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ABSTRACT OF THE DISSERTATION 

 

Deconvolving cell type and pathway heterogeneity in disorders of  

the central nervous system: intertumoral and spatial heterogeneity in glioma 

 

by 

 

Kaleab Tessema 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2021 

Professor Harley I. Kornblum, Chair 

 

Glioma is the most common primary brain malignancy and remains a challenging and intractable 

disease. Two major barriers inhibiting progress in therapeutic development are the unclear 

clinical implications of molecular differences across patients and inevitable tumor recurrence 

likely due to the difficulty in removing the entire malignant compartment during the initial 

resection surgery. Here, I present a strategy to begin combatting these challenges by leveraging 

flexible and scalable sequencing analysis pipelines to deconvolve complex glioblastoma 

cellularity and discover functional drivers of disease progression and recurrence. I first describe 

an approach that aims to better characterize therapeutically relevant patterns of intertumoral 

glioblastoma heterogeneity by classifying tumors based on functional pathway enrichment rather 

than gene expression alone, which identified E2F1 as a key proliferation driver specifically in 

E2F1-activated tumors. We also found a biological parallel of one of our candidate gene lists, as 

it correlated significantly with markers of endothelial, mural, and mesenchymal-like glioma 

cells. These findings suggest that pathway enrichment is a more functionally relevant grouping 
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metric and that we can use this approach to identify therapeutic targets in specific patient subsets. 

I then describe an approach aimed at addressing the challenge of recurrence by characterizing the 

cellular and molecular differences between the core and edge regions of recurrent glioma at 

single cell resolution. Using MRI-guided biopsy target selection and a multifaceted snRNA-seq 

analysis pipeline, we thoroughly profiled both malignant and non-malignant cell types in the 

edge region and identified a functional “state switching” event in mesenchymal-like malignant 

cells, with vascular remodeling consistently enriched in the tumor core and proliferation 

consistently upregulated in the tumor edge. Robust sequencing analysis pipelines thus represent 

an effective approach to identifying key functional drivers in multiple contexts and demonstrate 

the potential to identify targetable candidate cells and pathways in glioma. 
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Chapter 1: Introduction 

 

“The most complex object in the universe” is a label to which the human brain has complete 

bragging rights. Along with the spinal cord, the brain is the primary component of the 

mammalian central nervous system (CNS), which manages information processing and controls 

the activities of the rest of the body. Inside the brain lies a complex cellular landscape composed 

of many cell types and subtypes exhibiting distinct functions and heterogeneous molecular 

pathway utilization profiles. Key players in this environment include neurons, astrocytes, 

oligodendrocytes, vascular cells, immune cells, and progenitor cells giving rise to neurons and 

glia. There is a fine balance among these brain cell types and their respective functions that 

ideally achieves an equilibrium state of normal CNS function. However, when there is 

dysregulation in one or more cell types or subtypes, disorders of the CNS may arise. To make 

matters worse, many of these CNS disorders are driven by complex pathophysiological patterns 

that involve compound cellular phenotypes, with dysregulation in some cells causing 

dysregulation in others. This presents a significant challenge for the research community, as it is 

difficult to pinpoint specific functional alterations in the cell types that are important for disease 

progression.  

 

Recent advances in methods to analyze tissues at the level of single cells, such as single cell and 

single nucleus RNA-sequencing (sc/snRNA-seq), have drastically improved our ability to 

understand these complex cell-cell and cell-function relationships in the CNS and other tissues. 

Over the past decade, there has been a rapid increase in the number of sequencing studies 

performed, likely owing to the technology’s ever-increasing accessibility, both in terms of 

sample processing and data analysis. As a result, there are many publicly available databases 
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containing sc/snRNA-seq datasets from different areas of the brain (Fig. 1-1) [1], which presents 

a unique opportunity to capitalize on this rapid technological evolution in ways that allow 

comprehensive molecular analyses of brain tissue at the level of single cells. While sc/snRNA-

seq suffers from several limitations related to sequencing depth, gene drop-out, and feasibility, 

the ability to examine composite tissue at an unprecedented resolution is justified in many 

(though not all) contexts. 

 

As an engineer by training and an aspiring physician-scientist, I was keen to harness this 

opportunity to leverage readily available big data in the hope of discovering important 

underlying biology in clinically relevant contexts that may help alleviate patient suffering. After 

initially focusing my studies on autism spectrum disorder and maternal inflammation, I was 

drawn to several ongoing investigations in our research group that focused on glioblastoma, as 

these studies presented an opportunity to directly examine tumor samples recently resected from 

patients. Glioblastoma is a highly intractable and aggressive cancer of the brain with a median 

overall survival of 12-15 months despite resection surgery followed by radiation and 

temozolomide therapy [2]. While decades of intensive research efforts have identified several 

key cellular and molecular features that characterize inter- and intra-tumoral heterogeneity, 

glioblastoma remains the deadliest CNS cancer with no clear avenue for clinical improvement. 

Two major barriers inhibiting progress in glioblastoma management are the unclear clinical 

implications of molecular differences across patients and the inevitability of tumor recurrence 

likely due to the difficulty in removing all of the malignant cells during the initial resection 

surgery. In terms of molecular intertumoral heterogeneity, glioblastoma molecular subtypes have 

been defined to classify individual tumors, but this has largely not improved our ability to 
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develop targeted therapies for specific patient groups and improve survival. With respect to 

malignant cells left behind after resection, it remains unclear how these individual malignant 

cells at the periphery of the tumor might differ from those at the core, as current literature 

comprises bulk tissue studies or analyses with low numbers of cells from the periphery. 

 

The complex cellular architecture within and surrounding glioblastomas is a strong contributor to 

both of these challenges and is thus critical to our research efforts that aim to address these 

issues. This presents an ideal opportunity to leverage sc/snRNA-seq to gain a deeper 

understanding of the cellular and molecular complexity of glioblastoma tumors and potentially 

disambiguate both the unclear role of molecular subtypes and the unknown functional profiles of 

malignant cells at the tumor periphery. However, current sc/snRNA-seq workflows in tumor 

biology research suffer from several technical challenges that limit robustness, as workflows 

often involve 1) manual intervention by users with inevitably varying skill sets and experience 

levels, 2) arbitrary decisions during parameter selection, and 3) inconsistent guidelines across 

expert groups. 

 

Here, I present a strategy to address these biological and technical challenges by building 

unbiased, flexible, and scalable sequencing analysis pipelines to deconvolve complex 

glioblastoma cellularity and discover functional drivers of multiple facets of disease progression. 

In Chapter 2, I describe an approach that aims to better characterize functionally relevant 

patterns of intertumoral glioblastoma heterogeneity. We hypothesized that classifying tumors 

based on functional pathway enrichment would yield distinct groups with more functional 

implications than groups generated based on patterns of gene expression alone, which is 
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implemented in the traditional subtyping method [3]. Our approach identified E2F1 as a key 

driver of tumor cell proliferation specifically in an E2F1-enriched cluster of tumors and a strong 

correlation between one of our candidate gene lists and markers of endothelial cells, mural cells, 

and mesenchymal-like glioma cells. These findings suggest that pathway enrichment is a more 

functionally relevant grouping metric and that we can use this approach to identify therapeutic 

targets in specific patient subsets. This work was performed primarily in collaboration with Dr. 

Alvaro Alvarado, a postdoctoral researcher in our lab. My contributions were the bulk gene list 

correlation analysis in Supplementary Fig. 2-4, the scRNA-seq analysis evaluating candidate 

gene list correlation with cell cycle and stemness signatures in Supplementary Fig. 2-6, the 

scRNA-seq analysis of pairwise correlation among all candidate gene lists, malignant cellular 

states, and adult/developing brain cell type markers in Supplementary Fig. 2-7, and revisions of 

the text and figures. In Chapter 3, I characterize the cellular and molecular differences between 

the contrast-enhancing core and non-enhancing edge region of recurrent glioma at single cell 

resolution using MRI-guided biopsy target selection followed by snRNA-seq analysis. We 

hypothesized that one or multiple cell types exhibit putative recurrence-related functional 

enrichment patterns in the edge region of glioma. Using a multidimensional analytical approach, 

I thoroughly characterized both malignant and non-malignant cell types in the edge region and 

identified a potential functional “state switching” event in MES-like cells, with vascular 

remodeling enriched in the tumor core and proliferation upregulated in the tumor edge, 

potentially contributing to tumor recurrence. This work was performed primarily in collaboration 

with Dr. Kunal Patel (UCLA Neurosurgery). My contributions were isolating single nuclei for 

sequencing from 3 of the tumors and performing all of the snRNA-seq data pre-processing and 
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analysis reported in the figures (i.e., all figure panels except MRI in Fig. 3-1a, image modeling 

in Fig. 3-4c-d, IHC in Fig. 3-4g-i and Supp. Fig. 3-4b). 

 

Through the strategies described in the following chapters, I hope to provide convincing 

evidence that approaches using unbiased, reproducible, creative, and efficient analytical 

workflows are significantly more robust in identifying key biological insights with high 

confidence, in this case revealing multiple critical drivers of several hallmark glioma features, 

most notably proliferation, vascular remodeling, and invasive potential. These findings present 

opportunities for future investigation to validate several novel pathways, cellular populations, 

and cell-cell interactions that serve as potential candidates for glioma therapeutic development. 
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Figures 

 

 

Figure 1-1. Mouse brain diversity surveyed by scRNA-seq studies [1]. Arrows correspond to collection 

region and number of isolated cells, numbers to the left are cell counts for coarse cell types, numbers to 

the right are number of subpopulations, asterisks mark oligodendrocyte-lineage enriched cells.  

Creative Commons: “Selected relevant scRNA-seq studies revealing brain heterogeneity,” Figure 1 by 

Cuevas-Diaz Duran, R., Wei, H. & Wu, J. Q. in the article “Single-cell RNA-sequencing of the brain” on 

clintransmed.springeropen.com [1]. No changes were made. Licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/). 

https://creativecommons.org/licenses/by/4.0/
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Abstract 

Targeting glioblastoma (GBM) based on molecular subtyping has not yet translated into 

successful therapies. Here, we used gene set enrichment analysis (GSEA) to conduct an 

unsupervised clustering analysis to condense the gene expression data from bulk patient 

samples and patient-derived gliomasphere lines into new gene lists. We then identified key 

molecular pathways differentially regulated between tumors. These gene lists associated not 

only with cell cycle and stemness signatures, but also with cell-type specific markers and 

different cellular states of GBM. We identified the transcription factor E2F1 as a key regulator of 

tumor cell proliferation and self-renewal in only the subset of proliferating gliomasphere cultures 

predicted to be E2F1-activated and validated its functional significance in tumor formation 

capacity. E2F1 inhibition also sensitized E2F1-activated gliomasphere cultures to radiation 

treatment. Our findings indicate that a pathway-based approach can be leveraged to 

deconstruct inter-tumoral heterogeneity and uncover key therapeutic vulnerabilities for targeting 

GBM.   
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Introduction 

Glioblastoma (GBM) is incurable, with an overall median survival of about 14 months(1) despite 

maximal surgical resection, radiation, and chemotherapy with temozolomide(2). The past 

decade has seen a revolution in the understanding of GBM, and studies of patient samples 

based on gene expression and oncogenic mutations have revealed that GBM can be parsed 

into distinct molecular categories--namely classical, mesenchymal, and proneural--and 

subsequently IDH mutated tumors(3-8). While these classification schemes have shown some 

relationship to prognosis, they have largely failed to provide new therapeutic approaches. 

 

The driver mutations of GBM result in the activation of many well-known oncogenic pathways, 

including the PI3K/AKT, MAPK/ERK, Rb, and mTOR pathways(9). However, the use of 

pathway-specific inhibitors has not yet resulted in effective therapies. One potential explanation 

for this lack of efficacy is that tumors are comprised of multiple cell types with different pathway 

dependencies. Another is that inhibition of one pathway results in compensatory activation(10). 

Finally, it is possible that the identification of critical pathways driving GBM progression and 

recurrence is not yet complete. The prioritization of key pathways falls short of what would be 

required for tumor eradication because the combinatorial outcome of existing mutations, and 

resultant dominant pathways, cannot be conclusively inferred.  

 

The advent of relatively easy and cost-effective sequencing methods and advances in 

bioinformatics open the door for rapid evaluation of gene expression, identification of key 

molecular pathways, and characterization of different cell types within individual tumors. For 

instance, we now appreciate that molecular subtypes previously used in the classification of 

GBM(5) can be linked to cell type-specific markers with the description of cellular states(11). 

Similarly, a subpopulation of tumor cells can express markers of outer radial glia and turn on 

developmental programs to promote invasion(12). Yet, a comprehensive and unbiased 
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approach to group samples based on their pathway utilization has not yet been exploited to 

uncover therapeutic targets. We hypothesized that, rather than examining gene expression as a 

whole, analyzing targetable pathways could allow for the development of patient- or tumor 

class-specific therapeutics or combination therapies that go beyond the traditional inhibitors that 

have already been developed. 

 

In this study, we developed a bioinformatics strategy that leverages Gene Set Enrichment 

Analysis (GSEA) to disambiguate tumor heterogeneity in GBM (Figure 2-1). We identified 

pathways and processes utilized by different tumors and individual cells within the tumors, 

without consideration of their driver mutations. We then implemented a downstream pipeline to 

ascertain key genes within enriched gene sets that were further evaluated for drug and/or 

molecular target selection. Using bulk RNA samples and existing single cell RNA-sequencing 

databases, we found that tumors can be clustered according to their enrichment of canonical 

and oncogenic pathway gene sets and that the new gene lists we derived from enriched gene 

sets reveal functionally significant differences between tumors and between cells within a tumor. 

We then utilized gliomasphere cultures, enriched or depleted in these gene lists, to demonstrate 

the functional significance of our approach using the pro-proliferative transcription factor E2F1 

as an example. 
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Results 

 

GBM clustering is clinically significant and modestly overlaps with prior molecular 

classification 

To characterize intertumoral heterogeneity, we first studied presumptive pathway utilization by 

analyzing GBM patient samples in the Cancer Genome Atlas (TCGA(5)) using gene sets in the 

canonical (C2CP) and oncogenic (C6) pathway collections from the GSEA software(13, 14). 

The mRNA expression of each TCGA sample was compared to the average expression of all 

the samples (n = 538), and normalized enrichment scores were obtained for all the gene sets 

comprising the two pathway collections. A heatmap representing the normalized enrichment 

score profile for each sample (column) demonstrates the presence of heterogeneity when either 

canonical (Figure 2-2A) or oncogenic (Figure 2-2B) gene sets were analyzed. We determined 

that 3 clusters correctly represented the data when using oncogenic and canonical pathways via 

non-matrix factorization and consensus clustering; the robustness of the clusters was also 

tested and validated using the Random Forest approach (Supplementary Figure 2-1). We then 

applied principal component analysis (PCA) for dimensionality reduction to better visualize the 

clustering of the samples using canonical and oncogenic pathways (Figures 2-2C and 2-2D, 

respectively). Notably, when the clustered samples were colored by their known TCGA 

molecular subtype, we found there was one cluster that contained most of the mesenchymal 

samples, while the classical and proneural subtypes were present in all clusters 

(Supplementary Figure 2-2). This indicates a lack of full correlation between molecular 

characterization and molecular pathway expression. These findings suggest that different 

tumors quantitatively utilize different molecular pathways, prompting further analysis.  

 

To determine whether our pathway-based classification provided functionally significant 

information, we examined patient survival using the pathway-based clustering information. Prior 
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studies using TCGA groupings have found only limited association with survival, with proneural 

tumors having longer survival--an observation largely driven by the subset of IDH mutant 

tumors. As shown in Figure 2-3A, our own analysis of the TCGA categories found significant 

differences only between the proneural and other two groups, as previously reported (5). 

However, when we utilized our new pathway-based clustering approach, we found statistically 

significant differences in median survival between the patients from each pair of clusters 

(Figure 2-3B and 2-3C). For both collections of gene sets, canonical and oncogenic, the cluster 

with the lowest median survival was the one primarily composed of mesenchymal samples.  

However, approximately 30% of the samples within this cluster were characterized as classical 

and proneural. Similarly, using the canonical pathways collection, the cluster with the highest 

median survival included equal abundances of classical and proneural samples (47% each). 

These data challenge the idea that samples obtained from patients should be treated according 

to their TCGA-defined molecular phenotype and, in contrast, support the notion that tumors from 

different molecular backgrounds might have common signaling pathways that can be leveraged 

for therapeutic purposes.  

 

GSEA gene signatures from patient-derived glioma database delineate actionable targets 

Our findings thus far suggest that a pathway-based approach could be leveraged therapeutically 

in GBM. We recognized, however, that GSEA is an imperfect approach to assess functional 

pathway utilization and that individual genes or sets of genes would contribute to enrichment of 

multiple gene sets. Therefore, in order to more pragmatically develop potential interventions 

based on our analysis, we further distilled our pathway-based clustering of the whole TCGA 

dataset by extracting the top contributing gene sets to each principal component (PC) and 

direction and synthesizing their common elements into gene lists (Figure 2-1). We hypothesized 

that targeting the most highly determinative elements would allow us to target several key 

pathways simultaneously, even though we might be limiting our scope to shared targets and 
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ignoring underrepresented pathways. In order to validate this approach, we performed a similar 

analysis on a microarray-derived database of patient-derived gliomasphere (GS) lines so that 

we could functionally test downstream targets. The enrichment patterns again showed 

heterogeneity between samples, yet they grouped into two major clusters when either canonical 

and oncogenic gene set collections were used (Supplementary Figure 2-3). This is reminiscent 

of a number of gene expression studies, including our own, that classify cultured glioma cells 

into two major groups. Gene lists were also generated for the GS dataset based on the common 

elements shared among the top contributing gene sets for each PC and direction, as described 

above for the TCGA dataset (genes in each of the gene lists generated can be found in 

Supplementary Table 1, available online). The TCGA- and GS-based gene lists were then used 

to obtain enrichment scores in the gliomasphere lines (Figure 2-4A). This dataset again 

separated into two main clusters in accordance with the pattern of enrichment scores generated 

when the oncogenic and canonical pathways were used (Supplementary Figure 2-3). 

Interestingly, there was an overlap in enrichment between some of the gene lists generated 

from the TCGA dataset (TCGA_C2_PC1NEG) and the gliomasphere dataset 

(GS_C2_PC1NEG). This was confirmed by calculating correlation values for each pair of gene 

lists (Supplementary Figure 2-4). In both datasets, the strongest positive correlation was 

between the C2_PC1NEG lists, with coefficients of 0.78 and 0.84 in the TCGA and GS 

datasets, respectively. Conversely, the strongest negative correlation was between the two 

C2_PC1NEG lists compared with GS_C2_PC1POS (-0.57, -0.66) in the GS dataset and with 

TCGA_C2_PC1POS (-0.39, -0.22) in the TCGA samples (Supplementary Figure 2-4). These 

findings indicate that the identified gene lists represent independent groups of pathways for 

which tumor samples show differential enrichment that can potentially be exploited to uncover 

new therapeutic targets.  
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All gene lists were further analyzed using Ingenuity Pathways analysis (IPA) to identify critical 

pathways and targets that can be leveraged to identify molecular targets. Cluster 1 (right side of 

heatmap in Figure 2-4A) showed higher enrichment of the GS_C2_PC1NEG gene list and core 

analysis from IPA showed an increase in the expression of the E2F family of transcription 

factors and its downstream targets (Figure 2-4B). Similarly, the contribution of each gene list 

can be appreciated in reference to both clusters (Figure 2-4C). Activation of E2F1, together with 

inhibition of let7, reported to have a role in differentiation and tumor suppression (15, 16), had 

the most significant p-value for this particular gene list (data not shown). Since E2F1 has a 

known role in cell cycle progression, we examined the enrichment scores for cell cycle-related 

gene sets in the canonical pathways collection (C2CP). Indeed, samples that fell in the cluster 

with high enrichment of GS_C2_PC1NEG (and hence predicted to have activation of E2F1) had 

concomitant higher enrichment scores for cell cycle-related gene sets (Figure 2-4D). Likewise, 

we examined the enrichment of E2F1-target gene sets from the C2CP collection and found 

great concordance with the samples predicted to have E2F1 activation (Figure 2-4E). In 

addition, considering the correlation values between the signatures (Supplementary Figure 2-

4), we found that E2F1 activation seemed to oppose IFN and NFB activation. Similarly, EGFR 

activation (TCGA_C2_PC2POS enrichment) appeared ubiquitously and showed correlation with 

most of the signatures in both datasets. These findings suggest that there are two clusters of 

gliomasphere samples based on their enrichment of gene lists that can be further analyzed to 

elucidate upstream regulators. Amongst the most meaningful differences between the samples 

was the fact that one cluster revealed an E2F1-activated signature exhibiting a high degree of 

enrichment for cell cycle and downstream target signatures. 

 

We next re-clustered TCGA samples based on their enrichment for the gene lists described 

above and found 3 clusters, comparable to the original pathway analyses described in Figure 2-

2 (Supplementary Figure 2-3). The E2F1-activated signatures characterized one of the 
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clusters, whereas the EGFR signature pointed in between two of the clusters. Additionally, we 

analyzed raw data from the available TCGA samples (n=160) from Broad Firehose. Differential 

expression analysis was performed on samples using the cluster identity from the gene 

signatures. These data were then used to highlight the most enriched gene ontology terms for 

each cluster. We found each of the 3 clusters had a defined set of GO terms: cell cycle-related, 

extracellular membrane and inflammation, and synapse and neurotransmitter signaling 

(Supplementary Figure 2-3). These results suggest the existence of distinct clusters that can 

be parsed through their potential pathway utilization, highlighted by upstream regulator 

enrichment. Similarly, we found a greater complexity in the TCGA dataset compared with the 

GS dataset, as would be expected when analyzing primary and patient-derived lines, 

respectively.  

 

Pathway analysis exposes limited intratumoral heterogeneity and underscores cell cycle 

signature 

A key consideration in the evolution of thinking about glioma heterogeneity lies in the analysis of 

intratumoral heterogeneity. Several single cell RNA-sequencing studies have emphasized the 

finding of TCGA subtype heterogeneity within tumors—that is, tumor cells from the same tumor 

are often classified in different TCGA groups. To assess whether potential signaling pathway 

utilization is similar or different within individual tumors, we interrogated a single cell RNA-seq 

database derived from 6 primary GBM samples(17). Despite the reported molecular subtype 

diversity in each sample of this dataset, we found that, based on our GSEA approach, most 

cells from an individual sample clustered together based on their tumor of origin 

(Supplementary Figure 2-5) when either canonical or oncogenic gene sets were used. These 

findings suggest that, although clear intratumoral heterogeneity in gene expression exists, there 

may be some rationale in targeting dominant pathways as cells from each tumor have 

comparable enrichment profiles that contrast with cells from other tumors.  
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Although cells within any one tumor exhibited similarities in their enriched pathways, we 

recognized that our approach would not adequately identify those pathways that did indeed 

differ amongst cells within an individual tumor. Therefore, we analyzed each sample separately, 

in which each cell’s gene expression was compared to its tumor bulk control. This analysis 

resulted in two clusters for each tumor. Principal component loadings were obtained in order to 

establish which gene sets in the collection contributed the most to the apparent spatial 

distribution of the gene sets in the 2-dimensional PC graph. We consistently observed a cluster 

of cells with a high enrichment of gene sets associated with cell cycle promotion and regulation 

(Supplementary Table 2, available online). In contrast, the second cluster was mainly described 

by gene sets associated with extracellular matrix processing and growth factor signaling 

pathways, suggesting that both cycling and non-cycling cells could be differentially targeted. In 

the cell cycle-enriched clusters, we identified genes such as cyclin dependent kinases and 

minichromosome maintenance complex subunits that have previously been associated with 

glioma progression and tumor growth (18, 19). Similarly, all 46 subunits of the proteasome 

complex were highly enriched in this cluster for all samples. It remains to be seen whether 

targeting the latter pathways will be therapeutically relevant for GBM. 

 

In order to obtain some biological insight into the cluster not associated with cell cycle gene 

sets, we interrogated the gene sets associated with it using EnrichR and IPA. For each group, 

we selected the top common elements based on their frequency in order to generate new lists 

of genes that condense the information from all the gene sets. Lists were then uploaded to 

EnrichR (https://amp.pharm.mssm.edu/Enrichr/) and to the IPA software to obtain transcription 

factors, biological processes, and upstream regulators for each (Supplementary Table 3, 

available online). Although there are some differences between samples, there is a common 

theme of proliferative signals that are achieved through different mechanisms. For instance, 

https://amp.pharm.mssm.edu/Enrichr/
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CLOCK (circadian clock) is involved in the maintenance of pathways critical for tumor 

metabolism and that are upregulated during hypoxia in glioma (20).  Other pathways of interest 

include those involving DNA repair, epithelial-mesenchymal transition, axon guidance, and 

axogenesis. There are also several transcription factors that are present in most samples, such 

as NUCKS1 and EGR1, both of which have been previously associated with glioma (NUCKS1 

in pediatric (21) and EGR1 in adult (22)) and require further mechanistic analysis. Similarly, 

there is a report on a feed-forward loop between EGR1 and PDGFRA that promotes 

proliferation and self-renewal in GSCs (23). These findings in the scRNA-seq database indicate 

that there may be a potential combinatorial approach that can be tailored for each individual 

tumor to effectively target both cell cycle pathways and tumor-specific activated molecules. 

 

Gene lists differentially associate with cell cycle and stemness programs, GBM cellular 

states, and cell type-specific signatures  

One main focus of GBM research in the last decade has been the existence of a subset of 

cancer cells with activated stemness programs, namely glioma stem cells, that contribute to the 

malignancy of the tumor (24-27) and are refractory to therapy (28, 29). Together with the TCGA 

molecular subtypes, this paradigm has resulted in the development of specific therapies aimed 

at targeting molecules believed to be key regulators of tumor growth and invasion. The minimal 

clinical success of these efforts can be attributed to the limitations of the current in vitro and in 

vivo models used to validate these approaches. Importantly, we routinely work with patient-

derived cell lines that behave differently than tumor cells in their intact tumor microenvironment 

in patients. It is important to establish whether critical pathways such as stem-like programs, 

differentiation pathways, or cell-cycle related signatures are predominantly active in these cells. 

To that end, we evaluated the association of our pathway-based gene signatures with cell-cycle 

and stemness scores in a GBM single-cell RNA-seq dataset (17). Consistent with our GS 

analyses, we found that both of our signatures predicted to have E2F1 activated (C2_PC1neg) 
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strongly correlated with cell cycle scores (Supplementary Figure 2-6), while other signatures 

showed weak or no association. Interestingly, we found two signatures (TCGA_C2_PC1neg and 

TCGA_C2_PC2pos) that had strong negative correlations and one with a positive correlation 

(TCGA_C2_PC1pos) with stemness score (Supplementary Figure 2-6).  

 

The negative correlation between activation of E2F1 and stemness score is not surprising given 

the fact that tumor cells are believed to be in either a proliferative or a stemness state. However, 

EGFR activation (TCGA_C2_PC2pos) has not been linked to a decrease in stemness and 

compels further investigation. The gene list with positive correlation to stemness 

(TCGA_C2_PC1pos) has three main targets per IPA analysis. First, phosphatidylinositol 3-

kinase (PIK3R1) has been associated with GBM, and there are several inhibitors developed for 

molecules in this signaling pathway. GNA12 encodes for the G12 alpha subunit of G proteins 

and is of critical importance in regulating actin cytoskeletal remodeling in cells during migration, 

which is critical for tumor invasion. Finally, Early B-cell Factor 1 (EBF1) has been identified as a 

TET2 interaction partner in IDH-mutant cancers (30). These analyses establish a novel 

approach for uncovering new molecular targets based on a pathway-based approach that can 

be leveraged for the development of new therapies.  

 

We next used the same scRNAseq dataset (17) and compared our gene lists to previously 

reported transcriptional signatures of cell types in adult cortex (31) and developing human brain 

(32), as well as to recent descriptions of cellular states in glioblastoma (11). As expected, our 

E2F1 activated gene lists both significantly correlated with G1/S and G2/M signatures in both 

datasets (Supplementary Figure 2-7). Additionally, TCGA_C2_PC1POS (PIK3R1 and EBF1 

activated) significantly associated with adult astrocytic markers and the AC-like molecular state, 

and TCGA_C2_PC2neg (ICMT activated) significantly associated with adult OPC markers and 

both OPC-like and NPC1-like molecular states. Notably, ICMT is a methyl transferase 
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necessary for the targeting of CaaX proteins, which include the Ras family, to the cell 

membrane (33, 34). Ras/ERK signaling has been associated with the proneural subtype (35) 

and NRAS is expressed at higher levels in proneural subtype compared with mesenchymal and 

classical (https://gliovis.bioinfo.cnio.es/). TCGA samples classified as proneural also showed 

higher enrichment for genes in the NPC-like and OPC-like molecular states (11). These data 

suggest a targetable mechanism (trafficking to the cell membrane via ICMT) required for a 

specific protein (Ras) upregulated in a TCGA subtype (proneural) that has correlates in GBM 

molecular states (OPC-like, NPC1-like). Finally, we also found a significant correlation between 

GS_C2_PC1pos (IFN and NFB activated) with both MES1-like and MES2-like states as well 

as adult endothelial and mural cell markers. The latter include blood vessel-associated cell 

types such as pericytes and vascular smooth muscle cells. This association relates to the 

extraordinary plasticity of glioma cells in response to their microenvironment. These data 

suggest IFN and NFB pathways are activated in cells in the mesenchymal states that undergo 

vascular mimicry and express markers related to endothelial cells and pericytes that have been 

associated with tumor progression and recurrence (36-38). Of note, IL-10 is also predicted to be 

inhibited in this gene list; given IL-10 is an anti-inflammatory cytokine, this suggests an 

inflammatory microenvironment would promote this particular molecular state.  

 

Weighted gene co-expression network analysis reveals distinct regulatory modules in 

each cluster 

To further determine the biological relevance of the clusters identified in our GS dataset, we 

performed differential expression analysis and weighted gene co-expression network analysis 

(WGCNA). Gene ontology confirmed the enrichment of cell cycle signatures in the E2F1-

enriched cluster (Figure 2-5A). Likewise, WGCNA identified 26 modules (Figure 2-5B) that 

were distinctly associated with one of the two clusters (Figure 2-5C). We took the top 3 

https://gliovis.bioinfo.cnio.es/
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enriched modules for each cluster and performed gene ontology enrichment analysis. Blue, 

brown, and light cyan modules (associated with E2F1 activation) showed enrichment of cell 

cycle, cell division, and DNA replication, in addition to processes associated with neurogenesis, 

neuron differentiation, and gliogenesis (Supplementary Table 4, available online). Moreover, two 

of the three modules also showed enrichment in their promoter region for E2F1 and other 

members of the E2F family. Conversely, black, green, and magenta modules (associated with 

the non-E2F1 enriched cluster) showed enrichment for inflammatory response, cell migration, 

and chemotaxis, as well as immune response, angiogenesis, and regulation of apoptotic 

processes. In these modules, we found genes with enrichment for transcription factors involved 

in inflammatory responses, such as CEBPB and the interferon regulatory transcription factor 

(IRF) family, as well as C2H2 zinc finger family members, including EGR1 and SP/KLF, which 

regulate proliferation, differentiation, and apoptosis cellular processes. We similarly identified 

the hub genes in each module, determined by how associated they are to the other members of 

their module(39), and colored them by module name in (Figure 2-5B). Like the modules as a 

whole, the hub genes had different characteristics for modules associated with the E2F1 

activated and non-activated clusters. Namely, the enriched E2F1-related modules show 

presence of known stem cell markers SOX2 and OLIG2, associated with self-renewal and 

persistent proliferation, as well as markers of cell division, like PLK4. Conversely, the hub genes 

of the other set of modules include IL-8, IL-6, and other inflammatory cytokines, together with 

CD44, which has been associated with a more invasive phenotype.  

 

From a clinical perspective, we wanted to know if the hub genes would be viable as therapeutic 

targets. To this end, we took advantage of a prior study comparing gene expression in  the 

cellular fraction containing tumor initiating cells, termed glioma-derived progenitors cells (GPCs) 

and normal, non-transformed glial progenitor cells (nGPCS) (40). For the E2F1-related modules, 

the blue module had several hub genes (DTL, CASC5, CDCA5, ASPM, CENPF, BUB1B) whose 
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expression was at least 4-fold change higher in glial GPCs. Similarly, MYC in the light cyan 

module was 12-fold more highly expressed in glial GPCs relative to nGPCs. Evaluation of the 

non-E2F1 associated hub genes uncovered that CD44 and COL1A1, both associated with 

invasion, were highly expressed in glial GPCS (over 22-fold change higher related to nGPCs). 

Two other genes associated with migration and invasion, FN1 and SERPINE1, were also at 

least 4-fold higher in glial GPCs. These data confirm our pathway-based analyses that 

generated two clusters characterized by cell cycle enrichment contrasted with inflammatory and 

promotion of invasion pathways that are predicted to have lower chances of off-target effects 

based on their expression profiles on glioma-derived and normal progenitor cells. 

 

Differential effects of E2F1 silencing and candidate therapeutics support the functional 

significance of pathway-based heterogeneity 

Our findings of potentially differential dependence on E2F1 and its downstream targets in highly 

proliferative gliomasphere cultures was somewhat surprising, as this transcription factor is often 

thought to be primarily involved in proliferation and cell cycle regulation. To investigate this 

further and to validate our general approach, we used silencing technology to evaluate the 

cellular effects of E2F1 suppression in samples from E2F1-activated and non-activated clusters. 

HK217 and HK301, members of the E2F1-activated cluster, showed a marked decrease in stem 

(sphere-forming) cell frequency in a limiting dilution assay (LDA) in cells with E2F1 knockdown 

compared with control (Figure 2-6A). These effects were not observed in HK357 or HK408, 

lines that were not enriched for an E2F1-activated signature (Figure 2-6A). Likewise, 

knockdown of E2F1 resulted in compromised overall cell proliferation in E2F1-enriched samples 

when E2F1 expression was suppressed (Figure 2-6B), compared with non-enriched cells 

where E2F1 knockdown did not significantly alter proliferation.  
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To determine the in vivo relevance of our findings, we assessed tumor formation capacity in 

HK301 (E2F1-activated) and HK408 (E2F1-non-activated) cell transduced with E2F1 KD 

(knockdown) and control (scrambled) lentivirus. In vivo bioluminescent images showed tumor 

growth in all mice intracranially transplanted with HK408 in both control and KD groups. 

Conversely, HK301 E2F1 KD cells showed limited tumor formation in vivo while animals injected 

with HK301 control cells showed tumors in four out of five mice (Figure 2-6C), and the 

quantification of the luminescence signal was significantly decreased only for this group (Figure 

2-6D). These data demonstrate that the targets uncovered by this pipeline have functional 

implications in patient-derived gliomaspheres.  

 

The transcription factor E2F1 is a critical component of the cell cycle signaling machinery. 

However, having a cluster of samples that do not rely on this molecule for proliferative 

purposes, as demonstrated in vivo and in vitro by loss-of-function experiments in the non-E2F1 

cluster, was surprising. We therefore decided to investigate whether E2F1 might be regulating 

other cellular processes in GBM. E2F1 has been demonstrated to have a role in the 

suppression of senescence in prostate cancer cells and proposed to be a key factor for the 

progression of tumors in the presence or absence of p53 or retinoblastoma (41). Similarly, it has 

been described in breast cancer cells that senescence sensitivity is regulated by an interaction 

between E2F1 and cellular inhibitor of PP2A (CIP2A) (42). Accordingly, we found increased 

expression of CIP2A in the E2F1-activated compared with the non-enriched cluster in the GS 

dataset (Figure 2-7A). Correlation analyses also found highly significant correlations in both the 

TCGA and GS datasets between E2F1 and CIP2A expression (Figure 2-7B). Of note, E2F1 

knockdown affected CIP2A expression only in E2F1-enriched samples (Figure 2-7C), which 

suggests a unique regulatory network primarily utilized in cells belonging to this cluster. We 

decided to test this functionally by treating cells with irradiation and measuring their capacity to 

resolve DNA damage as measured by γH2AX staining. HK217 and HK408 control and E2F1 KD 
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cells were irradiated with a single dose of 8Gy, and cells were stained 12 hours later. HK408 

showed comparable levels of H2AX-positive cells under both conditions (control = 80%, KD = 

78%, n.s.), whereas E2F1 KD significantly impacted the capacity of HK217 cells to resolve DNA 

damage (control = 45%, KD = 68%, p-value = 0.01) (Figure 2-7D). Additionally, we evaluated 

the enrichment of DNA repair- and senescence-related gene sets in samples from both clusters. 

As expected, samples in the E2F1-activated cluster showed higher enrichment for both groups 

of gene sets (Supplementary Figure 2-8). These data further confirm that the pathway-based 

approach we have implemented in these studies has identified a specific molecular target for a 

cluster of samples that has both biological significance and therapeutic potential to advance 

treatment for patients with GBM.  

 

Discussion 

In this study, rather than focusing on driver mutations themselves, our goal was to focus on their 

impact on gene expression and to use the latter in an unbiased manner to assay molecular 

pathways that will influence the biology of the tumor. Our assumption is that while individual 

mutations may influence one of a number of different processes, ranging from protein 

phosphorylation to chromatin modifications, mutations will ultimately result in altered gene 

expression, which then results in modified cellular function. Although our strategy does result in 

a reclassification of tumors and tumor cells, the analyses described in this work present a 

pathway-based approach to uncover biologically relevant, actionable targets derived from the 

heterogenous biology inherent to glioblastoma.  

 

GSEA is a powerful tool used to group sets of genes in a functionally relevant manner. 

However, the gene sets in GSEA, especially in the oncogenic collection, are often based on the 

responses of cells and certain tissues to genetic perturbations, and enrichment for a particular 

gene set does not prove that a specific process or pathway is involved. Furthermore, an 
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individual gene or group of genes can be represented in multiple gene sets. In order to obtain 

more precise information from our analysis, we added an extra layer to our approach where we 

extracted genes that were common to multiple gene sets and that were highly associated with 

the directionality of the principal components. We then analyzed these “eigen-gene sets” for 

their enrichments in pathways and processes. This additional step allowed us to identify 

functionally important genes and processes.  

 

Using our approach, gene lists were established form both bulk tumor samples and patient-

derived gliomasphere datasets and associated with specific cell signatures in a single cell 

dataset. One of the clearest relationships we observed was the strong association between 

signatures associated with E2F1 activation and proliferative signatures. One potential 

explanation of such a finding would be that different tumors have different numbers of 

proliferating cells and thus differential gene expression based on their abundance. However, our 

findings in gliomaspheres suggest that there are more complex processes at play, as both 

E2F1-dependent and non-dependent cultures were highly proliferative at the time of study, 

indicating that the expression differences observed represented true differences in the biology 

of the cells. It is possible that another closely related member of the E2F family would serve the 

same function as E2F1 in the non-enriched population. However, one may surmise that such 

factors would result in similar downstream effectors and therefore would not have appeared to 

be enriched in our studies.  

 

In addition to its role in proliferation, recent studies tie E2F1 function to other processes, 

including DNA repair. E2F1 is known to promote the expression of the DNA repair protein 

CIP2A, which was confirmed to be enriched in our E2F1-activated samples. Our studies 

confirmed inhibition of E2F1 reduced CIP2A expression and reduced the capacity to resolve 

irradiation-induced DNA damage in E2F1-activated gliomasphere cultures. Our analysis also 
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identified small molecules that could selectively target this pathway and be considered for 

development of therapeutics in subclasses of cells. This study leveraged the availability of a 

large library of well-characterized gliomasphere samples. While these are thought to embody 

much of the complexity of GBMs, they are undoubtedly a simpler system and are likely to be 

enriched in actively proliferating cells, as opposed to quiescent stem or stem-like cells. Here we 

report differential sensitivity of tumor cells to E2F1 inhibition between distinct clusters of 

proliferating gliomasphere lines; yet we recognize the limitations of the gliomasphere culture 

system. Most studies based on expression have parsed gliomasphere cultures into two general 

categories, similar to our findings, rather than the multiple subtypes exhibited by tumors 

themselves. It is possible that other culture systems, such as organoids, would be better able to 

replicate the inter- and intratumoral heterogeneity observed in gliomas.  

 

In addition to an E2F1-driven cluster of tumors and gliomaspheres, we observed clusters that 

were not E2F1-driven and that appeared to be more heavily reliant on other pathways. For 

example, the cluster on the left in Figure 2-4A showed diverse enrichment for gene lists whose 

main targets are more classical dysregulated pathways in glioblastoma, such as PIK3R1 and 

PDGF receptor (9). This cluster also had a strong enrichment in the majority of its samples for 

an IFN- and NFB-activated signature. This inflammatory and/or damage response was also 

observed in the TCGA dataset as one of the main components for one the clusters described in 

our first analysis (Supplementary Figure 2-3). Finally, samples predicted to have EGFR 

activation were equally distributed in both clusters, suggesting EGFR expression levels are not 

particularly informative in terms of functional diversity in glioblastoma samples.  

 

In our single cell analysis, where we examined the pathway-based expression of all the cells 

within a tumor, we found that the most significantly enriched gene sets compared to the bulk 

tumor average were generally very similar. This suggests that the predominant pathways used 
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by all or most of the cells within a single tumor might be targeted, but that these pathways would 

vary from tumor to tumor. It is important to note that individual sample analyses did separate 

cells from each tumor into a cell cycle-enriched cluster and non-cell cycle related cluster. In the 

latter, we identified EGR1 as a transcription factor upregulated in most samples (Supplementary 

Table 3, available online). This same molecule was underscored in the modules associated with 

the non-E2F1 cluster when we performed WGCNA (Figure 2-5B and Supplementary Table 4, 

available online). EGR1 has been associated with O-6-Methylguanine-DNA Methyltransferase 

(MGMT) methylation (22). Our findings link a potential prognostic marker to a subset of GBM 

samples that could have potential therapeutic implications.   

 

Moreover, using cell signature scores rather than setting arbitrary values for cell type identities, 

we were able to determine some of the characteristics of individual cells within tumors. This 

analysis confirmed that an E2F1-driven signature correlated with genes that were related to 

mitosis, but inversely correlated with putative markers of stemness. It is unclear whether this is 

because “true” cancer stem cells are slowly dividing, or whether other factors are involved. We 

were able to further our correlational analysis to include cellular states described in glioblastoma 

(11) and cell types from normal brain development. The rationale to do these analyses was 

based on a recent report using scRNA-seq that uncovered a subset of glioblastoma cells with 

outer radial-glia signatures that were able to activate an embryonic pathway to promote invasion 

(12). Our studies link cellular states to cell type-specific signatures and potential targets from 

our gene lists. For example, predicted ICMT activation was negatively associated with stemness 

and positively associated with NPC-like and OPC-like states, as well as adult OPC signatures. 

Similarly, IFN and NFB activation were positively correlated with MES-like1 and MES-like2, as 

well as endothelial and mural (vasculature, pericyte) signatures. This last interaction is 

particularly interesting since it suggests an inflammatory environment as a driver for the 

expression of tumor vasculature markers. This is consistent with the capacity of glioma cells to 



29 

undergo transdifferentiation into endothelial cells and pericytes to promote invasion(36-38). 

These analyses provide new potential avenues for the development of innovative treatments.  

  

Recent reports have appreciated the complexity of tumor cell expression signatures, and now 

the emphasis has been on providing a more holistic view of the cells within each tumor, such as 

cellular states (11), a single axis of variation between proneural and mesenchymal subtypes 

(43), and a recent report using a similar approach to ours that introduces another layer of 

complexity to glioblastoma heterogeneity by uncovering a mitochondrial subtype with unique 

vulnerabilities (44). Our study adds to this trend by providing a novel approach to condense 

tumoral heterogeneity to critical gene lists that can be used to identify upstream regulators. In 

conclusion, we propose a combinatorial approach where precision medicine will be composed 

of sample-specific drugs that also provide specific vulnerabilities to be exploited with metabolic 

and/or immune-activating approaches. The integration of different aspects of a cell or sample is 

paramount for the development of new therapeutics. 
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Materials and Methods 

Patient and tumor datasets 

Glioblastoma samples analyzed were composed of TCGA dataset (5), gliomasphere microarray 

dataset (45), and single cell RNAseq dataset (17) (GSE57872).  

 

Gene set enrichment analysis, gene list generation, and target prediction 

For TCGA and gliomasphere datasets, each sample was compared to the average of the whole 

dataset using the canonical (C2CP) and oncogenic (C6) gene set collections from the GSEA 

website (http://www.gsea-msigdb.org). Enrichment profiles were then used to generate principal 

component analysis plots, and the contribution of each gene set to a particular direction was 

extracted using R-package ‘FactorMineR’. The top 20 contributing gene sets in a particular 

direction were compared to one another and common elements (present in at least 5) were 

considered for the gene lists. The names are derived from the dataset (TCGA or GS), the 

component (PC1 or PC2), and the direction (positive or negative). Datasets were reanalyzed 

with these gene lists to obtain similar clustering and for downstream analyses. Gene lists were 

further explored via Ingenuity Pathway Analysis using the upstream regulator tool. Targets 

(molecules or drugs) were predicted to be activated or inhibited for each of the gene lists used 

as input. 

 

Gene list correlation analysis 

For both the TCGA and GS bulk transcriptomic datasets, Pearson correlation coefficient was 

computed using R (“corr.test” function in “psych” package) for each pair of gene lists using the 

sample-level enrichment scores previously generated. Hypothesis testing was performed for 

http://www.gsea-msigdb.org/
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each pair to assess significance of correlation, resulting in a matrix of both raw and FDR 

adjusted p-values. Correlation plots were generated using the “corrplot” package in R. 

Displayed are the correlation coefficients for each pair and circles whose color and size reflect 

the coefficient value and magnitude, respectively. For pairs with non-significant correlation, the 

coefficients are displayed without circles. Significance was evaluated using α=0.05 for both raw 

(below diagonal) and FDR-adjusted (above diagonal) p-values. Correlation patterns were used 

to group the gene lists using hierarchical clustering, with black boxes marking the resulting 

clusters. 

 

Single cell signature score analysis 

Single cell expression data (n=430) from 5 primary human glioblastoma specimens were 

imported from GSE57872. For each gene set of interest, single cell enrichment scores were 

generated as described (17). Briefly, the enrichment score of a gene set was computed in each 

cell by taking the average expression of genes within the gene set and subtracting the average 

expression of all detected genes. Single cell enrichment scores were generated for 1) the 6 

TCGA/GS gene lists discussed above, 2) the cell cycle meta-signature described in Fig 2B of 

(17), and 3) the stemness signature described in Table S1 of (46). These scores were used to 

visualize pair-wise gene set correlations across cells, specifically between each of the 6 

TCGA/GS gene lists and cell cycle (Supp. Fig. 2-5A) or stemness (Supp. Fig. 2-5B). Single cell 

enrichment scores were then generated for two additional groups of gene sets: developing (32) 

and adult (31) brain cell type markers and glioblastoma cellular state markers (11). These 

scores were used in combination with the 6 TCGA/GS gene list scores to generate a correlation 

plot (Supp. Fig. 2-6) as described above in the “Gene list correlation analysis” section. 
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Patient-derived gliomasphere cultures 

Established patient-derived gliomasphere lines were cultured and maintained as previously 

described (47). Experiments were performed only with lines that were cultured for less than 20 

passages since their initial establishment and were tested for mycoplasma regularly.  

 

In vitro functional analysis: sphere formation and cell proliferation 

Cell proliferation experiments were conducted by plating cells at a density of 2,000 cells/well in 

a 96-well plate in quadruplicate. Cell number was measured after 3 and 7 days and normalized 

to the initial reading at day 0 using the CellTiter Glo Luminescent Cell Viability Assay 

(Promega). The experiments shown represent fold change at day 7 relative to day 0. For sphere 

formation assays, cells were plated at a low density (100, 50, 25, and 12 cells per well) in 96-

well plates (24 wells per density). Cells were maintained for 10 days before sphere formation 

was evaluated. Spheres larger than 10 cells in diameter were considered for analysis. The 

numbers shown represent the number of cells per well or the stem cell frequency as calculated 

using the Walter and Eliza Hall Institute Bioinformatics Division ELDA analyzer 

(http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth, 2009). All sphere formation and 

proliferation experiments were repeated at least three times. 

 

In vivo tumor xenografts and imaging 

For tumor formation assessment, 8- to 12-week-old NOD-SCID null (NSG) mice were used in 

equal numbers of female and male. 5x10^4 tumor cells containing a firefly-luciferase-GFP 

lentiviral construct and either a scrambled or E2F1 shRNA vector were transplanted per mouse 

(n = 5), in accordance with UCLA-approved Institutional Animal Care and Use Committee 
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protocols. Five mice were housed per cage, with a 12hr light/dark cycle, and were provided food 

and water ad libitum. Tumor growth was monitored every 2 weeks after transplantation by 

measuring luciferase activity using IVIS Lumina II bioluminescence imaging. ROIs were 

selected to include the tumor area, and radiance was used as a measure of tumor burden. Mice 

were monitored and sacrificed upon the development of neurological symptoms such as 

lethargy, ataxia, and seizures, along with weight loss and reduction in grip strength. Animals 

were sacrificed by CO2 asphyxiation and secondary cervical dislocation.  

 

Lentivirus transduction in gliomasphere lines 

Lentiviral vector particles containing E2F1 and scrambled shRNAs were purchased from 

Abmgood. Cells were transduced with the corresponding viruses for 48 hours and selected with 

puromycin (Sigma). Knockdown of E2F1 was confirmed using immunoblotting in treated 

samples. 

 

Immunofluorescence analysis 

Cells were plated on 24-well plates pretreated with laminin overnight. After two days of culture, 

cells were fixed in 4% paraformaldehyde for 15 min at room temperature, followed by blocking 

and overnight incubation at 4°C with γH2AX primary antibody (Cell Signaling Technology). Cells 

were then incubated with species-specific goat secondary antibody coupled to AlexaFluor dye 

(568, Invitrogen) and Hoechst dye for nuclear staining for two hours at room temperature. Plates 

were imaged using EVOS microscope, and quantification of positively stained cells was 

performed manually using ImageJ.  
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Immunoblotting analysis 

Cells of interest were lysed using RIPA lysis buffer (Thermo Scientific), and protein 

concentrations were calculated using a BCA protein assay (BioRad). After denaturation with 

Laemmli buffer (BioRad), 10 mg of total protein was loaded on 4-12% polyacrylamide SDS-

PAGE gels (NuPage, Themo Scientific), transferred to polyvinyl difluoride (PVDF) membranes 

(Millipore), and probed using the following antibodies: E2F1 (Santa Cruz Biotechnology, 1:500), 

CIP2A (Santa Cruz Biotechnology, 1:1000), and b-Actin (Cell Signaling Technology, 1:2000) for 

loading control. Species-specific horseradish peroxidase (HRP)-conjugated secondary 

antibodies were used for detection (Cell Signaling Technology, 1:5000). Membranes were 

developed using ECL-2 reagent (Pierce Biotechnology). All western blots were performed at 

least three times. 

 

Irradiation of gliomaspheres 

Cells were irradiated at room temperature using X-ray irradiator (Gulmay Medical Inc., Atlanta, 

GA) at a dose rate of 5.519 Gy/min for the time required to apply an 8Gy dose. The X-ray beam 

was operated at 300 kV and hardened using a 4mm Be, a 3mm Al, and a 1.5mm Cu filter, and 

calibrated using NIST-traceable dosimetry. 

 

Statistical analysis 

Reported data are mean values ± standard error of the mean for experiments conducted at least 

three times. Unless stated otherwise, one-way ANOVA was used to calculate statistical 

significance, with p-values detailed in the text and figure legends. P-values less than 0.05 were 

considered significant. Correlation analyses were performed using Pearson coefficient. Log-rank 
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analysis was used to determine the statistical significance of Kaplan-Meier survival curves. Data 

analysis was done using R v 3.6.3 (48).  
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Figures 

Fig. 2-1. Bioinformatics pipeline for pathway-based analysis. Expression data is analyzed 

through gene sets to generate enrichment score profiles that are then used to cluster samples. 

Top contributors to particular directions are obtained and run through Ingenuity Pathway 

Analysis to determine targets, which can be validated in corresponding samples based on their 

clustering. 

 

Figure 1
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Fig. 2-2. Pathway-based analysis generates three distinct clusters based on enrichment 

profiles. Samples from the Cancer Genome Atlas were analyzed using either canonical 

pathways (A) or oncogenic pathways (B) from the Gene Set Enrichment Analysis to generate 

heatmaps based on the enrichment profile of each sample (column) with respect to each gene 

set (row) in both collections. (C and D) Profiles from (A) and (B), respectively, were used to 

generate principal component analysis plots labeled by color and shape for each cluster. Circle 

lines represent the normal distribution of the samples in each cluster. 

 

Figure 2
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Fig. 2-3. Pathway-based clusters have clinical significance and do not overlap with 

molecular subtypes. (A) TCGA samples were clustered based on the original molecular 

subtypes described, and Kaplan-Meier curves were obtained. (B and C) Samples clustered 

based on enrichment profiles for canonical and oncogenic gene sets, respectively, were 

analyzed for survival using Kaplan-Meier curves. Tables at the bottom describe the distribution 

of the molecular subtypes for each cluster. Dotted lines represent median survival for each 

curve (also described in top tables). Time shown is in months. P-values after post-hoc analyses 

using Bonferroni-Hochberg correction. 

 

Figure 3

A

B
Canonical Pathways Oncogenic Pathways

 Classical    Mesenchymal  Proneural

Cluster 1       45           133         18

Cluster 2      105            13         89

Cluster 3       49            20         56

 Classical    Mesenchymal  Proneural

Cluster 1       52             7         52

Cluster 2      101            31         99

Cluster 3       46           128         12
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Fig. 2-4. Gene lists predict E2F1 as a main target in one of the clusters found in the 

gliomasphere dataset. (A) Enrichment profiles using gene lists were generated for 

gliomasphere samples. (B) Each gene list was evaluated using IPA and top predicted activated 

and inhibited upstream regulators are shown. (C) PCA plot from enrichment scores generated in 

(A) showing how each gene list contributes to a particular direction. (D and E) Samples from 

both clusters were evaluated for their enrichment of cell cycle-related (D) or downstream E2F1 

target (E) gene sets from the canonical pathway collection.  

 

Figure 4
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Fig. 2-5. Differential expression analysis and weighted gene co-expression network 

analysis underscores cell cycle enrichment and reveals distinct modules in both 

clusters. (A) Gene expression from the gliomasphere dataset was assessed through differential 

expression analysis. Cluster 1 represents samples in the E2F1-enriched cluster. Two examples 

from Gene Ontology are shown, depicting high enrichment for cell cycle terms. (B) WGCNA 

generated 26 modules when samples were analyzed based on their enrichment profiles for the 

gene lists. (C) Modules are ranked based on their abundance in both clusters. Modules at the 

top are highly enriched in the E2F1-activated cluster (cluster 1).  

 

Figure 5

A

B C
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Fig. 2-6. E2F1 silencing compromises self-renewal and proliferation in vitro and tumor 

formation in vivo. (A) Samples from both clusters were treated with control (scrambled) or 

E2F1 siRNA and plated under limiting dilution in a 96-well plate. Graphs depict the number of 

wells that did not form spheres after 10 days vs. the number of cells plated (a vertical line 

implies all wells formed spheres). (B) Cells treated with scrambled or E2F1 siRNA were plated 

at a density of 2,000 cells per well in a 96-well plate in quadruplicate, and their growth was 

evaluated using luminescence. Relative growth is the fold change compared to basal 

measurement. (C) Cells from the E2F1-activated cluster were treated with two drugs identified 

using IPA, and their sphere formation capacity was evaluated after 10 days. (C) Cells treated 
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with scrambled or E2F1 shRNA were intracranially injected in NSG mice. Luminescence was 

assessed four weeks after transplantation. (D) Quantification for each group in (C) is shown. 

Experiments in (A) and (B) were performed at least three times. Data are represented as mean 

+/- SEM. **p<0.01 and ***p<0.001 as assessed by one-way ANOVA. 

 

Fig. 2-7. E2F1 silencing compromises DNA damage response induced after irradiation. 

(A) Gene expression levels of E2F1 and CIP2A in the gliomasphere dataset. (B) TCGA (top) 
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and gliomasphere (bottom) samples were plotted based on their expression levels of E2F1 and 

CIP2A (two different probes in the gliomasphere dataset). Trend lines show significant positive 

correlation > 0.5. (C) Cells were treated with either C (control) or E (E2F1) shRNA, and protein 

was assessed for E2F1 and CIP2A levels. Actin serves as the loading control. (D) Treated cells 

were subjected to irradiation (8 Gy) and fixed after 12 hours for γH2AX staining (red). Nuclei 

were counterstained using DAPI. Quantification for each group is shown on the right. 

Experiments in (C) and (D) were performed at least two times. Data are represented as mean 

+/- SEM. **p<0.01 and ***p<0.001 as assessed by one-way ANOVA. 
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Supplementary Figures 

Supplementary Fig. 2-1.  

Consensus clustering identifies three clusters for the TCGA dataset. (A and D) Non-

negative matrix factorization (NMF) was performed with ranks ranging from 2 to 6. Various 

metrics are shown for canonical (A) and oncogenic (D) gene set collections. (B and E) 

Consensus clustering based on NMF with ranks 2 through 4, showing general structure for each 

rank in both canonical (B) and oncogenic (E) collections. (C and F) Random Forest classifier 

was used to validate the robustness of the number of clusters selected. For each analysis, 

canonical (C) and oncogenic (F), training sets were generated and shown are the results for the 

correct clustering in the validations sets. 

Supplementary Figure 1
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Supplementary Fig. 2-2.  

Pathway-based clustering does not overlap with molecular classification. Principal 

component analysis plots generated in Figure 2-2C and 2-2D were colored by molecular subtype 

in canonical (left) and oncogenic (right), respectively. Samples for which no subtype was 

determined are labeled as NA (black). Circle lines represent the normal distribution of the 

samples in each cluster. 

  

Supplementary Figure 2

Canonical Pathways Oncogenic Pathways
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Supplementary Figure 3
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Supplementary Fig. 2-3.  

Gliomasphere dataset analysis generates two clusters and TCGA gene ontology analysis of 

clusters shows differentially enriched terms. Samples from a 70-sample patient-derived 

gliomasphere dataset were analyzed using canonical (A) and oncogenic (B) pathways from the 

GSEA to generate heatmaps based on the enrichment profile of each sample (column) with 

respect to each gene set (row). (C) Profiles from (A) at the top and (B) at the bottom were used 

to generate PCA plots labeled by color and shape of each cluster. Circle lines represent the 

normal distribution of the samples in each cluster. (D) TCGA samples were reanalyzed utilizing 

the gene lists generated in Figure 2-4 to obtain enrichment profiles for each sample (not shown) 

and the corresponding shown PCA plot. The arrows show the contribution of each gene list to a 

particular direction in the plot. (E) The three clusters generated for the TCGA dataset were 

analyzed using differential expression analysis and then analyzed for the enrichment of gene 

ontology terms in each cluster. The plot shows the terms most highly enriched in a particular 

cluster compared with the other two. The expression of marker genes in each cluster is shown for 

every sample. 
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Supplementary Fig. 2-4.  

Correlation between gene lists in TCGA and gliomasphere datasets. The generated gene lists 

were used to obtain scores for each sample in both TCGA (top) and GS (bottom) datasets. 

Correlations between these scores in all samples for either dataset are shown, where the presence 

Supplementary Figure 4

TCGA dataset

Gliomasphere dataset
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of a circle represents significant correlation and the size and color depict the strength of the 

correlation. Boxes mark groups of gene lists strongly correlated (based on hierarchical 

clustering).  

 

 

 

 

Supplementary Fig. 2-5.  

Pathway-based clustering in single cell dataset reveals low intratumoral heterogeneity. 

Samples from a single cell RNA-seq database were analyzed using either canonical pathways 

(left) or oncogenic pathways (right) from the Gene Set Enrichment Analysis to generate 

heatmaps based on the enrichment profile of each sample (column) with respect to each gene set 

(row) in both collections. Colors at the top represent the sample to which each cell belongs 

(MGH26 = grey, MGH264 = magenta, MGH28 = cyan, MGH29 = orange, MGH30 = green, 

MGH31 = purple; grey and magenta overlap the most because MGH26 and MGH264 are 

different analyses from the same sample). 

Supplementary Figure 5
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Supplementary Fig. 2-6.  

Gene lists differentially correlate with cell cycle and stemness signatures. (A and B) Gene 

lists were used to obtain scores for each cell in the scRNA-seq dataset [17]. Similarly, stemness 

and cell cycle score scores were generated using the signatures reported in the same paper. For 

each cell, we plotted the scores for cell cycle (A) or stemness (B) signatures against the scores 

for all the gene lists. Cells are colored by tumor of origin and p-values and correlation 

coefficients are shown for each plot.  
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Supplementary Fig. 2-7.  

Gene lists differentially correlate with cellular states and cell specific markers. Scores 

generated for each cell in Supplementary Figure 2-5 using gene lists were correlated with scores 

for cellular states ([11]) and specific cell type markers in development and adult brain ([31, 32]). 

The presence of a circle represents significant correlation, and the size and color depict the 

intensity of the correlation. Boxes mark groups of gene lists strongly correlated (based on 

hierarchical clustering).  

  

Supplementary Figure 7
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Supplementary Fig. 2-8.  

E2F1-enriched samples have high enrichment scores for DNA repair gene sets.  Samples in 

the gliomasphere dataset from both clusters (determined in Figure 2-4) were evaluated for their 

enrichment of DNA repair gene sets from the canonical pathway collection.  
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Single nucleus RNA-sequencing reveals spatial and temporal signatures of 

enhancing and non-enhancing regions in high-grade glioma 
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Abstract 

Both therapy for and molecular investigations into high-grade glioma largely focus on the 

contrast-enhancing (CE) portion of the tumor core. However, given the invasive nature of 

glioma, residual tumor cells responsible for recurrence likely exist in the peripheral, non-

enhancing (NE) region. Single cell/single nucleus RNA-sequencing and subsequent 

bioinformatics analyses offer a flexible and scalable framework that allows powerful 

examination of tumor and non-tumor cell subpopulations across various contexts. In this study, 

we use pre-operative magnetic resonance images to prospectively identify biopsy targets in the 

CE region and NE sites that lie 0.5-2.0cm beyond the CE edge from multiple pathologically and 

molecularly distinct high-grade gliomas and leverage single nucleus RNA-sequencing to 

generate over 30,000 individual RNA profiles. We first establish three methods: an improved 

approach to accurately identify malignant glioma cells, a customizable wrapper function for 

visualization of marker expression profiles and hierarchies across clusters, and a new tool for 

generating copy number-based subcluster hierarchy plots that are annotated with pie charts 

underneath showing composition based on any given metadata variable. We then analyze 

multiple glioma cellular states, genetic subclones, and hierarchical relationships among 

malignant cells, all of which reveal both conserved and patient-specific features. There remains a 

significant tumor cell burden in the NE edge, and a subset of malignant cells in this region are 

actively proliferating. Systematic comparison of the CE and NE regions identifies altered 

malignant and non-malignant cell compartments, as well as cell type- and patient-specific 

differences in gene expression and pathway utilization profiles. Implementing an unsupervised 

machine learning approach for cell type prioritization reveals that MES-like and AC-like 

malignant cells are not only the most divergent populations between the two regions in the IDH-
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WT GBMs, but also the only malignant populations whose intertumoral heterogeneity was 

significantly different between regions (lower in NE, implying convergence). Finally, we build 

an integrated atlas of GBM cell-cell communication networks among malignant and non-

malignant subpopulations in the two regions and identify a significantly rewired connectome in 

the NE region, allowing us to pinpoint MES-like cells, altered vascular function, and neuro-

immune interactions as potential drivers of regional divergence in glioblastoma. 

 

Introduction 

The intervention that provides the greatest contribution to overall survival in adult glioma 

remains surgical removal of tumor cells [1]. The current surgical standard of care is imaging-

based resection of the contrast-enhancing (CE) region as depicted by T1-weighted magnetic 

resonance imaging (MRI) with gadolinium contrast [2]. The greater the extent of resection of the 

CE region, the greater the contribution to survival [3]. However, despite gross total resection of 

CE regions, high grade gliomas invariably recur, and this most commonly occurs at the edge of 

the resection cavity [4]. Given the invasive nature of glioma [5], these data suggest that glioma 

cells exist beyond the CE portion as seen on MRI, and that these cells are 1) not being removed 

by surgery and 2) capable of reconstituting the tumor despite standard of care adjuvant radiation 

and chemotherapy [2, 6, 7].  

 

Strategies for molecular targeted therapy for glioma have largely been developed by studying 

bulk RNA or protein expression from cell lines or clinical surgical specimens, which, as 

described above, are typically derived from the CE portion of the tumor. This strategy fails to 

account for the mixed population of cell types in glioma and does not develop strategies aimed at 
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the true targets for adjuvant therapy: residual cells beyond the CE portion of the tumor that are 

not resected. To counteract some of this criticism, several studies have utilized single cell 

sequencing to study intratumoral heterogeneity and hierarchical relationships between tumor cell 

types [8–14]. These studies have largely focused on single samples from CE regions of tumors, 

with very little data from regions beyond the CE edge that highlight the clinical relevance of 

intratumoral heterogeneity. 

 

In this study, we prospectively select CE and NE targets from 6 high grade gliomas (4 IDH wild-

type glioblastomas, 1 IDH mutant glioblastoma, 1 IDH mutant anaplastic oligodendroglioma) 

and 1 low grade (non-enhancing) oligodendroglioma. We couple intraoperative neuronavigation-

guided targeted biopsy specimens from CE areas and areas beyond the edge of CE with single 

nucleus RNA-sequencing in order to evaluate a large number (32,914 after QC) of positionally 

localized cells. Our experimental design differs from previous single cell analysis in glioma in 

two fundamental ways: 1) we detail specific positional data to model cell populations on a spatial 

plane, and 2) we utilize nuclear sequencing and multiple biopsy specimens to obtain a high 

number of cells per sample. Our data provide a spatial landscape of tumor and non-tumor (glial, 

neuronal, immune, and endothelial) cell types as well as the gene expression, pathway activation, 

and interaction characteristics of these cell populations. We focus on the biopathology of glioma 

beyond what is currently the target of therapy, the CE region of the tumor. We reveal that these 

non-treated areas have significant tumor burden, proliferative capacity, differentially enriched 

genes and pathways, and rewired cell-cell interaction patterns. We specifically highlight MES-

like cells as potentially undergoing a state switching event, with vascular remodeling enriched in 
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the tumor core and proliferation enriched in the tumor periphery. Our analysis thus identifies 

specific target cells and pathways for future study and therapeutic development. 

 

Results 

Improved identification of malignant cells and subclones via snRNA-seq and CNA inference 

We prospectively identified biopsy targets using pre-operative MRI in all patients undergoing 

surgery for glioma. For each of the 6 high grade gliomas (5 GBMs, 1 anaplastic 

oligodendroglioma), we selected 3 biopsy targets: 2 from the contrast-enhancing (CE) core of the 

tumor and 1 from the non-enhancing (NE) edge of the tumor, located 5-20mm from the CE edge 

(2 examples shown in Fig. 3-1a). Clinical pathology and fluorescence in situ hybridization 

(FISH) results identified: one IDH1 R132H 1p/19q co-deleted WHO III anaplastic 

oligodendroglioma, one IDH1 R132H EGFR-amplified WHO IV GBM, one IDH wild-type 

PTEN-deleted WHO IV GBM, three IDH1 wild-type WHO IV GBMs, and one IDH1 R132H 

1p/19q co-deleted WHO II oligodendroglioma (Supplementary Fig. 3-1a). We refer to the IDH 

wild-type GBMs as “IDH-WT GBM,” the IDH mutant GBM as “IDH-mut GBM,” the grade III 

anaplastic oligodendroglioma as “GIII-O,” and the low grade oligodendroglioma as “LGG.” We 

isolated nuclei from each biopsy specimen and performed single nucleus RNA-sequencing 

(snRNA-seq) using the 10X Genomics workflow, yielding 32,914 individual nuclear 

transcriptomes that passed quality control filtering and that were included in the subsequent 

analyses (Fig. 3-1b, Supplementary Fig. 3-1b-d). To account for batch effects, we performed 

integration to generate one combined dataset, followed by graph-based clustering using the 

Louvain method for community detection (Fig. 3-1c-d, Supplementary Fig. 3-1e). 
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Tumor specimens typically comprise both malignant and non-malignant cells, so we first sought 

to identify malignant cells in our dataset. This is typically done by examining cluster-based 

canonical cell type expression patterns and/or copy number alteration (CNA) profiles. To build 

on these approaches, we developed a multi-step strategy that aims to improve accuracy and 

reduce noise (Fig. 3-2). In this workflow, we first examined canonical brain cell type marker 

expression patterns and hierarchical relationships across the clusters identified in each patient to 

assess whether putative normal brain cell types can be readily identified (Fig. 3-2a). Next, we 

performed an iterative sequence of single cell CNA inference analysis using the inferCNV R 

package [15] (Fig. 3-2c; see Methods). CNA inference was first performed without a reference 

group of cells, and the cells were grouped by original expression cluster to examine cluster-

specific CNA profiles. Next, to resolve the observed heterogeneity within clusters, the cells were 

grouped by CNA profile via hierarchical clustering. In our dataset, canonical glioma CNA events 

were clearly visualized in each patient, and cells separated based on these events. Also, the 

resulting CNA clusters were mostly composed of cells belonging to similar expression-based 

clusters (second vertical color bar from the left in each heatmap), allowing confident 

identification of non-malignant cells as those belonging to both putative normal RNA clusters 

and non-malignant CNA clusters. Prior to the next step, myeloid cells (positive for myeloid 

markers and chromosome 6 amplification in MHC region) were removed to focus on brain 

lineages. CNA inference was then repeated using a normal cell type as reference, both to remove 

bias from composition differences across tumors and to identify CNA events relative to normal 

cells rather than to the average cell. Normal oligodendrocytes were selected as the reference cells 

since they were the only non-malignant, brain derived (i.e., non-immune) cell type present in all 

patient datasets. Cells were again grouped by CNA profiles, and cells belonging to clusters 
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exhibiting canonical glioma CNA events were labeled as malignant. Finally, CNA inference was 

performed using only the malignant cells identified in the previous step and normal 

oligodendrocytes as reference. Consistent with previous studies [9-11], hierarchical clustering 

using the final malignant cell CNA profiles from each tumor identified multiple groups with 

specific CNA events, indicating the presence of distinct subclones (Fig. 3-2c-d). By developing 

this technique that integrates multiple rounds of CNA inference with the original transcriptome-

based clustering information, we address several problematic types of cells: 1) malignant cells 

that, due to their atypical transcriptomes, belonged to putative normal RNA clusters 

(Supplementary Fig. 3-2a-b), 2) normal cells belonging to putative malignant or unclear RNA 

clusters, and 3) cells with noisy or unclear expression or CNA profiles, which we removed at 

each step by identifying small outlier groups (Supplementary Fig. 3-2c). For all subsequent 

analyses, malignant cells (Fig. 3-2e) were separated from non-malignant cells, and both datasets 

were processed again separately (see Methods).  

 

Analysis of cellular states in glioma highlights intra- and inter-tumoral heterogeneity 

We then sought to group malignant cells based on conserved drivers of intratumoral 

heterogeneity. Previous studies have identified multiple malignant cell types in gliomas, with 

marker expression profiles consistent with multiple differentiated brain lineages (e.g. 

oligodendrocytes, astrocytes, neural progenitor cells) [9-12, 16]. Neftel et al. (2019) presented an 

integrated model of glioblastoma malignant cellular states defined by distinct gene networks that 

robustly characterize intratumoral heterogeneity across multiple large glioblastoma cohorts. We 

implemented their proposed molecular classification strategy to stratify malignant glioma cells in 

our dataset based on their transcriptomic profiles. We generated single cell enrichment scores for 
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each of the reported gene networks (meta-modules) and classified malignant cells according to 

the four cellular states described: astrocyte-like (AC-like), mesenchymal-like (MES-like), neural 

progenitor cell-like (NPC-like), and oligodendrocyte precursor cell-like (OPC-like) (Fig. 3-3a-b; 

see Methods). We also generated single cell enrichment scores for the two reported cell cycle 

programs, corresponding to G1/S and G2/M phases, and identified cycling cells based on the 

distribution of scores, as described (see Methods). To validate this classification scheme in our 

dataset, we then identified patterns of functional enrichment in each malignant cell population 

(Fig. 3-3f). Significantly enriched pathways generally corresponded to the cell types that each 

malignant population resembles, confirming that these specific gene lists are separating 

malignant cells based on expected functional patterns. 

 

We then characterized intertumoral heterogeneity in malignant cell composition by performing 

differential abundance analysis across patients. Most tumors were composed of all malignant 

cellular states (Fig. 3-3c), but the proportion of each population was significantly different across 

tumors (Fig. 3-3d). As expected, the two oligodendrogliomas, TB76 and TB81, had the highest 

proportion of OPC-like cells; relative to the low grade tumor, the high grade oligodendroglioma 

had a higher proportion of AC-like and cycling cells and a lower proportion of OPC-like cells, 

suggesting the progression from low to high grade may be driven by OPC-to-AC conversion in 

oligodendrogliomas. MES-like cells were specific to glioblastomas (<5 cells in each 

oligodendroglioma). Interestingly, one tumor (PT95) was composed almost entirely (98%) of 

MES-like and cycling cells. The IDH-mut glioblastoma had the lowest proportion of NPC-like 

cells. The proportion of cycling malignant cells was highest in the four IDH-WT glioblastomas 

and was <10% in all tumors except PT90. In terms of which cellular states tend to be cycling, 
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NPC-like and OPC-like cells had the two highest cycling proportions in all tumors (except PT95, 

which had <5 OPC-like cells) (Fig. 3-3e). However, we noted that each cell state had a cycling 

compartment in most, if not all, patients and thus may contain cells with the potential to initiate 

tumor recurrence. 

 

We then sought to evaluate malignant cell populations more rigorously in terms of their 

contribution to intertumoral heterogeneity. While differential gene expression and pathway-level 

analyses offer tremendous insight when comparing cell populations, important complex patterns 

may not be readily identified when cell type abundances are not balanced across groups. More 

populous groups are likely to exhibit more differential expression that reaches statistical 

significance, even if they are not the most perturbed across conditions. To combat this, we 

reasoned that rather than comparing amount of differential expression, we could rank malignant 

cell populations based on broader transcriptomic patterns that may drive functional divergence 

across patients at the single cell level. To evaluate malignant cell populations based on 

variability across patients, we used Augur [17], which implements a machine learning algorithm 

that trains a classifier and determines how accurately cells from each cell type can be classified 

according to the experimental condition they belong to. Cell types are then ranked by their 

classification accuracy, which describes how “separable” they are by condition. To evaluate 

intertumoral heterogeneity, we instructed the classifier to split malignant cells based on cellular 

state and to evaluate how accurately the cells in each state could be labeled according to the 

patient that they were isolated from. Across the four cellular states, the classification accuracy 

was very high and nearly identical (Supplementary Fig. 3-3a, left). We then performed the 

reverse analysis, instructing the classifier to split the dataset by patient identity and attempt to 
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predict the cellular states of cells within each patient. The resulting accuracies were all lower 

(Supplementary Fig. 3-3a, right) than the previous classification attempt, indicating greater 

separability (higher accuracy) when comparing across patients rather than across cell states 

within patients. This analysis clearly indicates that there is more inter-tumoral heterogeneity than 

intra-tumoral heterogeneity, at least with cellular state as the secondary grouping variable. 

 

One area of controversy relates to whether there exists a phenotypic hierarchy amongst different 

malignant cell populations, with the neural stem cell-like cells potentially giving rise to the other 

cell types. Investigations in this area are often based on transcriptomic analysis. However, 

hierarchy can be more definitively delineated by examining CNA profiles across groups of cells, 

as groups exhibiting CNA events that are supersets of other groups (i.e., the same alterations and 

more) are likely downstream in the evolutionary hierarchy. To assess whether the different 

malignant cell populations in this cohort might exist along an evolutionary hierarchy, we first 

identified CNA subclusters in each tumor by repeating the CNA inference procedure described 

above using a tumor subcluster partitioning method based on permutation and tree construction 

(see Methods). We then sought to visualize the tree for each patient and superimpose other 

useful information, such as cellular state composition in each subcluster. However, we found that 

methods to visualize hierarchies based on these subcluster identities are currently lacking, with 

common tools requiring manual annotation and image editing in other software programs. We 

thus developed a customizable analytical tool to first convert tumor CNA subcluster information 

into a convenient nomenclature for plotting hierarchy trees, then visualize hierarchical 

relationships based on these subclusters with simultaneous superimposition of other types of 

metadata information present in the sequencing dataset. This method can be applied to any 
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cancer sc/snRNA-seq analysis and can thus enable more advanced investigations in many 

research areas. We applied our tool to this glioma dataset to examine each patient’s CNA 

subcluster composition and subcluster-specific compositions of malignant cellular states and 

biopsy regions (Supplementary Fig. 3-3b-d). We observed that, without any user bias, the 

random tree algorithm identified 8 CNA-based subclusters in the malignant compartments of 

each tumor, and that each of these subclusters was a terminal node in the branching hierarchy 

(after 3 branching events). This suggests that none of the malignant populations in this cohort lie 

upstream or downstream of other malignant populations in terms of evolutionary hierarchy. As 

these are recurrent tumors, this is potentially owing to malignant cells having advanced after 

fully diverged in the past. We also noted that the subclusters within each tumor had varying 

profiles in terms of cellular state composition. Strikingly, a vast majority of the subclusters 

identified across all tumors were dominated by one cellular state, with only a few being more 

evenly mixed. By contrast, the tumors analyzed in Neftel et al. (2019) did not show significant 

interaction between cellular state and CNA subclone. Again, this may be related to the difference 

between recurrent and primary gliomas, suggesting malignant populations may diverge 

significantly throughout the disease course and could exist in multiple stable groups by the time 

recurrence occurs, in contrast to the significant state plasticity observed in primary gliomas [10]. 

 

Beyond the CE core of glioma: significant tumor burden and altered cell type composition 

We next used positional information to compare cellular and molecular profiles in the contrast-

enhancing (CE)/core and non-enhancing (NE)/edge regions of glioma. For each tumor, there 

were two samples taken from CE regions of the tumor and one from an NE, FLAIR-positive 

region beyond the CE edge. We filtered our dataset to include only the 5 tumors for which we 
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successfully recovered nuclear transcriptomes from both CE and NE biopsy specimens, which 

were TB76 (GIII-O), TB77 (IDH-mut GBM), TB78 (IDH-WT GBM), PT90 (IDH-WT GBM), 

and PT94 (IDH-WT GBM). We first grouped malignant cells based on the region they were 

isolated from and assessed tumor burden in the NE region by examining the presence and 

quantity of malignant cells. We observed that malignant cells were indeed present in the NE 

region in all patients, and that there were generally fewer malignant cells in the NE region than 

the CE region (Fig. 3-4a). Malignant cell proportion in the CE region was highest in the GIII-O, 

followed by the three IDH-WT GBMs, and lowest in the IDH-mut GBM (Fig. 3-4b). In the NE 

region, the IDH-WT GBMs had the three highest malignant cell proportions, followed by the 

GIII-O and lastly the IDH-mut GBM. Malignant cell proportion was similar or higher in NE 

compared to CE in the IDH-WT GBMs and lower in the IDH-mut GBM and GIII-O. 

 

Given that malignant cells comprised a significant proportion of the samples from the NE 

regions, we sought to model the true tumor burden on MR imaging. We used three tumors for 

this analysis: TB76 (GIII-O), TB77 (IDH-mut GBM), and TB78 (IDH-WT GBM). Using the 

quantity of tumor cells from three points of interest in each tumor, we applied a standard 

quadratic equation (see Methods) to extrapolate the distance from the center of the tumor to 

where the tumor burden would approach 0 (Fig. 3-4c). This model predicted presence of tumor 

cells 2.26-3.09 cm from the center of the tumor, and a spheroid with this radius was constructed 

and overlaid on the corresponding pre-operative MR image (Fig. 3-4d). It was clear from this 

overlay that the predicted tumor edge was beyond the CE region of the tumor, and in the three 

tumors was predicted to be 1.41, 1.45, and 1.59 cm beyond the CE edge, still within the region of 

FLAIR positivity. The invasion and growth patterns of glioma are complex, with cases of 
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multifocal and distant lesions [18], but our data suggest a consistent presence of tumor burden 

immediately surrounding the CE bulk that is often not clinically addressed. 

 

Despite integration to correct for technical variation, we noted from the low dimensional plots 

(Fig. 3-4a) that there was altered cluster composition in the NE region compared to the CE 

region, which was confirmed by comparing the cluster breakdown across regions 

(Supplementary Fig. 3-4a), suggesting significant transcriptional and compositional differences 

across regions. Following up on these changes, we performed differential abundance analysis to 

identify regional differences in proportions of cellular states. In the NE regions of the three IDH-

WT GBMs, the proportions of MES-like malignant cells were decreased, and the proportions of 

NPC-like malignant cells were increased. In the NE region of the IDH-mut GBM, OPC-like cells 

were decreased, and AC-like cells were increased; the opposite was observed in the GIII-O. 

 

Since actively cycling cells are likely the main contributors to tumor progression and recurrence, 

we then compared the two regions in terms of cycling tendency using the previously generated 

annotations. The proportion of cycling malignant cells was not significantly different overall, and 

there were variable differences within each patient dataset (Fig. 3-4f). To characterize cycling 

via immunohistochemistry (IHC), we obtained image-guided biopsies in an additional set of 22 

patients to analyze a total of 28 tissue specimens from NE regions and 31 specimens from CE 

regions (Supplementary Fig. 3-4b). Quantification of IHC images stained for Ki67 showed a 

wide distribution in both CE and NE regions, including several NE samples with high Ki67, but 

no significant difference between regions (Fig. 3-4g). In addition, we identified 5 patients where 

samples from both CE and NE regions were obtained during the same procedure (Fig. 3-4h-i). In 
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these paired samples, Ki67 positivity was not significantly different between regions but was 

higher in the NE region of each tumor. While it is not clear if tumor cells in the NE region are 

significantly more proliferative than those in the CE region, our data indicate that the tumor cells 

in the NE region are actively proliferating, consistent with our hypothesis that they drive 

eventual recurrence. 

 

To assess regional differences in terms of the cycling tendencies of individual cellular states, we 

split the cells by state and compared the cycling proportions between the NE and CE regions 

(Fig. 3-4j, top). In the NE regions, the cycling proportion of OPC-like cells was decreased in the 

IDH-WT GBMs and increased in the IDH-mut GBM and GIII-O. Interestingly, in PT90, the 

MES-like malignant cells overtake the NPC-/OPC-like cells in terms of cycling proportion in the 

NE region. Overall, MES-like cells exhibited the most consistent increase in cycling fraction in 

the NE region, a trend that was observed in 3 of 4 tumors that contained MES-like cells. We also 

performed the analysis in reverse to examine the state composition within the cycling 

compartment in each tumor (Fig. 3-4j, bottom) and found that in the IDH-WT GBMs, the 

cycling compartment was depleted of AC-like cells in the NE compared to CE regions. In the 

IDH-mut GBM, AC-like and NPC-like cells were depleted and MES-like and OPC-like cells 

were enriched in the NE cycling compartment. In the GIII-O, OPC-like cells were enriched and 

NPC-like cells were depleted in the NE cycling compartment. 

 

Finally, we noticed that there was a connection between tumor burden (proportion of malignant 

cells) in the NE region (Fig. 3-4b) and proportion of malignant cells that are cycling (Fig. 3-3c), 

as the tumors with the highest (PT90) and lowest (TB77) tumor burden in the NE region 
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exhibited the highest and lowest proportion of cycling malignant cells, respectively. Comparing 

the ranking with respect to these two metrics of all five tumors that had both CE and NE 

transcriptomes confirmed an identical rank order, and correlation analysis using the numerical 

values suggested a positive correlation (Pearson r=0.71, p=0.09; Spearman rho=1, p<0.01). 

Importantly, splitting the cells by region showed that this was driven by the cycling proportion 

rankings in the CE region (identical to NE tumor burden rankings) and not the cycling proportion 

in the NE region (not identical to NE tumor burden rankings). Thus, in this cohort, the proportion 

of malignant cells in the CE region that are cycling was predictive of relative quantitative tumor 

burden in the NE region, highlighting the power of this approach in finding biomarkers and 

drivers of tumor progression that may not be observed otherwise. 

 

Region-specific molecular features of malignant cells in glioma 

Because of their potential role in tumor recurrence, we next sought to investigate the gene 

expression profiles of malignant cells found in the NE regions of the tumor. We performed 

differential expression analysis to identify differentially expressed genes (DEGs) in malignant 

cells from the NE vs CE regions. The comparisons consisted of 1) all cells, 2) cells split by 

cellular state, and 3) cells split by cycling status. We analyzed each patient dataset individually 

to identify patient-specific regional differences, then examined whether there were conserved 

changes across patients (Fig. 3-5a-e). We observed several global differential expression 

patterns. As expected, the number of significant DEGs generally correlated with the number of 

cells included in the comparison, with one notable exception: MES-like cells had the highest 

number of conserved NE-enriched genes across tumors (Fig. 3-5a), despite having few, if any, 

upregulated genes within each tumor (Fig. 3-5b). Interestingly, in terms of directionality, we 
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observed that all comparisons within an individual tumor that resulted in >5 DEGs were skewed 

in the same direction, with the only exception being NPC-like cells in TB78. Across nearly all 

comparisons, DEGs were mostly downregulated in PT94 and TB78, and mostly upregulated in 

PT90, TB76, and TB77. This suggests the presence of a global transcriptional activation or 

repression phenotype in the NE region that is conserved across cell populations (grouped by both 

cell state and cycling status) within each patient dataset. 

 

To examine functional impact of these differential expression patterns, we then performed gene 

set enrichment analysis (GSEA) using the fgsea R package [19]. As input, we included the GO 

Biological Pathways, Canonical Pathways, Oncogenic Pathways, and Transcription Factor 

Target databases [20]. Using conserved DEGs across tumors in all malignant cells, we identified 

686 significantly altered pathways between the two regions (Benjamini-Hochberg adjusted p-

value <  0.05). Malignant cells in the NE region exhibited conserved upregulation in many 

pathways related to neuronal and synaptic function and downregulation in gene sets linked to 

extracellular matrix function, immune response, vascular development, EGFR signaling, and 

hypoxia (Fig. 3-5f). Analysis of all malignant cells in each individual patient dataset revealed a 

wide range of regional pathway enrichment magnitude. The GBMs all had at least 400 

dysregulated pathway terms in NE compared to CE (1143 in PT94, 790 in TB78, 787 in TB77, 

483 in PT90), while the GIII-O (TB76) had only 56 (Fig. 3-5g, Supplementary Fig. 3-5a). We 

noted that the rank order of GBMs based on number of differentially enriched pathways was 

identical to the order obtained when ranking the tumors by MES-like proportion in the CE 

region, as well as perfectly opposite of the ranking of overall OPC-like proportion, suggesting an 
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antagonist relationship between these two cell types in terms of driving progression and 

biological divergence in the edge region of gliomas compared to the core. 

 

By evaluating each tumor individually, we were able to identify patient-specific patterns of 

biological dysregulation in the NE regions. PT94, the tumor with the most dysregulated 

pathways, exhibited upregulation in many neuron-/synapse- related terms and downregulation in 

gene sets related to platelet function, translation elongation, EGFR signaling, immune function, 

and cilia motility (Fig. 3-5g). TB78 also exhibited upregulation in neuronal pathways, along with 

downregulation of terms related to p53/cell cycle regulation/tumor suppression, differentiation, 

and ECM, suggesting a transition to a proliferative state in the NE region (Supplementary Fig. 

3-5a). In TB77, there was upregulation in pathways related to B cell function, angiopoietin, and 

STK33, which has been linked to tumor migration, EMT, and angiogenesis [21]; downregulation 

was observed in neuronal and synaptic signaling terms. PT90 had upregulation in ribosome- and 

translation-related terms and downregulation in immune function, transcription, and MAPK 

signaling. Finally, the GIII-O TB76 exhibited mostly upregulated pathways, most prominently 

related to ribosome and translation, along with the node of Ranvier compartment, likely owing to 

the expansion of the OPC-like malignant compartment. 

 

Considering conserved regional DEGs across tumors in the individual malignant cellular states 

revealed via GSEA that AC-like and MES-like cells showed the most pathway dysregulation 

(103 and 46 significant terms, respectively). AC-like cells exhibited upregulation in neuron-, 

synapse-, and cell-cell interaction-related pathways and downregulation in antigen presentation, 

signaling via the oncogenic transcription factor CRX, immune response, and translation 
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elongation (Fig. 3-5h). Interestingly, MES-like cells were the only malignant population that 

enriched strongly for specific transcription factor target gene sets, with upregulation in 

downstream targets of OCT1, HNF3, and MEF2 (Fig. 3-5i). OCT1 is known to increase 

proliferation and decrease migration in GBM, acting as a microenvironmental adaptation 

mechanism in response to high glucose [22]. HNF3A (FOXA1) and MEF2D have been shown to 

either promote (FOXA1) [23] or be necessary for (MEF2D) [24] proliferation in glioma. On the 

other hand, MES-like cells in the NE region experienced downregulation of translation and Slit-

Robo signaling, which functions in angiogenesis (via VWF), regulation of microvessel density, 

and VEGF-induced migration/permeability [25]. These patterns suggest that MES-like cells are 

potentially in a distinct functional state in the NE region compared to the CE region, likely 

existing in a relatively more proliferative and less migratory/vascular-interactive state. OPC-like 

cells had just one conserved dysregulated pathway, which was upregulation in the node of 

Ranvier cellular compartment (Supplementary Fig. 3-5b). NPC-like cells had 32 dysregulated 

pathways, with PI3K complex being upregulated and neuron recognition, p53, and cell-cell 

adhesion being downregulated (Supplementary Fig. 3-5b). In non-cycling cells, HIF1, 

lymphocyte immunity, and ECM terms were downregulated in NE, while many neuronal and 

synaptic terms were upregulated (Supplementary Fig. 3-5b). Interestingly, in cycling cells, 

DNA replication was upregulated, and the transcriptional activator FOXJ2 was downregulated, 

which may relate to the global repression phenotype observed in PT94 and TB78 (Fig. 3-5b). 

Also downregulated in cycling cells was clotting factor X; as MES-like cells are more cycling in 

the NE region, this may relate to the apparent decrease in vascular remodeling driven by MES-

like cells, since activation of coagulation can drive tumor progression and vascular invasion. 
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Finally, to complement the gene- and pathway-level comparisons, we sought to evaluate the 

altered cellular phenotypes more robustly by assessing which groups of cells are most 

“separable” when comparing the NE vs CE regions. We again leveraged the Augur package to 

identify the cell populations exhibiting the strongest differences between NE and CE. We first 

analyzed each tumor separately, grouping malignant cells by their cellular state or cycling status. 

This revealed heterogeneity across tumors in terms of the highest ranking cell group by 

separability, with AC-like and MES-like ranking at the top in IDH-WT GBMs and OPC-like and 

NPC-like ranking highly in the IDH-mut GBM and GIII-O (Fig. 3-5j). We then asked whether 

there were differences across the two regions in terms of how readily different cell groups could 

be classified into their tumor of origin (i.e., intertumoral heterogeneity) or their cellular state 

(i.e., intratumoral heterogeneity). To compare the NE and CE regions in a way that allows 

evaluation of statistical significance, we first empirically generated a null distribution using 500 

permutations, then compared observed results to the null distribution. Using this approach, we 

first evaluated regional differences in intertumoral heterogeneity within malignant populations 

by training the classifier to attempt to predict tumor of origin given cellular state or cycling status 

(Fig. 3-5k, top). This analysis revealed that AC-like and MES-like cells exhibited significantly 

more intertumoral heterogeneity in the CE region (AUC=0.839 and 0.837, respectively) 

compared to the NE region (AUC=0.765 and 0.749, respectively) (permutation test, BH-

corrected p-value = 0.004 for both). No other malignant populations were significantly different 

in NE vs CE in terms of intertumoral heterogeneity. We also examined intratumoral 

heterogeneity by attempting to predict cellular state given either patient identity or cycling status, 

and there were no significant differences in NE vs CE (Fig. 3-5k, bottom). Taken together, our 
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gene-, pathway-, and population-level analyses strongly implicate AC-like and MES-like cells as 

drivers of altered tumor biology across the core and edge regions in glioma. 

 

Altered non-malignant cell microenvironment in NE region 

We next turned our attention to the tumor microenvironment, an extremely important and 

complex factor in tumor biology and therapeutic development, to examine whether there are 

regional differences in the composition or transcriptional behavior of the non-malignant 

microenvironment. We began investigating non-malignant cells by annotating cell types via 

expression of canonical markers and hierarchical clustering, resulting in clusters assigned to 

astrocytes, oligodendrocytes, excitatory neurons, interneurons, endothelial cells, T cells, and 

myeloid cells; myeloid cells were further classified into blood-derived and microglial tumor-

associated macrophages (referred to here as macrophages and microglia, respectively) using 

differential enrichment of a distinguishing gene list reported in Müller et al. (2017) (Fig. 3-6a-c). 

We first computed the proportion of the non-malignant microenvironment represented by each 

cell type (Fig. 3-6d). Oligodendrocytes and immune cells comprised the majority of all samples 

except for TB78, which was mostly neurons. The NE region exhibited several patient-specific 

composition changes, but was consistently depleted of T cells across patients, and had either a 

decreased or similar myeloid fraction, suggesting a potential immune-cold environment at the 

tumor periphery. 

 

We then examined non-malignant cell type-specific transcriptomic differences between the NE 

and CE regions by performing differential gene expression analysis using the integrated dataset 

including cells from all patients (Fig. 3-6e, Supplementary Fig. 3-6). We found that the cell 
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types exhibiting the highest proportion of differentially expressed genes (compared to total 

number of genes considered, which included those expressed in at least 5% of cells) were 

excitatory neurons (66%) and oligodendrocytes (54%), while all other cell types had a DEG 

percentage of <10%. As with the malignant cell populations, the DEG burden correlated with the 

number of cells in each cell type. To resolve this bias and to evaluate functional implications of 

the regional transcriptomic differences, we performed GSEA and compared NE vs CE within 

each cell type, yielding between 34 and 531 dysregulated pathways across cell types (Fig. 3-6f-

i). In neurons, we observed conserved upregulation of oxidative phosphorylation and translation 

terms and conserved downregulation of neuron- and synapse-related terms, as well as excitatory 

neuron-specific downregulation of endothelin signaling. T cells similarly had downregulated 

neuron-and synapse-related terms. Microglia were found to experience upregulation in 

metabolism terms and downregulation in immune function terms, with macrophages 

interestingly exhibiting the opposite trend. Astrocytes had upregulated HSF1 and oxidative 

phosphorylation and downregulated receptor-mediated endocytosis and vascular wound healing. 

Oligodendrocytes also had upregulated HSF1 and downregulated translation-related terms. 

Endothelial cells exhibited upregulation in protein folding, collagen crosslinking, vessel 

development, and CD40, and downregulation in translation and neuron migration.  

 

We identified several overlapping themes in the malignant and non-malignant compartments of 

the NE regions (compared to CE). Neuronal pathways were downregulated in T cells and both 

neuronal subtypes but were upregulated in malignant populations. Multiple OCT1 terms were 

downregulated in interneurons and excitatory neurons but upregulated in macrophages and MES-

like malignant cells. EGFR signaling was downregulated when all malignant cells were 
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combined and when all non-malignant cells were combined. Finally, many dysregulated genes 

and pathways linked to vascular function were identified. Robo signaling was downregulated in 

oligodendrocytes, T cells, and MES-like cells, but upregulated in neurons. Robo/VEGF crosstalk 

was downregulated in oligodendrocytes. VEGF signaling was downregulated overall. VEGFA 

expression was downregulated in macrophages. Multiple VEGF ligands were downregulated in 

oligodendrocytes and macrophages. Multiple VEGF and ANGPT ligands had upregulated 

expression in excitatory neurons, along with VWF and PTN. Proteins involved in blood-brain 

barrier (CLDN11, PDGFRb) were upregulated. These overarching themes implicate cell type-

specific pathway dysregulation that converges on a limited number of themes, including vascular 

function, transcription and translation, metabolism, and normal brain cell function. Moreover, 

increased tumor burden and associated immune response in the CE region may stress non-

malignant, non-immune cells and lead to a breakdown of normal function, including 

maintenance of vascular integrity, which in turn may explain certain MRI characteristics [27]. 

 

Integrated atlas of malignant-normal cell communication networks in the GBM core 

Crosstalk between malignant cells and normal cells is a hallmark feature of cancer and is critical 

to tumor growth, invasion, and recurrence [28-30]. While observations made in the two 

compartments separately are important and insightful, connecting the analyses offers 

unparalleled insight into the cellular and molecular complexity underlying tumor biology. We 

thus sought to build an atlas of the glioblastoma connectome using the tumors in our dataset. We 

utilized CellChat [31], which uses a comprehensive signaling database (Fig. 3-7a) and performs 

quantitative inference and analysis of intercellular communication via network analysis, pattern 

recognition, manifold learning, and quantitative contrast approaches (see Methods). Malignant 



81 

and non-malignant cells from each of the four GBM tumors containing both NE and CE 

transcriptomes were combined for this analysis, yielding a total of 13 cell types (malignant: 

cycling, AC-like, MES-like, NPC-like, OPC-like; non-malignant: astrocytes, oligodendrocytes, 

excitatory neurons, interneurons, endothelial cells, microglia, macrophages, and T cells). We 

first analyzed the CE regions to establish a baseline understanding of the glioblastoma 

connectome within the tumor core. CellChat identified 153 significant signaling pathways, with a 

rich network structure that involved communication between every possible pair of cell types 

(Fig. 3-7b, Supplementary Fig. 3-7a). In terms of overall signaling strength/probability, the top 

three pathways identified were NRXN, NCAM, and LAMININ, and we were able to fully 

resolve the relative contributions across cell types and across ligand-receptor pairs, highlighting 

the specific interaction patterns between malignant and normal cells in these pathways (Fig. 3-

7c-e, Supplementary Fig. 3-7b). As expected, non-malignant neurons and NPC-like malignant 

cells were the dominant senders in the NRXN network, but interestingly, the malignant 

subpopulations exhibited similar or higher tendency to receive information in this network 

compared to non-malignant groups, consistent with studies showing that neurons can drive GBM 

growth through NRXN signaling [29, 30]. The NCAM network was dominated by normal 

neurons and glia, along with all of the malignant populations except MES-like cells. As 

expected, endothelial cells, along with astrocytes to a lesser extent, were the largest contributors 

of outgoing information flow in the LAMININ network. Within the malignant compartment, 

AC-like and MES-like cells were the primary senders and receivers of signaling information, 

consistent with their initial designation based on proposed similarity to astrocytes and endothelial 

cells. Overall, this analysis reveals a dense cell-cell communication network within the 
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glioblastoma core, with specific pathway enrichment and structural and functional signaling 

patterns. 

 

Rewiring of cell-cell communication networks in the NE region 

After establishing a baseline of the cellular connectivity within the GBM tumor core, we asked 

whether there was altered cellular crosstalk in the NE region. Using CellChat, we performed a 

similar analysis using cells from the NE region, followed by a differential network analysis to 

compare signaling network differences between the two regions. In the NE region, CellChat 

identified a similar total number of significantly connected pathways (152 vs 153 in CE), and as 

in the CE region, there was significant communication observed between all possible pairs of 

cell groups (Fig. 3-8a, Supplementary Fig. 3-8a). The top significantly detected pathways were 

also similar, with 9 of the top 10 being shared between the two regions, though pathways had 

either differing or similar relative contributions from specific ligand-receptor pairs 

(Supplementary Fig. 8b and c, respectively). However, differential network analysis revealed 

that the overall connectivity, or signaling strength/probability, was markedly decreased in the NE 

region, especially in the relationships involving MES-like, AC-like, and cycling malignant cells 

(Fig. 3-8b-c). The only interactions that were stronger in the NE region were either exclusively 

composed of two normal cell populations or autocrine signaling among T cells (red lines in Fig. 

3-8b, right). Overall, there was a strong decrease in the NE region in signaling within the 

malignant compartment (green box in Fig. 3-8d, right) and an increase in signaling within the 

non-malignant compartment (gold box, Fig. 3-8d, right). Since the analysis normalizes for 

number of cells in each group, this shift strongly suggests a significant difference between the 
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two regions, with the malignant cells dominating the cell-cell signaling networks in the core and 

losing much of that influence in the periphery. 

 

To investigate specific cell-cell interactions that were altered in NE vs CE, we visualized the 

differential interaction numbers and strengths from each sender and receiver group using 

unclustered (Fig. 3-8d) and clustered (Fig. 3-8e) heatmaps. We observed that bidirectional 

increases in interaction strength in the NE region (i.e., cell type A to B and B to A) consisted 

exclusively of immune cells and neurons. The only additional connections with increased 

interaction strength were those being sent to T cells from astrocytes, oligodendrocytes, and 

endothelial cells. The 5 most upregulated interactions involved either neuron-/astrocyte-to-T cell 

signaling or microglia-to-neuron signaling. Consistent with previous reports of macrophages 

playing a stronger role in the core of the tumor and microglia at the periphery [26], we observed 

a relative decrease in macrophage signaling compared to microglial signaling, both in the 

outgoing and incoming directions. Information flow decreased overall in the NE region, and this 

change was primarily driven by MES-like, AC-like, and cycling malignant cells (Fig. 3-8e, 

Supplementary Fig. 3-8h-i), along with normal astrocytes and, to a lesser extent, normal 

endothelial cells. Connections among these groups dominated the top 10 downregulated 

interaction pairs, with the strongest decrease exhibited by astrocyte-to-MES-like signaling. We 

also performed differential interaction strength analysis with three different levels of cell type 

grouping to confirm these shifts at multiple resolutions (Supplementary Fig. 3-8e-g). 

 

To examine what specific pathways were driving these changes when comparing the NE and CE 

regions, we then performed joint manifold learning and classification of networks using 
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CellChat, which reduces the dimensionality of the connectivity results and identifies the 

pathways that experience the most change in terms of functional (cell types involved) and 

structural (network topology) re-wiring (Fig. 3-8f-g, Supplementary Fig. 3-8j-k). Consistent 

with several transcriptomic differences discussed above, we observed functional or structural 

divergence in the NE region in pathways related to vascular function/angiogenesis (VWF, PTN, 

ANGPT, HSPG, VEGF, APELIN, MSTN, CLDN, VCAM, CDH5), immune function (MHC-II, 

PDL2, BAFF, MIF, SELPLG, APRIL, CD40, BTLA, CD45, LIGHT, ACTIVIN, CD226, IL10, 

CD48, OX40), and cell-cell adhesion (NECTIN). These 3 groups almost exclusively comprised 

the top 20 functionally and structurally different pathways between the two regions. We then 

ranked the pathways by relative information flow between regions and identified the top NE-

enriched and CE-enriched pathways, again pointing to pathways related to vascular development 

(e.g., EPO, VWF) and immune function (e.g., ICOS, PD-L1) (Fig. 3-8h-i). 

 

Finally, after examining the patterns at the cell type and pathway levels, we sought to connect the 

two and determine what cell types were mediating the observed pathway alterations in the NE vs 

CE regions. Based on the patterns resulting from both the gene expression and cell-cell 

interaction analyses, we hypothesized that MES-like cells were driving the observed differences 

in terms related to vascular development and cell-cell adhesion. To evaluate this, we zoomed in 

on MES-like cells and identified the pathways with the largest differences in incoming and 

outgoing interaction strength in this population (Fig. 3-8l). As expected, MES-like cells in the 

NE region were found to experience downregulation in both vascular- and adhesion-related 

pathways, including LAMININ, COLLAGEN, CNTN, NCAM, FGF, and VEGF. We then 

focused on the VEGF pathway due to its established connection to many cancers, including 
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GBM. We visualized the cell type-specific expression levels of all ligands and receptors in the 

dataset that were part of the VEGF pathway and observed several dysregulated genes, including 

ligands being downregulated in macrophages, astrocytes, and MES-like cells and receptors being 

downregulated in endothelial cells (Supplementary Fig. 3-8d). We then examined interaction 

probabilities of specific ligand-receptor pairs and expanded the analysis to include TGFb and 

EGFR pathways, as they are both linked to vascular function and GBM progression. We 

visualized ligand-receptor interaction probability for all connections that were sent from 

malignant cells to non-malignant cells, noting a decreased interaction probability in all 

connections involving VEGF receptors on endothelial cells (Supplementary Fig. 3-8l, starred 

columns). These results strongly implicate VEGF as a candidate functional pathway that is 

significantly different between the core and edge regions, with varying contributions from each 

cell type and gene involved. 

 

In addition to MES-like cells, we wanted to follow up on the observed increase in signaling 

strength in T cells from the NE region that was specific to non-malignant cell networks. We 

identified several pathways altered in T cells and examined the relevant cell type-specific 

expression patterns and ligand-receptor interaction probabilities. T cell-specific pathway 

dysregulation included both ECM and immune related networks, such as LAMININ, MHC-II, 

CD45, FN1, and TENASCIN (Fig. 3-8k). Part of the increased microglia-to-T cell signaling is 

likely driven by TNF-TNFRSF1B communication (Fig. 3-8j). Two of the five largest increases 

in interaction strength in the NE region were interneuron-to-T cell and excitatory neuron-to-T 

cell signaling (Fig. 3-8e). Following up on this surprising finding, we examined specific ligand-

receptor pairs involving interleukin signaling in neuron-to-immune cell signaling (Fig. 3-8m). 
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We identified increased interactions that were shared among both neuronal subtypes (e.g., IL7 

and IL18 signaling to T cells, IL1B signaling to microglia, IL1B signaling to macrophages) and 

others that were subtype-specific (e.g., IL10 and IL16 from excitatory neurons to T cells, IL4 

from excitatory neurons to both microglia and macrophages, IL13 from interneurons to both 

microglia and macrophages). 

 

In sum, while many signaling networks are conserved between the two regions, our higher 

resolution analysis reveals specific functional and structural network differences that suggest a 

significant degree of both rewiring and global reduction in connectivity compared to the core of 

the tumor, where the increased tumor burden likely takes advantage of these pathways to 

promote progression and invasion. The cell type- and interaction-specific pathway dysregulation 

that we identified strongly implicate candidate cell populations (MES-like, AC-like, endothelial, 

and immune) and functional pathways (VEGF, ECM, and immune) as targets for further analysis 

and therapeutic development. 
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Discussion 

In this study, we leverage single nucleus RNA-sequencing and MRI-guided biopsy target 

selection to dissect spatial and temporal relationships between and within tumor and non-tumor 

cells in glioma. We use stringent image guidance to obtain specimens with quantifiable 

localization. Using nuclear sequencing and strict quality control measures, we are able to analyze 

on average ~4800 cells per tumor as well as ~1400 tumor cells from the NE region, an 

improvement on previous glioma sequencing studies that report either on CE alone or with few 

cells recovered from the NE region [32, 33]. We then characterize the cellular and transcriptomic 

landscape of the different tumor regions as described by standard MRI. 

 

We present an improved and flexible framework to accurately identify malignant cells using 

iterative CNA inference analyses. Our strategy resolves several drawbacks related to traditional 

malignant cell identification workflows. Approaches that focus heavily on the original 

expression-based cluster identities suffer from general limitations related to clustering. For 

example, most clustering algorithms include an arbitrary parameter to determine the “resolution” 

of the clustering solution, which heavily influences whether the cluster annotations represent the 

true grouping of distinct biological types and/or states within the dataset. Moreover, due to the 

level of sparsity in single cell data, there is typically impurity in the clustering solution, such that 

cells of different types or states belong to “incorrect” clusters. Using these designations for 

labeling of malignant cells can thus lead to inaccuracy and is expected to result in both false 

positives and false negatives, especially since CNA events are being inferred from the expression 

data. As an example, we see in Fig. 3-2c that there are distinct CNA-based groupings within at 

least two of the original expression-based clusters (Cluster_7, fifth from the top, and Cluster_4, 

third from the bottom). Another challenge is the confident selection of a reference cell 
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population for the estimation of CNA events, which is important because the final chromosome-

level events (e.g., 1p deletion) are computed relative to a certain reference value. If no cell 

population is designated as the reference, the average of all cells will be used for comparison. 

This is not ideal for studies with multiple tumors, as the cell type composition across tumors is 

typically not similar, which will lead to a different “average cell” that will be used as the 

reference profile. However, designating a certain cell population as reference based on original 

expression-based clusters suffers from the clustering limitations mentioned above. Specifically, 

there may be malignant cells in non-malignant clusters or vice versa. We can see an example of 

this in Supplementary Fig. 3-2, where the dataset at step 3 of the workflow contains several 

reference cells with CNA profiles resembling malignant cells (green arrow in panel a), while the 

final step of the workflow (panel b) does not include these likely contaminating cells in the 

reference group. Similarly, we can address non-malignant cells that grouped with malignant cells 

in the expression-based clusters, as only the CNA-based cell groups exhibiting glioma CNA 

events are retained as malignant cells. Another issue is that workflows involving single 

cell/nucleus RNA-seq data are often prone to noise accumulating due to technical limitations 

(e.g., low quality cells) and multiple processing steps involving estimations and statistical 

models. Consequently, many raw findings include cells that appear to be outliers. In general, 

grouping individual cells by similarity using hierarchical clustering is a robust way to identify 

such cells, which can be considered a quality control step. In our CNA inference workflow, we 

remove cells that appear to be outliers upon performing hierarchical clustering, for example 

those falling under the branch next to the pink star in Supplementary Fig. 3-2c (step 2 result 

using the PT94 tumor). Finally, we improve the efficiency and accessibility of the currently 

available inferCNV workflow by automating the laborious setup procedure and implementing 
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customization options that do not require manipulation of the original dataset or input files. 

Overall, we believe our workflow offers improved accuracy in malignant cell detection, in terms 

of both sensitivity and specificity, and increases dataset quality by identifying and removing 

extreme outliers. Using this strategy, we are able to confidently label malignant cells for 

downstream analysis. 

 

Genetic subclones within gliomas are often either overlooked or not the focus of single cell 

molecular characterization. However, transcriptomic (Fig. 3-2d, right) and phylogenetic 

(Supplementary Fig. 3-3b-d) divergence suggest that these groups are likely functionally 

distinct. While previous glioma single cell sequencing studies have delineated specific 

hierarchical relationships [13, 34] or plasticity [10] among glioma cell types, these investigations 

used expression profiles for cell classification and evaluation of hierarchies. Thus, it remains 

unclear whether genetic (CNA-based) subclones lie along a rigid evolutionary hierarchy. To 

evaluate this, we present an improved tool for examining genetic subclones and potential 

hierarchical relationships among them. We first leverage the random trees algorithm 

implemented by the inferCNV package to identify CNA-based cell subclusters within each 

tumor. Visualizing the resulting subclusters is no easy task, and to our knowledge there does not 

exist a robust tool for automated generation of a clear visualization of subcluster phylogeny. Our 

method directly incorporates the inferCNV subclustering output file into the existing metadata 

table that contains information for each cell (e.g., number of genes, cell state, region of tumor), 

which enables plotting of a phylogenetic tree with superimposition of multiple layers of 

information about the relevant cells. Using this tool, we can readily identify patterns in 

compositions across CNA subclusters within individual tumors, in this case revealing stark 
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differences in cellular state and regional composition across subclusters (pie charts in 

Supplementary Fig. 3-3b-d). Our tool includes several customizable features, including options 

for collapsing subclusters based on similarity of CNA locations, multiple ways to display 

subcluster sizes, and many parameters related to visualization details. Overall, this approach 

improves upon previous methods that focus on gene expression profiles (often using pre-defined 

lists of genes) and allows us to identify novel conserved and patient-specific genetic subclone-

related features in glioma and their potential connections with regional divergence. In contrast to 

what has been observed in primary gliomas, we do not see a rigid genetic hierarchy among the 

malignant cells in this cohort of recurrent tumors, as the identified subclusters are all at the same 

branching level. This suggests that the tumors are potentially composed of multiple foci that 

were driven by different initiating cells, and further investigation of cell type and state patterns 

may help predict patient-specific cellular drivers of glioma recurrence. 

 

The functional relevance of malignant cell states in glioma is poorly understood. Many of our 

findings in these highly different tumors are consistent with recent studies utilizing single cell 

sequencing in glioma [10, 16, 34], including the observation of multiple malignant cell types that 

are more different across than within tumors and whose proportions vary across tumors and 

correspond to overall pathological designation. These malignant cell states were initially 

described in Neftel et al. (2019) and were discovered by identifying gene networks that drive 

intratumoral heterogeneity in a large cohort of patients. Each cell state is thought to be 

biologically similar to a normal human cell type (AC-like cells = astrocytes, MES-like = 

mesenchymal origin, NPC-like = neural progenitors, OPC-like = oligodendrocyte precursors), 

which we validate via gene set enrichment patterns (Fig. 3-3f). Like the original TCGA GBM 
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molecular subtypes, each cell state likely corresponds to specific functional drivers of tumor 

biology. Thus, cell state composition and state-specific molecular features in individual patients 

are an important metric for evaluating the relative importance and contributions of each of these 

functional patterns with respect to tumor progression, prognosis, and patient-specific therapeutic 

strategies. 

 

Glioma recurrence is likely driven by malignant cells or altered non-malignant cells that remain 

after initial resection via surgery. By comparing the tumor core (CE) and edge (NE) regions, we 

identify significant differences on multiple levels that implicate multiple cell populations and 

functional networks. We first observe significant tumor burden in the NE region and build a 

model predicting that these cells may exist up to 1.5cm from the CE edge. In the NE region, 

multiple malignant cellular states are proliferating and thus have the potential to drive growth 

and recurrence. Furthermore, these malignant cells in the NE region exist in a relatively immune-

cold environment with low T cell presence and activity. It remains unclear whether one or 

multiple specific malignant cell states must be present in the NE region to initiate recurrence 

after surgical resection, and further investigation may provide definitive evidence implicating a 

recurrence initiating cell. 

 

Gene- and pathway-level comparisons between the two regions highlight the large degree of 

heterogeneity in molecular dysregulation across tumors, both in terms of overall magnitude of 

dysregulation and which functional networks are implicated. Interestingly, we observe a 

consistent direction of differential expression within each tumor when analyzing individual 

subpopulations, suggesting that the upstream drivers of transcriptomic dysregulation are shared 
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or coordinately regulated across malignant cell groups. There is a stronger degree of pathway 

dysregulation in the CE vs NE regions in GBMs (between 483-1143 pathways) compared to 

GIII-O (56 pathways) using the same list of pathways as input. Importantly, GSEA only 

considers the rank order of the input genes and is thus not influenced by the number of genes that 

reached statistical significance in the differential expression analysis. Thus, unlike DEGs, the 

number of significantly dysregulated pathways is a robust indicator of true changes in biological 

function, suggesting significantly more functional divergence between the NE and CE regions in 

GBM than GIII-O. Running GSEA within each tumor identifies patient-specific regional 

differences, many of which are related to neuronal/glial function, proliferation, vascular function, 

immune response, ECM, and metabolism. This differential analysis highlights both common and 

patient-specific themes related to aberrant molecular and cellular function driven by tumor 

burden. 

 

The large degree of biological differences between the core and edge regions prompts us to ask 

whether we can identify the cell populations driving specific changes. Overall, MES-like and 

AC-like cells exhibited more pathway dysregulation and transcriptional “separability” between 

regions than OPC-like and NPC-like cells. Regional pathway enrichment varies considerably 

across cell states. Compared to the CE region, AC-like cells in NE appear to function more like 

normal astrocytes, with upregulation in gene sets related to neuronal/synaptic function and 

downregulation in translation, immune response, and CRX signaling. Similarly, OPC-like cells 

in the NE region had upregulation in the node of Ranvier cellular compartment. NPC-like cells 

appeared to potentially function more like proliferative cells, with upregulation in PI3K and 
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downregulation in p53, but it is unclear whether this is more similar to normal progenitor 

behavior or tumorigenic proliferation. 

 

Like most aggressive and invasive cancers, high grade glioma depends on a well-orchestrated 

attack on the existing normal cell ecosystem, likely involving complex interaction networks 

among malignant and non-malignant populations. Using cell-cell communication inference, we 

first present an atlas of the GBM connectome in the core region, identifying a densely 

interconnected web of signaling involving all possible pairs of malignant and non-malignant 

populations (Fig. 3-7). Astrocytes and neurons are the top non-malignant communication 

senders, and cycling malignant cells are the top signaling senders in the malignant compartment. 

We identify the most significantly detected pathways and the relative contributions of individual 

ligand-receptor pairs within each detected pathway. We then build the connectome in the NE 

region and compare it to the CE region, revealing a marked decrease in overall interaction 

strength, especially in networks involving malignant cells, and an increase in interactions 

involving neurons/glia and immune cells. This suggests that the tumor burden in the core of the 

region is likely suppressing a large amount of neuron-/glia-to-immune cell signaling that is 

typically present in the brain. Among the malignant populations, while each of them had 

decreased signaling overall, MES-like cells exhibited the largest changes in both incoming and 

outgoing information flow, with AC-like cells ranking second. Comparing the two regions 

overall and within cell types implicates multiple pathways related to vascular and immune 

function (Fig. 3-8, Supplementary Fig. 3-8). 
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Across all levels of analysis, MES-like cells appear to exhibit strong biological effects on the 

surrounding cellular infrastructure and are significantly different across regions. Comparing the 

transcriptomes of MES-like cells to the other malignant states reveals enrichment of ECM, 

collagen, and extracellular structure (Fig. 3-3f), suggesting a potential role in altering the 

structural integrity in the tumor microenvironment. This is consistent with the known GBM 

mesenchymal phenotype of aggressive growth, migration, vascular remodeling, and 

angiogenesis. In the tumor core, cell-cell interaction analysis reveals MES-like cells are 

significant players in multiple cell-cell signaling networks, with the corresponding signaling 

mainly flowing to and from normal astrocytes and endothelial cells. MES-like cells are important 

in laminin and collagen signaling, the third and fourth most significantly detected pathways, 

respectively. When comparing the NE and CE regions, MES-like cells and AC-like cells are the 

only malignant populations with different degrees of intertumoral heterogeneity (Fig. 3-5k). A 

decrease in this metric indicates that these two cell states are more similar across tumors in the 

NE region than the CE region, suggesting some degree of transcriptomic convergence across 

patients in the NE region that could be driven by the existence of conserved NE-specific 

functions in these cell states. Investigating the specific molecular changes in MES-like cells in 

the NE region reveals upregulation of proliferation-related pathways (OCT1, HNF3, MEF2, B-

catenin) and downregulation of angiogenesis (Slit-Robo signaling, VEGF). MES-like cells also 

have a higher cycling proportion in the NE region in most tumors. In terms of cell-cell 

interactions, compared to the CE region, VWF and VEGF pathways are downregulated in NE 

when considering all cells, along with significant network rewiring (i.e., low functional/structural 

similarity) in multiple vasculature pathways (e.g., ANGPT, VEGF, VWF, CLDN, CDH5, 

VCAM). MES-like cells in the NE region exhibit the most downregulation in total 
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communication strength, both in the incoming and outgoing directions, and have significantly 

weaker interactions with normal astrocytes and endothelial cells (Fig. 3-8e). Examining the 

specific pathways dysregulated in MES-like cells in the NE region identifies several vasculature-

related networks, including VEGF, laminin, collagen, FGF, and PTN. Probing cell-cell 

molecular interactions and expression levels of ligand-receptor pairs mediating signaling 

specifically from MES-like cells to endothelial cells reveals downregulation of VEGFA, 

VEGFB, and VEGFC ligands and their receptor binding partners (Supplementary Fig. 3-8d, l). 

In sum, these analyses suggest that MES-like cells exist in a distinct functional state in the NE 

region compared to the CE region, likely in a relatively more proliferative and less pro-

migratory/vascular-interactive state. On the other hand, normal endothelial cells in the NE region 

enrich for ECM and vessel development, suggesting that the vascular control is potentially 

transferred back to normal endothelial cells in the edge compared to the core. Further 

examination of this divergence could help identify strategies to “hack” malignant cells and 

manipulate their ability to influence the microenvironment around them. 

 

By integrating multiple levels of information, we also identify several consistent cellular and 

molecular correlates that are predictive of large-scale tumor characteristics. In this cohort, the 

proportion of malignant cells in the tumor core that are cycling is strongly predictive of the 

quantitative tumor burden in the NE region. As the NE region is often overlooked both in 

research investigations and clinical assessment, this presents an opportunity to extend our 

understanding of tumor progression and stage within glioma patients. Moreover, there is an 

opposite relationship between MES-like proportion of malignant cells in the CE region and 

OPC-like proportion in both regions combined, which are positively and negatively, respectively, 
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correlated with pathway dysregulation burden between the two regions in GBMs. This suggests 

an antagonist relationship between these two malignant cell types in terms of driving progression 

and functional dysregulation in the core region of GBMs compared to the edge, consistent with 

studies linking the mesenchymal GBM subtype and MES-like proportion to more aggressive and 

invasive tumors associated with poorer prognosis, with the opposite reported for the pro-neural 

subtype and OPC-like proportion [35, 36]. Again, this quantitative molecular evaluation presents 

a framework that allows deeper understanding of how these cell states relate to tumor biology.  

 

Taken together, this study presents a thorough quantification and molecular characterization of 

both malignant and non-malignant cell populations and their functional roles in the NE region of 

gliomas. We implicate candidate cell groups and functional interactions in both the malignant 

compartment and non-malignant microenvironment that may serve as drivers of glioma regional 

divergence and recurrence, suggesting increased scientific and clinical emphasis on these cells 

and pathways in the NE region. These features are less likely to be addressed by current standard 

of care therapies and may be the link to an improvement in survival of glioma patients. 
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Materials and methods 

Human subjects 

This study was approved by the University of California, Los Angeles Institutional Review 

Board #10-000655 and #14-001261. All patients provided preoperative informed consent for all 

medical and surgical procedures and involvement in research studies. 

 

MRI-guided biopsy targets 

Patients referred to the UCLA Department of Neurosurgery for intrinsic supratentorial brain 

tumor underwent 3 Tesla thin-cut standard pre-operative MRI with and without gadolinium 

contrast (gadopentetate dimeglumine; Magnevist; Bayer HealthCare Pharmaceuticals) imaging 

within 1 week of the scheduled surgery. Digital Imaging and Communications in Medicine 

(DICOM) images of the following sequences were downloaded: T1 three-dimension 

magnetization-prepared rapid gradient echo (MP-RAGE) with and without contrast. Using AFNI 

[37], a software for analysis and visualization of functional magnetic resonance neuroimages, 

three 5mm x 5mm x 5mm spherical biopsy targets were selected per patient. A multidisciplinary 

team including neurosurgery, radiology, and oncology performed biopsy target selection. Targets 

were chosen based on feasibility and anatomic landmarks for reference during surgery in order to 

minimize inaccuracy from brain shift. Biopsy targets were then transferred to Brainlab Curve 

(BrainLAB AG, Munich, Germany), a surgical neuronavigation software, for intraoperative 

image guidance and tissue acquisition. There was no change to surgical and post-surgical 

standard of care therapy [2, 38] to all patients. Specimens were immediately fresh frozen for 

storage until nuclear isolation or paraffin-embedded for immunohistochemistry. 
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Immunohistochemistry (IHC) analysis 

MRI-targeted biopsy specimens were collected from 22 patients with malignant glioma, yielding 

28 specimens from NE regions and 31 from CE regions. These tissue specimens were paraffin-

embedded and stained with anti-Ki67 antibody. Image based quantification was carried out using 

QuPath [39] to calculate the percentage of sample pixels with positive staining. Samples were 

compared using independent samples t-tests as well as paired samples t-tests in the 5 patients 

from whom both CE and NE specimens were acquired. 

 

Isolation of single nuclei from tumor specimens 

Single nuclei were isolated from all frozen tumor specimens using a protocol based on 

Krishnaswami et al. (2016) that employs iodixanol-based density gradient centrifugation. 

Briefly, specimens were cut into small pieces, homogenized on ice using a Dounce tissue 

grinder, filtered using a 40uM Corning cell strainer, centrifuged at 1000g for 8 minutes at 4C in 

Eppendorf tubes, subjected to an iodixanol (OptiPrep; STEMCELL Technologies) gradient of 

50% vs 29%, centrifuged at 13500g for 20 minutes at 4C, resuspended in PBS with 1% BSA, 

and labeled with the DNA stain Hoechst 33342 (Sigma). Nuclei were then purified based on size 

and Hoechst fluorescence using a microfluidic chip-based gentle cell sorter (On-Chip Sort; On-

Chip Biotechnologies). The recovered nuclei were counted using an automated cell counter 

(Countess; ThermoFisher) and immediately submitted to the UCLA Technology Center for 

Genomics and Bioinformatics for library preparation and sequencing. 
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Single nucleus library preparation, sequencing, read alignment 

Single nuclei from each tumor specimen were counted again and visualized at the TCGB core 

facility to evaluate quality. Single nucleus cDNA libraries were then generated using the 

Chromium Single Cell 3’ v3 kit (10x Genomics) following the manufacturer’s protocol, which 

consists of loading nuclei into the channels of a 10x Chromium chip, partitioning the nuclei into 

Gel Beads in Emulsion (GEMs), reverse transcription of RNA within the droplets, breaking the 

GEMs, amplification, fragmentation, and addition of adaptor and sample index. For single 

nucleus RNA-sequencing (snRNA-seq), each library was split across multiple lanes of the 

NovaSeq 6000 S2 platform (Illumina) and sequenced to a depth of approximately 600 million 

reads per library, with a read length of 2x50 base pairs. The resulting raw reads were then 

demultiplexed and processed using Cell Ranger (10x Genomics) for alignment to the human 

genome (GRCh38), filtering, barcode (i.e., cell) identification, and counting of unique molecular 

identifiers (i.e., transcripts). The output feature-barcode (i.e., gene-cell) matrices contained the 

quantitative transcriptomic information for all single nuclei isolated from each tumor specimen. 

 

Pre-processing and quality control of snRNA-seq datasets 

SnRNA-seq data were further processed and analyzed in R [41] using the Seurat package [42, 

43], with exceptions noted below. All functions were run with default parameters except as 

specified. To perform pre-processing and quality control, the feature-barcode matrices generated 

by Cell Ranger were first imported into Seurat. Each biopsy specimen was imported and 

processed separately during this stage. Genes that were expressed in fewer than 5 nuclei and 

nuclei that expressed fewer than 500 unique genes were both removed. At this point, specimens 

with a markedly low average number of unique genes expressed per nuclei were removed from 
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the analysis. In the remaining specimens, mitochondrial and ribosomal transcripts were identified 

with their respective prefixes, and the percent of transcripts belonging to these two categories 

was computed in each nucleus using the PercentageFeatureSet function. Nuclei with 

mitochondrial transcript content of 5% or greater or ribosomal transcript content of 2% or greater 

were removed. Raw count log normalization, scaling, variance stabilization, and variable gene 

identification were then performed for each specimen using regularized negative binomial 

regression via the SCTransform function [44], resulting in an additional “SCT” expression 

matrix containing normalized data for each specimen in addition to the original “RNA” 

expression matrix containing the raw data. For each patient, the datasets from all specimens were 

then combined using Seurat integration [42], which performs canonical correlation analysis 

(CCA) to align specimens based on matched biological states (i.e., to correct for technical 

variation across samples). Integration was performed as recommended by the Seurat developers, 

specifically by selecting integration features, then identifying anchors, then integrating the 

datasets. The SelectIntegrationFeatures (using 5,000 genes), 

PrepSCTIntegration, FindIntegrationAnchors (using the first 50 principal 

components), and IntegrateData functions were used for integration. Each integrated 

dataset (one per patient) was then prepared for further analysis by dimensional reduction via 

principal component analysis (PCA), uniform manifold approximation and projection (UMAP) 

embedding, and t-distributed stochastic neighbor embedding (t-SNE). These were performed 

using the functions RunPCA, RunUMAP (using the first 30 PCs and embedding into 3 spatial 

dimensions), and RunTSNE (using the first 30 PCs) functions, respectively. Finally, each patient 

dataset was clustered based on gene expression profiles with Seurat’s default graph-based 

clustering that implements the Louvain algorithm for modularity optimization. Clustering was 
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performed via the functions FindNeighbors and FindClusters. Low dimensional graphs 

were generated using Seurat’s DimPlot function with default parameters except as noted in the 

figure captions. 

 

Identification of malignant cells and non-malignant cells 

Cells were classified using a multi-step procedure integrating both gene expression profiles (see 

Cell type marker visualization section) and predicted copy number alteration (CNA) profiles (see 

Malignant cell identification section). This analysis was performed separately for the integrated 

snRNA-seq dataset derived from each patient. Malignant cells were identified first, then the 

remaining cells were analyzed separately to identify non-malignant cell types. 

 

Cell type marker visualization 

To assess expression of canonical cell type markers, we developed a tool for generating dot plots 

(e.g., Fig. 3-6b). This tool is based on Seurat’s DotPlot function and introduces two improved 

features. First, the user has the option to automatically color code the cell type labels and 

corresponding marker genes, which is currently not possible using Seurat’s DotPlot function. 

Second, the cell clusters are ordered by similarity via hierarchical clustering, with the resulting 

dendrogram shown to the left of the plot. Importantly, this hierarchical clustering procedure 

considers all detected genes rather than only the genes shown in the dot plot, which is what 

currently available tools use [43, 45]. The output of our tool is a figure containing both a 

dendrogram and a dot plot, with color coded cell types and expression information (average 

expression and percentage of cells expressing) for each marker. The two improvements allow for 

user-friendly visual customization and more accurate representation of the transcriptomic 
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similarities among clusters. These plots were used to identify cell types based on marker 

expression profiles and the branching structure seen in the dendrogram. 

 

Malignant cell identification 

First, expression of canonical brain cell markers was examined across all Seurat clusters that 

were identified (see Pre-processing section above). To visualize marker expression patterns in 

each dataset, dot plots were generated as described above (Cell type marker visualization 

section). These plots were used to assess whether any clusters could confidently be labeled as 

normal brain cell types based on their expression profiles and the branching structure seen in the 

dendrogram. Clusters whose marker expression profiles did not clearly align with a normal cell 

type or aligned with multiple cell types were considered putative malignant cell clusters.  

 

Next, inference of CNA profiles at single cell resolution was performed for each patient dataset 

individually. We developed a custom wrapper function that streamlines a workflow leveraging 

the R package inferCNV [15]. The purpose of this wrapper function is to make the CNA 

inference workflow more efficient and user-friendly by automating the laborious setup procedure 

required by inferCNV and adding customization options that do not necessitate manipulation of 

the input files. This function first takes a Seurat object (single cell expression dataset) and 

automatically generates all of the input files necessary for inferCNV: raw count data for each cell 

are obtained via GetAssayData (using the “RNA” assay and the “counts” slot); an annotation 

file with the Seurat cluster names corresponding to each cell is obtained by extracting the cell 

names and cluster information from the Seurat metadata; and a gene ordering file with the 

chromosomal location for all genes present in the dataset is generated using the R package 
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biomaRt [46, 47] to access the GRCh38.p13 human genome assembly via Ensembl [48]. The 

function then passes these input files as arguments to the CreateInfercnvObject function 

to generate an inferCNV object for the dataset being processed, with an additional option 

allowing the user to exclude certain groups of cells (i.e., Seurat clusters) from the inference 

analysis. Finally, the function passes the inferCNV object to the run function, which performs 

the rest of the CNA inference analysis that attempts to identify large-scale chromosomal CNAs 

by assessing smoothed average gene expression across a moving window of genomic positions, 

followed by prediction of CNA regions and identification of cell clusters based on CNA profiles. 

For each patient in the study, an inferCNV object was generated with the X, Y, and 

mitochondrial chromosomes excluded, then analyzed with default parameters except a cutoff 

value of 0.1, Hidden Markov Model (HMM) prediction with the i6 model, denoising with a filter 

of 0.12, and 6 threads for parallelization. This yields several outputs, most importantly a heatmap 

displaying relative expression intensity in each cell (rows) across chromosomal positions 

(columns) and text files including the HMM CNA predictions across genes/chromosomes for all 

cells and cell clusters. 

 

To identify malignant cells in each patient dataset, CNA inference was first performed as 

described above, without any clusters defined as reference cells (i.e., values were compared to 

the average across all cells). The resulting heatmap groups cells based on their CNA profiles but 

also displays the original Seurat cluster identities, allowing assessment of potential cell type 

identities using both pieces of information. For each patient, the heatmap was examined to label 

CNA-based clusters corresponding to myeloid cells (based on amplification in a portion of 

chromosome 6 containing the human leukocyte antigen (HLA) system), putative malignant cells 



104 

(based on canonical glioma-specific CNAs), and putative normal cell types (based on both lack 

of glioma CNAs and correlation with clusters that were previously labeled as confident normal 

cell types based on marker expression). Groups of cells that could not confidently be labeled 

were designated as unclassified. Cells outside of the large clusters visualized on the dendrogram 

were designated as noise. Next, CNA inference was repeated for each dataset using a reference 

set of cells, which included cells belonging to the Seurat clusters confidently labeled as 

oligodendrocytes (based on marker expression), since this was the only normal, brain-

derived/non-immune brain cell type present in all patient datasets. As in the previous step, the 

resulting heatmap was examined to label CNA-based clusters corresponding to immune cells, 

malignant cells, and other normal cell types based on the CNA profiles and similarities to other 

clusters. For each cell, the labels from each of these two steps were both used to generate a final 

set of labels with the following potential values: malignant, non-malignant, noise, and 

unclassified. The two sets of CNA inference results were integrated in this manner to resolve 1) 

malignant cells that, due to their atypical transcriptomes, belonged to Seurat clusters 

corresponding to normal cell types and 2) cells with noisy profiles. The cells labeled as noise or 

unclassified were removed, and CNA inference was performed again on the final set of 

malignant cells, including hierarchical clustering to visualize subclones. This final set of 

malignant cells was used for the downstream analyses related to the malignant cell compartment. 

(To confirm non-malignant cell identities, we also compared CNA profiles of non-malignant cell 

types across tumors, which showed conserved features in each cell type, e.g., chr6 amplification 

in myeloid cells and chr11 amplification in astrocytes.) 
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Subsetting and processing of malignant and normal cells 

For each patient, the integrated expression object containing all cells was then split into two 

objects, one including malignant cells and the other including non-malignant cells. Pre-

processing was repeated for the individual malignant and non-malignant datasets for each 

patient. Each dataset was slimmed down to the raw, unprocessed counts using the DietSeurat 

function to retain only the RNA assay. Datasets were then processed using SCTransform as 

described in the Pre-processing section above. The malignant and normal cell objects from all 

patients were then combined into two integrated objects using Seurat integration as outlined in 

the Pre-processing section above, with one integrated object containing malignant cells from all 

patients and one integrated object containing normal cells from all patients. (Note: the 

SCTransform and integration workflows in the previous section were applied to individual 

specimens from each patient, while this section is performing these functions on merged datasets 

representing all specimens from each patient.) Each of these two integrated datasets was then 

prepared for further analysis by dimensional reduction and Seurat clustering as described in the 

Pre-processing section above. Low dimension graphs were generated using Seurat’s DimPlot 

function with default parameters except as noted in the figure captions. 

 

Identification of CNA subclusters and related hierarchy 

InferCNV [15] was used to identify CNA-based tumor subclusters within each tumor using the 

random trees algorithm. Parameters were as described above except analysis_mode = 

”subclusters” and tumor_subcluster_partition_method = ”random 

trees”. We then used a custom tool to visualize subcluster hierarchy and other related features. 

First, we incorporate each cell’s subcluster identity (from the “cell_groupings” output file) into 
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the Seurat object’s metadata, including the specific branching trajectory. Next, we repurpose the 

clustree R package [49] to generate a phylogenetic tree by considering each branching level of 

the subcluster identities as an individual “clustering resolution” (i.e., the divisions at the top of 

the tree are “low resolution” clustering solutions, while the branches at the bottom are “high 

resolution” clustering solutions). This allows visualization of the branching structure, number of 

terminal branches, and cell abundance within each specific trajectory. Finally, since the Seurat 

metadata contains other types of annotations for each cell (e.g., number of genes, cell state, 

region of tumor), we superimpose additional layers of information about the cells in each 

terminal branch, allowing identification of subcluster-specific cellular composition with respect 

to other variables (pie charts in Supplementary Fig. 3-3b-d). 

 

Molecular classification of glioma cellular states 

Malignant cells were grouped into subpopulations based on the integrated model of glioblastoma 

malignant cellular states presented in Neftel et al. (2019). The same classification workflow was 

used in this study. Single cells were classified as astrocyte-like (AC-like), mesenchymal-like 

(MES-like), neural progenitor cell-like (NPC-like), and oligodendrocyte precursor cell-like 

(OPC-like) based on enrichment scores corresponding to gene lists related to each of these four 

cell states. The gene lists corresponding to each cell state can be found in Table S2 of Neftel et 

al. (2019). Enrichment scores were generated for each malignant cell as described [11] using the 

Seurat function AddModuleScore with default parameters except assay=”SCT”, 

search=T, and nbin=30. This function computes enrichment of a gene list (i.e., module 

score) in each cell by calculating the average expression of the genes contained in the gene list 

and subtracting the average expression of a control gene list. The control gene list is compiled by 
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first binning all analyzed genes into a certain number of bins (in our case 30) based on aggregate 

expression levels, then randomly selecting 100 bin-mates for each gene in the query gene list, 

which results in a control gene set that is 100-fold larger than the query list and has a similar 

distribution of expression levels. Module scores were generated for all malignant cells using the 

meta-modules defining the AC-like, MES-like, NPC-like, and OPC-like malignant cellular 

states, and each cell was assigned to the state with the highest score. Two-dimensional graphs 

based on these module scores were generated as described in Neftel et al. (2019). Briefly, cells 

from each cellular state were placed into one quadrant of the plot by computing the strength of 

score separation based on two groupings: OPC-like/NPC-like vs AC-like/MES-like (y-axis) and 

AC-like/OPC-like vs MES-like/NPC-like (x-axis). The equations used to compute the 

magnitudes of the x and y coordinates for each cell were as follows: for NPC-like and OPC-like 

cells, x = log2(|NPCscore – OPCscore| + 1); for AC-like or MES-like cells, x = 

log2(|MESscore – ACscore| + 1); for all cells, y = maximum(OPCscore, NPCscore) – 

maximum(ACscore, MESscore). The x values were then multiplied by -1 for OPC-like and AC-

like cells. This placed the OPC-like cells in the top left quadrant, NPC-like in the top right, AC-

like in the bottom left, and MES-like in the bottom right. Cells were colored according to their 

cellular state assignment or other grouping variables as noted in the figure legends. The top 

enriched pathways in each cellular state and in cycling cells (see next section) were identified 

using enrichR [50-52] via the DEenrichRPlot function. 

 

Identification of cycling cells 

Cycling cells were identified as described in Neftel et al. (2019). Briefly, enrichment scores were 

generated for each malignant cell in the same manner as in the previous section using 



108 

two cell cycle signatures, one corresponding to the G1/S cell cycle phases and the other to the 

G2/M phases. Cycling cells were identified by fitting each of the two cycling signature score 

distributions to a normal distribution and testing each cell’s significance using a threshold of 

0.05. Cells that were significant for either of the two signature scores were labeled as cycling 

cells. 

 

Differential expression and gene set enrichment analyses 

Differentially expressed genes (DEGs) were identified using the FindMarkers (within 

groups) and FindConservedMarkers (shared across groups) functions in Seurat and 

visualized using the EnhancedVolcano function [53]. In each comparison, genes were 

included only if they were expressed in at least 5% of cells in one of the two groups being 

compared. For the bar plots in Fig. 3-5a-b, significant DEGs were defined as those exhibiting at 

least a 10% change in expression between groups and p < 0.05 (Bonferroni-adjusted p-value for 

FindMarkers output or combined p-value for FindConservedMarkers output). To 

perform gene set enrichment analysis (GSEA), we first generated a comprehensive list of 

pathway terms by combining the following databases: GO Biological Pathways, Canonical 

Pathways, Oncogenic Pathways, and Transcription Factor Targets [20]. For each differential 

expression comparison, GSEA was performed using the fgsea R package [19] with fold-change 

as the gene ranking metric, yielding enrichment scores for all pathways in the combined list. 

 

Cell-cell communication analysis 

The R package CellChat [31] was used for communication network analysis. Default parameters 

were used except as recommended by the developers in the online vignettes. 
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Visualization 

Except as noted above, all remaining plots were generated in R using the ggplot2 package [54].
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Figures 

 

 
 
Figure 3-1. Single nucleus RNA-sequencing of MRI-guided glioma biopsy targets. (a) Targeted MRI: T1 
with and without contrast preoperative magnetic resonance images, prospective biopsy targets, and 
intraoperative (IO) neuronavigation renderings of 2 contrast-enhancing and 1 non-enhancing region in 
TB77 (top; IDH-mut GBM) and TB78 (bottom; IDH-WT GBM). (b) Glioma single nucleus RNA-sequencing 
experimental workflow (created with Biorender.com). (c, d) Low dimensional plots via t-distributed 
stochastic neighbor embedding (t-SNE) showing the integrated snRNA-seq dataset with all sequenced 
nuclei, colored by expression-based clusters (c) or patient identity (d). 
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Supplementary Figure 3-1. Related to Fig. 3-1. (a) Clinical and pathological characteristics of glioma 
samples. (b) Isolation of single nuclei from glioma specimens (see Methods); shown is a microscopy 
image at 20x magnification, illustrating sample contents before and after sorting based on Hoechst 
fluorescence. (c) Example of cDNA (left, lanes B1-D1) and 10X library (right, lanes A2-C2) quality control 
via TapeStation automated electrophoresis analysis (Agilent Technologies, Inc) from the three biopsy 
specimens selected for PT90. QC was performed by the UCLA Technology Center for Genomics and 
Bioinformatics. (d) As in Fig. 3-1c, but with uniform manifold approximation and projection (UMAP) 
coordinates instead of t-SNE. Data were embedded into 3 dimensions. (e) Integrated snRNA-seq dataset 
with nuclei split by patient identity and colored by cluster. 
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Figure 3-2. Improved identification of malignant cells in glioma specimens. Identification of tumor cells 
in TB78. Canonical cell type markers are assessed across expression clusters (a, b) and integrated with 
single cell CNA profiles obtained using iterative inference (c) (see Methods), yielding confident labeling 
of malignant and normal cells and identification of CNA subclones. In the final heatmap, the left-most 
vertical color bar indicates CNA-based subclone and the adjacent color bar indicates original expression-
based cluster identity. (d) t-SNE plot showing 1655 malignant cells identified in TB78, colored by CNA 
subclone. (e) t-SNE plot showing all malignant cells integrated across patients. (Astro = astrocytes, ExN 
and InN = excitatory and inhibitory neurons, Nrgn = neurogranin neurons, Oligo = oligodendrocytes) 
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Supplementary Figure 3-2. Related to Fig. 3-2. Applying improved malignant cell identification strategy 
to the PT94 tumor. (a) Output from step 3, highlighting a group of reference cells appearing to be 
malignant (left of green arrow). (b) Final output shows absence of contaminating cells in the reference 
group. (c) Step 2 output with noisy group starred. 
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Figure 3-3. Recapitulation of established malignant cellular states in recurrent glioma. Glioma cells 
were classified by cellular state (AC-like, MES-like, NPC-like, and OPC-like) and cycling status (cycling, 
non-cycling) using gene network module scores as described by Neftel et al. (2019). Shown in (a) are all 
malignant cells integrated across tumors and plotted based on relative enrichment among the cellular 
state meta-modules (see Methods). (b) Heatmap depicting expression of top 10 genes across the gene 
lists obtained from Neftel et al. (2019). Rows correspond to genes and columns to cells. Cells are 
grouped according to cellular state, with cycling cells plotted separately. A random subset of 5000 
malignant cells were included. Visualization (c) and evaluation via ANOVA (d) of intertumoral differences 
in malignant cell state composition. (e) Proportion of cycling cells detected in each cellular state. (f) Top 
enriched pathways in each cellular state and in cycling cells, generated using enrichR [50-52]. 
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Supplementary Figure 3-3. Related to Fig. 3-3. (a) Cell type prioritization via Augur. Results from 
training the classifier to predict patient ID given cell state (left) or to predict cell state given patient ID 
(right), to evaluate inter- and intra-tumoral heterogeneity, respectively. (b-d) Using a novel tool to 
reconstruct hierarchies from CNA-based subclustering information. Top nodes are labeled by patient ID, 
edge color is scaled to number of cells traveling along that branch (yellow=high), node sizes are scaled to 
number of cells in that node or any daughter nodes, pie charts represent proportions of malignant 
cellular states (top chart) or region (bottom chart). Two of the tumors, PT95 and TB81, did not yield NE 
cells, so there is no region breakdown for those (d). 
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Figure 3-4. Characterizing tumor burden and composition in the NE region. (a) Malignant cells were 
labeled according to the region they were isolated from and visualized using t-SNE coordinates. (b) 
Quantification of malignant cell burden (proportion of all cells that are malignant) in the NE vs CE 
regions of each tumor. (c) Tumor burden relative to distance from center of tumor was modeled for the 
first 3 sequenced tumors by fitting the tumor:non-tumor oligodendrocyte ratio to a quadratic curve 
(solid line), with the x-asymptote (dotted line) representing predicted distance from the tumor center 
where tumor burden approaches 0. (d) Heatmap of tumor burden based on quadratic formula overlaid 
on pre-operative MR scan. (e, f) Proportion of malignant cellular states (e) and cycling cells (f) in the NE 
vs CE regions. (g) Percentage positive pixel quantification of immunohistochemistry staining for Ki67 
stratified by region of acquisition. (h) Percentage positive pixel quantification of immunohistochemistry 
staining for Ki67 in enhancing and non-enhancing pairs from the same tumor. (i) Representative 
example of regions of Ki67 staining in enhancing and non-enhancing regions. (j) Cross-classification 
abundance analysis, combining cellular state groups with cycling status. 
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Supplementary Figure 3-4. Related to Fig. 3-4.  
(a) Breakdown of expression-based cluster proportions by region. All 5 tumors from which we 
sequenced both regions were included. (b) Clinical and pathological characteristics of patients included 
in immunohistochemistry analyses (Fig. 3-4g-i). 
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Figure 3-5. Region-specific molecular features of malignant cells. 
Differential expression analysis was performed to compare the NE vs CE regions in the integrated 

dataset (a) and in individual tumors (b). Numbers of differentially expressed genes (DEGs) are shown for 

each comparison. Cells were analyzed without grouping (“All”) and grouped by individual cellular states 

(“AC” through “OPC”) or cycling status (“Cycling” and “Non-cycling”). In each comparison that involved 

multiple tumors (e.g., AC-like cells in all tumors), conserved DEGs were identified across patients using 

the FindConservedMarkers function in Seurat, which performs the differential expression testing 

in each individual group and tests for conserved changes using p value combination techniques. In (a), 

the grouping variable was patient identity, yielding conserved DEGs in the NE vs CE regions across 

patients. For the individual tumor analyses in (b), conserved DEGs across cellular states and across 

cycling statuses were identified in a similar manner and correspond to the rows labeled “All_state” (all 

cellular states) and “All_cycling” (both cycling + non-cycling), respectively. (c-e) Volcano plots showing 

log fold change and significance for all genes that were considered in each differential expression 

comparison, which were genes expressed in at least 5% of the respective cell subsets. (f-i) The same 

differential expression comparisons were used for gene set enrichment analysis using a combination of 

the following databases: GO Biological Pathways, Canonical Pathways, Oncogenic Pathways, and 

Transcription Factor Targets [20]. Shown are the top up- and down-regulated pathways across all tumors 

(f), the tumor with the most significantly dysregulated pathways, PT94 (g), and the two cellular states 

with the most dysregulated pathways, AC-like (h) and MES-like (i). (j-k) Cell type prioritization was 

performed using the Augur package to quantify and rank cell type-specific contributions to regional 

divergence. Prioritization was performed to assess NE vs CE separability in each tumor (j), to assess 

change in intertumoral heterogeneity within each malignant populations across the two regions (k, top), 

and differences across the two regions in cell state predictability (i.e., intratumoral heterogeneity) given 

cycling status or patient ID (k, bottom). 
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Supplementary Figure 3-5. Related to Fig. 3-5. Remaining GSEA results not visualized in Fig. 3-5. NE vs 

CE within patients (a) and within malignant cellular states (b). 
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Figure 3-6. Non-malignant cell microenvironment in NE vs CE. (a) t-SNE representation of non-
malignant cells from both NE and CE regions. (b) Phylogenetic tree (left) and dot plot (right) showing 
marker expression patterns across clusters. (c) t-SNE representation of non-malignant cells labeled by 
cell type based on marker expression profiles. (d) Differential abundance analysis of normal cell types in 
the NE vs CE regions. (e) Differential expression analysis within cell types, NE vs CE. Gene set enrichment 
analysis was performed using each of the differential expression comparisons in (e) with a combination 
of the GO Biological Process, Canonical Pathway, Oncogenic Pathway, and Transcription Factor Target 
databases [20]. Top positively and negative enriched pathways are shown for all cells (f), neurons (g), 
immune cells (h), and the remaining cell types (i). (Astro = astrocytes, Endo = endothelial cells, ExN = 
excitatory neurons, InN = interneurons, Mac = macrophages, MG = Microglia, Oligo = oligodendrocytes, 
T_cell = T cells) 

 

 

 

 

Supplementary Figure 3-6. Related to Fig. 3-6. Remaining cell type-specific differential gene expression 
results not visualized in Fig. 3-6. NE vs CE in astrocytes (top), T cells (middle), endothelial cells (bottom). 
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Figure 3-7. Integrated atlas of malignant-normal cell communication networks in GBM. 
(a) Summary of human CellChat interaction database used for communication analysis. (b) Total 
interaction number (left) and strength (right) in tumor core as identified by CellChat. (c) Hierarchy plots 
showing the signaling participants for the top three significant interaction pathways detected. Ligand-
receptor pairs were ranked by contribution to entire signaling pathway. Shown are interaction pairs 
corresponding to the top 2 significant pathways in the CE region, NRXN (d) and NCAM (e). 
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Supplementary Figure 7. Related to Fig. 3-7. 
(a) Strength/weight of signaling sent from each cell population, identifying strong and weak interaction 
partners. Line thickness corresponds to weight. (b) Hierarchy plot for each of the top three ligand-
receptor interaction pairs contributing to the NRXN pathway. Circles in the middle column are signaling 
receivers, while those in the outer columns are senders. Malignant populations are on the left, and non-
malignant populations are on the right. For each interaction, malignant cells are the receiver cells in the 
first plot, and non-malignant cells are the receiver cells in the second plot. 
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Figure 3-8. Rewiring of cell-cell communication network structure in NE region 

(a) Total interaction number (left) and strength (right) in NE region as identified by CellChat. (b) 
Differential analysis of interaction number (left) and strength (right) between NE and CE regions. Red 
indicates increased communication in NE, while blue indicates decreased communication in NE. (c) 
Quantification of interaction strength by region. (d) Heatmap showing differential number (left) and 
strength (right) of pair-wise interactions across cell populations. Rows are senders of communication; 
columns are receivers. Color bars indicate total amount of signaling in the respective row or column. (e) 
Same as (d) but both rows and columns are clustered based on patterns of differential communication. 
Joint manifold learning and classification of networks was performed based on functional and structural 
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similarities, yielding two dimensional plots with 3 and 5 clusters respectively (see Supp. Fig. 3-8j-k). For 
each pathway, Euclidean distance between the NE and CE datasets was computed using both functional 
(f) and structural (g) similarity to examine communication differences. Pathways were also ranked by 
relative information flow across regions; all pathways (h) and the top 10 for each region (i). Pathways 
were labeled by region using Paired Wilcoxon to test for significant difference between datasets. (j) 
Gene expression across cell types for proteins belonging to two NE-enriched pathways. (k, l) 
Quantification of differential incoming and outgoing interaction strength in NE vs CE, highlighting 
specific pathways in T cells (k) and MES-like malignant cells (l). (m) Bubble plot showing region-specific 
interaction strength and significance with neurons as sources and immune cells as receivers. Interleukin-
related pathways are visualized. 
 

 

 

 

 

 

 



139 

 
  



140 

 

 

 



141 

Supplementary Figure 3-8. Related to Fig. 3-8. 
(a) Within NE region: strength/weight of signaling sent from each cell population. Line thickness 
corresponds to weight. (b, c) Highlighting two of the top significant pathways identified, NCAM (b) and 
CNTN (c), whose specific interaction pair contributions appear different and similar, respectively, in NE 
vs CE. (d) VEGF pathway: region-specific gene expression profiles across cell types. (e-g) Similar to Fig. 3-
8a-b but using different cell grouping resolutions: (e) 2 groups - malignant and normal; (f) 5 groups - 
malignant, neurons, glia, endothelial cells, and immune cells; and (g) 8 groups - cycling malignant cells, 
NPC/OPC-like malignant cells, AC/MES-like malignant cells, neurons, glia, endothelial cells, 
microglia/macrophages, and T cells. Comparison of source and target tendencies of individual cell types 
in CE (h) and NE (i) regions. (j, k) NE vs CE differential analysis: joint manifold learning and classification 
based on functional (j) and structural (k) similarity, yielding 3 and 5 clusters, respectively. (l) Bubble plot 
showing region-specific interaction strength and significance with malignant cells as sources and non-
malignant cells as receivers. Pathways visualized are PD-L1, VEGF, TGFb, TNF, and EGF. Purple stars 
indicate columns corresponding to malignant cell-to-endothelial cell signaling. 
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Chapter 4: Conclusions 

 

The overall aim of these studies is to establish a flexible and scalable workflow that we and 

others can leverage to dissect complex cellular and molecular relationships contributing to CNS 

disorders. Prior to the advent of single cell analytics, and even now to a lesser extent, untangling 

these complex relationships in a robust manner was extremely challenging. Recent progress in 

the development of single cell “-omics” technologies has enabled enormous growth in our 

understanding of many biomedical research contexts, including CNS disorders. Despite these 

advances, many questions remain unanswered, and progress in clinical management of severe 

diseases has been limited. This is in part due to technical limitations, as many components of 

bioinformatics workflows require a significant amount of manual manipulation, arbitrary 

decision-making, and inconsistency across experts regarding “best practice” guidelines. We 

argue that converging on unbiased, reproducible, creative, and efficient analytical workflows can 

significantly improve our ability to identify important and clinically relevant biological insights 

with high confidence. In these studies, we apply these principles to several open questions in 

glioma research and show that transcriptomic analysis with a focus on pathway activation and 

relationships among cells elucidates key drivers of multiple hallmark glioma features, most 

notably proliferation, vascular remodeling, and invasive potential. These findings present 

opportunities for confirming several novel pathways, cellular populations, and cell-cell 

interactions that are potential candidates for improving glioma therapeutics. 

 

In Chapter 2, we focused on transcriptomic analysis at the pathway level and developed an 

alternative molecular classification scheme for glioblastoma tumors that aims to improve on the 

original TCGA categories [1]. We reasoned that analyzing gene expression alone was 
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insufficient in terms of telling the full story about biological dysregulation in GBMs. To combat 

this, our method used gene set enrichment analysis (GSEA) and analyzed gene expression 

profiles based on differential enrichment of functional pathways, which yielded a stable 

clustering solution when considering a large number of bulk gene expression profiles generated 

from patient samples and patient-derived gliomasphere lines. We then probed these patterns of 

differential functional enrichment and identified gene networks driving the observed cluster 

divergence. Examining relevant pathways and upstream regulators of these gene networks 

pointed to E2F1 as a key driver of tumor cell proliferation. Importantly, despite widespread 

proliferative potential across the gliomasphere lines, E2F1 was only a driver of proliferation and 

tumor formation in the clusters that were predicted to be E2F1-activated. Moreover, E2F1-

activated cells were sensitized to radiation by E2F1 inhibition. Finally, we discovered functional 

convergence and biological parallels in our gene networks by performing both bulk and single 

cell correlation analyses, identifying positive and negative connections within our gene networks 

and between our networks and other previously described function- and cell type-specific gene 

sets. This revealed a strong connection between one of our non-cell cycle networks and markers 

of MES-like tumor cells, adult endothelial cells, developing endothelial cells, and developing 

mural cells, suggesting vasculature-related dysregulation in tumors enriched for this gene 

network. These findings reflect our method’s powerful ability to untangle heterogeneous tumor 

pathway utilization and validate therapeutic targets in a highly specific manner, as well as its 

adaptability to single cell RNA-seq analyses that are becoming more readily feasible.  

 

In Chapter 3, we began to address a major challenge in glioma clinical management, namely the 

short survival period due to high likelihood of tumor recurrence. After initial glioma resection 
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surgery, there are likely malignant cells left behind near the tumor periphery that later drive 

tumor recurrence despite adjuvant therapy. The peripheral region of the tumor has not been well-

characterized at single cell resolution, as most single cell glioma studies either focus on the core 

of the tumor or examine a low number of cells from the periphery. We thus sought to 

comprehensively characterize the cellular and molecular landscape of the peripheral, non-

enhancing (NE) region compared to the contrast-enhancing (CE) region of a cohort of recurrent 

glioma patients using MRI-guided biopsy and single nucleus RNA-sequencing. We first 

established an improved method for confidently identifying malignant cells in tumor sc/snRNA-

seq datasets and used this tool to separate the malignant from non-malignant cells in our dataset. 

We then examined malignant cell composition and molecular characteristics using a previously 

described classification scheme [2], noting the presence of all malignant states in recurrent 

glioma, tumor-specific composition profiles, conserved proliferation ability across states, and 

functional enrichment that parallels the normal cell correlates of each cell state. Next, we 

identified copy number-based subclusters in each tumor and developed a flexible tool to 

visualize the subcluster hierarchies superimposed with other levels of information. We used this 

tool to inspect the identified subclusters and their malignant cell state compositions, finding that 

each tumor consisted of 8 terminally evolved subclusters, none of which were up/downstream 

from each other, and that many subclusters contained a dominant malignant cell state, suggesting 

a potential clonal stability with respect to cell states in recurrent glioma that was not observed in 

primary glioma [2]. We then focused on the NE region and observed a significant tumor burden 

in all patients, with patient-specific alterations in cell state composition, cycling fraction, and 

copy number subcluster composition. We noted here that NPC-like and, interestingly, MES-like 

cells were more proliferative in NE, potentially implicating these two states in recurrence-related 
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proliferation. Comparing the molecular profiles of each cell state between the two regions 

revealed upregulation of several pro-proliferative terms and downregulation of vascular 

remodeling terms in MES-like cells in the NE region, suggesting specific pathways driving the 

increased MES-like cycling fraction and potentially identifying a functional transition from 

influencing vasculature in the tumor core to exhibiting proliferative capacity at the periphery. 

Analysis of non-malignant cells identified a decrease in the proportion of T cells and 

macrophages, suggesting a potential immune-cold environment near the periphery. Moreover, 

normal endothelial cells were enriched in vascular development terms in NE, implying that they 

may be taking back control of vasculature from MES-like malignant cells. Finally, cell-cell 

interaction analysis comparing the two regions revealed in the NE region a significant decrease 

in malignant cell communication, increase in normal-to-normal cell communication, rewiring of 

communication networks, and specific depletion of VEGFA-VEGFR2 signaling from MES-like 

tumor cells to normal endothelial cells, further implicating MES-like cells as significantly 

functionally altered. These findings present the first thorough characterization of single cells in 

the NE region in glioma with respect to functional transitions, tumor microenvironment 

interactions, and copy number-based hierarchical relationships.  

 

Several of our findings are consistent with previous studies focusing on regional diversity in 

glioma. Similar to reports [3, 4] that macrophages and microglia play a stronger role in the tumor 

core and periphery, respectively, we observe a decrease in the macrophage:microglia ratio and a 

relative decrease in macrophage cellular communication compared to microglial communication, 

both in the outgoing and incoming directions, in the edge region. 
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Moreover, the observed functional transition in MES-like malignant cells (from being pro-

angiogenic in the tumor core and proliferative in the periphery) parallels the reported 1) pattern 

of increased proliferation and decreased angiogenic factors [4] and 2) shift from a mesenchymal 

to a proneural phenotype in the tumor periphery [5]. Importantly, tumor cells from individual cell 

states [2] and from the edge region [6] exhibit tumor initiating potential, suggesting that these 

functional transitions may be critical for recurrence and may serve as candidates for targeted 

therapies. 

 

We also identify multiple novel cell type-specific regional and functional signatures in glioma. 

Most notably, we reveal potential mechanisms underlying functional shifts driven by cell-cell 

communication among tumor cells and non-tumor cells. In terms of neuron-glioma interaction, 

previous studies have described glioma synapses, integration of glioma into neural circuits, 

increased excitability in glioma-infiltrated brains, and promotion of tumor growth driven by 

neurexin signaling following neuronal activity [7, 8]. We observe that the malignant cell states 

driving neuron-glioma interactions are the NPC-like, OPC-like, and cycling cells. On the other 

hand, the malignant cell states driving vasculature-glioma interactions are the MES-like, AC-

like, and cycling cells. This dichotomy points to specific functional contributions of each cell 

state to tumor progression, implicating NPC-/OPC-like cells in growth, MES-/AC-like cells in 

migration, and cycling cells in both. Comparing the core and edge regions reveals that both 

interactions are decreased in the edge. In addition, the edge region exhibits re-wired vascular and 

immune communication pathways, along with increased interleukin signaling from neurons to 

immune cells. To our knowledge, these shifts in communication patterns at the tumor periphery 
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have not yet been reported, and these axes serve as candidates for further investigation aiming to 

understand how to prevent or delay tumor recurrence by manipulating cell-cell interactions in the 

edge region. 

 

One important limitation of this study is the cohort size (n=7 total, n=5 for NE vs CE 

comparisons). Although we attempt to combat this with strict significance filtering and careful 

selection of appropriate statistical tests and models, we are ultimately still limited by the overall 

sample size. We plan to address this by continuing to sequence newly acquired tumor specimens 

as they arrive, with the hope of releasing to the research community a publicly available glioma 

snRNA-seq atlas allowing visualization and analysis of the tumors that we have sequenced. 

Secondly, it will be important to perform this type of characterization using primary glioma 

tumors, which we also hope to achieve with future sequencing experiments. Third, beyond the 

identified cell populations and molecular networks, it would be of great use to delineate specific 

upstream mechanisms underlying the observed changes. One way to approach this would be to 

examine the chromatin accessibility profiles near strong candidate genes, which could reveal 

specific gene regulatory molecules driving the relevant changes. Another would be to experiment 

with gliomasphere cell lines and glioma mouse xenotransplant models to manipulate cells or 

pathways of interest. Fourth, we have not performed a targeted characterization of several typical 

aberrant features of glioma, such as hypoxia in the core. To address this, I plan to perform a 

comprehensive metabolomic profiling of the CE and NE regions, which could further implicate 

certain cell populations and functional pathways as candidate recurrence drivers that can be 

targeted with novel therapies. 
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Making significant progress in managing devastating diseases like glioma is clearly dependent 

on gaining a deeper understanding of the cellular and molecular complexity within the relevant 

compartments. We show here that leveraging integrative analytical frameworks focusing on 

complex features like functional enrichment and cell-cell interaction enable us to disentangle the 

relationships driving disease progression. The above two approaches both implicate specific 

cellular (MES-like, vascular, neuron, immune) and molecular (E2F1, VEGF) drivers of glioma 

progression in specific contexts, presenting a promising strategy for comprehensive and accurate 

deconvolution of high dimensional biological networks contributing to challenging CNS 

diseases. 
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