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Abstract

First Principles Modeling of the Thermodynamic and Kinetic Properties of Superalloys

by

Jon Gabriel Goiri

Ni-Al based alloys remain a material of technological importance for high strength

and high temperature applications. A design that optimizes desirable properties, such as

strength, or creep and oxidation resistance, requires a deep understanding of thermody-

namics and kinetics. This thesis uses ab initio methods to model both phase stability and

diffusion processes. Starting from Density Functional Theory (DFT), formation energies

of different crystal orderings are used to parameterize cluster expansion models. Used

in conjunction with Monte Carlo techniques, these models can be used to derive macro

scale properties at finite temperature.

We use DFT calculations to explore orderings on FCC and BCC, first for the Ni-Al

binary, and then the Ni-Al-Cr ternary. Our calculations not only predict the stability of

known phases, but also reveal new families of previously unknown ordered phases. We

introduce strain order parameters to systematically analyze orderings on both FCC and

BCC lattices. Many of these orderings are predicted to be unstable around xNi = 0.625,

where a martensitic phase transformation is known to occur.

DFT calculations serve as training data for cluster expansion effective Hamiltonians,

which accurately predict formation energies of arbitrary orderings without costly com-

putations. We use these effective Hamiltonians in Monte Carlo simulations to calculate

free energies, with which we construct phase diagrams. The difficulty of parameterizing

a cluster expansion grows exponentially with the number of possible components. We

introduce a recursive approach to parameterize multi-component alloy Hamiltonians us-

v



ing interaction parameters from simpler subsystems as Bayesian informative priors. We

applied this approach to expand the statistical mechanics study of Ni-Al to Ni-Al-Cr,

and explore Cr behavior within the L12 ordering.

The same cluster expansion methods can be used to model hop barriers of kinetic

processes as a function of the ordering on the crystal. Diffusion barriers for Al hops

have a strong dependence on the immediate local composition, while Ni hops are largely

independent of their local ordering. We have developed a rigorous Kinetic Monte Carlo

model that incorporates these relationships of hop barriers with local ordering, and ap-

plied it to the Ni-Al binary. Ni and Al exhibit different diffusion properties in the γ and

γ′ phases, which we discuss using various metrics of diffusion.

vi



Contents

Curriculum Vitae iv

Abstract v

1 Introduction 1

2 Computational Methods 6
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Cluster expansion formalism . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Monte Carlo methods and statistical mechanics . . . . . . . . . . . . . . 21

3 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Diffusive hops and their local environments 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vii



5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Kinetic properties of Ni-Al 116
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Theoretical formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Summary 143

Bibliography 145

viii



Chapter 1

Introduction

Nickel alloys are used in a wide variety of industrial applications, such as heat exchangers,

chemical reactors, nuclear plants and aircraft jet engines. Their high temperature creep

resistance, oxidation resistance and mechanical strength make them an attractive choice

for these applications[4, 5, 6, 7], where the operating conditions involve high stresses and

elevated temperatures. The design of these alloys for turbine blades places emphasis on

withstanding ever increasing operating temperatures, which confers a greater efficiency

for the engine[8].

A typical turbine blade is composed of a Ni-Al based substrate and a ceramic ther-

mal barrier coating (TBC). The TBC enables the substrate to maintain its mechanical

properties by protecting it from the heat generated during combustion[9]. These two

layers are held together by a bond coat, which can also be Ni-Al based[10], as shown

in fig. 1.1. This bond coat acts as an aluminum reservoir, and promotes the formation

of a desireable alumina scale, which hinders further diffusion of oxygen into the bulk,

therefore increasing its oxidation resistance[11, 6, 12, 13].

At higher temperatures, the binary Ni-Al system can form three different phases[14],

which can be seen in figs. 1.2a to 1.2c.
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Al2O3/Cr2O3

Ni3Al/NiAl

Ni3Al

Ni

Figure 1.1: Schematic of a turbine blade cross section. The substrate, composed of
γ′ precipitates in a γ matrix, gives the turbine blade its mechanical strength. The
thermal barrier coating acts as an insulator from external heat, while the bond coat
promotes the formation of a thin oxide scale, which protects the blade from oxidation.

� γ phase, a FCC Ni solid solution with low amounts of Al (fig. 1.2a)

� γ′ phase, which forms around an Al fraction of 0.25. This is a FCC phase with L12

ordering (fig. 1.2b)

� β phase, which forms around an Al fraction of 0.5. This is a BCC phase with B2

ordering, and is known to accommodate a large number of vacancies at higher Al

compositions[15]. (fig. 1.2c)

1.0.1 Design considerations

The high stresses experienced by the blades require the substrate to maintain it’s

mechanical properties. In order to accomplish this, the blades are cast as single crystals

2
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(a) (b) (c)

Figure 1.2: Unit cells for the three high temperature Ni rich orderings: the γ phase
(FCC Ni solid solution, left), the γ′ phase (L12 ordering, center), and the β phase (B2
ordering, right).

at a composition that promotes a two phase γ and γ′ mixture. The γ′ precipitates

into the γ solid solution in cuboid shapes. The presence of these precipitates plays

a crucial role in the mechanical properties of the alloy, as they inhibit the motion of

dislocations.[16, 17] The composition of the alloy is carefully designed in order to create

an optimal density of these precipitates. Additions of other elements (e.g. Ti, Ta, Mo,

Hf, etc) influence the lattice parameters of the resulting phases[18]. This is an additional

consideration in the design of the alloy, since the mismatch in lattice parameters of the

two phases influences the shape of the precipitates. Additionally, the minor additions of

different elements to the alloy also influences the travel of dislocations by solid solution

hardening. The chemistry of these additions must be considered carefully, since an excess

of these strengthening elements promotes the precipitation of undesired topologically

closed packed phases[19].

During operation, the blades are exposed to heat in air. The exposure to oxygen

introduces another design problem, namely the oxide films that can form on the surface

of the blades, below the TBC[20]. The current solution is to allow the growth of a

stable alumina (Al2O3) film between the TGO and bond coat, which has been show to

3
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effectively protect the blade from degradation. Even though this alumina phase is the

most thermodynamically stable, other oxide phases can grow instead. NiO and NiAl2O4,

which are observed to form more quickly than the alumina oxide, form non-protective

coatings and are therefore undesirable[21]. The alumina phase is promoted by selecting

an appropriate composition at the surface. Because the Al concentration at the surface

is depleted as the alumina forms, the further growth of this oxide can be promoted by

ensuring further Al is available to continue the reaction. A bond coat with a high Al

content (such as the β phase) can therefore be used as an Al reservoir, such that Al

is depleted from the bond coat to form alumina, rather than from the substrate[22].

Additions of different elements such as Pt can lower the activity of Ni, which suppresses

the formation of undesired oxides, while Cr can foment the growth of alumina or chromia

scales. The fast forming oxides are seen to appear first, but at higher Cr compositions,

the flux towards the surface is great enough to completely form an alumina/chromia

layer. After the fast forming oxides spall away, only alumina is left at the surface as

a continuous scale[11]. The oxide formation is determined by how different elements

can diffuse towards the surface as well as the thermodynamic stabilities of the oxides at

different compositions.

1.0.2 Predictive limitations

The many component chemistries used in the new designs of alloys are largely a prod-

uct of trial and error. Complex interactions between various elements make it difficult

to know exactly how variations in the alloy chemistry will ultimately affect its proper-

ties. Understanding how compositions will affect phase fractions, phase compositions,

lattice parameters and oxide stabilities requires a thorough thermodynamic basis, which

currently does not exist for high component systems. Furthermore, diffusion in high
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component alloys, which affects creep and oxide formation, is difficult to quantify ex-

perimentally. Through first principles calculations, it is possible to predict the effects of

different alloying elements on these properties without the need of expensive experiments.

These types of calculations have so far been limited to 2-3 component systems[23], which

is a very small composition space when we consider the number of components found in an

industrial blade. Combining cluster expansion methods with Monte Carlo simulations, it

is possible to calculate thermodynamic free energies and diffusion coefficients using DFT

calculations an input[24]. Applying these methods to various Ni-Al-X systems, it is in

principle possible to generate a database of thermodynamic and kinetic properties for a

myriad of alloying elements X. Unfortunately, the currently available scientific tools to

perform these calculations cannot be efficiently applied to systems of complex composi-

tions. Simple binary systems, such as Ni-Al can readily be explored using the software

package CASM, but extending the functionality to include several more alloying elements

will require the development of new software libraries, capable of efficiently combining

multiple binary systems into a single many component system. This thesis will explore

the thermodynamic and kinetic nature of the Ni rich phases in the Ni-Al binary, as well

as introduce new methods to incorporate more complex chemistries into first principles

models.

5



Chapter 2

Computational Methods

A computational approach to understanding any crystal system requires ways to model

both its thermodynamic and kinetic properties. Beginning from first principles allows us

to incorporate interactions at the atomistic level into our model, which are ultimately

governed by quantum mechanics. The task then, is to capture the natural atomistic

behavior of the system, and incorporate it into simulations that will predict macro scale

behavior. Of particular use are thermodynamic free energies, which determine the relative

stability of different phases at equilibrium, and kinetic coefficients, which describe the

movement of different species within a crystal.

The first step to building such a model requires an understanding of the quantum

behavior of the system. Though straightforward for the most basic systems (such as

a single hydrogen atom), properties of multi-body systems soon become impossible to

calculate without making some approximations. A useful tool to make this calculations

is Density Functional Theory (DFT), which can approximate the formation energy of

atomic configurations within periodic boundary conditions at 0K. A major drawback of

DFT is that the calculations are computationally expensive, especially as the number of

atoms in the periodic unit cell increases. We capture the atomistic behavior predicted
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by DFT with the cluster expansion method. Under the cluster expansion formalism,

the energy of any atomic arrangement on a particular crystal structure is a sum of

interactions between clusters of atoms. Once a cluster expansion that accurately predicts

the formation energies given by DFT, evaluating the energy of arbitrary configurations

can be done much more rapidly.

All predictions up to this point remain limited to 0K. The final step to predicting

thermodynamic and kinetic behavior is to incorporate temperature into the model. This

can be done through a combination of statistical mechanics and Monte Carlo techniques.

The cluster expansion effectively predicts the formation energy of a particular atomic con-

figuration or microstate, from which macroscopic quantities can be derived by sampling

a Boltzmann probability distribution.

2.1 Density functional theory

The energy of a quantum system is given by the Shrödinger equation:

Hψ = Eψ (2.1)

Here H is a Hamiltonian that is related to the energy of the system E through the

many-body wave function ψ. The Hamiltonian describes the interactions between all

bodies of the system (atomic nuclei and electrons). If the positions of the ions are Ri

and the positions of the electrons are ri, then H = H (R1,R2, · · · ,RN , r1, r2, · · · , rM) for

a system with N nucelii and M electrons.

Equation (2.1) is an eigenvalue equation whose solution is given by the eigenstates

ψ and eigenvalues E, and it is these eigenvalues E that we are ultimately interested in

calculating.

7
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Diagonalization of eq. (2.1) can in principle yield these solutions. However, obtaining

these solutions is computationally unfeasible with current classical computers. Instead a

more manageable approximation of the Hamiltonian is used:

H = T (ri) + Vee (ri, rj) + Vii (ri, rj) + Vei (ri,Rj) (2.2)

The first term describes the kinetic energy of the electrons:

T =
M∑
i

(
h̄

2mi

∇2
i

)
(2.3)

The second term represents the Coulombic interactions between each of the electrons:

V (ri, rj) =
∑
i

∑
j<i

1

|ri − rj|
(2.4)

Conversely, the third term is the Coulombic interactions between the nuclei:

V (Ri,Rj) =
∑
i

∑
j<i

ZiZj
|Ri −Rj|

(2.5)

Lastly, the final term expresses the interactions between electrons and nuclei:

V (ri,Rj) = −
∑
i

∑
j

Zj
|ri −Rj|

(2.6)

In the terms above, m represents the mass of the negatively charged electrons, and Z is

the charge of a particular nucleus. The presented approximation, known as the Born-

Oppenheimer approximation, assumes that the nuclei are fixed in space, and only the

electrons are moving within the system. For this reason, there is no counter part to the

first term T , which would introduce a kinetic component for the nuclei in the system.

8
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The approximation of eq. (2.2) brings us closer to a solvable problem, but still re-

mains unreasonably difficult. One approach to tackling this multi-body problem is to

approximate the many-body wave funcion ψ as a product of independent single-body

electron wave functions, such that

ψ (r1, r2, · · · , rM) =
M∏
i

ψ (ri) (2.7)

This simplification, known as the Hartree product, assumes that the electrons do not

interact with each other. In real systems, such interactions can have significant effects

on the system energy, which has led to modifications of this method, such as subjecting

each electron to a mean field created by the rest of the rest of the bodies in the system.

A key to solving for the many-body equation is to realize that instead of solving a

problem of degree 3M (three spatial coordinates for each electron), the complexity can

be reduced to a problem of degree 3. This realization was made by Hohenberg, Kohn,

and Sham, who showed that the groundstate energy of the system is a functional of

the electron density. There is a unique electron density that maps directly onto the

groundstate wave function, thus if the electron density can be solved, the energy of

the system is uniquely determined. By variationally minimizing the electron density

functional, the resulting energy of the corresponding energy can be calculated. Recasting

the many-body wave function to an electron density we get:

E [ρ] = Ts +

∫
Vext (r) ρ (r) dr + EH [ρ] + Exc [ρ] (2.8)

In this equation, Ts is the kinetic energy of the electrons.
∫
Vext (r) ρ (r) dr integrates over

the interactions of the electrons over an external potential field generated by the nuclei

of the system. EH is the Hartree energy, which comes from the Coulombic interactions

9
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of the electron density. Exc is the exchange-correlation energy, which captures additional

non-classical interactions and must be approximated.

A method devised by Kohn and Sham allows the solving of the electron density to be

simplified to solving a collection of equations, each for a single electron:

[
− h̄2

2m
∇2 + V (r) + VH (r) + Vxc (r)

]
ψi (r) = Eiψi (r) (2.9)

The single-body electron wave function ψ depends only on the three spatial variables of

r. Notice that eq. (2.9) parallels eq. (2.2), with a term for the interactions of an electron

with the positive nuclei (V ), and another for the repulsion of the electron with the rest of

the electron density (VH). There is also a term for the exchange-correlation introduced

in eq. (2.8), related by a derivative:

Vxc =
δExc [ρ]

ρ (r)
(2.10)

If the system has M electrons, then M total Kohn-Sham equations are derived, which are

all dependent on each other. The solution to these equation must be solved iteratively

to arrive at the groundstate electron density.

A computationally efficient method to numerically solving for the electron density is

the pseudopotential method. With this approach, core electrons of atoms in the system

are frozen and are effectively neglected. Instead, it is assumed that the important physics

of the system is contributed by the valence electrons. Doing greatly reduces the number

of Kohn-Sham equations that must be solved.

Various DFT software packages exist that can solve for the multi-body electron den-

sity and formation energy of a system. The work for this thesis has used the Vienna Ab

Initio Simulation Package (VASP).

10
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2.2 Cluster expansion formalism

DFT can be used to calculate the formation energy of a particular arrangement of

atoms, but is computationally demanding. Section 2.3 will show that determination

of macroscopic thermodynamic and kinetic properties requires determining an amount

of formation energy that is unreasonable for DFT. The evaluation of orderings on a

crystal structure can be drastically sped up with a cluster expansion model. In this

technique, an effective Hamiltonian is constructed that depends on the degrees of freedom

associated with each atom on a crystal lattice. There are several possible degrees of

freedom that could be constructed into the cluster expansion model, including vibrational

or electronic degrees of freedom. The cluster expansions used in this work will deal

only with occupational degrees of freedom, such that the energy of a particular crystal

structure depends solely on how different species are distributed on the crystal sites.

Provided atomic relaxations are not extreme, there is always a well defined position on

the lattice for each atom of a crystalline solid. We therefore define the allowed degrees

of freedom from out cluster expansion relative to these ideal positions.

The first step to constructing the effective Hamiltonian is to assign occupational vari-

ables to each crystal site that defines its occupant. As an introduction to the cluster

expansion method, this section will outline only how to deal with a binary system, chap-

ter 4 will later derive a more general approach for multicomponent systems. We assign

a variable pi to each crystal site i that can take a value of either 0 or 1, depending

on the occupant residing on that site (e.g. Ni vs Al). The entire atomic configuration

of the crystal is therefore determined by the collection of all the occupation variables

~p = {p1, p2, · · · , pN}.

Next we define clusters of sites, such are points, pairs, triplets, etc. A cluster is

simply a particular collection of sites on the crystal, and we can define a cluster function

11
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by taking the product of the occupation variables from the sites that make up the cluster.

Examples of clusters are shown in fig. 2.1, and their basis functions can by written as

φα (~p) =
∏
i∈α

pi (2.11)

α

β

γ

0

1

δ

ε
ζ

Figure 2.1: Example clusters on a triangular lattice, with two different species. Using
the occupation basis, the site basis functions evaluate to 0 for orange atoms, and 1
for purple species. Cluster functions are computed by taking the product of the basis
functions of their sites. For this example, clusters α, δ and ε would evaluate to 1, the
rest end up as 0.

The cluster functions form a complete orthonormal basis, and a linear combination of

them can be used to describe any property of the cystal that is dependent on composition.

The energy of the crystal can therefore be expressed as

E (~p) =
∑
α

Vαφα (~p) (2.12)

The coefficients Vα are the effective cluster interactions (ECI), whose value is determined

by the energy contribution to the system from its corresponding cluster of sites. For

example, a large crystal of pure Ni that contains two Al atoms will have higher energy if

the Al atoms are placed at nearest neighbor distances, instead of a large distance apart.

If this is the case, then the ECI value for the nearest neighbor pair cluster will be higher

than that of a pair with a large distance. Equation (2.12) sums over clusters of all sizes

12
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(points, pairs, triplets, etc.), but also includes a term for the “empty cluster”, whose ECI

is constant and independent of the atomic configuration of the crystal.

In theory, eq. (2.12) sums over all possible cluster sizes and cluster geometries. In

order to determine the values of the ECI, a truncation must be made, such that only

the most important cluster interactions are considered. Practically speaking, this means

discarding clusters made up of many sites (usually more than 4) and long edge lengths.

For typical systems, the assumption that ECI values converge rapidly is a good one, so

the truncated expansion remains a good descriptor of the system energy, while retaining

practicality.

2.2.1 Determination of ECI

Once the cluster expansion has been truncated, determining the value of the ECI

is a simple regression problem. Solving for their values requires a set of training data.

This is generated by enumerating symmetrically distinct atomic orderings on the parent

crystal, and then determining their energies with DFT. The correlations for each of this

configurations can also be readily determined, such that

~y = X~v (2.13)

where ~y is a vector containing the energies of each configuration in the training set,

X is a matrix containing the correlations for each configuration (one row vector per

configuration), and ~v is the vector of ECI values that we want to determine. The number

of ECI to solve for matches the length of the correlation vectors, and is determined by

how the cluster expansion is truncated. The solution for this ECI vector is expected to

be sparse, so the regression problem is an underdetermined one. Indeed, when too many

ECI make significant contributions to the system energy, complex unrealistic interactions

13
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appear. When this occurs, the system will predict unphysical results, which usually

manifest themselves as undesired groundstates being predicted as stable orderings.

Many statistical methods exist to solve this type of regression problem. Common

approaches include using Bayesian inference to shrink the ECI values (Ridge regression

or L2), or induce sparsity in the solution (Lasso or L1), as well as the genetic algorithm.

Injecting prior knowledge of the system into the regression can help guide the solution

towards a more physical model.

2.2.2 Favoring important configurations

When parameterizing a cluster expansion, low energy configurations should inform the

model more strongly than high energy ones. Of particular importance are the structures

that make up the convex hull in energy-composition space, which correspond to stable

orderings at 0K. The solutions for eq. (2.13) will change depending on the weighting of

the training energies during the regression. A way to skew the weighting to favor low

energy structures and groundstates will be presented here.

The projection of the energy of any configuration onto the convex hull can be expresses

as a linear combination of the vertexes of the facet it is projected onto. If the distance

from the convex hull is known, we can define

~∆ = ~y − ~y ∗ (2.14)

~∆ represents the distance from the convex hull, ~y represents the energy of the config-

uration, and ~y∗ represents the projected energy of the configuration onto the convex hull.

The vectors from 2.14 exist in a composition-energy space. ~y∗ can now be written as a

combination of the vertexes that make up the facet it lies on. Using a ternary system as

an example, ~y4 will represent the configuration we’re interested in, while ~y1, ~y2, and ~y3

14
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(0,0,0) x1

x2

E

Δ4

y1

y2

y*
4

y3

y4

Figure 2.2: Example energies for a ternary system.

will represent the facet underneath ~y4. For this example,

~y∗4 = c1~y1 + c2~y2 + c3~y3 (2.15)

The vector of weights ~c corresponds to the barycentric coordinates of ~y∗4, which falls

within the simplex. We therefore have the additional constraint

c1 + c2 + c3 = 1 (2.16)



x∗1,4

x∗2,4

E∗4

1


=



x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

E1 E2 E3

1 1 1




c1

c2

c3

 (2.17)

Though the system appears to be overdetermined, all four equations are consistent,

since any point on the simplex is a weighted combination of the vertices. In order to
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solve for the values of ~c, we drop the energy term, and solve:


x∗1,4

x∗2,4

1

 =


x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

1 1 1



c1

c2

c3

 (2.18)


x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

1 1 1


−1

x∗1,4

x∗2,4

1

 =


c1

c2

c3

 (2.19)

More compactly, and for an n− 1 composition space, we can rewrite 2.19 as

~c = H−1 ~x∗ (2.20)

Here H is defined by the composition and energies of the appropriate convex hull facet,

and ~x∗ is defined by the composition of the projected configuration.

We’re interested in a weight matrix M∆ that will skew the fit towards values of ~∆

instead of values of ~y. That is, there is some transformation L that will change the

minimization problem as

(~y −X~v)
L−−−−−→

(
~∆−X∗~v

)
(2.21)

With X and ~v representing the correlation matrix and ECI respectively.

Continuing with the example of a ternary system, ignoring all configurations but one
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(and the additional three that make up the convex hull facet below it), we have



E1

E2

E3

E4


L−−−−−→



0

0

0

∆4


(2.22)

and since

~∆4 = ~y4 − c1~y1 − c2~y2 − c3~y3 (2.23)

we can define

L =



0 0 0 0

0 0 0 0

0 0 0 0

−c1 −c2 −c3 1


(2.24)

such that

L~y = ~∆ (2.25)

LX = X∗ (2.26)

In order to fit ~v exclusively by distance from the hull, we would solve for

min (~y −X~v)ᵀLᵀL (~y −X~v) (2.27)

We can instead combine different weight matrices, to decide how much the distance from

the hull should influence the fit. For M∆ = LᵀL and an arbitrary weight matrix Mx,

17



Computational Methods Chapter 2

we can instead use scaling parameters α and β to minimize

min (~y −X~v)ᵀ (αM∆ + βMx) (~y −X~v) (2.28)

The same matrix L can be used to impose non-linear constraints. If we want to

ensure that cluster expanded energies are predicted above the expanded energies of the

convex hull, we’d like to impose

X~v > 0 (2.29)

which ensures that the expanded energies lie above the line connecting the energies of

the cluster expanded energy of the groundstates.

2.2.3 Enforcing convexity of configuration sets

Using the weight matrix L to impose constraints is not enough to guarantee that the

configurations that make up the convex hull of the training set will appear as predicted

groundstates. Even if X~v > 0, certain groundstates can be predicted to have an energy

high enough that it disappears from the convex hull. The constraint only guarantees

that energies will be predicted above the line connecting the predicted energies of the

groundstates, but does enforce any condition on the groundstates themselves. This is

evident from the fact that rows corresponding to groundstates in the weight matrix L

are composed entirely of zeros.

In order to preserve the convexity of the groundstates, additional constraints need

to be imposed. Specifically, for each groundstate, we want to impose that the predicted

energy be below a pseudo convex hull made up of all the other groundstates. We can
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Figure 2.3: Comparison between the true convex hull (dashed) and the predicted
energies of the real convex hull groundstates (connected by a solid line). Enforcing
X~v > 0 guarantees that all other energies will be predicted above the solid line, but
does not enforce the convexity of the original groundstates.

define

~∆+ = ~y − ~y+ (2.30)

~∆+ represents the distance from the pseudo convex hull, ~y represents the energy of a

groundstate, and ~y+ represents the projected energy of the groundstate onto the psuedo

convex hull, constructed from all other groundstates that are not ~y. In a similar manner

to L, we can write ~y+ as combination of the vertexes that make up the facet of the

pseudo convex hull that lies above it. Using a binary system as an example, ~y1, ~y2. ~y3

and ~y4 will represent four configurations that fully define the convex hull of a system.

y1

y2

y3

y4

Figure 2.4: A convex hull in binary composition-energy space

For each of the groundstates that are not at the edge of the composition space, a

new pseudo convex hull is constructed that can be used to calculate E+ in terms of a

weighted average of neighboring groundstates.

~y+
3 = c2

~E2 + c4 ~E4 (2.31)
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The set of barycentric coordinates ci is calculated in the same manner as shown in

2.17. For each groundstate, a new set of barycentric coordinates is calculated, each of

which can be used to create a row in a matrix Q, which converts the problem as

(~y −X~v)
Q−−−−−→

(
~∆+ −X+~v

)
(2.32)

y1

y2

y3 y4

y3

Figure 2.5: The pseudo hull constructed by excluding ~y3 from the set. The value of
~y+

3 is calculated as a weighted sum of ~y2 and ~y4, which make up the vertexes of the
pseudo convex hull facet above.

The resulting matrix Q for the binary example is

Q =



0 0 0 0

−c1 1 −c3 0

0 −c2 1 −c4

0 0 0 0


(2.33)

such that

Q~y = ~∆+ (2.34)

QX = X+ (2.35)

The matrix Q can be used both as a weight matrix and to enforce an additional set

of non-linear constraints. When used as a weight matrix as shown in 2.28, Q will skew
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the fit to emphasize the relative predicted energy values of the true groundstates. Q can

also be used to enforce the condition

X+~v < 0 (2.36)

which will enforce that the set of configurations used to construct Q remains convex.

In the simplest usage case, Q is constructed using the true convex hull as the set of

configurations that should retain convexity. Combining 2.29 and 2.36 as constraints will

guarantee that the convex hull of the predicted energies is made up of the same configu-

rations as the original data set: while Q enforces the relative positions of the predicted

energies of the groundstates, L ensures that all other configurations are predicted above

the desired convex hull.

2.3 Monte Carlo methods and statistical mechanics

The macroscopic thermodynamic properties of a solid at equilibrium are an ensemble

average of the microstates of the system. The term microstate here refers to a particular

excitation that is accessible by the system, which might be configurational, vibrational,

etc. At finite temperature, the system will find itself fluctuating between between these

microstates, each with a particular energy Ω(σ), where σ refers to a particular microstate.

The precise definition of Ω depends which thermodynamic variables of the system are

being controlled, such as temperature, composition, or chemical potential. As an exam-

ple, for the Canonical ensemble, where the composition, volume, and temperature are

controlled, Ω (σ) = E (σ).
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The probability that the solid is at a particular microstate σ is given by

P (σ) =
1

Z
e−Ω(σ)/kBT (2.37)

where kB is the Boltzmann constant, and Z is the appropriate partition function for the

controlled variables, defined as

Z =
∑
σ

e−Ω(σ)/kBT (2.38)

This partition function is essentially a probability distribution for different microstates,

from which we can determine how much each microstate contributes to the ensemble

average of a macroscopic quantity. That is, for any thermodynamic quantity X (σ), the

value X of the system is given by

X =
∑
σ

X (σ)P (σ) (2.39)

Once a predictive model for the system has been constructed, formation energies for

arbitrary configurations (i.e. microstates σ) can be rapidly calculated. However, a direct

evaluation of the partition function of a system remains unfeasible, even for relatively

small supercells, given the exponential growth of available microstates with number of

atoms. Instead, Monte Carlo techniques can be employed to sample the ensemble with

the Blotzmann probability that defines the system. Over a long enough period of time,

the ensemble averages of the Monte Carlo sampling will converge to the ensemble averages

of the full partition function.
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2.3.1 Grand Canonical ensemble

In the Monte Carlo method, different microstates resulting from a Markov chain

evolution of configurations are sampled. The Metropolis algorithm is used, where the

transition from a starting configuration A to B is determined by the difference in relative

energies ∆ΩA→B = Ω
(
σB
)
− Ω

(
σA
)
. If ∆ΩA→B < 0, then the system evolves into

configuration B, and PA→B = 1. Otherwise, the new configuration B is accepted with a

Boltzmann probability, such that

PA→B = e−∆ΩA→B/kBT (2.40)

In the Grand Canonical ensemble, the chemical potential µ of all species is controlled,

and so

Ω (σ) = E (σ)−
∑
i

µiNi (2.41)

where i is counting over each species in the system, and N represents the number of

atoms present.

By consistently sampling thermodynamic variables as the system evolves, ensemble

averages of almost all thermodynamic variables can be taken. As such, the values of Ω,

E and N are readily determined. However, of most interest is the Gibbs free energy

G = E − TS (the PV term is absent due to they system being at zero pressure), which

requires knowledge of the entropy S of the system. Though S cannot be measured

directly, integration techniques can be used to extract the desired free energies.

If we define the Grand Canonical free energy as

Φ = G−
∑
i

µiNi (2.42)
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then

d (Φβ) = Edβ − β
∑
i

Nidµi −
∑
i

µiNidβ (2.43)

where β = 1/kBT . The values for Φ can be found via different integration pathways. If

the integration is done along constant temperature values and only one chemical potential

is allowed to vary

ΦF = −
∫ µF

µI
Ndµ+ ΦI (2.44)

Conversely, if all chemical potential values are fixed, and the integration is done along

temperature

ΦF =
1

βF

[∫ βF

βI
Ωdβ + ΦIβI

]
(2.45)

The superscripts of eq. (2.44) and eq. (2.45) denote the values at an initial reference state

(I) and the final value at the end of the integration (F).

These integrations require a starting value ΦI , which can be approximated by taking

extreme values for µ, or starting the integration at very low temperatures. For both these

cases Φ ≈ Ω, and can be readily determined.

2.3.2 Kinetics

Kinetic coefficients relating do macroscopic diffusional processes can also be deter-

mined by Monte Carlo techniques. The process for this involves creating a simulation cell

where at least one vacancy is present, and tracking the trajectories of each atom, as well

as the amount of time elapsed. In this model, diffusion in a crystal is mediated through

vacancy exchange events with neighboring atoms that occur at particular frequencies.

The frequency with which a particular hop occurs is given by

ΓI→F = v∗e−∆Eb/kBT (2.46)

24



Computational Methods Chapter 2

Here ΓI→F is the frequency associated with hopping from an initial state to a final one;

v∗ is a vibrational prefactor, determined through Vineyard’s formula; and ∆Eb is the

activation energy required for the hop to occur.

In the Ni-Al system, diffusional processes of the β phase are known to involve unusual

vacancy exchange mechanisms, such as second nearest neighbor exchange, and the energy

pathway of the diffusion paths may involve local minima. The diffusion calculations of

this thesis focus on the γ and γ′ phases, which are generally well behaved. An example

of the energy pathway for a hop in these phases is shown in fig. 2.6.

E
ne

rg
y

Distance

initial state

final state

ΔE forward

Figure 2.6: Example of energy pathway for a diffusion hop. In order to go from the
initial state to the final one, the activation energy must be overcome.

The evolution of the diffusional processes therefore requires knowledge of what these

activation barriers are, which depend both on which species is hoping, and the local

environment around the hop pathway. More details on how to determine these values

will be laid out in chapter 5, suffice it to say for this section that the hop frequencies

of eq. (2.46) can be modelled with a cluster expansion in an analogous manner as the

formation energies of atomic configurations.

Transitions from one configuration to another are determined by evaluating the fre-
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quencies Γ of every possible event that is possible for the current configuration. This

means determining all the possible hops that can occur, and calculate each of their asso-

ciated frequencies. In the case of a systems like the FCC phases of Ni-Al, the equilibrium

vacancy concentration is on the order of 10−5. A typical simulation cells contains on the

order of 103 sites, so only a single vacancy is present during in the KMC cell. As a result,

there is always a total of 12 possible events during the entirety of the simulation, one for

each of the nearest neighbors of the vacancy in the FCC crystal.

The probability of a particular event being selected is proportional to its hop fre-

quency, such that

P (Γi) =
Γi∑
j Γj

(2.47)

where the sum counts over all possible events of the crystal for the current atomic config-

uration. Using a uniform random number u ∈ (0, 1], an event is chosen with the weighted

probability of eq. (2.47). The atomic positions of the participating atoms are then up-

dated, while recording their changes in trajectories, as well as the time step associated

with the event. The expected amount of time that would need to elapse for the hop to

take place is given by

∆t =
ln(1/u)

Γi

∑
j

Γj (2.48)

A visual representation of a KMC event is given in fig. 2.7. Each of the 6 possible events

for in this example has a different hop frequency, which is lined up and normalized.

Choosing a random value u is like choosing a random position on the line of frequencies,

which determines which event is selected. After the site occupant are updated, frequencies

for the newly available events are calculated, and the process is repeated.

With each successive event, trajectories of each of the atoms grows longer and longer,

as does the accumulated elapsed time of the simulation. After enough vacancy hops,

kinetic properties can start being measured, such as the kinetic Onsager coefficients,
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Γ6Γ1 Γ2 Γ3 Γ4 Γ5
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Γ6Γ1 Γ2 Γ3 Γ4 Γ5
0 1

u

Δt

Figure 2.7: Schematic of how a KMC event is selected. A particular event is chosen
with a weighted probability, with higher frequency events more likely to be chosen.
Once the event is chosen, atomic positions and the clock are updated. The process is
repeated with using the new hops that are possible.

correlation factors, or self diffusion coefficients. Once those properties are measured, the

values of the trajectories and elapsed time are flushed out, and the process begins again.

By sampling values periodically, the measured kinetic values will converge, and these

values can be used to derive more useful diffusion metrics. The details and definitions

of the values being measured explored in more detail in chapter 6, as well as how useful

properties can be derived from them.
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The Ni-Al binary1

3.1 Introduction

Nickel based superalloys have found a wide range of industrial applications thanks

to their high temperature mechanical properties and corrosion resistance [7]. The Ni-

superalloys of turbine engines for propulsion and power generation usually contain many

alloying additions, but primarily build on the Ni-Al binary. This binary has been studied

extensively and contains a variety of intermetallic compounds with unique properties.

The Ni rich phases of the Ni-Al binary are all orderings on an FCC parent crystal structure

and include the Ni rich solid solution, γ, the γ′-Ni3Al phase having L12 ordering and the

Ni5Al3 phase. FCC ordering gives way to BCC orderings at equiatomic mixtures of Ni

and Al where the β phase having B2 ordering on a BCC parent crystal structure is

favored. Coherent two-phase mixtures consisting of γ and γ′ are used to realize high

strength and creep resistance at elevated temperatures [17], while the β phase, having

favorable oxidation behavior, is used as a bond coat on turbine engine blades made of a

1The contents of this chapter have been substantially reproduced from J. G. Goiri and A. Van der
Ven, Phase and structural stability in Ni-Al systems from first principles, Physical Review B 94 (Sept.,
2016)
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superalloy core [25, 26].

In contrast to most intermetallic compounds, the β phase can tolerate a high degree of

off-stoichiometry through the introduction of antisite defects and vacancies [27]. β-NiAl

accommodates excess Ni by forming antisite Ni defects on its Al sublattice. Ni rich β

phases are susceptible to a martensitic transformation upon quenching [28], whereby the

high temperature, Ni-rich B2 ordering on BCC transforms to an FCC variant through

a diffusionless process [29, 30, 31]. Many fundamental questions remain about the ther-

modynamics and kinetics of these martensitic transformations. Excess Al in β-NiAl, in

contrast, is realized with Ni vacancies on the Ni sublattice of the B2 ordering and can

reach unusually high vacancy concentrations for an intermetallic compound. In fact the

high vacancy concentrations can lead to vacancy ordering within the B2 crystal structure,

however, the phase relations among the various vacancy ordered derivatives have yet to

be established.

Here we report on a combined first-principles density functional theory (DFT) and

statistical mechanics study of phase stability in the Ni-Al binary. We focus in particular

in elucidating the thermodynamic properties of the Ni-Al binary at concentrations where

the alloy transitions from FCC to BCC. To this end, we introduce strain order parame-

ters to determine the onset of instabilities between FCC and BCC based orderings along

the Bain path. These instabilities are discussed in the context of the observed marten-

sitic transformation, which has been the subject of both experimental [30, 29, 32] and

computational [33] work. We also investigate the thermodynamic properties associated

with vacancy ordering over the Ni-sublattice of Al-rich β-NiAl and discover the stability

of a family of hybrid phases that combine features of L10 and L12 in the Ni rich half of

the Ni-Al binary.
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3.2 Methods

3.2.1 DFT calculations

First-principles density functional theory (DFT) calculations were performed to pre-

dict ordering preferences in the Ni-Al binary and to investigate instabilities with respect

to the Bain path. All first-principles calculations were performed within the general-

ized gradient approximation (GGA-PBE) using the projector augmented wave (PAW)

pseudopotential method [34] as implemented in the Vienna ab initio Simulation Pack-

age (VASP) [35, 36, 37]. The CASM [38, 39, 27, 40, 41] software package was used to

enumerate symmetrically distinct orderings over FCC and BCC, allowing Ni and Al to

occupy the FCC lattice, and Ni, Al and vacancies to occupy the sublattices of a BCC

based B2 ordering. A k-point mesh of 23× 23× 23 was found to converge the energy of

a FCC primitive Ni cell to within 1meV per atom, while a density of 17 × 17 × 17 was

found to do the same for a NiAl B2 cell. The k-point meshes for the configurations enu-

merated in supercells of FCC Ni and of B2 NiAl were scaled appropriately to maintain

the same k-point density. All DFT-PBE calculations were initialized with a spin polar-

ized ferromagnetic ordering [42]. To ensure accuracy in our calculations, a plane wave

energy cutoff of 560eV was used. Numerical k-space integration through the Brillouin

zone was performed using a smearing parameter of 0.2eV with the Methfessel-Paxton

method (first order). The DFT-PBE energies were calculated allowing atomic positions

and lattice parameters to relax to minimize the total energy.

3.2.2 Metrics of relaxation and Bain instabilities

With the exception of Al3Ni, every phase in the Ni-Al binary can be described as an

ordering over either an FCC or BCC lattice. Most orderings over FCC or BCC break
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the original cubic symmetry of their parent crystal. These configurations therefore re-

lax into structures that lack the initial connectivity between atoms of their ideal parent

crystal structure. Every atom in FCC, for example, has exactly 12 nearest neighbors,

while each atom in BCC has 8 nearest neighbors. Upon relaxation, the atomic connec-

tivity of configurations with broken symmetry usually differ only slightly from that in

the undistorted starting crystal, largely retaining the same number of nearest neighbors

within a small tolerance. These configurations are dynamically stable and represent the

lowest energy state for that ordering on the starting parent crystal structure. However,

particular decorations on FCC and BCC may be dynamically unstable, undergoing sig-

nificant deformation when relaxing atomic coordinates and lattice vectors during energy

minimization. They change their connectivity to the point that the resulting structure

more closely resembles a different parent crystal structure from the one they started on.

Strain can serve as an order parameter to track the extent of lattice relaxation. A

reference lattice with vectors ~a, ~b and ~c

L =


ax bx cx

ay by cy

az bz cz

 (3.1)

is related to a deformed lattice L′ by a deformation gradient tensor F according to

L′ = FL. (3.2)

This deformation tensor can be factored into a rotation R and a symmetric stretch tensor

U using polar decomposition as

F = RU. (3.3)
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Because R corresponds to a rigid body rotation, the energy of the crystal is unaffected

by it, and any metric of strain should depend only on the stretch tensor U. The rotation

R can be eliminated by multiplying F by its transpose (since R−1 = Rᵀ), yielding the

commonly used right Cauchy-Green stretch tensor[43]

U2 = FᵀF (3.4)

There are several strain tensors that can be defined in terms of the stretch tensor U. In

this study, we use the Hencky strain defined as

E = ln U. (3.5)

Similar to U, this strain metric is also symmetric, with only 6 independent strain com-

ponents

E =


εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 = Eᵀ (3.6)

However, instead of working directly with the six independent Hencky strain elements

of eq. (3.6), it is more convenient to use an equivalent set of symmetry adapted strain

metrics defined as linear combinations of the Hencky strains according to [44]:

e1 =
εxx + εyy + εzz√

3
(3.7)

e2 =
εxx − εyy√

2
(3.8)
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e3 =
2εzz − εyy − εxx√

6
(3.9)

e4 =
√

2εyz (3.10)

e5 =
√

2εxz (3.11)

e6 =
√

2εxy (3.12)

e1 is a measure of dilation, and is proportional to the volume change provided the Hencky

strain metric is used. It is for this reason that we use the Hencky strains, as it uncouples

any volume dependence from e2-e6. The e2 and e3 strains together describe tetragonal and

orthorhombic distortions of the crystal, while the e4,e5 and e6 strains represent shears.

A common instability for both FCC and BCC based orderings is the Bain path.

The above symmetry adapted strain metrics enable a representation of all symmetrically

equivalent Bain paths that connect FCC to BCC in the two dimensional space spanned

by e2 and e3. A conventional FCC cell with its cubic axes oriented along the x-y-z

Cartesian directions can be transformed to BCC by a contraction along the z direction

and a simultaneous expansion along the x and y directions. The Bain path along the

z axis is most easily visualized with a 2 atom tetragonal FCC unit cell as shown in

fig. 3.1. There are three symmetrically equivalent Bain paths as a result of the cubic

symmetry of an FCC crystal. Equivalent transformations can be realized by contracting

along the y direction and expanding along the z and x directions, or by contracting along

the x direction and expanding along the y and z directions. The Bain path involving

a compression along the z-direction (fig. 3.1) follows the negative e3 axis, holding e2=0
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when using FCC as a reference for strain. The two other symmetrically equivalent Bain

paths follow the dashed lines of fig. 3.2, which are related to the e3 axis by 120◦ rota-

tions in e2-e3 space. The dashed lines in e2-e3 space in fig. 3.2 correspond to tetragonal

distortions of the reference FCC lattice, while any other points that deviate from these

lines correspond to orthorhombic distortions of FCC. When using Hencky strains, any

distortion corresponding to a path in this space at fixed e1 occurs at constant volume.

(a) (b)

Figure 3.1: A Bain transformation from a FCC (fig. 3.1a) to a BCC (fig. 3.1b) crystal
structure. The transformation of this FCC ordering corresponds to a path in the
negative e3 direction.

Strain transformations from BCC to FCC can also be mapped out in e2-e3 space using

the BCC crystal as the reference to measure strain. The axes of the conventional cubic

BCC unit cell must be aligned along the x-y-z directions. The BCC crystal then resides

at the origin in e2-e3 space. The pathways are the same as the Bain paths described for

FCC, but are taken in the opposite direction: a path in the positive e3 direction with no

e2 contribution results in an expansion in the z direction and a contraction in the x and

y directions. There are three equivalent paths in e2-e3 space that convert BCC into FCC.

These paths are also related to each other by 120◦ rotations in e2-e3 space as illustrated

in Figure 3(b).

While the Bain path can be fully described in terms of strains, many other paths

connecting a pair of parent crystal structures combine a lattice strain with an internal

shuffle of the basis atoms within the unit cell. An example is the Burgers path [45],
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e2

e3

Figure 3.2: Schematic of the possible deformations in e2-e3 space relative to a cube.
All deformations preserve the volume of the reference structure, with distortions along
dashed lines being purely tetragonal. Shapes that share the same color have had a
symmetrically equivalent deformation applied along different directions, resulting in
identical structures that differ only by a spatial rotation.

which connects BCC to HCP. To map relaxed orderings onto their closest parent crystal

structure, we therefore rely on a composite score that is a function of both the strain

(deformation) of the unit cell vectors as well as the displacements of the basis atoms

within the unit cell. A deformation score is defined as proportional to the sum of the

squares of the Biot strain after removal of any volumetric expansion or contraction, i.e.

U/det (U) − I where U is the symmetric stretch tensor and det (U) relates the relaxed

volume to the reference volume. A displacement score is defined as the sum of the squares

of the displacements (normalized by the number of atoms in the unit cell) relative to the

ideal positions of the prototype crystal having relaxed unit cell vectors. A weighted sum

of the deformation and displacement score is then used to assign a relaxed configuration

to the prototype it most closely maps onto. An in depth description can be found in the

work of Thomas et al [46].
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Figure 3.3: Bain paths relative to FCC (fig. 3.3a) and BCC (fig. 3.3b) structures in
e2-e3 space holding all other strain metrics constant. The origin represents the un-
strained crystal and can take three symmetrically equivalent Bain paths to transform
from FCC/BCC to BCC/FCC. The locations in e2-e3 space that correspond to FCC
and BCC structures are labelled for reference throughout this work. The origin (ref-
erence structure) is indicated by a “0 ”, while strain values at the end of equivalent
Bain paths are indicated by “x”, “y” or “z”. Labels beginning with “f ” correspond to
strain values relative to a FCC structure, while labels beginning with “b” correspond
to strains relative to BCC.

In this study, we compared all relaxed configurations to ideal FCC, BCC and HCP

parent crystal structures. In the strictest sense, the great majority of orderings will

not be perfect FCC, BCC or HCP, as they will lack cubic and hexagonal symmetry.

Nevertheless, we will refer to relaxed orderings as FCC, BCC or HCP depending on

which of these parent crystal structures they are most closely related to.

3.2.3 Cluster Expansion Method

Phase stability at finite temperature was studied using cluster expansions to extrap-

olate first-principles DFT energies within Monte Carlo simulations. A cluster expan-

sion describes the energy of a multicomponent crystal as a function of its degree of
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order/disorder. For binary solids, occupation variable σi are assigned to each crystal site

i that take on a value of 0 or 1 depending on the occupant of the site (e.g. Ni vs Al). A

particular arrangement over the N -sites of a crystal is then specified by the collection of

occupation variables ~σ = {σ1, σ2, · · · , σN}. The dependence of the energy of the crystal

on arrangement, ~σ, can be written as [47, 48, 49]

Ef (~σ) =
∑
α

Vαφα (~σ) (3.13)

where φα are cluster basis functions defined as

φα (~σ) =
∏
i∈α

σi (3.14)

and correspond to products of occupation variables belonging to sites of clusters α, which

include point, pair, triplet etc. clusters. The coefficients Vα are expansion coefficients

called effective cluster interactions (ECI) and need to be determined from first principles.

While the sum in Eq. 3.13 extends over all clusters of sites α within the crystal, to

be practical, it must be truncated at a particular cluster size and radius. The ECI of Eq.

3.13 can then be fit to the DFT energies of a set of symmetrically distinct configurations

using one of several inversion methods [50, 51]. First-principles parameterized cluster

expansions usually require only a relatively small number of nonzero ECI to accurately

predict the formation energy of any configuration. With an accurate cluster expansion

it is possible to rapidly evaluate the formation energy within Monte Carlo simulations to

calculate thermodynamic averages. In this study of the Ni-Al binary, two cluster expan-

sions were constructed, one for the FCC parent crystal and one for sublattice disorder in

B2, which it self is an ordering over the BCC parent crystal structure. The construction

and parameterization of the cluster expansion and the Monte Carlo simulations were
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performed with the CASM software package [38, 39, 27, 40, 41].

3.3 Results

3.3.1 Formation Energies

The first step to understanding the thermodynamics of the Ni-Al system from first

principles is to establish the ground states at zero Kelvin. A large number of orderings on

the FCC and BCC lattice were systematically enumerated within symmetrically distinct

supercells. FCC configurations were enumerated from a one atom FCC primitive cell,

allowing either Ni or Al to occupy each site. BCC configurations were enumerated relative

to a B2 (2 atom) primitive cell. Previous studies[27, 52, 53, 54, 15] showed that off

stoichiometry in B2 NiAl is accommodated by vacancies on the Ni sublattice and by Ni

antisite defects on the Al sublattice. For this reason, the occupancy of the enumerated

BCC configurations were limited to allow Ni-Va disorder on one sublattice and Al-Ni

disorder on the other.

Figure 3.4 shows the calculated formation energies of all enumerated configurations

over FCC and B2. Formation energies were calculated relative to pure FCC Ni and FCC

Al, and were normalized per number of atoms according to

Ef =
EDFT −NAlE

DFT
Al −NNiE

DFT
Ni

NAl +NNi

(3.15)

Throughout we will use atomic fraction, defined as

xNi =
NNi

NNi +NAl

(3.16)

as our composition variable. The vertices of the convex hull (dashed line in fig. 3.4)
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of the formation energies correspond to the lowest energy groundstates, which are line

compounds at 0 K.

Figure 3.4: Calculated formation energies relative to FCC Ni and FCC Al. Configu-
rations stable as a BCC structure are shown in orange, while configurations stable as
a FCC structure are shown in purple. Groundstates have been colored gray and are
connected by the convex hull of the energies.

Pure Ni (xNi = 1) is stable in the FCC crystal structure. At finite temperature it

can dissolve Al, forming the Ni rich solid solution that is referred to as the γ phase.

The next vertex of the convex hull at xNi = 0.75 in Figure 3.4 is the L12 ordering,

commonly referred to as γ′. The unit cell for this ordered phase can be constructed

by replacing the corners of a Ni FCC conventional cell with Al, which preserves cubic

symmetry (fig. 3.5b). The ground state at xNi=0.625 has orthorhombic symmetry and

corresponds to the experimentally characterized phase Ni5Al3 [27, 30], referred to in this

work as δ. In addition to δ and γ′, there is a large number of configurations between

xNi=0.625 and 0.75 that also have low formation energies. One of these configurations,

having a composition of xNi = 2
3
, is a groundstate, residing on the convex hull. Many
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others have energies that are only several meV above the convex hull. We elaborate on

the orderings of these structures and their relation to the δ phase in section 3.3.2.

(a) (b)

Figure 3.5: Unit cells for the unstable L10 ordering (fig. 3.5a) and the L12 ordering of
the γ′ phase (fig. 3.5b). The ordering of L10 on the FCC crystal reduces the symmetry
from cubic to tetragonal, while L12 preserves cubic symmetry. Ni atoms are shown in
orange, while Al atoms are shown in purple.

The next set of ground states are all BCC based orderings. At xNi = 0.5, perfect B2

ordering is stable in which the corners of a conventional BCC unit cell are occupied by Ni

and the body center is occupied by Al. Remarkably, two additional B2 derived ground

states exist that are Al rich. Both can be viewed as B2 superstructures with vacancy

ordering over the Ni sublattice. The first, having chemical formula Ni3Al4, has cubic

symmetry, a full Al sublattice, and vacancy pairs ordered in a three dimensional pattern.

This ordering requires a 4× 4× 4 B2 supercell and was not enumerated directly, but was

taken from the work of Ellner et al [55]. It is isostructural with the Ni3Ga4 compound.

The vacancies are arranged in such a manner that any row of the Ni sublattice in B2

along any of the x, y or z directions has three filled sites followed by a single empty

one, as shown in fig. 3.6c. The second B2 derived ground state, having chemical formula

Ni2Al3, is even more Al rich as a result of a higher vacancy concentration on the Ni

sublattice. The vacancy ordering in Ni2Al3 is achieved by removing every third Ni layer
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of B2 along the {111} direction. In the literature, stoichiometric B2-NiAl is referred to

as the β phase. In view of their similarity to B2, we will refer to Ni3Al4 and Ni2Al3 as

β′ and β′′ respectively in the remainder of the text.

The final intermetallic ground state, Al3Ni, is distinctly different from all the other

phases of the Ni-Al binary as it cannot be mapped to a particular ordering on FCC or

BCC. Instead, it has the D020 structure, which is isomorphic with Fe3C (cementite) and

has orthorhombic symmetry.

As with pure Ni, pure Al is also stable in FCC. In contrast to pure Ni and the inter-

metallic compounds in the Ni-Al binary, though, FCC Al has a low melting temperature

of around 660◦C.[14]

In addition to enumerating different orderings in small supercells (containing up to

8 atoms for FCC and 16 atoms for BCC), we also systematically enumerated anti-site

defects in large supercells of the ground state orderings. Supercells of L12, B2 and δ were

perturbed with point, pair and triplet antisite defects. To minimize interactions between

periodic images of the anti-site defects, supercells containing 108 atoms for L12, 96 atoms

for δ, and 128 atoms for B2 were used. The formation energies for these orderings are

depicted in green in fig. 3.4 and fig. 3.7. While the formation energies of supercells

containing anti-site defects are normalized by the number of atoms in the supercell and

their distance from the convex hull is not a direct measure of anti-site defect formation

energies, fig. 3.4 and fig. 3.7 clearly show a large qualitative difference in anti-site defect

formation energies between L12 and B2 on the one hand, and δ on the other. The

formation energies for dilute antisite defects in L12 and B2 supercells all have values

that are only slightly above the convex hull. The opposite is true for anti-site defects

in δ, which have formation energies that are substantially above the convex hull. This

suggests that while L12 and B2 may tolerate anti-site disorder at elevated temperature,

δ will not and will behave as a line compound.
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(a) (b)

(c)

Figure 3.6: Unit cells for the β (fig. 3.6a), β′ (fig. 3.6c) and β′′ (fig. 3.6b) phases. All
three phases have an underlying B2 ordering, with Ni (orange) and Al (purple) atoms
arranged on a BCC crystal. The β′ and β′′ phases have ordered vacancies on the Ni
sublattice, shown with black boxes.

3.3.2 An infinity of groundstates

The calculated formation energies of Figure 3.4 and Figure 3.7 show that there are

a large number of configurations between 0.625 < xNi < 0.75 having formation energies

that lie below the common tangent between δ at xNi=0.625 and γ′ at xNi=0.75. The

final relaxed crystal structures for each of these configurations were found to most closely

map onto FCC. Examination of their atomic positions and arrangements revealed that

they can be viewed as hybrids of L10 and L12 orderings. The crystal structures of L10
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Figure 3.7: Close up of formation energies near δ and γ′ compositions. Configurations
that are combinations of L10 and L12 result in new groundstates that break the convex
hull. Energies colored green correspond to orderings of δ0121 and L12 with a dilute
amount of antisite defects. Dilute defect energies in the δ0121 and L12 orderings have
been highlited.

and L12 are compared in fig. 3.5. L10 consists of alternating Ni and Al layers along the

{001} direction of FCC. L12 can be derived from L10 by replacing half the Al in the Al

(001) layers of L10 by Ni in a checker board pattern.

The δ ordering at xNi = 0.625, which is the first ground state of the series of hybrid

orderings (Figure 3.7), is made up of alternating layers of L12 and L10 along the {101}

direction as illustrated in fig. 3.8. Additional layered configurations were systematically

enumerated by varying the number and order of L10 and L12 layers along the {101}

direction. Configurations with single L10 layers separated by one or more L12 layers were

found to have formation energies that dip below the common tangent connecting δ at

xNi = 0.625 and L12 at xNi = 0.75. Aluminum rich configurations having an excess of

L10 layers in contrast were found to have high formation energies that are substantially
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above the common tangent between δ at xNi = 0.625 and B2 NiAl at xNi=0.5.

Figure 3.8: L10 (left) and L12 (right) orderings and their relation to the Ni5Al3 δ
structure (bottom). Alternating layers of L10 and L12 unit cells along the [101] plane
result in the δ0121 and δ0121 ordering.

Hybrid orderings are common in alloys and oxides [56, 23, 41, 57]. A naming conven-

tion has been established to label families of hybrid phases [56], which we adopt here.

Since the first hybrid phase Ni5Al3 is referred to as δ, we use this label to refer to the

whole family of hybrid orderings. Subscripts are then added to distinguish the various

hybrid orderings based on their number of L12 and L10 subunits. A “0” indicates a L10

layer, while a “2” indicates a L12 ordering. Exponents on each subscript denote the

number of each layer used to construct the full ordering. The unit cell of the ground-

state at xNi = 2
3
, for example, is composed of a single L10 layer followed by two L12

layers (fig. 3.8). This groundstate is, therefore, labeled as δ0122 . The ground state at

xNi = 0.625, Ni5Al3, consists of alternating layers of L10 and L12, such that its label

would be δ0121 .

44



Chapter 3

3.3.3 Navigating strain space

Many orderings on FCC and BCC in the Ni-Al binary are dynamically unstable and

relax to a different parent crystal structure. [58] The strain order parameters described

in section 3.2.2 can be used to quantify the distance of a relaxed structure to either FCC

or BCC. We systematically analyze relaxation strains in this section. High symmetry

points and lines in e2-e3 space will be referred to using the labelling outlined in fig. 3.3.

Pure Ni (γ) and L12 (γ′) strain surface

Figure 3.9: Strain energies relative to FCC Ni. Strain values corresponding to FCC are
indicated with f, while values corresponding to BCC are shown with b. Any straight
path connecting the origin to a marked location is a Bain path.

The simplest phase to explore in e2-e3 space is pure Ni (γ phase) as it lacks a symmetry

breaking Ni-Al ordering. Wang et al [58] have already shown that if a pure element is

stable as FCC at 0K, then the BCC form of that element must be unstable. The global

energy minimum for Ni lies at the origin (fig. 3.9, located at f.0 ) when using FCC as

a reference for strain. Three equivalent Bain paths connect FCC at the origin to three

symmetrically equivalent BCC lattices (b.z, b.y, b.x ). These equivalent BCC lattices

appear as three saddle points (instabilities along the Bain path) on the energy surface.
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Figure 3.10: Strain energies relative to the L12 ordering.

Extending further along these Bain paths yields a local minimum, corresponding to a

BCT structure, consistent with the findings of Wang et al [58].

The γ′ phase, having L12 ordering, has FCC connectivity, and is the groundstate when

xNi = 0.75. The global minimum for the strain energy plot of the γ′ phase (fig. 3.10)

using FCC as a reference again resides at the origin (f.0 ). The L12 ordering preserves

the original FCC cubic point group symmetry, reflected in the threefold symmetry of the

energy surface in e2-e3 space. The BCC variants (indicated by locations b.z, b.y, b.x ) do

not reside in a local minimum and are therefore unstable and will spontaneously relax

back to FCC L12.

B2 (β) strain surface

The β phase has a B2 ordering on the BCC crystal structure. Figure 3.11a shows

that its energy is at a global minimum at the origin in e2-e3 space (b.0 ) when B2 is used

as the reference for strain. This structure also has cubic symmetry, which is once again

reflected in the 3-fold symmetry in e2-e3 space. Straining B2 along any of the three Bain

paths results in three equivalent FCC L10 orderings (f.z, f.y, f.x ). The plot reveals that

these three FCC variants do not coincide with any local minima and will spontaneously
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(a) (b)

Figure 3.11: Strain energies relative to the B2 ordering (fig. 3.11a) and the L10 or-
dering (fig. 3.11a). Non B2 based BCC orderings are mechanically unstable.

collapse to the BCC B2 ordering. NiAl having L10 ordering is therefore mechanically

unstable.

Interesting properties are revealed about Ni-Al orderings on BCC when using FCC

L10 as a reference for strain. Since the Ni-Al ordering in L10 (fig. 3.5a) has tetragonal

symmetry, the three-fold symmetry in e2-e3 space is broken (fig. 3.11b). One Bain path

connects L10 (f.0 ) to the B2 ordering on BCC (b.z ), and the two other Bain paths

connect symmetrically equivalent orderings on BCC (b.x, b.y) consisting of alternating

Ni and Al layers along the {110} directions, as shown in fig. 3.12. As is clear in fig. 3.11b,

not only is L10 at the origin unstable (f.0 ), the two non-B2 Ni-Al orderings (fig. 3.12,

residing on b.x and b.y) are also unstable. Figure 3.11b shows that alternating layers of

Ni and Al along {110} in BCC will spontaneously collapse to a B2 ordering, which is also

BCC. This is an example where an instability of an ordering on BCC causes a structural

relaxation to another ordering on BCC (fig. 3.12).
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Figure 3.12: Unstable ordering on BCC. Alternating Ni and Al layers along {110}
directions will spontaneously relax into the favorable B2 ordering. The ordering shown
here corresponds to strain locations f.y and f.x in fig. 3.11b.

δ0121 strain surface

Strain energy surfaces in e2-e3 space for δ Ni5Al3 (i.e. δ0121) are shown in fig. 3.13.

Figure 3.13a shows the strain energy surface when using FCC as a reference for strain.

As is clear in fig. 3.13a, the minimum of the energy surface does not reside at the origin

corresponding to perfect FCC (f.0 ), but is shifted due to the orthorhombic symmetry

of the Ni-Al ordering of δ0121 . The three Bain distortions that originate from FCC are

therefore also no longer symmetrically equivalent. While the three BCC orderings that

can be generated by application of Bain distortions to δ0121 are all dynamically unstable

(fig. 3.13a), one of the BCC variants (b.z ) clearly resides in a more shallow energy valley

than the two others. Interestingly, the energies of the δ0121-ordering of ideal FCC and of

ideal BCC in the lowest energy valley are very close to each other, and have a low value

of roughly 30meV/atom above the global minimum.

It is also revealing to consider the strain energy surface using the BCC variant in the

lowest energy valley (b.z of fig. 3.13a) as a reference, shown as b.0 in fig. 3.13b. While

the minimum of the strain energy surface of fig. 3.13b resides close to the FCC variant

corresponding to δ0121 (f.z ), the energy surface is nevertheless very shallow even for the

other FCC variants (f.x, f.y) that can be reached by application of Bain distortions to
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(a) (b)

Figure 3.13: Strain energy values for the δ0121 ordering on FCC (fig. 3.13b) and
BCC (fig. 3.13b). Unlike other groundstates, the global minimum for this structure
is neither FCC (f.0 ) or BCC (b.0 ).

the BCC variant at the origin of fig. 3.13b. Furthermore, it illustrates that there are two

orderings on FCC at xNi = 0.625 (i.e. f.x and f.y in fig. 3.13b) that are dynamically

unstable and that, instead of collapsing to a BCC structure along a Bain path, will relax

to another ordering on FCC (i.e. δ0121 , located at f.z ). The shallow strain energy surface

and its strong deviation from parabolic behavior, along with dynamical instabilities not

only of BCC, but also of FCC orderings, indicates a strong degree of anharmonicity

at compositions around xNi = 0.625. The strain energy surfaces of fig. 3.13a suggest

that the alloy exhibits ambiguity about its preference for either FCC or BCC. Since the

minimum of the energy surface lies closer to FCC than to BCC, the δ0121 phase will

resemble FCC more than BCC at low temperatures. At elevated temperature, though,

anharmonicity may shift the lattice dimensions more towards BCC. We revisit this point

when discussing phase stability at finite temperature.
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3.3.4 Relaxation of enumerated structures

The previous section showed examples where a particular ordering on FCC will spon-

taneously relax along a Bain path to BCC and vice versa. Quantifying the amount of

strain experienced by a particular ordering during relaxation does not require a full map-

ping of the energy surface in e2-e3 space as was done in the previous section. Only the

minimum energy strains relative to the ideal reference parent crystal are needed, which

are obtained by comparing the enumerated configuration before and after relaxation. For

example, a Ni-Al arrangement on FCC having L10 ordering will relax into the BCC B2

ordering. The resulting relaxation strain coincides with the global minimum of fig. 3.11b.

Figure 3.14 shows the relaxation strains of orderings enumerated over FCC and over the

sublattices of BCC based B2 relative to their ideal starting parent structure. Each re-

laxation has been color coded to indicate the prototype structure (FCC, BCC or HCP)

it most closely maps onto as determined using the metrics outlined in section 3.2.2.

Figure 3.14 shows that structures with small relaxation strains mapped onto their

original parent crystal structure, while those with very large relaxation strains mapped

onto another parent crystal structure. Interestingly, without accounting for shear strains,

a sharp transition between FCC and BCC is evident in fig. 3.14. Figure 3.14a shows that

almost every FCC ordering with a relaxation strain beyond a e2-e3 radius of about 1.5

has transformed into a structure that resembles BCC more than FCC (see section 3.2.2).

Similar behavior is evident in fig. 3.14b, which shows that BCC orderings with relaxation

strains in e2-e3 space beyond a radius of about 1.2 more closely map onto FCC than BCC.

The clustering of points in this space also reveals that many of the relaxations followed

a Bain path. Especially the large relaxation strains tend to fall along the Bain path,

resulting in clearly visible arms extending from the origin.

Whether or not a configuration on a particular crystal structure is mechanically un-
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Figure 3.14: For every enumerated configuration over FCC (fig. 3.14a) or B2
(fig. 3.14b) the strain of the relaxed structures is calculated relative to the struc-
ture used as input to DFT. This strain is then projected onto e2-e3 space. Orderings
that undergo small e2 and e3 distortions appear closest to the origin. Combining the
strain metrics with the Hungarian algorithm the relaxed structures are binned into
FCC, BCC or HCP, indicated by the color of each point.

stable is strongly correlated with its concentration. The fraction of enumerated orderings

that are unstable in different composition intervals is shown in the histograms and en-

ergy plots of fig. 3.15. Figures 3.15a and 3.15c plot relaxation histograms and formation

energies for orderings that were enumerated over FCC, while figs. 3.15b and 3.15d only

show results for orderings enumerated over B2.

The orderings enumerated on the FCC lattice are consistently stable at both high and

low Ni compositions. At compositions close to xNi=0.5, however, many configurations

relax from FCC into a B2 derived ordering. The most pronounced example already

discussed is the relaxation of L10 ordering on FCC to B2 along a Bain path (fig. 3.11b).

This configuration is the point with the lowest energy at a composition of 0.5 Ni. As the

histogram of fig. 3.15a clearly shows, configurations on FCC with compositions close to

that of β are increasingly likely to have an ordering that is unstable with respect to a
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Bain strain to BCC.

The configurations enumerated from the B2 unit cell also show an increase of instabil-

ities within a narrow composition range. At compositions close to xNi=0.5, almost all of

the lower energy structures maintain the original BCC parent lattice, but as the composi-

tion passes xNi=0.625 (i.e. the composition of the δ0121), the majority of the enumerated

B2 orderings (with mostly Ni antisites) collapse into FCC. The three groundstates in

this composition range are either the FCC based γ and γ′ phases, or the family of δ

phases, which are more closely related to FCC than BCC. It is likely that many of the

B2 orderings above xNi = 0.625 that maintain BCC connectivity after relaxation actually

reside at a saddle point due to a high symmetry Ni-Al ordering. These phases would also

be dynamically unstable, however, establishing this would require a phonon analysis for

each structure which is beyond the scope of this study.

3.3.5 Cluster Expansion and finite temperature

The fully relaxed formation energies of different orderings on FCC and over the sub-

lattices of B2 were used to parameterize cluster expansions. A cluster expansion allows

us to rapidly extrapolate the DFT energies calculated for a small set of orderings to

an arbitrary configuration in substantially larger supercells used in Monte Carlo simu-

lations to calculate finite temperature thermodynamic averages. Two separate cluster

expansions were constructed to describe the NiAl binary for 0.2 < xNi ≤ 1: one for B2

based orderings on BCC around xNi = 0.5, and another for Ni rich orderings on FCC.

The sets of training data used to construct a cluster expansion should consist exclusively

of orderings that are stable on their respective parent crystal structure. In fitting the

cluster expansions, we therefore eliminated all configurations that relaxed to a different

parent crystal structure.
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Figure 3.15: Enumerated configurations over FCC (figs. 3.15a and 3.15c) and B2
(figs. 3.15b and 3.15d) comparing the amount of orderings that are stable.

The expansion for FCC contains 26 cluster basis functions and was fit to the energies

of 539 orderings that mapped to FCC after relaxations. The expansion has a root mean

square (rms) error of 0.015 meV/atom relative to the formation energies used in the

fit and a cross validation (cv) score of 0.016 meV/atom. The FCC cluster expansion

was weighted to more accurately predict formation energies of configurations having Ni

rich compositions. The rms relative to DFT formation energies of configurations with

0.73 < xNi ≤ 1 is therefore lower having a value of 0.010 meV/atom.

The cluster expansion for B2 consists of 68 clusters and was fit to the energies of 892
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enumerated orderings. The rms error for this fit is 0.012 meV/atom with a cv score of

0.028 meV/atom. All of the configurations for this cluster expansion were enumerated

from a B2 unit cell, with different occupants allowed on the two sublattices: one sublattice

accommodates Ni and vacancies, while the other accommodates Al and Ni. The use of

a coupled cluster expansion [59, 60] to describe disorder over two separate sublattices

in β (B2-NiAl) was motivated by the early experimental observations of Bradley and

Taylor [27] and more recent first-principles study [15, 61]. These studies showed that

B2-NiAl accommodates an excess of Ni with Ni anti-site defects on the Al sublattice and

an excess of Al with vacancies on the Ni sublattice. While other anti-site defects also

form, they are entropically stabilized and have exceedingly low compositions such that

they do not affect bulk thermodynamic properties [15, 61]. A cluster expansion that

describes disorder relative to the B2 orderings on BCC as opposed to a general cluster

expansion for the BCC lattice is also motivated by the strain energy surface of fig. 3.11b.

As was pointed out in section 3.3.3, the B2 ordering of NiAl is especially stable with

other simple orderings on BCC, such as the one depicted in fig. 3.12, being dynamically

unstable and relaxing directly to B2.

The cluster expansions constructed to predict formation energies of orderings on FCC

and B2 were subjected to grand canonical Monte Carlo simulations. In the grand canon-

ical ensemble, the chemical potentials and temperature are controlled variables, while

the conjugate variables, composition and grand canonical energy, are ensemble averages

that can be approximated with Monte Carlo simulations. Free energies were obtained

by integrating calculated relations between composition and chemical potential and be-

tween grand canonical energy and temperature [15, 62]. Figure 3.16 shows calculated

free energies as a function of composition at 705◦C. Included in fig. 3.16 are the DFT

formation energies of Al3Ni, δ0121 and δ0122 , which are treated as line compounds. As

was shown in section 3.3.1, antisite defect formation is substantially more costly in δ0121

54



Chapter 3

than in B2-NiAl and γ′. The family of δ phases are therefore more resistant to antisite

defects to realize off-stoichiometric compositions even at elevated temperatures and are

approximated as line compounds.

Figure 3.17 shows a first-principles phase diagram for the Ni-Al binary obtained by

minimizing calculated free energies through a common tangent construction at various

temperatures. The liquid phase was not explicitly considered in the construction of

the phase diagram, which should form in the yellow region of fig. 3.17 according to

experimental phase diagrams.[14] The orange regions in fig. 3.17 correspond to B2-derived

single phase regions. The β phase, which has B2 ordering but no long-range vacancy

ordering over the Ni-sublattice is stable around xNi = 0.5. The β′ phase, having Ni3Al4

stoichiometry is stable at low temperature, but is predicted to decompose through a

peritectoid reaction around 820◦C. This phase, which as described in section 3.3.1 is

derived from B2 and exhibits long-range vacancy ordering on the Ni sublattice, is only

stable in a narrow composition range. The β′′ phase, which is also a vacancy ordered

derivative of B2, is stable up to high temperatures and in a wide composition range. The

purple single phase regions in fig. 3.17 correspond to FCC derived phases. The calculated

phase diagram shows that the γ solid solution can tolerate a high Al concentration. The

γ′ phase, which has L12 ordering, is also stable in a wide concentration range with off-

stoichiometry achieved with antisite defects. The two δ phases that reside on the convex

hull, δ0121 and δ0122 , appear as line compounds and, surprisingly, are predicted to remain

stable up to high temperatures. The Al3Ni phase was similarly treated as a line compound

and also appears strictly at its stoichiometric composition in the phase diagram.
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Figure 3.16: Calculated Gibbs free energies for both the FCC (purple) and B2 (orange)
cluster expansions at 705◦C. Phases that are being approximated as a line compound
(such as δ orderings) appear as a single green point.

3.4 Discussion

Our first-principles study of phase stability in the Ni-Al binary, both at zero Kelvin

and at finite temperature, not only confirms the stability of the well characterized β and

γ′ intermetallic compounds, but also predicts a variety of ground states derived either

from β for Al rich compositions, or from γ′ for Ni rich compositions. The β phase, having

B2-NiAl ordering, is unique among intermetallic compounds in that it can accommodate

very high concentrations of vacancies. While vacancy concentrations in intermetallic

compounds typically do not exceed [63, 64] 10−6 they can reach a fraction as high as 0.3

on the Ni sublattice of the β phase. Interactions among vacancies become important at

such high concentrations, which in the β phase lead to two vacancy ordered derivative

phases of β. At Ni rich compositions, a hierarchy of hybrid phases, consisting of layers of

L10 and L12 ordering having different ratios are predicted as ground states or near ground
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Figure 3.17: Gibbs energy minimization for the binary system.

states between xNi = 0.625 and 0.75. The energy of these phases as a function of strain

order parameters that describe all symmetrically equivalent Bain paths are very shallow.

These strain energy surfaces show that the hybrid phases are stable in a composition

range where the Ni-Al chemistry exhibits ambivalence about its preference for either an

FCC or a BCC parent crystal structure. It is in this composition range where many

orderings are unstable as either FCC or BCC.

The calculated phase diagram of fig. 3.17 shows that a cluster expansion parameter-

ized with several hundred DFT-PBE formation energies predicts a large Al solubility for γ

and a wide concentration range around the stoichiometric L12 composition of xNi = 0.75

in which γ′ is stable. The two-phase region separating γ and γ′ is quite narrow, similar

to what has been predicted with embedded atom force fields [65] and previous cluster

expansions [66]. The phase diagram of fig. 3.17 also resolves the finite temperature phase

boundaries between the family of vacancy rich B2 derived phases. The β phase, having

B2-NiAl ordering, accommodates excess Ni as antisite defects on the Al sublattice, but
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relies on vacancies on the Ni sublattice to achieve Al rich compositions. In the β phase,

the vacancies are disordered, however, above a threshold vacancy concentration, the va-

cancies prefer to order forming distinct phases having ideal stoichiometries of Ni3Al4 and

Ni2Al3. Since these phases have a group/subgroup symmetry relationship with β as a

result of vacancy ordering, we have labeled them as β′ and β′′ respectively. The β′ phase,

characterized by a three dimensional arrangement of vacancies (fig. 3.6c), is considered

only in specialized phase diagrams that account for it specifically, such as the one by

Ellener and Predel[55]. The β′′-Ni2Al3 compound appears in most phase diagrams, but

is generally not recognized as a derivative structure of B2 NiAl. The calculated phase

diagram shows that the vacancy ordering of β′′-Ni2Al3 is especially stable persisting to

temperatures above 1200
◦
C, in contrast to the vacancy ordering of β′-Ni3Al4, which dis-

appears through a peritectoid reaction to β′′ and β at 840◦C. In both β′ and β′′, the

vacancies favor positioning themselves diagonally from each other (fig. 3.6c and fig. 3.6b).

The common underlying atomic ordering of β, β′ and β′′ allowed us to calculate their

free energies with a single cluster expansion using Monte Carlo simulations.

Two of the δ phases are predicted to be stable in the calculated phase diagram, and

because they were modeled as line compounds, they appear as stoichiometric phases.

Though some experimentally based diagrams show significant solubility for a Ni5Al3 phase

(with δ0121 ordering), others appear to also indicate line compound behavior, or even omit

the phase from consideration completely [67, 14]. The high formation energies of antisite

defects in δ0121 (Ni5Al3) suggest that this phase will only be able to accommodate small

amounts of configurational entropy, even at high temperatures, providing the basis to

model it as a line compound.

An interesting result from the enumerated configurations is the discovery of the many

possible low energy δ orderings that appear between xNi = 0.625 and 0.75 (fig. 3.7). The

construction of these orderings by combining L10 and L12 layers results in an arbitrary
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(a) (b)

Figure 3.18: Phase diagrams such as fig. 3.17, with different amounts of artificial
vibrational energy contribution added to the β free energies. The vibrational contri-
butions increase with Ni composition and temperature, stabilizing the β (BCC) phase
over δ (FCC) orderings.

number of configurations that are either groundstates or lie within a couple of meV from

the global hull. The existence of these orderings as low energy configurations suggests

an alternative mechanism with which a range of compositions around xNi = 0.625 are

stabilized that does not require energetically costly antisite defects. Instead of creating

antisite defects, an overarching δ phase can instead accommodate an excess of Ni by

increasing the ratio of L12 to L10 layers, thereby locally preserving their ordering. The

high degree of degeneracy among the many possible δ orderings indicate that a range of

compositions are likely to be observed experimentally.

Experimental phase diagrams [14] show very high Ni solubility in β, with one assess-

ment reporting a solubility as high as xNi ≈ 0.65 at 1200◦ [14]. Yet, as discussed in

3.3.4, a majority of the B2 enumerated configurations (figure 15 b) around xNi = 0.65

are predicted to be dynamically unstable and collapse to an FCC ordering. These zero

Kelvin predictions, however, are not necessarily inconsistent with the high temperature

experimental observations of a Ni-rich B2 phase. Many high temperature phases, are

in fact predicted to be dynamically unstable with DFT at zero Kelvin. Nevertheless,
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Monte Carlo simulations applied to anharmonic lattice dynamical Hamiltonians have

shown that dynamically unstable phases can become stable at high temperature as a

result of anharmonic vibrational excitations. TiH2 and ZrH2, for example, exhibit a

cubic to tetragonal second order structural transition upon cooling [68, 69]. The high

temperature cubic phases of these hydrides are predicted to be dynamically unstable

at zero Kelvin with DFT but become stable at high temperature due to large anhar-

monic vibrational excitations [70, 39, 68]. Similar phenomena have been predicted for

perovskites [71, 72, 73, 74].

A comparison of the strain-energy surfaces of the different groundstates in the Ni-

Al binary reveals a strong degree of anharmonicity at compositions where Ni-rich β

and the family of δ phases are stable. The strain-energy surfaces of pure Ni, L12 and

stoichiometric B2-NiAl (figs. 3.9, 3.10 and 3.11a) increase rapidly as these crystals are

strained. The quasi-harmonic approximation should therefore be sufficiently accurate to

account for vibrational excitations in these elastically stiff phases, as was done in past

studies [75, 76].The shape of the strain-energy surface of δ0121 , in contrast, is highly

anisotropic and shallow (fig. 3.13b). While the energy minimum of δ0121 in e2-e3 space

is closer to FCC than to BCC, the constant energy contours at energies that are only

slightly above the energy minimum in fig. 3.13b more symmetrically surround ideal BCC

than FCC. In fact, the constant energy contours in fig. 3.13b exhibit shapes very similar

to the energy surfaces of TiH2 and ZrH2 in e2-e3 space, compounds that are tetragonal

at low temperature, but transform to cubic symmetry at elevated temperature through a

second order structural transition [70, 39, 68]. This suggests that entropic forces arising

from anharmonic vibrational excitations are likely to shift the equilibrium lattice vectors

of δ0121 away from the energy well close to FCC at low temperature more towards BCC

symmetry at elevated temperature. At low temperatures, the system is limited to sam-

pling states close to the global minimum, corresponding to the low symmetry martensite
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phase. As the temperature is raised, thermal excitations allow the system to sample

higher energy states. The anharmonic potential results in an uneven sampling of these

high energy states, which shifts the effective symmetry of the austenite phase towards

BCC.

The above considerations about δ0121 suggest that the BCC symmetry of the Ni-rich β

phase is entropically stabilized at high temperature due to large anharmonic vibrational

excitations and becomes dynamically unstable at low temperature. This conjecture is

consistent with the martensitic transformations exhibited by Ni-rich β upon quench-

ing [32, 30, 29, 77, 78, 79, 80, 81]. It also suggests that contributions to the free energy

from vibrational excitations are especially important in the free energy description of

Ni-rich β, more so than for stoichiometric β NiAl and the other compounds of the Ni-Al

binary. Anharmonic vibrational excitations in Ni-rich β are also likely coupled to the

local degree of ordering. Describing this coupling will require effective Hamiltonians that

are simultaneous functions of displacement degrees of freedom [39, 68] and configura-

tional degrees of freedom [47]. Monte Carlo simulations, similar to what was done with

EAM potentials [33], will then capture the interplay between anharmonic vibrational

excitations, dynamical instabilities and variations in ordering as a function of tempera-

ture and reveal the true nature of the martensitic phase transformations that occur upon

quenching Ni-rich β. A coupled effective Hamiltonian that combines displacement and

configurational degrees of freedom would allow Monte Carlo simulations to predict the

onset of the martensitic transformation as a function of temperature and composition.

Unfortunately, the construction of such a Hamiltonian currently presents a significant

challenge, both for the amount of DFT calculations required as training data, as well as

the vast number of resulting basis functions that must be considered in the fit.

While vibrational excitations have not been explicitly addressed in this study, we can

speculate as to how their incorporation will qualitatively modify the predicted phase dia-
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gram. The importance of anharmonic vibrational excitations in Ni-rich β as compared to

that in stoichiometric β (i.e. B2 NiAl), L12 and the family of δ phases, where vibrations

are more harmonic in nature, suggests that Ni-rich β will have more vibrational entropy

than the other compounds in the Ni-Al binary. The free energy of Ni-rich β should there-

fore decrease more than that of the other phases competing for stability upon inclusion

of vibrational contributions. Such a lowering of the free energy of Ni-rich β improves the

agreement of the calculated phase diagram with experiment. A significant discrepancy

between the calculated phase diagram and those published in the literature is the width

of the two-phase region separating β and γ′. Experiments show a large Ni solubility in

the β phase and a relatively narrow γ′ single phase region. The calculated phase diagram,

in contrast, predicts a lower Ni solubility in β and a wide stability interval for γ′, with

the δ phases remaining stable above 1200◦C. A lowering of the free energy of Ni-rich β

at high temperature will widen the single phase region of the β phase by extending its

Ni solubility to higher concentrations, while simultaneously narrowing the composition

range of the γ′ single phase region. Furthermore, an increased stability of Ni-rich β will

decrease the maximum temperature at which the δ phases exist, which is significantly

overpredicted in the calculated phase diagram.

We can explore how an increase in the stability of Ni-rich β affects the calculated

phase diagram by parametrically modifying the free energy of the β phase. This is

shown in fig. 3.18. The calculated free energy of the β phase above xNi=0.5 was low-

ered by subtracting off a term linear in composition and temperature (i.e. the correction

term is zero at xNi = 0.5 but grows linearly with excess Ni concentration and temper-

ature). Figure 3.18 shows that a further stabilization of Ni-rich β relative to the other

competing phases increases the Ni-solubility of β, reduces the peritectoid transformation

temperatures of the δ phases and decreases the width of the γ′ phase. The effect of a

doubling of the stabilization is evident upon comparison of fig. 3.18a and fig. 3.18b. The
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phase diagram of fig. 3.18b closely resembles the reported experimental phase diagrams.

The parametric analysis of fig. 3.18 demonstrates that the additional lowering of the free

energy of Ni-rich β relative to the other competing phases yields a phase diagram that is

more consistent with experiment than that calculated by considering only configurational

degrees of freedom. The strain energy surfaces of section 3.3.3 suggest that such a low-

ering of free energy in Ni-rich β should occur due to anharmonic vibrational excitations

that are not as important in the other phases.

3.5 Conclusion

We have conducted a first principles study of phase stability in the Ni-Al binary, both

at zero Kelvin and at finite temperature. Our results not only confirm the stability of

the well charaterized β and γ′ intermetallic compounds, but also predict a new family

of groundstates derived from β and γ′. A comparison between the calculated phase

diagram to experimental data [67, 14] shows good agreement with several important

discrepancies. The discrepancies considered in conjunction with an analysis of the energy

as a function of strain point to the likely importance of anharmonic vibrational excitations

in stabilizing the Ni rich β phase at high temperature, which is susceptible to martensitic

transformation upon quenching.
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Recursively extending to

multicomponent systems1

4.1 Introduction

First-principles predictions of high temperature alloy properties will become more

important as complex alloys are increasingly being considered for structural applications

in extreme environments. Multi-principle element (MPE) alloys, also often referred to as

high entropy alloys, promise to overcome many elevated temperature structural materials

challenges[84, 85, 86, 87, 88, 89]. The extreme environments in which such alloys are to

operate, however, make in depth experimental investigations difficult and costly. Com-

plex MPE alloys also pose significant challenges to first-principles approaches as they

reside in high dimensional composition spaces.

One way to model alloys from first-principles, especially at high temperature where

disorder plays an important role, is with statistical mechanics approaches that rely on

1The contents of this chapter have been substantially reproduced from J. G. Goiri and A. Van der Ven,
Recursive alloy Hamiltonian construction and its application to the Ni-Al-Cr system, Acta Materialia
159 (Oct., 2018) 257–265
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cluster expansions [47, 49]. A cluster expansion is an effective Hamiltonian that is capable

of representing the dependence of the crystal energy on the degree of short and long-range

order among alloying elements. The past years have seen the development of new ap-

proaches with which to parameterize the interaction coefficients of cluster expansions to

first-principles energies[90, 91, 92, 93, 94, 95]. A cluster expansion that can accurately

extrapolate expensive first-principles energies to any ordering on a given parent crys-

tal structure can be used within Monte Carlo simulations to predict high temperature

thermodynamic properties.

Parametrizing cluster expansions in high order alloy systems remains a challenge due

to the large number of interactions that must be accounted for. This has limited the num-

ber of elements used in ab initio statistical mechanics studies of high temperature alloy

properties. Here we introduce a recursive approach for constructing cluster expansions

in high dimensional composition spaces, where the lower order interaction coefficients

are used as informative priors for the estimation of higher order interaction coefficients.

As an example, we study the Ni-Al-Cr system, and construct an effective Hamiltonian

recursively by building on the interaction coefficients from the binary Ni-Al and Ni-Cr

systems. The resulting cluster expansion is then used in grand canonical Monte Carlo to

calculate high temperature phase diagrams and explore the sublattice preference of Cr

as an alloying element.

The high temperature and mechanical properties of nickel based superalloys makes

them ideal structural materials for turbine blades in aircrafts and power generation[7, 17].

Most superalloys are primarily Ni-Al based, but usually include additional elements such

as Cr, Co, W, Ta or Re, which are added to improve mechanical properties and oxidation

resistance[7]. The Ni-Al-Cr ternary is especially important, as the combination of Al and

Cr within the Ni-rich γ and γ′ phases can lead to favorable oxide scale formation [96,

97, 11]. While the Ni-Al and Ni-Cr binaries have received much attention theoretically
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[98, 75, 53, 1, 99], far less has been explored about the ternary Ni-Al-Cr alloy with first-

principles approaches. In this contribution, we focus in particular on the Ni-rich corner

of the Ni-Al-Cr phase diagram in view of its importance for high temperature structural

applications.

4.2 Methods

4.2.1 Cluster Expansion Method

A cluster expansion describes the energy of a multicomponent crystal as a function of

the arrangement of the different atomic species on a parent crystal structure [49, 48, 47,

100]. This is achieved by assigning occupation variables to each crystal site. Here we use

a lattice gas type cluster expansion [101, 64]. A ternary A-B-C alloy then requires two

occupation variables, for example pAi and pBi , which are 0 or 1 depending on the occupant

of site i. When the site is occupied by A, pAi = 1 and pBi = 0; when the occupant is B,

pAi = 0 and pBi = 1; otherwise pAi = pBi = 0, indicating that C occupies the site. The two

occupation variables for a particular site are combined into a site vector ~pi = {pAi , pBi }.

The occupation of a crystal with N sites is now fully determined by ~p = {~p1, ~p2, . . . , ~pN}.

The energy of the crystal depends on the occupation vector ~p, and can be expressed

as [47, 48, 49, 101]

Ef (~p) =
∑
α

∑
π

V π
α φ

π
α(~p) (4.1)

where the cluster functions φπα are defined as

φπα(~p) =
∏
i∈α

p
π(i)
i (4.2)

The variable α represents a collection of crystal sites, such as point, pair, triplet, etc.
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clusters. The cluster function is simultaneously defined by π, which specifies unique

combinations of the occupation variables pAi and pBi for each site i of the cluster α. For

example, there are four distinct basis functions associated with a nearest neighbor pair

cluster α in FCC: pAi p
A
j , pAi p

B
j , pBi p

A
j and pBi p

B
j , where i and j are the two crystal sites of

the pair cluster. Each of these cluster functions will evaluate differently, depending on

the occupants of i and j. The coefficients V π
α from eq. (4.1) are the effective cluster inter-

actions (ECI), and are to be determined with regression techniques using first-principles

density functional theory (DFT) calculations as training data.

The symmetry of the crystal relates many of the interaction coefficients V π
α to each

other: any basis function φπα related to another basis function φπ
′

α′ by a symmetry op-

eration of the crystal will have the same ECI, i.e. V π
α = V π′

α′ . For example, a nearest

neighbor cluster α = {i, j} in FCC has four basis functions, however, symmetry reduces

the number of independent ECI for that cluster to three: one accompanying pAi p
A
j , an-

other multiplying pBi p
B
j , and a third one multiplying both pAi p

B
j and pBi p

A
j . Additional

symmetry of the FCC crystal relates these three independent ECI to those of all other

nearest neighbor pair clusters in the crystal. Equivalent cluster functions φπα can be

grouped into orbits Ωπ
α using the symmetry of the crystal. The energy of the crystal can

then be rewritten according to

Ef (~p) =
∑
α

∑
π

V π
α

∑
α′,π′∈Ωπα

φπ
′

α′(~p) (4.3)

where the outer sums extend over symmetrically distinct cluster function prototypes,

labeled by α and π, and the inner sums extend over all symmetrically equivalent cluster

functions belonging to the same orbit Ωπ
α.

The energy of the crystal, Ef (~p), can be normalized by the number of primitive unit
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cells N to yield

e (~p) =
∑
α,π

V π
αm

π
αξ

π
α(~p) (4.4)

where

ξπα(~p) =
1

mπ
αN

∑
α′π′∈Ωπα

φπα′(~p) (4.5)

are correlation functions and correspond to the average value of a cluster function in a

particular configuration ~p. The mπ
α are equal to the number of equivalent cluster basis

functions per primitive unit cell.

The sum in eq. (4.1) extends over all clusters α within the crystal. In practice,

the cluster expansion is truncated. One approach to determining values for the ECI of

a truncated cluster expansion is with a regression method that relies on an inversion

of eq. (4.4). This requires that a large number of energies for symmetrically distinct

orderings, ~p, are calculated from first-principles (e.g. with DFT or one of its extensions).

Each ~p will have a distinct set of correlations, ξπα (~p), one for each cluster basis function

that remains in the truncated cluster expansion. The calculated energies, e(~p), can be

collected in a column vector ~y while the set of correlations, ξπα (~p), for each configuration

~p can be collected as rows in a matrix X. Consistent with eq. (4.4), it is then possible

to write

y = X~v (4.6)

where ~v is a column vector collecting the ECI for each cluster basis function multiplied

by their multiplicity mπ
α, i.e. ~vᵀ = {mπ

αV
π
α . . . }. The problem of determining numerical

values of the ECI has, therefore, been cast into a common regression problem.

In the next section, it will prove useful to categorize basis function combinations

π into three groups: those that only contain pAi occupation variables, those that only

contain pBi and those that contain a mix [102]. We will represent these three different
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types of interactions with π (pure A interactions), π′ (pure B interactions), and π′′ (cross

interactions between A and B). This allows us to rewrite eq. (4.1) as

Ef (~p) =V0

+
∑
α,π

V π
α φ

π
α (~p)

+
∑
α,π′

V π′

α φπ
′

α (~p)

+
∑
α,π′′

V π′′

α φπ
′′

α (~p)

(4.7)

where V0 is the ECI for the empty cluster and is equal to the formation energy of pure

C [64]. Expressing the energy as in eq. (4.7) will prove advantageous for extracting ECI

of a ternary alloy recursively, starting from simple binaries.

4.2.2 A recursive approach to constructing multicomponent clus-

ter expansions

To construct a cluster expansion, we want to find the best set of ECI that reproduce

the observed data, and can accurately predict DFT energies not used in the training

process. Bayesian regression allows the introduction of prior probability distributions

into the fit, which are used to inform the model of any knowledge we have about the

system[92, 103]. A commonly used prior is the L2 regularization, which can be used to

ensure a shrinkage of the fitting parameters, resulting in ECI having small magnitudes.

Previous work[92] has shown how a Tikhonov regularization matrix can be used to enforce

more shrinkage on particular clusters where we expect the smallest ECI values (e.g.

clusters with longer lengths).

A common assumption is that the probability distribution of the ECI is centered
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around zero [92]. This is consistently the case whether a Gaussian distribution is used

(L2 regularization) or a Laplace distribution is used (L1 regularization). One of the main

challenges of fitting multicomponent cluster expansions is the steep increase in the num-

ber of interactions that need to be accounted for as the number of components increases.

However, fitting a cluster expansion on any of the subsystems of a multicomponent sys-

tem is relatively straightforward. We propose a method in which individual fits of the

multicomponent subsystems can be used as an informative prior for the multicomponent

system.

A generalized derivation of the L2 regularization will show how a set of previously

established ECI from a binary fit can themselves be used as informative priors in a sep-

arate ternary cluster expansion. Though the derivation that follows assumes Gaussian

distributed probabilities for all ECI, the same reasoning can be applied for L1 regu-

larization, or other more advanced regression techniques such as automatic relevance

determination[104].

We begin with Bayes theorem[105, 103], which states that for the given correlation

matrix X and energy measurements ~y as defined in eq. (4.6), the probability of a set of

ECI values ~v is

P (~v|X, ~y) =
P (~y|~v,X)P (~v|X)

P (~y|X)
(4.8)

where P (~y|~v,X) is the likelihood and P (~v|X) is the informative prior. Maximizing the

likelihood results in a solution for ~v that minimizes the residuals (least squares), while

the informative priors provide information about the expected values ~v should have. The

priors are based on any information we have about our system, including any physical

insights or previous models. The best set of ECI can be found by finding the maximum

of the a posteriori probability estimate (MAP), which depends only on the likelihood and
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the prior.

~vMAP = argmax
v

P (~v|X, ~y)

= argmax
v

[logP (~y|~v,X) + logP (~v|X)]

(4.9)

We assume normal distributions for both the observed energy values ~y and ECI values

~v. The usual assumption for the distribution of the ECI values is that the probability

is centered around zero. In our derivation we will not make that assumption for all the

ECI values, and instead explicitly state that the distribution for v is centered around v̂

with variance τ .

P (~v|X) =
∏
i

1√
2πτ 2

i

exp

(
−(vi − v̂i)2

2τ 2
i

)
(4.10)

Similarly, we pick the mean for the distributions of the observed energies to be their

expected values, with a variance σ2
~p, which gives us an expression for the likelihood.

P (~y|~v,X) =
∏
~p

1√
2πσ2

~p

exp

(
−(y~p − ~x~p~v)2

2σ2
~p

)
(4.11)

where ~x~p is a row from the correlation matrix X and contains the correlations for con-

figuration ~p.

Inserting 4.10 and 4.11 into 4.9 we find that

~vMAP = argmin
v

∑
~p

(y~p − ~x~p~v)2

2σ2
~p

+
∑
i

(vi − v̂i)2

2τ 2
i

 (4.12)

Note that some of the constant terms that are independent of ~v and do not affect the

probability maximization have been omitted for clarity.

The value of σ~p, which is usually unknown, complicates the solution of of eq. (4.12).

In order to arrive at a closed form solution, we can perform a series of substitutions.

Setting v̂ = 0 would yield the well established L2 regularization [92]. Instead, we define
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a new variable v′ = v − v̂.

~vMAP = argmin
v

∑
~p

(
y~p − ~̂v~x~p − ~v′~x~p

)2

2σ2
~p

+
∑
i

v′2i
2τ 2
i

 (4.13)

By defining y′ = y− ~̂v~x, and assuming σ takes a constant value, the expression takes the

familiar L2 form, with λ = σ2/τ 2.

~v′MAP = argmin
v′

∑
~p

(
y′~p − ~v′~x~p

)2
+
∑
i

λiv
′2
i

 (4.14)

This shows that prior information about the expected value of certain ECI values

can be inserted into the regression by recasting the training data, and constructing an

appropriate Tikhonov regularization matrix. By subtracting out the energy contributions

of the basis functions with known ECI values, and assigning them a high regularizing

value λ, we can fit the remaining “uninformed” ECI and force the “informed” ECI to

retain their original value. When picking large values of λ for “uninformed” ECI (as is

the case in the usual L2 formulation), we are asserting that the probability distribution

for v is sharply peaked around 0, resulting in small magnitudes. Conversely, when picking

values of λ for “informed” ECI, we are effectively determining how close we expect the

true value of v to be to v̂, with large λ enforcing a small deviation from the expected

value. A different value λ can be selected for each of the different ECI, allowing varying

amount of confidence to be placed on the informed ECI. For our purposes, we have picked

λ = 0 for all ECI involving ternary interactions, and a flat value λ for for the informed

ECI, such that they reproduce the original binary groundstate formation energies within

5meV/atom.
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4.2.3 Ab initio calculations

We employed density functional theory (DFT) calculations to predict the ordering

preferences in the Ni-Al-Cr system. All calculations were performed with the general-

ized gradient approximation (GGA-PBE) using the projector augmented wave (PAW)

method[34] with the Vienna ab initio Simulation Package (VASP)[37, 35, 36]. PAW

potentials with 16, 3, and 12 valence electrons were used for Ni, Al, and Cr respec-

tively (these are found in the Ni pv, Al, and Cr pv VASP potentials). Parametrizing a

cluster expansion requires a large number of energies for different orderings as training

data. These orderings were generated using the CASM[106, 40, 39, 41] software package

by enumerating symmetrically distinct atomic combinations of Ni, Al and Cr on FCC

and BCC lattices. DFT calculations were converged to within 1meV/atom by using a

23 × 23 × 23 k-point mesh for a FCC primitive Ni cell, and a 17 × 17 × 17 mesh for a

NiAl B2 cell. The k-point meshes for enumerated supercells were scaled appropriately

to maintain the same density. A relatively high energy cutoff of 560eV was employed for

all calculations, and all calculations were initialized with a spin polarized ferromagnetic

ordering[42]. The initial magnetic moment for Ni, Al, and Cr, was 2.5, 2.0, and 1.7 Bohr

magnetons respectively. The Methfessel-Paxton method was used to first order for the

numerical k-space integration through the Brillouin zone with a smearing parameter of

0.2eV. The DFT-PBE energies were calculated allowing lattice parameters and atomic

positions to fully relax in order to minimize the total energy.
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4.3 Results

4.3.1 Formation Energies and Groundstates

The first step towards understanding the thermodynamic behavior of an alloy such as

the Ni-Al-Cr system is to determine the lowest energy phases at 0K. The Ni-Al-Cr ternary

has a variety of phases that can be viewed as orderings over parent crystal structures

such as FCC and BCC. Building on previous work focused on the Ni-Al binary[1], we

enumerated ternary configurations within the FCC and BCC parent crystal structures

and over the sublattice sites of the B2 NiAl compound. The B2 NiAl compound, having a

CsCl crystal structure, accommodates off-stoichiometry in very different ways depending

on whether it is Ni rich or Al rich[27]. Excess Ni in B2-NiAl is accommodated with Ni

antisite defects on the Al sublattice, while an Al excess is realized by an uncommonly

high concentration of vacancies on the Ni sublattice. Preliminary DFT calculations did

not reveal a strong preference for either sublattice by Cr atoms. Ternary configurations

in B2 NiAl were therefore enumerated by allowing Ni, vacancies, and Cr disorder on the

Ni-sublattice and Al, Ni, and Cr disorder on the Al sublattice.

Figure 4.1 shows the convex hull of all calculated configurations, combined with for-

mation energies of compounds that cannot be enumerated on an FCC or BCC lattice[107].

Formation energies for all structures were calculated relative to pure FCC Ni, FCC Al

and BCC Cr, and normalized per number of atoms

Ef =
EDFT −NNiE

DFT
Ni −NAlE

DFT
Al −NCrE

DFT
Cr

NNi +NAl +NCr

(4.15)

As a measure of concentration, we use atomic fractions defined as

xM =
NM

NNi +NAl +NCr

(4.16)
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Figure 4.1: Projected convex hull of all calculated configurations, with blue circles
highlighting the presence of groundstates. B2 based structures are labelled β (NiAl),
β′ (Ni3Al4) and β′′ (Ni2Al3). The L12 based groundstates enclosed in a dashed circle
(Ni3Al, Ni81Al25Cr2, Ni27Al8Cr and Ni12Al3Cr) are collectively labelled γ′. An en-
larged view of the L12 groundstates is shown on the upper right. The δ−Ni5Al3 and
δ −Ni2Al groundstates are collectively labelled δ.

where M represents either Ni, Al or Cr. Table 4.1 in Supporting Information reports the

formation energies of each ground state.

The binary Ni-Al alloy favors FCC derived phases at Ni rich compositions and B2-

derived phases at equiatomic compositions (fig. 4.1). Pure Ni (γ) is stable in FCC,

while Ni3Al (γ′) adopts the L12 ordering on FCC. A family of hierarchical orderings

consisting of alternating units of L10 and L12 ordering are stable in the composition

range of 0.625 ≤ xNi ≤ 0.667 (xCr=0) [1]. We collectively refer to these orderings as δ,

with two of them appearing on the global convex hull: δ − Ni5Al3 and δ − Ni2Al. The

β, β′ and β′′ phases, in contrast, are all derived from B2. The β phase corresponds to

perfect B2 ordering, while β′ and β′′ are vacancy ordered variants of B2. The Al-rich

Al3Ni phase is unlike the other Ni-Al phases in that it is not an ordering on either FCC
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or BCC, but is instead isomorphic with cementite (Fe3C).

While Al and Ni favor FCC, pure Cr prefers BCC. Figure 4.1 shows only one com-

pound in the Ni-Cr binary. This compound, having an ideal Ni2Cr stoichiometry, is an

ordered FCC phase. It consists of (101) Cr layers alternated by pairs of (101) Ni layers as

illustrated in fig. 4.2. This phase is experimentally observed to undergo an order-disorder

transition around 825K[108].

Figure 4.2: The Ni2Cr ordering. Cr atoms (green) layers alternate with Ni (orange) as
(101) planes. The structure can also be viewed as alternating layers of (102) planes.
The primitive cell of this ordering is shown with dashed lines.

Though our focus lies primarily on the Ni rich side of the ternary phase diagram, we

briefly describe the stable Al-Cr structures that appear as groundstates in fig. 4.1. Past

experimental studies have indicated the existence of Al rich Ni-Al-Cr ternary phases, as

well as Al-Cr binary phases that do not appear on our convex hull[109, 110]. Structures

of reported phases in the Al and Cr rich corners that have proven difficult to characterize

or that only exist at higher temperatures have been excluded from our calculations. The

Al45Cr7 phase appearing as a groundstate on the convex hull in fig. 4.1 is an approximate

structure to the experimentally observed quasicrystal, also referred to as Al7Cr or Al13Cr2

[109, 111]. The Al3Cr phase is D022, which is an ordering on FCC. On the Cr rich side

of the Al-Cr binary, only AlCr2 is reported in the literature. The ordering of this phase

consists of a single Al (100) layer alternated by two Cr (100) layers within a conventional

BCC cell.

Figure 4.1 shows that there are also several ternary groundstates in addition to the
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binary groundstates. These groundstates appear on the Ni rich portion of the convex

hull, and were discovered by enumerating antisite defects in L12 superstructures. All of

these ternary orderings maintain an L12 ordering, with Cr occupying exclusively the Al

sublattice. The convex hull constructed from the set of calculated configurations shows

3 ordered ternary groundstates (Ni81Al25Cr2, Ni27Al8Cr and Ni12Al3Cr). However, we

expect that further enumeration of orderings with varying distributions of Cr on the Al

sublattice of the γ′ phase is likely to result in the discovery of additional groundstates.

As shown in previous work[1], there is a series of configurations between 0.625 <

xNi < 0.75 (xCr = 0) that lie below the common tangent between δ-Ni5Al3 and γ′.

These orderings can be constructed by combining layers of L12 and L10 along the [101]

direction. The collection of these hierarchical groundstates is collectively labeled δ in

fig. 4.1. Similar hierarchical orderings were found to be ground states in the Ni-Cr and

Cr-Al binaries. An alternative way of visualizing the Ni2Cr ordered phase is to view it

as alternating layers along the [2̄01] direction, with single layers of Cr alternated by two

layers of Ni (fig. 4.2). Configurations generated by increasing the number of Ni layers

between those of Cr from 2 to 3 or 4 layers results in formation energies that are less

than 5meV from the convex hull. Further combinations of these configurations into larger

structures with a varying number of Ni layers (such as the example shown in fig. 4.3)

also have very low energies. The lowest energy structure enumerated in this series is a 22

atom supercell with stoichiometry Ni15Cr7. In fact, DFT predicts this ordering as being

a global groundstate, bringing Ni2Cr about 3meV above the convex hull. In view of the

complexity and size of the Ni15Cr7 superstructure ordering and its near degeneracy with

the experimentally observed Ni2Cr phase, we did not include it as part of the zero Kelvin

convex hull in fig. 4.1, nor did we consider it in the construction of our cluster expansion

Hamiltonian.

We found that the Cr-Al binary also exhibits hierarchical groundstate orderings. A
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Figure 4.3: Example of a low energy stacking for Ni-Cr. The true DFT groundstate
shown in the center is composed of 6 Ni2Cr units and a single Ni3Cr unit. Additional
low energy structures can be found by combining different amounts of Ni2Cr, Ni3Cr,
and Ni4Cr units.

systematic enumeration led to the discovery of a previously unreported groundstate with

stoichiometry Al5Cr8 on a BCC lattice. The Cr2Al ordering, consisting of single Al

(100) layers and double Cr (100) layers in BCC, can be combined with CrAl, which

has alternating pairs of (100) Cr and Al layers in BCC. Stacking sequences such as the

one shown in fig. 4.4 result in an array of low energy structures, including this new

groundstate.

4.3.2 Finite temperature phase diagram

Three separate cluster expansions were constructed to model the Ni-Al-Cr ternary.

Fully relaxed formation energies of different orderings on FCC, B2 and BCC were used

as training data to parametrize the cluster expansions. Structures that relaxed from one

parent crystal structure to another due to dynamical instabilities were identified using

criteria described in [1] and were not included in the training sets. Figures 4.12 to 4.14 in

Supporting Information show a comparison between the predicted and DFT formation

energies for the three cluster expansions.
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Figure 4.4: Example of a low energy stacking for Cr-Al. A new groundstate was found
by combining one unit of Al2Cr2 with three units of the well established groundstate
AlCr2. Combining these units in different ratios results in additional low energy
configurations.

A ternary cluster expansion was parameterized for BCC, weighting the Cr rich struc-

tures since BCC is only observed and predicted to be stable in the Cr rich corner of

the ternary composition space. The coefficients of 70 basis functions were selected and

parametrized using automatic relevance determination (ARD)[104] with a training set

of 544 structures. The resulting cluster expansion has a root mean square error of

17meV/atom, but just 10meV/atom for configurations with xCr > 0.8, where the cluster

expansion is required to accurately predict energies. In order to ensure that our models

are predictive, we used k-fold cross validation, where k is the number of folds we split

our training data into. By training on all but one of the folds k times (once for each

excluded fold), we compute the cross validation (cv) score by averaging the error of all

the folds that were excluded from the training set[103]. Using this method with k = 10,

the cv score for the BCC Cr cluster expansion is 18meV/atom.

A second cluster expansion was parametrized to describe Ni-rich FCC, including γ (Ni

solid solution), γ′ (L12) and the ordered Ni2Cr phase. To construct this ternary cluster

expansion, we used the recursive approach described in section 4.2.2. We started with
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optimized binary cluster expansions for the Ni-Al and Ni-Cr binary subsystems. The ECI

for FCC Ni-Al were taken from previous work[1], which was shown to accurately predict

energies for the γ and γ′ phases. A binary cluster expansion for the FCC Ni-Cr system

with 38 binary interaction coefficients and an overall root mean square error (RMSE) of

7meV/atom was also constructed. It predicts Ni2Cr as the only groundstate in the FCC

Ni-Cr binary. A k-fold cross validation score with k = 10 closely tracks the RMSE value

at 7meV/atom.

The two binary cluster expansions were used as informative priors to parameterize

the terms of a ternary FCC cluster expansion. We picked relatively large values of λ for

the binary interactions of the two subsystem cluster expansions to ensure that the ECI of

the final fit accurately reproduce the predicted energies of the binaries. For the ternary

interactions, no shrinkage was imposed (λ = 0), and the genetic algorithm was used to

pick an additional 26 ternary basis functions, yielding a total of 110 non-zero ECI in the

final ternary cluster expansion. The ternary cluster expansion also predicts Ni12Al3Cr as

being a groundstate, consistent with the DFT convex hull. A total of 2100 energies, of

which 1290 corresponded to ternary configurations, were used to train the full ternary

cluster expansion having an RMSE of 20meV/atom. At high Ni compositions (xNi > 0.6)

where the cluster expansion is required to predict configurational energies accurately the

RMSE is only 9meV per atom. Performing a k-fold (k = 10) cross validation on the entire

data set gave a value of 23meV/atom. However, repeating the same cross validation using

only high Ni compositions (xNi > 0.6), reduced the CV score to 12meV/atom.

A final cluster expansion was constructed to describe the configurational energy of

B2 NiAl in the ternary Ni-Al-Cr composition space. As shown in our previous study

[1], a binary cluster expansion that allows for vacancies on the Ni-sublattice and Ni on

the Al sublattice is capable of describing the three B2-derived orderings, β, β′ and β′′,

observed experimentally. We constructed a ternary cluster expansion for B2-NiAl that
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also accounts for Cr additions on both sublattices by applying the recursive approach

described in section 4.2.2 to the binary cluster expansion for B2-NiAl [1]. We focused

exclusively on the Ni rich side of the β phase, adding 22 additional ternary interactions

to the original set of 68. The RMSE for this cluster expansion in the composition range

of 0.5 ≤ xNi < 0.65 and xCr < 0.2 is 12meV per atom, with a k-fold (k = 10) cv score of

13meV/atom.

The three cluster expansions were next subjected to Monte Carlo simulations to calcu-

late free energies of the three parent crystal structures. The simulations were performed

within the semi grand canonical ensemble, where temperature, chemical potential and to-

tal number of crystal sites are the controlled variables. The composition and grand canon-

ical energy were calculated as averages over sampled configurational microstates. Gibbs

free energies were calculated with thermodynamic integration techniques [40, 112, 113].

Figure 4.5 shows a calculated phase diagram at 800K. The phase diagram was con-

structed by applying the common tangent construction to the calculated Gibbs free

energies (δ-Ni5Al3 and δ-Ni2Al phases shown as δ in fig. 4.1 were modelled as a line

compounds). The binary Ni-Al and Ni-Cr phase diagrams as calculated with the same

cluster expansions are shown in fig. 4.9 of Supporting Information. The calculated phase

diagram predicts only a very small Ni and Al solubility in BCC Cr. A limited degree of

off-stoichiometry and Cr solubility is predicted in B2 at 800K. The Ni2Cr ordering, which

is FCC based, also does not accommodate a significant degree of off-stoichiometry, ex-

hibiting very low Al solubility. The FCC based Ni-rich solid solution (γ) and the γ′-Ni3Al

phase, in contrast, are able to dissolve a large concentration of Cr.

Figure 4.6 shows a phase diagram calculated at 1400K. This temperature is above the

disorder temperature of Ni2Cr[114, 110], which no longer appears in the phase diagram.

At this temperature the β phase accommodates significantly more Al than at 800K, with

only a very slight increase in Cr solubility. The free energy for β, even at these elevated
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Figure 4.5: Calculated phase diagram at 800K. Single phase regions are colored, while
two phase regions are white and show several tie lines. Three phase regions are shown
with a gray background.

temperatures, does not decrease sufficiently at Ni-rich concentrations to destabilize the

Ni5Al3 phase, even though this ordering is not seen experimentally at 1400K[114, 110].

As described in [1], this is likely due to the neglect of vibrational excitations, which are

expected to be highly anharmonic in B2 at Ni-rich compositions. The γ and γ′ phases

show the most dramatic change with increasing temperature. The γ phase extends further

along both the Ni-Al and Ni-Cr binaries, uniformly increasing the single phase region.

The γ′ phase also increases its Cr solubility. Similar to the phase diagram at 800K, the

maximum Cr solubility occurs at Ni-rich compositions, reaching as high as xCr = 0.04

when xNi = 0.78.

4.3.3 Preferential occupation of Cr on L12 sublattices

The calculated phase diagrams at both 800K (fig. 4.5) and 1400K (fig. 4.6) show a

high Cr solubility in the γ′-Ni3Al phase. This phase has an L12 ordering on FCC, in

which Al occupies the corner sites of the conventional FCC cubic unit cell, while Ni

occupies the remaining sites. Along the Ni-Al binary, γ′ accommodates Ni excess with
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Figure 4.6: Calculated phase diagram at 1400K. The solubility of γ′ has extended and
Ni2Cr has undergone a disorder transformation.

Ni anti-site defects on the Al sublattice and Al excess with Al antisite defects on the Ni

sublattice. The DFT calculations at zero Kelvin predict that Cr prefers to reside on the

Al sublattice of the L12 ordering. This behavior persists at elevated temperature. The

Cr distribution over the two distinct L12 sites at elevated temperature can be tracked

within Monte Carlo simulations with the aid of sublattice concentrations. Figure 4.7

shows the Cr concentration on the the Al sublattice of L12, while Figure 4.8 shows the

Cr concentration on the Ni sublattice of L12. As is clear from both figures, Cr almost

exclusively resides on the Al sublattice with negligible occupancy of the Ni sublattice.

Figure 4.7: Cr composition of the Al sublattice of L12. The composition on this single
sublattice very closely tracks the global Cr concentration.
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Figure 4.8: Average Cr composition for all three Ni sublattices of L12. The Cr con-
centration of these sublattices remains close to zero despite an increase in the global
Cr concentration.

4.4 Discussion

Many methods have been developed to parameterize alloy cluster expansion Hamil-

tonians. The reliance on a cross validation score opened the door to more automated

approaches of selecting the basis functions that are to be included in a truncated clus-

ter expansion [95]. Other innovations have included the use of genetic algorithms [115]

and compressive sensing approaches [91, 90] to select a sparse cluster expansion Hamil-

tonian. Bayesian approaches have been introduced to exploit prior knowledge [92] and

have been particularly effective in the construction of cluster expansion Hamiltonians

for nano-particles [116]. Recent advances exploit non-linear programming techniques to

impose constraints that ensure that the cluster expansion predicts the correct ground

states [93]. Approaches developed so far, however, parameterize all terms of the final

cluster expansion simultaneously.

Here we have introduced a recursive approach to build multi-component cluster ex-

pansion Hamiltonians starting with well-optimized Hamiltonians for its subsystems. This

means that the first-principles parameterization of a ternary cluster expansion Hamilto-

nian, for example, can be informed by optimized fits of binary subsystems. The approach

uses information about the interaction coefficients of the lower-dimensional subsystems
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as Bayesian priors when fitting higher order systems. A major advantage of this approach

is that it guarantees that the cluster expansion Hamiltonian for a ternary alloy, for ex-

ample, faithfully replicates the predictions of well-optimized binary Hamiltonians. This

is evident in figs. 4.10 and 4.11 of Supporting Information, which compare the binary

Ni-Al and Ni-Cr phase diagrams as calculated with optimized binary cluster expansions

to those calculated with the ternary cluster expansions constructed by using the binary

expansions as informative priors. The approach complements the multitude of other

methods that have been introduced to parameterize cluster expansions and can be used

in combination with them. Here, for example, we used the recursive approach together

with a genetic algorithm to select an optimal basis set.

The recursive approach opens the door to systematic Hamiltonian parameterizations

of multi-principle element (MPE) alloys (also referred to as high entropy alloys), which

are currently receiving much attention due to their multitude of promising properties

[84, 85, 86, 87, 88, 89]. The recursive approach will enable a higher degree of self-

consistency between cluster expansions in high dimensional composition spaces and those

that have been parameterized in all the lower-dimensional subsystems.

In the approach introduced here, we have only used the values of the interaction

coefficients of lower dimensional Hamiltonians as prior knowledge, neglecting other in-

formation that may be available from a cluster expansion parameterization, such as an

estimate of the spread on each interaction coefficient. A sensitivity analysis, as developed

by Zabaras and co-workers [117], for example, will also provide information about the

spread on each interaction coefficient of the lower dimensional subsystem that can be

utilized in the formulation of the recursive approach of section 4.2.2.

As Sanchez [48, 100] and Asta et al[118] have shown, there is some flexibility in the

mathematical form of the cluster basis functions. To preserve orthonormality between

cluster basis functions with respect to a particular scalar product [47, 48, 118], it is com-
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mon to rely on Chebyshev polynomials for the site basis functions. While appealing due

to their orthogonality properties, these basis functions are less suited for a recursive ap-

proach as developed here since it is difficult to express an n-component cluster expansion

as a sum of n− 1 component cluster expansions plus cross terms. Here we have relied on

a ’lattice gas’ formulation of a cluster expansion, which, for an n component system, is

explicitly expressed in terms of n− 1 site occupation variables, pEi , that are each either

1 or 0 depending on whether or not site i is occupied by element E. Cluster expansions

expressed in terms of these occupation variables can be written as a sum of subsystem

cluster expansions plus higher order interactions.

The recursive parameterization of cluster expansions has enabled us to construct

ternary Hamiltonians for the FCC and B2 phases in the Ni-Al-Cr system by building

on well optimized binary cluster expansions for these phases. In the Ni-rich portion of

the ternary phase diagram, there are two intermetallic compounds that can be viewed

as orderings over FCC: the well-known L12 Ni3Al phase (γ′) and Ni2Cr. There are

no qualitatively distinct ternary ordered compounds in the Ni rich corner. Rather the

ternary groundstate orderings are derivatives of γ′-Ni3Al, with Cr simply replacing a

fraction of Al on the Al sublattice of the L12 ordering. These zero Kelvin groundstates

have already disappeared at 800K, but the solubility of Cr in γ′ Ni3Al remains high. The

Ni2Cr compound, in contrast only tolerates a small concentration of Al. This is likely due

to the strong stability of γ′ Ni3Al, which forms tie lines with Ni2Cr. The predicted Cr

solubility in B2-NiAl is surprisingly low. Experimentally assessed phase diagrams of the

Ni-Al-Cr ternary report higher Cr solubility limits in B2[114, 110]. As pointed out in a

detailed study of the Ni-Al binary [1], it is likely that anharmonic vibrational excitations

are important in determining thermodynamic properties of Ni-rich B2. The neglect of

these excitations in this study may be at the origin of the underpredicted Cr solubility

in B2.
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All DFT calculations used to parameterize the cluster expansions were initialized

in the ferromagnetic state. Ni-rich FCC is ferromagnetic while L12 Ni3Al relaxes to

a non magnetic state. We found that the energy of Ni2Cr is insensitive to whether

it is initialized ferromagnetically or anti-ferromagnetically. It is well known, however,

that BCC Cr prefers antiferromagnetic ordering [119, 120]. Our treatment neglects the

enthalpic and entropic contributions to the free energy from the long and short-range

antiferromagnetic ordering that exists in the Cr rich BCC phase. The simultaneous

treatment of both chemical and magnetic configurational degrees of freedom is possible

with a magnetic cluster expansion [120, 121]. The inclusion of the additional magnetic

degrees of freedom will lower the free energy compared to that calculated here and thereby

increase the predicted Ni solubility in the Cr-rich bcc phase. However, since the focus

has been on the Ni-rich portion of the ternary phase diagram, an explicit treatment of

magnetic configurational degrees of freedom in the Cr-rich BCC phase is beyond the

scope of this study.

Our systematic enumeration of low energy orderings over FCC and BCC in the Ni-Al-

Cr system led to the discovery of several families of hierarchical orderings. In addition

to the family found to be stable in the Ni-Al binary between 0.625 < xNi < 0.75 [1],

such orderings were also found to be ground states in the Ni-Cr and Cr-Al binaries.

Hierarchical orderings are long-period superstructures built by periodically tiling blocks

of simpler orderings. Different combinations of simpler orderings result in more complex

orderings that can span a range of compositions. In the case of the Ni-Cr system, the

existence of these low energy structures could help explain the short range ordering

observed in Ni2Cr alloys during ageing[122, 99, 123, 124, 108, 125]. The short range

order may be a product of the atomic arrangement within the tiling blocks, while the

arrangement of the blocks themselves remain disordered. Similar hierarchical orderings

were recently also discovered to be stable in HCP based Mg-rare earth alloys [57, 126, 112]
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and are likely common in many other alloy systems.

4.5 Conclusion

We have developed a method for parametrizing multicomponent cluster expansions

recursively, using cluster expansions of lower order subsystems as informative priors.

We applied this approach to study phase stability in the Ni-Al-Cr ternary, building on

detailed studies of the Ni-Al and Ni-Cr binaries. The resulting cluster expansions predict

a significant Cr solubility in both the γ and γ′ phases at high temperatures. In the

L12-ordered γ′ phase, Cr almost exclusively occupies the Al sublattice. Our systematic

study of low energy orderings over FCC, BCC and B2 in the Ni-Al-Cr ternary led to the

identification of previously unreported long-period hierarchical ordered groundstates in

the Al-Cr and Ni-Cr binaries.
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4.7 Supplementary data

4.7.1 Groundstate energies

The convex hull of a ternary system can be difficult to interpret, due to being 3

dimensional. The general location of the existing groundstates of the Ni-Al-Cr system

is most readily seen in fig. 4.1, but does not reveal any information about their relative

energies. Here we provide the formation energies of each of the highlighted groundstates,

relative to FCC Al, FCC Ni, and BCC Cr.

Groundstate xNi xAl Ef [eV/atom]

Al (FCC) 0.0000 1.0000 0.000
NiAl3 0.2500 0.7500 −0.399
β′′ 0.4000 0.6000 −0.613
β′ 0.4286 0.5714 −0.628
β 0.5000 0.5000 −0.659
δ-Ni5Al3 0.6250 0.3750 −0.565
δ-Ni2Al 0.6667 0.3333 −0.527
γ′ 0.7500 0.2500 −0.432
Ni81Al25Cr2 0.7500 0.2314 −0.408
Ni27Al8Cr 0.7500 0.2222 −0.396
Ni12Al3Cr 0.7500 0.1875 −0.345
Ni (γ) 1.0000 0.0000 0.000
Ni2Cr 0.6667 0.0000 −0.026
Cr (BCC) 0.0000 0.0000 0.000
AlCr2 0.0000 0.3333 −0.131
Al5Cr8 0.0000 0.3846 −0.144
Al3Cr 0.0000 0.7500 −0.142
Al45Cr7 0.0000 0.8654 −0.117

Table 4.1: Summary of the formation energies of the groundstates show in fig. 4.1.
Formation energies are calculated relative to the sable endstates: FCC Ni, FCC Al,
and BCC Cr.
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4.7.2 Binary phase diagrams

The ternary phase diagrams presented in figs. 4.5 and 4.6 were constructed by re-

cursively creating a ternary cluster expansion starting from independent binary cluster

expansions. One of the benefits of this method is being able to retain the nature of

the starting binary cluster expansions in the final ternary cluster expansions. Figure 4.9

shows binary phase diagrams constructed from the Ni-Al-Cr ternary cluster expansions.

A comparison between the predicted phase diagrams from the original binary cluster ex-

pansion and the ternary cluster expansions is shown in fig. 4.10 and fig. 4.11. In both the

Ni-Al and Ni-Cr systems, the phase diagrams from the binary and ternary cluster expan-

sions match up very closely. The degree to which the ternary cluster expansion replicates

the binary one can be adjusted by tuning the λ parameter described in section 4.2.2.

Figure 4.9: Predicted binary phase diagrams for the Ni-Al (below) and Ni-Cr (above)
subspaces of Ni-Al-Cr cluster expansions. Each of the two binary phase diagrams
corresponds to one side of the ternary phase diagrams shown in figs. 4.5 and 4.6.
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Figure 4.10: Predicted phase diagrams for the Ni-Al system: using the ternary clus-
ter expansions (left), and the original binary cluster expansions that were used to
recursively construct the ternary cluster expansion (right).

4.7.3 DFT vs cluster expanded energies

A useful cluster expansion must be able to accurately predict the formation energy

of arbitrary atomic configurations. Figures 4.12 to 4.14 compare the values of the DFT

energies used as training data against the predicted energy from the resulting final cluster

expansions.
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Figure 4.11: Predicted phase diagrams for the Ni-Cr system: using the ternary cluster
expansion (above), and the original binary cluster expansion (below).

Figure 4.12: Comparison between the cluster expansion predicted energies and the
DFT energies for the FCC Ni-Al-Cr system. Points highlighted in orange correspond
to configurations with a composition where the cluster expansion was used to generate
free energies during Monte Carlo simulations.
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Figure 4.13: Comparison between the cluster expansion predicted energies and the
DFT energies of ternary Ni-Al-Cr configurations enumerated from B2. Points high-
lighted in orange correspond to configurations with a composition where the cluster
expansion was used to generate free energies during Monte Carlo simulations.

Figure 4.14: Comparison between the cluster expansion predicted energies and the
DFT energies of ternary BCC Ni-Al-Cr system. Points highlighted in orange corre-
spond to configurations with a composition where the cluster expansion was used to
generate free energies during Monte Carlo simulations.
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Diffusive hops and their local

environments

5.1 Introduction

Atomic diffusion within a crystal is a property of interest for many different appli-

cations. The rate at which thermodynamically stable solid phases will form is often

determined by the atomic transport within the material. In battery technology for ex-

ample, fast diffusion through a solid electrolytes is desirable. On the other hand, diffusion

controlled depletion of Al from bond coats used in Ni-Al superalloy turbine blades lead

to degradation.

In alloys, diffusion typically occurs by exchange of vacancy defects in the crystal with

neighboring sites. As such, an activation energy ∆E must be overcome in order for the

atomic exchange to take place. This activation barrier is the difference in energy at the

activated state and the energy of of the initial state of the hop. In the dilute limit, the

value for ∆E can be considered constant, since the environment of every hop event is

identical. However, as concentrations become non-dilute, or if hops are occurring within
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an ordered phase, the value of ∆E becomes more difficult to model, as it depends on the

local degree of order surrounding the vacancies.

Previous work has already shown how a local cluster expansion can be used to pa-

rameterize the dependence on local environments of the activation barrier. In order to

train the local cluster expansion model, activation barriers within different environments

must be calculated. The FCC phases of the Ni-Al binary exhibit a wide variety of long

and short range order. FCC phases of the Ni-Al binary include the Ni rich solid solution,

and the Ni3Al L12 ordering. These correspond to the γ and γ′ phases respectively, and

make up the bulk of superalloy turbine blades. In this work we systematically explore

the diffusion pathways within these ordered structures, and compare the energetic cost

of atomic migrations under different local environments.

5.2 Methods

Substitutional diffusion in a crystal is mediated by vacancy exchange. The first step

towards a complete enumeration of diffusion environments is understanding the possible

exchange mechanisms that can occur in the crystal. In most substitutional alloys, such

as FCC Ni-Al, vacancies are dilute, and migration occurs by an exchange with a nearest

neighbor atom. In FCC, the vacancy is surrounded by 12 nearest neighbors, all of which

are candidates for a diffusion hop. Other systems may involve more complex exchange

mechanism. Such is the case for the B2 ordering of Ni-Al, in which vacancies are known

to exchange not only with their nearest neighbors, but their second nearest neighbors.

Other possible mechanisms may involve more than just a single vacancy and single atom.

For example, more than two sites may participate in a ring mechanism, where each atom

exchanges places with a neighbor in a cyclical manner. Schematic representations of

these mechanism are shown in fig. 5.1.
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(a) (b)

Figure 5.1: Schematic illustration of a nearest neighbor vacancy exchange (fig. 5.1a),
and a cyclic hop (fig. 5.1b). Participating atoms are colored, while vacant sites are
shown with a dashed circle.

The activation barrier of any particular kind of hop depends on the identities of the

hopping atoms, as well as their relative positions. In FCC Ni for example, we expect

a different activation energy for a Ni atom exchanging with a vacancy as we do for an

Al atom undergoing the same exchange. Additionally, the local environment surround-

ing the migration path will influence the activation energy. In FCC, an atom moving

into a nearest neighbor vacancy must pass through a rectangle of 4 atoms, as shown

in fig. 5.2. We will refer to these 4 atoms as the Activated Coordination Environment

(ACE). Examples of local perturbations on the ACE are shown in fig. 5.2.

Due to the proximity of the ACE atoms to the migration path, we can expect their

ordering to have the most significant impact on the activation energy. However, atomic

shells at further distances will also influence the energetics of the hop. The L12 ordering

for example, results in environments beyond the ACE that are very different than those

encountered in the disordered dilute γ phase. These differences in further shells will

also have an influence on the migrating atom. In the case of L12, this manifests itself

as two distinct migration environments: one for an exchange occurring between two Ni

sublattice sites, and another for an exchange between an Al and a Ni sublattice. These
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(a) (b) (c)

Figure 5.2: Examples of possible ACE environments. Ni atoms are shown in orange,
while Al is colored purple. Vacant sites are represented with white. Atoms at greater
distances from the migration path are shown in gray. Figure 5.2a and fig. 5.2b have
identical ACE environments, but the type of atom migrating is different. In both
fig. 5.2a and fig. 5.2c Ni is the diffusing atom, but the local environments differ. The
result is a different activation energy for all three cases.

hops are illustrated in fig. 5.3, which show the single migration environment of pure Ni,

and the two possible ones of the L12 ordering.

(a) (b) (c)

Figure 5.3: The absence of ordering of pure Ni results in the single hop environment
shown in fig. 5.3a. In the L12 ordering, hops can occur between two Ni sublattices
(fig. 5.3b), or between an Al and a Ni sublattice (fig. 5.3c). Sites in the hop cluster
are shown in gray.

Local perturbations in the local environment will affect the value of the migration

barrier. Such perturbations will arise naturally for off-stoichiometric compositions, or

due to disorder that emerges at higher temperatures. We can enumerate configurations

for these types of perturbations by applying antisite defects in the local environment of

the hop. Some of these local perturbations will be equivalent due to they symmetry of

the crystal. Figure 5.3c for example, shows a local perturbation where a single Al atom

is in the ACE. The symmetry of the FCC crystal is such that placing an Al atom on any
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of the four ACE sites is symmetrically equivalent.

Diffusion hops in the bulk are rare events and can be approximated to occur in an

infinite crystal far away from symmetry breaking defects. For a particular type of hop,

equivalence of the local ordering is determined by a subgroup of the crystal space group.

This subgroup, which we refer to as L, is an intersection of a hop symmetry group H

and the space group S. In the case of a pair hop cluster (such as the nearest neighbor

exchange in FCC Ni-Al), H is simply the point group of the hop cluster. However, for hop

clusters involving more than two sites, the occupants participating in the hop mechanism

must be accounted for. For any hop cluster, we can define a start and an end state, which

defines what the occupants on the hop cluster are before and after the hop has taken

place. Which state of the states is considered initial or final is arbitrary. Examples of

two different possible hops for a cyclic 3-point hop cluster are shown in fig. 5.4. When

determining the operations belonging to H, the relevant symmetry to consider is that of

the superposition of the initial and final states. Any operation that maps the sites of the

hop cluster onto themselves, while accounting for the superposition of the occupants is

a member of H. Any locally perturbed ordering that can be mapped onto itself using

L = H ∩ S is then equivalent by symmetry.

There are different possible algorithms to generate local environments around a par-

ticular hop. Here we use a two step approach. First we identify important low energy,

long range ordered structures, such as FCC Ni and the L12 groundstates. Within each

of these groundstates, we identify different environments the hop can be placed in. Fig-

ure 5.3 shows the environments that exist for a nearest neighbor exchange in pure Ni and

in the L12 ordering. Lastly we generate additional local orderings by applying perturba-

tions to each of these environments. Examples of possible local perturbations are shown

in fig. 5.2. A representative set of hops can therefore be enumerated with the following

steps:
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(a)

(b)

Figure 5.4: Different types of possible hops for the same three point hop cluster. The
occupants of the hop cluster determine the operations of H, which in turn deter-
mines which local orderings are symmetrically equivalent. Rather than considering
the occupation of the hop cluster in its initial or final state, operations of H map the
superposition of the initial and final occupants onto themselves. Figures 5.4a and 5.4b
show examples of different occupants on the same hop cluster during the initial and
final states, as well as their superposition.

1. Identify the exchange mechanism, and the cluster of sites associated with the hop.

This is usually a nearest neighbor hop, but could be next nearest neighbor, or a

triplet cluster for a cyclic mechanism. Hops with different types of atoms partic-

ipating in the migration are considered distinct (for FCC Ni-Al, the two possible

hops are a Ni-vacancy and an Al-vacancy nearest neighbor exchange).

2. For each hop cluster, find the environments that exist within each long range or-

dering (one in pure Ni, two in L12).

3. For each hop environment, apply symmetrically distinct local perturbations to the

crystal within a certain radius of the migration path (antisite defects in the ACE).

5.2.1 Local cluster expansion formalism

There are three critical energy values associated with any diffusion hop within a

crystal: the energy of the starting configuration Ei, the energy of the activated state E∗,
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and the energy of the end configuration Ef . In alloys, diffusion can be approximated by

a series of stochastic hop events, where vacancies exchange with neighboring atoms of

the crystal and then thermalize . For each of these hop events, the value of the activation

energy ∆E depends not just on the local environment, but on the direction of the hop, i.e.

which of the two possible endstates is considered to be “initial” and which is considered

to be “final”. This dependence on directionality complicates the relationship of a ∆E

with its local environment, but can be simplified by instead relying on the Kinetically

Resolved Activation (KRA), defined as

∆EKRA = E∗ − Ei + Ef
2

(5.1)

Figure 5.5 illustrates how the hop direction changes the value of ∆E, and how both the

forward and backward energies can be collapsed into a single KRA value. If the KRA

and endstate energies are known, the activation energy can be recovered:

∆E = E∗ − Ei = ∆EKRA +
Ef − Ei

2
(5.2)

In essence, the KRA separates the kinetic component of the hop from the thermodynamic

endstates. While the KRA is independent of the hop direction, it will still depend on the

degree of local ordering surrounding the hop.

A cluster expansion can describe the value of the KRA as a function of order/disorder

around the hop cluster. In a binary alloy, we can assign occupational variables p to

each site on the crystal that either take a value of 0 or 1, the entire local configuration

can be described as an occupational vector ~p. The energy of a KRA for a particular
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Figure 5.5: Example of how the activation energy changes based on the direction of
the hop. The KRA captures the initial, end, and activated energies in a single value.

configurational ordering can then be expressed as

∆EKRA =
∑
α

V KRA
α φα (5.3)

where the cluster functions φ are defined as

φα =
∏
i∈α

pi (5.4)

The cluster functions φ are products of symmetrically unique combinations of the site

occupational variables p that define the occupation of each site in α. Here α is a clusters

of sites, such as points, pairs, triplets, etc of variable lengths and geometries. The

coefficients V KRA are the local Effective Cluster Interactions (ECI), and are determined

from first principles calculations.

This is an identical formalism to that of the global cluster expansion, the only dif-

ference being the symmetry operations used to determine which clusters (and therefore

cluster functions φ) are equivalent. Symmetry imposes constraints on the number if in-

dependent interaction coefficients needed to be parameterized. In the case of a global

cluster expansion, the space group of the crystal S, which contains translations, deter-
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mines the equivalence between clusters. When constructing a local cluster expansion,

the symmetry equivalence is checked using L = H ∩ S, where H is the point group of

the hop cluster, and lacks translational symmetry. A local cluster expansion therefore

not only a truncation in terms of the size of the clusters and the cluster lengths, but also

a truncation in terms of distance from the hop cluster of sites that participate in the

exchange mechanism.

In the case of an FCC crystal such as the Ni-Al γ and γ′ phases for example, only a

single point cluster exists, because all sites of an FCC structure can be mapped to each

other with the symmetry operations of the crystal. However, if we generate point clusters

around a local environment, there are an infinite number of distinct point clusters, each

at different distances from the diffusion path.

Note that a different cluster expansion is required for each distinct hop mechanism.

Even though a Ni-vacancy exchange and an Al-vacancy exchange share the same sites in

their hop cluster, they are considered different mechanisms, and their interaction with

the local environment will differ.

5.2.2 DFT calculations

A practical way to calculate barriers is to use Density Functional Theory (DFT),

placing a particular hop within a supercell. The nudged elastic band method (NEB)

available in the Vienna Ab Initio Simulation Package (VASP) is an effective way of cal-

culating formation energies at different stages of the atomic migration. In this method,

a number of images are interpolated between the start and end configurations, and en-

ergies are calculated for each one. Before these images can be interpolated, the endstate

configurations must be relaxed. We fixed the lattice parameter for all of our calculations,

allowing only the positions of ions to relax. For transitions within pure Ni, we chose the
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DFT relaxed lattice parameter of Ni, and for transitions within L12, we chose the relaxed

lattice parameter of the L12 groundstate. The assumption under these conditions then is

that the perturbations within our supercell are dilute enough to not interact with their

periodic image. Once the endstates were converged, we interpolated a total of 7 images

for the NEB calculations, including the endstate configurations. An example of how the

energy changes throughout the diffusion pathway can be seen in fig. 5.6. Each energy

corresponds to one of the interpolated images, with a cubic spline fit between them.
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Figure 5.6: Example calculation for an Al transition between two symmetrically dis-
tinct endstates. The energies of the start and end configurations differ, resulting in
an asymmetry of the path direction.

All calculations were performed with the generalized gradient approximation (GGA-

PBE), using the projector augmented wave (PAW) pseudopotential method. Calculations

were performed with the generalized gradient approximation (GGA-PBE), using the

projector augmented wave (PAW) pseudopotential method. Calculations for all KRA

values were done inside a 108 3× 3× 3 conventional FCC supercell, for which we chose a

k-point mesh of 4×4×4, with a smearing parameter of 0.2eV. We applied spin polarized

ferromagnetic ordering to all supercells, and employed a plane wave cutoff energy of

560eV to ensure accuracy in our calculations.

The NEB method will work for any of the enumerated hops, but it is computationally

expensive. For systems where the diffusion pathway is expected to have only a single

104



Diffusive hops and their local environments Chapter 5

maximum, as is the case in the FCC Ni-Al system, the symmetry of some hops can be

exploited to reduce computational time. If a mirror plane exists perpendicular to the

diffusion pathway, the KRA value can be determined by calculating only one intermediate

image in addition to the endstate configurations. If all atoms in the supercell are placed

in their ideal FCC coordinates, then putting the migrating atom exactly on the mirror

plane will result in a relaxation where the symmetry of the supercell keeps the migrating

atom from falling into either of the endstate positions. Such a calculation does not

require the NEB method, and drastically reduces computation time. If the assumption

of a single maximum through the diffusion path is correct, then its value corresponds to

this balanced configuration. This type of mirror plane exists for all the ACE decorations

in pure Ni, as well as a subset of the L12 local orderings, namely for the decorations

around hops occurring between two Ni sublattices. An example of this sort of calculation

can be seen in fig. 5.14, which shows only a single intermediate image, corresponding

exactly to the maximum energy of the diffusion path.

5.3 Results

We calculated KRA values for both Ni and Al nearest neighbor vacancy exchange

hops, in different local environments within pure Ni and the L12 Ni3Al ordering. In

order to get a good understanding of non-dilute behavior, local environments for these

hops were enumerated in both pure Ni and the L12 ordering. The vacancy composition

in these two orderings is known to be low, so the local perturbations did not include

vacancy defects, only antisite defects, which were limited to the 4 atoms in the ACE. By

calculating barriers in both FCC Ni and L12, we also sample variations in concentration

and ordering in shells beyond the ACE. In addition, we also calculated barriers at differ-

ent volumes to separate the effect of volume from local variations in concentration and
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ordering.

5.3.1 ACE environment

For pure Ni, there is only one distinct environment for an atom-vacancy exchange,

namely an exchange between two nearest neighbor sites. The L12 ordering on the other

hand, breaks translational symmetry that produces two distinct possible hops: one be-

tween two different Ni sublattice sites, and another between an Al sublattice site and

any of its nearest neighbor Ni sublattice sites. The local environments of these hops

in the absence of local antisite perturbations are shown in fig. 5.3. The mirror plane

bisecting the diffusion path in pure Ni is preserved for L12 when the hop occurs between

two Ni sublattice sites, but is no longer present in L12 when the hop is between an Al

and Ni sublattice site. Starting from these hop environments, we created additional local

perturbations by putting antisite defects on the ACE.

Using DFT, we calculated KRA values in these different local environments for both a

Ni-vacancy hop and an Al-vacancy exchange. The KRA values are plotted as a function of

the global and local ACE composition in figs. 5.10 and 5.11. There is a striking difference

in the dependence on the ACE concentration for Ni and Al migrations.. Regardless of

local and long range ordering, Ni KRA values remain constant to within 250meV. On

the other hand, Al KRA values show a clear linear dependence on the ACE composition.

Furthermore, long range ordering in the crystal seems to impact Al KRAs as well, as

evidenced by a systematic shift of KRA values down when in L12 vs KRA values in pure

Ni for the same ACE ordering.
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Figure 5.7: Local environment of a diffusion path in FCC. Sites participating in the
vacancy exchange are white, the rest of the colors represent groups of symmetrically
equivalent sites under local symmetry. The purple sites are of special interest, since
they are closest to the diffusion path. We refer to these 4 atoms as the Activated
Coordination Environment. Though only the purple sites in ACE were perturbed to
generate environments for KRA calculations, all atoms were accounted for during the
cluster basis set generation.

5.3.2 Local cluster expansion

Two local cluster expansions, one for Ni, and another for Al KRA values, were con-

structed, using a genetic algorithm approach as to select basis functions having non-zero

expansion coefficients. Figure 5.7 shows 4 different shells of atoms around the hop, each

with a different color, where each shell is a collection of symmetrically equivalent atoms

under local symmetry. The pool of available cluster interactions contained up to 3-body

terms for any combination of atoms of the 4 shells, any atoms further out were assumed

to have a negligible effect. A total of 22 Ni KRAs and 21 Al KRAs were used as training

sets. The cluster expansion for Ni was constructed using 4 local basis functions, and has

a leave-one-out cross validation (LOOCV) score of 62meV. For the Al KRA expansion,

the LOOCV score is 69meV, using a total of 5 basis functions to predict KRA values.

The magnitudes and selected clusters can be seen in figs. 5.8 and 5.9. The predicted

KRA values of both fits are contrasted with the DFT values in fig. 5.12, which shows

that our models are in very good agreement with the training data.
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Figure 5.8: ECI values with their associated atom clusters for the Ni KRA local cluster
expansion. The cluster of each ECI is highlighted in green.

Figure 5.9: ECI values with their associated atom clusters for the Al KRA local cluster
expansion The cluster of each ECI is highlighted in green.

An interesting result is that the KRA values of Al hops exhibit a linear dependence on

the ACE composition in both Ni rich environments and in the L12 ordering. Figure 5.11

shows that Al KRA values have the same linear dependence on the local composition,

but are uniformly lower in L12. The two linear trends for the KRA values of Al hops are

captured by the local cluster expansion with one point and one triplet cluster. The lin-

earity rises from the first point cluster shown in fig. 5.9, whose cluster function effectively

describes the local composition in the ACE. To a lesser extent, there is a contribution

from other point clusters, which describe the composition of shells at greater distances
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Figure 5.10: KRA values as a function of local Ni composition in the ACE for both Ni
(left) and Al (right) vacancy exchanges. The values for both types of hops are colored
to distinguish between hops that occur in pure Ni, and hops that occur in the L12

ordering.

from the hop cluster. These weaker point interactions capture the spread of the KRA

so that they are not exactly linear with the ACE composition. Lastly, the triplet cluster

captures the long range ordering of L12. Notice that the cluster highlighted in fig. 5.9 is

clearly present in the local environment of a hop between local Ni sublattices in L12, as

shown in fig. 5.14.

5.3.3 Effect of strain

An ordered intermetallic phase my experience strain when its embedded within ma-

trix due to a lattice mismatch. Such might be the case for particles grown during a

precipitation hardening process. We can gain some insight into the effect of strain of

diffusional processes by calculating KRA values within a strained crystal. The lattice

parameter used in our FCC Ni calculations is 3.52�A, while that of L12 is 3.57�A. For a

selection of configurations calculated in the L12 ordering, we repeated the KRA calcula-

tion after straining the crystal such that its lattice parameter matched that of FCC Ni

(1.4% strain). The results are shown in fig. 5.13, which reveals that the KRA values in
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Figure 5.11: KRA values as a function of local Ni composition in the ACE for both Ni
(left) and Al (right) vacancy exchanges. The values for both types of hops are colored
to distinguish between hops that occur in pure Ni, and hops that occur in the L12

ordering.

the strained crystal are only slightly above those of the unstrained crystal. The difference

in these energies shows that the local ordering plays a much more important role in the

KRA values than strain.

5.4 Discussion

In the Ni-Al binary, diffusion occurs by two different mechanisms: a Ni atom can ex-

change with a nearest neighbor vacancy, or an Al atom exchanges with a nearest neighbor

vacancy. The activation barrier for any event will be affected by interactions of the mi-

grating atom with its local environment, with atoms near the migration path interacting

more strongly than ones at a greater distance. Within the same local environment, a

particular hop will have a different activation barrier depending on the direction the hop

is occurring in. The concept of a KRA resolves the dependence on directionality, and

depends only on the hop type (i.e. the types of atoms hoping and their arrangement

within the hop cluster). Furthermore, it is a convenient quantity to cluster expand, since
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Figure 5.12: Comparison of DFT values for KRA with the cluster expansion predic-
tions for both Ni (left) and Al (right).
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Figure 5.13: Comparison of KRA values for both Ni and Al in the L12 ordering under
no strain, and a lattice parameter corresponding to FCC Ni.

it depends solely on ordering of a crystal.

We have systematically calculated KRA values for Ni and Al in both FCC Ni and the

Ni3Al L12 ordering. Atoms in the ACE are expected to interact more strongly with the

migrating atom of the hop cluster. As the atom transitions into a neighboring vacant

site, it must pass through the center of the ACE, resulting overcrowding where, in FCC,

the migrating atom finds itself surrounded by 4 atoms, all of them at a length shorter

than the equilibrium nearest neighbor distance. Our results show that a change in the
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composition of the ACE has the most pronounced influence on the KRA values. For Al,

interactions with sites beyond the ACE are also important. The long range ordering of

L12 changes the local composition beyond the ACE. While a change in the composition

and ordering beyond the ACE does have an effect on the KRAs, it is less significant. In

the case of L12, local orderings beyond the ACE do not change the qualitative dependence

of Al hop KRAs on the ACE composition.

The values of fig. 5.11 reveal a striking difference between the behavior Ni and Al.

Regardless of local environment or long range ordering, the KRA values of Ni appear to

be approximately constant. This result suggests that for kinetic model in a Ni rich Ni-Al

system, the KRA for Ni hops could be approximated as a constant value. Note that

this does not imply a constant activation barrier ∆E. For Ni hops occurring between

symmetrically equivalent end states, the KRA value would correspond exactly to the

activation energy. In non-dilute alloys, the endstate will no always have the same energy,

and ∆E will still have an environment dependence.

KRA values for Al behave completely differently than those of Ni. Their values are

dependent on both the composition in the ACE, as well as the long range ordering of the

crystal. For both the case of pure Ni FCC and the L12 ordering, KRA values appear to

be proportional the number of Al atoms present in the ACE, with more Al raising the

KRA value. Curiously, when the ACE is composed entirely of Ni, the KRA values of Al

are lower that those of Ni. This suggests that Al is much more sensitive to interactions

in the activated state, with local Al-Al interactions heavily influencing energetics of Al

hops.

In the dilute limit, where the presence of Al atoms is low, we can expect Al to exchange

with vacancies at a significantly higher rate than Ni atoms. The kinetics in the ordered

L12 phase will be more heavily influenced by thermodynamic contributions, since the

energies of the end states may vary significantly, depending on the cost of introducing
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antisite defects on the long range ordering. The preference for a particular sublattice by

the vacancy in a long range ordered structure will also influence kinetics, since it will

bias hops to particular local environments.
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Figure 5.14: Example calculation for an Al hop between two equivalent endstates.
The symmetry in the diffusion path makes it possible to determine the energy of the
activated state with just one intermediate image.

We described in section 5.2.1 how to use the symmetry of the crystal and hop cluster

to determine which local environments are symmetrically equivalent. The description is

true in the general case, but there are some caveats when using methods such as DFT that

involve supercells, where interactions with periodic images can arise. The chosen supercell

should be large enough to minimize periodic image interactions of atoms participating in

the hop, as well as atoms in the local environment. A subtlety of the supercell selection

is that it may reduce symmetry, resulting in different KRA values for hops that are

symmetrically equivalent in an infinite solid, but not in the chosen supercell.

It is therefore advantageous to select a supercell that retains the symmetry of the

primitive cell. An obvious choice is to select supercells whose transformation matrix is a

multiple of the identity matrix. However, this may not be the optimal choice, since a more

cubic supercell with the same factor group may exist that better isolates the diffusion hop

from periodic image interactions. For our system, we selected a reasonably large supercell

of 108 atoms, that retained the cubic symmetry of FCC. The shape of the supercell was
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itself cubic, constructed as a 3× 3× 3 arrangement of the FCC conventional cell. With

this choice, the 12 nearest neighbor transitions mentioned earlier remain symmetrically

equivalent in pure Ni. Figure 5.15 contrast how different supercell choices can break

symmetry of equivalent hop clusters under periodic boundary conditions.

(a) (b)

Figure 5.15: Example of how a supercell may have less symmetry than the primitive
cell. In fig. 5.15a, all operations in the primitive factor group exist in the supercell
factor group, and all hop clusters remain equivalent. In fig. 5.15b, the supercell lacks
rotational symmetry of the primitive cell, resulting in two distinct hops, highlighted
in different colors.

5.5 Conclusion

We have outlined a systematic method to enumerate diffusion hop clusters within

any crystal ordering. The local environment around these hop clusters can be perturbed

to determine the KRA values under different conditions, which is critical to understand

for non-dilute diffusion model. These methods were applied in the context of the Ni-Al

system for the γ (pure Ni) and γ′ phases (L12 ordering). We thoroughly investigated

KRA values under different local environments for both Ni and Al vacancy exchanges.

Results show that Ni-vacancy exchanges are largely independent of local environment

and long range ordering, while Al-vacancy exchanges depend linearly on the immediate

local environment, which high local Al concentrations resulting in the highest KRA val-
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ues. Using local cluster expansions, models for both species were constructed that can

accurately predict KRA values with just a handful of atomic interactions.
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Chapter 6

Kinetic properties of Ni-Al

6.1 Introduction

Precipitation hardening is a major strengthening mechanism employed in the de-

velopment of various engineering materials. The presence of precipitates of an ordered

intermetallic phase within a matrix can greatly increase the strength of the material at

high temperature. A common example of this is found in Ni-Al superalloys, designed to

operate under high stress, high temperature conditions. These alloys gain their mechan-

ical properties from the ordered L12 particles that grow within a Ni rich solid solution

matrix.

The resulting precipitate size and density after the ageing process is determined by

both thermodynamic and kinetic processes. Thermodynamics drives the formation of

long range orderings, and determines the equilibrium volume fraction of the precipitates.

The growth of these precipitates is governed by kinetics, which determines the density

and size of the precipitates. Through a series of atomic hops, long range diffusion will

redistribute the atoms in the crystal, with each individual hop being governed by its

local ordering. Diffusion also plays a critical role in the operational lifetime of industrial
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materials. Throughout its operational lifetime, the desired microstructure can degrade,

resulting in a loss of strength.

Diffusion in solids is mediated by vacancies in the crystal that exchange with neigh-

boring atoms. As a result, successive jumps of each atom are correlated. In order of the

jump to occur, diffusing atoms must overcome an activation barrier, which determines the

frequency with which hops occur. These correlation effects and activation barriers ulti-

mately determine the value of kinetic coefficients that describe the fluxes within a crystal.

In the dilute limit of a binary alloy, the transport coefficients have been established for

different crystal structures, such as the 5-frequency model for FCC. Other approaches

include making a mean field approximation, where atomic diffusion depends on the local

environment. In this work we combine cluster expansion methods with kinetic Monte

Carlo simulations to model the atomistic behavior of Ni-Al.

6.2 Theoretical formalism

This section summarizes various phenomenological metrics of atomic mobility in sub-

stitutional alloys and describes how they can be calculated starting with an atomic de-

scription of hop frequencies. We make a distinction between perfect crystals, where the

number of vacancies are conserved, and solids containing a sufficient number of vacancy

sources and sinks to ensure local equilibrium in the vacancy concentration. The two

extremes lead to different sets of diffusion coefficients.
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6.2.1 The case of a perfect crystal of a binary substitutional

alloy

We focus on the Ni rich fcc-based phases of the Ni-Al binary. These phases accom-

modate dilute concentrations of vacancies that can mediate substitutional diffusion. In

an actual alloy, extended defects such as dislocations and grain boundaries act as sources

and sinks for vacancies. In this section, we review metrics of substitutional diffusion in

crystals where no such sources and sinks are present, and where the number of sites of

the crystal, M , and the total number of vacancies, NV a, is conserved. We will refer to

these solids as “perfect crystals,” noting that, while they do not contain dislocations or

grain boundaries, they still contain vacancies.

Imbalances in the chemical potentials of mobile species act as thermodynamic driving

forces for atomic diffusion. These can be extracted from the Gibbs free energy, G, of the

alloy, which is a function of the temperature, T , pressure, P , and the number of atoms

NNi and NAl. The free energy of a perfect crystal can be normalized by the number of

sites in the crystal

g (T, P, xNi, xAl) =
G

M
(6.1)

where xNi and xAl are the Ni and Al atom fractions relative to the number of sites in the

crystal (such that xNi + xAl + xV a = 1).

In a perfect crystal diffusion is driven by gradients of “diffusion potentials”, defined

as [127, 128, 24]

µ̃i =
∂g

∂xi
= µi − µV a (6.2)

The diffusion potential of a specie i is equal to the difference in the chemical potential of

i, µi =
(

dG
dNi

)
T,P,Nj 6=i

, and the vacancy chemical potential, µV a =
(

dG
dNV a

)
T,P,Nj 6=V a

. Each

µ̃i can be viewed as the change in free energy of the alloy as an atom of type i is added to
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the solid at the expense of a vacancy (holding the number of crystal sites M constant).

Diffusion fluxes within a perfect crystal are related to the gradients of diffusion po-

tentials according to

 ~JNi

~JAl

 = −

LNiNi LNiAl

LAlNi LAlAl


 ∇µ̃Ni

∇µ̃Al

 (6.3)

where the Lij refer to Onsager transport coefficients[127, 129]. Note that only the fluxes

for Ni and Al need be accounted for. If the number of sites M is conserved, then

~JV a + ~JNi + ~JAl = 0.

Kubo-Green linear response methods can be used to relate the phenomenological

Onsager transport coefficients of eq. (6.3) to fluctuations that occur at the atomic scale

in equilibrium. At finite temperature, atoms will be in continuous motion, migrating

from one site to the next through atom-vacancy exchanges. For a crystalline solid,

Lij =
1

ΩkBT
L̃ij (6.4)

with

L̃ij =
〈
(∑

ζ ∆~Rζ
i (t)
)(∑

ζ ∆~Rζ
j (t)
)
〉

(2d)tM
(6.5)

Here, kB is the Boltzmann constant, T is the temperature, Ω is the volume per substi-

tutional site, M is the number of sites in the crystal, and d is the dimensionality of the

substitutional network (e.g. for a 3-dimensional substitutional network d = 3, while a

layered material would have d = 2). The vectors ∆~Rζ
i connect the end points of the

trajectory of atom ζ being a species of type i after the elapse of a time t. The brackets

〈 〉 denote ensemble averages at equilibrium. Note that eq. (6.5) satisfies the Onsager
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reciprocity relations[130], which require that Lij = Lji.

Other purely kinetic quantities can be defined in terms of the ∆~Rζ
i , including corre-

lation factors and tracer diffusion coefficients. The correlation factor fi of a species i is

defined as

fi =
〈∆~R2

i 〉
Nτ 〈∆~r 2

i 〉
(6.6)

where Nτ is equal to the number of hops and where ∆~r2 is the square of an elementary hop

distance (e.g. nearest neighbor distance for nearest neighbor atom-vacancy exchanges).

Correlation factors measure the degree with which correlations between successive hops

affect atomic transport of individual atoms in a crystal. When an atom or vacancy

performs a random walk, there are no correlations between successive hops and f = 1.

When f = 0, every individual hop is exactly opposite the previous one. Tracer diffusion

coefficients measure the diffusivity of tagged tracer atoms in the absence of chemical

gradients and can be expressed as

D∗i =
〈∆~R2

i 〉
2dt

(6.7)

Gradients in chemical potential are not straightforward to measure experimentally.

Flux expressions in terms of concentration gradients are more convenient, and can be

derived from eq. (6.3) by chain rule differentiation of the chemical potentials. The flux

expressions then take the form

 ~JNi

~JAl

 = −

DNi,Ni DNi,Al

DAl,Ni DAl,Al


 ∇cNi

∇cAl

 (6.8)

The matrix of diffusion coefficients, D, are related to the Onsager transport coefficients
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according to

DNi,Ni DNi,Al

DAl,Ni DAl,Al

 =

L̃Ni,Ni L̃Ni,Al

L̃Al,Ni L̃Al,Al


Θ̃Ni,Ni Θ̃Ni,Al

Θ̃Al,Ni Θ̃Al,Al

 (6.9)

and is a product of a kinetic factor consisting of Onsager transport coefficients, L̃, and

a thermodynamic factor, Θ̃.

The thermodynamic factor Θ̃ is proportional to the Hessian of the free energy

Θ̃ =
1

kBT


∂2g

∂xNi∂xNi

∂2g

∂xNi∂xAl

∂2g

∂xAl∂xNi

∂2g

∂xAl∂xAl

 (6.10)

Similar to the Onsager transport coefficients, it is possible to relate the elements of the

thermodynamic factor matrix to fluctuations, this time in composition within the semi

Grand Canonical ensemble according to

Θ̃−1
ij =

1

M
〈NiNj〉 − 〈Ni〉〈Nj〉 (6.11)

where the ensemble averages are performed in a crystal of M sites while holding the

diffusion potentials µ̃i constant.

Though D couples fluxes to gradients in concentration, the individual components of

the matrix do not by themselves reveal much about the underlying physics of transport

properties in a binary substitutional alloy where atomic hops are mediated by atom-

vacancy exchanges. Key properties are embedded in the eigenvalues of D. In the limit

of a dilute vacancy concentration, the larger eigenvalue, λ+, asymptotically converges to

the vacancy diffusion coefficient, while the smaller eigenvalue, λ−, becomes equal to an
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intermixing diffusion coefficient between Ni and Al. Additional metrics can be defined

in terms of the elements of D that measure the extent with which the alloy deviates

from a kinetically ideal substitutional alloy, which is defined as an alloy that is not only

thermodynamically ideal, but also has the property that the components of the alloy

have identical atom-vacancy exchange frequencies. One such metric is defined as [24]

φ =
DAl,Ni

DNi,Al +DAl,Ni

, (6.12)

and measures the fraction of Al that will exchange with a flux of vacancies. For a kinet-

ically ideal substitutional alloy there is no bias in the atom-vacancy exchange frequency

between the different components and φ becomes equal to the alloy concentration. Any

deviation from this value reveals a difference in the relative mobilities between the two

components of the alloy. Another metric, defined as [24]

δ = DAl,Al −DNi,Ni +DNi,Al −DAl,Ni (6.13)

measures the degree with which a gradient between the Ni and Al concentrations, in the

absence of a gradient in the vacancy concentration, induces a vacancy flux. δ reflects the

alloy’s susceptibility to the Kirkendall effect.

6.2.2 Vacancies at local equilibrium

Other diffusion metrics exist when there are sufficient vacancy sources and sinks to

regulate an equilibrium vacancy concentration at each point within the alloy. When there

are sufficient vacancy sources and sinks to maintain local equilibrium with respect to the

vacancy concentration, the vacancy chemical potential µV a will be equal to zero through-

out the solid, thereby imposing thermodynamic constraints on the chemical potentials
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of Ni and Al. This is a common assumption in analyses of substitutional diffusion and

was first invoked by Darken[131]. Under this approximation, the flux expressions can be

expressed as

~JNi = −DNi∇cNi (6.14)

~JAl = −DAl∇cAl (6.15)

where the self diffusion coefficients Di are again a product of a kinetic and thermodynamic

factor

DNi = ΛNiΓ (6.16)

DAl = ΛAlΓ (6.17)

The kinetic factor for each species are related to the Onsager transport coefficients ac-

cording to

ΛNi =

(
L̃Ni,Ni
xNi

− L̃Ni,Al
xAl

)
(6.18)

ΛAl =

(
L̃Al,Al
xAl

− L̃Al,Ni
xNi

)
(6.19)

The thermodynamic factors are the same for both species in the limit of a dilute vacancy

concentration

Γ =
xNi
kBT

(
dµNi
dxNi

)
µV a=0

=
xAl
kBT

(
dµAl
dxAl

)
µV a=0

(6.20)

If correlations between diffusing atoms can be neglected, then the self diffusion co-

123



Kinetic properties of Ni-Al Chapter 6

efficients can be expressed in terms of tracer coefficients and the thermodynamic factor

according to

DDarken
Ni = D∗NiΓ (6.21)

DDarken
Al = D∗AlΓ (6.22)

The fluxes of eq. (6.14) and eq. (6.15) are relative to the crystal frame of reference.

However, in the presence of vacancy sources and sinks, such as dislocations and grain

boundaries, the solid can become susceptible to the Kirkendall effect and single crystal

regions may move relative to a fixed laboratory frame of reference. Interdiffusion between

the two components of the alloy is usually measured in the laboratory frame of reference.

The interdiffusion coefficient in the laboratory frame of reference can be expressed as

D̃ = Λ̃Γ (6.23)

where

Λ̃ = xAlΛNi + xNiΛAl (6.24)

6.2.3 Atomistic description

Even in thermodynamic equilibrium, atoms of a substitutional alloy continuously

exchange with a dilute concentration of vacancies and thereby wander throughout the

crystal. The Kubo-Green expression of eq. (6.5) shows that the phenomenological trans-

port coefficients can be calculated by tracking the trajectories ∆~Rζ
i of these mobile atoms.

The trajectories ∆~Rζ
i are the result of many individual atom-vacancy exchanges that oc-

cur stochastically with frequencies that in a crystal can be approximated with transition
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state theory according to

Γ = v∗ exp

(
−∆E

kBT

)
. (6.25)

Here ∆E is the migration barrier for a hop and v∗ is a vibrational prefactor. Within the

harmonic approximation, the vibrational prefactor v∗ is equal to the ratio of the products

of the normal mode frequencies in the activated and initial states

v∗ =

∏3N−3
i=1 vi∏3N−4
k=1 ṽk

(6.26)

where v and ṽ are the initial and activated state frequencies respectively and where N is

the number of atoms in the crystal.

Non dilute alloys exhibit varying degrees of short and long-range ordering as a function

temperature and alloy composition. As atoms of an alloy migrate, they encounter a

range of migration barriers due to fluctuations in the local degree of ordering along their

trajectory. Modeling diffusion in concentrated substitutional alloys therefore requires

an accurate description of the dependence of the energies of the end states and of the

activated states on the local degree of short- and long-range order.

In this work, we use cluster expansion Hamiltonians to describe the dependence of

the energy of the crystal on the particular arrangement of Ni, Al and vacancies over the

sites of the FCC crystal. The energies of the end states of a hop in a Ni-Al alloy can be

described with a ternary cluster expansion as each site of the crystal is either occupied

by Ni, Al or a vacancy. For the Ni-rich alloy, it is convenient to assign two occupation

variables to each crystal site i: pAli , which is equal to 1 if the site is occupied by Al and

zero otherwise and pV ai , which is 1 if the site is occupied by a vacancy and zero otherwise.

The configurational state of a crystal of M sites is then uniquely determined by specifying

the occupation variables at each site, ~p =
(
pAl1 , p

V a
1 , ..., pAli , p

V a
i , ..., pAlM , p

V a
M

)
. The energy
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of the crystal in any end state of a hop can be expressed as an expansion of polynomials

of the occupation variables

E(~p) = V0 +
∑
α,π

V π
α

∏
i∈α

pπii (6.27)

where α refers to clusters of sites such as point, pair, triplet etc. clusters and where the

π denotes which occupation variable is to be assigned to each site in the cluster α. The

V π
α are constant expansion coefficients referred to as effective cluster interactions (ECI).

The ECI of a cluster expansion Hamiltonian can be parameterized by training to a large

number of energies for different alloy configurations ~p that have been calculated with a

first principles electronic structure method such as density functional theory.

The migration barrier for a particular hop is equal to the difference in energy between

the activated state and the initial state of the hop. In FCC Ni-Al, there are two important

hop types: a nearest neighbor Al-Va exchange and a nearest neighbor Ni-Va exchange.

The migration barrier for each hop type in a concentrated alloy depends on the local

degree of ordering surrounding the sites involved in the hop. We denote this ordering as

~p\H, which collects all the occupation variables of the crystal minus those residing on the

hop cluster H. Migration barriers also depend on the direction of the hop, since the end

states of most hops in a concentrated alloy will not have the same energy. It is, therefore,

convenient to work with a kinetically resolved activation barrier (KRA), ∆EKRA, which

for pair exchanges of type t (either an Al-Va exchange or a Na-Va exchange) is defined

as the average between the forward and backward hop. ∆EKRA is thereby independent

of the direction of the hop. Nevertheless, in a concentrated alloy its value still depends

on the degree ordering surrounding the hop, i.e. t∆E
KRA. As with the energies of the

end states of a hop, the dependence of t∆E
KRA on ~p \ H can also be described with a
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(local) cluster expansion

t∆E
KRA(~p \H) = tV

KRA
0 +

∑
α,π

tV
KRAπ

α

∏
i∈α

pπii (6.28)

where the sum extends over clusters not including the hop cluster H. The expansion

coefficients tV
KRAπ

α can be determined by training to a large set of t∆E
KRA(~p \ H)

values as calculated with a first-principles method. Each hop type t will have a separate

cluster expansion. Once cluster expansions for the end states of the hop (eq. (6.27)) and

for each of the hop types t have been parameterized using a first-principles method, it is

possible to calculate the migration barrier for any local environment according to

∆E = E∗ − Ei = t∆E
KRA(~p \H) +

E(~pf )− E(~pi)

2
(6.29)

where ~pf and ~pi are the configurations of the crystal in the final and initial states, and

where ~p\H is the configuration of the crystal minus the hop cluster sites (which remains

unchanged during the hop).

The various cluster expansions make it possible to calculate all the thermodynamic

and kinetic quantities that are necessary to determine the different diffusion coefficients

described in section 6.2. Grand Canonical Monte Carlo simulations applied to the crystal

cluster expansion Hamiltonian eq. (6.27) generate the necessary thermodynamic infor-

mation to construct an equilibrium temperature versus composition phase diagram, to

calculate the equilibrium vacancy concentration and to calculate the elements of the ther-

modynamic factor matrix of eq. (6.10). The combination of the crystal cluster expansion

eq. (6.27) with the local cluster expansions for the KRAs, eq. (6.28) as in eq. (6.29) makes

it possible to determine the migration barrier in any alloy environment. This makes it

possible to sample atomic trajectories that arise from stochastic atom-vacancy exchanges
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with kinetic Monte Carlo simulations.

6.3 Computational details

Determining the activation barrier ∆E of a diffusive hop requires an efficient evalu-

ation of the endstate energies Ei and Ef , as well as the KRA value ∆EKRA. In order

to calculate the endstate energies, we constructed a ternary cluster expansion for FCC

Ni-Al-Va. We used a recursive approach[2] to parameterize the expansion coefficients,

starting with a well optimized binary Ni-Al cluster expansion[1], which we extended to

account for interactions between Al and vacancies. In order to account for vacancy in-

teractions, we fit to 50 configurations containing a vacancy within a 107 atom supercell,

resulting in a root mean square value of approximately 6meV. The orderings of these

configurations were either pure Ni or an L12 superstructure, perturbed with point, pair,

or triplet defects. We assume a dilute vacancy concentration, and did not parameterize

any interactions where vacancies interact with each other.

We also used two local cluster expansions to describe the dependence of the Ni-

vacancy and Al-vacancy exchange KRAs. Each of the local cluster expansions were fit

to 22 KRA values, with local perturbations within pure Ni and L12 107 atom supercells.

Details of the construction of these local cluster expansions are reported in chapter 5.

A comparison between the DFT KRA calculations and the predicted values from the

local cluster expansions can be seen in fig. 6.1. The local cluster expansions faithfully

reproduce the different KRA trends for Ni vs Al: while KRA values for Ni hops are

approximately constant for all local orderings, Al KRA values are sensitive to the Al

composition in their immediate environment.

Vibrational prefactors defined in eq. (6.26) were calculated by calculating vibrational

frequencies of Ni and Al within a 31 atom Ni supercell. Supercells with either Ni or
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Al in both the equilibrium and activated state were first completely relaxed so that the

atoms were in the equilibrium positions. We then used VASP to calculate the vibrational

frequencies for both the equilibrium and activated states, corresponding to the values of

the numerator and denominator of eq. (6.26). We found that v∗Ni = 3.11 THz, and

v∗Ni = 4.39 THz.

Using semi Grand Canonical Monte Carlo simulations, we calculated the Ni rich

binary phase diagram. We determined the equilibrium vacancy concentration in the Ni

rich phases by setting µV a = 0. We also tracked the fluctuations in composition during

the simulation, which are directly related to the thermodynamic factor by eq. (6.11).

We employed Kinetic Monte Carlo techniques to calculate the Onsager transport

coefficients. The process involves selecting a series hop events within a simulation cell,

updating the atom positions and clock as each event is applied to the configuration. The

dimensions of our simulation cell were 10× 10× 10 conventional FCC cells (4000 atoms)

and contained a single vacancy. When vacancies are dilute, the Onsager coefficients scale

linearly with the vacancy concentration, and we adjusted their values accordingly, using

the equilibrium vacancy concentrations from our Grand Canonical simulations.

6.4 Results

6.4.1 Thermodynamic quantities

Using Grand Canonical Monte Carlo simulations, we calculated the phase diagram

of the Ni-Al binary, as well as the equilibrium vacancy concentration at 1300K for the

γ and γ′ phases. A section of the phase diagram can be seen in fig. 6.3a. The shaded

ares represent single phase regions, and define the composition ranges where we did our

KMC calculations. In the Grand Canonical ensemble, the diffusion potentials µ̃Ni and
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Figure 6.1: Comparison of DFT values for KRA with the cluster expansion predictions
for both Ni (left) and Al (right). While KRA values for Ni are approximately constant
independent of local ordering, KRA values for Al scale linearly with the immediate
Al concentration of neighboring atoms.

µ̃Al, and the number of crystal sites M are controlled. In a real system, imperfections in

the crystal (e.g. dislocations and grain boundaries) act as sources and sinks of vacancies.

The equilibrium vacancy concentration in a crystal therefore cannot be controlled exper-

imentally and is instead regulated by these imperfections. We modelled this behavior

by setting the vacancy chemical potential µV a = 0 throughout our calculations, which

will cause the system to choose the vacancy concentration that minimizes its Gibbs free

energy. The results of our calculations can be seen in fig. 6.3b. The value of the vacancy

composition will have an important impact on the values of diffusion coefficients, since

in the dilute limit, kinetic coefficients are proportional to the number of vacancies in the

crystal.

In the γ phase, the vacancy concentration (xV a) begins around 10−5.5 at xNi = 1.

As the Al concentration is increased, favorable nearest neighbor interactions between Al

and vacancies result in an increase of the vacancy concentration. In the γ′ phase there
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is a pronounced valley in the vacancy concentration at xNi = 0.75, corresponding to the

composition of a perfect L12 ordering. Introducing vacancy defects comes at a higher

energetic cost within a perfectly long range ordered crystal than in one with higher

disorder. When the composition moves away from xNi = 0.75, the crystal is forced

to accommodate antisite defects, increasing the amount of disorder, resulting in more

vacancies.

Both the γ and γ′ phases have an FCC structure. By tracking the local composition of

nearest neighbor shells around the vacancy, it is possible to infer the local environments

of the vacancies. Figures 6.2a and 6.2b show the nearest neighbor environment of the

Ni and Al sublattice sites of the L12 ordering, while fig. 6.2c shows the distance from

a particular site in FCC from its first, second, and third nearest neighbors. These two

figures are useful for interpreting the values of fig. 6.3c, which shows the composition of

atomic shells at these three neighbor distances.

In the γ phase, Ni and Al form a solid solution, resulting in a random distribution of

Al on the Ni FCC lattice. At longer length scales, pair interactions between vacancies

and Al atoms are not significant. However, our DFT calculations show that positioning

an Al atom in the nearest neighbor shell of a vacant site is energetically favorable, while

the converse is true for the second nearest neighbor shell. We can see this behavior in

fig. 6.3c, which shows that at high Ni compositions (γ phase), the Al composition of

the nearest neighbor shell around vacancies (orange) is higher than that the global com-

position (dashed line). This indicates that the Al atoms favor occupying these vacancy

nearest neighbor positions, while the opposite is true for the second nearest neighbor

shell (purple). For the third nearest neighbor, the pair interaction is long enough that

the energy contribution dies out. The chances of occupying this shell therefore match

the rest of the crystal sites, and the average composition of the third nearest neighbor

shell closely tracks the global composition.
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For the γ′ phase (L12), the Al ordering introduces more complex environments for the

vacancy to occupy. Our cluster expansion predicts that in the perfect long range ordering,

it is energetically favorable to create a vacancy defect on one of the Ni sublattices over the

Al sublattice. When the vacancy is on the Al sublattice (fig. 6.2b), the nearest neighbor

and third nearest neighbor shells are completely occupied by Ni atoms, while the second

nearest neighbor shell is completely made up of Al atoms. On the other hand, when

the vacancy is on the Ni sublattice (fig. 6.2a), the nearest neighbor and third nearest

neighbor shells are 2
3

Ni, while the second nearest neighbor shell is entirely Ni.

At stoichiometric compositions, fig. 6.3c shows that the vacancy prefers the Ni sub-

lattices over the Al sublattice almost exclusively, since the local compositions in each

shell matches that of fig. 6.2a. In an excess of Ni, a moderate deviation from the stoi-

chiometric values can be seen. The Ni excess is achieved by creating Ni antisite defects

on the Al sublattice. If the vacancy were to remain exclusively on the Ni sublattices, we

would therefore expect the second nearest neighbor compositions to remain entirely Ni,

while the first and third nearest neighbor Al compositions decrease. Instead, fig. 6.3c

shows that the second nearest neighbor Al composition increases somewhat, suggesting

that the vacancy begins to occupy the Al sublattice more often. In an excess of Al, the

trends have similar behavior, indicating that creating Al antisite defects also biases the

vacancy to occupy the Al sublattice of the L12 ordering.

6.4.2 Kinetic observations

The kinetic Onsager coefficient couple chemical potentials gradients to fluxes of dif-

ferent species. In the dilute limit, these coefficients scale linearly with the number of

vacancies. The values are shown in fig. 6.4a. In the γ′ composition region, both LNi,Ni

and LAl,Al experience a dip at xNi = 0.75, due to a decrease in the equilibrium va-
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(a) (b) (c)

Figure 6.2: Figures 6.2a and 6.2b show the nearest neighbor environments of the L12

sublattices. Ni atoms (orange) are surrounded by 8 Ni, and 4 Al nearest neighbors,
while Al atoms (purple) are surrounded by 12 Ni nearest neighbors. Figure 6.2c shows
distances for first nearest neighbor (orange), second nearest neighbor (green) and third
nearest neighbor (purple) distance within an FCC unit cell.

cancy concentration. The cross term LNi,Al becomes negative around xNi = 0.78 (hollow

circles), with negative values in the Al rich side of the γ′ phase region.

Figure 6.4b shows values for the tracer diffusion coefficients of both Ni and Al, which

tracks the mobilities of individual atoms in the crystal. The same dips due to a lowered

vacancy concentration at xNi = 0.75 manifest themselves here. In the γ phase, Al is the

more mobile species, while in γ′ Ni tracers diffuse faster. The γ phase has no long range

order, and fig. 6.1 shows that for Ni rich local environments around a hop, Al will, on

average, have a lower activation barrier than Ni. A lower activation barrier corresponds

to a higher hop frequency, resulting in faster diffusion for Al.

In the γ′ phase, the relative values of tracer diffusion coefficients are reversed, with

Ni being the faster diffuser. The long range ordering of L12 penalizes exchanges that

require the introduction of Al antisite defects. In a perfect L12 ordering, an Al hop

into a neighboring site is impossible without creating an antisite defect. On the other

hand, sites on the Ni sublattice have other neighboring Ni sites, so the vacancy can move

through the Ni channels without introducing defects into the long range ordering.
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Figure 6.3: Thermodynamic properties of the γ and γ′ phases calculated at 1300K.
Equilibrium phase boundaries are shown in fig. 6.3a, while equilibrium vacancy con-
centrations are shown in fig. 6.3b. The local compositions around vacant sites are
shown in fig. 6.3c for the nearest neighbor (nn), second nearest neighbor (nnn), and
third nearest neighbor (nnnn) shells. The global concentration is shown with a dashed
line.
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The same behavior can be interpreted from the correlation factors in fig. 6.4c. In pure

Ni, we see that the correlation factor for Ni is consistent with the expected value of a pure

FCC crystal (≈ 0.78)), and that the vacancy correlation factor approaches 1, indicating

the vacancies act as a completely random walker. As the Al composition is increased

in the γ phase, the vacancy correlation factor very quickly decreases, approaching the

very low values of the Al correlation factor. This suggests that when a vacancy gets at a

nearest neighbor distance from an Al atom, it becomes “trapped”, exchanging numerous

times before an unlikely exchange with a Ni atom takes place, allowing the vacancy to

continue its path through the crystal. These entrapments by Al become increasingly

likely as the global Al composition increases, further correlating the paths taken by Al

and vacancies.

In the γ′ phase, there is a peak in the vacancy correlation factor of vacancies at

stoichiometric compositions of L12. An increase in the correlation factor indicates that

the hops taken by the vacancy have become more random. Vacancies must therefore be

exchanging more frequently within the Ni sublattice sites, which are all symmetrically

equivalent.

6.4.3 Projected diffusion metrics

Rather than examining the values of elements in the diffusion matrix D, we will look

at its characteristic values λ+ and λ−, and the values φ and δ defined in eqs. (6.12)

and (6.13). Throughout our KMC simulations, we used cluster expansions to determine

the hop frequencies of each hop, which depend on the short and long range ordering of

the crystal. As such, we have not assumed an ideal solution at any moment, and all

thermodynamic and kinetic contributions are contained in D.

There are two Eigenvalues we can extract from D. The larger Eigenvalue λ+ is a
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Figure 6.4: Onsager coefficients as defined in eq. (6.3) (fig. 6.4a), tracer diffusion
coefficients (fig. 6.4b), and correlation factors (fig. 6.4c) from KMC simulations run
at 1300K. At higher Al concentrations, the off diagonal L̃Ni,Al in fig. 6.4a becomes
negative. Hollow points represent data where the absolute value of a negative property
was taken.
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metric for how vacancies dissipate due to a gradient in vacancy concentrations. In the

limit of dilute vacancies, this value is the same as the tracer diffusion coefficient. The

values of λ+ and D∗V a matches almost exactly in our calculations, and are shown in

fig. 6.5a.

The smaller Eigenvalue λ− corresponds to an intermixing mode between Ni and Al.

For a hypothetical composition profile with a gradient in Ni and Al that resulted in no

net vacancy flux, λ− expresses the rate at which Ni and Al atoms would intermix. It is

similar to the interdiffusion coefficient D̃, and exactly matches its value in the limit of an

ideal solution. The similarities are displayed in fig. 6.5b. When xNi = 1, the values are

identical, and in the γ phase their values are quite similar. It is only in the γ′ phase that

they significantly differ, due to the long range ordering of L12, which lends itself poorly

to an ideal solution approximation.

The value of φ tracks the bias of a vacancy flux to exchange with Al rather than with

Ni. In the case of an ideal solution and kinetically ideal alloy, the value would simply

be the atomic fraction of Al in the crystal. In the absence of ordering and identical hop

frequencies, the probability of exchanging with Al is simply proportional to the amount

of Al atoms present. The values from our calculations are shown in fig. 6.6a. In the γ

phase, φ is positive, indicating a preference for vacancies to exchange with Al atoms, and

increases as more Al is introduced. The opposite is true in the γ′ phase, and vacancies

prefer exchanging with Ni atoms, especially near stoichiometric compositions of L12.

δ is akin to a “Kirkendall coefficient”, and couples a vacancy flux induced by inter-

mixing of Ni and Al, in the absence of a vacancy flux driving force. In a kinetically

and thermodynamically ideal alloy δ = 0, and intermixing induces no vacancy flux. The

values in fig. 6.6b show that in the γ phase, intermixing of Ni and Al causes a net va-

cancy flux in the “positive” direction (counter to ~JAl). Since Al is the faster diffuser,

more vacancies will exchange with Al and travel in the opposite direction. Within the γ′
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Figure 6.5: Comparison of the large eigenvalue with the vacancy tracer diffusion
coefficient (fig. 6.5a), and the smaller eigenvalue with the interdiffusion coefficient.
Calculations were done at 1300K.

phase, we see that an excess of Ni causes the opposite behavior, and intermixing causes

a vacancy flux counter to Ni. In an excess of Al, δ becomes positive again. The steep

increase as Al composition grows is consistent with the values of the tracer diffusion co-

efficients in fig. 6.4b, which show that Al becomes increasingly mobile as Al is introduced

into the L12 ordering, even surpassing the mobility of Ni.
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Figure 6.6: Values of φ (fig. 6.6a) and δ (fig. 6.6b) at 1300K. Dashed lines indicate
the expected values for a kinetically ideal solution.
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6.4.4 Combining thermodynamic and kinetic contributions

There are two contributions to the self diffusion coefficients for Ni and Al: a thermo-

dynamic contribution Γ, and a kinetic contribution Λ. The thermodynamic contribution

is plotted in fig. 6.7a, and has a very noticeable spike around stoichiometric composi-

tions for L12. The kinetic contribution is similar to the tracer diffusion coefficients; both

are superimposed in fig. 6.7b. The difference between these two values is that the tracer

diffusion coefficient accounts only for the path traveled by a particular atom, and ignores

any correlation it might have with the trajectories of other atoms in the crystal.

The discrepancy in values of fig. 6.7b show that, for the most part, the trajectories of

atoms are not significantly correlated. The exception to this is diffusion of Ni at low Al

compositions. The deviation of ΛNi from D∗Ni is likely due to the LNi,Al term of eq. (6.18).

Even though the value of L̃Ni,Ni decreases with xNi, its negative contribution to ΛNi will

get amplified if it doesn’t decay as quickly as xAl.

Figure 6.7c shows the product of the values in fig. 6.7a and fig. 6.4b. Just as the

tracer diffusion coefficients, Al is the faster diffuser in the solid solution, while Ni is

more mobile in the L12 ordering. The thermodynamic contribution causes the Ni self

diffusion coefficient to increase as the composition reaches xNi = 0.75, while the Al

diffusivity remains at its lowest close to that composition. The Darken approximation,

where correlations between different atoms are ignored, is quite accurate for self diffusion,

save for the discrepancy at higher Ni compositions. Any error in the approximation arises

purely from the difference between the kinetic contribution Λ and the corresponding

tracer diffusion coefficients.
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Figure 6.7: Thermodynamic contributions to the kinetic coefficients Γ (fig. 6.7a),
comparison of kinetic contributions Λ with tracer diffusion (fig. 6.7b), and they’re
combination into self diffusion coefficients (fig. 6.7c). All values were calculated at
1300K.
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6.5 Discussion

We have calculated various diffusion metrics in the Ni-Al binary for the FCC γ and

γ′ phases. Our results show that in the γ phase, Al is the faster diffuser, while Ni is more

mobile in the long range ordered γ′ phase.

The higher diffusion of Al in the γ phase can be understood almost entirely from the

relative KRA values of Ni and Al. When the Ni composition is high, vacancy-Al hops

will mostly encounter local environments with low local Al compositions. This results in

lower KRA values for Al than for Ni, which in turn will correspond to lower activation

barriers. The low activation barriers result in a higher exchange of vacancies with Al,

and the Al atoms diffuse faster.

Local ordering in the solid solution heavily impacts the mobility of the vacancies. At

dilute Al concentrations, vacancies favor having Al atoms as a first nearest neighbor. As

a result, the diffusion of vacancies and Al is highly correlated, and both travel through

the crystal together, favoring hops that keep them at a nearest neighbor distance.

In the γ′ phase, vacancies are moving through a long range ordering, and diffusion in

this phase is governed a lot more strongly by thermodynamics. Within the L12 ordering,

vacancies primarily occupy the Ni sublattices, due to the higher energetic cost required

to introduce a vacancy on the Al sublattice. The preference to occupy the Ni sublattices

if further intensified by the possible hops from this position. Sites on the Ni sublattice

have both Al and Ni atoms as nearest neighbor, so the vacancy can potentially exchange

with either. However, while an exchange with a neighboring Ni effectively leaves the

crystal in the same energetic state, an exchange with an Al both places the vacancy on

the unfavored sublattice, while simultaneously creating an Al antisite defect. Al-vacancy

exchanges in the gamma′ phase therefore occur infrequently, especially at stoichiometric

L12 compositions. Under these conditions, the Al sublattice is “frozen”, and movements
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within the Ni channels are much more likely. A bias towards remaining on the Ni sublat-

tices implies further exchanges with Ni atoms, and explains why the relative diffusivities

of Ni and Al are opposite within the γ and γ′ phases, as well as the trends of φ and δ.

6.6 Conclusion

We performed Kinetic Monte Carlo calculations in the Ni rich phases of Ni-Al to

get diffusion coefficients for γ and γ′. In order to account for long and short range

ordering of the alloy, we used a cluster expansion to dictate the energetics of the crystal

orderings. Furthermore, we applied local cluster expansions to determine the value of the

activation barriers of at each step of the simulation, such that its value depends on the

local environment around the hop. Our results show that in the γ phase, Al is a faster

diffuser, while the converse is true in the γ′ phase.
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Chapter 7

Summary

In this thesis we used a combination of first principles and statistical mechanics to explore

the thermodynamic and kinetic behavior of Ni-Al based alloys. Using cluster expansion

methods, we link the atomic interactions of first principles calculations to macroscopic

quantities at higher temperatures. We focused primarily on the calculation of phase

diagrams and diffusion coefficients.

In chapter 3, we explore the phase stability of the Ni-Al binary, both at 0K and

finite temperature. We confirm the stability of well characterized intermetallic phases γ′

and β, and also find a new family of groundstate orderings, derived from smaller units

of the γ′ and β orderings. A comparison between our calculated phase diagram with

experiments shows good agreement, with some discrepancies for the stability of β at

higher temperature. We attribute the discrepancies to anharmonic vibrational effects

that stabilize the Ni rich β phase at higher temperatures.

In chapter 4, we develop a method to parameterize multicomponent cluster expan-

sions recursively, using cluster expansions from lower subsystems as informative Bayesian

priors. We use this method to extend the binary cluster expansion used for the Ni-Al bi-

nary into a Ni-Al-Cr ternary cluster expansion. Using this cluster expansion, we predict
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significant solubility for both the γ and γ′ phases at high temperature. We also look at

the sublattice preference of Cr in the L12 ordering of γ′, and found that it overwhelmingly

prefers the Al sublattice. By systematically enumerating orderings on FCC and BCC,

we found an additional set of unreported long range orderings in the Ni-Cr and Cr-Al

binaries.

Chapter 5 introduces the concept of the Kinetically Resolved Activation, a useful

metric for atomic mobility from which activation barriers can be determined. We outline

a systematic method to enumerate local environments around hops, and use it to to

investigate nearest neighbor vacancy exchanges in Ni-Al. Our results show that while Ni

hops are largely independent of their local environment, the KRA values for Al hops vary

significantly depending on the amount of other Al atoms in the local environment. We

then outline how to use cluster expansion methods to predict KRA values as a function

of local ordering.

In chapter 6 we combine methods described in the rest of the sections to comprehen-

sively model diffusion in Ni-Al. Cluster expansions fully dictate the energetics of hop

events, and we use Kubo-Green relations to calculate diffusion coefficients. We find that

Al diffuses faster than Ni in the γ phase, while Ni is the faster diffuser in γ′. The behavior

can be understood by examining the possible hops within the L12 ordering that minimize

the number of defects created.
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