . 86
C.2 Preliminary calculations for the SMT . . . . . . . . . . . . . . . . . . 88
C.3 Applying the SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
C.4 Linear and Quadratic approximation of M∗ . . . . . . . . . . . . . . . 97

iv



LIST OF FIGURES

Page

1.1 Tumor-CAF interaction model. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Simulation results for baseline parameters. . . . . . . . . . . . . . . . . . . . 20
1.3 Chemical species (a) and cell species (b) concentrations with baseline param-

eters at T = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Cell dispersal with baseline parameters. . . . . . . . . . . . . . . . . . . . . . 23
1.5 Comparison of baseline simulation with no c-Met effect on cell dispersal. . . 24
1.6 Response of tumor to decreased negative feedback (ψ = 0.5). . . . . . . . . 25
1.7 Application of therapy to disrupt the HGF/c-Met axis. . . . . . . . . . . . 26

2.1 A multispecies model of tumor signaling. . . . . . . . . . . . . . . . . . . . . 30
2.2 Dose-response curve of original ode system (Equations 2.1) - (2.7) . . . . . . 36
2.3 Dose-response curve of quasi-steady state system (Equations (1) - (5), (8), (9)) 37
2.4 Cell and chemical dynamics for the ode model at H = 10. . . . . . . . . . . 38
2.5 Dynamics of stem cell, terminal cell, W, and T concentrations in the original

model for linear and cubic g and at concentrations of (a) H=0, (b) H=20, and
(c) H=100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Phase planes of stem and terminal cell dynamics for the quasi-steady state
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Stem cell fraction at t = 9 and 20 ≤ H ≤ 100 for the quasi-steady state
system at linear and cubic g(H). . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Example of a linear dose-response curve . . . . . . . . . . . . . . . . . . . . 43
2.9 Examples of non-linear dose-response curves . . . . . . . . . . . . . . . . . . 44

3.1 Application of the Stable Manifold Theorem to approximate the separatrix of
System (3.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The Allee Index as a function of parameters. . . . . . . . . . . . . . . . . . 56
3.3 The slope of M∗

l , ml, as a function of parameters. . . . . . . . . . . . . . . 57
3.4 The steady state P2(S2, A2) as a function of parameters. . . . . . . . . . . . 58
3.5 Example of dependence of System 3.7 on k. . . . . . . . . . . . . . . . . . . 59
3.6 Sample trajectories for Pr1 and Pr2 . . . . . . . . . . . . . . . . . . . . . . . 59

v



LIST OF TABLES

Page

2.1 Summary of parameter values for Equations (2.1) - (2.7). . . . . . . . . . . . 34

vi



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. John Lowengrub, for his unparalleled guidance and
assistance throughout the thesis process. I would also like to thank my collaborators, in-
cluding Dr. Marian Waterman, Dr. Thomas Hillen, Dr. Arthur Lander, and Stephanie
Sprowl-Tanio for their valuable contributions. I am also grateful to my thesis committee,
Dr. Lowengrub, Dr. Waterman, and Dr. Natalia Komarova.

I am grateful for the fellowships awarded by the National Institute for Biomedical Imaging
and Bioengineering (NIBIB) and National Institute of Human Health and Child Development
(NIHCD), which have allowed me to devote a majority of my doctoral years to research.

The permission to use copyrighted material in Chapter 2 of this thesis has been granted by
American Scientific Publishers. The material originally appeared in Konstorum et al., J.
Coupled Syst. Multiscale Dyn, 1(4), 459-467. I am grateful to the co-authors, Stephanie
Sprowl-Tanio, Dr. Arthur Lander, Dr. Marian Waterman, and Dr. John Lowengrub, for
their help in preparation of the manuscript. Dr. Lowengrub, the final author listed in
this publication, directed and supervised research which contributes to the basis for the
dissertation.

Finally, I would like to acknowledge the help of my family and friends without whom this
thesis would not have come together. I would especially like to thank my father, Boris
Konstorum, for his unwavering support.

vii



CURRICULUM VITAE

Anna Konstorum

EDUCATION

Doctor of Philosophy in Mathematics 2015
University of California, Irvine Irvine, CA

Master of Science in Mathematics 2013
University of California, Irvine Irvine, CA

Master of Science in Physiological Sciences 2010
University of California, Los Angeles Los Angeles, CA

Bachelor of Science in Biology 2005
McGill University Montreal, Quebec; Canada

PUBLICATIONS

Konstorum, A., Sprowl, S.A., Lander, A.D., Waterman, M.L., Lowengrub, J.S. (2013) Pre-
dicting mechanism of biphasic growth factor action on tumor growth using a multi-species
model with feedback control, J. Coupled Syst. Multiscale Dyn, 1(4), 459-467.

Lim M., Hou A., Congdon N., Chua J. (2013) Feature Identification for Colon Tumor Classi-
fication, SIAM Undergraduate Journal Online, 6, 264-274. (Served as faculty advisor).

Konstorum, A., Sprowl, S.A., Lander, A.D., Waterman, M.L., Lowengrub, J.S. (2013) Elab-
oration of a multispecies model of solid tumor growth with tumor-host interactions, Proc.
3rd Int Conf. Appl. Nonlinear Dynamics, Seattle, WA Springer Verlag p.295-303.

Zhou, B., Tieu, K.H., Konstorum, A., Duong, T., Wells, WM, Brown, G.G., Stern, H., and
Shahbaba, B. (2013) A hierarchical modeling approach to data analysis and study design in
a multi-site experimental fMRI study, Psychometrika, 78(12), 260-278.

Wang, T.T., Tavera-Mendoza, L., Laperriere, D., Nagai, Y., Burton MacLeod, N., Libby, E.,
Zhang, R., Bourdeau, V., Konstorum, A., Lallemant, B., Mader, S. and White, J.H. (2005)
Large-scale in silico and microarray-based genomic screening of 1,25-dihydroxyvitamin D3
target genes, Mol. Endocrinol. 19, 2685-95.

viii



TEACHING AND OUTREACH

Graduate Assistant (NSF-sponsored iCAMP) 2012-2015
University of California, Irvine Irvine, CA

Teaching Assistant (Calculus AB, Numerical Analysis) 2014
University of California, Irvine Irvine, CA

Teaching Assistant (Physiology and Systems Biology) 2008-2010
University of California, Los Angeles Los Angeles, CA

ix



ABSTRACT OF THE DISSERTATION

Mathematical modeling of tumor-microenvironment dynamics

By

Anna Konstorum

Doctor of Philosophy in Mathematics

University of California, Irvine, 2015

Professor John S. Lowengrub, Chair

In this thesis we explore tumor-microenvironment dynamics using three models of decreasing

complexity. The first is a multispecies, spatiotemporal model of tumor development in

tumor-derived growth factor responsive stroma that is activated to secrete the tumor growth

and dispersal activator HGF. We show that HGF-induced invasive tumor morphology is

promoted by increased heterogeneity at the tumor-host boundary. The second model is a

system of ODEs that explores hypotheses based on experimental observations that tumor

growth inhibition can occur at high levels of HGF. The model allows for the prediction

of the molecular mechanism of HGF action via dose-response curve analysis. The final

model is a system of two ODEs for stem cell and chemical activator of stem cell self-renewal

concentrations, and allows for the approximation of the separatrix of the phase space that

divides the space into basins of attraction for tumor eradication and tumor maintenance. The

multiple models allow us to consider tumor-host interactions at various levels of abstraction

and thus to infer both qualitative and quantitative results regarding tumor response to host

and tumor-derived growth activators.

x



Introduction

Background

The tumor microenvironment consists of vascular endothelial cells, pericytes, immune in-

flammatory cells, and cancer associated fibroblasts (CAFs), all which contribute to the

hallmarks of cancer [38, 36]. CAFs include both tissue-derived fibroblasts and recruited

myofibroblasts, and promote tumor invasion and metastasis via secretion of growth factors

and extracellular matrix (ECM) components [50, 4]. CAF-derived Hepatocyte Growth Fac-

tor, HGF, contributes to a pro-tumorigenic environment by activating its cognate receptor,

c-Met. High HGF/c-Met activity has been identified in a large number of cancers and is

correlated with more severe tumor grade and poor patient survival [20, 74, 83]. The signaling

cascades triggered by c-Met include the PI3K/AKT, ERK/MAPK, NF-κB, Wnt/β-catenin,

and STAT/JNK, among others. These and other cascades contribute to a complex pheno-

typic response to HGF, which also depend on the cell type and culture conditions. Never-

theless, common responses of tumor cells include increased anchorage-independent growth,

motility, and proliferation. Moreover, epithelial tubulogenesis is also observed in some cell

types [5, 110, 83]. Tumor cells secrete growth factors, including PDGF, TNFα, bFGF, and

others (depending on tumor-type) that upregulate HGF production in CAFs [24, 74], thereby

establishing a dynamic tumor-host signaling program.
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An additional heterogeneity in tumors results from intratumoral lineage hierarchies, which

are generally less robustly controlled and more heterogeneous than in normal tissues [94, 75].

Tumor lineage research has resulted in emergence of cancer stem cells (CSCs) as potential

targets of new cancer therapeutics [49]. CSCs are currently regarded as a highly dynamic

population, whose behavior is determined by both genetic and environmental factors, and

may be, instead of a specific cell type amenable to therapeutic targeting, a phenotype that

a large population of cancer cells can achieve in the appropriate environmental conditions

[127, 59]. We will consider a mathematical model of tumor growth that incorporates multiple

tumor cell species and CAF-induced HGF production to better understand how lineage

dynamics and the microenvironment contribute to the tumor growth phenotype.

Moreover, in development and tissue regeneration post-injury, a large number of growth fac-

tors have been found to elicit a biphasic response from the tissue: at lower concentrations

the growth factor exerts a mitogenic or cell size growth effect, and at higher concentrations

this effect is abrogated and cells quiesce or differentiate [11, 93]. For example, a long list

of endogenous and exogenous agents display a biphasic dose-response curve with respect to

neurite outgrowth both in vitro and in vivo, including Nerve Growth Factor (NGF), Fibrob-

last Growth Factor (FGF), Vascular Endothelial Growth Factor (VEGF), and adrenocorti-

cotropic hormone (ACTH) [12, 128]. Purported mechanisms for the biphasic dose response

include presence of a high affinity and a low affinity receptor [42, 57, 122, 13], receptor

internalization at high growth factor concentration [100], and/or concentration-dependent

biphasic receptor response via activation of opposing pathways [123].

During skeletal muscle injury, dormant satellite myogenic stem cells are activated to enter

the cell cycle by low concentrations of HGF, which is released from extracellular stores (as

well as produced by spleen, liver, and the satellite cells themselves) after injury [95, 104].

But, at concentrations of greater than 10ng/ml, HGF inhibits satellite cell division [63, 108],

and it was shown that this inhibition is due to increased myostatin (a TGFβ family member)

2



production at higher levels of HGF [123]. As with the growth factors involved in neurite

outgrowth, while the mitogenic action of HGF is well understood, the molecular nature of

the inhibitory effect of HGF at high concentrations has not yet been established. Yamada et

al. provided two hypotheses: that differential activation of c-Met is the cause of proliferation

arrest, as evidenced by requirement of phosphatase SHP2 for the arrest, which is recruited

by actived c-Met, and/or the presence of as yet unidentified low affinity receptors for HGF

[123, 63, 109]. In this thesis, we will also derive a mathematical model that may help to

ascertain the molecular nature of HGF-induced growth arrest at high HGF concentration.

Mathematical models of tumor growth now compose several classes, including continuous,

discrete, and hybrid; single compartment and multi-compartment (see [10], [68], [25], for

comprehensive reviews of the aforementioned model types). Incorporation of the microen-

vironment into these models involves adding an extra layer of complexity to an underlying

model structure. Angiogenesis, macrophage infiltration, stromal-mechanical perturbations,

and chemical influences have all been modeled by one or more of the previous model classes

[89, 70, 17, 27, 52, 2]. With respect to chemical influences, gradients of nutrients and

metabolites have been shown to have an effect on tumor phenotype. For example, Ander-

son et al. used a hybrid discrete-continuum model to show that a heterogeneous ECM or

nutrient-deprived microenvironment may select for a morphologically invasive tumor pheno-

type. Both microenvironments led to selection pressure on the tumor for more aggressive

phenotypes [2]. Despite the prevalence of tumor and tumor-microenvironment models, based

on our current knowledge, no tissue-level models of the CAF-tumor dynamic has been devel-

oped that specifically addresses the HGF/c-Met and tumor-derived growth-factor signaling

pathway dynamics.

3



Thesis Outline

In this thesis, we address certain heterogeneities introduced by the tumor microenvironment

using models of decreasing complexity. In Chapter 1, we derive a multiscale, multispecies

spatiotemporal model of tumor growth with host-produced HGF and tumor-produced HGF-

stimulating factors. We explore the effect of reduced negative growth feedback as well as

targeted therapy on the growth phenotype at increasing levels of HGF responsiveness. We

also investigate how HGF-induced cell motility can increase cell-species heterogeneity at the

tumor-host boundary, thereby destabilizing tumor morphology.

In Chapter 2, we derive a simpler model, a homogeneous system of ODEs, to explore an ex-

perimental result associated with the tumor-HGF dynamic, namely that while application of

lower concentration of HGF to colon cancer initiating cell (CCIC) tumor spheroids results in

an (expected) increased growth rate, application of higher concentrations of HGF abrogates

growth. Since the molecular method of HGF-induced growth retardation is unknown, the

simplified mathematical model is used to explore how different hypotheses of HGF-action

on a negative growth regulator can result in different dose-response curves of colon spheroid

growth with respect to increasing HGF concentrations. The model thus allows us to derive a

first hypothesis on how HGF can act as a negative growth regulator at higher concentrations.

Finally, in Chapter 3, we simplify the model even further to a system of two ordinary dif-

ferential equations of stem cells, S(t), and stem cell self-renewal activator molecules, a(t).

The system is simplified in order to gain an analytical understanding of under which circum-

stances therapy can eradicate a tumor, or the tumor can undergo spontaneous remission. We

use the Stable Manifold Theorem to approximate the separatrix that divides system behav-

ior between remission and sustained growth. This model sets the stage for more complex,

but analytically tractable, models that can involve microenvironmental components (such as

HGF) or more complex relationships between S(t) and other parameters that can provide a

4



framework for prediction of the qualitative behavior of a tumor under therapy given known

microenvironmental conditions.

The complementary strengths of each model allow for a multifaceted mathematical explo-

ration of tumor development in a growth-promoting microenvironment.

5



Chapter 1

The HGF/c-Met axis in tumor

growth: a multispecies model

Using, as a starting point, a spatiotemporal, multispecies model of tumor growth [126], we

investigate how the development and spread of a tumor is impacted by a dynamic interaction

between tumor-derived growth factors and CAF-derived HGF.

1.1 The Mathematical Model

1.1.1 Overview

By incorporating lineage dynamics of different tumor cell types, Youssefpour et al. have

recently developed a multispecies continuum model of tumor growth [126]. In this paper, we

elaborate on the model to incorporate tumor-CAF interactions. The tumor tissue is modeled

to be composed of three cell types: stem, terminal, and dead. While many cell lineage

models also include committed progenitor cells as an intermediate phenotype between stem

6



TGFβ%

SGF%

M% MI%

HGF%

SGF% Stem% Terminal%
Dead%

Water%
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P0%
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Figure 1.1: Tumor-CAF interaction model.
Tumor components (stem, terminal, and dead cells, and water) are in blue, host component
(CAF) is in red, associated growth factors and proteins (M, MI, HGF, SGF, TGFβ, SGF)
in black. Critical parameters in green. Red arrows represent tumor species interconversion,
blue arrows represent chemical production and action. Stem cells renew with probability P0,
and divide with rate λMSC . Terminal cells die either apoptosis and dead cells are converted
to water. P0 is promoted by M and HGF, and lowered by TGFβ, which is produced by the
differentiated cells. M production, in turn, is promoted by itself and HGF, and lowered by
MI. HGF production is promoted by SGF, which are produced by stem and terminal cells.

and terminal cells, our model classifies both committed progenitor and cancer stem cells in

the stem cell category. We do this in order to lower the parameter burden and to simplify

the model. In future work, we will consider these two compartments separately.

Stem cells have a probability of self-renewal, P0, and a division rate, λMSC , that are depen-

dent upon negative feedback from TGFβ family members produced by terminal cells and

positive feedback by products of the c-Met signaling cascade, M. Moreover, M are inhibited

by stem-cell produced c-Met inhibitors, MI, allowing for a mechanism of pattern formation

that is exhibited in Youssefpour et al. HGF is produced by CAFs at a low basal rate, and

is stimulated by production of SGF by the stem and terminal cells. HGF, in turn, promotes

production of M products. Terminal cells die via apoptosis or necrosis, and dead cells are

eventually converted to water (Figure 2.1).

7



1.1.2 Cell species conservation, HGF-induced cell-spread, and cell

velocity

Local volume fractions of the cell species (φCSC,TC,DC), host (φH) and water (φW ) make

up the dependent variables, which sum to 1. Assuming that that the total solid and water

fractions are constant allows us to determine the water component via solid component

dynamics. A conservation equation of the form

δφ∗
δt

=

Generalized Diffusion︷ ︸︸ ︷
−∇ · J∗ +

Reaction︷︸︸︷
Src∗ +

Advection︷ ︸︸ ︷
−∇ · (usφ∗) (1.1)

is produced for each cell type, where ∗ denotes tumor cell species. A Helmholtz free energy

of global adhesion is given by [119, 126]

E =
γ

ε

∫
Ω

F (φT ) + (ε)2|∇φT |2dx, (1.2)

where Ω = φT +φH , F (φT ) models energy from local adhesion, ε2|∇φT |2 models longer range

interactions, and γ is a global measure of cell-cell adhesion (incorporating both local and

longer-range contributions to adhesion). Generalized diffusion is represented by −∇ · J ,

where J∗ = −Mbφ∗∇µ. Here, Mb is mobility and µ is the chemical potential,

µ =
δE

δφT
=
γ

ε

(
dF

dφT
(φT )− ε2∇2φT

)
. (1.3)

The effect of HGF on cell spread was one of the first physiological effects reported for

this molecule, HGF was first termed scatter factor for its scattering effect on epithelial

cells [103]. Since then, HGF has been shown to have a pro-migratory effect on cells in

the contexts of development, wound healing, and cancer [5]. The pro-migratory effect is

mediated by several pleiotropic effects of activated c-Met on cell physiology. The c-Met-

activated Ras cascade has been shown to be critical for disassembly of adherens junctions

8



between tumor cells [88, 113]. Additionally, activated c-Met results in increased production of

the proteolytic enzyme urokinase-type plasminogen activator (uPA) and its receptor (uPAR)

[46, 82]. uPA catalyzes ECM degradation and remodeling, and is correlated with increased

malignancy in several cancers [97, 26, 114]. In MDCK cells, HGF-activated c-Met was

found to further promote cell dispersal by enhancing cell-ECM interaction via modification

of cellular transmembrane integrin protein activity [111].

We model the effect of c-Met on cell spread by having it act on the local interaction energy:

F (φT ),

F (φT ) =
Ẽ

4

(((
φT −

1

2

)4

+
1

16

)
− 1

2

(
φT −

1

2

)2

g(CM)

)
, (1.4)

g(CM) =
1

1 + δ1CM
(1.5)

Ẽ = 1 +
δ2CM

1 + δ2CM
(1.6)

where Ẽ > 0 is an energy scale. When g(CM) = 1, F is a double-well potential that is

minimized in the tumor (φT = 1) and host (φT = 0). As g(CM) decreases, F tends towards

a single-well potential at φT = 1/2. By taking g(CM) as in (1.5), where δ1 is the strength of

c-Met effect on g, we can obtain a shift towards the single-well potential with increasing c-

Met. This allows us to model the break-down of cell-cell adhesion and increase in cell-matrix

adhesion promoted by c-Met. Additionally, by taking Ẽ as in (1.6), where δ2 indicates

strength of c-Met action on Ẽ, we can model the local effect of c-Met on ECM remodeling,

since an increased Ẽ increases local energy of components independently of whether F is a

single- or double-well potential. We take δ1,2 = 0.02, as we have found that at these values,

the effect of c-Met on cell spread in the absence of HGF is negligible, whereas at higher HGF

dynamics (see below), c-Met effect on cell spread becomes physiologically significant.

The cell velocity, us, is assumed to satisfy the generalized Darcy’s law, which is a constitutive

9



equation that models fluid flow through a porous media, [119, 68],

us = −κ(∇p− γ

ε
µ∇φT ) (1.7)

where κ reflects combined effects of cell-cell and cell-matrix adhesion, p is the solid pressure

generated by cell proliferation, and µ∇φT is the contribution from adhesion forces described

above [119, 126]. We can sum the conservation equations to obtain an equation for velocity

∇ · uS = SrcCSC + SrcTC + SrcDC , (1.8)

with the assumption that the host is under homeostatic conditions (SrcH = 0). The pressure

p can be solved for using Equations (1.7) and (1.8).

At the boundary, Σ∞ of the domain, Ω, we impose homogeneous Neumann boundary con-

ditions: ∇φT,CSC,TC = ω∞ = 0, where ω∞ is the outwards-pointing normal vector on Σ∞.

Chemical potential, µ, and pressure, p, have homogeneous Dirichlet conditions on Σ∞, al-

lowing the tumor to move across the outer boundary [119].

1.1.3 The mass-exchange equations

Src∗ represents the mass-exchange terms, which incorporate mitosis, differentiation, death,

and species conversion. The self-renewal rate of the CSCs is P0, and both self-renewal and

mitosis rates are proportional to concentration of oxygen and nutrients, represented by a

single variable CO. Cell death occurs by apoptosis (necrosis is considered as negligible). The
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source terms are as follows:

SrcCSC =

Stem cell self-renewal︷ ︸︸ ︷
λMSC(2P0 − 1)φsCOG(φCSC) (1.9)

SrcTC =

Differentiation of CSCs︷ ︸︸ ︷
2λMSC(1− P0)φCSCCOG(φCSC) +

Mitosis︷ ︸︸ ︷
λMTCφTCCOG(φTC)−

Apoptosis︷ ︸︸ ︷
λATCφTC (1.10)

SrcDC =

Apoptosis︷ ︸︸ ︷
λATCφTC −

Lysis︷ ︸︸ ︷
λLφDC (1.11)

where mitosis, apoptosis, necrosis, and lysis rates are denoted by λM , λA∗, λH∗, and λL∗, re-

spectively, where ∗ indicates cell type. Proliferation is cut off at sufficiently low concentration

by G(φ∗), specifically, we take

G(φ∗) =



1 if φ∗ >
3
2ε,

φ∗ − 1
2ε if 1

2ε < φ∗ <
3
2ε,

0 if φ∗ <
1
2ε.

(1.12)

1.1.4 Stem cell self-renewal and division

HGF/c-Met induces cellular proliferation via multiple signaling cascades, including Ras/Raf, PI3K/Akt,

NF-κB, and Wnt/β-catenin [5, 110, 83, 78, 64]. Moreover, HGF/c-Met has been implicated in CSC

development and maintenance in colon cancer [116], glioblastoma [65, 48] and head and neck squa-

mous cell carcinoma (HNSCC) [66]. For example, Vermeulen et al. showed that HGF-induced

β-catenin nuclear localization and activation of canonical Wnt signal was associated with increased

cellular clonogenicity in primary colon cancer spheroid cultures, implicating the cascade in pro-

moting the CSC phenotype [116]. Similarly, Lim. et al have shown that in head an neck squamous

cell carcinoma (HNSCC) HGF/c-Met promoted HNCSCC CSC marker expression and cell sphere-

forming capacity. When c-Met was knocked down, the cells showed increased radiosensitivity and

decreased ability to form tumors in a mouse xenograft model [66]. HGF has also been shown to

have an effect on reducing apoptosis rates [121].
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TGFβ is a potent growth inhibitor [44] and differentiation promoter [117] for many cell types

and early-stage tumors. We model the effect of HGF and TGFβ on stem cell self-renewal and

proliferation below. To lower the parameter burden, we maintain a low, and constant, apoptotic

rate in the Src equations that is not dependent on the growth factors. We take

P0 = Pmin + (Pmax − Pmin)

(
ξ0CM

1 + ξ0CM

)(
1

1 + ψ0CTGFβ

)
, (1.13)

λMSC = λMSCmin + (λMSCmax − λMSCmin)

(
ξ1CM

1 + ξ1CM

)(
1

1 + ψ1CTGFβ

)
, (1.14)

where Pmin,max and λMSCmin,max are the minimum and maximum rates of self renewal and stem

cell division rates, respectively. ξ0,1 represent the strength of M effect on P0 (ξ0) and λMSC (ξ1).

ψ0,1 represent the strength of inhibitory TGFβ action on P0 (ψ0) and λMSC (ψ1).

1.1.5 Chemical Species

Oxygen / Nutrients

The combined effect of oxygen and nutrients is denoted as O. Uptake is assumed to be negligible

in the host in comparison to the tumor species, and diffusion rapid [119, 126]. Hence, CO can be

modeled using a quasi-steady state equation:

0 = ∇ · (DO∇CO)− (νUOCSCφCSC + νTCφTC)CO + νPO(C̄AO − CO)φH , (1.15)

where νUOSC , νUOTC are the uptake rates by the CSCs and TCs, respectively, and DO is the

diffusion coefficient. Rate of O entering the microenvironment is modeled by νPO, and concentration

of O in the medium sufficiently far from the tumor is given by C̄AO, which is also taken to be the

boundary condition on Σ∞, CO = C̄AO.
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TGFβ

A diffusible differentiation promoter, produced by differentiated cells, is modeled by the variable

TGFβ, which represents the TGFβ superfamily [77, 67]. Although in later stages of cancer TGFβ

may be produced by other cell types (namely stroma and immune), we do not model that here since

this progression coincides with inactivation of certain TGFβ downstream signaling components and

results in a phenotypically distinct role of TGFβ from its tumor-suppressing effects [72]. We model

loss of responsiveness to TGFβ in Section 1.2.3 and discuss approaches to modeling the TGFβ

‘paradox’ (i.e. its tumor-promoting actions) in Section 1.3.

Rapid diffusion is assumed for TGFβ due to the long-range action of some of its family members,

such as Activin [47], which is directly involved in regulating epithelial tumorigenesis [62]. Hence,

we use a quasi-steady reaction-diffusion equation for CTGFβ,

0 = ∇ · (DTGFβ∇CTGFβ)− (νUTGFβφCSC + νDTGFβ)CTGFβ + νPTGFβφTC , (1.16)

where νUTGFβ is the uptake rate by CSCs, νDTGFβ is the decay rate, νPTGFβ is the production

rate by TCs, and DTGFβ is the TGFβ diffusion coefficient. The boundary condition for CTGFβ is

taken to be Dirichlet (CTGFβ = 0) on Σ∞.

c-Met and c-Met inhibitors

A generalized Geirer-Meinhard-Turing system is used to model c-Met products, M, as the activator

and their inhibitors MI [112, 29]. Such a system, with Wnt/Dkk as the activator/inhibitor has been

suggested in hair follicle development [96], and crypt generation [129]. The large number of cross-

activating downstream signaling components of c-Met, some of which include positive feedback

loops amongst themselves [115, 105], motivate a nonlinear M activation term. Inhibitors of c-Met

and its downstream effectors activated by induced c-Met include the autocrine-acting c-CBL [85],

paracrine-acting Delta [101], and the secreted factor Dkk. Since c-Met products are autocrine

or paracrine effectors, we take M products to have a short-range and MI a long-range diffusion
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coefficient. The functional correlation between cancer stem cells and enhanced c-Met activity has

been discussed in 2.4, hence we model M and MI production to be limited primarily to CSCs.

We also include low-level background production of M by all viable tumor cell types. Since HGF

activates M products and induces c-Met production, we model the effect of HGF on M by its positive

effect on the production rate of M, νPM . Finally, production is made dependent on nutrient (O)

levels (in this model, we do not consider hypoxia-dependent c-Met upregulation [110]). We take

∂CM
∂t

+∇ · (usCM ) = ∇ · (DM∇CM ) + f(CM , CMI), (1.17)

∂CMI

∂t
+∇ · (usCMI) = ∇ · (DMI∇CMI) + g(CM , CMI), (1.18)

f(CM , CMI) = νPM
C2
M

CMI
COφCSC − νDWCM + ηMCO(φCSC + φTC), (1.19)

νPM = ν0 + λHGFCHGF , (1.20)

g(CM , CMI) = νPMIC
2
MCOφCSC − νDMICMI , (1.21)

where DM is the diffusion coefficient for downstream M effectors, which is assumed to be small.

λHGF represents the strength of positive feedback of HGF on M. ηM represents background produc-

tion of M signal promoters, νPM , νDM are the respective production and decay rates of M-activated

genes and νPMI , νDMI are the respective production and decay rates of M inhibitor proteins. νPM

is a sum of ν0, the auto-activation rate of M, and λHGFCHGF , the HGF-dependent activation

rate of M. The boundary conditions for M and MI chemical fields are assumed to be homogeneous

Neumann, ω∞ · ∇CW = ω∞ · ∇CMI = 0 on Σ∞.

HGF and stromal-acting growth factors (SGF)

Cancer cells secrete growth factors and cytokines such as TNFα, bFGF, and PDGF, which cause

upregulation of HGF production in stromal cells [30, 92, 24, 74]. We cannot currently specify

whether the stem cells preferentially release these growth factors and if increased M signal results

in an increased release of these factors from neighboring tumor cells, which would indicate a positive
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feedback mechanism. With the data available, we model a positive effect of growth factors from

viable tumor tissue on HGF production in the stroma.

Additionally, there is substantial evidence that TGFβ is a negative regulator of HGF production

in stromal cells, and thus we include its inhibitory effect in the model [31, 41, 74]. We take

∂CHGF
∂t

= νPHGF

CSGF
ζ + CTGFβ

COφH + η0COφH − νDHGFCHGF +∇ · (DHGF∇CHGF )., (1.22)

∂CSGF
∂t

= CO(νSGFSφCSC + νSGFT φTC)− νDSGFCGF +∇ · (DSGF∇CSGF ), (1.23)

where νPHGF and νDHGF are the production and decay rates, respectively, of HGF. CSGF represents

the concentration of HGF-promoting factors and CTGFβ represents the concentration of HGF-

inhibiting factors from the TGFβ superfamily. ζ is a value close to zero, and added to regularize

the equation while DHGF is the diffusion coefficient for HGF. DHGF is taken to be lower than

the diffusion coefficients for the other growth factors due to its high molecular weight [81]. νSGFS

and νSGFT represent respective production rates of the stem cell fraction, and the differentiated

cell fraction. νDSGF is the decay rate for the growth factors and DSGF is the diffusion rate of the

growth factors. For the primary results, we let νSGFS = νSGFT , and test the case for asymmetrical

SGF production in Appendix B.

1.1.6 Nondimensionalized Equations

The equations are nondimensionalized as in [119, 126]: we take the O diffusion scale, l =
√
DO/νUOSC ,

and the mitosis time scale τ = (λMSCM
C̄AO)−1, where λMSCM

represents the midpoint of λMSCmin

and λMSCmax . The diffusion length scale, l, is estimated to be l ≈ 150µm and the mitosis time scale

to be τ ≈ 1 following [28]. The nondimensionalization procedure is described in Appendix A, and

the nondimensionalized equations are as follows. Taking ∗ to be CSC, TC, or DC, the equations

for the volume fractions are

∂φ∗
∂t

= Mb∇ · (φ∗∇µ) + Src∗ −∇ · (uSφ∗), (1.24)
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with the chemical potential as µ = (∂F/∂φT )(φT )− ε2∇2φT and velocity

uS = −κ
(
∇p− γ

ε
µ∇φT

)
. (1.25)

Pressure can be solved for using (1.25) and

∇ · uS = SrcCSC + SrcTC + SrcDc. (1.26)

The source terms are

SrcCSC = λMSC(2P0 − 1)φCSCCOG(φCSC), (1.27)

SrcTC = 2λMSC(1− P0)φCSCC0G(φCSC) + λMTCφTCCOG(φTC)− λATCφTC , (1.28)

SrcDC = λATCφLφDC , (1.29)

where the P0, the self-renewal fraction and λMSC , the stem-cell division rate are

P0 = Pmin + (Pmax − Pmin)

(
ξ0CM

1 + ξ0CM

)(
1

1 + ψ0CTGFβ

)
,

λMSC = λMSCmin + (λMSCmax − λMSCmin)

(
ξ1CM

1 + ξ1CM

)(
1

1 + ψ1CTGFβ

)
.

The equations for O and TGFβ, respectively, are

0 = ∇2CO − CO(φCSC + νUOTCφTC) + νPO(1− CO)φH , (1.30)

0 = ∇2CTGFβ − (νUTφCSC + νDT )CTGFβ + νPTGFβφTC . (1.31)
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The equations for M and MI are

∂CM
∂t

= ∇ · (DM∇CM ) +Rf(CM , CMI), (1.32)

∂CMI

∂t
= ∇ · (DMI∇CMI) +Rg(CM , CMI), (1.33)

f(CW , CMI) = (ν0 + λHGFCHGF )
C2
M

CMI
COφCSC − CM + ηMCO(φCSC + φTC), (1.34)

g(CM , CMI) = C2
MCOφCSC − νDMICMI . (1.35)

We note that we neglect the advection terms in (1.17) and (1.18) following [126]. The equations

for HGF and SGF are

∂CHGF
∂t

= νPHGF

CSGF
ζ + CTGFβ

CoφH − νDHGFCHGF +∇ · (DHGF∇CHGF ), (1.36)

∂CSGF
∂t

= CO(νSGFSφCSC + νSGFT φTC)− νDSGFCGF +∇ · (DSGF∇CSGF ). (1.37)

1.1.7 Parametrization

The model was parametrized as follows. Parameters that overlap with the Youssef. et al model

were maintained. Parameters novel to the model were selected based on background literature

and preliminary simulations. Choice of specific parameter values are described alongside model

presentation, and summarized in Appendix A.1.

1.2 Results

An adaptive finite difference-nonlinear multigrid method [119, 118, 126] is used to solve the govern-

ing equations efficiently on a computational domain of [−20, 20]2. We solve for φT = φCSC +φTC +

φDC , then we can calculate φTC = φT − (φCSC + φDC) and φH = 1− φT . To remove a high-order

time step constraint incurred by an explicit method, we use an implicit 2nd order accurate time

discretization of Crank-Nicholson type, and spatial derivatives are discretized using 2nd order ac-
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curate central difference approximations. In regions of large gradients, block structured Cartesian

refinement is used to provide enhanced local resolution. For further details, see [126].

We initialize the tumor with an asymmetrical shape and a 45/50/5 homogenous fractional distribu-

tion of SCs, TCs, and DCs (respectively). We note that changing the initial fractional distribution

of cell compartments does not have a qualitative effect on resultant simulations. The initialized

asymmetrical shape can be visualized in Figure 1.5 (a), and is created as follows

φT (x, 0) =
1

2

(
1− tanh

I(x, y)− 1)

2
√

2ε

)
, (1.38)

I(x, y) =

√
3 + r(x, y)√

x2 + y2 + 0.001
, (1.39)

where r(x, y) =
∑2

i=1 ai cos(biθ(x, y)) +
∑4

i=3 ai sin(biθ(x, y)), θ(x, y) = tan−1(y/x), ai ∈ (0, 1),

bi ∈ N give the initial shape asymmetry. For specific values of {ai, bi}, we take (a1, a2, a3, a4) =

(0.2, 0.1, 0.1, 0.1) and (b1, b2, b3, b4) = (2, 5, 8, 3). We then take φCSC(x, 0) = 0.45 · φT (x, 0),

φDC(x, 0) = 0.05 · φT (x, 0), and φTC(x, 0) can be solved for from the previous two equalities to

obtain φTC(x, 0) = 0.5 · φT (x, 0). This initial condition allows for a diffuse interface representation

of an asymmetrical tumor centered at the origin with maximum radius of
√

3.

Since parameters in the equations for CW , CHGF , and CSGF are changed for varying HGF dynamics,

we do not initialize a steady-state values as in [126], or we would have different initial conditions

for different simulations. Instead, we take initial conditions for CM and CMI as identical to those

for CW and CWI in [126] in order to maintain continuity with the former model in the sense

that we want the control condition to be qualitatively similar to the model presented in [126].

Hence, we take CM (x, 0) = (1.2 + 0.1(rand − 0.5))φT and CMI(x, 0) = 1.44φT , where rand is a

random number uniformly distributed over [0, 1] and different at every point in the computational

domain (the rand value used for each simulation remains the same for comparison purposes). The

initial concentrations for CHGF and CSGF are taken to be CHGF = (1.0 + 0.1(rand− 0.5))φH and

CSGF = (1.0 + 0.1(rand − 0.5))φT . We note that other initial conditions for M, MI, HGF, and

SGF produce qualitatively similar results. Since and CO and CTGFβ satisfy quasi-steady diffusion

equations, we need not take initial conditions for these fields.
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1.2.1 Tumor progression with varying HGF feedback

We begin by simulating HGF dynamics in a tumor in its early stages, when response to inhibitory

growth feedback is relatively strong. We do this by setting the TGFβ self-renewal feedback pa-

rameter, ψ0, to ψ0 = 1. In [126], the authors showed that a growing tumor with no HGF feedback

grows slower and is more stable than a tumor with ψ0 = 0.5. In the next section, we will show how

HGF feedback alters tumor behavior with lowered response to TGFβ.

Since the strength of the dynamic relationship between HGF and SGF feedback is unknown, we

simulate growth of the tumor in four distinct conditions: none, low, intermediate (int), and high

HGF feedback. To change the strength of feedback, we focus on three parameters found in equations

(1.36) and (1.37), νPHGF , νSGFS , and νSGFT . The strength of CSGF action on CHGF is represented

by νPHGF , and νSGFS,T are the respective production rates of CSGF by the stem and terminal

tissue fractions. For low (respectively, int, high) HGF, we set νPHGF = νSGFS = νSGFT =

5 (respectively 10, 15). In Figure 1.2 the resulting simulations for the stem cell fraction for T = 50,

100, and 150 are shown. The outline of the tumor body is clearly visible in all simulations, and is

highlighted in green for the no HGF, T = 50 case. We see that at low HGF, the number of spots

increases in comparison to no HGF, and there is a minor change to more asymmetrical morphology.

As HGF dynamics increase to int and high modes, the number of stem cell spots decreases, but the

spot size increases, and there is a large change in morphology with increase in invasive fingering

and tumor fragmentation in the T = 150, high HGF case.

We fix T = 100 in order to more closely observe other variables associated with the simulations,

namely concentrations of c-Met, HGF, and SGF (Figure 1.3(a)) and total tumor, terminal cell,

and dead cell fractions (Figure 1.3 (b)). In Figure 1.3(a), we observe that c-Met levels in the spots

increase with increasing HGF dynamics, along with increased HGF concentration at the tumor-host

boundary and SGF concentration within the tumor. In Figure 1.3(b), we see that a large fraction

of all the cases contain terminal cells, with a smaller co-localized percentage of dead cells, and with

both cell types concentrated outside of the areas with stem cell spots.
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Figure 1.2: Simulation results for baseline parameters.
(a) Stem cell fractions for increasing HGF dynamics and T = 50, 100, 150. (b) Area, Area
Fraction, and Shape Factor. (i) Total area and (ii) area fraction for Control (red), Low HGF
(blue), Int HGF (green) and High HGF (black). Area fraction is shown for different cell
types: differentiated, dash; stem: dot; dead: dash-dot). (iii) Shape factor results for the four
treatment types.
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Figure 1.3: Chemical species (a) and cell species (b) concentrations with baseline parameters
at T = 100.

In Figure 1.2 (b) (i,ii) we observe that the increase in total area for tumors with higher HGF

dynamics is mainly due to increases in terminal cell concentration. Yet, in Figure 1.2 (b) (ii), we

see that the different cell fractions remain similar over all the simulations. Indeed, it has been

observed that cancer stem cells constitute a stable fraction of the tumor population [23]. In order

to measure the changes in morphology induced by HGF dynamics, we consider the shape factor,

fsf , for an object, which is calculated by fsf = P 2/(4πA), where P and A are the perimeter and

area, respectively, of an object. The shape factor for a circle is 1, and increases as the shape of

the object becomes more asymmetrical or increases in branch count. In Figure 1.2 (b) (iii), we

see that shape factor tends to increase over time in all cases, but increases more drastically as

HGF dynamics increase, supporting the experimental results that HGF can induce branching and

invasive morphology in exposed tissues and tumors, respectively [9, 45, 120]. We also see, in Figure

1.4 (a), that the increase in scatter with increasing HGF dynamics is primarily due to stem cell

scatter. We quantify stem cell scatter by considering the stem scatter fraction (SSF): the area of

stem cells in the host region normalized to the area of stem cells in the entire domain Ω. The initial

non-zero fraction observed in Figure 1.4 (b) is due to the initialized diffuse interface of the tumor

and host tissue. The the drop in SSF occurs during pattern formation, which decreases the stem

cell pool and concentrates it in regions of high M. The latter increase in SSF is straightforward for

the HGF high, low, and control conditions. With SSF highest in the HGF high condition over time,
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followed by low HGF and control. The int HGF condition overtakes the high HGF at later time

points due to the following phenomenon: while the effect on scatter is stronger in the high HGF

condition due to higher M, stem cells are concentrated in fewer spots in the high HGF simulation

than the int HGF simulation. Therefore, a larger surface area of stem cell area is exposed to the

tumor-host boundary in the int HGF condition and can leave the tumor to form the host stem

cell population. This result shows that while branching instability is higher in the high HGF case,

with lower number of spots and greater heterogeneity at the tumor host boundary, as measured

by the shape factor (Figure 1.2 (b) (iii)), the larger number of spots in the int HGF condition can

destabilize the tumor via migration and scatter of the stem cell population.

1.2.2 Cell Scatter and Pattern Formation

In order to better understand how HGF dynamics influence spot formation, we examine the early

and late-time dynamics of the simulations with and without c-Met-induced scatter (the latter case

is simulated by setting δ1,2 = 0 in (1.5) and (1.6)). In the early time (0 ≤ T ≤ 50), we notice

that as HGF dynamics increase in simulations without scatter, spot size and number increases.

With scatter, we still see an increase in spot size, but spots disappear due to early scatter of cells

from high-stem regions, resulting in a lower number of spots than the simulations without scatter

(Figure S2). Fixing HGF dynamics at high, we observe spot disappearance at very early time due

to scatter (Figure 1.5 (a)). Comparing later time dynamics with and without scatter shows that

loss of a stem cell spot in early time leads to more unstable dynamics over time, as evidenced

by increase in shape factor for the δ1,2 = 0.02 condition (Figure 1.5 (d)). Therefore, we see that

scatter can have a destabilizing effect on the tumor morphology by increasing heterogeneity at the

tumor-host boundary. We note that, as with the int and high HGF cases with baseline parameters,

while the SSF is higher for δ1,2 = 0.02, the SSF for δ1,2 = 0 begins to approach the simulation

with c-Met-induced scatter over time. This occurs due to the higher spot number in the δ1,2 = 0

case, which increases the tumor stem cell fraction exposed to the tumor-host boundary. Thus,

we see that increased scatter in areas with high M leads to greater morphological instability, but

may reduce the overall load of migrating cells due to decreased physical exposure of the stem cell

22



fraction to the host.
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Figure 1.4: Cell dispersal with baseline parameters.
(a) Visualizing cell dispersal in no HGF and high HGF conditions for the different cell species.
(b) Quantification of stem cell dispersal by the ‘stem scatter fraction’ (SSF) over time for
increasing HGF dynamics.

1.2.3 Effect of negative feedback on tumor growth

A common characteristic of tumors that progress from pre-neoplastic lesions to neoplasms is that

they lose ability to response to negative growth feedback [37]. Indeed, in colorectal cancer, resis-

tance to TGFβ by mutation of a cognate receptor is associated with progression from adenoma to

malignant carcinoma [33]. The TGFβ pathway can also be inactivated by mutation of TGFβR2 or

inactivation of the downstream signaling components SMAD2, SMAD3, or SMAD4 [71].

Loss of response to members of the TGFβ family is correlated with poorer prognosis in a clinical

setting [86]. Therefore, to model effect of HGF dynamics in a tumor that has progressed beyond

the initial stages, we reduce the strength of TGFβ feedback on stem cell self-renewal from ψ0 = 1.0

to ψ0 = 0.5. When compared to the the case with ψ0 = 1.0, the simulation results with reduced

response to negative feedback have a greater area and shape factor, indicating the enhanced invasive

potential of such tumors (Figure 1.6).
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Figure 1.5: Comparison of baseline simulation with no c-Met effect on cell dispersal.
Stem cell fraction in (a) very early time and (b) longer time and (c) stem scatter fraction
(SSF) and (d) shape factor for high HGF condition with (δ1,2 = 0.02) and without (δ1,2 = 0.0)
c-MET-induced cell scatter.

1.2.4 Therapy

Therapies targeting various aspects of the HGF/c-Met axis, including antibodies against HGF and

c-Met, HGF-competitive analogs, tyrosine kinase inhibitors (TKIs) targeting c-Met, and down-

stream pathway inhibitors are currently in development [54, 7]. Over 20 drugs are currently in

clinical Phase I-III clinical trials [16], indicating strong interest by the biomedical community in

translating the accumulated knowledge of the HGF/c-Met axis into cancer therapeutics. We model

targeted therapy by changing two parameters of the model which compromise νPM : λHGF and ν0,

found in Equation 1.20. While ν0 represents the strength of c-Met auto-activation without HGF,

λHGF represents the strength of HGF-induced c-Met activation. Lowering λHGF models drugs

that act by inhibiting HGF, while lowering νPM represents drugs that specifically disrupt c-Met

auto-catalysis. Drugs that inhibit c-Met or its downstream effectors lower both auto-catalysis rates

and the ability of HGF to upregulate c-Met products. Therefore, activity of such drugs should
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Figure 1.6: Response of tumor to decreased negative feedback (ψ = 0.5).
(a) Stem cell fractions for increasing HGF dynamics. (b) Difference of total area (top panel)
and shape factor (bottom panel) between ψ = 1 (blue) and ψ = 0.5 (red) simulations at
T = 150.

be modeled by lowering both parameters. We model two therapies applied at T = 50: T1 lowers

λHGF from 0.5 to 0.05, and T2 lowers λHGF to 0.005 and ν0 from 0.1 to 0.001. We choose these

two therapies as they represent two different classes of therapy results that we observed when both

parameters were systematically lowered for high HGF (Figure B.3). Therapy is applied until the

last time point, T = 150. We find that when therapy is terminated prematurely, the tumor grows

back rapidly (Figure B.4), indicating that ultimate tumor eradication requires combination therapy

and/or surgical resection alongside anti-HGF/c-Met drugs. The first class, represented by T1, when

c-Met levels are lowered above the threshold, results in decreased total area, but maintenance of in-

vasive morphology, as evidenced by maintenance of a relatively high shape factor. The second class,

represented by T2, results in even further decreases in total area, as well as a much less invasive

morphology (Figure 1.7). It has been shown that very strong inhibition of c-Met phosphorylation

(> 90%) is required for significant inhibition of tumor growth (> 50%) in a tumor xenograft mouse

model [125], which is consistent with our simulation results.
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1.3 Discussion

By incorporating tumor-produced SGF and the HGF/c-Met axis into a multispecies model of tumor

growth, we have shown that establishment of this dynamic interaction between the tumor and its

microenvironment results in increased tumor growth and morphological instability, the latter due in

part to increased cell-species heterogeneity at the tumor-host boundary. Indeed, such a phenomenon

has been investigated by Cristini et al [22]. Using both experimental and simulations, Cristini et

al. showed that spatially heterogeneous cell proliferation, alongside disruption of cell-cell adhesion,

results in invasive fingering and migration of cell clusters. In their model, the heterogeneity occurred

due to heterogeneous distribution of oxygen, nutrients, and pH levels caused by atypical tumor

vasculature and other disruptions to diffusion in the tumor. In our model, the heterogeneity occurs

due to formation of stem cell spots at the tumor-host boundary via a Turing mechanism of c-Met

and c-Met inhibitors. This heterogeneity is exacerbated by the presence of an HGF-SGF dynamic
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since the effect of HGF on cell dispersal causes loss of some spots, and the effect of HGF on

proliferation/self-renewal increases the size of the remaining spots. Indeed, when effect of HGF on

cell dispersal is removed from the model, the tumor becomes more stable due to a more uniform

distribution of stem cell spots at the tumor-host boundary, even though there are more of them

than in the original model (Figure 1.5). Cristini et al. propose that suppression of morphologic

instability via homogenization of cell proliferation and increase in cell-cell adhesion will result in

a more compact, noninvasive tumor morphology. Our therapy results support their conclusions:

when we block the HGF/c-Met axis sufficiently enough to reduce the highly proliferative spot size,

the tumor does not only grow more slowly, but it grows in a more compact manner (Figure 1.7).

We find that invasive behavior is further increased if the tumor lowers responsiveness to tumor-

derived pro-differentiation signals, which is a traditional hallmark of neoplastic development [37].

We have not addressed a portion of the pleiotropic effects of TGFβ that constitute the ‘TGFβ

paradox’. Namely, our model does not consider that in certain cases, TGFβ can increase cellular

motility, as well as hasten the Epithelial-to-Mesenchymal Transition (EMT) of tumorigenic epithe-

lial cells [86]. Moreover, it has been found that in advanced cancers, immune components and

fibroblasts can produce TGFβ, which has tumor-promoting effects [72]. In this study, we only

model the anti-proliferative effects of TGFβ, with its production localized to terminal cells. Incor-

poration of the tumor-promoting action of TGFβ may be best done using a specific cancer model

and data, since such effects show greater diversity among different cancers than the other growth

factors modeled in this paper.

By modeling anti-HGF and anti-c-Met therapy, we show how disruption of the HGF/c-Met cas-

cade can lower tumor invasiveness and growth, thereby providing theoretical evidence that targeting

tumor-microenvironment dynamics is a promising avenue for therapeutic development. An impor-

tant consideration in clinical development of anti-HGF/c-Met therapies is patient selection and

stratification. Indeed, studies on efficacy of HGF/c-Met targeted therapies have consistently shown

that patients with high c-Met expression levels respond best to these therapies [34], indicating that

patient pre-selection based on tumor biomarkers of HGF/c-Met axis activation can improve therapy

outcomes [7]. As our model assumes c-Met as a main driver in stem cell self-renewal and division
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rate, it is most directly applicable to patients with high c-Met activity.
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Chapter 2

Modeling mechanisms of biphasic

growth factor action on tumor growth

2.1 Introduction

We have recently found that culture of tumor spheroids derived from Colon Cancer Initiating

Cells (CCICs), a primary colon cancer cell line [91, 98], in presence of increasing concentrations of

HGF, has a biphasic effect on tumor growth [55]. Based on the research from Yamada et al., as

well as findings that addition of HGF at a concentration of 40ng/ml induces expression of several

members of the TGFβ family in an in vitro liver organoid culture [76], we have developed a simple

model of biphasic HGF action on tumor growth where HGF stimulates canonical Wnt signal at low

concentrations and TGFβ signal at higher doses. We focus in this chapter on HGF action on Wnt

signal rather than all c-Met downstream effectors since colon cancer has a high incidence of Wnt-

activating mutations that are modulated by HGF [116]. We show that the shape of the resulting

dose-response curve of the model is dependent on the assumption of linearity (or non-linearity) of

the effect of HGF on TGFβ production, hence demonstrating that the shape of the dose-response

curve can give insight into the molecular nature of the biphasic response.
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2.2 Mathematical Model

The mathematical model is specific to our experimental system, namely of HGF action on tumor

cells, in order to optimize parametrization. Nevertheless, the model is simple enough that it can

represent a more general system of a growth factor action on a tissue in a non-monotonic fashion. In

this study, we develop a single-scale, spatially homogeneous model of HGF action on a multi-species

tumor which consists of a coupled system of nonlinear ordinary differential equations representing

changes in stem and terminal cell tumor species, as well as positive regulators (W) and negative

regulators of tumor growth (T), as summarized in Figure 2.1 and discussed in the remainder of the

section.

Figure 2.1: A multispecies model of tumor signaling.
Tumor tissue is composed of two cell types: cancer stem cells (S), and terminally differentiated cells
(TC). Stem cells have a probability of self renewal P , differentiate into TCs with probability 1−P ,
and divide at a rate KS . P and KS are promoted by W signals produced by the stem cells and
inhibited by T , which are produced by S and TCs in response to high H, which represents HGF. H
acts by both increasing production of W (at low concentrations) and T (at high concentrations).
Adapted from [126].
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2.2.1 Tumor cell species

We characterize tumor cell dynamics using the cell lineage hypothesis [61, 126]. It has been shown

that tumor cells progress through lineage stages where the ability to self-renew is gradually lost

[90, 6]. We consider a simplified lineage with cancer stem cell (S) and terminal cell (TC) species

that make up the viable fraction of the tumor. Stem cells self-renew, i.e. form new stem cells upon

division, with a probability P. We note that in our continuum model, results from asymmetric

or symmetric stem cell division are identical, thus we do not make a distinction between these

mechanisms of self-renewal. Change in species concentration is a function of the fraction of daughter

cells that either remain after division (2P − 1) in the case of stem cells, with the factor of ‘2’

accounting for the production of two daughter cells from each parent cell at each cell division, or

the fraction of cells that differentiate, 2(1 − P ), in the case of terminal cells, and the cell division

rate of each species,

∂S

∂t
= (2P − 1)KSS, (2.1)

∂TC

∂t
= 2(1− P )KSS +KTCTC, (2.2)

where KS,TC are the stem and differentiated cell division rates, respectively. We discuss the depen-

dence of KS on various growth factors below, and assume KTC to be constant, since terminal cells

have less variable and lower division rates than CSCs [124]. We set KTC = 0.1, as it falls below

the lowest observed CCIC division rate of 0.13, which was observed in a mixed (i.e. CSC and TC)

population of CCICs [55]. Moreover, we assume that nutrient and oxygen concentrations are not

limiting, which is applicable to an experimental cell culture system with proper media, and hence

necrosis and apoptosis are negligible.

2.2.2 Stem cell self-renewal rate and division rate

It has been shown that microenvironmental feedback on self-renewal in a tissue cell lineage is

necessary for robust control of lineage progression [61]. Current data shows that elements of such
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a control system are also present in cancer cell lineages, although often in a dysregulated manner.

Indeed, the Wnt/β-catenin system, which involves stem cell-produced glycoproteins from the Wnt

family which cause nuclear translocation and activation of transcription factor β-catenin, and is

associated with increased cell proliferation and self-renewal in normal tissues, has been shown to

be overactivated in several types of tumors, including glioma, meduloblastoma, colon cancer, and

hepatocellular carcinoma [32, 1, 43]. These factors are represented by W in the model. Moreover,

it has been shown across several tissues and in both normal and early cancerous tissue that growth

factors, most notably those from the TGFβ superfamily, are produced that feedback on to the stem

cells to reduce rates of cell proliferation and self-renewal [40, 99, 72]. We model the effect of this

class of factors using T . Hence, P and KS are modeled as follows,

P = Pmin + (Pmax − Pmin)MP , (2.3)

KS = KSmin + (KSmax −KSmin)MKS
, (2.4)

MP,KS
=

(
ξP,KS

W

1 + ξP,KS
W

)(
1

1 + ψP,KS
T

)
, (2.5)

where Pmin and Pmax are minimum and maximum rates of self-renewal, respectively, and KSmin

and KSmax are the minimum and maximum rates of stem cell division, respectively. The functions

MP and MKS
represent the feedback of W and T on P and KS , respectively. We set Pmin = 0.2

and Pmax = 1.0 to represent the possible extremes of P , and KSmin = 0.1 and KSmax = 1.0 as

we have found that CCICs have division rates of approximately 0.15 to 0.5 in culture [55]. The

upper limit is set to 1.0 since our findings were based on growth rates of CCICs that may have

been differentiating, hence the division rates of the stem cells would have to be slightly greater than

the aggregated division rate. ξP,KS
represent the positive effect of W on P and KS , respectively,

and ψP,KS
represent the inhibitory effect of T on P and KS , respectively. We set ξP = 1.0 and

ψP = 0.5. These values were derived by Youssefpour et al. in a model of this system that includes,

in addition to Equations (1)-(5), generalized diffusion and convection terms for the cell species

[126]. We set ξKS
= 0.01 and φKS

= 0.5, which were derived using an extension of the Youssefpour

model to parametrize growing CCICs in culture [55].
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2.2.3 Growth factor concentration

A hallmark of colorectal cancer is disruption and over-activation of the Wnt/β-catenin signaling

pathway, often through inactivation of the cytoplasmic β-catenin binding protein APC, or through

activating mutations in β-catenin itself [87]. Moreover, it has been shown that several distinct

downstream factors of the β-Catenin signal, including Phospholipase D and BMI1, act as activa-

tors of the Wnt/β-catenin pathway, creating a positive feedback loop that is nonlinear due to the

multiple feedback mechanisms on the pathway [51, 53, 19]. We model this aspect of the W auto

regulation using a modified Michaelis-Menten equation, in order to account for signal saturation.

Additionally, HGF, acting through its CSC-expressed cognate receptor c-Met, results in translo-

cation of β-catenin to the nucleus, and hence also potentiates Wnt signal. Moreover, as discussed

in the introduction, there is evidence that HGF also acts on T at high concentrations [123, 76],

although the mechanism by which it does so is currently unknown. Therefore, we model changes

to W and T as follows,

∂W

∂t
=

(
λHH +

λPW1W
2

1 + λPW2W 2

)
S − νDWW, (2.6)

∂T

∂t
= gi(H)(S + TC)− νDTT i = 1, 2, 3, (2.7)

where λH represents the feedback response of W on H, λPW1 is the strength of the autocrine

positive feedback response of W , λPW2 is the Michaelis-Menton constant for W , νDW,DT are the

decay rates for W and T , respectively, and gi(H) is the positive feedback function of H on T , which

becomes increasingly nonlinear with increasing i (see below). λH , λPW1, and λPW2 are estimated

to fit a maximum peak of the dose response curve to approximately 1000%. The value of 1000%

is derived from the following observation: in the original experiments with CCICs, the observed

maximum growth rate was found to be approximately 2000% [55], but we have found that this

growth rate was dependent on initial spheroid size, and when normalized for average spheroid size,

the predicted maximum growth rate is approximately 1000% (unpublished observations). Currently,
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in vitro decay rates for W and T are unavailable, and hence we set, as a first approximation,

νDW = νDT = 1.0 and note that since calculation of λH , λPW1,2 are dependent on ambient W

and T , a change in νDW or νDT would necessitate a change in λH and λPW1,2 to match the tumor

growth rate, hence the output in S and TC would be similar to the results for νDW = νDT = 1.0.

The effect of H on T is modeled using three different functions, each which differ by (1) the degree

of the nonlinearity of H and (2) the modulating factor, which is set to allow the maximum peak

growth to be similar between the different functions. We note that, in nature, i need not be an

integer, but nevertheless, as i increases, we will show that the post-peak curvature of the dose-

response curve will increase, hence while it may not be possible to determine the specific i of the

growth factor from the dose-response curve alone, it will be possible to determine the qualitative

degree of nonlinearity of action of the negative growth regulator. Therefore, our choice of i act as

representative values of the (non-)linear effect of the negative growth regulator. For this study, we

set g1(H) = 5−3H, g2(H) = 3−4H2, and g3(H) = 2−5H3. We summarize all parameter values in

Table 1.

Table 2.1: Summary of parameter values for Equations (2.1) - (2.7).

Parameter Description Value

KTC TC mitosis rate 0.1
Pmin Min. CSC self-renewal rate 0.2
Pmax Max. CSC self-renewal rate 1.0
KSmin

Min. CSC mitosis rate 0.1
KSmax Max. CSC mitosis rate 1.0
ξP Pos. feedback response of P 1.0
ψP Neg. feedback response of P 0.5
ξKS

Pos. feedback response of KS 0.01
ψKS

Neg. feedback response of KS 0.5
λPW1 Pos. feedback response of W 1
λPW2 M-M constant for W 1
λH H feedback response of W 2
νD(W,T ) Decay rates for W and T, re-

spectively
1
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2.2.4 Quasi-steady state Growth factor concentration

In order to analyze the dynamics, we reduced the system by assuming quasi-steady state concen-

trations for W and T . Setting the time derivatives to 0 in Equations 2.6 and ?? allowed us to

solve for W in terms of S and H, and for T in terms of H, S and TC. In the case of W , we

obtained the cubic function 0 = −W 3 + W 2S(2H + 1) −W + 2H, and in the case of T , we have

0 = g(H)(CS+TC)−T . The real solution to the first equation was calculated using the MATLAB

symbolic solver,

W = S/3 + (H − S/6 + (S + 2HS))3/27

+ (H − S/6 + (S + 2HS))3/27 − ((HS)/3)2

− (1/9(S + 2HS)2 − 1/3)3)1/2 − ((HS)/3)1/3

+ (S + 2HS)2/9 − 1/3)/(H − S/6 + (S + 2HS)3/27

+ ((H − S/6 + (S + 2HS)3/27 − (HS)/3)2

− (1/9(S + 2HS)2 − 1/3)3)1/2 − (HS)/3)1/3

+ (2HS)/3

(2.8)

For the second equation, we obtain:

T = g(H)(S + TC) (2.9)

2.3 Results

The equations were numerically solved in MATLAB using MATLAB’s standard solver for

ordinary differential equations, ode45. Initial conditions were set to model a CCIC culture

system. Since CCICs are composed of stem cells derived from primary colon tumors [91],

we set S = 1 and TC = 0, where 1 simulation cell corresponds to 10 biological cells, which

is the average number of cells initially in each experiment [55]. Since stem cells produce W

but not T , we set 2.0 = W >> T = 0.01 as initial conditions, with units for all growth
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factors in ng/ml. We chose the specific value of 2.0 for W as double to the decay rate so that

it does not artificially decay to zero, and 0.01 for T to account for any background levels

of the growth factor. The simulation was run over various H values (H is assumed to be

constant throughout the simulation). The simulation was run from t = 0 to t = 9, where

t represents the number of days of the simulation. The dose-response curve for % tumor

growth at day 9 in increasing concentrations of HGF for the full system is found in Figure

?? and for the quasi-steady state system in Figure 2.3. Note that growth curves for the
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Figure 2.2: Dose-response curve of original ode system (Equations 2.1) - (2.7)
for a linear g(H) = 5−3H, quadratic g(H) = 3−4H2, and cubic g(H) = 2−5H3.

original and quasi-steady state model are not identical, indeed at very low, but non-zero,

concentrations of H, the curve for nonlinear g overestimates cellular growth. This is because

if g(H) = 2−5H3, then T = g(H)(S + TC) is very small at low H, and its effect is negligible

on P and Ks, resulting in increased growth and proliferation of stem cells, and thus rapid

production of W (Figure 2.4 (ii)), therefore the assumption that W is in a quasi-steady state

at this concentration of H is not accurate.

Nevertheless, the stem cell, terminal cell, W, and T dynamics are very similar between the

two models at both H = 0 and higher values of H (Figure 2.5). The peak of both curves
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Figure 2.3: Dose-response curve of quasi-steady state system (Equations (1) - (5), (8), (9))
for a linear g(H) = 5−3H, quadratic g(H) = 3−4H2, and cubic g(H) = 2−5H3.

occurs at approximately H = 20, and at this HGF concentration, stem cell concentrations

increase throughout the simulation in both models. Therefore, since our analysis is concen-

trated on curve behavior in control conditions and after the growth peak is attained, we

assume that the quasi-steady state system provides a good approximation of the cell num-

bers.

A phase plane analysis of stem and terminal cell dynamics shows that at a concentration

of H=100, stem cell concentrations tend to 0 over time while terminal cell concentrations

increase, whereas at H = 20, both stem and terminal cell concentrations increase indepen-

dent of initial conditions (Figure 2.6 (b),(c)). Interestingly, there is a divergence of stem

cell response for H = 0, at initial concentrations of less than 2, the stem cell concentration

tends to 0, whereas at higher initial concentrations, stem cell concentrations also increase

over time. This occurs due to a higher production of W at the initial time points that po-

tentiates the stem cell populations. Therefore, if initial concentrations of stem cells is high,

the growth peak would move left on the dose-response curve due to the increase in stem cell

growth.

To investigate whether a different choice of g resulted in different relative fractions of stem
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Figure 2.4: Cell and chemical dynamics for the ode model at H = 10.
Dynamics of stem cell, terminal cell, W, and T concentrations in the original ode model for
linear and cubic g and at H=10. The graph insets for each simulation are the dynamics of

the same factor in the quasi-steady state model.

vs. terminal cells at concentrations of H after the peak growth phase, we plotted the stem

cell fraction at linear and cubic g at the final time point over concentrations of H ranging

from 20− 100. Indeed, a cubic g resulted in a nonlinear decrease in stem cell fraction after

the peak growth phase, whereas a linear g resulted in a more linear decrease in the stem cell

fraction, consistent with the the action of T on stem cell self-renewal (Figure 2.7).
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2.4 Discussion

In this study, we analyze the relationship between the mechanism of growth factor-mediated

activation of a growth inhibitor at high concentrations and the shape of a biphasic dose-

response curve of tissue growth in response to increasing concentrations of growth factor.

Since the molecular nature of the inhibitor activation is often unknown, the shape of an

experimental growth curve can serve as an aid in generating hypotheses of growth factor

action. For example, if the curve post-peak segment (CPPS) displays low curvature (i.e. is

near linear), then most likely there is no synergy of inhibitor activation by the growth factor.

For example, in the Yamada et al. study on HGF effect on muscle satellite cell proliferation,

the CPPS is linear (Figure 2.8). Therefore, we hypothesize that either HGF acts via biphasic

activation of c-Met, or via a low-affinity growth receptor to stimulate myostatin production.

On the other hand, if the CPPS shows high curvature, then we hypothesize that the growth

factor increases expression of the growth inhibitor in a non-linear fashion. Experimental

examples of such growth curves include NGF action on neurite outgrowth and copper chloride

action on bacterial colony formation (Figure 2.9). In biological signaling, a nonlinear signal

is often indicative of activation of multiple downstream effectors [8, 79]. Hence, a nonlinear

CPPS may be indicative of pleiotropic action of the growth factor on growth inhibition.

Moreover, we also show that nonlinear activation of an inhibitor results in a nonlinear decline

in the stem cell fraction in the cell population with increasing H after the peak growth

concentration (Figure 2.7). Experimental establishment of this relationship requires use

of a CSC marker such as CD133, which is specific to colon CSCs [15], and can serve to

provide evidence that the growth antagonist acts on P and KS, hence further substantiating

details of the mathematical model. Additionally, use of a CSC marker can give insight into

the predictions of the phase plane analysis, specifically that peak growth is dependent on

the steady state of CSCs: peak growth occurs at H concentration where CSC populations

increase during the entire time course of the experiments (i.e., do not tend towards the
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alternative steady state of 0) (Figure 2.6). A simplification of the current model to make it

amenable to analytical analysis may also be used to confirm the stability results.

2.5 Conclusions

Our simple model of HGF action on cell proliferation in a multi-species colon cancer models

serves to establish the hypothesis that a shape analysis of a dose-response curve can inform

molecular mechanism of growth factor action. Moreover, the model can be extended to

include different hypotheses on activator induction by the growth factor, or in cases where

the growth curve is monotonic, the shape analysis can be performed on the pre-peak curve

segment or the entire curve, respectively. Generation of experimental dose-response curves

and subsequent curve shape analysis using a system where the molecular mechanism of

action of a growth factor on the phenotypic output is known can be used to test the model

predictions.
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Figure 2.5: Dynamics of stem cell, terminal cell, W, and T concentrations in the original
model for linear and cubic g and at concentrations of (a) H=0, (b) H=20, and (c) H=100.
The graph insets for each simulation are the dynamics of the same factor in the quasi-steady
state model. 41



0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Student Version of MATLAB

(a)$H=0 $$
$$$

(b)$H=20$$$$
(i)$g(H)$=5-3H $$$$$$$$$$$$$ $$$$$$$ $$$$$$$(ii)g(H)=2-5H^3$

(c)$H=100$$$$
(i)$g(H)$=5-3H $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$(ii)$g(H)=2-5H^3$

Te
rm

in
al
$c
el
l$c
on

ce
nt
ra
:o

n$

Stem$cell$concentra:on$

Figure 2.6: Phase planes of stem and terminal cell dynamics for the quasi-steady state system

at (a) H = 0, (b) H = 20, with linear and cubic g(H), and (c) H = 100, with linear and
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at linear and cubic g(H).

Figure 2.8: Example of a linear dose-response curve
BrdU, a thymidine analogue, is incorporated into newly synthesized DNA of replicating
cells, and can be detected using anti-BrdU antibodies. Hence, it acts as a marker of cell

proliferation. The dose-response curve of BrdU uptake by satellite muscle cells in response
to increasing HGF shows a linear post-peak decline in BrdU-positive cells with increasing

HGF (Reprinted with permission from [123]).
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Figure 2.9: Examples of non-linear dose-response curves
(a) effect of NGF on neuronal outgrowth in dorsal root ganglion neurons of rat lumbar
region (reprinted with permission from [12]), (b) effect of Copper Chloride on growth of

Micrococcus Pyrogenes bacterial cultures (reprinted with permission from [14]).
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Chapter 3

Feedback control in a stem cell model

can cause an Allee effect

3.1 Introduction

Over the past several years, Lowengrub and collaborators have developed a sophisticated

model for tumor growth in tissue [119, 68, 126]. Their model consists of approximately 12

coupled partial differential equations, which account for cancer cell growth in tissue including

volume effects, tissue stiffness and viscosity, external and internal forces, cell differentiation

into cancer stem cells (SC), transient cells (TC), terminally differentiated cells (TD), and

dead cells. In addition, they incorporate a feedback, which regulates the self-renewal of

the stem cell population. This feedback mechanism is based upon two signaling proteins, a

short-range activator (Wnt) and a long-range inhibitor (Dkk). The dynamics of these two

proteins is modeled through a Turing mechanism, which allows for spatial patterning.

Lowengrub et al. use their model to investigate several scenarios which are relevant for

tumor growth and treatment. In particular, they design a combination treatment, which,
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in simulations, results in tumor extinction [126]. The purpose of this chapter is to try to

understand the basic underlying mechanism which leads to treatment success. We claim

that the feedback mechanisms used in this model lead to an Allee effect for tumor stem cell

growth. The Allee effect is a phenomenon, studied in ecology, that there exists a positive

correlation between population density and individual fitness [102]. In the case of a tumor,

the Allee effect can manifest itself through treatment, which can cause the stem cell count

to fall below a threshold such that the tumor cannot recover and dies out, or in spontaneous

tumor remission [56]. This Allee effect is not easily seen in the fully coupled PDE model.

Hence, here we simplify down to the essential dynamics and prove mathematically that an

Allee effect exists.

Our simplification focuses on the interplay between the stem cell concentration, S(t), and

the self-renewal activator Wnt, a(t). In the original model of Lowengrub et al., the activator

Wnt (a(t)) is coupled to the inhibitor (b(t)) by the Turing mechanism

at = D1∆a+ γ
a2

b
S − a

bt = D2∆b+ γa2S − νb,
(3.1)

where D1, D2 are the diffusion coefficients, ∆ denotes the Laplacian operator, γ and ν are

positive parameters and the index notation denotes partial derivatives. The dynamics of the

stem cell concentration, S(t), is given by

St = (2p(T, a)− 1)kS, (3.2)

which includes two feedback mechanisms. The variable p(T, a) denotes the probability of self

renewal of stem cells, and this depends on concentration of T, a differentiation promoter,

and on the activator a. For simplification purposes, the proliferation rate k is taken to be

constant and non-negative.
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In Youssefpour et al [126], the probability of self renewal has the following specific form

p(T, a) = pmin + (pmax − pmin)

(
ξa

1 + ξa

)(
1

1 + ψT

)
, (3.3)

where T is concentration of soluble differentiation promoters (most importantly, these include

members the TGFβ superfamily). pmin and pmax are respective minimum and maximum rates

of self-renewal and ξ and ψ are the respective positive, by a, and negative, by T, feedback

strengths on p. In our simplified model, we substitute T for S using the following reasoning:

any probability of self-renewal < 1 will lead to production of differentiated cells, D, from

stem cells. Differentiated cells will, in turn, produce T. Therefore, there exists a positive

relationship between S and D, and hence T. We take the simplest assumption that S and T

are directly correlated to obtain

p(S, a) = pmin + (pmax − pmin)

(
ξ1a

1 + ξ1a

)(
1

1 + ξ2S

)
,

Further simplifying by setting pmin = 0 and pmax = 1, we obtain

p(S, a) =

(
ξ1a

1 + ξ1a

)(
1

1 + ξ2S

)
, (3.4)

where ξ1 and ξ2 represent the respective strengths of positive and negative feedback on p.

In our numerical investigations, we find that the Turing mechanism is not essential for the

Allee effect. However, the Wnt production terms in the a equation are relevant. Hence in

our simplification, we focus on the kinetic part of the activator equation (now written as an

ODE, since space dependence is ignored):

ȧ(t) = γ
S

b
a2 − a, (3.5)

where we assume that the inhibitor b is a given constant value. For given S, this equation
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(3.5) is a bistable equation. Solutions to initial conditions a(0) < b/S converge to zero,

while solutions to initial conditions a(0) > b/S blow up in finite time. This blow-up is not

seen in the full Turing model, since the inhibitor controls unbounded growth. To mitigate

this effect, we introduce λ, the strength of the saturation (thus forcing ȧ to saturate to a

linear rate). We believe that this is a biologically reasonable assumption, since experimental

evidence has shown that tumor cells are highly responsive to external drivers of a, such as

activation of the c-MET receptor by stromal-produced HGF, in a concentration-dependent

manner [39, 80]. Therefore, in a model with no external drivers of a, which we present here,

we do not assume that a can saturate. Therefore, we study

ȧ = a

(
βSa

1 + λa
− 1

)
, (3.6)

where β = γ/b. Then the model, which describes the feedback mechanism on the stem cells,

is given by

Ṡ = (2p(S, a)− 1)kS = f1(S, a)

ȧ = a

(
βSa

1 + λa
− 1

)
= f2(S, a)

p(S, a) =
ξ1a

1 + ξ1a

1

1 + ξ2S
,

3.2 Analysis of the Allee-effect

For the analysis below, we consider the following system of two differential equations:

Ṡ = (2p(S, a)− 1)kS = f1(S, a),

ȧ = a

(
βSa

1 + λa
− 1

)
= f2(S, a),

(3.7)
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where p(S, a) = (ξ1a)/((1 + ξ1a)(1 + ξ2S)). The main result shows that the above system

(3.7) does show an Allee-effect.

For linear stability analysis, we will need to use pS, pa, FS, and Fa, therefore we calculate

them now.

pS = − aξ2

(1 + ξ1a)(1 + ξ2S)2
≤ 0 where pS = 0 only when a = 0,

pa =
1

(1 + ξ2S)(1 + ξ1a)2
> 0,

(f2)S =
βa2

1 + λa
≥ 0 where FS = 0 only when a = 0,

(f2)a =
2βSa(1 + λa)− (βSa2)λ

(1 + λa)2
− 1 =

2βSa+ 2λβSa2 − λβSa2

(1 + λa)
− 1,

=
2βSa+ λβSa2

(1 + λa)2
− 1 =

βSa(2 + λa)

(1 + λa)2
− 1.

Therefore, we have

(f2)a =
βSa(2 + λa)

(1 + λa)2
− 1. (3.8)

Note that the sign of (f2)a depends upon β, S, a and λ.

Theorem 3.1. 1. The domain Ω = [0,∞)× [0,∞) is positively invariant for (3.7).

2. The system (3.7) has two steady states in Ω, P1(0, 0) and P2(S2, A2), where P2 is the

unique intersection of the curves

{p(S, a) = 0.5} and {f2(S, a) = 0}.

3. P1 is asymptotically stable and P2 is a saddle point.

4. Under specific assumptions on parameter relationships, there exists a separatrix which

separates the basin of attraction of P1 from an attractor with non-zero S. This sepa-
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ratrix forms the threshold between population extinction P1 and population growth.

Proof. Consider system (3.7). We observe that Ṡ ≥ −kS and ȧ ≥ −a. Setting Ṡ+kS = l(1)

and ȧ+a = l(2) and solving each differential equation under the condition that (l(1), l(2)) ≥

(0, 0) gives us the condition that (S(t), a(t)) ≥ (0, 0) for all initial (S, a) ≥ (0, 0). Thus,

Ω = [0,∞]× [0,∞) is positively invariant for (3.7).

We find Ṡ = 0 if and only if S = 0, p(S, a) = 0.5, or k = 0. The second equation is in steady

state if a = 0 or a = a∗(S) = (βS − λ)−1, S > 0. We note that when S = 0, a∗(S) = −1
λ
< 0

since λ is assumed to be non-negative. This cannot be a steady state since a ≥ 0. Similarly,

if a = 0, then p(S, 0) = 0. Hence, the only steady state with S = 0 or a = 0 is P1(0, 0).

We next want to determine if there exist, and if yes, how many, pairs of (S, a) such that

p(S, a) = 0.5 and F (S, a) = 0. This can be found by solving the system:


ξ1a

1 + ξ1a

1

1 + ξ2S
= 0.5

βSa

1 + λa
= 1

(3.9)

Solving the first equation for S, we obtain S = (ξ1a − 1)/(ξ2(1 + ξ1a)). We first note that

the function is monotone increasing in a. This is true since S ′ = (2ξ1)(ξ2(1 + ξ1a)2) > 0.

Moreover, we have

lim
a→0

(
ξ1a− 1

ξ2(1 + ξ1a)

)
= − 1

ξ2

and lim
a→∞

(
ξ1a− 1

ξ2(1 + ξ1a)

)
=

1

ξ2

Repeating the process for the second equation, we obtain S = (1+λa)/(βa) = 1/(βa)+λ/β,

S ′ = −1
βa2

< 0, hence the function is monotone decreasing, and

lim
a→0

1

βa
+
λ

β
=∞ and lim

a→∞

1

βa
+
λ

β
=
λ

β
.
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Therefore, the constraints on S, a and the parameters guarantee existence of a unique solution

if λ
β
< 1

ξ2
(∗). In the linear stability analysis below, whenever we discuss P2(S2, A2), the

steady state corresponding to (3.7), we assume that the inequality (∗) is satisfied. The

Jacobian of (3.7) is

J(S, a) =

 2pSkS + (2p− 1)k 2pakS

(f2)S (f2)a

 (3.10)

For P1(0, 0) we have we have p(0, 0) = 0, pS = 0, pa = ξ2, (f2)S = 0, and (f2)a = −1.

Therefore, we have

J(0, 0) =

 −k 0

0 −1

 ,

which gives two negative eigenvalues. Hence the system is an asymptotically stable node.

For P2(S2, A2), where we denote p(S,2) = pS(S2, A2), p(a,2) = pa(S2, A2), (f2)(S,2) = (f2)S(S2, A2),

and (f2)(a,2) = (f2)a(S2, A2), the Jacobian is

J(S2, A2) =

 2p(S,2)kS2 2p(a,2)kS2

(f2)S,2 (f2)a,2


We recall that pS < 0, pa > 0, and (f2)S > 0. Since we also have (βS2A2)/(1 + λA2) = 1 by

(3.9), we obtain

(f2)a,2 =
βS2A2(2 + λA2)

(1 + λA2)2
− 1 =

2 + λA2

1 + λA2

− 1 =
1

1 + λA2

> 0.

Therefore, we have (f2)a,2 > 0, and hence the determinant of J(S2, A2) is

det J(S2, A2) = 2p(S,2)kS2(f2)(a,2) − 2p(a,2)kS2(f2)(S,2) < 0, (3.11)
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which makes P2 a saddle point.

The Stable Manifold Theorem (SMT) [84] guarantees existence of a separatrix, M, separating

the basins of attraction of P1 from a non-zero attractor when (∗) is satisfied.

3.3 Dependence of the separatrix on parameters

For the system (3.7) to have a steady state other than P1(0, 0), it must satisfy the inequality

λ/β < 1/ξ2 (∗). In biological terms, λ is the saturation term for ȧ, and β is a positive

parameter of a auto-activation, normalized by a constant level of stem-cell derived Wnt

inhibitor, b. Therefore, λ/β is increased when there is strong saturation and / or low self-

activation strength, and is decreased when the saturation strength is low and / or self-

activation strength is high. In more advanced cancers, it has been shown that the Wnt

cascade is often constitutively activated and response to growth inhibitors is lowered [39, 58],

which means that a-saturation strength decreases and β increases, hence λ/β decreases in

more advanced cancers. ξ2 represents the inhibitory effect of S on p. Therefore, if the

inhibitory effect of S on p is strong, then 1/ξ2 will be low, and the inequality is less likely

to be satisfied, thereby leading to one steady state of P1(0, 0). On the other hand, a low

strength of p-inhibition (hence giving a relatively high 1/ξ2) occurs with more advanced

cancers. Thus, we see that as a cancer progress, the inequality (∗) is more likely to be

satisfied, thereby altering the long-term system dynamics towards a higher probability that

(S, a) 6→ (0, 0).

The Stable Manifold Theorem (SMT) [84] allows us to approximate the separatrix, M, when

(∗) is satisfied. In Appendix C, a second approximation to M, in a transformed coordi-

nate system (y1, y2), is calculated and given by (C.15), we relabel this approximation as

M∗. To simplify notation, we will also refer to this approximation as M∗ after coordinate
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transformation to (S, a). Since it will be unreasonable to continue to the third approxi-

mation by the SMT, we check whether M∗ is a good approximation of M by comparing

its output to the separatrix predicted for a given set of parameters by a numerical ODE

analysis program (in this case, pplane8 in Matlab, [3]). We choose two sets of parameters,

Pr1(ξ1, ξ2, λ, k, β) = (1, 1, 1, 1, 2) and Pr2 = (5, 0.5, 1, 1, 4), where Pr2 represents a more in-

vasive set of parameters than Pr1. To plot M∗, we input a discreet set of values for y1 and

use y2 = M∗(y1) to obtain (S∗, a∗) = C−1y, (S∗, a∗) = (S−S2, a−A2) with y and C defined

in Appendix C. Using pplane8, we see that the stable manifold for Pr2 is shifted southwest

of Pr1, with the result that the Pr2 system will have a non-zero steady state for a lower

threshold of S, a then Pr1 (Figure 3.1 a,b). We plot M∗ for Pr1 and Pr2, overlay these results

with the stable manifold predicted by pplane8, and note that the shape and location M∗ is

near the numerically-predicted stable manifold (Figure 3.1 c,d). We proceed to analyze M∗

in order to establish a dependence between the parameters of the model and behavior of the

separatrix.
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Figure 3.1: Application of the Stable Manifold Theorem to approximate the separatrix of
System (3.7).
(a,b) pplane8 plots of (3.7) with parameters (a) Pr1 and (b) Pr2. The descending curve
in each graph is the pplane approximation of the stable manifold (separatrix) (green), the
pplane approximation of the unstable manifold is the ascending curve (grey), and the blue
curves represent forward solutions of the respective system. Note that solutions to the right
of the separatrix tend to a non-zero equilibrium, whereas solutions to the left tend to (0, 0).
(c,d) The separatrices predicted by pplane8 (green) of Pr1 (c) and Pr2 (d) are plotted along
with the SMT approximation of the separatrix, M∗ (black), the quadratic approximation,
M∗q (dash, blue), and the linear approximation, M∗l (dash, red). For all panels, the a nullcline
is orange and S nullcline purple.
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Due to the complex dependence of M∗ on parameters, we take the linear and quadratic

portion of M∗, M∗l and M∗q, respectively, given in Equations (C.27) and (C.29). We plot M∗l

and M∗q for the two parameter sets, Pr1 and Pr2 in Figure 3.1 c,d. Noting that M∗l gives

an approximation of the tangent line to the separatrix, we concentrate our analysis on the

parameter dependence of M∗l .

From the linear approximation of M∗, M∗l , we develop an ‘Allee index’, AI , given by the area

below M∗l . This ‘Allee Region’ is the basin of attraction for the steady state representing

tumor extinction, P1(0, 0), and hence AI = AI(ξ1, ξ2, k, β, λ) is inversely correlated with tu-

mor invasiveness. The dependence of AI on various parameter regimes provides information

on how parameter values influence the susceptibility of the tumor to the Allee effect (Fig.

3.2). We find that increasing ξ2, the strength of inhibition of p0 by S, increases AI for all

parameter regimes. The increase in AI comes about due to a ξ1-dependent increase in A2 and

magnitude of ml, the slope of M∗l (which is always negative) (Figs. 3.3, 3.4). Although S2

decreases as ξ2 increases, it does not tend to zero, indeed, as ξ2 → β/λ, by (3.9), S2 → λ/β.

Conversely, increasing ξ1, the strength of activation of p0 by a, results in a decreased AI

by the opposite mechanisms as decreasing ξ2: there is an increase in magnitude of ml, a

decrease of A2, and an increase of S2 that cannot compensate for the decrease in AI (Figure

3.2 (i,iii)). Generally, increasing β from 2 to 4 also decreases AI due to the same mechanisms

as when increasing ξ1, and the increase also extends the range of ξ2 that satisfies (∗). For

low ξ2 and ξ1, increasing β from 2 to 4 decreases AI by a different mechanism. For example,

at ξ2 = 0, λ = 1, and k = 1, the ml increase in magnitude from ≈ −15 to ≈ −35. A2 does

not change significantly but S2 decreases from ≈ 0.5 to ≈ 0.25 (indeed, lim(S2)ξ1→0 = λ/β).

From the above discussion, we observe that invasive regimes come about due to an (S2, A2)

that is near the (S,A) axis, with a slope that is close to parallel to the nearest axis if (S2, A2)

is not near (0, 0).

Finally, we consider the dependence of AI on k, the stem cell division rate. Unlike the
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Figure 3.2: The Allee Index as a function of parameters.
The Allee Index, the area in the region bounded above by M∗

l , is plotted for increasing ξ2

and for increasing ξ1 (i, ii) or k (iii, iv) under less (β = 2, (i,iii)) or more (β = 4, (ii,iv))
invasive conditions. Note that the range of ξ2 is dependent on β and λ, since for the system
to have a non-trivial attractor, the inequality λ/β < 1/ξ2 must be satisfied.

other parameters, (A2, S2) is not dependent on k. In Figure 3.2 (iii),(iv) we see that as k

initially increases from 0, there is a drop in AI (except for very low ξ2), but afterwards there

is a minor increase in AI with increasing k. The slope, ml, decreases in magnitude with

increasing k (Figure 3.3 (iii),(iv)). Since (A2, S2) does not change with increasing k and the

slope becomes less negative, the loss in AI from shifting the a intercept towards the origin

is compensated for by increasing the S intercept of M∗l (Figure 3.5).
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Figure 3.3: The slope of M∗
l , ml, as a function of parameters.

The slope of M∗
l , ml, is plotted for increasing ξ2 and for increasing ξ1 (i, ii) or k (iii, iv)

under less (β = 2, (i,iii)) or more (β = 4, (ii,iv)) invasive conditions.

3.4 Long-term system behavior

We now consider how the system (3.7) behaves for longer time. Returning to our two

parameter sets, Pr1(ξ1, ξ2, λk, β) = (1, 1, 1, 1, 2) and Pr2(ξ1, ξ2, λk, β) = (5, 0.5, 1, 1, 4), we

consider two sets of initial conditions. We take IC1(S, a) = (0.2, 3) and IC2(S, a) = (0.5, 5).

From Fig. 3.1, we see that IC1 lies in the Allee Region for Pr1, but not Pr2. In Fig. 3.6(a),

we plot the trajectories obtained from solving (3.7) numerically (using the ode45 function

in Matlab) for initial conditions IC1 at Pr1 (solid lines) and Pr2 (dashed lines). For Pr1,

(S, a) predictably tend to (0, 0), whereas for Pr2, a continues to increase while S stabilzes

at S = 2. For initial conditions IC2 (Fig. 3.6(b)), a increases for both Pr1 and Pr2, but the
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Figure 3.4: The steady state P2(S2, A2) as a function of parameters.
The steady state P2(S2, A2) is plotted for increasing ξ2 and for increasing ξ1 (i, ii) or k (iii,
iv) under less (β = 2, (i,iii)) or more (β = 4, (ii,iv)) invasive conditions.

rate of increase is higher for Pr1. S stabiles for both Pr1 (at S = 1) and Pr2 (at S = 2).

When the initial conditions are in the invasive region, the limiting behavior on ȧ is a linear

function in a proportional to (βS)/λ. The limiting behavior on S as a increases can be found

by considering Ṡlima→∞ = {(2p(S, a)− 1)kS}lima→∞ ,

Ṡlima→∞ =

(
2

1 + ξ2S
− 1

)
kS (3.12)

This is a separable differential equation with positive solution

S(t)? =
2ξ2 + e(−kt)−c(

√
4ξ2ekt+c + 1 + 1)

2ξ2
2

(3.13)
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Figure 3.5: Example of dependence of Sys-
tem 3.7 on k.

We consider the system (3.7) with Pr1 =
(ξ1, ξ2, λ, k, β) = (1, 1, 1, 1, 2) (solid lines)
and Pr∗1 = (ξ1, ξ2, λ, k, β) = (1, 1, 1, 2, 2)
(dashed lines) and plot M (green) and M∗l
(red). R1 represents the region in the
phase space that is invasive for Pr∗1, but
in the basin of attraction of (0, 0) for Pr1.
Conversely, R2 represents the region in the
phase space that is invasive for Pr1, but in
the basin of attraction of (0, 0) for Pr∗1.
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where c is an arbitrary constant and S(t)? is the solution to (3.12). We observe that

limt→∞ S(t)? = 1/ξ2, indicating that the long-term behavior of S in the invasive regime

is only proportional to ξ2. We note that for Pr1, where ξ2 = 1, limt→∞ S
∗(t) = 1 and for Pr2,

where ξ2 = 0.5, limt→∞ S
∗(t) = 2.

[a
]$

Time$ Time$

a(0)=3$
S(0)=0.2$

a(0)=5$
S(0)=0.6$

0 5 10 15
0

10

20

30

40

50

0 5 10 15
0

1

2

3

4

0 5 10 15
0

1

2

3

4

Student Version of MATLAB

0 5 10 15
0

10

20

30

40

50

0 5 10 15
0

1

2

3

4

0 5 10 15
0

1

2

3

4

Student Version of MATLAB

[a],Pr1$
[S],Pr1$
[a],Pr2$
[S],Pr2$

[S]$

Figure 3.6: Sample trajectories for Pr1 and Pr2

Plotting the numerical solutions of (3.7) with initial conditions (S, a) = (0.2, 3) (left panel)
and (S, a) = (0.6, 5) (right panel) with parameters Pr1(ξ1, ξ2, λk, β) = (1, 1, 1, 1, 2) (solid
lines) and Pr2(ξ1, ξ2, λk, β) = (5, 0.5, 1, 1, 4) (dashed lines).
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3.5 Discussion

It has recently been suggested that exploitation of the Allee effect in tumor growth should

be considered for therapy development [56]. We have simplified a model of tumor growth in

order to understand the principles under which a tumor can become eradicated, i.e. exhibit

an Allee effect. We have shown that for such a simplified system, there exists a separatrix

which distinguishes between trajectories of (S, a) tending to (0, 0) and non-zero solutions.

The location of the separatrix depends on the various parameters in the model, specifically

on strength of a-dependent activation (ξ1) and S-dependent inhibition (ξ2) of the probability

of self-renewal p0, the stem cell division rate, k, and the strength of a self-activation, β. An

approximation of the separatrix by the Stable Manifold Theorem has allowed us to explore

the dependence of the separatrix on parameters. We can use this system to consider how

different therapies can modify tumor behavior and, in some cases, lead to tumor eradication.

Conversely, we can also use the system to consider how common events in tumor progression

can also modify tumor behavior.

Classical chemotherapeutic drugs against cancer are cytotoxic drugs that target rapidly

dividing cells [69, 73]. In our model, such drugs would correspond to lowering the k and S

of a system. We have observed that lowering k decreases the slope of M∗
l without changing

(A2, S2). Following a sample parameter scheme (Pr1) in Figure 3.5, we see that lowering k

from 2 to 1 changes region 1, R1, which has high a and low S values, from an invasive regime

to a regime that is susceptible to the Allee effect. Thus, our model predicts that cytotoxic

chemotherapy may make cells more resistant to high levels of activator. Moreover, while the

regime 2, R2 which has high S and low a values changes from being an attractor for tumor

extinction to an attractor for the invasive phenotype, the tumor is less likely to be in this

region after cytotoxic chemotherapy since the level of S will be reduced. Since chemotherapy

is often administered alongside radiation and surgery, both therapies which reduce S, our

system shows that these types of therapy may cause tumor extinction not only by lowering
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S until the (S, a) values lie in the Allee region, but by expanding the Allee region to be more

inclusive of tumors with high levels of activator.

Another major modality in cancer treatment is what is known as targeted therapy, which

acts by interfering with proteins involved in carcinogenesis [60]. A number of Wnt pathway

inhibitors are currently in preclinical development and have shown promise in slowing growth

and inducing cell death in in vitro and in vivo experimental systems [1]. In our model,

targeted Wnt therapy corresponds to either lowering ξ1, which increases AI , or a directly,

which may move the system into the basin of attraction for extinction. Additionally, our

model can also give insight into patient outcomes. For example, elevated levels of nuclear β-

catenin, a downstream signaling target of the Wnt cascade, in the excised tumors of patients

who had undergone surgery and therapy for colorectal cancer, were strongly correlated with

poor patient survival [18]. In our model, this phenomenon translates to a system where

lowered levels of S and k via surgery and therapy do not induce tumor extinction because

high a levels maintain the system in the invasive region. Our model thus predicts that

treatments that combine traditional cancer therapy (surgery and cytotoxic chemotherapy)

with targeted inhibitors would be more effective by pushing the system into the Allee region

of the phase space.

The dependence of the system behavior on the strength of inhibition of p by S, ξ2, is

of particular interest since tumor response to growth inhibitors decreases throughout tumor

progression [37]. A decrease in ξ2 in our system decreases AI and increases the limiting value

of S in the invasive region to 1/ξ2. Therefore, a decrease in response to growth inhibitors has

the dual effect of decreasing the probability that traditional chemotherapy and/or surgery

will cause the tumor to become extinct, and increasing the long-term population of stem

cells. Indeed, a decrease in response to the growth inhibitors of the TGFβ family is correlated

with poorer clinical prognosis. It may be this dual action in promoting tumor survival and

growth that has selected the decreased response to growth inhibitors to be a major hallmark
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of cancer.

We have shown, with a simple stem cell and chemical activator model, that a tumor can un-

dergo the Allee effect either spontaneously or after treatment when the system is in the basin

of attraction for extinction. By considering tumor remission in the language of dynamical

systems, we have been able to quantify and observe how various parameters of the system,

include strength of action of activators and inhibitors of stem cell probability of self-renewal,

strength of activator self-propagation, and cell division rate, all contribute to defining the

Allee region in the phase space of the tumor and activator. We have kept the model purpose-

fully simple in order to allow an analytical approach to the question of tumor eradication,

but a careful extension to include microenvironmental components, such as host-produced

HGF upregulation of a, and/or more complex assumptions on the cell division rate k (for

example, assuming that k is positively correlated with a) or other parameters may be able

to provide further insight on the dependence of the Allee effect in cancer to external and

internal system behavior.
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Discussion

In this thesis, we have explored the effect of the microenvironment on tumor growth using

mathematical models of varying complexity. In Chapter 1, a spatiotemporal, multiscale,

multiphase model was used to examine the phenotypic outcome of a tumor-host dynamic

signaling program involving production of HGF by the host tissue and HGF-stimulating

growth factors by the tumor tissue. Simulation results of the model showed that activation

of the HGF/c-Met axis increased cell dispersal, and contributed to heterogeneity at the

tumor-host boundary, leading to morphological instability. Lowering response of the tumor

to negative feedback signal served to further increase the morphological instability. Therapy

targeted at disrupting the HGF/c-Met axis was effective in stabilizing tumor growth and

morphology, making it more likely that complementary treatment, including surgery and

chemotherapy, would lead to cancer remission. The model in Chapter 1 did not incorporate

recent finding that at very high HGF, tumor growth is abrogated, due to lack of knowledge

of molecular mechanism of the phenomenon.

In Chapter 2, the original model was simplified to a system of 4 ordinary differential equations

that incorporated a negative effect of HGF on tumor growth via positive up regulation

of TGFβ at high concentration. By testing several models of HGF action on TGFβ, we

were able to derive simulated dose-response curves that could help to distinguish different

mechanisms of HGF action. The results predicted that the shape of dose-response curves

could be informative in predicting how a growth factor can act as a negative growth regulator.
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Finally, we simplified the model even further to a system of two ordinary differential equa-

tions for stem cells and activators of stem cell self-renewal in order to analytically explore

the conditions under which a tumor can undergo an Allee effect, or die out, when its density

is small enough. The resulting analysis showed that the strength of both positive and nega-

tive feedback on stem-cell self-renewal, as well as strength of self-activation of the activator

molecules and rate of stem cell division all contribute to determining how likely a tumor will

die out, given a certain concentration of stem cells and activator molecules. This system pro-

vides a framework from which one can examine how specific patient / tumor characteristics

can be predictive of therapy effectiveness.

Many of our assumptions and results are based upon quantification of specific features of the

tumor and its microenvironment, including, especially for Chapter 1, the spatially-distributed

stem cell fraction of the tumor, and chemical diffusion, uptake, and activity coefficients. In

order to better align our model with experimental observations, it is necessary to use an ex-

perimental system that is capable of recapitulating and capturing some of the complexities

of the TME. In their review of emerging technologies in this field, Guldner and Zhang noted

that new technology is necessary to explore TME that incorporates spatial and temporal

dynamics of TME interactions, and can measure cell-type specific behavior. They discuss

emerging technologies that can aide in this goal, including deep tissue optical sectioning,

intravital microscopy (IVM, the imaging of live animal tissue), and in situ cell-type specific

genetic isolation [35]. For example, Tanaka et al. used IVM in a liver metastatic xenograft

system where RFP-labeled human colorectal cells were injected into GFP-expressing nude

mice to obtain a time-series of of the phenotypic changes in tumor and host during liver

metastasis and with and without chemotherapy [107]. In addition, development of sophisti-

cated 3D-culture systems where protein and drug diffusion and uptake rates can be measured

via techniques such as FRAP or FLIM-FRET, are already in use [21, 106]. The hypotheses

generated by our models regarding quantifiable tumor behavior with activated HGF/c-Met

axis, such as increased invasiveness, formation of areas with high stem-cell concentration at
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the tumor-host boundary, decrease in growth rates at very high HGF, and eradication under

certain therapies, can be tested in an appropriate experimental system.

The overarching goal of this thesis has been to examine and quantify, via mathematical

methods, tumor microenvironment dynamics, with a specific focus on host-derived HGF

action on solid tumor growth. With the results and modeling frameworks developed in

this thesis, we hope to contribute to the burgeoning mathematical oncology community in

order to aide in development of more mathematically and quantitatively oriented cancer

therapeutics.
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dexamethasone-induced gene expression patterns during formation of tissue in hep-
atic organoid cultures. Gene Expr, 11(2):55–75, 2003.

[77] H. L. Moses and R. Serra. Regulation of differentiation by tgf-beta. Curr Opin Genet
Dev, 6(5):581–6, Oct 1996.

[78] T. Muller, G. Bain, X. Wang, and J. Papkoff. Regulation of epithelial cell migration
and tumor formation by beta-catenin signaling. Exp Cell Res, 280(1):119–133, Oct
2002.

[79] R. Najdi, R. F. Holcombe, and M. L. Waterman. Wnt signaling and colon carcinogen-
esis: beyond apc. J Carcinog, 10:5, 2011.

[80] T. Nakamura, K. Matsumoto, A. Kiritoshi, Y. Tano, and T. Nakamura. Induction
of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive
growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res,
57(15):3305–13, Aug 1997.

[81] T. Nakamura, T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi, A. Sugimura,
K. Tashiro, and S. Shimizu. Molecular cloning and expression of human hepatocyte
growth factor. Nature, 342(6248):440–3, Nov 1989.

71



[82] K. Nishimura, K. Matsumiya, H. Miura, A. Tsujimura, N. Nonomura, K. Matsumoto,
T. Nakamura, and A. Okuyama. Effects of hepatocyte growth factor on urokinase-
type plasminogen activator (upa) and upa receptor in du145 prostate cancer cells. Int
J Androl, 26(3):175–9, Jun 2003.

[83] S. L. Organ and M.-S. Tsao. An overview of the c-met signaling pathway. Ther Adv
Med Oncol, 3(1 Suppl):S7–S19, Nov 2011.

[84] L. Perko. Differential equations and dynamical systems, volume 7. Springer, New York,
3rd ed edition, 2001.

[85] A. Petrelli, G. F. Gilestro, S. Lanzardo, P. M. Comoglio, N. Migone, and S. Giordano.
The endophilin-cin85-cbl complex mediates ligand-dependent downregulation of c-met.
Nature, 416(6877):187–90, Mar 2002.

[86] M. Pickup, S. Novit, and H. Moses. The roles of tgf-beta in the tumour microenviron-
ment. Nat Rev Cancer, 13(11):788–99, 2013.

[87] D. Pinto and H. Clevers. Wnt, stem cells and cancer in the intestine. Biol Cell,
97(3):185–96, Mar 2005.

[88] S. Potempa and A. J. Ridley. Activation of both map kinase and phosphatidylinositide
3-kinase by ras is required for hepatocyte growth factor/scatter factor-induced adherens
junction disassembly. Mol Biol Cell, 9(8):2185–200, Aug 1998.

[89] K. A. Rejniak and L. J. McCawley. Current trends in mathematical modeling of
tumor-microenvironment interactions: a survey of tools and applications. Exp Biol
Med (Maywood), 235(4):411–23, Apr 2010.

[90] T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman. Stem cells, cancer, and
cancer stem cells. Nature, 414(6859):105–11, Nov 2001.

[91] L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and
R. De Maria. Identification and expansion of human colon-cancer-initiating cells. Na-
ture, 445(7123):111–5, Jan 2007.

[92] F. Roletto, A. P. Galvani, C. Cristiani, B. Valsasina, A. Landonio, and F. Bertolero.
Basic fibroblast growth factor stimulates hepatocyte growth factor/scatter factor se-
cretion by human mesenchymal cells. J Cell Physiol, 166(1):105–11, Jan 1996.

[93] E. F. Saunier and R. J. Akhurst. Tgf beta inhibition for cancer therapy. Curr Cancer
Drug Targets, 6(7):565–78, Nov 2006.

[94] T. Schatton, N. Y. Frank, and M. H. Frank. Identification and targeting of cancer
stem cells. Bioessays, 31(10):1038–49, Oct 2009.

[95] S. M. Sheehan, R. Tatsumi, C. J. Temm-Grove, and R. E. Allen. Hgf is an autocrine
growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve, 23(2):239–45,
Feb 2000.

72



[96] S. Sick, S. Reinker, J. Timmer, and T. Schlake. Wnt and dkk determine hair follicle
spacing through a reaction-diffusion mechanism. Science, 314(5804):1447–50, Dec 2006.

[97] N. Sidenius and F. Blasi. The urokinase plasminogen activator system in cancer:
recent advances and implication for prognosis and therapy. Cancer Metastasis Rev,
22(2-3):205–22, 2003.

[98] S. S. Sikandar, K. T. Pate, S. Anderson, D. Dizon, R. A. Edwards, M. L. Waterman,
and S. M. Lipkin. Notch signaling is required for formation and self-renewal of tumor-
initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer
Res, 70(4):1469–78, Feb 2010.

[99] V. R. Skeen, I. Paterson, C. Paraskeva, and A. C. Williams. Tgf-1 signalling, connecting
aberrant inflammation and colorectal tumorigenesis. Curr Pharm Des, 18(26):3874–88,
2012.

[100] M. Sondell, G. Lundborg, and M. Kanje. Vascular endothelial growth factor has
neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and
schwann cell proliferation in the peripheral nervous system. J Neurosci, 19(14):5731–
40, Jul 1999.

[101] M. C. Stella, L. Trusolino, S. Pennacchietti, and P. M. Comoglio. Negative feedback
regulation of met-dependent invasive growth by notch. Mol Cell Biol, 25(10):3982–96,
May 2005.

[102] P. A. Stephens, W. J. Sutherland, and R. P. Freckleton. What is the allee effect?
Oikos, 87(1):185–190, Oct 1999.

[103] M. Stoker and M. Perryman. An epithelial scatter factor released by embryo fibroblasts.
J Cell Sci, 77:209–23, Aug 1985.

[104] S. Suzuki, K. Yamanouchi, C. Soeta, Y. Katakai, R. Harada, K. Naito, and H. Tojo.
Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem
Biophys Res Commun, 292(3):709–14, Apr 2002.

[105] Z. A. Syed, W. Yin, K. Hughes, J. N. Gill, R. Shi, and J. L. Clifford. Hgf/c-met/stat3
signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC
Cancer, 11:180, 2011.

[106] S. Talukdar and S. C. Kundu. A non-mulberry silk fibroin proten based 3d in vitro
tumor model for evaluation of anticancer drug activity. ADvanced Functional Materials,
22(22):4778–4788, 2012.

[107] K. Tanaka, M. Okigami, Y. Toiyama, Y. Morimoto, K. Matsushita, M. Kawamura,
K. Hashimoto, S. Saigusa, Y. Okugawa, Y. Inoue, K. Uchida, T. Araki, Y. Mohri,
A. Mizoguchi, and M. Kusunoki. In vivo real-time imaging of chemotherapy response
on the liver metastatic tumor microenvironment using multiphoton microscopy. Oncol
Rep, 28(5):1822–30, Nov 2012.

73



[108] R. Tatsumi, A. Hattori, Y. Ikeuchi, J. E. Anderson, and R. E. Allen. Release of
hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells
and role of ph and nitric oxide. Mol Biol Cell, 13(8):2909–18, Aug 2002.

[109] R. Tatsumi, Y. Sankoda, J. E. Anderson, Y. Sato, W. Mizunoya, N. Shimizu, T. Suzuki,
M. Yamada, R. P. Rhoads, Jr, Y. Ikeuchi, and R. E. Allen. Possible implication of satel-
lite cells in regenerative motoneuritogenesis: Hgf upregulates neural chemorepellent
sema3a during myogenic differentiation. Am J Physiol Cell Physiol, 297(2):C238–52,
Aug 2009.

[110] L. Trusolino, A. Bertotti, and P. M. Comoglio. Met signalling: principles and functions
in development, organ regeneration and cancer. Nat Rev Mol Cell Biol, 11(12):834–48,
Dec 2010.

[111] L. Trusolino, S. Cavassa, P. Angelini, M. Andó, A. Bertotti, P. M. Comoglio, and
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Appendices

A Nondimensionalization of Equations (1.1) - (1.23)

The equations are nondimensionalized as in [119, 126]: we take the O diffusion length scale,

l =
√
DO/νUOSC , and the mitosis time scale τ = (λMSCM

C̄AO)−1, where here λMSCM
rep-

resents the midpoint of the minimum and maximum stem cell division rates. The diffusion

length scale, l is estimated l ∼ 150µm and the mitosis time scale at τ ∼ 1 day following [28].

The characteristic tumor pressure is taken to be p̄ = l2/(τ κ̄), where κ̄ is the characteristic

value of the pressure-dependent cell-motility, κ. We also take C̄TGFβ to be the characteristic

concentration of TGFβ, C̄M = (νPMI)
−1, C̄MI = C̄AO/(νPMIνDM), C̄HGF = C̄2

AO/(C̄TGFβ),

and C̄SGF = C̄AO. The conservation equations are then taken to be

∂φ∗
∂t′

= −∇′ · J′∗ + Src′∗ −∇′ · (u′Sφ∗), (A.1)

where ∗ refers to tumor cell species (CSCs, TCs, or DCs). Nondimensionalized variables and

parameters are presented in Tables (A.1) and (A.2). For the nondimensionalized equations

in the main text, all variables and parameters are rewritten without the prime notation.
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Table A.1: Nondimensional variables in Equations (1.24) - (1.35).

Tumor flux J′ = Mb′φt∇µ′
Chemical
Potential

µ′ = (∂F/∂φT )(φT )− ε′2∇′2φT
Velocity u′s = us/(l/τ)
Pressure p′ = p/p̄
[O] C ′O = CO/C̄AO
[TGFβ] C ′TGFβ = CTGFβ/C̄TGFβ
[c-Met] C ′M = C ′M/C̄M

[c-Met Inhibitors]
C ′MI = CMI/C̄MI

[HGF] C ′HGF = CHGF/C̄HGF
[SGF] C ′SGF = CSGF/C̄SGF
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Table A.2: Nondimensional parameters in Equations (1.24) - (1.35).

Mobility
M ′ = τ/τM ;
τM = l2ε/(Mbγ)

Pressure-
dependent cell
motility

κ′ = κ/κ̄

Diffuse interface
thickness

ε′ = ε/l Global adhesion γ′ = τ/τR, τR = γκ̄/l3

Strength of M
action on P0

ξ′0 = ξ0 · C̄M
Strengh of
TGFβ action on
P0

ψ′0 = ψ0 · C̄TGFβ

Strength of M
action on λMSC

ξ′1 = ξ1 · C̄M
Strengh of
TGFβ action on
λMSC

ψ′1 = ψ1 · C̄TGFβ

TC mitosis rate
λ′MTC = τ/τMTC ;
τMTC = (λMTCC̄AO)−1

TC apoptosis
rate

λ′ATC = τ/τATC ;
τATC = (λATC)−1

DC lysis rate λ′L = τ · λL
Oxygen uptake
rate

ν ′UOTC = νUOTC/νUOSC

Oxygen transfer
rate

ν ′PO = νPO/νUOSC
TGFβ uptake
rate by CSCs

ν ′UTGFβ = τTGFβ · νUTGFβ

TGFβ decay
rate

ν ′DTGFβ = τTGFβ · νDTGFβ

TGFβ
production rate
by TCs

ν ′PTGFβ = τTGFβ ·
νPTGFβ; τTGFβ = l2/DTGFβ

M diffusion rate D′M = τ/τM ; τM = l2/DM
MI diffusion
rate

D′MI = τ/τMI ;
τMI = l2/DMI

Strength of
HGF-
independent M
activation

ν ′0 = ν0

Strength of
HGF-induced M
activation

λ′HGF = λHGF · C̄HGF

Ratio of λMSCM

to νDM
R = τ · νDM

Background M
production rate

µ′0 = µ0C̄AO/(C̄MνDM)

MI decay rate ν ′DMI = νDMI/νDM
HGF production
rate

ν ′PHGF = τ · νPHGF
Regularization
constant

ζ = ζ/C̄TGFβ HGF decay rate ν ′DHGF = τ · νDHGF
SGF production
rate by SCs

νSGFC = τ · νSGFC
SGF production
rate by TCs

νSGFT = τ · νSGFT

SGF decay rate ν ′DSGF = τ · νDSGF
HGF diffusion
rate

D′HGF = τ/τHGF ; τHGF =
l2/DHGF

SGF diffusion
rate

D′SGF = τ/τSGF ; τSGF =
l2/DSGF
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A.1 Nondimensionalized parameter values for Equations (1.24) -

(1.37)

Here we present all the nondimensional parameter values used in the model for Chapter 1.

Table A.3: Parameters for cell species conservation, HGF-induced cell-spread, and cell ve-
locity.

Parameter Description Value

γ Global adhesion -0.1
ε Diffuse interface thickness 0.05
Mb Mobility 10.0
δ1 Strength of M effect on F (φT ) 0.02

δ2 Strength of M effect on Ẽ, the energy scale 0.02
κ Pressure-dependent cell motility 1.0

Table A.4: Parameters for the mass-exchange equations.

Parameter Description Value

λMTC TC mitosis rate 0.1
λATC TC apoptosis rate 0.1
λL DC lysis rate 1.0
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Table A.5: Parameters for stem-cell self-renewal and division.

Parameter Description Value

Pmin Min. CSC self-renewal rate 0.2
Pmax Max. CSC self-renewal rate 1.0
ξ0 Strength of M action on P0 1.0
ψ0 Strength of TGFβ action on P0 1.0
λMSCmin

Min. CSC mitosis rate 0.5
λMSCmax Max. CSC mitosis rate 1.5
ξ1 Strength of M action on λMSC 0.5

ψ1
Strength of TGFβ action on
λMSC

0.5

Table A.6: Parameters for the chemical species O and TGFβ.

Parameter Description Value

νUOTC Oxygen uptake rate by TCs 1.0
νPO Oxygen transfer rate 0.5
νUTGFβ TGFβ uptake rate by CSCs 0.05
νTGFβ TGFβ decay rate 0.0
νPTGFβ TGFβ production rate by TCs 0.1
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Table A.7: Parameters for the chemical species M and MI.

Parameter Description Value

DM Diffusion of M effectors 1.0
DMI Diffusion of MI effectors 25.0

ν0
Strength of HGF-independent M
activation

1.0

λHGF
Strength of HGF-induced M
activation

0.5

νDM M decay rate 1.0
ηM Background M production rate 0.2
νPMI MI production rate 1.0
νDMI MI Decay rate 1.0
R Reaction rate 50.0

Table A.8: Parameters for the chemical species HGF and SGF.

Parameter Description Value

νPHGF
Strength of SGF on HGF
activation

{5,10,15}

νDHGF HGF decay rate 1.0
DHGF HGF diffusion rate 0.1
νSGFS SGF production rate by CSCs {5,10,15}
νSGFT SGF production rate by TCs {5,10,15}
νDSGF SGF decay rate 1.0
DSGF SGF diffusion rate 1.0
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B Supplementary Information for Chapter 1, ‘The HGF/c-

Met axis in tumor growth: a multispecies model.’

B.1 Asymmetrical HGF Feedback

The basecase simulations are based on the assumption that νSGFS = νSGFT, but this may

not be the case. For example, stem (or terminal) cells may produce SGF at a much

higher rate than the other tissue type, which may result in a different tumor growth phe-

notype. To investigate how the tumor would behave under different production rates of

SGF by the two compartments, we simulate tumor growth under four different conditions:

{νSGFS, νSGFT, νH} = {15, 0, 5}, {15, 0, 15}, {0, 15, 5}, {0, 15, 15}.

In Figure B.1, we observe that production of SGF by only stem cells results in a phenotype

qualitatively similar to the original results, whereas in the case of sole terminal cell production

of SGF, we observe smaller stem cell spots that tend to cluster together and laterally self-

renew along the tumor-host boundary λHGF = 15.0. This is due to the higher probability

of self-renewal near the stem cell spots and in the interior of the tumor due to the higher

concentration of HGF along the tumor-host boundaries (Figure B.1 (b)), causing stem cells to

divide and self-renew laterally, rather than outward into the host tissue. Since the dynamics

with only stem production of SGF are qualitatively similar to the stem and terminal cell

SGF production, we maintain our assumption that νSGFS = νSGFT, as the resultant simulation

behaves in a similar fashion to the most plausible biological scenarios (either νSGFS = νSGFT

or νSGFS >> νSGFT).
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Figure B.1: Asymmetrical SGF production.
(a) Stem cell fraction for T = 50, 100, and 150 and (b) Chemical species and probability of
self-renewal for T = 100. SGF production by tumor cells is not assumed to be identical for
stem and differentiated cells. The first two columns of (a) and (b) show simulation results
from setting SGF production only by stem cells, whereas the last two columns show results
from setting SGF production by only terminal cells. The strength of HGF response, νH , is
also tested with νH = 5 for the first and third columns and νH = 15 for the second and
fourth columns.

B.2 Early Time

Early time evolution of the stem cell fraction for simulations without (Figure B.2 (a)) and

with (Figure B.2) (b)) c-Met induced effects on cell dispersal. Loss of spots is evident for

higher HGF dynamics, which results in greater heterogeneity of cell type and proliferation

rate at the tumor-host boundary at later time (see main text).

B.3 Therapy

We consider how therapy acting on the HGF/c-met axis can be models by changing two

parameters: λHGF , the strength of HGF effect on c-Met activation, and νPM , the strength of

c-Met auto-activation (see Equations (1.19,1.20). Lowering λHGF represents application of
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Figure B.2: Stem Cell frac-
tion of early time (5 ≤ T ≤
50) simulations without (a)
and with (b) c-Met-induced
cell dispersal.
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"""750"μm"

drugs that either inhibit HGF directly or block HGF binding and c-Met activation. Lowering

νPM along with λHGF represents anti-c-Met therapy, either by kinase inhibition or inhibition

of downstream pathway components (Figure B.3). Two parameter alterations, termed T1

and T2, represent two therapies that are analyzed in the main text. A shorter T2 therapy

Figure B.3: Stem Cell fraction at T = 100 af-
ter therapy applied at T = 50 to the high HGF
condition. λHGF is the strength of HGF effect
on c-Met activation and νo is the strength of
autocrine c-Met activation.

Student Version of MATLAB

Time%=100,%HGF%=%HIGH,%Stem%
Cell%Frac5on,%Therapy%at%T=50%

λHGF%
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0.5 % % %%%%0.05 % % %%0.005%
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0.01%

T2%
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%%%750%μm%

(from T = 50 to T = 100, and returning parameters to original conditions from T = 100 to

T = 150) results in rapid tumor regrowth and increase in spot size, indicating that tumor

eradication would require surgical treatment and/or combination therapy (Figure B.4).
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Figure B.4: Stem cell fraction for high HGF
condition at T = 100 and T = 150 with ther-
apy T2 applied from T = 50 to T = 100 or to
T = 150. Results in main text show therapy
results from T = 50 to T = 150. Note that
when therapy is only applied until T = 100,
tumor regrowth occurs rapidly.

Student Version of MATLAB
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C Approximation of the separatrix for System (3.7)

using the Stable Manifold Theorem.

We use the Stable Manifold Theorem (SMT) to approximate the separatrix described in

Theorem 3.1 near the equilibrium point P2(S2, A2) of system (3.7). We follow the technique

presented in [84]. We recall that P2 occurs at the unique intersection of the curves {p(S, a) =

0.5} and {F (S, a) = 0}.

C.1 Affine change of coordinates

To apply the SMT, we need to first make the affine change of coordinates: g : (S, a) →

(S, a) − (S2, A2). We let (S∗, a∗) = g(S, a). Then, applying g to (3.7), and noting that

(S, a) = (S∗, a∗) + (S2, A2), and ∂
∂t

(S, a) = ∂
∂t

((S∗, a∗) + (S2, A2)) = ∂
∂t

(S∗, a∗), we obtain

Ṡ∗ = (2p∗(S∗, a∗)− 1)k(S∗ + S2) = f ∗1 (S∗, a∗)

ȧ∗ = (a∗ + A2)

(
β(S∗ + S2)(a∗ + A2)

1 + λ(a∗ + A2)
− 1

)
= f ∗2 (S∗, a∗)

p∗(S∗, a∗) =
ξ1(a∗ + A2)

1 + ξ1(a∗ + A2)

1

1 + ξ2(S∗ + S2)

(C.2)

The Jacobian for (C.2) is

J∗(S∗, a∗) =

 2p∗S∗k(S∗ + S2) + (2p∗ − 1)k 2p∗a∗k(S∗ + S2)

(f1)S∗ (f1)a∗

 ,
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where

p∗S∗ =
−ξ1ξ2(a∗ + A2)

(1 + ξ1(a∗ + A2))(1 + ξ2(S∗ + S2))2

p∗a∗ =
ξ1

(1 + ξ2(S∗ + S2))(1 + ξ1(a∗ + A2))2

(f ∗2 )S∗ =
β(a∗ + A2)2

1 + λ(a∗ + A2)

(f ∗2 )a∗ =
β(S∗ + S2)(a∗ + A2)(2 + λ(a∗ + A2))

(1 + λ(a∗ + A2))2
− 1

(C.3)

In this coordinate system, (S∗, a∗) = (0, 0) is an equilibrium point and P ∗(0, 0) corresponds

to P2(S2, A2). To use the SMT, we need to first determine A = Df(0) = J∗(0, 0). We have

A = J∗(0, 0) =

 2p∗S∗(0, 0)kS2 2p∗a∗(0, 0)kS2

(f2)S∗(0, 0) (f2)a∗(0, 0)

 (C.4)

We first note, as in the original J(S1, S2), that since p∗S∗ < 0 and Fa∗ > 0, 2p∗S∗(0, 0)kS2(f2)a∗(0, 0) <

0 and since p∗a∗ > 0 and (f ∗2 )S∗ > 0, 2p∗a∗(0, 0)kS2(f2)S∗(0, 0) > 0. Therefore,

det J∗(0, 0) = 2p∗S∗(0, 0)kS2)(f ∗2 )a∗(0, 0)− 2p∗a∗(0, 0)kS2(f ∗2 )S∗(0, 0) < 0,

and hence J∗(0, 0) has one positive and one negative eigenvalue, and P ∗ is a saddlepoint.

We also recall that S2 and A2 satisfy


ξ1A2

1 + ξ1A2

1

1 + ξ2S2

= 0.5

βS2A2

1 + λA2

= 1

(C.5)
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Using (C.5), we simplify (C.3) to calculate the elements of A,

p∗S∗(0, 0) =
−A2ξ1ξ2

(1 + ξ1A2)(1 + ξ2S2)2
=

−ξ2

2(1 + ξ2S2)

p∗a∗(0, 0) =
1

(1 + ξ2S2)(1 + ξ1A2)2
=

1

2A2(1 + ξ1A2)

(f ∗2 )S∗(0, 0) =
βA2

2

1 + λA2

=
A2

S2

(f ∗2 )a∗(0, 0) =
βS2A2(2 + λA2)

(1 + λA2)2
− 1 =

2 + λA2

1 + λA2

− 1 =
1

1 + λA2

,

(C.6)

Substituting (C.6) into (C.4), we have the following expression for A = J∗(0, 0),

A =


−ξ2kS2

1 + ξ2S2

kS2

A2(1 + ξ1A2)
A2

S2

1

1 + λA2

 (C.7)

C.2 Preliminary calculations for the SMT

Following [84] and taking x = (S∗, a∗), we can rewrite the system (C.2) as

ẋ = Ax+ F (x), (C.8)

where A = J∗(0, 0) and F (x) = f ∗(x) − Ax. We next need to find an invertible matrix C

such that

B = C−1AC =

 L1 0

0 L2

 , (C.9)
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where L1 and L2 are the negative and positive eigenvalues, respectively, of A = (Aij). We

first calculate the trace, T , and determinant, D, of A,

T = A11 + A22 =
−ξ2kS2

1 + ξ2S2

+
1

1 + λA2

,

D = A11A22 − A12A21 =
−ξ2kS2

1 + ξ2S2

1

1 + λA2

− kS2

A2(1 + ξ1A2)

A2

S2

=
−ξ2kS2

(1 + ξ2S2)(1 + λA2)
− k

1 + ξ1A2

.

We note, from the calculations above, that D < 0. We proceed to calculate 0 = det(A−LI)

to obtain the quadratic equation

0 = L2 − (A11 + A22)L+ (A11A22 − A12A21) = L2 − TL+D.

The quadratic formula gives us:

L1,2 =
T ∓ (T 2 − 4D)1/2

2
= T/2∓ (T 2/4−D)1/2

Since D < 0, we find that L1,2 are both real and have opposite sign, hence L1 < 0 < L2.

It can be verified that v1 = [(L1 − A22), A21]′ and v2 = [(L2 − A22), A21]′ are eigenvectors

corresponding (respectively) to L1 and L2. Therefore, we have

A = CBC−1 =
1

A21(L1 − L2)

 L1 − A22 L2 − A22

A21 A21


 L1 0

0 L2


 A21 −L2 + A22

−A21 L1 − A22


We make another change of variables, taking y = C−1(x), and writing (C.8) as

ẏ = By +G(y), (C.10)

where B is from (C.9) and G(y) = C−1F (Cy).
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C.3 Applying the SMT

By the SMT (taking a = (a1, a2)),

u(t, a) = U(t)a+

∫ t

0

U(t− s)G(u(s, a))ds−
∫ ∞
t

V (t− s)G(u(s, a))ds (C.11)

is the solution to (C.10), where

U(t) =

 eL1t 0

0 0

 and V (t) =

 0 0

0 eL2t

 .

We solve for u using the method of successive approximation. We let u(0)(t, a) = 0 and

u(j+1)(t, a) = U(t)a+

∫ t

0

U(t− s)G(u(j)(s, a))ds−
∫ ∞
t

V (t− s)G(u(j)(s, a))ds. (C.12)

To solve for j = 1, we note that G(0) = C−1F (C · 0) = C−1F (0) = 0 since f1(0, 0) =

f2(0, 0) = 0. Therefore,

u(1)(t, a) =

 eL1ta1

0


For the next approximation, we first calculate U(t− s)G(u(1)(s, a)) = U(t− s)C−1F (Cw) =

H1F (Cw), where H1 = U(t− s)C−1 and w = (eL1sa1, 0)′. Simplifying H1 gives us:

H1 = U(t− s)C−1 =
1

A21(L1 − L2)

 eL1(t−s) 0

0 0


 A21 A22 − L2

−A21 L1 − A22


= eL1(t−s)

 1
L1−L2

A22−L2

A21(L1−L2)

0 0


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Then,

H1F (Cw) = eL1(t−s)

 1
L1−L2

A22−L2
A21(L1−L2)

0 0



 f1(Cy)

f2(Cy)

− eL1sa1

 A11 A12

A21 A22


 L1 −A22

A21




= eL1(t−s)

 f1(Cy)
(L1−L2) + f2(Cy)A22−L2

A21(L1−L2)

0

− eL1ta1

 L1(T−L2)−D
L1−L2

0

 .

(C.13)

Hence,

∫ t

0

U(t−s)G(u(1)(s, a)) =

∫ t

0

eL1(t−s)

 f1(Cy)
(L1−L2)

+ f2(Cy)A22−L2

A21(L1−L2)

0

 ds−t

eL1ta1

 L1(T−L2)−D
L1−L2

0




(C.14)

We note that our stable manifold will be of the form y2 = ψ
(2)
2 (y1), where ψ

(2)
2 (a1) =

u
(2)
2 (0, a1, 0). Since U(t)a and (C.14) only contribute trivially to u

(2)
2 , we will not perform fur-

ther calculations on them. Next, we calculate V (t− s)G(u(1)(s, a)) = V (t− s)C−1F (Cw) =

H2F (Cw). As before, we first calculate H2:

H2 = V (t− s)C−1 =
1

A21(L1 − L2)

 0 0

0 eL2(t−s)


 A21 A22 − L2

−A21 L1 − A22


= eL2(t−s)

 0 0

−1
L1−L2

L1−A22

A21(L1−L2)


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We thus have ,

H2F (Cw) = eL2(t−s)

 0 0

−1
L1−L2

L1−A22
A21(L1−L2)



 f1(Cw)

f2(Cw)

− eL1sa1

 A11 A12

A21 A22


 L1 −A22

A21




= eL2(t−s)

 0

−f1(Cw)
L1−L2

+ f2(Cw)(L1−A22)
A21(L1−L2)

− es(L1−L2)eL2t

 0

g(L1, L2, A21, A22)


Taking the integral of the right-hand term on the domain [t,∞) gives us eL1t

L2−L1
(0, g(·))′. We

find that g(·) = L2
1 − TL1 + D = 0. Therefore, this term does not contribute to the stable

manifold.

The SMT allows us to calculate the second approximation to the separatrix, M∗ = u
(2)
2 (0, a1, 0),

as

M∗ =
1

L1 − L2

(∫ ∞
0

−e−L2sf ∗1 (Cw)ds+
L1 − A22

A21

∫ ∞
0

e−L2sf ∗2 (Cw)ds

)
, (C.15)

where Cw = eL1sa1(L1 − A22, A21)′, and by (C.2),

f∗1 (Cw) =

(
2ξ1(eL1sa1A21 +A2)

(1 + ξ1(eL1sa1A21 +A2))(1 + ξ2(eL1sa1(L1 −A22) + S2))
− 1

)
k(eL1sa1(L1 −A22) + S2)

(C.16)

f∗2 (Cw) = (eL1sa1A21 +A2)

(
β(eL1sa1(L1 −A22) + S2)(eL1sa1A21 +A2)

1 + λ(eL1sa1A21 +A2)
− 1

)
(C.17)

We now solve −
∫∞

0
I1ds =

∫∞
0
e−L2sf ∗1 (Cw)ds and

∫∞
0
I2ds =

∫∞
0
e−L2sf ∗2 (Cw)ds. Substi-

tuting (C.16) into I1, we obtain

I1 =

(
2ξ1e

−L2s(eL1sa1A21 +A2)

(1 + ξ1(eL1sa1A21 +A2))(1 + ξ2(eL1sa1(L1 −A22) + S2))
− e−L2s

)
k(eL1sa1(L1−A22)+S2) (C.18)
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We split I1 into three parts:

I1 = I11 + I12 + I13

=
(2ξ1e

−L2s(eL1sa1A21 + A2)k(eL1sa1(L1 − A22) + S2)

(1 + ξ1(eL1sa1A21 + A2))(1 + ξ2(eL1sa1(L1 − A22) + S2)

− ke(L1−L2)sa1(L1 − A22)− e−L2skS2.

We can directly integrate I12 and I13 to obtain

−
∫ ∞

0

I1ds = −
∫ ∞

0

I11ds−
ka1(L1 − A22)

L1 − L2

+
kS2

L2

. (C.19)

We now work to simplify I11 by taking u = eL1s. The change of variables gives us

−
∫ ∞

0
I11ds = −2k

L1

∫ u2

u1

u−T/L1
(ua1A21 +A2)(ua1(L1 −A22) + S2)

(1 + ξ1(ua1A21 +A2))(1 + ξ2(ua1(L1 −A22) + S2))
du

=
2ξ1k

L1

∫ 1

0
u−T/L1

(uc1 +A2)(uc2 + S2)

(1 + ξ1(uc1 +A2))(1 + ξ2(uc2 + S2))
du,

(C.20)

where we find that u1 = 1 and u2 = lims→∞ e
L1s = 0 since L1 < 0. We take c1 = a1A21 and

c2 = a1(L1 − A22).

We would like to do a partial fraction decomposition for the integrand term in (C.20) not

containing u−T/L1 , I∗11. Noting that both the numerator and denominator are of degree 2, we

first perform long division to obtain a fraction p/q where deg p < deg q. Fully multiplying

the terms in the fraction, and setting c3 = A2c2 + S2c1 and c4 = A2ξ1 + S2ξ2 +A2S2ξ1ξ2 + 1

gives us

I∗11 =
u2c1c2 + uc3 + A2S2

u2ξ1ξ2c1c2 + u(ξ1ξ2c3 + ξ2c2 + ξ1c1) + c4

=
1

ξ1ξ2

− u(c2/ξ1 + c1/ξ2) + (A2/ξ2 + S2/ξ1 + 1/(ξ1ξ2))

(1 + ξ1(uc1 + A2))(1 + ξ2(uc2 + S2))

(C.21)

Setting c5 = c2/ξ1 + c1/ξ2 and c6 = A2/ξ2 + S2/ξ1 + 1/(ξ1ξ2), the second term of (C.21)
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becomes

uc5 + c6

(1 + ξ1(uc1 + A2))(1 + ξ2(uc2 + S2))
=

P1

(1 + ξ1(uc1 + A2))
+

P1

(1 + ξ2(uc2 + S2))
,

where

P1 =
−c5(ξ1A2 + 1) + c1c6ξ1

ξ1ξ2(c1S2 − A2c2) + c1ξ1 − c2ξ2

P2 =
−c5(ξ2S2 + 1) + c2c6ξ2

ξ1ξ2(−c1S2 + A2c2)− c1ξ1 + c2ξ2

Therefore, the integrand in (C.20), u−T/L1I∗11, can be written as

u−T/L1I∗11 = u−T/L1

(
1

ξ1ξ2

− P1

(1 + ξ1(uc1 + A2))
− P2

(1 + ξ2(uc2 + S2))

)

We note that the first term can be integrated,

2ξ1k

L1ξ1ξ2

∫ 1

0

u−T/L1du =
−2k

L2ξ1ξ2

u−L1/L2 ,

where the first equality comes about from the observation that −T/L1 = −1 − L2/L1. To

summarize, if we set

I∗∗11 = u−T/L1

(
P1

(1 + ξ1(uc1 + A2))
+

P2

(1 + ξ2(uc2 + S2))

)

We can rewrite (C.19) as

−
∫ ∞

0

I1ds =
kS2

L2

− kC2

L1 − L2

− 2ξ1k

L2ξ1ξ2

− 2ξ1k

L1

∫ 1

0

I∗∗11du (C.22)

To solve
∫ 1

0
I∗∗11du, we will need to use a hypergeometric function and the beta function.
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Indeed, we have the formula

∫ 1

0

tb−1(1− t)c−b−1(1− tx)−adt = B(b, c− b)2F1(a, b; c;x)

where B(a, b) =
∫ a

0
ta−1(1− t)b−1dt and 2F1(a1, a2; b1;x) =

∑∞
k=0

(a1)k(a2)k
(b1)k

xk

k!
. In our case, we

split I∗∗11 naturally as a sum of two terms, and for the first integral, we have b− 1 = −T/L1,

hence b = 1 − T/L1 = −L2/L1, 0 = c − b − 1, hence c = b + 1 = 2 − T/L1, a = 1, and

x = (−ξ1C1)/(ξ1A2 + 1), where we have pulled (ξ1A2 + 1)−1 from the denominator. We want

to first find an explicit representation for B(b, c− b),

B(b, c− b) = B(−T/L1 + 1, 1) =

∫ 1

0

t−T/L1dt =
1

−L2/L1

t−T/L1+1|10 =
−L1

L2

.

Using the hypergeometric function and (C.22), our final formula for−
∫∞

0
I1ds =

∫∞
0
−eL2sf ∗1 (Cw)ds

is

−
∫ ∞

0

I1ds = k

(
S2

L2

− C2

L1 − L2

− 2

L2ξ2

+
2ξ1P1

L2(ξ1A2 + 1)
2F

1
1 +

2ξ1P2

L2(ξ2S2 + 1)
2F

2
1

)
, (C.23)

where

2F
1
1 =2 F1

(
1,−L2/L1; 1− L2/L1;

−ξ1c1

ξ1A2 + 1

)

and

2F
2
1 = 2F1

(
1,−L2/L1; 1− L2/L1;

−ξ2c2

ξ2S2 + 1

)

We now begin work to solve
∫∞

0
I2ds =

∫∞
0
e−L2sf2(Cw)ds. Using the same substitution as
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earlier, i.e. u = eL1s, and again taking c1 = a1A21 and c2 = a1(L1 − A22), we obtain

∫ ∞
0

I2ds =
−1

L1

∫ 1

0

u−T/L1(uc1 + A2)

(
β(uc2 + S2)(uc1 + A2)

1 + λ(uc1 + A2)
− 1

)
,

=
−β
L1

∫ 1

0

u−T/L1
(uc2 + S2)(uc1 + A2)2

1 + λ(uc1 + A2)
du+

1

L1

∫ 1

0

u−T/L1+1c1 + u−T/L1A2du,

=
−β
L1

∫ 1

0

u−T/L1

(
c∗3u

2 + c∗4u+ c∗5 +
c∗6

λuc1 + λA2 + 1

)
du+

c1

L1 − L2

+
−A2

L2

,

(C.24)

where the last equality comes from long division in the first integral and full integration of

the second. The constants are as follows:

c∗3 =
c1c2

λ
, c∗4 =

c2A2 + c1S2

λ
− c2

λ2
, c∗5 =

c2

c1λ3
+
S2(A2 − 1)

λ2
, c∗6 =

−1

λ3
+
S2 − (A2c2/c1)

λ2
.

We concentrate now on the first integral in (C.24). The first three terms multiplied by

u−T/L1 can be integrated in a straight-forward manner. The last one can be integrated using

a hypergeometric function as described earlier. We thus obtain

∫ ∞
0

I2ds = −β
(

c∗3
2L1 − L2

+
c∗4

L1 − L2

− c∗5
L2

)
+

βc∗6
L2(1 + λA2)

2F
3
1 +

c1

L1 − L2

− A2

L2

, (C.25)

where 2F
3
1 = 2F1

(
1,−L2/L1; 1− L2/L1; −λc1

1+λA2

)
. Therefore, using (C.15),(C.23), and (C.25)

we obtain an explicit solution for M∗,

M∗ =
k

L1 − L2

(
S2

L2
− c2

L1 − L2
− 2

L2ξ2
+

2P1ξ1

L2(ξ1A2 + 1)
2F

1
1 +

2P2ξ1

L2(ξ2S2 + 1)
2F

2
1

)
+

L1 −A22

(L1 − L2)A21

(
−β
(

c∗3
2L1 − L2

+
c∗4

L1 − L2
− c∗5
L2

)
+

βc∗6
L2(1 + λA2)

2F
3
1 +

c1

L1 − L2
− A2

L2

)
,

(C.26)

where the constants and hypergeometric functions are specified earlier.
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C.4 Linear and Quadratic approximation of M∗

We take a linear and quadratic portion of M∗ in order to obtain approximate interpretable

results. Using the expansion for the hypergeometric function, and noting that the untrans-

formed stable manifold will intersect (0, 0), we remove all nonlinear terms and rewrite M∗ as

y2 = my1, where m is the slope of the line y2 to obtain

y2 =
−y1

(L1 − L2)2
c7, (C.27)

where c7 is the constant

c7 =
2P1ξ

2
1A21k

(ξ1A2 + 1)2
+

2P2ξ1ξ2k(L1 − A22)

(ξ2S2 + 1)2

− (L1 − A22) +
L1 − A22

A21

(
−βc∗∗4 + A21 +

βc∗∗6 A21λ

(1 + λA2)2

)
,

(C.28)

where c∗∗4 = c∗4/y1 and c∗∗6 = c∗6/y1. Next, since (S∗, a∗) = x = Cy, we can obtain

a∗ = S∗
(

(L1 − L2)2 − c7

(L1 − A22)(L1 − L2)2 + (−L2 + A22)c7

)
A21

Keeping all quadratic terms, we obtain

y2 =
−(y1)2

(L1 − L2)(2L1 − L2)
c8 −

−y1

(L1 − L2)2
c7 (C.29)

where

c8 = −2ξ1

(
P1ξ

2
1kA

2
21

(ξ1A2 + 1)3
+
P2ξ

2
2(L1 − A22)2

(ξ2S2 + 1)3

)
+
L1 − A22

A21

(
−β
λ
A21(L1 − A22)− βc∗∗6 A

2
21λ

2

(1 + λA2)3

)

The system can be solved for x = (S∗, a∗) using the quadratic formula.
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