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ABSTRACT 
In this report we discuss strengths and weaknesses of logic synthesis systems 

and describe a system for microarchitectural and logic optimization. Our system 
uses a set of algorithms for synthesizing SSI/MSI macros from parameterized 
microarchitecture components. In addition, it uses rules for optimizing both at 
the microarchitecture and logic level. The system increases designer productivity 
and requires less design knowledge and experience from circuit engineers. 
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1. Introduction 

Over the past decade tremendous advances have been made in VLSI design. 

Greatly increased circuit complexity, however, continues to outpace engineers' 

abilities to develop chips with up to half a million transistors. Conventional 

design methods have entailed teams of highly skilled and experienced engineers 

providing many months of effort. More recently, companies have been turning 

to logic synthesis tools to help alleviate market pressures that demand lower-cost 

implementations with shorter development times. These tools allow less 

experienced designers to develop application-specific I Cs (AS I Cs), typically gate 

arrays or standard cells. Further, the automated systems free a designer from 

the exploding number of details and provide greater time to examine high-level 

issues and experiment with various architectures. Thus such tools increase 

productivity and provide for better complexity management. 

Synthesis tools employ two basic techniques in producing a final, workable 

design. These are refinement and optimization. Refinement is the process of 

transforming a behavioral description into an initial design. Usually this design 

consists of components such as multiplexors, decoders, and gates such as AND 

and OR. Optimization is the process of transforming the initial design into one 

that meets some set of objectives relating to time, area, etc. Often a design 

proceeds through a number of levels of abstractions. At each level, these two 
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stages are performed. For example, typically refinement and optimization can be 

used on a generic representation and later on a technology .. specific one. 

The synthesis process is shown in Figure 1. Refinement begins with the 

user's behavioral description. The input may take a textual or graphical form. 

Textual representations would be a hardware description language, such as 

VHDL, a set of boolean equations, or a table, such as PLA format. Graphical 

representations include a generic or technology-specific schematic, or a menu­

driven interactive process that extracts a set of parameters from the user. 

Behavioral descriptions in language form require a compiler to generate an initial 

netlist consisting of high-level components such as decoders and registers. 

Diagrams entered through schematic capture may also consist of high-level 

components. Boolean equations, PLA format, or low-level schematics are 

representations for the logic level. 

The behavioral description represents a black box whose inputs, outputs, 

and functionality are described. The representation generally does not convey 

any information as to the technology type or necessarily any style of 

implementation :-- be it parallel, pipelined, etc. Since many systems accept 

different behavioral specifications, they must first convert them all to one central 

format, such as a generic schematic or set of boolean eq:uations. This central 

format is then used to create a detailed representation of the design. 
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The design created in the refinement stage is usually by no means optimal 

and thus the optimization phase is called upon to improve performance. Figure 

1 identifies two levels at which optimization can take place -- at the 

microarchitecture level and the logic level. One could add other intermediate 

levels. A logic generator is required to decompose the design into the lower level. 

Optimization can be guided by two different strategies. The first is to 

optimize everything until no further improvements can be made. When 

optimizing for multiple constraints there may be a weighting or priority scheme 

to determine which design improvements should be performed. Essentially, this 

is a "brute-force" method as optimizations tend to be made in random parts of 

the circuit in no directed fashion. The second strategy is constraint driven. It 

relies on a set of user-entered parameters to direct the flow of optimization. For 

example, optimizations may be applied initially only along a critical path when 

attempting to meet timing constraints. Once one constraint . is met, the 

optimizer will turn to another and work toward meeting the user's objectives. 

Once these are satisfied, the optimization stage may end or may apply the first 

strategy. 

2. Previous Work 

A number of automated logic synthesis systems have been previously 

reported: LSS [JoTr86], SOCRATES (GrBa86], and the Logic Consultant 
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[Kim87]. They have focused primarily on logic level optimization. The systems 

have used algebraic, language compiler, and expert system techniques to reduce 

circuit delay and gate count in combinational logic. In general, such systems are 

best suited for optimizing random logic that can easily be represented by 

boolean equations or PLA format. An exception is LSS which accepts a 

register-transfer language as its input, allowing entry of high-level operators. 

However, only limited types of optimization are performed on the high level 

operators before they are decomposed into gates. Once a design is at gate level 

it is impossible to recover high-level information that may be necessary for 

restructuring the design in order to meet timing or area constraints. 

When circuit constraints cannot be met by further local optimizations at 

the gate level, a human designer will often return to a higher level and 

restructure the design. The gate level implementation can be rebuilt and this 

time may be able to meet the design constraints. For example, consider an 

arithmetic unit in which the critical path passes through a ripple-carry adder. 

Once the designer examines the gate-level implementation and determines that 

the critical path cannot be solved with the pres~nt design, high-level alterations 

may be made. One possibility would be to replace the ripple-carry adder with a 

carry-lookahead adder. 
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Previous logic synthesis systems have not had the capability to reexamme 

the microarchitectural design and make the necessary high-level alterations to 

meet low-level constraints. This paper examines the MILO system that performs 

such rnicroarchitectural examinations. MILO introduces a number of novel 

features: it captures and optimizes designs on the microarchitecture level, uses 

logic compilers to expand microarchitectural components into those from a 

technology-dependent library of SSI/MSI · components, then optimizes the 

expanded design. When an initial low-level implementation fails to meet the 

user constraints, MILO makes microarchitectural modifications, then regenerates 

the gate-level circuit. While examining the microarchitecture, MILO can 

optimize sequential logic by manipulating counters and registers. Before 

examining MILO in further detail, we will review the manner in which previous 

work has addressed the issues of automated logic synthesis. 

2.1. Refine~nt Techniques 

2.1.1. SOCRATES 

Figure 2 shows the SOCRATES system. SOCRATES accepts boolean 

equations, PLA format, or a netlist as a behavioral description. Two-level 

boolean equations are used as the central format. Multi-level boolean equations 

can be extracted from the netlist, then run through an expander to generate the 

two-level format. Likewise, an extractor can be used to generate two-level 
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boolean equations from PLA format. An algebraic mmnmzer, ESPRESSO IIC 

mmmuzes the two-level equations, taking advantage of don't care conditions. 

The next step uses weak-division to find common subterms in the design and 

form multi-level equations, thereby reducing the amount· of logic required to 

implement the function. This minimized design is written back into netlist form 

from which the logic optimizer will operate. The optimizer is discussed in a later 

section. 

2.1.2. Logic Consultant 

The modules compnsmg the Logic Consultant system are displayed in 

Figure 3. Like SOCRATES, the Logic Consultant accepts boolean equations, 

PLA format, and netlists generated from schematics as input to its system. 

Schematics can be created on a Mentor workstation using components from 

Mentor's generic library ( G ENLIB) or components from a technology-specific 

library. A decomposition module converts the input description into 

components from the Trimeter Generic Library· (TGL) and isolates the 

combinational logic for processing by the minimization module. Technology­

specific components are replaced with TGL components through user-entered 

rules in the knowledge base. For MSI components (ie., multiplexors, decoders, 

ALU s, etc) this replacement is optional. The user specifies whether the MSI 

elements should be decomposed into TGL gates (via the rule base) or should be 
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left "as is". Those components that are not decomposed are treated like 

sequential logic elements and removed from the design that is passed to the 

minimizer. Thus if an MSI component is not decomposed, it will not be 

optimized with the surrounding logic. This strategy poses a problem since in 

decomposing the MSI components, one loses the advantage of using them. 

Typically high-level components are added to a technology library because the 

designer of that component constructed it in such a way that it takes up less 

area and has greater speed than a corresponding gate implementation. But once 

a component is decomposed for optimization, it may be difficult or impossible to 

find after flattening and refactoring the circuit. However, if the components are 

not decomposed, no optimization is performed. As will be seen later in this 

paper, a better solution is to perform some optimizations at the 

microarchitectural level. 

The rmmrmzer module accepts combinational logic consisting entirely of 

TGL components from the decomposition module. The minimizer then develops 

a two-level SOP design and removes redundant terms. This new design will be 

passed to the factorization module. For some circuits it may be desirable to 

bypass the minimization module and go directly to factorization. This is the 

case when the generated two-level SOP form contains an explosive number of 

terms. These circuits require extensive CPU time and after factorization 

typically contain more components than the original design. For example, 
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certain multi-level circuits may reqmre many times their number of circuit 

elements to be represented in a two-level format. As factorization is performed 

on a local basis (and not globally), one cannot guarantee that the factorization 

will be optimal. Hence factorization may be unable to reduce the gate count to 

the prior number of elements. Designs with a large number of XOR and XNOR 

gates are one example of this type of circuit. Thus the Logic Consultant's 

minimizer does not produce a better design in all cases. 

The factorization module attempts to factor out common terms to produce 

a multi-level design. It also factors in such a way to reduce the delay along the 

longest path. For example, consider Figure 4. The bottom input of the AND 

gate is part of the longest path. This path can be shortened by factoring the 3-

inpu t AND into two 2-input AND gates. Thus some timing considerations are 

taken into account. Note however that the longest path may not always by a 

critical path. When this is the case, the assumption that it is a critical path will 

prevent optimization for area along that path. Hence, such a factorization 

strategy is not truly constraint driven. 

Factorization continues until no further common terms or timing 

improvements can be found. The Logic Consultant factors all paths as 

completely as possible. Since this includes critical paths, certain factorizations 

must be undone at a later time. 
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2.1.3. LSS 

The LSS system architecture is shown in Figure 5. LSS proceeds through 

four different description levels to produce an optimized technology-specific 

circuit: high-level, AND /OR, N AND /NOR, and technology specific. Each level 

requires a translator to produce its description format from a higher-level 

description. Likewise, each level has an optimizer to apply simplifying 

transformations. By introducing multiple levels, the designers of LSS followed 

the example of programming language optimizing compilers that produce several 

intermediate descriptions before generating assembly-language code [DaJo80). 

Changes can be made through a number of levels, thereby simplifying analysis 

and optimization at each level. For example, simplification can be made in 

terms of generic components, then converted to technology-specific components 

for further optimization. Attempting to improve a high-level description directly 

into a low-level one is a much tougher task. Also by using generic levels, only 

the technology-specific optimizations need be rewritten when the technology 

changes. 

LSS begins with an algorithmic representation usmg a register-transfer 

language. Using a simple translator, LSS produces a logic graph representing 

the design. Translation 1s straightforward as operators in the behavioral 

description are assigned to nodes m the graph. Each node 1s a generic 
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component (such as an AND gate or decoder) and is connected via the graph's 

edges to other components. Optimization at this level is discussed in a later 

section. 

Another translator is called to produce the second level AND /OR 

description. It decomposes high-level components, such as decoders, into 

AND/ 0 R/N OT gates. Optimizations are then applied at this level. The third 

description level, N AND /NOR consists of only N AND and NOR gates. Once 

again, the translator that produces this description is achieved through naive 

transformations that may produce unnecessary N ANDs and NO Rs. These 

"extra" gates are removed by the optimizer at this level. Finally, LSS provides a 

translator to produce a technology-specific design using components from a 

technology library that consists of gate-array macros (such as N AND /NOR 

gates, complex AND /OR gates, etc). This technology description may then be · 

optimized. 

2.2. Optimization Techniques 

After refinement, synthesis tools call upon optimizers to improve the design. 

Their optimization techniques fall into one of the three expert system types 

shown in Figure 6. Each consists of some type of blackboard and knowledge 

base. The blackboard is where the design resides and can be examined by the 

knowledge base. Included in the blackboard is usually a netlist describing the 
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design, statistics on area and path delays, a set of user constraints, and work 

space for the system to evaluate various attempts at refinement or optimization. 

The knowledge base consists of a set of rules and algorithmic techniques that 

utilize the blackboard data structures and make modifications to them. 

Generally algorithms are assigned structured and well-defined tasks while rules 

handle unusual or loosely defined problems. 

2.2.1. Rules Only Strategy 

The first type of expert system is entirely rule based. This approach 

generally lacks structure as rules are entered essentially independently of one 

another. The control unit selecting a rule to fire must examine all rules to 

determine which rules are applicable. Any of the rules whose conditions are 

satisfied can be fired. It is up to some rule selection mechanism to choose one 

rule from that set. An early implementation of this type of system was Rl 

[McDe82], a rule-based system for configuring Vax-11/780 computers. A more 

recent version of a strictly rule-based system is the Logic Consultant. Both of 

these systems use the OPS production system language to write rules for their 

knowledge base. Rl was written in OPS4, the Logic Consultant uses OPS83 -­

the lastest OPS version. Each rule consists of a set of conditions and a set of 

actions to be performed when all of the conditions are met. Control in OPS is 

exercised through a recognize-act cycle. In this cycle all rules whose If-
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conditions are satisfied are found using the Rete match algorithm [BrFa85], then 

one of these rules is selected to be applied. Briefly, the Rete algorithm compiles 

all of the rule conditions in an OPS program into a set of attributes whose 

values can be tested. These attributes are placed in a tree-structured sorting 

network. In doing so, it allows similar tests on attribute values to be shared 

among different rules. Further, once a test has been performed on a tree node, 

it is not redone until a change in data occurs upon which the attribute is 

dependent. These features make the Rete algorithm much more efficient than a 

simple pattern matcher that examines each rule's conditions on every recognize­

act cycle to determine which rules apply. 

From this set of applicable rules, called the conflict set, a single rule must 

be selected. OPS has a conflict resolution scheme to choose this rule based on a 

number of tests through which rules are eliminated from the conflict set. 

Priority is given to rules in the following order [Fo85]: rules that have not been 

executed, rules whose first attribute (value of the first condition) has been most 

recently altered, rules with the most conditions, rules that entered the conflict 

set most recently. 

In a rule-based system incorporating such schemes, control over which rules 

are applied can only be achieved by adding more conditions to each rule. In Rl, 

an additional condition was added to each rule corresponding to the stage of the 
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design task. The Logic Consultant system builds in limited structure by 

examining its set of applicable rules and making an evaluation of the gain 

produced by each rule. The rule with the largest gain can then be applied on 

the circuit. Another characteristic of strictly rule-based systems is the lack of 

backtracking. Neither Rl nor the Logic Consultant permit backtracking -- once 

a rule is applied, it will not be undone. 

The Logic Consultant's first optimizer module is the cell selection module. It 

converts the design consisting of TGL components to technology-specific 

components. This module uses rules from the knowledge base that specify how 

one or more TGL components map into a technology-specific component. 

Once a technology-specific design is derived, the design is further optimized 

by a technology-specific optimization module. This module utilizes rules that 

make equivalent circuit transformations to improve area or time. The optimizer 

chooses which rules to apply based upon some formula that examines time/area 

tradeoffs. For critical paths and the longest path, rules are selected that 

decrease delay but that may increase area. Along non-critical and short paths, 

the Logic Consultant applies rules that decrease area at the expense of time. 

Certain rules may appear to increase area or time but can actually result in 

a decrease by applying "clean up" rules. The Logic Consultant has a 

classification of rules to do this. For example, if a rule adds inverters to the 
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circuit, the optimization module will examine a set of high-priority or "clean up" 

rules to determine if any of the high-priority rules can eliminate the inverters 

from the design. Before implementing any rule, the optimizer calculates the 

result of rule applied with any high-priority rules to determine how the rule will 

affect area and time. 

When entering rules into the knowledge base, the user indicates whether a 

rule is high-priority. The rule classification indicates only that the rule should 

be examined to determine whether it can "clean up" after a regular rule 

application. It does not give the high-priority rule preference over a "regular" 

rule. This high-priority rule classification provides a limited lookahead feature of 

one rule. 

2.2.2. Rules/ Algorithm; (l\1ixed Strategy) 

The second expert system type makes use of a rule base but employs 

structuring through algorithmic control. The algorithm establishes a hierarchy 

that determines which set of rules should be examined at any point in time. This 

added structuring allows greater control over the type of rules that are eligible 

to fire. The top level of the hierarchy examines the blackboard to determine the 

current stage of optimization. Depending on the set of constraints that must be 

satisfied, var10us strategies may be selected for further investigation. At this 

stage, more information 1s needed to evaluate the remaining strategies. Lower 
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levels in the hierarchy are called upon to produce it. From this information, the 

high-level decisions can be reached. 

Lower levels in the hierarchy inspect the blackboard in greater detail and 

can choose a single strategy for optimization. Inside each strategy is further 

hierarchy. Similar to the strategy selection, one technique in the strategy must 

be chosen from a number of possibilities. The chosen technique in turn calls 

upon still lower levels of the hierarchy to carry out a design transformation. 

These lowest levels include rules for manipulating data structures in the 

blackboard, keeping data in the blackboard up to date, and removing old or 

useless information. 

SOCRATES 1s an expert system that uses a mixed strategy for 

optimization. The SOCRATES optimizer is written in C and runs on the VAX 

11/780. Like the Logic Consultant, it consists of rules that make local 

transformations on the circuit. SOCRATES also has procedures to provide 

feedback on the time and area savings produced by a rule. Through these 

measurements, SOCRATES can choose which rule to apply. In addition though, 

the SOCRATES rule base employs a limited hierarchy to reduce the number of 

rules that must be considered at any given time. It organizes the knowledge 

base into a number of classes, such as timing or area optimizing rules. Further, 

each class of rules is divided into subclasses of related rules. For example, one 
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subclass might replace partially redundant multiplexors with N AND and NOR 

gates, and another might combine and synthesize those gates [GeCo85]. 

SOCRATES examines only rules in a particular subclass at any one time. Each 

class and subclass of rules is prespecified in a certain order in the knowledge 

base. SOCRATES then examines each rule class and subclass in this order. 

Optimization in SOCRATES begins with rules that improve both time and area. 

Then rules are applied that optimize time, possibly at the expense of area, until 

all timing constrain ts are satisfied. Finally, area optimizations are made on 

noncritical paths, possibly at the expense of time, until no other area 

improvements can be made. 

A rule in SOCRATES consists of a target configuration and a replacement 

configuration. These configurations are patterns of components, pins, and nets 

that identify a particular circuit structure. SOCRATES has its own pattern 

matcher that determines which target configurations are present in a design. 

Like OPS83, it contains a recognize-act cycle in which possible rule applications 

are examined, one rule is selected and then applied. Because of the hierarchical 

rule-base, SOCRATES only needs to consider rules in the currently activated 

rule subclass. To eliminate rules in the conflict set, the recognize-act cycle may 

utilize lookahead. Each rule in the conflict set is evaluated by implementing its 

set of actions, then measuring the resulting effect. The rule's future effect (ie., 

an examination of the rules that may be applied after the initial rule 
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application) can be observed via a state search. This involves setting up a 

search tree consisting of future design states. The search tree is a graph with the 

nodes representing possible circuit implementations and the arcs representing 

rule applications. The root of the tree is the current circuit implementation. 

Children of nodes in the graph are ordered by desireability. The leftmost 

children being derived from "better" rules (CoBa85]. The path through this 

state graph producing the lowest cost function is the optimal sequence of rules. 

Construction of the graph is performed in a depth-first manner. After each 

transformation, the results are evaluated by a cost function. If the resulting 

circuit is acceptable the next set of rule applications will be examed, the "best" 

rule selected and its effects determined. The process is repeated until some 

maximum depth is reached in the search tree. If the resulting circuit is deemed 

"unacceptable", SOCRATES backtracks to the node's father and examines 

alternative circuit transformations [ GaGr84]. In constructing the search tree, 

SOCRATES keeps a log of changes made to the circuit by each rule application. 

When backtracking is required, the changes to the circuit can be quickly undone 

by referring to this log. 

Each node of the tree will contain the cost function estimate of the circuit 

implementation. The lower the cost function, the better the circuit. Once the 

search tree has been completely built, it can be traversed to determine which 
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sequence of rules is best. Those rules will then be applied. 

Since search trees can become massive and require large amounts of CPU 

time, the designers of SOCRATES introduced metarules that control the size of 

the search tree. Metarules are rules that contain control knowledge, as opposed 

to design knowledge that suggests circuit alterations. The SOCRATES metarules 

are based on the parameters presented in [CoBa85]. The first parameter, B, 

restricts the number of sons any node may have. Thus it limits the breadth of 

the search tree. The parameter D limits the depth of the tree by restricting the 

number of consecutive rule applications. Using the neighborhood control 

parameter, N, restricts rule applications to gates of path distance N from some 

center gate. This prevents rules that apply to different circuit regions from 

being considered. The parameter Dapp restricts the rule application depth. 

Although the search tree extends to depth Dmax , only a portion of some sequence 

of rules will be executed. A parameter Aclau was introduced to limit the number 

of rule classes to be examined beyond the current subclass. This variable 

decreases the number of rules that can be applied at any given time. Finally, 

the parameters Aco&t , R, and S, relate to the cost function. ~co&t limits the 

increase to the cost function by a single rule application. Parameters R and S 

are used in the cost function to determine the desireability of applying a 

particular rule. The cost function_ takes into account the area saved and the 

number of rules that can be applied after a transformation is made. The 
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weighting of terms in the cost function affects the size of the tree by changing 

the desireability of various rules. 

Initially SOCRATES used fixed values for these parameters, regardless of 

the optimization phase. However, the ideal parameters vary greatly over the 

course of optimization. For example, greater lookahead is required for area­

saving rules than general rules. Also, little or no lookahead is required for the 

most powerful rules [GeCo85]. Thus based on the state of the optimization, 

metarules determine what values the control parameters should have. These 

rules supervise the control module and dynamically vary the parameters. Such a 

technique permits more selective use of lookahead. Control parameters can be 

changed depending on the rule class, rule subclass, or even an individual rule. 

Through this process of lookahead, the best sequence of rule applications 

can be determined. By examining the future effects of a rule, SOCRATES can 

determine whether the decision to apply a rule was good. Poor decisions can be 

undone through backtracking and other rules can be considered. The designers 

of SOCRATES report this approach produces superior results to those where 

only one rule is examined· and then applied (CoBa85]. Their examples indicate 

that the use of lookahead without metarules required roughly four times longer 

on average to run, producing designs with 12 percent less area on average. 

Adding metarules only doubled the run time and still provided the same 
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decrease in area. 

LSS is a system that also employs limited hierarchy as it performs 

optimization at each of its four levels of representation. The LSS refinement 

stage produces an initial graph with AND /OR gates, registers, decoders, etc. 

The first level of optimization is performed on this network. It uses 

transformations that reduce the gate-level logic and transformations that use 

information about a high-level component to reduce the surrounding gates. 

Figure 7 demonstrates transformations of this type from [JoTr86]. The first rule 

uses knowledge about a decoder to eliminate the OR gate. The second rule in 

Figure 7 is a simple logic reduction transformation. 

Once all level one transformations have been performed, the high-level 

components can be expanded into AND /OR/NOT gates. This forms the second 

description type, the AND /OR level. At the AND /OR level, transformations 

perform AND /OR simplification, common subexpression elimination, and 

constant propagation (ie., OR(a,1.) = 1, AND(a,1) =a) [DaJo81]. 

The third level, NAND /NOR, introduces some technology considerations. 

Depending on the technology, the desigri will be converted to one consisting 

entirely of generic NAND and NOR gates. The same type of transformations 

that were performed at the AND /OR level are applied at this level, only with 

N AND /NOR simplifications in mind this time. Transformations at this level 
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attempt to incorporate technology tables that supply information on generic 

NAND/NOR gates. For example, information on each generic primitive (such as 

a NAND3) is maintained on its size, driving capability, delay, fan-in, etc. 

[JoTr86]. Hence at the NAND/NOR level it is possible to make decisions about 

what type of NAND/NOR gates should be used. For example, LSS can tell 

whether to use three-input NANDs or two-input NANDs to reduce area. 

The final level of description is technology specific. Transformations 

convert generic components to components from a technology library that may 

include complex gates such as AND /OR, multiplexors, etc. The transformations 

also enforce technology constraints such as fan-in and fan-out. To deal with 

complex gates, LSS makes use of tables that list the components available in 

each complex gate type (ie., AND/OR, decoder, OR/AND). In each category 

the components are ordered according to the savings created. When conflicts 

arise as to which transformation to apply, the one with the largest gain is 

selected based on this ordering. 

The transformations performed at each level in LSS are executed through 

PL/I procedures that manipulate the logic graph. Transformations at the final 

two levels make use of a number of technology tables that can be readily 

updated for a new technology. It has been reported [JoTr86] that the use of 

local transformations as opposed to two-level boolean minimization tends to keep 
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synthesis times linear for increasing design sizes. For circuits of 200 to 2000 

two-input equivalent gates, a time of one second for roughly nine gates was 

reported (based on IBM 3081 CPU time). 

2.2.3. Algorithms Only Strategy 

The final type of expert system 1s entirely algorithmic. It uses an 

algorithmic controller to determine how to apply algorithms in the knowledge 

base. Such a system performs the same operations always in the same order. 

An example of an algorithmic system is DAGON [Ke87]. DAGON performs 

technology binding and can optimize for time, area, or some function of the two. 

It utilizes programming-language compiler techniques that are strictly 

algorithmic. In doing so, DAGON can guarantee locally optimal matches over 

several thousand patterns. 

Similar to language compilers, DAGON matches a graph description of a 

technology-independent circuit against a technology library consisting of 

numerous patterns. The problem is viewed as finding the best technology 

patterns to cover a directed acyclic graph (commonly termed DAG). A DAG is 

a graph containing no cycles that consists of nodes and directed edges. DAGON 

builds a DAG for boolean functions using nodes to represent AND and OR 

operators and edges labeled 0 or 1 to indicate a true or inverted output (thereby 

providing NAND and NOR operators as well). 

January 30, 1988 Page 22 



A globally optimal solution to the DAG covering problem could be 

generated by comparmg all possible technology implementations (each a 

collection of patterns from a technology library) for time and area. However, 

such a problem is NP-complete. Therefore, DAGON's first step is to partition 

the graph into trees. This is accomplished by making every component in the 

graph whose fanout is greater than one, the root of a new tree. DAGON may 

then find the minimal cost technology pattern for each tree, producing a locally 

optimal solution. 

Finding a minimal cost match for a tree consists of two maJor tasks: 

recognizing the set of possible matches and determining the pattern from that 

set providing the minimal cost (in terms of time and area constraints). Finding 

applicable pattern matches is performed by twig [Tj86], a program designed to 

construct code generators for programming language compilers. It generates the 

set of matches in O(TREE SIZE) time. From this set the minimal cost match 

can be found using a recursive algorithm that determines the least cost match 

for each subtree. 

3. Optimization Strategies 

The quality of a synthesized design can vary dramatically depending upon 

the strategies used to optimize it. Strategies can be examined at both a high 

and a low level. At a high level there are essentially two types of decisions for 
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which a strategy must be chosen. They are: what to optimize for and what 

subsection of the overall design to optimize at any given time. At a low level 

there are also two types of decisions: what types of transformations or algorithms 

to apply and what order to apply them to the specified subcircuit. 

The first decision depends heavily upon the user-entered constraints. 

Typically three types of constraints are entered: time, area, and power. The 

optimizer must choose which order (if any) to optimize the constraints and 

which constraint( s) should carry the greatest weight m directing the 

optimization. 

The second decision concerns the portion of the design toward which 

optimizations should be directed. One could simply search the entire design for 

all the rules that are applicable and select one to apply. This has the effect of 

applying transformations randomly throughout the design. Generally the 

technique is time consummg and produces less than optimal results. Human 

designers break up large circuits into smaller ones, making optimization more 

manageable and allowing more control over the course of the optimization. This 

approach is best for optimization programs as well. By focusing on only a small 

section of the design, one not only reduces the number of rules that must be 

considered but also allows a rule's effect to be more closely examined -- one need 

only consider its effect in the subcircuit to know what happens in the larger 
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design. 

When performing timing optimizations one tends to select a path-oriented 

approach. Thus the subcircuit might be a critical path. Area optimizations are 

not path directed except for avoiding critical or near-critical paths. In this case, 

critical paths could be removed to eliminate the time wasted by considering 

rules that affect some component that is part of a critical path. 

The third decision involves the specific rules or algorithms that can be 

applied. This decision is in part based upon the earlier issue of what to optimize 

for. Certain techniques work best when optimizing for time, others when 

optimizing for area. As an example, consider a rule that greatly decreases delay 

but improves area only incrementally. Clearly such a rule is best suited for use 

in timing directed optimizations. An alternative rule that produces greater area 

improvements can be used when optimizing for area. 

The final decision involves the order in which optimization techniques 

should be applied. The use of lookahead can aid greatly in assuring that the 

"best" rules will be used. Lookahead, however, can be quite time consuming and 

simply considering certain rules before others may be a better solution in some 

cases. Another example of the use of ordering can be seen in the use of 

algorithms. For instance, some algorithmic techniques, such as collapsing a 

network into two levels to reduce delay, require a great deal of time and effort. 
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Yet if only a small improvement is required, the effort is, in effect, wasted. 

Another technique, perhaps a rule-based approach producing smaller gain, could 

have been used. 

4. Optimization Strategies for Timing 

In this section, we examme strategies used in timing optimization. One 

approach is shown in Figure 8. First, a timing analyzer determines which paths 

are critical. From this information a critical path is chosen. This is usually the 

one whose delay is furthest from the user's specifications. Next, a point on the 

critical path must be selected for optimization. Two criteria are used to 

determine this point. The first criteria chooses the component which the most 

critical paths pass through. This has the effect of improving a number of critical 

paths with a single replacement. If there are multiple points that satisfy criteria 

1, the second criteria will select the component from that set that is closest to an 

external input. Once a point of optimization has been chosen, a control strategy 

is selected. This strategy determines which type of optimizations should be 

attempted. The different strategies will be discussed later. The next step is to 

select a rule within that strategy and evaluate its cost function. If the cost of 

applying the rule is too great or the rule fails to achieve a sizeable gain, a new 

rule will be selected and evaluated. If the strategy succeeds in making the path 

non-critical, another critical path will be selected. On the other hand, if the 
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strategy has exhausted all possible rules without solving the critical path, a new 

strategy will be selected. 

4.1.1. Control Strategies 

Different control strategies are required for timing optimization. For 

example, critical paths whose delays differ greatly from user specifications tend 

to require some type of circuit restructuring. In contrast, those critical paths 

that are close to the specifications may require that only a few gates be replaced 

or only a small portion of the critical path to be modified. 

4.1.2. Types of Strategies 

There are a number of different strategies that can be used to improve 

speed. These are illustrated in Figure 9. Strategy 1 swaps equivalent signals on 

the same component. For example, the 3-input AND gate in Figure 9a has a 

different delay from each input to the output. Thus the critical path should be 

connected to the input with the shortest delay. Strategy 1 can be implemented 

by examining a technology file that contains timing information on each 

component. This strategy has no cost as it does not change any circuit 

elements. However, the gain produced is small. Thus strategy 1 is useful when 

the slack (difference between the actual and required times) is extremely small 

or when strategies that produce larger gains have been exhausted. 
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Strategy 2 replaces a low-power or standard-power macro with a high-power 

macro of greater speed. This type of strategy is only applicable to ECL logic 

where the amount of current can be increased to provide faster switching 

transistors. Strategy 2 can be implemented by examining the technology file to 

determine if the same macro exists with higher power, higher speed. The 

strategy is similar to strategy 1 as it produces only a small gain. Thus it would 

be used in the same situations as strategy 1. However, since strategy 2 increases 

the power, strategy 1 is preferred. 

Strategy 3 employs factorization to reduce the delay of a critical path. 

Figure 9c shows how a four input AND gate can be factored to speed up path D. 

Implementation is a factorization program such as that found in MIS [BrRu87] 

or ESPRESSO [Br84]. The gain is typically small though greater gains are 

achieved for larger gates. In addition, using factorization along the entire 

critical path can add up. Power generally increases but the effect on area may 

vary. Strategy 3 tends to produce a slightly larger gain then strategies 1 or 2. 

Hence, it will be used when the slack is small. 

Strategy 4 attempts to make ·a better macro selection that reduces time 

without an increase in area or power. This strategy may utilize a rule base 

containing only rules that will produce a gain for no cost. For instance, a rule 

could be written in OPS83 to perform the transformation of Figure 9d. An 
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alternative method is use of a hash table. Lookup in the hash table is 

accomplished through a key that is the truth table entry for a particular 

function. The hash table is typically limited to entries of up to five variables, 

making each hash table key a maximum of 32 bits -- a common computer word. 

Certain transformations cannot be represented by a hash table. For example, 

functions with multiple outputs, such as a decoder, or circuits with sequential 

logic elements, such as a counter. In these cases it is necessary to use the rule­

based approach. A hash table has an advantage over the rule-based approach in 

that fewer transformations need to be entered. For example, Figure 10 shows 

two different implementations of a multiplexor that can be represented by the 

same hash table entry, but require two separate rules. Another advantage of 

hash table lookup is speed. It requires only one table lookup per function. Of 

course time is required to find a circuit's function but this may require less time 

than having to search through a set of rules to determine which are applicable. 

Since Strategy 4 has no cost, it will be used before strategies 2 and 3, and will be 

the first strategy examined for moderate gain. 

Strategy 5 duplicates logic along a critical path, thereby doing the reverse of 

common term factorization. Like strategy 4, it can be implemented using either 

a rule-based or hash table approach. The gain from strategy 5 is typically small 

and hence the strategy would be applicable at the same time as strategies 1 - 3. 

As the cost in area and power tends to be greater than strategies 1 - 3, strategy 
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5 would be the last examined. 

Strategy 6 is similar to strategy 4 except a better macro selection is made 

with an increase in area and/or power. It can make use of a hash table or rule 

based approach as well. Typically a moderate gain can be achieved through 

strategy 6 with a small to moderate increase in the power and area constraints. 

It is often considered for moderate slack improvements or for large slack 

improvements after large gain strategies have been examined. 

Strategy 7 is the foundation of both SOCRATES and the Logic Consultant. 

It expands the design into two-level SOP form then minimizes by removing 

redundant terms. This strategy is often combined with strategy 3 to factor the 

circuit along non-critical paths and take advantage of common terms. This 

strategy is the most time consuming but can produce large gains, often with no 

increase or only a small increase in area and power. Thus this strategy is the 

preferred method for improving large slacks. 

Strategy 8 is one discussed in [JoMc87]. It duplicates logic that strategy 5 

can't by adding a multiplexor. Figure 9h has a function FOUT = F(A,B,C) 

where C -> FOUT represents the critical path. The logic network may be 

duplicated with the C input connected to GND in one, and VDD in the other. 

The real C input is then hooked up to the select input of a multiplexor. The 

gain from Strategy 8 is large but so is the cost if little optimization can be 
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performed after increasing the amount of logic. New circuit elements are added 

which increases both area and power. Hence, strategy 8 will be examined for a 

large slack but will be considered after less costly strategies have been 

attempted. 

4.1.3. Choosing a strategy 

The control strategy can be changed depending on how far the critical path 

1s from the timing constraints. When the time difference is small, a local 

optimization can be attempted using some combination of strategies 1 - 4. Rules 

from three different categories can be examined: those that do not increase area 

and power, tradeoff rules that improve speed but increase either area or power, 

and tradeoff rules that increase both area and power. Those rules in category 1 

will be considered before examining rules in categories 2 or 3. Similarly category 

2 rules are preferred over those in category 3. 

Within each rule category, the smallest rule with the maximum gain will be 

chosen. Thus rules involving only two inputs will be examined first. If one of 

them meets the timing specifications, that rule will be applied. Otherwise rules 

with three inputs must be examined. This process continues until all rules have 

been examined at which time a new strategy must be applied. 

When the time difference is great or all other strategies fail, the circuit can 

be minimized into a two level circuit using strategy 7. It can then be expanded 

January 30, 1988 Page 31 



through weak division into multiple levels as in strategy 3. 

5. A Fra.rrework for l\1icroarchitectura1 Optimization 

Systems such as LSS, SOCRATES, and the Logic Consultant decrease the 

design knowledge required by a designer as they reduce technology dependence. 

In addition, they increase a designer's productivity by performing optimizations 

previously performed by the designer. Logic gates, however, represent only about 

203 of a typical design. The remaining portion consists of sequential logic, 

RAM, ROM, as well as higher-level combinational components such as 

arithmetic units that make use of MSI-type logic such as adders. Such logic 

cannot readily be represented by a set of equations or by low-level schematics. 

Thus these tools provide technology independence for only a portion of the 

design. 

In order to extend technology independence and provide for even greater 

productivity it is necessary to start the synthesis ')rocess at a microarchitectural 

level. At this higher level a designer enters a circuit with components such as 

arithmetic units, counters, registers, RAM units, and of course the random logic 

that connects these components. In this manner, one can enter a crude design 

with correct functionality and have an optimized technology-specific design 

produced. 
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Each of the rnicroarchitectural components can be defined by a set of 

parameters. These parameters may include functional and structural 

information. For example, an arithmetic unit can be classified in terms of the 

functions it performs: addition, subtraction, incrementation, and 

decrementation. It can also be classified in terms of its structure: carry 

propagate or carry lookahead. The parameters, along with component 

interconnection information can be used to perform local transformations, similar 

to the manner that SOCRATES performs transformations at the gate level. 

At the microarchitectural level it is difficult to know with any accuracy 

what the actual time delay and area are. However, if an optimizer is to make 

area/time tradeo:ffs, the design statistics must be known. Essentially, there are 

two methods to acquire this information. The first method is to have an 

estimator that makes use of a technology-specific file. It may be possible to 

create a formula that when passed the component parameters:, produces a 

reasonable estimate of the time and area required by the technology. The 

second method generates a low-level generic design based on the component 

parameters. This design may then be mapped into a technology-specific circuit 

via a technology library. 

Once a design has been optimized at the microarchitectural level, the low­

level circuit must be synthesized. The high-level components tend to have a 
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very regular structure. For example, a 32-bit adder can be decomposed into 

eight 4-bit adders. Such decomposition can best be expressed in terms of 

algorithms. The algorithms can be generalized to incorporate a set of 

parameters from the user. The basic structure of the design is always the same 

-- parameters only require small modifications or additions be added to the basic 

structure. This form of algorithmic decomposition contrasts with synthesis at a 

low level which has an irregular structure. Such irregularity brought about the 

use of rules which could deal best with the unstructured nature of the problem. 

6. l\1ILO System Architecture 

In this section we describe MILO. It uses a number of novel concepts: it 

captures and optimizes the design at the rnicroarchitecture level, then uses 

compilers to expand the microarchitectural components into MSI/SSI library 

macros (not gates) and optimizes this compiled design. The system architecture 

of MILO is shown in Figure 11. Input to the MILO system is a netlist generated 

through schematic entry or by a compiler for the VHDL hardware description 

language. Also included in the input are parameters for path delays, area, and 

power consumption that must be met by the design optimizers. The 

components entered through schematic capture may be any combination of 

generic, technology-specific,. and logic compiler generated components. For each 

microarchitectural component (such as a register or ALU), there is a logic 
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compiler. 

6.1. Logic Compilers 

Each compiler consists of two programs, each written in C. The first 

program, the symbol compiler, generates a symbol for the high-level component 

that can be used in microarchitecture capture. The second program, the design 

compiler, generates the design for the microarchitectural component and creates 

a schematic for it so that the user may inspect the design. 

Symbol compilers are selected from the menu in the schematic capture 

program. The menu displays the compilers available and the designer selects 

one usmg the mouse. Once the compiler is called, it presents the user with a 

number of options as to how the high-level component should be built (such as 

number of inputs, the speed desired, or the number of input loads an output 

must drive). A symbol for the component is produced by the symbol compiler 

and can then be placed in the user's design. MILO's current set of logic 

compilers is shown in Figure 12. 

Once a symb?l has been generated, the design compiler will be called. There 

1s a different design compiler for each technology (ie., CMOS, ECL). Thus 

compilers for ECL will tend to use NOR and OR gates whereas CMOS compilers 

will use N AND and AND gates. The generic library contains a set of standard 

gates, such as AND, NAND, and XOR, as well as some MSI components, such as 
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2-bit counters, 4-bit adders, and 4 to 1 multiplexors. The generic library is 

displayed in Figure 13. 

Each design compiler consists of an algorithm that describes the type of 

components to use and how to connect them. For example, consider the simple 

case of an OR compiler for ECL. The algorithm for generating an i-input OR 

gate is given below. 

See if the requested design already exists in the database. If so, exit. 
Otherwise, proceed. 
Place i input pins in level 1 
level_count = 2 
num_outputs = i 
num_left_over _outputs = i 
while ( num_outputs > 1) 

total_num_gates_added = 0 
/* Process each level * / 
while ( num_left_over _outputs > 1) 

Find an OR gate in the database with num_or _inputs such that: 
num_or _inputs < = num_left_over _outputs 

num_gates_to_add = i/num_or _inputs 
Add num_gates_to_add OR gates to level level_count 
num_left_over _outputs = num_left_over _outputs -

( num_gates_to_add * num_or _inputs) 
total_num_gates_added = total_num_gates_added + num_gates_to_add 

End While 
num_outputs = num_left_over _outputs + total_num_gates_added 
level_count = level_count + 1 

End While 

The design compilers build circuits in a hierarchical fashion. This allows 

one design compiler to call another, or even itself. For example, consider the 

register compiler. It permits the user to select a number of functions such as 
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load, shift right, and shift left. To achieve these functions the design compiler 

places a multiplexor in front of each flip-flop. In the course of creating the 

register, the register compiler will call the multiplexor compiler to produce the 4 

to 1 mux required. 

6.2. Technology l\1apper 

The technology mapper converts components from a generic library into 

those from a technology-specific library. Thus it can take designs from the logic 

compilers and produce a design using components from a gate-array or standard 

cell library. The technology mapper uses a lookup table to replace a generic 

component with the corresponding technology-specific component or set of 

components~ Each technology library has a different lookup table. During the 

conversion process, various design rules may be violated (such as a component's 

fanout). These must be detected and corrected by the electric critic. This critic 

is part of the logic optimizer and is discussed in the later section. 

6.3. Mcroarchitecture Critic 

The microarchitecture critic operates on the generic netlist produced 

through schematic capture or behavioral compilation. It makes local 

transformations at the microarchitectural level, replacing small sections of the 

design with equivalent functions. An example of a rnicroarchitecture 
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transformation is shown in Figure 14. Rules at the microarchitectural level are 

based primarily on the parameters that describe each component as well as their 

interconnection to other components. For example, the rule for the 

transformation in Figure 14 is shown in Figure 15. The antecedent (IF section) 

of the rule identifies two components whose functionality parameters are "adder" 

and "register". The interconnections are then compared to ensure the pattern is 

of the form in Figure 14. The consequent (Else section) replaces the two 

components with a single instantiation of a counter. The symbol for the new 

counter is generated by a call to the counter compiler, providing it with the set 

of parameters ( # inputs = N bits, Reset = YES). The design for the counter 

will be generated when it is required for lower-level analysis. 

As mentioned earlier, it may be difficult at this level of abstraction to make 

decisions regarding cert,ain types of transformations without much knowledge of 

the true design statistics (such as speed, area, and power). To get design 

statistics, the critic calls upon the logic compilers to generate the low-level 

generic designs for the desired microarchitectural components. A technology 

mapper converts these generic components into those from a technology specific 

library. Statistics can then be generated from this design. Now the 

microarchitecture critic can examme the high-level design for area/time 

tradeoffs. Note that statistics are only necessary when making such tradeoffs. 

For instance, the optimizer must know which paths fail to meet the user timing 
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constraints in order to make the necessary delay improvements -- which 

typically result in increased area. On those paths for which the user has entered 

no timing constraints, no timing statistics are required as the critic will attempt 

to minimize the area without regard to time. 

The microarchitectural optimization process in illustrated in Figure 16. The 

design in Figure 16 is initially seen as consisting of a 4-bit adder, 2 to 1 

multiplexor with a 4-bit slice, and a 4-bit register with shift-right capability. 

Assuming that the user has entered a time constraint from the input A to the 

output C, the path will be broken down into the hierarchy by calling upon the 

logic compilers. The compilers produce the designs ADD4, MUX2:1:4, and 

REG4. The adder and multiplexor compilers each produce designs that are 

ready to be sent to the technology mapper. As mentioned previously, the 

register compiler makes a call to the multiplexor compiler -- in this case to 

produce component MUX2:1:1. This introduces an additional level of hierarchy. 

Each primitive generic component can then be mapped into its corresponding 

technology-specific design. The technology-specific designs produced are for 

designs ADD4, MUX2:1:4, and MUX2:1:1. At this point, the microarchitecture 

critic has the timing statistics for the high level modules of ADD4 and 

MUX2:1:4. The statistics for module REG4 are still not known, however, as its 

technology-specific design has not yet been generated. One can now be 

produced, inserting the already mapped version of MUX2:1:1 into the REG4 
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design and finishing the technology map by making technology-specific 

replacements of the flip-flops. Finally, the optimizer has the time delays for each 

module and if the path from A to C is found to be critical, time improvements 

can be made at the expense of area. One example of a tradeoff would be 

changing the parameters of the adder to instantiate a carry-lookahead model. 

6.4. Logic Optimizer 

·when the microarchitecture critic can make no more optimizations, the 

design is passerJ to the logic optimizer. The logic optimizer makes technology­

specific transformations on the design. It consists of three optimizers and five 

experts that work toward meeting the user's design specifications. The 

optimizers: time, area, and power, reduce delay, area, and power, respectively. 

They make use of the five experts: logic critic, timing critic, area critic, power 

critic, and electric critic. Each critic is rule-based and examines the blackboard 

to make suggestions to the control module. Figure 17 shows an example rule 

from each of these critics. The logic critic contains rules that always decrease 

delay and area. Thus rules in this knowledge base always improve the design. 

The timing critic has rules for increasing speed but at the expense of area and 

power. Likewise, the area and power critics decrease area and power, 

respectively, while increasing the other constraints. The electrical critic consists 

of rules that spot and correct electrical errors in the circuit. In this manner it is 
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very much like an electronic rule checker. 

The logic optimizer operates in a hierarchical fashion. It optimizes the 

design for each microarchitectural component before the designs are combined to 

form one large design. In this manner, the logic optimizer begins by optimizing 

designs at the lowest level of the hierarchy, then the design at the next highest 

level can be expanded in terms of its lower-level designs and that design can be 

optimized. This process is illustrated in Figure 18. Optimization begins with 

the technology-specific versions of designs ADD4, MUX2:1:4, and MUX2:1:1. At 

this point no transformations can be performed on the designs so optimization 

proceeds to the next highest level and examines the design REG4. In REG4, 

each multiplexor and flip-fl.op set can be combined into a single technology­

specific element, providing a decrease in area. Finally, the designs for REG4, 

MUX2:1:4 and ADD4 can be expanded to produce the design for the highest 

level design, ABADD. Again, there is optimization at this level, combining the 

2-1 multiplexors with the already multiplexed flip-flops of REG4 -- making use of 

high-level macros that have 4-1 multiplexors combined with a flip-fl.op. 

Since the logic compilers produce near-optimal designs, little optimization is 

required -- for the most part a cleanup of the technology-mapper's design (such 

as inverter elimination, or merging of components -- as was seen in the 

optimization of REG4 in Figure 16). Also, use of the logic compilers has allowed 
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us to use higher-level generic components (such as multiplexors, and adders) in 

our designs than the Logic Consultant or SOCRATES that decompose designs 

completely into gates in order to optimize. By having the higher-level 

components, we are better able to make use of the high-level technology-specific 

elements that are typically found in gate-array and standard cell libraries. Once 

a design has been completely decomposed into gates it can be quite difficult to 

recover these high-level components. Yet if the components are not 

decomposed, the design will not be extensively optimized as the systems tend to 

rely upon algebraic techniques for minimization which require the decomposition 

of high-level components. Often times the silicon implementations of these 

high-level library components have been manipulated by experienced designers 

and take full advantage of "tricks" in the technology -- thereby reducing the 

actual area as well as the delay. Because of this, many times these "specialized" 

components were placed in the library to be used instead of gates -- used not 

only for design ease, but because of speed and area improvements that resulted. 

MILO allows full advantage to be taken of such high-level designs. 

By doing more work at a higher level of abstraction and keeping high-level 

information for a longer period of time, MILO requires less work at the lower 

levels where much greater work is required to perform the optimization. This is 

particularly true since at a lower level, there are many times the number of 

components and hence it can be more difficult to determine the best route to 
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follow for optimization. 

7. Results 

MILO is currently runnmg on SUN 3 workstations under the UNIX 

operating system. The logic compilers and optimization strategy selectors are 

written in C while the rule set is written in OPS83. We are currently in the 

process of adding rules to the knowledge base. To test our system, a number of 

small examples were run at both a gate level and a microarchitecture level. An 

ECL gate-array library was used by the technology mapper to create 

technology-specific designs. Our results are comparable to circuits produced by 

human designers. 

Figure 19 shows the results for eight circuits entered with generic 

components. The optimized results are contrasted to technology-specific circuits 

entered by a human designer. Generally l\1ILO was able to improve designs 2 to 

40 percent in term:; of ti~ and area. Designs entered at a microarchitecture 

level required 4 to 15 logic compiler. generated components. Improvements at the 

microarchitecture level were less dramatic than those at the logic level. This 

primarily resulted since the microarchitecture designs tended to be more regular 

in nature -- involving components such as counters and adders. Never the less, 

MILO showed sizeable improvements. In addition, the use of MILO greatly 

reduced the complexity of designing the circuits. The next step in testing MILO 
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will be to run a large chip design and compare the results with those of a human 

in terms of area, time, power, and productivity. 

8. Conclusions 

We have examined prev10us work in automated design synthesis that has 

been devoted to logic optimization and low-level synthesis. The systems have 

used boolean minimization techniques with rules or language compiler techniques 

with rule-like transformations. MILO is a system that permits design entry at a 

microarchitecture level. It optimizes designs first at the microarchitecture level 

and incorporates feedback from lower-level design analysis. After 

microarchitectural improvements have been made, the focus of optimization 

moves to the gate level. 

We have combined a rule-based technique with algorithms to synthesize 

low-level logic from a set of parameters for a microarchitecture component. In 

doing so, the MILO system improves design productivity and requires less design 

knowledge and experience from design engineers. 
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Design Complexity DeJay (ns) Percent Area (cells) Percent 
(gates) Human MILO Im prov- Human MILO Im prov· 

ment ment 

1 48 19.76 14.80 25 12.0 9.0 25 

2 52 3.84 2.97 23 9.0 7.5 17 

3 13 2.52 1.65 35 3.5 3.0 14 

4 47 5.07 3.25 38 8.0 5.0 38 

5 18 3.82 3.10 19 4.0 3.0 25 

6 288 19.40 18.50 5 52.0 44.0 15 

7 442 18.37 18.22 12 92.0 85.0 8 

8 149 15.65 14.45 8 83.5 62.0 2 

Figure 19: MILO Test Cases 
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