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ARTICLE

Estimating heritability explained by local
ancestry and evaluating stratification bias
in admixture mapping from summary statistics

Tsz Fung Chan,1 Xinyue Rui,1 David V. Conti,1 Myriam Fornage,2 Mariaelisa Graff,3 Jeffrey Haessler,4

Christopher Haiman,1 Heather M. Highland,3 Su Yon Jung,5 Eimear E. Kenny,6 Charles Kooperberg,4

Loic Le Marchand,7 Kari E. North,3 Ran Tao,8,9 Genevieve Wojcik,10 Christopher R. Gignoux,11 PAGE
Consortium, Charleston W.K. Chiang,1,12,13 and Nicholas Mancuso1,12,13,*
Summary
The heritability explained by local ancestry markers in an admixed population (h2
g) provides crucial insight into the genetic architecture

of a complex disease or trait. Estimation of h2
g can be susceptible to biases due to population structure in ancestral populations. Here, we

present heritability estimation from admixture mapping summary statistics (HAMSTA), an approach that uses summary statistics from

admixture mapping to infer heritability explained by local ancestry while adjusting for biases due to ancestral stratification. Through

extensive simulations, we demonstrate that HAMSTA h2
g estimates are approximately unbiased and are robust to ancestral stratification

compared to existing approaches. In the presence of ancestral stratification, we show a HAMSTA-derived sampling scheme provides a

calibrated family-wise error rate (FWER) of �5% for admixture mapping, unlike existing FWER estimation approaches. We apply

HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American individuals in the Population Architecture

using Genomics and Epidemiology (PAGE) study. We observe bh2

g in the 20 phenotypes range from 0.0025 to 0.033 (mean bh2

g ¼
0.012 5 9.2 3 10�4), which translates to bh2 ranging from 0.062 to 0.85 (mean bh2 ¼ 0.30 5 0.023). Across these phenotypes we find

little evidence of inflation due to ancestral population stratification in current admixture mapping studies (mean inflation factor of

0.99 5 0.001). Overall, HAMSTA provides a fast and powerful approach to estimate genome-wide heritability and evaluate biases in

test statistics of admixture mapping studies.
Introduction

Admixture mapping (AM) aims to identify genomic re-

gions associated with a disease or quantitative trait in

recently admixed populations1–7 by leveraging the differ-

ences in allele frequencies between local ancestries.8 AM

provides a powerful approach to complement genome-

wide association studies (GWASs) in admixed populations

due to local ancestry information better tagging uncom-

mon or poorly imputed causal variants5 and spanning

larger genomic regions, thus reducing the multiple testing

burden,9 enabling discoveries with relatively smaller sam-

ple sizes.3,10 Similarly, recent work11 demonstrated that

local ancestry information, which is summarized by herita-

bility explained by local ancestry h2
g, can be leveraged to

estimate narrow-sense heritability h2 in admixed popula-

tions, unlike the genotype-based lower bounds (i.e., h2
g ).

Multiple works have shown that population structure

can bias association tests and estimates of h2
g .
12,13 However,
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it is less understood how similar demographic phenomena

bias AM and h2
g inference in admixed populations.

Admixed populations are typically modeled as a mixture

of multiple continental ancestries (e.g., African, European,

or Native American) with finer-scale structure within

ancestral populations left unmodeled. Nevertheless, hu-

man populations are often structured across both space

and time. For example, European ancestry individuals

can be modeled as a mixture of at least three ancient pop-

ulations,14 and Native American ancestry components

found in Latinos can also be derived across multiple sub-

populations spread across Latin America.15 This unmod-

eled fine-scale structure could lead to potential biases in

downstream association testing. Indeed, this phenomenon

has been demonstrated in European populations,16,17 and

could similarly impact inference in admixed populations

when it is not fully accounted for.18 When estimating hg
2

using SNP data of large sample size, a robust approach to

population stratification is to estimate h2 and test statistic
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inflation simultaneously.19 Examples of this approach

include linkage disequilibrium score regression (LDSC)13

and cov-LDSC.12 While these methods are designed for

SNP data, it remains unclear how applicable they are on

estimating h2
g using summary statistics from admixture

mapping studies.

In this study we propose HAMSTA (heritability estima-

tion from admixture mapping summary statistics), a likeli-

hood-based approach to infer h2
g from admixture mapping

summary statistics. To achieve robust and efficient compu-

tation, HAMSTA transforms the correlated test statistics us-

ing a truncated singular value decomposition (tSVD) and

performsmaximum-likelihood inference while accounting

for residual inflation due to stratification within ancestral

populations. We perform extensive simulations and

demonstrate that HAMSTA provides approximately unbi-

ased estimates of h2
g and outperforms existing approaches

to detect evidence of stratification bias. We demonstrate

that estimates from HAMSTA can be leveraged to effi-

ciently compute well-calibrated family-wise error rates

for admixture mapping, particularly in the presence of

ancestral stratification which previous approaches do not

consider.20 Next, we apply HAMSTA to admixture map-

ping summary statistics for 20 traits from 15,988 self-iden-

tified African American individuals in the Population

Architecture using Genomics and Epidemiology (PAGE)

study.21 We find the h2 estimates of 0.85 (standard error:

0.085) and 0.42 (SE: 0.086) for height and BMI, respec-

tively. Compared with LDSC on admixture mapping sum-

mary statistics, HAMSTA offers more precise estimates for

h2
g and better quantifies the inflation in the test statistics

due to unknown confounding biases. Overall, we demon-

strate that HAMSTA provides a fast and powerful way to es-

timate genome-wide heritability that controls biases using

summary statistics from admixture mapping studies.
Material and methods

Model for complex trait and ancestral stratification
We consider a two-way admixed population, with ancestral popu-

lations pop1 and pop2, the last of which is recently structured into

pop2a and pop2b (Figure S1). This demographicmodelmimics the

African and European admixture in African American and the

finer-scale structure in their ancestral European population. We

let a, d, and �d denote the population mean phenotype values

of pop1, pop2a, and pop2b. We denote Ai,k as the centered and

standardized local ancestry calls for individual i at marker k,

such that its sample mean is zero and sample variance is 1. We

denote indexing over n individuals at the kth marker as A.,k and in-

dex over M markers for the ith individual as Ai,.. We define the

phenotype yiof an admixed individual i as

yi ¼ Ai;:bþ piaþ didþ ei;

where b is theM3 1 vector of local ancestry effects, pi is defined as

the global ancestry proportion due to pop1, di ¼ pi
ð2aÞ � pi

ð2bÞ is
the difference between the global ancestry proportions of pop2a

and pop2b, and ei � Nð0;s2e Þ is residual environmental noise.
1854 The American Journal of Human Genetics 110, 1853–1862, Nov
Furthermore, we assume that bk � N

�
0;

h2g
M

�
, where h2

g is defined

as the heritability explained by local ancestry.11 Lastly, we define
a2

n p0p as the phenotypic variance explained (PVE) by global

ancestry and d2

n d0d as PVE by ancestral stratification.
Test statistics for admixture mapping
We model the marginal association statistics from an admixture

mapping study where only global ancestry proportions pi

(and not di) are estimated beforehand. If the stratification term

is not adjusted, the test statistics for marker k will be Zk ¼
sR

�1ðA:;k
0PA:;kÞ�1=2ðA:;k

0PyÞ, where sR
2 is the residual variance after

the global ancestry p is projected out by matrix P ¼ I �
pðp0pÞ�1

p0. Extending this to all M markers we have, Z ¼
sR

�1D�1=2ðA0 PyÞ, whereD is the diagonal elements of A0PA. Given

this and distributional assumptions regarding y, we can derive the

expectation and covariance of Z as

E½Z� ¼ sR
�1D�1=2A0Pdd

Cov½Z� ¼ sR
�2

"
h2
g

M
D� 1

2ðA0PAÞ2D� 1
2 þD� 1

2ðA0PAÞD� 1
2s2

e

#
:

The D�1=2ðA0PAÞD�1=2 is local ancestry disequilibrium (LAD)

matrix analogous to the LD matrix. When sample size n is large,

the test statistics Z are well approximated by amultivariate normal

distribution. The mean reflects the bias due to correlation between

local ancestry and ancestral stratification conditional on the

global ancestry. In the covariance, the first term is related to the

heritability explained by local ancestry and LAD score matrix.

The second term in the covariance is related to LAD matrix and

nongenetic effects. In the null scenario, where h2
g ¼ 0, d ¼ 0,

the distribution of Z has means of zeros and covariances simply

equal to the LAD matrix.

We then use singular value decomposition (SVD) to

decorrelate the association statistics. We let the SVD of A0P ¼
USV 0, A0PA ¼ US2U 0, and ðA0PAÞ2 ¼ US4U 0. We define Z� ¼
S�1sRU

0D1=2Z, which follows Z� � N

�
V 0dd; h2g

M S2 þIs2e

�
, where

the components are uncorrelated. Since the mean of Z* reflects

the bias in association statistics induced by the unknown

difference in sub-continental ancestries, we then assume V 0dd
to be random and follow a normal distribution N(0, C*) such

that Z� � N

�
0;

h2g
M S2 þðIs2e þC�Þ

�
. The parameters h2

g and

C ¼ ðIs2e þC�Þ are the parameters to be inferred. We refer to the

parameter C as ‘‘intercept’’ as it is analogous to LDSC intercept.

To allow heterogeneous C across Z*, we allow C to be different

every 500 elements, i.e., C ¼ diagðc1/3500;c2/3500;/Þ. Test sta-
tistics from different chromosomes are rotated separately and do

not share elements in C.
Inferring h2
g and biases using HAMSTA

HAMSTA first applies Z� ¼ S�1sRU
0D1=2Z to obtain the rotated

Z scores and then finds the estimates for h2
g and C that maximize

the likelihood given Z� � N

�
0;

h2
g

M S2 þC

�
. Parameters h2

g and C

were log-transformed to ensure positivity during optimization.

First, we test for ancestral stratification using a likelihood ratio

test betweenmodels withmultiple intercepts and single intercepts
ember 2, 2023



in which C is a scalar shared by all elements in Z*. If the test is

significant with p < 0.05, we determine the maximum likelihood

estimates bh2

g and bC under the multiple intercept model. Other-

wise, we find bh2

g and bC under the single intercept model. To test

for the significance of bh2

g, we use a likelihood ratio test that test

the hypothesis h2
g ¼ 0: The standard errors of the estimates were

determined using the jackknife method over 10 blocks.

Estimating h2 from h2
g

Previous work11 demonstrated a relationship between narrow-

sense heritability h2 and h2
g as h2

g ¼ 2FSTC qð1 � qÞ h2. The h2
g

was formulated as the variance of the expected phenotype condi-

tioned on local ancestries, assuming only the genotypes are

dependent on local ancestry. Assuming a distribution of genotypic

effect size with respect to the ancestral allele frequencies, the FSTC
is defined as the average genetic distance between the ancestral

populations at causal loci weighted by the squared of genotypic ef-

fect sizes. At each site, the genetic distance is computed as ðf1 � f2Þ2
2f ð1� f Þ,

where f1, f2, and f are the allele frequency in the ancestral popula-

tions and the admixed population. We provided h2 estimates

based on (1) FSTC ¼ 0.1692 reported in the original study,11 which

was estimated from HapMap 3 dataset, and (2) FSTC ¼ 0.1152 esti-

mated in this study using a subset of African and European descent

from the 1000 Genome and HGDP subset in gnomAD v.3.1,22

assuming common variants explain 90% of h2. The average

admixture proportion p was observed to be 78% African ancestry.

Simulation design
To validate and assess performance of HAMSTA, we performed

simulations using realistic demographic scenarios. Specifically,

we simulated ancestral populations pop1 and pop2 mirroring Afri-

can and European populations in the Out-of-Africa demography

model.23 We additionally introduced structure into pop2 by subdi-

viding it into two subpopulations (denoted by pop2a and pop2b

below, Figure S1). We set pop2a and pop2b to have diverged 200

generations ago with a migration rate of 10�3. These parameters

were selected to result in a genetic differentiation similar to that

within European populations (FSTz0:003) estimated from the

HGDP and 1000 Genome subsets in gnomAD.22 We simulated

this demography for a 250 Mb region with a uniform recombina-

tion rate of 10�8 per bp using msprime.24 Using the true geneal-

ogies from simulations, we extracted the true local ancestry of

each individual by tracing their lineage to each ancestral popula-

tion (pop1, pop2a, or pop2b). Global ancestries were computed

from local ancestry information by computing the total propor-

tion of the 250 Mb region that is inherited from an ancestral pop-

ulation. We sampled 50,000 admixed individuals and 20,000 local

ancestry markers according to the demography mode.

Next, we simulated phenotypes according to our phenotype

model y ¼ Abþ paþ ddþ e. Given a sparsity a, we drew the effect

of a local ancestry marker bk fromN

�
0;

h2g
aM

�
with probability a and

e from Nð0; s2e Þ. Then we set the true h2
g, PVE by global ancestry,

PVE by ancestral stratification, and s2e by varying the values of g

and d. Finally, test statistics were computed using linear regression

adjusting for p using PLINK 2.0.25

Estimate h2
g with other approaches

To compare HAMSTA with existing methods in h2
g estimation, we

applied BOLT-REML,26 GCTA,27 LD score regression (LDSC),13 and
The American Jour
cov-LDSC12 to the simulated and real-world data. In GCTA, the

same set of covariates included in the admixture mapping were

used in h2
g estimation. Following previous studies, we compute

the genetic relatedness matrix using local ancestry in place of ge-

notypes.11 In LDSC and cov-LDSC, we define the ‘‘local ancestry

linkage disequilibrium’’ (LAD) score for marker i as li ¼
P

j˛Wr2i;j

with r being the local ancestry correlation between marker i

and marker j within W, the set of markers in a given window

size. In cov-LDSC, the correlation is conditioned on the global

ancestry. Window sizes of 1 cM and 20 cM were used. The

LAD scores were used as the regressors and weights in LDSC and

cov-LDSC.

Significance threshold estimation
Specifically, to determine the significance threshold for a given

admixture mapping study, we randomly generated test statistics

Z ¼ s�1
R D�1=2USQ, where Q is a vector of random variable

sampled from Nð0;s2qÞ. We set s2q to be the maximum intercept if

the test for multiple intercepts is significant, and s2q to be the in-

ferred intercept if the test is not significant. We repeated the sam-

pling procedure 2,000 times to determine the critical value as the

95% percentile of maxðZ2Þ. The significance threshold was deter-

mined as the tail probability of a chi-square distribution (degree

of freedom ¼ 1) at the critical value. To determine the threshold

for multiple chromosomes, we estimate the threshold for each

chromosome separately and then combine the thresholds by sum-

ming up the effective testing burden, i.e., Combined thres ¼
0:05=

P22
i¼1ð0:05 =threschromosome iÞ. For comparison, we also esti-

mated the significance threshold using STEAM,20 which sampled

from Z ¼ MVNð0;SÞ, where S is a local ancestry correlation ma-

trix based on genetic distance and admixture parameters. Fam-

ily-wise error rates (FWERs) were computed as the percentage of

times at least one significant signal is identified out of 500 null

simulations.

Local ancestry inference and genome-wide mapping for

admixed individuals in PAGE cohort
We obtained phenotypes and genotyping data measured on

Multi-Ethnic Genotyping Array (MEGA) from the PAGE study.21

The complete dataset included 17,299 participants who self-iden-

tified as African American. Our analysis included 20 quantitative

phenotypes: body mass index (BMI), height, waist-to-hip ratio,

diastolic blood pressure, systolic blood pressure, PR interval, QRS

interval, QT interval, fasting glucose, fasting insulin, C-reactive

protein, mean corpuscular hemoglobin concentration, platelet

count, estimated glomerular filtration rate, cigarettes per day,

cups of coffee per day, high-density lipoprotein (HDL), low-den-

sity lipoprotein (LDL), triglycerides, and total cholesterol. Filters

and transformations were applied, and covariates were selected ac-

cording to the original PAGE analysis within the African American

subset (Table S1).21

To infer the local ancestry, a subset of African and European ge-

nomes from the 1000 Genome and HGDP subset in gnomADwere

used as reference individuals.22 After filtering out SNPs with miss-

ingness >10%, lifting over, and merging, 516,731 SNPs were used

in the local ancestry inference, resulting in 101,292 local ancestry

markers. The genotypes of PAGE and reference individuals were re-

phased together using EAGLE,28 and the ancestry probabilities

were inferred as the local ancestry of the haplotype in a region us-

ing RFMIX2.29 The global ancestry of an individual was computed

by taking the average of all predicted local ancestries. We analyzed
nal of Human Genetics 110, 1853–1862, November 2, 2023 1855



Figure 1. Simulation results from 50,000 admixed individuals and phenotypes under different levels of variance explained by local
ancestry, global ancestry, and ancestral stratification
The boxplots show the range and quartiles of the estimates
(A) Results of h2

g estimation when varying true h2
g. Phenotypic variance explained (PVE) by global ancestry and ancestral stratification

were set to 0. A gray identity line is plotted.
(B) Comparison of h2

g estimates between HAMSTA and BOLT-REML applied to simulation data when true h2
g ¼ f0:01;0:02;0:03;0:05g

in (A).
(C) Results when varying the PVE by global ancestry, setting h2

g ¼ 0:03 (horizontal line) and PVE by ancestral stratification ¼ 0.
(D) Comparison of h2

g estimates between HAMSTA and BOLT-REML under various levels of ancestral stratification. True h2
g were fixed at

0.03 (horizontal line). The extremes are capped at 1.5 times of the interquartile range away from the lower and upper quartiles. Estimates
beyond the extremes are represented by diamonds.
up to 15,988 individuals who have >5% of one of the inferred an-

cestries and have no missing values in the covariates in the

20 quantitative phenotypes. Admixture mapping was performed

using linear regression adjusting for the study center, inferred

global ancestry, and phenotype-specific covariates used in PAGE.

The average estimate of h2
g across phenotypes was calculated by

weighting the estimate of each phenotype by the inverse of the

squared standard error. The run time was measured on a machine

with an Intel Xeon 4116 processor and 48 GB memory.
Results

HAMSTA provides unbiased estimates of h2
g under

ancestral stratification

To evaluate the accuracy of h2
g estimates under various

scenarios, we performed simulation studies using local

ancestry data simulated under a population demographic

model that mirrors African American admixture history

with an addition of recent population structure in one of
1856 The American Journal of Human Genetics 110, 1853–1862, Nov
the ancestral populations (see material and methods). In

brief, we simulated phenotypes without stratification ef-

fects where we varied h2
g from 0 to 0.05 (corresponding

to h2 from 0 to 1 according to Zaitlen et al.11), which re-

flects h2
g estimates reported in previous African American

samples,30 and performed admixture mapping to compute

summary statistics. Overall, we found HAMSTA produced

approximately unbiased estimates of h2
g (Figure 1A), irre-

spective of the sparsity of causal markers (Figure S2). The

jackknife standard errors for h2
g were also insensitive to

the choice of jackknife blocks. For example, in a simulation

of h2
g ¼ 0.03, the average standard error was 0.00535,

0.00531, and 0.00513 when using 10, 20, and 50 blocks,

respectively. We observed that the summary statistics-

based estimates from HAMSTA were highly correlated

with those computed from individual-level data using

BOLT-REML (Figure 1B), suggesting that when stratifica-

tion bias is not present, there is no loss in accuracy across

data settings. Next, to compare our method with existing
ember 2, 2023



summary statistics-based methods, we applied LD score

regression (LDSC; see material and methods) and cov-

LDSC and observed both methods produced biased esti-

mates exhibiting large standard errors (Figure S3). Impor-

tantly, we found LDSC estimates remained biased after

re-estimating ‘‘LAD scores’’ using a larger window size of

20 cM (Figure S3). Next, we varied effect of global ancestry

while fixing the h2
g and PVE by ancestral stratification and

found that HAMSTA h2
g estimates remained unbiased

(Figure 1C). Together, our results suggest that when strati-

fication does not inflate summary statistics, HAMSTA pro-

vides unbiased estimates of h2
g , unlike existing summary-

based approaches.

Next, we sought to evaluate HAMSTA in the presence of

ancestral stratifications. We determined that the h2
g esti-

mates in our method were more robust to the presence of

unadjusted ancestral stratification (Figure 1D). In contrast,

BOLT-REML, where the inference model is not aware of

ancestral stratification, produced biased results and

elevated variance as the PVE by ancestral stratification

increases.

Further, we demonstrate that our method is still robust

to other scenarios of structures in the ancestral populations

(Figure S4). We explored the cases where (1) both ancestral

populations are structured, (2) the proportion of ancestries

from the subpopulations are unequal in the admixed pop-

ulation, and (3) the subpopulations are introduced to the

admixture event at different times. In all the scenarios,

the unbiasedness of our estimator is not affected by the

ancestral stratification.

Overall, we demonstrated HAMSTA provides unbiased

estimates of h2
g under various levels of effects from local

ancestry, global ancestry, and stratification in ancestral

populations.

HAMSTA estimates inflation in admixture mapping

statistics due to stratification

Having established the unbiasedness in h2
g estimates, we

next sought to evaluate the ability of HAMSTA to identify

inflation in admixture mapping statistics due to ancestral

population stratification. Specifically, intercepts estimated

by HAMSTA, which signify test statistics inflation and

analogous to LDSC intercepts, can be tested against the

null (i.e., 1) to evaluate stratification bias. Overall, we

observed HAMSTA produced estimates greater than 1 as

the PVE by ancestral stratification increased (Figure 2A),

demonstrating the ability of HAMSTA-inferred intercepts

to capture stratification-induced inflation. Although

we noted similar trends in other measures of inflation,

including mean c2 and genomic inflation factor lGC, their

inability to distinguish between polygenicity and con-

founding prevent their use for complex disease analyses.13

Next, we evaluated the ability of LDSC to identify stratifi-

cation in admixture mapping statistics through its inter-

cept estimates and observed biased results with large vari-

ability (Figure S5). We observed that HAMSTA is well

calibrated (Figure 2B) and significantly more powerful
The American Jour
to detect stratification bias compared with LDSC

(Figure 2C). For example, HAMSTA has 80% power when

stratification explains 10% of PVE, compared with 5% po-

wer of LDSC. These relative differences in performance

held when we increased the LAD score window size for

LDSC (Figure S5). Overall, HAMSTA provides unbiased esti-

mates of inflation in admixture mapping statistics due to

ancestral bias and has greater power to reject its null

compared to alternative approaches.

HAMSTA improves estimation of p value thresholds to

control family-wise error rate

The number of approximately independent ancestry

blocks depends on the demographic history of the popula-

tion being studied, so there is no universal threshold to

determine genome-wide significance in admixture map-

ping studies. Admixture mapping often relies on permuta-

tion-based approaches to estimate the FWER, but these

approaches can be computationally intractable for large

datasets. Although a recently developed summary-static

sampling scheme (STEAM) bypasses the need for individ-

ual-level permutations and speeds up the FWER estima-

tion,20 its assumption that there exists no inflation in

the test statistics may be unmet in the presence of popula-

tion structure and polygenicity.

Here, we demonstrated that inferences from HAMSTA

can be leveraged to produce significance thresholds for as-

sociation testing to achieve calibrated FWERs compared

with STEAM. First, when PVE due to stratification is zero,

we found STEAM and HAMSTA estimated similar signifi-

cance thresholds (HAMSTA mean: 1.12 3 10�4; STEAM:

1.57 3 10�4), yielding comparable FWERs at �5%

(Figure 2D), which suggests that HAMSTA-based FWER es-

timates do not deflate overall power despite increased

model complexity. Importantly, in presence of ancestral

stratification, we found that HAMSTA estimates resulted

in approximately calibrated FWERs unlike STEAM, which

produced a considerable number of false positive associa-

tions (Figures 2D and S6). For example, when PVE due to

stratification is 0.25, HAMSTA estimates resulted in FWER

of 8% compared to the FWER of 34% from STEAM.

Together, these findings demonstrate that intercepts esti-

mated by HAMSTA can be incorporated into significance

threshold estimation, producing better calibrated FWERs

and thereby reducing false positive findings.

Application to African American in the PAGE study

To illustrate the ability of HAMSTA to estimate h2
g from

summary data, we applied it to admixture mapping sum-

mary statistics of 20 quantitative phenotypes computed

from the African American participants in PAGE study21

(mean n¼ 8,383, SD n¼ 3,901; see material andmethods).

In brief, we performed admixture mapping using 101,292

markers adjusting for the study center, global ancestry,

and phenotype-specific covariates. The average genomic

inflation factor lGC across phenotypes is 1.53 (SD ¼
0.64). Next, we applied HAMSTA to generated summary
nal of Human Genetics 110, 1853–1862, November 2, 2023 1857



Figure 2. Evaluating ancestral stratification by HAMSTA in 500 simulation replicates of 50,000 admixed individuals and phenotypes
under h2

g ¼ 0 and various levels of variance explained by local ancestral stratification
(A) Boxplots of measures of test statistic inflation reflecting ancestral stratification. The average estimates of HAMSTA’s intercepts are
labeled.
(B) Quantile-quantile plot of p values for the test for ancestral stratification.
(C) Power comparison between HAMSTA and LDSC in detecting ancestral stratification. The p value cutoff for each approach was deter-
mined such that the significance level ¼ 0.05 in null simulation.
(D) Family-wise error rate before and after correcting p value cutoff in admixture mapping using the estimated intercepts.
statistics to infer h2
g and evaluate potential stratification

biases. To estimate h2 from h2
g, we estimated the average Af-

rican ancestry to be 78% and FSTC¼ 0.12 from the admixed

individuals in PAGE and reference individuals from HGDP

and 1000 Genomes.

We estimated the h2
g ranges from 0.0025 for systolic

blood pressure to 0.033 for height (mean h2
g ¼ 0.012;

SE ¼ 9.2 3 10�4) across the 20 phenotypes, of which 13/

20 were individually significantly different from 0 (nomi-

nal p value < 0.05 in Table S2). Translating h2
g to estimates

of h2, we observed the h2 ranging from 0.062 for systolic

blood pressure to 0.85 for height (mean h2 ¼ 0.30; SE ¼
0.023), of which 13/20 were individually significant. We

found these results were robust to different values of FSTC
(see Table S2).

Consistent with the simulation results, HAMSTA esti-

mates were correlated more strongly with BOLT-REML es-

timates (r ¼ 0.99, Figure 3) than those computed from

LDSC (r ¼ 0.44) (Figure S7). This was largely attributable
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to statistical precision, with standard errors in HAMSTA

estimates (range from 0.0023 to 0.014, mean ¼ 0.0058) be-

ing slightly, but not significantly (paired t test: p ¼ 0.051),

greater than those from BOLT-REML (range from 0.0021 to

0.0076, mean ¼ 0.0042), and noticeably lower than those

computed from LDSC (range from 0.0064 to 0.021,

mean ¼ 0.012). Since 5/20 phenotypes had limited sample

sizes (n < 5,000), which is known to impact the perfor-

mance of BOLT,26 we also estimated h2
g via GCTA. Of the

16 estimates computed by GCTA that converged, we

observed they were in general bounded by the estimates

by HAMSTA and BOLT-REML (Figure S8). Overall, we

find that HAMSTA estimates of h2
g are consistent with

those computed from individual-level approaches in real

data, while requiring much less computation time:

HAMSTA takes 1–29 min for SVD of each chromosome

and 49 s for the inference, but GCTA requires 1 h to

compute the relatedness matrix and 1 h for the infer-

ence step.
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Figure 3. Comparison of bh2

g -based bh2 between HAMSTA and BOLT-REML for the 20 quantitative traits in African American in PAGE
Results on 20 PAGE quantitative traits. Comparison between the estimates from HAMSTA and BOLT-REML. Each point shows the bh2,
and the lengths of the error bars represent the standard errors.
To substantiate the translated h2 estimates computed

fromHAMSTA, we compared with previous h2 estimates re-

ported from admixed individuals11 as well as those from

twin studies. Overall, we found our h2 estimates are signif-

icantly correlated with the previously reported h2
g-based es-

timates11 (r¼ 0.84, p¼ 0.03). Focusing on height and BMI,

HAMSTA estimated h2
g ¼ 0.033 (SE: 3.4 3 10�4) and

h2
g ¼ 0.017 (3.4 3 10�4), respectively, corresponding to h2

of 0.85 (0.085) and 0.42 (0.086), respectively. The esti-

mated height h2 was similar to the h2 ¼ 0.68–0.84 in

twin studies,31 whereas the estimated BMI h2 was smaller

than the h2 ¼ 0.57–0.77 in twin studies32 and higher

than the h2 ¼ 0.30 in an estimation from whole-genome

sequence data in European ancestry populations.33

HAMSTA-estimated intercepts suggested limited evi-

dence for inflated summary statistics due to ancestral strat-

ification in the admixture mapping (range from 0.97 to
The American Jour
1.01, average ¼ 0.99; Table S2), with 0/20 phenotypes

differing significantly from the expectation of 1. Although

LDSC suggested no significant deviation of intercepts

from 1 (range from 0.18 to 1.95, average ¼ 1.07), individ-

ual intercepts varied more greatly under LDSC (mean

SE ¼ 0.34) than those computed under HAMSTA (mean

SE ¼ 5.6 3 10�3) (Table S2).

Since in simulation we demonstrated that the signifi-

cance threshold for admixture mapping corresponding to

FWER of 5% is sensitive to ancestral stratification, we esti-

mated the thresholds based on the HAMSTA intercepts.

Under no ancestral stratification (i.e., intercept ¼ 1),

HAMSTA estimated the significance threshold required to

be 2.80 3 10�5, which agrees with the threshold of

2.10 3 10�5 reported by STEAM for African Americans.20

Based on the estimated intercepts in HAMSTA for the

20 phenotypes, the estimated thresholds range from
nal of Human Genetics 110, 1853–1862, November 2, 2023 1859



2.70 3 10�5 to 3.52 3 10�5. To conclude, HAMSTA found

no evidence of inflation in admixture mapping statistics

and provided estimates for h2
g and hence h2 of the complex

traits of African Americans in PAGE study.
Discussion

In this study, we demonstrated the use of summary statis-

tics from admixture mapping to quantify the contribution

of genetic variations to a trait. We developed a tool,

HAMSTA, that unbiasedly estimates h2
g under the various

trait architectures, including in the presence of unknown

population stratification in ancestral populations. Using

the summary statistic-based approach, HAMSTA distin-

guishes the effect tagged by local ancestry on test statistics

from unknown confounding biases. We also demonstrated

that the estimated biases could be used to correct the sig-

nificance threshold such that FWERs are better controlled.

Lastly, we applied HAMSTA to real-world data, showing

that it can recover the h2
g and hence h2 from admixture

mapping summary statistics.

Our method addresses several limitations in existing ap-

proaches estimating h2
g. First, because of the long-range

correlations between local ancestrymarkers, LDSC requires

a large window size to capture correlations with distant ef-

fect markers. Also, regression weights may not be sufficient

to solve the problem of correlated c2 statistics, which could

lead to inefficient estimation.34 Our analysis shows that

the efficiency can be improved when admixture mapping

test statistics are rotated to an independent space. Second,

although REML could provide an unbiased estimate, we

showed in simulation that it is susceptible to ancestral

stratification. Also, it is computationally expensive as the

sample size increases. In real data analysis, the REML

approach in GCTA failed to converge in waist-to-hip ratio,

QT-interval, cigarette-per-day, and HDL. In contrast, we

showed that HAMSTA would be a more robust approach

to ancestral stratification and has no convergence problem

in our analysis. Finally, existing methods assume uniform

test statistics inflation although it has been shown that

this assumption could be inaccurate.35,36 HAMSTA relaxes

this assumption by allowing multiple intercepts to repre-

sent non-uniform inflation. Overall, HAMSTA offers ad-

vantages over existing methods in the above aspects.

We are aware of several limitations of HAMSTA. First,

HAMSTA provides estimates of heritability explained by

local ancestries only in two-way admixtures, which may

limit the use of the method in admixed populations with

more than two ancestral populations. Currently, the rela-

tionship between h2
g and h2 are established only in two-

way admixed populations such as African American, but

models for h2
g multi-way admixture have not yet been pro-

posed. Incorporating the contribution of multiple ances-

tries in h2
g and h2 will be a possible extension in the future.

Second, the standard error of HAMSTA h2
g is larger than

that from methods that use individual-level data like
1860 The American Journal of Human Genetics 110, 1853–1862, Nov
BOLT-REML (mean SE ¼ 0.0058 in HAMSTA versus mean

SE ¼ 0.0042 in BOLT-REML). Nevertheless, HAMSTA h2
g

is robust to ancestral stratification, unlike BOLT-REML

showing upward biases in the h2
g estimates (Figure 1D).

Third, HAMSTAmodels only summary statistics computed

from linear regression on quantitative traits. The scope of

this study is not extended tomodeling binary traits. Future

work can explore phenotypes under the liability-scale

model and evaluate the use of summary statistics from lo-

gistic regression models. Lastly, since HAMSTA relies on an

accurate LAD, factors that the LAD depends on, such as

global ancestries, could potentially impact the accuracy

of the estimates. These factors are required to be adjusted

for when estimating the LAD.

Similar to previous summary statistic-based methods in

GWASs such as LDSC, HAMSTA requires admixture map-

ping statistics and LAD information from individual-level

local ancestry data. In LDSC or cov-LDSC, the LD scores

need to be computed from an individual-level genotype

data in which the LD is consistent with the study sample

before proceeding with the downstream inference. Other

summary-based methods such as h2-GRE37 also use in-

sample LD estimates before estimating heritability. Like-

wise, HAMSTA requires the SVD results of individual-level

local ancestry data to capture the LAD information. In a

cohort involving multiple phenotypes, LAD captured in

the SVD results can be re-used in different phenotypes

for fast and robust summary statistics analysis in admix-

ture mapping studies.

In summary, our work opens a direction of summary sta-

tistics analysis in admixture mapping studies. Our method

will facilitate studies of genetic architecture in large co-

horts of admixed populations.
Data and code availability

The codes for HAMSTA are available at https://github.com/

tszfungc/HAMSTA.
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Web resources

BOLT-REML, https://alkesgroup.broadinstitute.org/BOLT-LMM/

BOLT-LMM_manual.html

GCTA, https://cnsgenomics.com/software/gcta/

GNOMAD HGDP and 1KG subsets, https://gnomad.broadinstitute.

org/downloads#v3-hgdp-1kg

LDSC, https://github.com/bulik/ldsc

MSPRIME, https://github.com/tskit-dev/msprime

PLINK, https://www.cog-genomics.org/plink/

RFMIX2, https://github.com/slowkoni/rfmix

STEAM, https://github.com/kegrinde/STEAM
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