
UC Irvine
ICS Technical Reports

Title
MILO : a microarchitecture and logic optimizer

Permalink
https://escholarship.org/uc/item/55d5p122

Authors
Zanden, Nels Vander
Gajski, Daniel

Publication Date
1988-01-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/55d5p122
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

MILO; A Microarchitecture and Logic Optimizer
.;r

by

Nels Vander Zanden
(;/ /.·

Daniel Gajski /

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

Technical Report 87-34

ABSTRACT
In this report we discuss strengths and weaknesses of logic synthesis systems

and describe a system for microarchitectural and logic optimization. Our system
uses a set of algorithms for synthesizing SSI/MSI macros from parameterized
microarchitecture components. In addition, it uses rules for optimizing both at
the microarchitecture and logic level. The system increases designer productivity
and requires less design knowledge and experience from circuit engineers.

TABLE OF CONTENTS

1. Introduction .. 1

2. Previous Work... 3

2.1. Refinement Techniques ... 5

2.1.1. SOCRATES ... 5

2.1.2. Logic Consultant ... 6

2.1.3. LSS .. 9

2.2. Optimization Techniques 10

2.2.1. Rules Only Strategy .. 11

2.2.2. Rules/ Algorithms (Mixed Strategy) 14

2.2.3. Algorithms Only Strategy ... 22

3. Optimization Strategies 23

4. Optimization Strategies for Timing 26

4.1.1. Control Strategies .. 27

4.1.2. Types of Strategies .. 27

4.1.3. Choosing a strategy ... 31

5. A Framework for Microarchitectural Optimization 32

6. MILO System Architecture ... 34

6.1. Logic Compilers .. 35

6.2. Technology Mapper .. 37

6.3. Microarchitecture Critic 37

6.4. Logic Optimizer :...................................... 40

7. Results ;... 43

8. Conclusions 44

9. Acknowledgements .. · 44

January 30, 1988 Page i

1. Introduction

Over the past decade tremendous advances have been made in VLSI design.

Greatly increased circuit complexity, however, continues to outpace engineers'

abilities to develop chips with up to half a million transistors. Conventional

design methods have entailed teams of highly skilled and experienced engineers

providing many months of effort. More recently, companies have been turning

to logic synthesis tools to help alleviate market pressures that demand lower-cost

implementations with shorter development times. These tools allow less

experienced designers to develop application-specific I Cs (AS I Cs), typically gate

arrays or standard cells. Further, the automated systems free a designer from

the exploding number of details and provide greater time to examine high-level

issues and experiment with various architectures. Thus such tools increase

productivity and provide for better complexity management.

Synthesis tools employ two basic techniques in producing a final, workable

design. These are refinement and optimization. Refinement is the process of

transforming a behavioral description into an initial design. Usually this design

consists of components such as multiplexors, decoders, and gates such as AND

and OR. Optimization is the process of transforming the initial design into one

that meets some set of objectives relating to time, area, etc. Often a design

proceeds through a number of levels of abstractions. At each level, these two

January 30, 1988 Page 1

stages are performed. For example, typically refinement and optimization can be

used on a generic representation and later on a technology .. specific one.

The synthesis process is shown in Figure 1. Refinement begins with the

user's behavioral description. The input may take a textual or graphical form.

Textual representations would be a hardware description language, such as

VHDL, a set of boolean equations, or a table, such as PLA format. Graphical

representations include a generic or technology-specific schematic, or a menu­

driven interactive process that extracts a set of parameters from the user.

Behavioral descriptions in language form require a compiler to generate an initial

netlist consisting of high-level components such as decoders and registers.

Diagrams entered through schematic capture may also consist of high-level

components. Boolean equations, PLA format, or low-level schematics are

representations for the logic level.

The behavioral description represents a black box whose inputs, outputs,

and functionality are described. The representation generally does not convey

any information as to the technology type or necessarily any style of

implementation :-- be it parallel, pipelined, etc. Since many systems accept

different behavioral specifications, they must first convert them all to one central

format, such as a generic schematic or set of boolean eq:uations. This central

format is then used to create a detailed representation of the design.

January 30, 1988 Page 2

The design created in the refinement stage is usually by no means optimal

and thus the optimization phase is called upon to improve performance. Figure

1 identifies two levels at which optimization can take place -- at the

microarchitecture level and the logic level. One could add other intermediate

levels. A logic generator is required to decompose the design into the lower level.

Optimization can be guided by two different strategies. The first is to

optimize everything until no further improvements can be made. When

optimizing for multiple constraints there may be a weighting or priority scheme

to determine which design improvements should be performed. Essentially, this

is a "brute-force" method as optimizations tend to be made in random parts of

the circuit in no directed fashion. The second strategy is constraint driven. It

relies on a set of user-entered parameters to direct the flow of optimization. For

example, optimizations may be applied initially only along a critical path when

attempting to meet timing constraints. Once one constraint . is met, the

optimizer will turn to another and work toward meeting the user's objectives.

Once these are satisfied, the optimization stage may end or may apply the first

strategy.

2. Previous Work

A number of automated logic synthesis systems have been previously

reported: LSS [JoTr86], SOCRATES (GrBa86], and the Logic Consultant

January 30, 1988 Page 3

[Kim87]. They have focused primarily on logic level optimization. The systems

have used algebraic, language compiler, and expert system techniques to reduce

circuit delay and gate count in combinational logic. In general, such systems are

best suited for optimizing random logic that can easily be represented by

boolean equations or PLA format. An exception is LSS which accepts a

register-transfer language as its input, allowing entry of high-level operators.

However, only limited types of optimization are performed on the high level

operators before they are decomposed into gates. Once a design is at gate level

it is impossible to recover high-level information that may be necessary for

restructuring the design in order to meet timing or area constraints.

When circuit constraints cannot be met by further local optimizations at

the gate level, a human designer will often return to a higher level and

restructure the design. The gate level implementation can be rebuilt and this

time may be able to meet the design constraints. For example, consider an

arithmetic unit in which the critical path passes through a ripple-carry adder.

Once the designer examines the gate-level implementation and determines that

the critical path cannot be solved with the pres~nt design, high-level alterations

may be made. One possibility would be to replace the ripple-carry adder with a

carry-lookahead adder.

January 30, 1988 Page 4

Previous logic synthesis systems have not had the capability to reexamme

the microarchitectural design and make the necessary high-level alterations to

meet low-level constraints. This paper examines the MILO system that performs

such rnicroarchitectural examinations. MILO introduces a number of novel

features: it captures and optimizes designs on the microarchitecture level, uses

logic compilers to expand microarchitectural components into those from a

technology-dependent library of SSI/MSI · components, then optimizes the

expanded design. When an initial low-level implementation fails to meet the

user constraints, MILO makes microarchitectural modifications, then regenerates

the gate-level circuit. While examining the microarchitecture, MILO can

optimize sequential logic by manipulating counters and registers. Before

examining MILO in further detail, we will review the manner in which previous

work has addressed the issues of automated logic synthesis.

2.1. Refine~nt Techniques

2.1.1. SOCRATES

Figure 2 shows the SOCRATES system. SOCRATES accepts boolean

equations, PLA format, or a netlist as a behavioral description. Two-level

boolean equations are used as the central format. Multi-level boolean equations

can be extracted from the netlist, then run through an expander to generate the

two-level format. Likewise, an extractor can be used to generate two-level

January 30, 1988 Page 5

boolean equations from PLA format. An algebraic mmnmzer, ESPRESSO IIC

mmmuzes the two-level equations, taking advantage of don't care conditions.

The next step uses weak-division to find common subterms in the design and

form multi-level equations, thereby reducing the amount· of logic required to

implement the function. This minimized design is written back into netlist form

from which the logic optimizer will operate. The optimizer is discussed in a later

section.

2.1.2. Logic Consultant

The modules compnsmg the Logic Consultant system are displayed in

Figure 3. Like SOCRATES, the Logic Consultant accepts boolean equations,

PLA format, and netlists generated from schematics as input to its system.

Schematics can be created on a Mentor workstation using components from

Mentor's generic library (G ENLIB) or components from a technology-specific

library. A decomposition module converts the input description into

components from the Trimeter Generic Library· (TGL) and isolates the

combinational logic for processing by the minimization module. Technology­

specific components are replaced with TGL components through user-entered

rules in the knowledge base. For MSI components (ie., multiplexors, decoders,

ALU s, etc) this replacement is optional. The user specifies whether the MSI

elements should be decomposed into TGL gates (via the rule base) or should be

January 30, 1988 Page 6

left "as is". Those components that are not decomposed are treated like

sequential logic elements and removed from the design that is passed to the

minimizer. Thus if an MSI component is not decomposed, it will not be

optimized with the surrounding logic. This strategy poses a problem since in

decomposing the MSI components, one loses the advantage of using them.

Typically high-level components are added to a technology library because the

designer of that component constructed it in such a way that it takes up less

area and has greater speed than a corresponding gate implementation. But once

a component is decomposed for optimization, it may be difficult or impossible to

find after flattening and refactoring the circuit. However, if the components are

not decomposed, no optimization is performed. As will be seen later in this

paper, a better solution is to perform some optimizations at the

microarchitectural level.

The rmmrmzer module accepts combinational logic consisting entirely of

TGL components from the decomposition module. The minimizer then develops

a two-level SOP design and removes redundant terms. This new design will be

passed to the factorization module. For some circuits it may be desirable to

bypass the minimization module and go directly to factorization. This is the

case when the generated two-level SOP form contains an explosive number of

terms. These circuits require extensive CPU time and after factorization

typically contain more components than the original design. For example,

January 30, 1988 Page 7

certain multi-level circuits may reqmre many times their number of circuit

elements to be represented in a two-level format. As factorization is performed

on a local basis (and not globally), one cannot guarantee that the factorization

will be optimal. Hence factorization may be unable to reduce the gate count to

the prior number of elements. Designs with a large number of XOR and XNOR

gates are one example of this type of circuit. Thus the Logic Consultant's

minimizer does not produce a better design in all cases.

The factorization module attempts to factor out common terms to produce

a multi-level design. It also factors in such a way to reduce the delay along the

longest path. For example, consider Figure 4. The bottom input of the AND

gate is part of the longest path. This path can be shortened by factoring the 3-

inpu t AND into two 2-input AND gates. Thus some timing considerations are

taken into account. Note however that the longest path may not always by a

critical path. When this is the case, the assumption that it is a critical path will

prevent optimization for area along that path. Hence, such a factorization

strategy is not truly constraint driven.

Factorization continues until no further common terms or timing

improvements can be found. The Logic Consultant factors all paths as

completely as possible. Since this includes critical paths, certain factorizations

must be undone at a later time.

January 30, 1988 Page 8

2.1.3. LSS

The LSS system architecture is shown in Figure 5. LSS proceeds through

four different description levels to produce an optimized technology-specific

circuit: high-level, AND /OR, N AND /NOR, and technology specific. Each level

requires a translator to produce its description format from a higher-level

description. Likewise, each level has an optimizer to apply simplifying

transformations. By introducing multiple levels, the designers of LSS followed

the example of programming language optimizing compilers that produce several

intermediate descriptions before generating assembly-language code [DaJo80).

Changes can be made through a number of levels, thereby simplifying analysis

and optimization at each level. For example, simplification can be made in

terms of generic components, then converted to technology-specific components

for further optimization. Attempting to improve a high-level description directly

into a low-level one is a much tougher task. Also by using generic levels, only

the technology-specific optimizations need be rewritten when the technology

changes.

LSS begins with an algorithmic representation usmg a register-transfer

language. Using a simple translator, LSS produces a logic graph representing

the design. Translation 1s straightforward as operators in the behavioral

description are assigned to nodes m the graph. Each node 1s a generic

January 30, 1988 Page 9

component (such as an AND gate or decoder) and is connected via the graph's

edges to other components. Optimization at this level is discussed in a later

section.

Another translator is called to produce the second level AND /OR

description. It decomposes high-level components, such as decoders, into

AND/ 0 R/N OT gates. Optimizations are then applied at this level. The third

description level, N AND /NOR consists of only N AND and NOR gates. Once

again, the translator that produces this description is achieved through naive

transformations that may produce unnecessary N ANDs and NO Rs. These

"extra" gates are removed by the optimizer at this level. Finally, LSS provides a

translator to produce a technology-specific design using components from a

technology library that consists of gate-array macros (such as N AND /NOR

gates, complex AND /OR gates, etc). This technology description may then be ·

optimized.

2.2. Optimization Techniques

After refinement, synthesis tools call upon optimizers to improve the design.

Their optimization techniques fall into one of the three expert system types

shown in Figure 6. Each consists of some type of blackboard and knowledge

base. The blackboard is where the design resides and can be examined by the

knowledge base. Included in the blackboard is usually a netlist describing the

January 30, 1988 Page 10

design, statistics on area and path delays, a set of user constraints, and work

space for the system to evaluate various attempts at refinement or optimization.

The knowledge base consists of a set of rules and algorithmic techniques that

utilize the blackboard data structures and make modifications to them.

Generally algorithms are assigned structured and well-defined tasks while rules

handle unusual or loosely defined problems.

2.2.1. Rules Only Strategy

The first type of expert system is entirely rule based. This approach

generally lacks structure as rules are entered essentially independently of one

another. The control unit selecting a rule to fire must examine all rules to

determine which rules are applicable. Any of the rules whose conditions are

satisfied can be fired. It is up to some rule selection mechanism to choose one

rule from that set. An early implementation of this type of system was Rl

[McDe82], a rule-based system for configuring Vax-11/780 computers. A more

recent version of a strictly rule-based system is the Logic Consultant. Both of

these systems use the OPS production system language to write rules for their

knowledge base. Rl was written in OPS4, the Logic Consultant uses OPS83 -­

the lastest OPS version. Each rule consists of a set of conditions and a set of

actions to be performed when all of the conditions are met. Control in OPS is

exercised through a recognize-act cycle. In this cycle all rules whose If-

January 30, 1988 Page 11

conditions are satisfied are found using the Rete match algorithm [BrFa85], then

one of these rules is selected to be applied. Briefly, the Rete algorithm compiles

all of the rule conditions in an OPS program into a set of attributes whose

values can be tested. These attributes are placed in a tree-structured sorting

network. In doing so, it allows similar tests on attribute values to be shared

among different rules. Further, once a test has been performed on a tree node,

it is not redone until a change in data occurs upon which the attribute is

dependent. These features make the Rete algorithm much more efficient than a

simple pattern matcher that examines each rule's conditions on every recognize­

act cycle to determine which rules apply.

From this set of applicable rules, called the conflict set, a single rule must

be selected. OPS has a conflict resolution scheme to choose this rule based on a

number of tests through which rules are eliminated from the conflict set.

Priority is given to rules in the following order [Fo85]: rules that have not been

executed, rules whose first attribute (value of the first condition) has been most

recently altered, rules with the most conditions, rules that entered the conflict

set most recently.

In a rule-based system incorporating such schemes, control over which rules

are applied can only be achieved by adding more conditions to each rule. In Rl,

an additional condition was added to each rule corresponding to the stage of the

January 30, 1988 Page 12

design task. The Logic Consultant system builds in limited structure by

examining its set of applicable rules and making an evaluation of the gain

produced by each rule. The rule with the largest gain can then be applied on

the circuit. Another characteristic of strictly rule-based systems is the lack of

backtracking. Neither Rl nor the Logic Consultant permit backtracking -- once

a rule is applied, it will not be undone.

The Logic Consultant's first optimizer module is the cell selection module. It

converts the design consisting of TGL components to technology-specific

components. This module uses rules from the knowledge base that specify how

one or more TGL components map into a technology-specific component.

Once a technology-specific design is derived, the design is further optimized

by a technology-specific optimization module. This module utilizes rules that

make equivalent circuit transformations to improve area or time. The optimizer

chooses which rules to apply based upon some formula that examines time/area

tradeoffs. For critical paths and the longest path, rules are selected that

decrease delay but that may increase area. Along non-critical and short paths,

the Logic Consultant applies rules that decrease area at the expense of time.

Certain rules may appear to increase area or time but can actually result in

a decrease by applying "clean up" rules. The Logic Consultant has a

classification of rules to do this. For example, if a rule adds inverters to the

January 30, 1988 Page 13

circuit, the optimization module will examine a set of high-priority or "clean up"

rules to determine if any of the high-priority rules can eliminate the inverters

from the design. Before implementing any rule, the optimizer calculates the

result of rule applied with any high-priority rules to determine how the rule will

affect area and time.

When entering rules into the knowledge base, the user indicates whether a

rule is high-priority. The rule classification indicates only that the rule should

be examined to determine whether it can "clean up" after a regular rule

application. It does not give the high-priority rule preference over a "regular"

rule. This high-priority rule classification provides a limited lookahead feature of

one rule.

2.2.2. Rules/ Algorithm; (l\1ixed Strategy)

The second expert system type makes use of a rule base but employs

structuring through algorithmic control. The algorithm establishes a hierarchy

that determines which set of rules should be examined at any point in time. This

added structuring allows greater control over the type of rules that are eligible

to fire. The top level of the hierarchy examines the blackboard to determine the

current stage of optimization. Depending on the set of constraints that must be

satisfied, var10us strategies may be selected for further investigation. At this

stage, more information 1s needed to evaluate the remaining strategies. Lower

January 30, 1988 Page 14

levels in the hierarchy are called upon to produce it. From this information, the

high-level decisions can be reached.

Lower levels in the hierarchy inspect the blackboard in greater detail and

can choose a single strategy for optimization. Inside each strategy is further

hierarchy. Similar to the strategy selection, one technique in the strategy must

be chosen from a number of possibilities. The chosen technique in turn calls

upon still lower levels of the hierarchy to carry out a design transformation.

These lowest levels include rules for manipulating data structures in the

blackboard, keeping data in the blackboard up to date, and removing old or

useless information.

SOCRATES 1s an expert system that uses a mixed strategy for

optimization. The SOCRATES optimizer is written in C and runs on the VAX

11/780. Like the Logic Consultant, it consists of rules that make local

transformations on the circuit. SOCRATES also has procedures to provide

feedback on the time and area savings produced by a rule. Through these

measurements, SOCRATES can choose which rule to apply. In addition though,

the SOCRATES rule base employs a limited hierarchy to reduce the number of

rules that must be considered at any given time. It organizes the knowledge

base into a number of classes, such as timing or area optimizing rules. Further,

each class of rules is divided into subclasses of related rules. For example, one

January 30, 1988 Page 15

subclass might replace partially redundant multiplexors with N AND and NOR

gates, and another might combine and synthesize those gates [GeCo85].

SOCRATES examines only rules in a particular subclass at any one time. Each

class and subclass of rules is prespecified in a certain order in the knowledge

base. SOCRATES then examines each rule class and subclass in this order.

Optimization in SOCRATES begins with rules that improve both time and area.

Then rules are applied that optimize time, possibly at the expense of area, until

all timing constrain ts are satisfied. Finally, area optimizations are made on

noncritical paths, possibly at the expense of time, until no other area

improvements can be made.

A rule in SOCRATES consists of a target configuration and a replacement

configuration. These configurations are patterns of components, pins, and nets

that identify a particular circuit structure. SOCRATES has its own pattern

matcher that determines which target configurations are present in a design.

Like OPS83, it contains a recognize-act cycle in which possible rule applications

are examined, one rule is selected and then applied. Because of the hierarchical

rule-base, SOCRATES only needs to consider rules in the currently activated

rule subclass. To eliminate rules in the conflict set, the recognize-act cycle may

utilize lookahead. Each rule in the conflict set is evaluated by implementing its

set of actions, then measuring the resulting effect. The rule's future effect (ie.,

an examination of the rules that may be applied after the initial rule

January 30, 1988 Page 16

application) can be observed via a state search. This involves setting up a

search tree consisting of future design states. The search tree is a graph with the

nodes representing possible circuit implementations and the arcs representing

rule applications. The root of the tree is the current circuit implementation.

Children of nodes in the graph are ordered by desireability. The leftmost

children being derived from "better" rules (CoBa85]. The path through this

state graph producing the lowest cost function is the optimal sequence of rules.

Construction of the graph is performed in a depth-first manner. After each

transformation, the results are evaluated by a cost function. If the resulting

circuit is acceptable the next set of rule applications will be examed, the "best"

rule selected and its effects determined. The process is repeated until some

maximum depth is reached in the search tree. If the resulting circuit is deemed

"unacceptable", SOCRATES backtracks to the node's father and examines

alternative circuit transformations [GaGr84]. In constructing the search tree,

SOCRATES keeps a log of changes made to the circuit by each rule application.

When backtracking is required, the changes to the circuit can be quickly undone

by referring to this log.

Each node of the tree will contain the cost function estimate of the circuit

implementation. The lower the cost function, the better the circuit. Once the

search tree has been completely built, it can be traversed to determine which

January 30, 1988 Page 17

sequence of rules is best. Those rules will then be applied.

Since search trees can become massive and require large amounts of CPU

time, the designers of SOCRATES introduced metarules that control the size of

the search tree. Metarules are rules that contain control knowledge, as opposed

to design knowledge that suggests circuit alterations. The SOCRATES metarules

are based on the parameters presented in [CoBa85]. The first parameter, B,

restricts the number of sons any node may have. Thus it limits the breadth of

the search tree. The parameter D limits the depth of the tree by restricting the

number of consecutive rule applications. Using the neighborhood control

parameter, N, restricts rule applications to gates of path distance N from some

center gate. This prevents rules that apply to different circuit regions from

being considered. The parameter Dapp restricts the rule application depth.

Although the search tree extends to depth Dmax , only a portion of some sequence

of rules will be executed. A parameter Aclau was introduced to limit the number

of rule classes to be examined beyond the current subclass. This variable

decreases the number of rules that can be applied at any given time. Finally,

the parameters Aco&t , R, and S, relate to the cost function. ~co&t limits the

increase to the cost function by a single rule application. Parameters R and S

are used in the cost function to determine the desireability of applying a

particular rule. The cost function_ takes into account the area saved and the

number of rules that can be applied after a transformation is made. The

January 30, 1988 Page 18

weighting of terms in the cost function affects the size of the tree by changing

the desireability of various rules.

Initially SOCRATES used fixed values for these parameters, regardless of

the optimization phase. However, the ideal parameters vary greatly over the

course of optimization. For example, greater lookahead is required for area­

saving rules than general rules. Also, little or no lookahead is required for the

most powerful rules [GeCo85]. Thus based on the state of the optimization,

metarules determine what values the control parameters should have. These

rules supervise the control module and dynamically vary the parameters. Such a

technique permits more selective use of lookahead. Control parameters can be

changed depending on the rule class, rule subclass, or even an individual rule.

Through this process of lookahead, the best sequence of rule applications

can be determined. By examining the future effects of a rule, SOCRATES can

determine whether the decision to apply a rule was good. Poor decisions can be

undone through backtracking and other rules can be considered. The designers

of SOCRATES report this approach produces superior results to those where

only one rule is examined· and then applied (CoBa85]. Their examples indicate

that the use of lookahead without metarules required roughly four times longer

on average to run, producing designs with 12 percent less area on average.

Adding metarules only doubled the run time and still provided the same

January 30, 1988 Page 19

decrease in area.

LSS is a system that also employs limited hierarchy as it performs

optimization at each of its four levels of representation. The LSS refinement

stage produces an initial graph with AND /OR gates, registers, decoders, etc.

The first level of optimization is performed on this network. It uses

transformations that reduce the gate-level logic and transformations that use

information about a high-level component to reduce the surrounding gates.

Figure 7 demonstrates transformations of this type from [JoTr86]. The first rule

uses knowledge about a decoder to eliminate the OR gate. The second rule in

Figure 7 is a simple logic reduction transformation.

Once all level one transformations have been performed, the high-level

components can be expanded into AND /OR/NOT gates. This forms the second

description type, the AND /OR level. At the AND /OR level, transformations

perform AND /OR simplification, common subexpression elimination, and

constant propagation (ie., OR(a,1.) = 1, AND(a,1) =a) [DaJo81].

The third level, NAND /NOR, introduces some technology considerations.

Depending on the technology, the desigri will be converted to one consisting

entirely of generic NAND and NOR gates. The same type of transformations

that were performed at the AND /OR level are applied at this level, only with

N AND /NOR simplifications in mind this time. Transformations at this level

January 30, 1988 Page 20

attempt to incorporate technology tables that supply information on generic

NAND/NOR gates. For example, information on each generic primitive (such as

a NAND3) is maintained on its size, driving capability, delay, fan-in, etc.

[JoTr86]. Hence at the NAND/NOR level it is possible to make decisions about

what type of NAND/NOR gates should be used. For example, LSS can tell

whether to use three-input NANDs or two-input NANDs to reduce area.

The final level of description is technology specific. Transformations

convert generic components to components from a technology library that may

include complex gates such as AND /OR, multiplexors, etc. The transformations

also enforce technology constraints such as fan-in and fan-out. To deal with

complex gates, LSS makes use of tables that list the components available in

each complex gate type (ie., AND/OR, decoder, OR/AND). In each category

the components are ordered according to the savings created. When conflicts

arise as to which transformation to apply, the one with the largest gain is

selected based on this ordering.

The transformations performed at each level in LSS are executed through

PL/I procedures that manipulate the logic graph. Transformations at the final

two levels make use of a number of technology tables that can be readily

updated for a new technology. It has been reported [JoTr86] that the use of

local transformations as opposed to two-level boolean minimization tends to keep

January 30, 1988 Page 21

synthesis times linear for increasing design sizes. For circuits of 200 to 2000

two-input equivalent gates, a time of one second for roughly nine gates was

reported (based on IBM 3081 CPU time).

2.2.3. Algorithms Only Strategy

The final type of expert system 1s entirely algorithmic. It uses an

algorithmic controller to determine how to apply algorithms in the knowledge

base. Such a system performs the same operations always in the same order.

An example of an algorithmic system is DAGON [Ke87]. DAGON performs

technology binding and can optimize for time, area, or some function of the two.

It utilizes programming-language compiler techniques that are strictly

algorithmic. In doing so, DAGON can guarantee locally optimal matches over

several thousand patterns.

Similar to language compilers, DAGON matches a graph description of a

technology-independent circuit against a technology library consisting of

numerous patterns. The problem is viewed as finding the best technology

patterns to cover a directed acyclic graph (commonly termed DAG). A DAG is

a graph containing no cycles that consists of nodes and directed edges. DAGON

builds a DAG for boolean functions using nodes to represent AND and OR

operators and edges labeled 0 or 1 to indicate a true or inverted output (thereby

providing NAND and NOR operators as well).

January 30, 1988 Page 22

A globally optimal solution to the DAG covering problem could be

generated by comparmg all possible technology implementations (each a

collection of patterns from a technology library) for time and area. However,

such a problem is NP-complete. Therefore, DAGON's first step is to partition

the graph into trees. This is accomplished by making every component in the

graph whose fanout is greater than one, the root of a new tree. DAGON may

then find the minimal cost technology pattern for each tree, producing a locally

optimal solution.

Finding a minimal cost match for a tree consists of two maJor tasks:

recognizing the set of possible matches and determining the pattern from that

set providing the minimal cost (in terms of time and area constraints). Finding

applicable pattern matches is performed by twig [Tj86], a program designed to

construct code generators for programming language compilers. It generates the

set of matches in O(TREE SIZE) time. From this set the minimal cost match

can be found using a recursive algorithm that determines the least cost match

for each subtree.

3. Optimization Strategies

The quality of a synthesized design can vary dramatically depending upon

the strategies used to optimize it. Strategies can be examined at both a high

and a low level. At a high level there are essentially two types of decisions for

January 30, 1988 Page 23

which a strategy must be chosen. They are: what to optimize for and what

subsection of the overall design to optimize at any given time. At a low level

there are also two types of decisions: what types of transformations or algorithms

to apply and what order to apply them to the specified subcircuit.

The first decision depends heavily upon the user-entered constraints.

Typically three types of constraints are entered: time, area, and power. The

optimizer must choose which order (if any) to optimize the constraints and

which constraint(s) should carry the greatest weight m directing the

optimization.

The second decision concerns the portion of the design toward which

optimizations should be directed. One could simply search the entire design for

all the rules that are applicable and select one to apply. This has the effect of

applying transformations randomly throughout the design. Generally the

technique is time consummg and produces less than optimal results. Human

designers break up large circuits into smaller ones, making optimization more

manageable and allowing more control over the course of the optimization. This

approach is best for optimization programs as well. By focusing on only a small

section of the design, one not only reduces the number of rules that must be

considered but also allows a rule's effect to be more closely examined -- one need

only consider its effect in the subcircuit to know what happens in the larger

January 30, 1988 Page 24

design.

When performing timing optimizations one tends to select a path-oriented

approach. Thus the subcircuit might be a critical path. Area optimizations are

not path directed except for avoiding critical or near-critical paths. In this case,

critical paths could be removed to eliminate the time wasted by considering

rules that affect some component that is part of a critical path.

The third decision involves the specific rules or algorithms that can be

applied. This decision is in part based upon the earlier issue of what to optimize

for. Certain techniques work best when optimizing for time, others when

optimizing for area. As an example, consider a rule that greatly decreases delay

but improves area only incrementally. Clearly such a rule is best suited for use

in timing directed optimizations. An alternative rule that produces greater area

improvements can be used when optimizing for area.

The final decision involves the order in which optimization techniques

should be applied. The use of lookahead can aid greatly in assuring that the

"best" rules will be used. Lookahead, however, can be quite time consuming and

simply considering certain rules before others may be a better solution in some

cases. Another example of the use of ordering can be seen in the use of

algorithms. For instance, some algorithmic techniques, such as collapsing a

network into two levels to reduce delay, require a great deal of time and effort.

January 30, 1988 Page 25

Yet if only a small improvement is required, the effort is, in effect, wasted.

Another technique, perhaps a rule-based approach producing smaller gain, could

have been used.

4. Optimization Strategies for Timing

In this section, we examme strategies used in timing optimization. One

approach is shown in Figure 8. First, a timing analyzer determines which paths

are critical. From this information a critical path is chosen. This is usually the

one whose delay is furthest from the user's specifications. Next, a point on the

critical path must be selected for optimization. Two criteria are used to

determine this point. The first criteria chooses the component which the most

critical paths pass through. This has the effect of improving a number of critical

paths with a single replacement. If there are multiple points that satisfy criteria

1, the second criteria will select the component from that set that is closest to an

external input. Once a point of optimization has been chosen, a control strategy

is selected. This strategy determines which type of optimizations should be

attempted. The different strategies will be discussed later. The next step is to

select a rule within that strategy and evaluate its cost function. If the cost of

applying the rule is too great or the rule fails to achieve a sizeable gain, a new

rule will be selected and evaluated. If the strategy succeeds in making the path

non-critical, another critical path will be selected. On the other hand, if the

January 30, 1988 Page 26

strategy has exhausted all possible rules without solving the critical path, a new

strategy will be selected.

4.1.1. Control Strategies

Different control strategies are required for timing optimization. For

example, critical paths whose delays differ greatly from user specifications tend

to require some type of circuit restructuring. In contrast, those critical paths

that are close to the specifications may require that only a few gates be replaced

or only a small portion of the critical path to be modified.

4.1.2. Types of Strategies

There are a number of different strategies that can be used to improve

speed. These are illustrated in Figure 9. Strategy 1 swaps equivalent signals on

the same component. For example, the 3-input AND gate in Figure 9a has a

different delay from each input to the output. Thus the critical path should be

connected to the input with the shortest delay. Strategy 1 can be implemented

by examining a technology file that contains timing information on each

component. This strategy has no cost as it does not change any circuit

elements. However, the gain produced is small. Thus strategy 1 is useful when

the slack (difference between the actual and required times) is extremely small

or when strategies that produce larger gains have been exhausted.

January 30, 1988 Page 27

Strategy 2 replaces a low-power or standard-power macro with a high-power

macro of greater speed. This type of strategy is only applicable to ECL logic

where the amount of current can be increased to provide faster switching

transistors. Strategy 2 can be implemented by examining the technology file to

determine if the same macro exists with higher power, higher speed. The

strategy is similar to strategy 1 as it produces only a small gain. Thus it would

be used in the same situations as strategy 1. However, since strategy 2 increases

the power, strategy 1 is preferred.

Strategy 3 employs factorization to reduce the delay of a critical path.

Figure 9c shows how a four input AND gate can be factored to speed up path D.

Implementation is a factorization program such as that found in MIS [BrRu87]

or ESPRESSO [Br84]. The gain is typically small though greater gains are

achieved for larger gates. In addition, using factorization along the entire

critical path can add up. Power generally increases but the effect on area may

vary. Strategy 3 tends to produce a slightly larger gain then strategies 1 or 2.

Hence, it will be used when the slack is small.

Strategy 4 attempts to make ·a better macro selection that reduces time

without an increase in area or power. This strategy may utilize a rule base

containing only rules that will produce a gain for no cost. For instance, a rule

could be written in OPS83 to perform the transformation of Figure 9d. An

January 30, 1988 Page 28

alternative method is use of a hash table. Lookup in the hash table is

accomplished through a key that is the truth table entry for a particular

function. The hash table is typically limited to entries of up to five variables,

making each hash table key a maximum of 32 bits -- a common computer word.

Certain transformations cannot be represented by a hash table. For example,

functions with multiple outputs, such as a decoder, or circuits with sequential

logic elements, such as a counter. In these cases it is necessary to use the rule­

based approach. A hash table has an advantage over the rule-based approach in

that fewer transformations need to be entered. For example, Figure 10 shows

two different implementations of a multiplexor that can be represented by the

same hash table entry, but require two separate rules. Another advantage of

hash table lookup is speed. It requires only one table lookup per function. Of

course time is required to find a circuit's function but this may require less time

than having to search through a set of rules to determine which are applicable.

Since Strategy 4 has no cost, it will be used before strategies 2 and 3, and will be

the first strategy examined for moderate gain.

Strategy 5 duplicates logic along a critical path, thereby doing the reverse of

common term factorization. Like strategy 4, it can be implemented using either

a rule-based or hash table approach. The gain from strategy 5 is typically small

and hence the strategy would be applicable at the same time as strategies 1 - 3.

As the cost in area and power tends to be greater than strategies 1 - 3, strategy

January 30, 1988 Page 29

5 would be the last examined.

Strategy 6 is similar to strategy 4 except a better macro selection is made

with an increase in area and/or power. It can make use of a hash table or rule

based approach as well. Typically a moderate gain can be achieved through

strategy 6 with a small to moderate increase in the power and area constraints.

It is often considered for moderate slack improvements or for large slack

improvements after large gain strategies have been examined.

Strategy 7 is the foundation of both SOCRATES and the Logic Consultant.

It expands the design into two-level SOP form then minimizes by removing

redundant terms. This strategy is often combined with strategy 3 to factor the

circuit along non-critical paths and take advantage of common terms. This

strategy is the most time consuming but can produce large gains, often with no

increase or only a small increase in area and power. Thus this strategy is the

preferred method for improving large slacks.

Strategy 8 is one discussed in [JoMc87]. It duplicates logic that strategy 5

can't by adding a multiplexor. Figure 9h has a function FOUT = F(A,B,C)

where C -> FOUT represents the critical path. The logic network may be

duplicated with the C input connected to GND in one, and VDD in the other.

The real C input is then hooked up to the select input of a multiplexor. The

gain from Strategy 8 is large but so is the cost if little optimization can be

January 30, 1988 Page 30

performed after increasing the amount of logic. New circuit elements are added

which increases both area and power. Hence, strategy 8 will be examined for a

large slack but will be considered after less costly strategies have been

attempted.

4.1.3. Choosing a strategy

The control strategy can be changed depending on how far the critical path

1s from the timing constraints. When the time difference is small, a local

optimization can be attempted using some combination of strategies 1 - 4. Rules

from three different categories can be examined: those that do not increase area

and power, tradeoff rules that improve speed but increase either area or power,

and tradeoff rules that increase both area and power. Those rules in category 1

will be considered before examining rules in categories 2 or 3. Similarly category

2 rules are preferred over those in category 3.

Within each rule category, the smallest rule with the maximum gain will be

chosen. Thus rules involving only two inputs will be examined first. If one of

them meets the timing specifications, that rule will be applied. Otherwise rules

with three inputs must be examined. This process continues until all rules have

been examined at which time a new strategy must be applied.

When the time difference is great or all other strategies fail, the circuit can

be minimized into a two level circuit using strategy 7. It can then be expanded

January 30, 1988 Page 31

through weak division into multiple levels as in strategy 3.

5. A Fra.rrework for l\1icroarchitectura1 Optimization

Systems such as LSS, SOCRATES, and the Logic Consultant decrease the

design knowledge required by a designer as they reduce technology dependence.

In addition, they increase a designer's productivity by performing optimizations

previously performed by the designer. Logic gates, however, represent only about

203 of a typical design. The remaining portion consists of sequential logic,

RAM, ROM, as well as higher-level combinational components such as

arithmetic units that make use of MSI-type logic such as adders. Such logic

cannot readily be represented by a set of equations or by low-level schematics.

Thus these tools provide technology independence for only a portion of the

design.

In order to extend technology independence and provide for even greater

productivity it is necessary to start the synthesis ')rocess at a microarchitectural

level. At this higher level a designer enters a circuit with components such as

arithmetic units, counters, registers, RAM units, and of course the random logic

that connects these components. In this manner, one can enter a crude design

with correct functionality and have an optimized technology-specific design

produced.

January 30, 1988 Page 32

Each of the rnicroarchitectural components can be defined by a set of

parameters. These parameters may include functional and structural

information. For example, an arithmetic unit can be classified in terms of the

functions it performs: addition, subtraction, incrementation, and

decrementation. It can also be classified in terms of its structure: carry

propagate or carry lookahead. The parameters, along with component

interconnection information can be used to perform local transformations, similar

to the manner that SOCRATES performs transformations at the gate level.

At the microarchitectural level it is difficult to know with any accuracy

what the actual time delay and area are. However, if an optimizer is to make

area/time tradeo:ffs, the design statistics must be known. Essentially, there are

two methods to acquire this information. The first method is to have an

estimator that makes use of a technology-specific file. It may be possible to

create a formula that when passed the component parameters:, produces a

reasonable estimate of the time and area required by the technology. The

second method generates a low-level generic design based on the component

parameters. This design may then be mapped into a technology-specific circuit

via a technology library.

Once a design has been optimized at the microarchitectural level, the low­

level circuit must be synthesized. The high-level components tend to have a

January 30, 1988 Page 33

very regular structure. For example, a 32-bit adder can be decomposed into

eight 4-bit adders. Such decomposition can best be expressed in terms of

algorithms. The algorithms can be generalized to incorporate a set of

parameters from the user. The basic structure of the design is always the same

-- parameters only require small modifications or additions be added to the basic

structure. This form of algorithmic decomposition contrasts with synthesis at a

low level which has an irregular structure. Such irregularity brought about the

use of rules which could deal best with the unstructured nature of the problem.

6. l\1ILO System Architecture

In this section we describe MILO. It uses a number of novel concepts: it

captures and optimizes the design at the rnicroarchitecture level, then uses

compilers to expand the microarchitectural components into MSI/SSI library

macros (not gates) and optimizes this compiled design. The system architecture

of MILO is shown in Figure 11. Input to the MILO system is a netlist generated

through schematic entry or by a compiler for the VHDL hardware description

language. Also included in the input are parameters for path delays, area, and

power consumption that must be met by the design optimizers. The

components entered through schematic capture may be any combination of

generic, technology-specific,. and logic compiler generated components. For each

microarchitectural component (such as a register or ALU), there is a logic

January 30, 1988 Page 34

compiler.

6.1. Logic Compilers

Each compiler consists of two programs, each written in C. The first

program, the symbol compiler, generates a symbol for the high-level component

that can be used in microarchitecture capture. The second program, the design

compiler, generates the design for the microarchitectural component and creates

a schematic for it so that the user may inspect the design.

Symbol compilers are selected from the menu in the schematic capture

program. The menu displays the compilers available and the designer selects

one usmg the mouse. Once the compiler is called, it presents the user with a

number of options as to how the high-level component should be built (such as

number of inputs, the speed desired, or the number of input loads an output

must drive). A symbol for the component is produced by the symbol compiler

and can then be placed in the user's design. MILO's current set of logic

compilers is shown in Figure 12.

Once a symb?l has been generated, the design compiler will be called. There

1s a different design compiler for each technology (ie., CMOS, ECL). Thus

compilers for ECL will tend to use NOR and OR gates whereas CMOS compilers

will use N AND and AND gates. The generic library contains a set of standard

gates, such as AND, NAND, and XOR, as well as some MSI components, such as

January 30, 1988 Page 35

2-bit counters, 4-bit adders, and 4 to 1 multiplexors. The generic library is

displayed in Figure 13.

Each design compiler consists of an algorithm that describes the type of

components to use and how to connect them. For example, consider the simple

case of an OR compiler for ECL. The algorithm for generating an i-input OR

gate is given below.

See if the requested design already exists in the database. If so, exit.
Otherwise, proceed.
Place i input pins in level 1
level_count = 2
num_outputs = i
num_left_over _outputs = i
while (num_outputs > 1)

total_num_gates_added = 0
/* Process each level * /
while (num_left_over _outputs > 1)

Find an OR gate in the database with num_or _inputs such that:
num_or _inputs < = num_left_over _outputs

num_gates_to_add = i/num_or _inputs
Add num_gates_to_add OR gates to level level_count
num_left_over _outputs = num_left_over _outputs -

(num_gates_to_add * num_or _inputs)
total_num_gates_added = total_num_gates_added + num_gates_to_add

End While
num_outputs = num_left_over _outputs + total_num_gates_added
level_count = level_count + 1

End While

The design compilers build circuits in a hierarchical fashion. This allows

one design compiler to call another, or even itself. For example, consider the

register compiler. It permits the user to select a number of functions such as

January 30, 1988 Page 36

load, shift right, and shift left. To achieve these functions the design compiler

places a multiplexor in front of each flip-flop. In the course of creating the

register, the register compiler will call the multiplexor compiler to produce the 4

to 1 mux required.

6.2. Technology l\1apper

The technology mapper converts components from a generic library into

those from a technology-specific library. Thus it can take designs from the logic

compilers and produce a design using components from a gate-array or standard

cell library. The technology mapper uses a lookup table to replace a generic

component with the corresponding technology-specific component or set of

components~ Each technology library has a different lookup table. During the

conversion process, various design rules may be violated (such as a component's

fanout). These must be detected and corrected by the electric critic. This critic

is part of the logic optimizer and is discussed in the later section.

6.3. Mcroarchitecture Critic

The microarchitecture critic operates on the generic netlist produced

through schematic capture or behavioral compilation. It makes local

transformations at the microarchitectural level, replacing small sections of the

design with equivalent functions. An example of a rnicroarchitecture

January 30, 1988 Page 37

transformation is shown in Figure 14. Rules at the microarchitectural level are

based primarily on the parameters that describe each component as well as their

interconnection to other components. For example, the rule for the

transformation in Figure 14 is shown in Figure 15. The antecedent (IF section)

of the rule identifies two components whose functionality parameters are "adder"

and "register". The interconnections are then compared to ensure the pattern is

of the form in Figure 14. The consequent (Else section) replaces the two

components with a single instantiation of a counter. The symbol for the new

counter is generated by a call to the counter compiler, providing it with the set

of parameters (# inputs = N bits, Reset = YES). The design for the counter

will be generated when it is required for lower-level analysis.

As mentioned earlier, it may be difficult at this level of abstraction to make

decisions regarding cert,ain types of transformations without much knowledge of

the true design statistics (such as speed, area, and power). To get design

statistics, the critic calls upon the logic compilers to generate the low-level

generic designs for the desired microarchitectural components. A technology

mapper converts these generic components into those from a technology specific

library. Statistics can then be generated from this design. Now the

microarchitecture critic can examme the high-level design for area/time

tradeoffs. Note that statistics are only necessary when making such tradeoffs.

For instance, the optimizer must know which paths fail to meet the user timing

January 30, 1988 Page 38

constraints in order to make the necessary delay improvements -- which

typically result in increased area. On those paths for which the user has entered

no timing constraints, no timing statistics are required as the critic will attempt

to minimize the area without regard to time.

The microarchitectural optimization process in illustrated in Figure 16. The

design in Figure 16 is initially seen as consisting of a 4-bit adder, 2 to 1

multiplexor with a 4-bit slice, and a 4-bit register with shift-right capability.

Assuming that the user has entered a time constraint from the input A to the

output C, the path will be broken down into the hierarchy by calling upon the

logic compilers. The compilers produce the designs ADD4, MUX2:1:4, and

REG4. The adder and multiplexor compilers each produce designs that are

ready to be sent to the technology mapper. As mentioned previously, the

register compiler makes a call to the multiplexor compiler -- in this case to

produce component MUX2:1:1. This introduces an additional level of hierarchy.

Each primitive generic component can then be mapped into its corresponding

technology-specific design. The technology-specific designs produced are for

designs ADD4, MUX2:1:4, and MUX2:1:1. At this point, the microarchitecture

critic has the timing statistics for the high level modules of ADD4 and

MUX2:1:4. The statistics for module REG4 are still not known, however, as its

technology-specific design has not yet been generated. One can now be

produced, inserting the already mapped version of MUX2:1:1 into the REG4

January 30, 1988 Page 39

design and finishing the technology map by making technology-specific

replacements of the flip-flops. Finally, the optimizer has the time delays for each

module and if the path from A to C is found to be critical, time improvements

can be made at the expense of area. One example of a tradeoff would be

changing the parameters of the adder to instantiate a carry-lookahead model.

6.4. Logic Optimizer

·when the microarchitecture critic can make no more optimizations, the

design is passerJ to the logic optimizer. The logic optimizer makes technology­

specific transformations on the design. It consists of three optimizers and five

experts that work toward meeting the user's design specifications. The

optimizers: time, area, and power, reduce delay, area, and power, respectively.

They make use of the five experts: logic critic, timing critic, area critic, power

critic, and electric critic. Each critic is rule-based and examines the blackboard

to make suggestions to the control module. Figure 17 shows an example rule

from each of these critics. The logic critic contains rules that always decrease

delay and area. Thus rules in this knowledge base always improve the design.

The timing critic has rules for increasing speed but at the expense of area and

power. Likewise, the area and power critics decrease area and power,

respectively, while increasing the other constraints. The electrical critic consists

of rules that spot and correct electrical errors in the circuit. In this manner it is

January 30, 1988 Page 40

very much like an electronic rule checker.

The logic optimizer operates in a hierarchical fashion. It optimizes the

design for each microarchitectural component before the designs are combined to

form one large design. In this manner, the logic optimizer begins by optimizing

designs at the lowest level of the hierarchy, then the design at the next highest

level can be expanded in terms of its lower-level designs and that design can be

optimized. This process is illustrated in Figure 18. Optimization begins with

the technology-specific versions of designs ADD4, MUX2:1:4, and MUX2:1:1. At

this point no transformations can be performed on the designs so optimization

proceeds to the next highest level and examines the design REG4. In REG4,

each multiplexor and flip-fl.op set can be combined into a single technology­

specific element, providing a decrease in area. Finally, the designs for REG4,

MUX2:1:4 and ADD4 can be expanded to produce the design for the highest

level design, ABADD. Again, there is optimization at this level, combining the

2-1 multiplexors with the already multiplexed flip-flops of REG4 -- making use of

high-level macros that have 4-1 multiplexors combined with a flip-fl.op.

Since the logic compilers produce near-optimal designs, little optimization is

required -- for the most part a cleanup of the technology-mapper's design (such

as inverter elimination, or merging of components -- as was seen in the

optimization of REG4 in Figure 16). Also, use of the logic compilers has allowed

January 30, 1988 Page 41

us to use higher-level generic components (such as multiplexors, and adders) in

our designs than the Logic Consultant or SOCRATES that decompose designs

completely into gates in order to optimize. By having the higher-level

components, we are better able to make use of the high-level technology-specific

elements that are typically found in gate-array and standard cell libraries. Once

a design has been completely decomposed into gates it can be quite difficult to

recover these high-level components. Yet if the components are not

decomposed, the design will not be extensively optimized as the systems tend to

rely upon algebraic techniques for minimization which require the decomposition

of high-level components. Often times the silicon implementations of these

high-level library components have been manipulated by experienced designers

and take full advantage of "tricks" in the technology -- thereby reducing the

actual area as well as the delay. Because of this, many times these "specialized"

components were placed in the library to be used instead of gates -- used not

only for design ease, but because of speed and area improvements that resulted.

MILO allows full advantage to be taken of such high-level designs.

By doing more work at a higher level of abstraction and keeping high-level

information for a longer period of time, MILO requires less work at the lower

levels where much greater work is required to perform the optimization. This is

particularly true since at a lower level, there are many times the number of

components and hence it can be more difficult to determine the best route to

January 30, 1988 Page 42

follow for optimization.

7. Results

MILO is currently runnmg on SUN 3 workstations under the UNIX

operating system. The logic compilers and optimization strategy selectors are

written in C while the rule set is written in OPS83. We are currently in the

process of adding rules to the knowledge base. To test our system, a number of

small examples were run at both a gate level and a microarchitecture level. An

ECL gate-array library was used by the technology mapper to create

technology-specific designs. Our results are comparable to circuits produced by

human designers.

Figure 19 shows the results for eight circuits entered with generic

components. The optimized results are contrasted to technology-specific circuits

entered by a human designer. Generally l\1ILO was able to improve designs 2 to

40 percent in term:; of ti~ and area. Designs entered at a microarchitecture

level required 4 to 15 logic compiler. generated components. Improvements at the

microarchitecture level were less dramatic than those at the logic level. This

primarily resulted since the microarchitecture designs tended to be more regular

in nature -- involving components such as counters and adders. Never the less,

MILO showed sizeable improvements. In addition, the use of MILO greatly

reduced the complexity of designing the circuits. The next step in testing MILO

January 30, 1988 Page 43

will be to run a large chip design and compare the results with those of a human

in terms of area, time, power, and productivity.

8. Conclusions

We have examined prev10us work in automated design synthesis that has

been devoted to logic optimization and low-level synthesis. The systems have

used boolean minimization techniques with rules or language compiler techniques

with rule-like transformations. MILO is a system that permits design entry at a

microarchitecture level. It optimizes designs first at the microarchitecture level

and incorporates feedback from lower-level design analysis. After

microarchitectural improvements have been made, the focus of optimization

moves to the gate level.

We have combined a rule-based technique with algorithms to synthesize

low-level logic from a set of parameters for a microarchitecture component. In

doing so, the MILO system improves design productivity and requires less design

knowledge and experience from design engineers.

9. Acknowledgerrents

This work was supported in part by Applied Micro Circuits Corporation

and State of California MICRO program. We would also like to extend thanks

to Ted Hadley, Frank Vahid, and Mehdi Amani for their work on the logic

January 30, 1988 Page 44

compilers.

January 30, 1988 Page 45

REFERENCES

[BrFa85)
Brownston, L., Farrell, R., Kant, E., and Martin, M., "Programming Expert Systems in
OPS5: An Introduction to Rule-Based Programming", Addison Wesley Publishing
Company, 1985, pp. 228-239.

[Br84)
Brayton, R., et al., "ESPRESSO IIC: Logic Minimization Algorithms for VLSI Synthesis",
Kluwer Academic Publishers, Netherlands, 1984.

[BrRu87]
Brayton, R., Rudell, R., Sangiovanni-Vincentell, A. and Wang, A., "MIS: A Mutiple-Level
Logic Optimization System", IEEE Transactions on Computer-Aided Design, Vol. CAD-6,
No. 6, Nov. 1987.

[CoBa85]
Cohen, W., Bartlett, K., and de Geus, A., "Impact of Metarules in a Rule Based Expert
System for Gate Level Optimization", Proc. IEEE Int'l. Symp. on Circuits and Systems,
May 1985.

[Chu65]
Chu, Y., "An ALGOL-like Computer Design Language", Communications ACM, Oct.
1965.

[DaJo80]
Darringer, J., Joyner, W., "A New Look at Logic Synthesis", 17th Design Automation
Conference, 1980.

[DaJo81]
Darringer, J ., Joyner, W., Berman, C., and Trevillyan, L., "Logic Synthesis Through Local
Transformations", IBM J. Res. Develop., 25, no. 4, July 1981.

[EnNa85]
Enomoto, K., Nakamura, S., Ogihara, T., and Murai, S., "LORES-2: A Logic
Reorganization System", IEEE Design & Test, October 1985.

[Fo85]
Forgy, C., "OPS83 User's Manual and Report", 1985.

[GaGr84]
Garrison, K., Gregory, D., Cohen, W., and de Geus, A., "Automatic Area and Performance
Optimization of Combinational Logic", Proc. IEEE Int'l. Conference on Computer-Aided
Design , 1984.

(GeCo85]
de Geus, A. and Cohen, W., "A Rule-Based System for Optimizing Combinational Logic",
IEEE Design & Test, August 1985.

[GrBa86]
Gregory, D., Bartlett, K., de Geus, A., and Hachtel, G., "SOCRATES: A System for

Automatically Synthesizing and Optimizing Combinational Logic", 23rd Design
Automation Conference, 1986.

[JoMc87)
Johannsen, D., McElvain, K., and Tsubota, S., "Intelligent Compilation", VLSI Systems
Design, April 1987.

[JoTr86)
Joyner, W., Trevillyan, Y., Brand, D., Nix, T., and Gundersen, S., "Technology Adaptation
in Logic Synthesis", 23rd Design Automation Conference, 1986.

[Kim87)
Kim, J., "Artificial Intelligence helps cut ASIC Design Time", Electronic Design, June 11,
1987.

[Ke87)
Keutzer, K., "DAGON: Technology Binding and Local Optimization by DAG Matching",
24th Design Automation Conference, 1987.

[McDe82)

[Tj86)

McDermott, J., "Rl: A Rule-Based Configurer of Computer Systems", Artificial
Intelligence, 19(1) (1982).

Tjiang, S., "Twig Reference Manual", January 1986.

Schematic
Capture

Behavioral
Comp tier

Mlcroarchttecture
Optimization•

Figure 1: Logic Synthesis Process

Logic
Optimizer

Extractor

Figure 2: SOCRATES System Architecture

c
D

L_ Longest Path

A
B

Figure 4: Factorization for Timing Improvements

Lewi 1:
Logic

Optimization

Lwel 2:
ANOOR

Optimization

Lwel 3:
NANO/NOR
Optimization

T echnoiogy·
Specific

Optimization

Figure 5: LSS System Architecture

Blackboard

Blackboard

Blackboard

.._

Control
Strategy

Control
Strategy

Knowledge Base

0 0
0

0 0
0

Knowledge Base

Knowledge Base

Figure 6: Expert Systems

Rules

Rules/Algorithms
(Mixed Strategy)

Algorithms

Decoder

10
AO
A1

11 A2
A3

A)

B)

Decoder

10

11

AO
A1
A2
A3

D-

Figure 7: LSS Level 1 Optimizations

Netllst

Critical Path
Set

Selected Crltlcal
Path

Subclrcult to

be Optimized

User
Constraints

Applicable Rulea

+ Gain/Cost

Applicable Lookahead

Rules + Gain/Coat

Time
Analyzer

Crltlcal Path
Selector

Point of Optimization
Selector

Strategy

Selector

Applicable Rule
Selector

Figure 8: Time Optimizer

Logic
Critic

Time
Critic

Electric
Critic

Technology
Mapper

Boolean
Minimizer

Factorlzer

A =0- Out
B

A -> Out .Sns
B -> Out .7ns

(a) Swap equivalent signals on the same component

:D-c
A, B -> C .7ns A, B -> c .Sns
Power .65mA Power .75mA

(b) Replace macro with one of higher speed

A
B

=>
c

0

E D·
Critical E

(c) Factor

Figure 9: Strategies for Reducing Delay Along Critical Paths

Sel

B
c

A

B

2 to 1
MUH

Sel

(d) Better macro selection that does not increase area or power

A
Out1

=>
B
c

y

Out1

Out2 ~0- Out2

(e) Duplicate logic

(f} Better macro selection at the expense of area/power

+-"Hash Table Entry

10 11 Sel F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Sel F
2 to 1
Mux

)
10 DO

y F

11 01
Sel

Sel F Sel

Figure 10: Use of a Hash Table to Reduce the Number of Rules

A
B

C -> FOUT
is critical

c
(g) Minimize

R
B 2 to 1

MUH

R

=>
y FOUT

B
R
B

Sel

c------------------___.

(h) Duplicate logic with multiplexor

Logic
Optimizer

Stat lat lea
Generator

Figure 11: MILO System Architecture

GATES
(function(= AND, OR, INV, NANO, NOR, XOR, XNOR),
#inputs.
)

MULTIPLEXOR
(#bits,

)

control(= enable),
#inputs.

DECODER
(#bits,
control(= enable).

)

COMPARATOR
(#bits,
function(=>, <, =, ...).

)

LOGIC UNIT
(function (=AND, OR, INV, NANO, NOR, XOR, XNOR),
#inputs.

)

ARITHMETIC UNIT
(#bits,
function (= +, -, INC, DEC),
mode(= ripple, carry-lookahead).

)

REGISTER
(#bits,
type (= latch, edge triggered),
function (= load, shift),
control(= set, reset, enable).

)

COUNTER
(#bits,
function(= load, up, down),
control (= set, reset, enable).

)

Figure 12: The Set of Logic Compilers

Generic Macros

AND
OR
NANO
NOR
XOR
XNOR
INV
BUF
VDD
vss

MUX

DECODER

ADDER

COMPARATOR

COUNTER

REGISTER

2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4

2 To 1
4 To 1

1To2
2To4

1 Bit
4 Bit
4 Bit with Carry Lookahead

2 Bit
4 Bit

2, 4 Bit with Up/Down/Reset/Load/Enable

1 Bit
with I nverti ng/Noninverting/Set/Reset/

Edge Triggeredllevef Sensitive

"Figure 13: Generic Component Library

VDD

Clk

Reset

Anthmetic
Unit

(ADO+ INC) N

N·Blt N·Bit
Adder N Register

A s D
a

B Cout Clk

Cin Reaet

-

Figure 14: A Microarchitecture Optimization

If there is a component C1 with functionality= adder
AND there is a component C2 with functionality= register
AND the SUM output of C1 is connected to input D of C2

N-Blt
Counter

Cn

AND the Q output of C2 is connected to one of the C1 data inputs
AND the second C1 data input is set to VDD
AND the Cout output of the adder is not connected
AND C2 has a Reset pin

Then
Call the counter compiler with parameters:

inputs = # inputs of C1
Reset= YES

to produce component C3
Replace C 1 and C2 with C3

Figure 15: Microarchitecture Rule

N

----- ---1 I Call To
I Adder

: ___ c~mlpi~r- __

AOD4

A[OJ=LJ-01
S(OJ

8(0]

A(3Ju-D1
5(3]

8(3)

,- - - -
I Call To I

1 Multiplexor I

1 Complier I

. ----_rM~~~ :~1
IO(Ou-UX2

11(0
Y(O)

I0(3UUX2
Y(3)

11 (3

ASADD

l
---- ~.;;0------:

Register 1
Comp lier 1 ------ ------·

REG4

In 0(0)
Shtrt=LJ--0-uxz:,
0(0]

- - - - I
Call To I

Multiplexor
Comp lier

MUX2:1:1

I 0 --fMUiiL y

It~

Figure 16: Microarchitecture Optimization Process

D-
ht) Logic Critic

A

2 to 1
MUH

A 10 y

B 11

Sel

B
Sel

D

(b) Time Critic
c D

(c) Area Critic

(d) Power Critic

(e) Electric Critic

Figure 1 7: Design Optimizer Rules

T&CMology
SpecHic

ADD4

A(OJ =LJ--01

B(OJ
A(3J =LJ--DI

8(3]

In 1(0

ln1 (3

S(OJ

S(3J

A

e

A

AD1

AD1

Shilt In

ln2[0]
s

Substitute
Into ABADO

and Optimize --- ---

IO(Ou-X2

11(0
Y[OJ

10(3u-X2
Y(3)

11 (3

Shift In no MXA2
0(0) 0 O(OJ

Clk

0(3)

---------, 1 Subatltute 1
1

Into REQ.4
I
, __ ~ Optimize

~ogy-~lc
MUX2:1:1

MQ

--fiO:l._
~

Figure 18: Design Optimizer Process

Design Complexity DeJay (ns) Percent Area (cells) Percent
(gates) Human MILO Im prov- Human MILO Im prov·

ment ment

1 48 19.76 14.80 25 12.0 9.0 25

2 52 3.84 2.97 23 9.0 7.5 17

3 13 2.52 1.65 35 3.5 3.0 14

4 47 5.07 3.25 38 8.0 5.0 38

5 18 3.82 3.10 19 4.0 3.0 25

6 288 19.40 18.50 5 52.0 44.0 15

7 442 18.37 18.22 12 92.0 85.0 8

8 149 15.65 14.45 8 83.5 62.0 2

Figure 19: MILO Test Cases

2 6

