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Abstract

Design, Implementation and Performance
of Exponential Integrators for High Performance Computing

Applications

John Loffeld

A dissertation submitted in partial satisfaction of the requirements for the degree of
Doctor of Philosophy in Applied Mathematics

University of California, Merced

2013

Committee Chair: Mayya Tokman

Exponential integrators have received renewed interest in recent years as a means to ap-
proximate stiff systems of ODEs, but are not currently widely used in high performance
computing. There have been only limited performance studies comparing them to currently
used methods, little work investigating how to optimize their design for computational
efficiency, and almost no work on implementing and studying their performance on par-
allel computers. We present here a detailed performance breakdown and comparison of
Krylov-based exponential integrators to each other and to Newton-Krylov implicit solvers,
the currently most widely used class of methods for large-scale stiff problems. Our results
show exponential integrators perform favorably compared to implicit integrators across a
number of different problems. We then introduce a new class of exponential integrators
called exponential propagation iterative methods of Runge-Kutta type (EPIRK). Based on
our performance analysis we consider some strategies for utilizing their structural features
to construct schemes with improved computational efficiency and demonstrate their effec-
tiveness with some numerical experiments. We also describe a parallel implementation of
a suite of exponential integrators and give some performance results which show encour-
aging performance of the methods on problems scaled up to thousands of processors when
compared to CVODE, a production-grade parallel implementation of a Newton-Krylov im-
plicit integrators popularly used for high performance computing applications today. We
conclude with consideration of possible future research directions.

xiii



1 Introduction

Systems of differential equations are characterized as being ”stiff” when they constrain
explicit numerical integrators to small step sizes in order to maintain numerical stability.
Currently implicit methods are typically resorted to due to their better stability properties,
despite their considerably higher computational cost per time step. The high cost of implicit
methods is due to their need to solve a large system of nonlinear equations each step.
Typically such nonlinear systems are treated using Newton’s method, which must in turn
solve a large linear system each iteration. Krylov iterative methods such as GMRES are the
currently favored approach for approximating the solution of large linear systems. Their
use in the Newton iteration makes Newton-Krylov implicit methods the most commonly
used class of time integrators for large-scale stiff problems today.

Exponential integrators have emerged as a potential alternative to Newton-Krylov im-
plicit methods for approximating large stiff problems. Like implicit methods they have good
stability properties, but rather than needing to solve large linear systems, these methods
require the evaluation of exponential-like ϕk(A) functions of large matrices A, where A is
typically the Jacobian matrix or a linear operator from the system. When first introduced
in the 1960’s [12, 55, 37] exponential integrators were used to solve small systems of only
a few variables. The Jacobian matrices were either diagonal, or the exponentiation of the
matrices was done using direct methods such as Taylor or Padé approximation. As prob-
lems increased in size, though, exponentiating the larger matrices using direct methods
became cost prohibitive and attention towards exponential integrators waned. However in
the 1980’s, Krylov iterative techniques were first used to compute exponentials of symmetric
matrices using the Lanczos algorithm [49, 54]. The idea was generalized to exponentials of
nonsymmetric matrices by Gallopoulos and Saad [20] and Frienser [19], and finally extended
to arbitrary functions of a matrix by Van der Vorst [15]. The use of Krylov techniques for
the evaluation of the ϕk(A) functions made exponential integrators tractable for large sys-
tems, rekindling interest in them. Since then a number of new exponential schemes have
been derived [19, 5, 20, 27, 13, 33, 35, 30, 66, 53, 32, 72, 56].

Exponential integrators fall into a number of classes. Integrating Factor (IF) methods
were first proposed by Lawson [37] and they work by enacting a change of variables trans-
formation of the system using the integrating factor e−tA, where t is the time variable and A
can be any matrix. If A is similar enough to the Jacobian of the original system, the stiffness
of the resulting transformed system will be reduced to the point that it can be solved by
any classic explicit scheme. The integrating factor approach was generalized by Krogstad
to incorporate approximations of the nonlinearities of the system in the transformation,
giving the wider class of Generalized Integrating Factor (GIF) methods [35]. Exponential
Time Differencing (ETD) schemes are a wide class of methods which are derived from the
variation-of-constants integral formulation of the problem through an appropriate numer-
ical approximation of the integral term. Some methods from this class are derived from
classical time integrators, such as the exponential W-methods which are derived by re-
placing the linear systems in Rosenbrock-Wanner (ROW) methods with multiplications by
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certain ϕ1(A) terms [27, 51]. Others are derived directly from the integral formula itself,
such as the exponential propagation iterative Runge-Kutta (EPIRK) methods [66], expo-
nential Runge-Kutta methods [29], and the exponential Rosenbrock-type (EROW) methods
[30, 9, 32]. Hochbruck and Ostermann review the construction, convergence analysis, and
implementation of ETD methods in [31]. Lie group exponential methods employ Lie matrix
algebra to ensure that the evolution of the numerical solution lies on the same manifold
as the exact solution [14, 17, 44, 48] and are useful for problems for which energy must be
conserved or some other invariant must be upheld.

Early work in exponential integrators was largely focused on semilinear problems of the
form y′ = Ly +N(y), where L and N are linear and nonlinear operators respectively with
the stiffness of the problem typically stemming from L [37, 20, 5, 13, 35, 33, 29, 53, 72, 56].
A review of the history of methods formulated for semilinear problems can be found in [45].
Recently attention has increased on constructing exponential methods for general nonlinear
problems of the form y′ = f(y) [19, 27, 66, 30, 32, 9, 51]. Clearly methods formulated for the
latter type of problem can be used to treat problems of the former type, but for problems
which can be specified in a semilinear manner it’s an ongoing question as to which type of
integrator is most efficient for which problems (see [56] for some initial results). This thesis
will focus on methods developed for general nonlinear systems as those are applicable to
the widest range of scientific problems.

Despite the renewed attention in exponential integrators, much work remains if they are
to become widely used on large-scale problems. While there has been increased interest
in deriving new schemes, there has been little work on their performance analysis and op-
timization. While some limited performance results show exponential integrators to be
promising for stiff problems, until now there have been no comprehensive studies of the
performance of different types of exponential integrators in comparison to each other or to
implicit methods. Due to the lack of computational cost analysis, the question of how to
optimally tailor the structure of an exponential integrator, as well as how to most efficiently
implement a method, is not well understood. Furthermore, the lack of performance studies
means the case for using exponential integrators over implicit methods has not been estab-
lished, either in general or for particular types of problems. Finally, integrators targeted at
large-scale problems must be implemented and tuned for massively parallel machines, but
there has been almost no work on parallelization of exponential methods. To our knowl-
edge there has been only one study of a parallel implementation of exponential integrators
[42]. The method was implemented using Leja point approximation, but comparisons with
other integrators were not made. In this thesis we attempt to improve the understanding of
the design and performance of exponential integrators through thorough benchmarking and
performance analysis, and through the construction and testing of new optimized schemes.
The testing is done on both single processor and parallel machines using a software package
we wrote called EPIC (ExPonential Integrator Collection), designed for easy extensibility to
both new schemes and different approximation algorithms for the evaluation of the ϕk(A)
terms.

The decisions about how a method should be constructed for good performance depend
upon the choice of approximation method for the ϕk(A) functions. In this thesis we focus
on the use of Krylov projection techniques, due to their good efficiency over a wide range
of problems, and because Krylov methods are currently better developed than alternatives.
Note though that recently there has been work on other techniques such as polynomial
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approximation and contour integral methods [10, 52, 59, 73] which may prove more efficient
than Krylov approximation for certain types of problems. See [7, 8] for some early perfor-
mance comparisons. As our software is agnostic to the type of approximation technique for
the ϕk(A) terms, in the future we will extend it to include some of these other techniques.

We begin looking at the question of how an exponential method’s design impacts its per-
formance in Chapter 2, with the motivation of determining how structural aspects can be
exploited in the derivation of more efficient integrators. We introduce the basic structure
of exponential integrators in general and detail how Krylov approximation can be used to
approximate the products of the ϕk(A) matrix functions times a vector which constitute the
methods. We note that evaluation of these ϕk(A)v terms through Krylov approximation
is the principal computational cost of Krylov-based exponential methods and that com-
putational efficiency becomes a matter of (i) minimizing the number of Krylov projections
which must be performed each time step and (ii) minimizing the number of Krylov iterations
which must be performed each projection. We compare the structure of several exponential
schemes and discuss how their differences affect the balance of those two costs. Numeri-
cal results are given which illustrate the ideas discussed and demonstrate that the higher
rate of convergence of ϕk(A) functions with high k value give methods composed of them
a marked performance advantage over those composed with low k value. We also present
a comparison of the exponential methods with the BDF4 Newton-Krylov implicit method
on two benchmark problems and find that the performance of the exponential methods
compares well with the implicit method.

In Chapter 3 we continue the discussion of the impact of structure on Krylov cost, now
with a much more extensive comparison with Krylov-based implicit integrators. We note
that the primary difference between exponential integrators and implicit ones is the type of
matrix functions they must evaluate, with exponential integrators requiring the evaluation
of the aforementioned ϕk(A) functions but implicit methods requiring the computation of
matrix rational functions. We argue that Krylov approximation of the ϕk(A) functions
generally gives a better rate of convergence over the rational functions of a matrix, giv-
ing exponential methods an inherent performance advantage over implicit schemes. How
a method’s overall structure affects its efficiency is a complex matter however, and we
present a structural comparison of the exponential schemes with several implicit methods
of various design, highlighting how the different aspects affect Krylov efficiency. We then
conduct a thorough performance comparison of the exponential and implicit methods on
six stiff benchmark problems and give a detailed cost breakdown of each method’s per-
formance, discussing the cost tradeoffs between the methods. The comparisons and cost
breakdown verifies that the use of the ϕk(A) functions does provide exponential integrators
with a performance advantage, and demonstrates that exponential methods can perform
more efficiently than implicit methods on stiff problems. This work is one of the first de-
tailed numerical studies of how exponential methods perform in comparison to standard
integrators.

Continuing in the chapter we describe a new class of exponential methods dubbed ex-
ponential propagation iterative methods of Runge-Kutta type (EPIRK), first introduced
in [67]. The coefficients of the EPIRK class provide greater flexibility in deriving perfor-
mance optimized schemes than other known classes, allowing the design of higher order
methods with lower Krylov cost compared to previous integrators. As an example of such a
method, we describe the new fifth order EPIRK5S3 scheme from the class, also introduced
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in [67], and examine how its structure is expected to give streamlined performance. Nu-
merical experiments and a cost breakdown in comparison with other exponential methods
are presented to illustrate the ideas. To our knowledge the EPIRK5S3 scheme is the first
exponential integrator tailored explicitly around the Krylov cost structure of exponential
methods in order to produce a more efficient solver.

In Chapter 3 we also use the results from the performance comparisons to highlight the
important concept of Krylov adaptivity. The matrix arguments of the ϕk(A) functions are
typically the Jacobian matrix of the problem scaled by the current time step. The scaling
of the matrices has a large effect on the computational cost of the Krylov approximation,
in a manner that is nonlinear in the size of the time step. This results in an unfortunate
phenomenon where increasing the step size past a certain pivotal value will result in the
computational cost of integration to increase rather than decrease as expected. Particu-
larly for large scale problems, modulating the scaling of the matrix becomes crucial for
maintaining efficiency of the integrator. To address this problem, in Chapter 4 we describe
the derivation and implementation of two new fifth order schemes from the EPIRK class
of schemes, EPIRK5P1 and EPIRK5P2. The methods are constructed specifically to work
with a modification of the Krylov adaptivity algorithm described in [50]. The adaptivity
algorithm exploits the particular algebra of the ϕk(A) functions to decompose their Krylov
approximation into a number of cheaper approximations such that the computational cost
is minimized. We give some numerical results which demonstrate the large improvements
in efficiency of the two methods over previous exponential integrators. The two new meth-
ods give a strong example of the value of constructing exponential methods tailored to
the particulars of the approximation algorithm being used and are another example of the
flexibility of the EPIRK class of methods.

Until now there has been almost no investigation of parallelization of exponential integra-
tors. Chapter 5 describes the implementation of an MPI-based suite of parallel exponential
solvers. The software is designed to allow easy extensibility to new schemes and alternate
techniques for approximating the ϕk(A) functions. The solvers accept problems written for
the production Newton-Krylov BDF solver suite CVODE, popularly used for scientific com-
puting on supercomputers today. Compatibility with CVODE will allow practitioners to
test exponential integrators without altering the implementation of their problems. Using
the new software we describe some early performance results for a parallelized version of the
Krylov-adaptive EPIRK5P1 method in comparison to CVODE on a number of unprecondi-
tioned benchmark problems of sizes up to a thousand processors. The performance results
show the method to perform well in comparison with CVODE on the problems across all
problem sizes. The experiments also demonstrate how increasing problem sizes heightens
the importance of managing the computational cost through modulation of the scaling of
the matrix, and shows the computational advantage of Krylov adaptivity as a means to
maintain scalability. While much work remains to be done to bring exponential integrators
into common practice on large parallel machines, this work is to our knowledge the first
performance study of exponential methods on the supercomputer scale.

Finally in the conclusions chapter we summarize the results of the thesis and consider
some possible future directions of research.
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2 Efficient design of exponential-Krylov integrators for
large scale computing

2.1 Abstract

As a result of recent resurgence of interest in exponential integrators a number of such
methods have been introduced in the literature. However, questions of what constitutes
an efficient exponential method and how these techniques compare with commonly used
schemes remain to be fully investigated. In this paper we consider exponential-Krylov in-
tegrators in the context of large scale applications and discuss what design principles need
to be considered in construction of an efficient method of this type. Since the Krylov pro-
jections constitute the primary computational cost of an exponential integrator we demon-
strate how an exponential-Krylov method can be structured to minimize the total number
of Krylov projections per time step and the number of Krylov vectors each of the projections
requires. We present numerical experiments that validate and illustrate these arguments.
In addition, we compare exponential methods with commonly used implicit schemes to
demonstrate their competitiveness.

2.2 Introduction

While the first exponential time integrators were introduced back in the 1960’s [12, 55, 37]
their popularity among numerical analysts and practitioners has been limited. Initially the
main reason for such underutilization was the high computational cost of these schemes.
Solving systems of ODEs with an exponential method requires evaluation of a product of
an exponential or exponential-type functions of a large matrix with a vector. Even for
moderately-sized systems this operation becomes prohibitively expensive if standard tech-
niques such as Taylor or Pade approximations are employed [46]. However, a proposal to use
a Krylov projection algorithm for this task significantly reduced computational cost. This
idea first appeared in a paper by Nauts and Wyatt [49] where they used Krylov projection
to compute exponentials of symmetric matrices that represented discrete Hamiltonian oper-
ators, and was later used by Park and Light [54] to exponentially propagate the Schrödinger
equation. Van der Vorst extended this idea and proposed to apply Krylov projection to
approximate general functions of matrices [15]. A resurgence of interest in exponential
methods followed these ideas and a number of such methods have been proposed in the last
decade [19, 27, 30, 66, 53].

Coupling exponential methods with the Krylov projection algorithm makes these time
integrators much more appealing for large scale computing. Still many questions remain to
be answered to enable wide application of these methods to scientific problems. In partic-
ular, thorough performance comparisons with state-of-art explicit and implicit integrators
are needed and it remains to be demonstrated how details of the design of an exponential
integrator affect its performance. This paper presents some results pertaining to the former
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question and focuses on the latter issue. We consider exponential integrators as methods
that can allow for significant computational savings in integrating large stiff systems of
ODEs and from that perspective discuss what constitutes an optimal design of an expo-
nential integrator. The paper is organized as follows. Section 2.3 provides an overview of
exponential methods for general nonlinear systems of ODEs and outlines the main features
that influence performance of an exponential-Krylov integrator. A suite of test problems
is presented in Section 2.4 and the ideas of previous sections are illustrated with numerical
examples. Finally, conclusions and directions for future study are presented in Section 2.5.

2.3 Structure of exponential integrators

2.3.1 General derivation and important construction considerations for
exponential integrators

In order to illustrate what choices have to be made in the design of an exponential integrator
we begin by presenting the general derivation of such schemes. Consider the initial value
problem for an autonomous nonlinear system of ODEs

y′ = f(y), y(t0) = y0, (2.1)

where y ∈ RN . There is no loss of generality in considering an autonomous system since
a non-autonomous one can always be converted to the autonomous form by adding the
equation t′ = 1. If the first-order Taylor expansion of f(y) around y0 exists we can re-write
Eq. (2.1) as

y′ = f(y0) + f ′(y0)(y − y0) + r(y) (2.2)

with the nonlinear remainder of the first-order Taylor expansion denoted as r(y) = f(y)−
f(y0)−f ′(y0)(y−y0) and the Jacobian matrix f ′(y0) ∈ RN×N . Using the integrating factor
e−f

′(y0)t we can find the integral form of the solution to this system at time t0 + h as

y(t0 + h) = y0 +
ef
′(y0)h − I
hf ′(y0)

hf(y0) +

∫ t0+h

t0

ef
′(y0)(t−t0)r(y(t))dt. (2.3)

After setting A0 = f ′(y0) and changing the integration variable to s = (t − t0)/h in Eq.
(2.3) we obtain

y(t0 + h) = y0 +
ehA0 − I
hA0

hf(y0) +

∫ 1

0
ehAshr(y(s))ds. (2.4)

Equation (2.4) serves as a starting point in derivation of an exponential method. Alterna-
tive derivations are also available, particularly when the nonlinearity is decomposed into the
linear and nonlinear terms as f(y) = Ly +N(y) (see [45] for a brief history of exponential
methods for such semi-linear problems). However for the general nonlinear systems of type
(2.1) which are the focus of this paper, equation (2.4) is a convenient starting point for
deriving existing exponential methods by interpreting t0 as the latest time where an ap-
proximate solution is available, considering h as an integration step size and approximating
the solution y(t0 + h).

Constructing an exponential integrator using (2.4) requires accomplishing two tasks: (I)
developing an approximation to the nonlinear integral

∫ 1
0 e

hAshr(y(s))ds and (II) building

6



an algorithm to evaluate products of functions of matrices and vectors arising from the
second term of the right-hand-side of (2.4) and possibly from the approximation chosen
for the integral in (I). For example, task (I) can be accomplished by approximating the
nonlinear integral using the Runge-Kutta approach. With a two-stage Runge-Kutta-type
approximation we can construct the two-stage exponential Runge-Kutta schemes [66]:

r1 = y0 + a11ϕ1(γ11hA)hf(y0), (2.5)

y1 = y0 + a21ϕ1(γ21hA)hf(y0) + a22ϕ2(γ22hA)r(r1), (2.6)

where y1 is an approximation to the solution y(t0 + h), ϕ1(z) = ez−1
z , and ϕ2(z) = ez−1−z

z2
.

Choosing a11 = a21 = γ21 = γ22 = 1, γ11 = 1/2 and a22 = 2/3 yields the third-order
exponential Runge-Kutta method EPIRK3 proposed in [66]. In general, a polynomial ap-
proximation to the nonlinear remainder function r(y) in (2.4) will result in an exponential
scheme which approximates the solution as a linear combination of the products of type
ϕk(γhA)vk with v ∈ RN and functions ϕk(z) defined as

ϕk(z) =

∫ 1

0
ez(1−s)

sk−1

(k − 1)!
ds, k = 0, 1, 2, .... (2.7)

Obviously either Runge-Kutta or multistep approaches can be used in the derivation as
well as any other construct that yields an approximation to the integral in (2.4). Once
a certain ansatz for the approximation to the solution as a linear combinations of terms
alkϕk(γlkhA)vlk is assumed, the order conditions for the coefficients alk, γlk can be derived
and solved to obtain exponential integrators of the desired order.

After constructing an exponential integrator one needs to address task (II) and to choose
an algorithm to approximate the products of functions ϕk(γhA) and vectors vlk. For small
systems a number of techniques such as Taylor or Pade expansions can be used [46]. If the
system size N is large, Krylov projection algorithm becomes the method of choice [58]. Thus
a product of a function of a matrix g(A) and a vector v is approximated using projection of
the matrix and the vector onto the Krylov subspace Km(A, v) = span{v,Av, ..., Am−1v} as
follows. The orthonormal basis {v1, v2, ..., vm} of Km(A, v) is constructed using the modified
Arnoldi iteration [3, 58] which can be written in matrix form as

AVm = VmHm + hm+1,mvm+1e
T
m (2.8)

where em = (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector with 1 as the mth coordinate,
{v1, v2, ..., vm, vm+1} is an orthonormal basis of Km(A, b), Vm = [v1 v2 ... vm] ∈ RN×m,
and

Hm = V T
mAVm (2.9)

is an upper Hessenberg matrix calculated as a side product of the iteration. Matrix P =
VmV

T
m is a projector onto Km(A, v), thus g(A)v is approximated as a projection

g(A)b ≈ VmV T
mg(A)VmV

T
m b. (2.10)

Recalling Eq. (2.9) and observing that v1 = v/‖v‖2 we make the final approximation

g(A)v ≈ ‖v‖2Vmg(Hm)e1. (2.11)
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This algorithm can be used to approximate any of the matrix-function vector products g(A)v
with g(z) = ϕk(z). It is important to note that the Arnoldi iteration is scale invariant, i.e.
once Hm and Vm are calculated for a particular matrix A and vector v, in order to calculate
corresponding matrices for γA and v we simply need to scale Hm and Vm by the factor γ, the
orthonormal basis does not have to be recalculated from scratch. If γ > 1 additional Krylov
vectors might have to be added to achieve the desired accuracy, if γ < 1 the approximation
with m Krylov vectors will be sufficient. The key to efficiency of the Krylov projection
algorithm is keeping the size of the Krylov basis m small so that calculating g(Hm) is
cheap and can be done using Pade or any other approximation effective for small matrices.
The Krylov basis size m is determined during the course of the iteration using appropriate
residuals [57, 27]. Note thatm will depend on the eigenvalues of the matrixA, the magnitude
of the vector v and the type of function g(z). It has been demonstrated analytically for
matrices with a specific spectrum [26] and numerically for some matrices [66] that as k is
increased the number of Krylov vectors m required to approximate the product ϕk(A)v
decreases.

It is clear that approximation of the products φk(hγklA0)vlk will constitute the main
cost of an exponential scheme since the rest of the required operations is limited to several
vector additions and scalar-vector multiplications. Considering efficiency of the complete
exponential-Krylov integrator from the perspective of tasks (I) and (II) it is clear that the
computational cost of applying an exponential scheme to integration of a large system (2.1)
depends on two main features of the chosen method: (i) the total number of products
φk(hγklA0)vlk that have to be computed and (ii) the number of Krylov vectors that each of
these products will require to achieve prescribed accuracy. Thus if we want to construct an
exponential integrator of a certain order it is prudent to derive a scheme which minimizes
both of these parameters, i.e. requires the minimum possible number of Krylov projections
and chooses appropriate functions g(z) and small vectors v so that these projections are fast.
Below we consider existing exponential integrators from this point of view and demonstrate
how design affects their performance.

2.3.2 Comparing designs of exponential integrators

To illustrate how design affects performance of an exponential-Krylov integrator we consider
several existing methods proposed for the solution of general large nonlinear systems (2.1).
While the conclusions hold for methods of any order we choose to compare exponential
integrators of order four. The first method, Exp4, has been developed by Hochbruck et al.
[27] and is arguably the most widely known exponential integrator:

k1 = ϕ1(1
3hA0)f(y0), k2 = ϕ1(2

3hA0)f(y0), k3 = ϕ1(hA0)f(y0),

w4 = − 7
300k1 + 97

150k2 − 37
300k3, u4 = y0 + hw4, r4 = f(u4)− f(y0)− hA0w4,

k4 = ϕ1(1
3hA0)r4, k5 = ϕ1(2

3hA0)r4, k6 = ϕ1(hA0)r4,

w7 = 59
300k1 − 7

75k2 + 269
300k3 + 2

3(k4 + k5 + k6), u7 = y0 + hw7,

r7 = f(u7)− f(y0)− hA0w7,

k7 = ϕ1(1
3hA0)r7,

y1 = y0 + h(k3 + k4 − 4
3k5 + k6 + 1

6k7). (2.12)

Note that due to the invariance of the Arnoldi iteration discussed above, only three Krylov
projections are needed - one to approximate k1, k2 and k3, another to estimate k4, k5, k6
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and the third one to compute k7. Each of these projections approximates a product of type
φ1(γhA)v. Note that the function g(z) = ϕ1(z) does not change, however we can expect
that the vector v will decrease in magnitude from one Krylov projection to another if vectors
ui are better approximations to the solution as i increases.

The second method is an exponential propagation iterative Runge-Kutta (EpiRK) scheme
proposed in [66]:

u1 = y0 + a11hϕ1(1
3hA0)f(y0),

u2 = y0 + a21hϕ1(2
3hA0)f(y0) + a22hϕ2(2

3hA0)r(u1),

y1 = y0 + hϕ1(hA0)f(y0) + b1hϕ2(hA0)r(u1) + b2h[6ϕ3(hA0)

− ϕ2(hA0)](−2r(u1) + r(u2)). (2.13)

Several methods of third- and forth-order have been derived in [66], in particular, a fourth-
order scheme EpiRK4 with a11 = 3/4, a21 = 3/4, a22 = 0, b1 = 160/81, b2 = 64/81. The
EpiRK methods are designed so that the following two principles hold. First, the number of
Krylov projections required per time step is minimized by reusing the same vector v in the
matrix-function-vector product at each new stage ui, i.e. here only three Krylov projections
must be executed with vectors v in the matrix-function-vector products being f(y0), r(u1)
and (−2r(u1) + r(u2)). Second, the number of Krylov vectors each of these projections
requires is minimized by having higher order ϕk(z) functions that have to be approximated
with each new Krylov projection, i.e. ϕ1(z) for the first projection, ϕ2(z) for second and
ψ4(z) = 6ϕ3(z)− ϕ2(z) for the last Krylov projection.

The last scheme considered here is an exponential Rosenbruck-type scheme ERow4-1 [32]

s1 = ϕ0(1
2hA0)y0 + 1

2hϕ1(1
2A0)g(y0),

s2 = ϕ0(1
2hA0)y0 + hϕ1(hA0)gn(s1),

y1 = ϕ0(hA0)y0 + h[ϕ1(hA0)− 14ϕ3(hA0) + 36ϕ4(hA0)]g(y0)

+ h[16ϕ3(hA0)− 48ϕ4(hA0)]g(s1) + h[−2ϕ3(hA0)

+ 12ϕ4(hA0)]g(s2), (2.14)

with g(y) = f(y)− A0y. In this formulation it appears that ERow4-1 requires four Krylov
projections since terms ϕ0(γhA0)y0 must be computed in addition to terms with vectors
g(y0), g(s1) and g(s2). However, if we re-write this method in terms of r(y) using the
relation r(y) = g(y) + f(y0)−A0y0 we obtain a different formulation of the method we call
ERow4-2:

u1 = y0 +
1

2
hϕ1(

1

2
hA0)f(y0), (2.15)

u2 = y0 + hϕ1(hA0)f(y0) + hϕ1(hA0)r(u1),

y1 = y0 + hϕ1(hA0)f(y0) + h[16ϕ3(hA0)− 48ϕ4(hA0)]r(u1)

+ h[−2ϕ3(hA0) + 12ϕ4(hA0)]r(u2)

In this form the method is similar to EpiRK4 and requires only three Krylov projections
per time step. Just as EpiRK4, ERow4-2 uses higher order exponential functions, which we
expect to result in faster Krylov convergence for subsequent projections.
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2.4 Numerical experiments

In this section we demonstrate how the design of the exponential integrators impacts their
performance. We compare constant time step implementations of the three exponential inte-
grators in MATLAB. To illustrate competitiveness of these methods compared to commonly
used integrators we include the BDF4 scheme based on the backwards-differentiation for-
mula of order four and the popular stiff integrator RADAU5 [23]. For fair comparison both
of these methods are implemented using the Krylov projection based algorithm GMRES to
solve the linear systems within Newton iterations arising due to implicitness [34].

We have studied the performance of the methods using a suite of test problems (Allen-
Cahn [33, 35], Burgers, Brusselator [39, 23], Gray-Scott [21], a semilinear parabolic equation
[32], and a nonlinear diffusion equation NILIDI [60]), however for the sake of brevity we
choose two representative systems to discuss here. The two-dimensional Allen-Cahn equa-
tion and the one-dimensional Burgers equation represent the two end points in the spectrum
of problems we studied in terms of how quickly the Krylov projection iteration converges,
i.e. to achieve prescribed accuracy the number of Krylov vectors needed per projection
is on the order of tens for the Allen-Cahn equation while for the Burgers equation given
the same tolerance this number is of the order of a hundred. For convenience we call the
former problem ”Krylov-easy” and the latter ”Krylov-difficult”. This terminology directly
corresponds to a problem being less or more stiff. Note that all the tests were ran with
the same prescribed tolerance for the Krylov projection residuals which was set to 10−12, a
value that is smaller then the accuracy requirement for the smallest time step size. Surely
this means that the accuracy achieved for some of the Krylov iterations is excessive com-
pared to practical tolerances for given step sizes but such an approach ensures consistent
comparison across integrators and helps illustrate the general trends in their performance.
Below we describe the two test problems and the parameter values used in the calculations.
Example 2.4.1: The two-dimensional Allen-Cahn equation

ut = u− u3 + α∇2u, x, y ∈ [0, 1] (2.16)

with α = 0.1 is complemented with the initial and Neumann boundary conditions given
by u = 0.4 + 0.1(x + y) + 0.1 sin(10x) sin(20y). The diffusive term is discretized with
standard second-order finite differences and the problem is integrated over the time interval
t ∈ [0, 0.1].
Example 2.4.2: The one-dimensional Burgers equation

ut = −uux + νuxx, x ∈ [0, 1] (2.17)

with ν = 0.03 and initial and Dirichlet boundary conditions prescribed using
u = (sin(3πx))3(1 − x)3/2. The diffusive term was discretized using the second-order cen-
tered finite-differences, the uux term was approximated as uux ≈ (u2

i+1 − u2
i−1)/(4∆x),

i = 1, ..., N and the problem was integrated over the time interval t ∈ [0, 1].
Table 2.1 demonstrates how the number of Krylov vectors depends on the structure of

an exponential integrator and the effect it has on the overall computational efficiency of
the method. As anticipated since both EpiRK4 and ERow4-2 use the minimum number
of three Krylov projections with the higher order ϕk(z) functions for each, the number of
Krylov vectors required per projection for these methods is smaller compared to Exp4 and
ERow4-1. This is reflected by the total CPU time spent by each of the methods to integrate
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the equations over the whole time interval (Tables 2.1). The importance of the reduction
in Krylov iterations was particularly pronounced for the more demanding Burgers problem.
As can be seen from Table 2.1(b) EpiRK4 and ERow4-2 required well less than half the
CPU time of Exp4 at coarse step sizes. Even at the finest step sizes, the savings offered
by these two methods were still quite evident. The importance of using the higher order
ϕk(z) functions can be further illustrated by comparing performance of ERow4-1 and Exp4.
Despite the fact that ERow4-1 has to compute one extra Krylov projection compared to
other methods, it still manages to significantly outperform Exp4 at coarse and medium step
sizes. Since adding a vector to the Krylov basis requires orthonormalizing the new vector
against every previously computed vector in the basis, the computational cost per vector
goes up linearly with the basis size. Therefore the total cost of computing the Krylov basis
increases quadratically with the basis size. Thus even modest reduction in the total number
of the Krylov vectors per projection can result in significant CPU savings for large basis
sizes. As can be seen by comparing with EpiRK4 and ERow4-2, the savings are even greater
when both the number of projections is reduced and the falloff of the number of Krylov
vectors per projection happens more rapidly.

While the analysis above illustrates the effect of Krylov projections on the computa-
tional cost, in order to assess the overall efficiency of a method the accuracy of the final
approximation to the solution has to be taken into account. Precision diagrams displayed
in Figure 2.1 show the relative performance of the integrators in terms of both accuracy
and CPU time required. The problems were each run with several levels of resolution to
show how the performance of a method scales with problem size. Figure 2.1 leads to the
following conclusions about comparative performance of the methods. First, the effect of
the Krylov iterations on efficiency becomes apparent particularly when a problem’s stiff-
ness is increased and it becomes more ”Krylov-difficult”, e.g. as the problem size grows for
Allen-Cahn equation from N = 502 to N = 1502 EpiRK4 and ERow4-2 become increasingly
more efficient compared to other methods particularly for large step sizes h. Similar behav-
ior can be read off the precision diagrams for the Burgers equation. For example, for step
size h = 0.1 solution approximations for Burgers equation obtained by Exp4 and ERow4
have comparable accuracy, but relative CPU time of ERow4-2 compared to Exp4 improves
from 60% to 40% as the problem size is increased from N = 500 to N = 1500. Second,
we can see that as the stiffness of a problems is increased the bend in the precision curves
particularly for large step sizes indicates that the problem becomes more ”Krylov-difficult”
and the relative computational cost of the methods becomes more pronounced (note the
change in scale of separation between the curves). Note that the bend in the curves illus-
trates the importance of adaptivity in choosing the dimension of a Krylov subspace. The
efficiency of the method is optimal if the tolerance for the residual of a Krylov iteration is
calculated depending on the time step size. Our results on development of efficient adaptive
algorithms are outside the scope of this paper and will be reported elsewhere. Finally, the
figures make it apparent that the exponential methods compete very well with the standard
implicit integrators. Note that some of the figures do not include RADAU5. The reason for
that is the poor performance of this method for these values of h and N which puts it way
off scale compared to the other schemes, i.e. the performance curve is so far to the right of
the graph that we chose not to include it in the figures in order to preserve clarity in terms
of relative performance for the rest of the schemes. In addition to overall computational
savings that the exponential methods offer compared to BDF4 and RADAU5 we can also
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observe that the difficulty in Krylov convergence affects the implicit methods more severely
compared to the exponential integrators. For example with the Allen-Cahn equation at step
step h = 0.01, the CPU cost for ERow4-2 compared to BDF4 is about 74% for the smallest
problem size. This gap increases to 51% for the largest problem size. The effect is similar
but more pronounced for the Krylov-difficult Burgers equation. At h = 0.01, the CPU time
ratio for ERow4-2 compared to BDF4 changes from 12% for the smallest problem size to
about 5% for the largest problem size.

Table 2.1: Average Krylov vectors counts and total CPU time.

(a) 2D Allen-Cahn with N = 1502

h = 0.01 Average number of Krylov vectors Total # of Krylov Total
Projection 1 Proj. 2 Proj. 3 Proj. 4 vectors CPU time

Exp4 32.0 25.8 26.7 n/a 84.5 2.48
EpiRK4 27.9 17.4 13.4 n/a 58.7 1.96
ERow4-1 28.8 23.7 23.5 17.1 93.1 2.80
ERow4-2 27.5 19.2 13.7 n/a 60.4 1.97

h = 0.005

Exp4 20.6 16.2 17.1 n/a 53.8 3.65
EpiRK4 17.4 9.5 6.4 n/a 33.2 3.07
ERow4-1 18.5 14.1 14.1 9.7 56.4 4.30
ERow4-2 17.2 10.4 5.8 n/a 33.4 3.06

h = 0.0025

Exp4 14.1 10.8 11.3 n/a 36.2 6.54
EpiRK4 11.4 4.6 3.3 n/a 19.4 5.49
ERow4-1 12.5 8.7 8.7 5.7 35.4 7.58
ERow4-2 11.4 5.5 3.3 n/a 20.2 5.44

(b) 1D Burgers with N = 15000

h = 0.01 Average number of Krylov vectors Total # of Krylov Total
Projection 1 Proj. 2 Proj. 3 Proj. 4 vectors CPU time

Exp4 133.1 113.2 117.4 n/a 363.7 178.70
EpiRK4 116.7 64.2 42.5 n/a 223.4 73.05
ERow4-1 120.7 107.4 107.4 73.3 408.8 143.09
ERow4-2 114.8 73.3 33.4 n/a 221.5 71.78

h = 0.005

Exp4 86.4 70.3 72.7 n/a 229.3 84.94
EpiRK4 74.0 32.6 19.7 n/a 126.2 34.71
ERow4-1 76.8 64.3 64.3 40.8 246.2 67.96
ERow4-2 72.9 36.7 14.7 n/a 124.2 33.98

h = 0.0025

Exp4 57.7 44.1 46.2 n/a 147.9 58.12
EpiRK4 47.0 15.5 10.8 n/a 73.3 26.61
ERow4-1 49.8 37.5 37.5 23.7 148.5 47.82
ERow4-2 46.6 17.0 6.9 n/a 70.4 26.11

2.5 Conclusions and future work

In this paper we showed how the design of an exponential-Krylov integrator affects its
performance. Specifically, we demonstrated that an integrator will be more efficient if it is
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designed to minimize the total number of Krylov projections per time step and the number
of Krylov vectors that each of these projections requires. In addition, our studies reveal
exponential-Krylov integrators as very competitive alternatives to more commonly used
implicit schemes. More detailed studies of the comparative performance of the exponential
and implicit schemes both with constant and adaptive time stepping will be presented
elsewhere. In addition, we plan to explore the design principles outlined above to construct
more optimized exponential-Krylov integrators and study their performance on large-scale
scientific applications.
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(a) Allen-Cahn with N = 502

(b) Allen-Cahn with N = 1002

(c) Allen-Cahn with N = 1502

(d) Burgers with N = 500

(e) Burgers with N = 1000

(f) Burgers with N = 1500

Figure 2.1: Precision diagrams for the Allen-Cahn (a-c) and Burgers (d-f) equations for h =
0.01, 0.005, 0.0025, 0.00125, 0.000625. Note that the axes scale changes from graph to
graph.
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3 Comparative performance of exponential, implicit,
and explicit integrators for stiff systems of ODEs

3.1 Abstract

Exponential integrators have enjoyed a resurgence of interest in recent years, but there is
still limited understanding of how their performance compares with state-of-art integra-
tors, most notably the commonly used Newton-Krylov implicit methods. In this paper we
present comparative performance analysis of Krylov-based exponential, implicit and explicit
integrators on a suite of stiff test problems and demonstrate that exponential integrators
have computational advantages compared to the other methods, particularly as problems
become larger and more stiff. We argue that the faster convergence of the Krylov iteration
within exponential integrators accounts for the main portion of the computational savings
they provide and illustrate how the structure of these methods ensures such efficiency. In
addition, we demonstrate computational advantages of newly introduced [68] exponential
propagation Runge-Kutta (EpiRK) fifth order methods. The presented detailed analysis
of the methods’ performance provides guidelines for construction and implementation of
efficient exponential methods and the quantitative comparisons instruct selection of appro-
priate schemes for other problems.

3.2 Introduction and background

Scientific problems are often cast in the form of initial-value problems for very large systems
of ordinary differential equations (ODEs). The numerical integration of these large systems
can be very computationally demanding, so it is desirable for those integrators to be as
efficient as possible. We are interested in discovering which types of integrators are most
computationally efficient for systems which are very large, stiff, and in general have a
nonsymmetric Jacobian.

Stiff systems often preclude the use of explicit integrators since these methods require the
integration step size to be very small to ensure numerical stability [36, 23]. Instead, stiff
problems are usually solved using implicit integrators. Such methods require solutions of an
implicit system at each integration step. For general non-symmetric problems the Newton
iteration is typically used to solve the system. For very large problems, direct methods
for solving the linear system within each Newton iteration are computationally infeasible
and iterative methods are typically employed. Modern iterative methods are based on the
Krylov iteration and currently the most common type of algorithms for solving large stiff
problems are the Newton-Krylov implicit integrators [34]. The efficiency of Newton-Krylov
methods is often predicated upon the construction of an effective preconditioner to solve
the linear systems. However, constructing such a preconditioner can be very difficult and
highly problem dependent. Frequently one wants to avoid building a preconditioner and
to use the most efficient black-box time integrator. In this paper, we limit ourselves to
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considering those problems where an efficient preconditioner is not available.
Recently, exponential integrators have emerged as a potential alternative class of methods

for efficiently solving large stiff problems. When first introduced, exponential methods
had been considered computationally unattractive due to the high cost of evaluating the
exponential functions of large matrices that arise in these methods. However, the methods
started to draw attention when the use of Krylov projection techniques allowed these matrix
exponential terms to be evaluated efficiently [54, 15]. Since then, a number of exponential
integrators for general stiff systems have been proposed [19, 27, 30, 66, 53, 9, 72].

Despite the surge of interest in exponential integrators, there is still only limited under-
standing of how exponential integrators perform on large scale problems, particularly in
comparison to Newton-Krylov implicit integrators. Partially as a result of this, exponential
methods have not been widely used. This paper presents comparative performance analysis
of Krylov-based exponential integrators, Newton-Krylov implicit integrators and an explicit
method on a suite of stiff test problems. While singular performance comparisons of expo-
nential methods can be found in the literature (e.g. [66, 30, 68, 69]), they are rather limited
in scope and serve a particular purpose such as, for instance, introducing new integrators
and illustrating their properties. Thus these performance results are typically restricted to
only a few schemes and/or two or three test problems. Unlike previous publications, from
the performance analysis point of view, the present work is more general and focused. Here,
comparative performance analysis is presented using a significantly wider range of integra-
tors and test problems. Also, several new higher order methods [68, 69], whose performance
has not been studied in detail previously, are considered in both non-adaptive and adaptive
form. Additionally, variable time step versions of the state-of-the-art implicit and the best
performing exponential methods are also compared. This detailed performance analysis
of a spectrum of constant and variable time step, adaptive and nonadaptive, exponential
and implicit methods using a range of test problems contributes to the current knowledge
of the potential computational advantages offered by exponential integrators. The results
presented here also demonstrate what structural features of a method affect performance
the most and outline promising research directions that will lead to further optimization
and improvement of performance for exponential time integrators. An important objective
of this paper is to provide quantitative guidance to a practitioner on the computational
savings that can be expected from these schemes.

We show that exponential schemes compare well to currently used methods, particularly
as problems scale to larger size. We also examine how the structure of the exponential
integrators allows them to outperform Newton-Krylov implicit methods and illustrate these
ideas with numerical experiments. Finally, we demonstrate how the structure of a method
translates to efficiency by presenting the first numerical study of a newly introduced [67,
68] fifth order three-stage exponential propagation iterative (EpiRK) methods designed to
optimize performance. These new schemes are studied in both non-adaptive and adaptive
form with constant and variable time step selection.

Note that this work addresses integrators for general nonlinear systems of type (3.1). For
some problems the nonlinear operator F (y) can be decomposed into a linear stiff part A
and a nonlinear nonstiff operator g(y) as F (y) = Ay+g(y). For such systems so-called split
exponential methods as well as semi-implicit schemes can be constructed. The main idea
behind such techniques is that only the linear part A is exponentiated or solved implicitly.
The questions of comparative performance of split vs. nonsplit and split-exponential vs.
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semi-implicit schemes are highly dependent on the specifics of a problem and require a
separate extensive investigation. While some of the results presented here will be relevant
to this topic, it lies outside the scope of this work and will be addressed in detail elsewhere.

The paper is organized as follows. Section 3.3 provides a description of the structure of
Krylov-based exponential methods and contrasts them with Newton-Krylov implicit inte-
grators. Section 3.4 describes the methods and problems used for the analysis, and Section
3.5 presents the results of the numerical experiments and explains the performance dif-
ferences between the methods. To ensure fair comparison, only fourth order exponential
integrators are considered in this section. Section 3.6 presents numerical tests of the opti-
mized three-stage fifth order exponential integrator and comparisons with other methods.
Variable step size implicit and exponential integrators are compared in Section 3.7. Finally,
Section 3.8 provides conclusions and describes some future research directions.

3.3 Structure of exponential integrators

In this section we provide a brief introduction to the derivation and structure of exponential
integrators and highlight the elements which have the most impact on their computational
performance, particularly in contrast to Krylov-based implicit integrators. Consider the
initial-value problem for a nonlinear autonomous system of ODEs

dy

dt
= F (y(t)), y(t0) = y0, y ∈ RN , (3.1)

where N is large and the system is stiff. There is no loss of generality in considering an
autonomous system since a non-autonomous one can be converted to autonomous form by
adding the equation t′ = 1.

To derive an exponential method, we first rewrite equation (3.1) using a Taylor expansion
as

dy(t+ ∆t)

dt
= F (y(t)) + J(y(t)) [y(t+ ∆t)− y(t)] +R(y(t+ ∆t)),

where J = J(y(t)) = DyF (y(t)) is the Jacobian of F (y(t)), which is assumed to exist, and
the nonlinear remainder function R(y(t)) is defined as

R(y(t+ ∆t)) = F (y(t+ ∆t))− F (y(t))− J(y(t)) [y(t+ ∆t)− y(t)] . (3.2)

Using the integrating factor e∆tJ we obtain the integral form of the equation

y(t+ ∆t) = y(t) + (e∆tJ − I)(J∆t)−1∆tF (y(t)) +

∫ 1

0
eJ∆t(1−θ)R(y(t+ ∆tθ))dθ. (3.3)

Equation (3.3) is a starting point for the derivation of most exponential methods. An
exponential method is constructed from (3.3) by numerically approximating the integral
term. For example, a two-node Runge-Kutta-type quadrature for the integral results in a
second-order two-stage scheme

r1 = yn + hϕ1(1
2hJn)Fn, (3.4)

yn+1 = yn + hϕ1(hJn)Fn + 2
3hϕ2(hJn)R(r1),
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where Fn = F (y(tn)), Jn is the Jacobian of F (y(t)) evaluated at tn, h = ∆t, ϕ1(z) =
(ez − 1)/z and ϕ2(z) = (ez − z − 1)/z2.

In general, approximating the integral using a polynomial expansion will result in an
exponential integrator composed of linear combinations of products of ϕ-functions

ϕk(z) =

∫ 1

0
ez(1−θ)

θk−1

(k − 1)!
dθ, k = 0, 1, 2, · · ·

acting on vectors, i.e.

ϕ0(hJ)b0 + ϕ1(hJ)b1 + ϕ2(hJ)b2 + · · ·+ ϕi(hJ)bi,

where bi ∈ RN and J ∈ RN×N . The matrix valued analytic functions ϕn(hJ) can be defined
via Taylor series as

ϕi(hJ) =
∞∑
k=0

(hJ)k

(i+ k)!
, (3.5)

where the zero matrix raised to the zeroth power is considered to be the identity matrix.
SinceN is large, computing the products of the ϕ-functions and vectors (e.g the ϕ1(hJn)Fn

term in (3.4)) by algorithms such as Taylor or Padé approximations is computationally
prohibitively expensive [46]. Thus we turn to Krylov algorithms which approximate such
products by projections onto the Krylov subspace Km(hJ, b) = span{b, . . . , (hJ)m−1b}.

For general nonsymmetric J , Krylov projection is done using the Arnoldi iteration [57].
The Arnoldi algorithm employs a modified Gram-Schmidt process to produce a matrix Vm
with column vectors forming an orthonormal basis of the Krylov subspace, which in turn
gives the orthogonal projection matrix VmV

T
m . The upper Hessenberg matrix Hm

Hm = V T
m (hJ)Vm (3.6)

is obtained as a side product of the iteration. The product of a matrix function f(hJ) and
a vector b is approximated by using the projection matrix VmV

T
m as

f(hJ)b ≈ VmV T
mf(hJ)VmV

T
m b. (3.7)

Hm is then used to evaluate

V T
mf(hJ)Vm ≈ f(Hm), (3.8)

producing the final approximation

f(hJ)b ≈ Vmf(Hm)V T
m b. (3.9)

Since the first column vector of Vm is v1 = b/||b||2, we can use V T
m b = ||b||2e1 to simplify

(3.9) as

f(hJ)b ≈ ||b||2Vmf(Hm)e1. (3.10)

Hm is expected to be small (m � N), so computing this approximation is considerably
cheaper than evaluating ϕ(hJ)b directly and can be done using the algorithms such as
Taylor or Padé approximations [46].
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The computational cost of performing this iteration is determined by how rapidly the
Krylov iteration converges. In general, the rate depends on the eigenvalues of J , the type
of function f , and the magnitudes of h and b. The bound derived in [26] showed that in
the case where f = ϕ0 and J is a Hermitian negative semi-definite matrix the convergence
becomes superlinear when m ≥

√
‖hJ‖. But in general determining the rate of convergence

is theoretically difficult since it depends on the spectrum of J and fast convergence is often
observed even for smaller m. In the next section, we argue that exponential functions
should converge more quickly in the Krylov iteration compared to Newton-Krylov implicit
methods due to the choice of f used in the two methods. In section 3.5, we support this
claim with numerical experiments.

We now provide examples of exponential integrators, and consider ways in which the
structure of an exponential method affects its efficiency. The first example is the fourth-
order method Exp4 [27]:

k1 = ϕ1(1
3hJn)Fn, k2 = ϕ1(2

3hJn)Fn, k3 = ϕ1(hJn)Fn, (3.11)

w4 = − 7
300k1 + 97

150k2 − 37
300k3,

u4 = y0 + hw4, d4 = F (u4)− Fn − hJ0w4,

k4 = ϕ1(1
3hJn)d4, k5 = ϕ1(2

3hJn)d4, k6 = ϕ1(hJn)d4,

w7 = 59
300k1 − 7

75k2 + 269
300k3 + 2

3(k4 + k5 + k6),

u7 = yn + hw7, d7 = F (u7)− Fn − hJnw7,

k7 = ϕ1(1
3hJn)d7,

yn+1 = yn + h(k3 + k4 − 4
3k5 + k6 + 1

6k7).

Seven ϕ1(cJn)v products have to be evaluated in this scheme. However, the Arnoldi algo-
rithm has a scale invariance property that can reduce the number of necessary projections.
If for a matrix A the Arnoldi algorithm yields H = V TAV , then for the scaled matrix
cA the Arnoldi algorithm gives cH = V T cAV . That means if we have computed approx-
imation (3.9) as f(A)b ≈ ||b||2Vmf(Hm)e1, as long as the b vector remains the same and
c < 1, we can compute f(cA)b ≈ ||b||2Vmf(cHm)e1 without repeating the Arnoldi iteration
to recompute Hm or Vm. Noting that stages k1 through k3 use the same ”b” vector b = Fn,
and that stages k4 through k6 use the same vector b = d4, we can use this scale invariance
property to compute each stage with just a single projection, for a total of three Krylov
iterations per time step. Since the b vectors after the first stage are nonlinear remainder
terms d4 and d7, the magnitude of the b vectors should decrease as the approximations u4

and u7 becomes better approximations to the solution. This results in fewer Krylov vectors
needed to achieve a prescribed tolerance for the projections at higher stages compared to
those of lower stages. Further, the final projection to compute k7 scales the Jacobian by 1

3
which should further decrease the number of Krylov vectors.

A second example is the fourth-order exponential propagation iterative scheme EpiRK4
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[66]:

Y1 = yn + a11hϕ1(1
3hJn)Fn, (3.12)

Y2 = yn + a21hϕ1(2
3hJn)Fn + a22hϕ2(2

3hJn)R(Y1),

yn+1 = yn + hϕ1(hJn)Fn + b1hϕ2(hJn)R(Y1)

+ b2h[6ϕ3(hJn)− ϕ2(hJn)](−2R(Y1) +R(Y2)),

b1 =
96(54− s2)(54− 3s2 + 2s3)2

729(s2 + 18)3
,

b2 =
64(54− 3s2 + 2s3)2

27(s2 + 18)3
,

a11 =
27(s2 + 18)

12(54− 3s2 + 2s3)
,

a21 =
3(s2 + 18)s

4(54− 3s2 + 2s3)
, a22 = 0.

where s =
√

30. As with Exp4, the scale-invariance feature of the Arnoldi iterations implies
that only three Krylov projections are required per time-step. Also, similarly to Exp4, the
b vectors, which in this case are equal to the nonlinear remainder function R(y) and its
divided differences, also decrease in magnitude at higher stages. Thus with each stage the
number of Krylov vectors needed for projections decreases. EpiRK4 also uses higher order
ϕk(z) functions at the higher stages which further reduces the number of Krylov vectors
needed for projections at higher stages [66]. However, unlike Exp4 it does not scale down
the Jacobian for the final projection, which should result in larger basis sizes for the third
projection. Relative end performance is determined by how these factors balance out.

A third example is the fourth-order exponential Rosenbrock scheme ERow4 [30]:

Y1 = yn + 1
2hϕ1(1

2hJn)Fn, (3.13)

Y2 = yn + hϕ1(hJn)Fn + hϕ1(hJn)R(Y1),

yn+1 = yn + hϕ1(hJn)Fn

+ h[16ϕ3(hJn)− 48ϕ4(hJn)]R(Y1) + h[−2ϕ3(hJn) + 12ϕ4(hJn)]R(Y2)

The main features of this scheme are very similar to EpiRK4, in fact the scheme can be re-
written in the EpiRK form and vise versa. As in EpiRK4, higher order ϕ-functions are used,
though the slower converging ϕ1(z) function is used in two of the three projections, limiting
the benefit of higher-order functions to just the last projection. In this formulation the b
vectors are R(u) rather than the divided differences of R(u). The latter feature has more
of an impact on the performance of higher order schemes and the fourth order EpiRK4 and
ERow4 methods have similar performance. Due to the scale invariance property, ERow4
requires three Krylov projections per time step, has reduction in the magnitude of the b
vectors at higher stages, uses higher-order ϕ-functions, but does not scale down the Jacobian
for any projection. A more detailed discussion of how an exponential method’s design and
structure affect its performance can be found in [68].

3.3.1 Comparison with Newton-Krylov implicit integrators

Modern implicit methods for large scale stiff ODE systems employ Krylov projection-based
linear solvers [34]. As shown below, the relative performance of the exponential-Krylov
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methods and the implicit-Krylov integrators should be largely determined by the efficiency
of the Krylov projections part of the algorithm. We will argue that exponential meth-
ods should have a sizable computational advantage in performing Krylov projections over
implicit methods.

Implicit methods require the solution of a nonlinear algebraic system at each integration
step, and this is usually accomplished using the Newton iteration [36, 23]. In the course of
each iteration a linear system of the form (I − hcJ)yn+1 = b must be solved (I ∈ RN×N is
the identity matrix and the constant coefficient c is given by a particular implicit scheme).
Krylov projection techniques such as GMRES are used to evaluate what is effectively the
product of a rational matrix function and a vector (I − hcJ)−1b. This is in direct contrast
with exponential methods which must evaluate the products of an exponential function
and a vector ϕk(hcJ)b. The difference in efficiency between the two classes of methods
is expected to be due in part to the Krylov iterations convergence for these two types of
terms. The rate of convergence of a Krylov iteration to approximate f(A)b depends on the
function f(x) and the eigenvalues of A. Hochbruck and Lubich derived an error bound which
showed that for semi-definite Hermitian matrices, the convergence of the Krylov iteration
to approximate f(A)b = eAb is faster than for f(A)b = (I −A)−1b [26]. Similar results can
be obtained for ϕk(A)b. Error bounds for general A are difficult to obtain, but it seems
reasonable to hypothesize that the rate of convergence of (3.10) is faster for functions where
the Taylor series converges more quickly as the Krylov projection performs an orthogonal
projection onto the same basis as a truncated Taylor series. Since the Taylor series for
an exponential function converges faster than that of a rational function, we may expect
that the Krylov iteration for exponential methods should converge more quickly than for
implicit methods. Numerical evidence for this was given in [66] and we will provide further
numerical support for this in Section 3.5.

Another major difference between exponential and implicit methods is that exponential
methods need to evaluate a fixed number of Krylov projections per time-step, while Newton-
Krylov implicit methods evaluate a variable number, since they perform a Krylov projection
each Newton iteration. For example, as discussed previously, Exp4 requires three Krylov
projections per time step. If the Newton iteration converges quickly, e.g. if it converges in
fewer than three iterations, it may require fewer Krylov projections per time step than Exp4.
On the other hand, if the Newton iteration converges slowly, it may require more Krylov
projections per time step. It is expected that as the size and stiffness of a problem grows, the
Newton iteration will require more iterations to converge, and this may put Newton-Krylov
methods at a disadvantage relative to exponential methods. Even if the Newton iteration
converges quickly, if each of these iterations requires significantly more Krylov vectors than
iterations of an exponential method, the latter can have better computational efficiency per
time step than implicit Newton-Krylov methods.

3.4 Setup of numerical experiments

We are arguing that exponential methods are expected to outperform implicit methods due
to a faster rate of convergence in the Krylov iteration for the type of matrix function they
use. To test this idea we have implemented in MATLAB and compared the performance
of several exponential, implicit and an explicit integrator on a set of stiff problems. In this
section we describe the experimental setup, the integrators and the problems. The results
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of the numerical experiments are presented in Section 3.5.

3.4.1 Integrators

We compared the exponential integrators Exp4 (3.11), EpiRK4 (3.12), and ERow4 (3.13)
with a Newton-Krylov implementation of the BDF4 implicit multistep method, two types
of implicit Runge-Kutta methods and the explicit Runge-Kutta fourth order method. One
of the implicit Runge-Kutta methods is a Rosenbrock method, which are considered to be
particularly efficient for stiff problems [23], and the other is the Radau5 method. Below
we compare and contrast the features of each method that impact their performance. Note
that the features of the exponential methods were already discussed in the previous section.

Since our goal is to compare overall efficiency of the methods particularly from the per-
spective of Krylov-based implementations, we studied all the methods with constant time
stepping to ensure an even comparison and to obtain a clear picture of the advantages and
disadvantages of each integrator. Further, the Krylov iterations were run to a fixed error
tolerance which was the same across all integrators and chosen to ensure the Krylov itera-
tions did not limit the accuracy of the methods. While this can somewhat overcompute the
Krylov iteration compared to an adaptive implementation, it was done so as to maintain a
fair comparison of the number of Krylov iterations needed by each method.

For all problems the Jacobians were computed explicitly. Matrix-free calculations yield
similar results but would have hidden the CPU costs inside the Krylov iterations which
would have hampered conducting the cost breakdown.

For the exponential integrators, computation of the ϕ-functions of Hm were computed
using the Padé approximation algorithm of Higham [24]. It is possible to use improved
algorithms for ϕ(Hm) evaluations from [1, 2]. However, as indicated in section 3.5.2 the
total computational cost of ϕ(Hm) evaluations is very small compared to the complexity of
the rest of the integrator and will not change the performance data presented here in any
significant way. However, for a production code, it is important to note that this portion
of the algorithm can be further optimized.

The integrators were compared by picking an initial step size common to all the integrators
and successively halving the step size over five sets of computations. The starting step size
was h = 0.01 for all problems except the Allen-Cahn problem where it was chosen to be
h = 0.02. A reference solution was computed using MATLAB’s ode15s integrator with
absolute and relative tolerances set to 10−14 and the error was defined as the 2-norm of the
difference between the computed solution and this approximation.
BDF4: The fourth order BDF scheme

yn+1 = 12
25hF (tn+1, yn+1 + 48

25yn −
36
25yn−1 + 48

75yn−2 − 3
25yn−3)

is commonly used in modern codes to solve stiff problems [25], and is typically chosen over
Adams-Moulton methods due to its superior stability properties. Each Newton iteration
it must compute a Krylov projection using the matrix (I − 12

25hJ). In our comparisons,
the three starting values (in addition to the initial value at t = 0) were computed using
MATLAB’s ode15s integrator with absolute and relative tolerances set to 10−14. In our
performance comparisons below, this gives the first three starting values for BDF4 for free.
Radau5: Radau5 is a popular fifth-order implicit Runge-Kutta scheme which solves the
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following system at each time step z1

z2

z3

 = A

 hF (tn + c1h, yn + z1)
hF (tn + c2h, yn + z2)
hF (tn + c3h, yn + z3)

 ,

yn+1 = yn + z3,

where

A =

 88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

16−
√

6
36

16+
√

6
36

1
9

 ,

c =

 4−
√

6
10

4+
√

6
10
1

 .

To reduce computational cost an inexact Jacobian where all components are evaluated
at (tn, xn) is used and the 3N ×3N system within the Newton iteration is transformed into
two N ×N systems, one real and one complex [23]. This contrasts with BDF4 which must
solve a single real linear system of size N × N each iteration. Complex number floating
point multiplications are four times as expensive as real number multiplications, so solving
the complex linear system is more expensive than solving the real system. As a result of
these features Radau5 is more computationally expensive per time step compared to BDF4.

Implicit fourth-order Rosenbrock method Ros4: Rosenbrock methods are implicit Runge-
Kutta methods designed to mitigate the need for solving the large 3N × 3N systems of
regular implicit Runge-Kutta methods such as Radau5 by decoupling the stages [23]. The
general form of a four stage Rosenbrock method is

(I − hγJ)(ki +
i−1∑
j=1

γij
γ
kj) = F (y

(i)
n+1) +

i−1∑
j=1

γij
γ
kj , i = 1, .., 4,

y
(i)
n+1 = yn + h

i−1∑
j=1

aijkj

yn+1 = yn + h

4∑
i=1

biki.

Because of its structure this method does not need to resort to the Newton iteration, and
instead at each stage a linear system of size N ×N is solved. We use the GRK4T form of
Rosenbrock method, so each time step requires four Krylov projections. The main difference
with exponential methods is that those projections are used to compute a matrix rational
instead of a matrix exponential.

Explicit fourth-order Runge-Kutta method RK4: For an explicit method we used the classical
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fourth-order Runge-Kutta method given by

k1 = F (tn, yn),

k2 = F (tn + +1
2h, yn + 1

2k1),

k3 = F (tn + 1
2h, yn + 1

2k2),

k4 = F (tn + h, yn + hk3),

yn+1 = yn + 1
6h(k1 + 2k2 + 2k3 + k4).

The method does not compute the Jacobian and makes no use of the Krylov iteration, so
its primary computational cost is the four function evaluations. As such, its per-time-step
cost is much lower than that of the Krylov-based methods. However, it is expected that
the stability restrictions on the time step size will make this method uncompetitive with
the other integrators if the problem is sufficiently stiff.

3.4.2 Test problems

The following problems were used to compare the integrators. The outcome of the problems,
each at two different sizes, are displayed in the precision diagrams of Fig. 3.1 and 3.2. The
Allen-Cahn problem was additionally computed at a third smaller size of N = 252 to
demonstrate how the stability of RK4 scales with N (see Sec. 3.5).

In all the problems the ∇2 term was discretized using the standard second-order finite
differences.

Allen-Cahn 2D. Two-dimensional Allen-Cahn equation [4]:

ut = α∇2u+ u− u3, x, y ∈ [−1, 1], t ∈ [0, 1.0]

with α = 0.1, using no-flow boundary conditions and initial conditions given by u =
0.1 + 0.1 cos(2πx) cos(2πy).

Brusselator 2D. Two-dimensional Brusselator problem [39, 23]:

ut = 1 + uv2 − 4u+ α∇2u, x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = 3u− u2v + α∇2v,

with α = 0.2. We used Dirichlet boundary conditions with initial and boundary values
given by

u = 1 + sin(2πx) sin(2πy),

v = 3.

Burgers. One-dimensional Burgers equation:

ut + uux = νuxx, x ∈ [0, 1], t = [0, 1]

with ν = 0.03 and with Dirichlet boundary conditions and initial and boundary values given
by u = (sin(3πx))3(1− x)3/2. The uux term was discretized as

uux =
u2
i+1 − u2

i−1

4∆x
, i = 1, ..., N
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where N is the number of spatial grid points chosen for the problem.

Gray-Scott 2D. Two-dimensional Gray-Scott problem [21]:

ut = du∇2u− uv2 + a(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = dv∇2v + uv2 − (a+ b)v,

with du = 0.2, dv = 0.1, a = 0.04, and b = 0.06. Periodic boundary conditions were used
and the initial conditions were given by

u = 1− e−150(x− 1
2

)2+(y− 1
2

)2 ,

v = e−150(x− 1
2

)2+2(y− 1
2

)2 .

ADR 2D. Two-dimensional advection-diffusion-reaction equation [9]:

ut = ε(uxx + uyy)− α(ux + uy) + γu(u− 1
2)(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

where ε = 1/100, α = −10, and γ = 100. Homogeneous Neumann boundary conditions
were used and the initial conditions were given by u = 256(xy(1− x)(1− y))2 + 0.3.

Degenerate Nonlinear Diffusion 1D. The degenerate nonlinear diffusion problem [61]:

∂u

∂t
=

∂

∂x

[
u
∂u

∂x

]
+ u(1− u),

on the domain −23 < x < 50 with Dirichlet boundary conditions u(−23, t) = 1 and
u(50, t) = 0, and with initial conditions

u(x, 0) =

{
1 if x < 0
e−1.3x if x > 0.

3.5 Numerical experiments: comparisons of fourth order exponential
integrators with implicit and explicit schemes.

In this section we describe the results of our comparisons of fourth order exponential in-
tegrators with the explicit and implicit methods. We begin by using precision diagrams
to show that exponential methods compete very well with the other integrators, and then
spend the remaining subsections breaking down the underlying reasons for their perfor-
mance advantage. Our results show that faster Krylov convergence is, in fact, the primary
advantage of exponential methods over the Krylov-based implicit techniques.

3.5.1 Quantitative analysis of the integrators performance

It can be seen from the precision diagrams (Fig. 3.1 & 3.2) that the exponential integrators
generally outperformed the implicit methods. The performance curves of the exponential
methods are generally well to the left of the curves for the implicit integrators, which means
they used less CPU time to achieve the same level of accuracy. A minor exception was the
degenerate nonlinear problem of the smallest size N = 500 for several small tolerance
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values. The data presented below demonstrates that the exception was due to the fact that
for these parameters the nonlinear diffusion problem is simply not sufficiently stiff, and as
the problem size was increased the performance of the exponential integrators superseded
the implicit methods.

The three exponential integrators performed within 35% efficiency of each other. Since
they were closer in performance to each other than to implicit methods, to analyze the
results we first compare implicit integrators with Exp4, which is arguably to date the most
well-known exponential integrator for general nonlinear problems. Then we will compare
exponential integrators with respect to each other.

Before discussing comparative performance we note that for some problems Radau5 had
to employ Householder orthogonalization to compute the Krylov projections instead of the
modified Gram-Schmidt orthogonalization which was used in all other cases. The graphs
in the precision diagrams where the Householder algorithm was used are labeled ”Radau5-
H”. These are the cases where the modified Gram-Schmidt process suffers from roundoff
error problems [58, 33] and the Krylov iteration breaks down due to the loss of orthogonal-
ity. Householder orthogonalization is quite robust and ensures that the Krylov iterations
complete successfully in all cases. However, Householder orthogonalization is computa-
tionally more expensive than the modified Gram-Schmidt, which puts Householder-based
integrators at a performance disadvantage. The exponential methods did not exhibit the
same problems with the modified Gram-Schmidt algorithm since they required smaller basis
sizes. Note, however, that very large scale applications could give rise to problems where
even exponential integrators require a large basis size and consequently must employ the
Householder algorithm.

Comparison with Ros4: It is simplest to compare exponential integrators with each im-
plicit method individually and we begin with Ros4. Since here we are studying constant
time step versions of the methods, to compare the relative performance of the integrators
we fix the tolerance for the solution at a particular value and determine CPU time by in-
terpolating along the precision diagram curves. Overall, except for the small size of the
nonlinear diffusion problem, for all of the problems at most tolerances Ros4 required at
least twice the CPU time of Exp4. Table 3.1 lists the tolerances for which the performance
ratio between Ros4 and Exp4 was smallest and largest. The magnitude of the performance
gap depended on the problem structure, size and the chosen tolerance, and ranged from
32% to 547% improvement in the performance of Exp4 compared to Ros4. We also observe
that the performance gap increased with problem size. Notably, Exp4 became more efficient
than Ros4 at all tolerances for the large size of the nonlinear diffusion problem, eliminating
the disadvantage it had at small tolerances on the small size of the problem. For the other
problems, the increase varied greatly from as little as 1% as in the case of the Gray-Scott
problem where the maximal gap increased from 274% to 275%, to as much as 203% as in
the Brusselator problem where the minimal gap increased from 239% to 442%.

Ros4’s performance disadvantage with respect to the exponential integrators stems from
its structure. It requires four Krylov projections per time step compared to three for the
exponential methods. Those projections are also more expensive, since it uses rational
functions instead of ϕ-functions. For small problems sizes and for small step sizes the
performance gap with the exponential methods is modest. For large problem sizes and large
step sizes, the performance gap is increased, e.g. the Brusselator problem with N = 1502

where Ros4 was 547% of Exp4 at tolerance 5.0× 10−5.
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Table 3.1: Relative CPU time for fixed error tolerances.

(a) Relative performance between Ros4 and Exp4

Min. difference Max. difference

Error CPU time Error CPU time
Exp4 Ros4 % Exp4 Exp4 Ros4 % Exp4

ADR:
N = 502 3.9e-06 0.75 1.27 169% 7.6e-02 0.26 0.75 292%
N = 1502 1.5e-06 2.83 7.13 252% 2.5e-03 3.18 15.30 482%

Allen-Cahn:
N = 502 5.3e-09 0.57 1.01 178% 3.2e-06 0.21 0.62 298%
N = 1502 9.4e-10 8.79 18.76 213% 3.4e-06 5.89 23.19 394%

Brusselator:
N = 502 4.5e-07 0.97 2.32 239% 2.6e-05 0.38 1.38 368%
N = 1502 4.2e-03 10.67 47.20 442% 5.0e-05 8.64 47.22 547%

Burgers:
N = 500 2.0e-11 4.62 7.70 167% 8.4e-08 2.51 7.82 311%
N = 1500 9.4e-10 12.89 29.27 227% 6.5e-08 16.82 59.47 353%

Gray-Scott:
N = 502 2.0e-07 0.47 0.85 183% 8.2e-06 0.29 0.79 274%
N = 1502 4.5e-08 8.46 18.07 214% 2.7e-05 9.19 25.25 275%

Degenerate Nonlinear Diffusion:
N = 500 2.7e-09 32.15 22.53 70% 1.2e-05 3.86 8.54 221%
N = 1500 2.8e-08 88.88 117.39 132% 1.2e-04 22.70 68.00 300%

(b) Relative performance between Radau5 and Exp4

Min. difference Max. difference

Error CPU time Error CPU time
Exp4 Radau5 % Exp4 Exp4 Radau5 % Exp4

ADR:
N = 502 4.7e-06 0.72 2.71 374% 2.5e-02 0.25 8.34 3398%
N = 1502 3.1e-09 4.85 27.60 569% 2.5e-03 3.18 176.36 5550%

Allen-Cahn:
N = 502 4.1e-10 0.90 1.15 128% 3.5e-07 0.25 1.11 441%
N = 1502 1.3e-10 10.14 111.28 1097%* 1.1e-06 5.78 146.91 2544%*

Brusselator:
N = 502 2.5e-07 1.01 2.00 197% 1.2e-04 0.33 2.28 689%
N = 1502 9.4e-06 10.69 225.57 2111%* 4.6e-04 8.69 392.42 4516%*

Burgers:
N = 500 3.7e-12 5.41 35.12 650%* 5.3e-09 2.61 37.05 1419%*
N = 1500 4.1e-11 12.94 177.74 1373%* 9.3e-09 14.52 336.94 2320%*

Gray-Scott:
N = 502 9.2e-11 1.00 2.06 206% 1.3e-06 0.38 2.22 583%
N = 1502 4.2e-10 10.75 193.88 1804%* 4.1e-06 8.32 262.32 3154%*

Degenerate Nonlinear Diffusion:
N = 500 1.5e-09 33.70 27.31 81% 1.3e-06 7.76 29.34 378%
N = 1500 1.3e-08 107.08 155.99 146% 6.9e-06 27.10 400.27 1477%

Comparison with Radau5: Radau5 was the worst performing among the implicit inte-
grators. In the best case of the small size of the degenerate nonlinear diffusion problem
it required only 81% of the CPU time of Exp4 due to the problem placing low demands
on the Krylov iterations. For all the other problems, at most tolerances it required well
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over five times the CPU time of Exp4. Furthermore, as problem size increased the perfor-
mance gap with the exponential methods increased rapidly. For example, in the case of the
Advection-Diffusion-Reaction problem, the gap widened by over 1000% when the problem
was increased from size N = 502 to size N = 1502. Note that some percentages in the table
are marked with an asterisk. Those points were computed using the Householder algorithm,
which is more expensive than the modified Gram-Schmidt. For four of the experiments,
modified Gram-Schmidt was used for the small size of the problem and Householder for the
large size of the problem, so it was natural that the gap widened due to the use of a more
expensive algorithm for the large problem size. However, the Advection-Diffusion-Reaction
problem used modified Gram-Schmidt for both problem sizes, and the gap still widened
significantly, from 374% to 569% in the minimal case and from 3398% to 5550% in the
maximal case. Householder was used for both sizes of the Burgers problem, and the gap
increased by over 1.5 times in that case as well.

The poor performance of Radau5 is a consequence of the fact that it must compute two
projections per Newton iteration, the second requiring expensive complex-number arith-
metic operations, and that the Newton iteration converges more slowly compared to BDF4.
In all cases it required at least two Newton iterations per time step and sometimes up
to ten. This means it required computation of at least four Krylov projections per time
step compared to three for the exponential methods. In addition, the basis size required
for each of the projections was larger then that needed for any of the Krylov projections
within an exponential integrator since Radau5 requires computation of rational rather then
ϕ-functions. These two are the main reasons that Radau5 performed poorly compared to
the exponential methods.

Comparison with BDF4: In most cases BDF4 was the best performing among the implicit
methods. Its overall performance was still worse compared to the exponential methods; for
all problems all of the BDF4 performance curves lie to the right of exponential methods
graphs on the precision diagrams.

However, the same approach in comparing the performance gap that we used for Ros4 and
Radau5 is misleading in this case. This is due to the fact that BDF4 appears to produce less
accurate solutions for a given step size compared to exponential or other implicit methods.
This causes the performance curves for BDF4 to be shifted up with respect to other graphs
on the precision diagrams. Additionally, if a problem is stiff enough the performance curves
for all methods tend to bend (e.g. both sizes of the the Burgers problem) so that lowering
the step size actually decreases the CPU cost. This happens due to the fact that the
complexity of Krylov iterations is not linear with basis size and we will discuss this point
further in Section 3.5.3. As a result of these two properties of the graphs we can have two
”horseshoe”-shaped curves for both the exponential method and BDF4, with the BDF4
curve shifted to the right and up compared to the exponential method graph. If we draw a
straight horizontal line representing a fixed level of tolerance, the intersection points with
the two graphs will not necessarily correspond to the optimal performance data for either
of the methods. For example, if one intersection point is indeed of the ”horseshoe”-curve
for BDF4 method corresponding to its the optimal performance, since the graph for an
exponential method is shifted to the left and down, its intersection point with a straight
fixed tolerance line will not be at the optimal tip of the exponential ”horseshoe” performance
curve. In other words, if tolerance and subsequently the step size are reduced, it is possible
to obtain a more accurate solution faster than what the intersection point with a straight line
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indicates. For example in the case of the Gray-Scott problem with N = 1502 at tolerance
10−5, the CPU time for BDF4 solution is at its minimum but the time for Exp4’s solution
is unnecessarily high. Lowering the tolerance would decrease the CPU time for Exp4 and
still provide a more accurate solution. A clearer way to judge the size of the computational
performance gap between the BDF4 and exponential methods is to compare them for a
fixed size of h.

Table 3.2: Relative CPU time for fixed step size h.

(a) Relative performance between BDF4 and Exp4

Min. difference Max. difference

h CPU time h CPU time
Exp4 BDF4 % Exp4 Exp4 BDF4 % Exp4

ADR:
N = 502 6.25e-04 0.86 0.93 108% 1.00e-02 0.26 1.08 421%
N = 1502 6.25e-04 4.85 8.27 170% 1.00e-02 3.18 33.78 1063%

Allen-Cahn:
N = 502 1.25e-02 0.72 0.61 84% 1.00e-01 0.21 0.29 139%
N = 1502 6.25e-03 10.14 11.33 112% 5.00e-02 5.75 12.52 218%

Brusselator:
N = 502 1.25e-03 0.65 0.75 115% 5.00e-03 0.30 0.50 171%
N = 1502 6.25e-04 10.69 16.58 155% 5.00e-03 9.28 20.78 224%

Burgers:
N = 500 6.25e-04 5.41 5.34 99% 1.00e-02 2.51 9.46 377%
N = 1500 6.25e-04 12.94 15.13 117% 1.00e-02 19.73 105.84 536%

Gray-Scott:
N = 502 1.25e-03 0.60 0.70 116% 5.00e-03 0.28 0.43 154%
N = 1502 1.25e-03 8.82 11.96 136% 1.00e-02 9.19 18.57 202%

Degenerate Nonlinear Diffusion:
N = 500 6.25e-03 34.66 47.06 136% 1.00e-01 3.86 11.48 297%
N = 1500 6.25e-03 107.08 165.28 154% 1.00e-01 22.52 100.89 448%

Table 3.2 lists data for the experiments where the minimal and maximal performance gap
between BDF4 and Exp4 was exhibited for each problem when comparing at a fixed size of
h. For fixed h we see that the performance gap increased as the size of the problem grew
in all cases. For some problems the increase was modest as is the case for the Gray-Scott
problem where the performance gap increase from 116% to 136% for the minimal case and
154% to 202% for the maximal case. But for other problems the gap was more substantial,
e.g. the Advection-Diffusion-Reaction problem where it grew from 108% to 170% in the
minimal case and from 421% to 1063% in the maximal case.

Note that Ros4 and Radau5 have accuracy properties similar to exponential methods and
the performance curves of exponential integrators are roughly at the same level. Thus either
approach to comparing the performance gap (fixed tolerance or fixed time step size) yields
a similar comparison between these implicit integrators and the exponential methods.

As opposed to other implicit methods, BDF4 usually required computation of fewer
Krylov projections per time step than the exponential methods. It had to compute only one
Krylov projection per Newton iteration, and for most problems it only required two New-
ton iterations per time step. Note however that for large scale problems we can expect the
number of Newton iterations to grow, and BDF4 may need to compute an equal or greater
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number of Newton iterations (and thus Krylov projections) compared to the exponential
methods. But even if BDF4 uses fewer Krylov projections, they are more expensive than
those for the exponential methods to such a degree that in balance BDF4 performed worse
than the exponential methods despite requiring fewer Krylov iterations. When problem size
was increased, as with all implicit methods, the CPU cost per-projection increased more
rapidly for BDF4 than for the exponential methods, and this is reflected in the performance
gap increases seen in Table 3.2.

Comparison with RK4: Our results also confirm that exponential methods are expected
to outperform explicit methods for problems which are sufficiently stiff. For highly stiff
problems, RK4 performed significantly poorer than the other methods. For example, for
the Burgers problem with N = 1500, to maintain stability RK4 took such small steps that
it required more CPU time than all the other integrators, for all tolerances tested. For
moderately stiff problems, RK4 was competitive for small problem size but began to fair
worse as the problem size was increased. For example, for the Allen-Cahn problem with
N = 252, to stably compute a solution RK4 required at least 47 time steps, for which it
took 0.036 seconds of CPU time. The solutions of the exponential and implicit methods
were computed using between 10 and 160 time steps. The per-step CPU cost of RK4 is
much lower than the other methods, and regardless of how few time steps they used the
exponential and implicit integrators always required more than 0.036 seconds of CPU time.
As such, RK4 was more efficient than the other methods for that problem size. However,
when the size was increased to N = 1502 RK4 required at least 1633 steps, for which it
took 26.1 seconds of CPU time. The exponential methods and BDF4 required fewer than
12.5 seconds regardless of how many steps they took. The maximum time required by the
exponential methods was 10.1 seconds for Exp4 to compute 160 steps. BDF4 required a
maximum of 12.5 seconds for 20 steps (in fact 17 steps since the first three are given as
initial conditions), but only required 9.49 seconds for 80 (77) steps. The higher cost for fewer
steps is because the complexity of the Krylov iterations scales superlinearly with basis size
(which will be discussed in later sections). Ros4 required less time for all but the coarsest
step size, requiring a maximum of 27.6 seconds for 10 steps, but less than RK4’s 26.1 when
computing between 20 and 160 steps. Radau5 remained more expensive than RK4 for all
step sizes. Since they used much fewer time steps, the other methods naturally had less
accuracy than RK4 with 1633 steps, but it was impossible to stably compute a solution
with a smaller tolerance with RK4. These results provide a quantitative illustration of the
well known fact that stability constraints make explicit integrators less efficient than more
stable methods on sufficiently stiff problems [36, 23].

Comparative performance of the exponential integrators: While the exponential integra-
tors performed similarly as a group in comparison to the implicit methods, there are still
some notable aspects about their performance relative to each other. Compared to EpiRK4
and ERow4 which use faster converging higher-order ϕ-functions, Exp4 uses the slower con-
verging ϕ1 function for all three of its projections. However, Exp4’s scaling of the Jacobian
by 1/3 makes its third projection require fewer Krylov vectors than the other two methods.
How the efficiency of Exp4 compared with the other exponential methods was a matter of
balance between these factors. On most problems Exp4 required less CPU time than the
other two methods, particularly for large problems and at large step sizes where the Krylov
iterations were most expensive. For example, for the large size of the Advection-Diffusion-
Reaction problem, EpiRK4 is 29% more expensive and ERow4 is 21% more expensive than
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Exp4. In contrast, even for the large size of the Burgers problem Exp4 performed similarly
to the other two methods. For that problem the Krylov basis sizes reduced rapidly with
each successive projection so Exp4’s advantage on the third projection was not as impor-
tant, balancing out with its lower efficiency on the second projection to give similar CPU
time as the other methods. EpiRK4 and ERow4 had nearly identical CPU cost. For the
same step size, the CPU times were always within 10% of each other, regardless of problem
or step size.

3.5.2 Analysis of comparative performance as a result of Krylov iteration
efficiency

In previous sections we saw that the exponential integrators performed better than implicit
and explicit integrators. We also argued that the reason for the performance advantage
is the reduced cost of the Krylov projections for the methods. In this section we present
results supporting this claim.

First, we want to verify that Krylov projections in fact constitute the major portion of
the cost in all of the algorithms. We used the profiler to measure the computational cost
of the important portions of the methods, i.e. (i) the Krylov iterations, (ii) evaluation
of the Jacobian J , (iii) calculation of the ϕ-functions of Hm, and (iv) the right-hand-side
function F evaluations. For almost all the computations (i.e. 13 problems × 5 step sizes ×
6 integrators) Krylov projections constituted the largest portion of the computational cost
compared to the calculations of (ii)-(iv). There were two exceptions to this rule.

The first is the degenerate nonlinear diffusion problem at small step sizes for which
the Krylov iterations accounted for only a minor fraction of the CPU time, leaving the
Jacobian computations as the greatest expense. The low cost of the Krylov projections for
this problem accounts for why the exponential integrators did not outperform the implicit
integrators at small step size, particularly for the small problem size where the Krylov
iterations had the lowest cost. For the large step sizes, particularly for the large problem
size, the Krylov projections were the largest cost and the exponential methods had a sizable
performance advantage.

The second exception is BDF4 for the smallest step sizes of the Gray-Scott problem where
the cost of computing the Krylov projections fell slightly below the next highest cost. For
the remaining cases, the percentage of the total CPU time spent executing Krylov iterations
ranged from 73% to 99.97% for large step sizes and was reduced to the range 37% to 88%
for small step sizes, but even for small step sizes it remained larger then the next closest
cost which was evaluation of the Jacobian or the right-hand-side function evaluations. Thus
the efficiency of the Krylov projections portion of the algorithm had the largest effect on
the overall cost of the method. For each integrator the total Krylov performance consisted
of how many Krylov projections had been executed and how many Krylov vectors each of
those projections required. In the following sections we demonstrate how those two aspects
affect the performance of the methods.

Cost via number of Krylov vectors: Let us first look at the number of the Krylov vectors.
This cost can be viewed from two perspectives: we can consider the total number of Krylov
vectors taken each time step (i.e. sum the number of Krylov vectors taken by each of the
projections in the method) or the average number of Krylov vectors per projection (Tables
3.3 and 3.4). For Ros4 and Radau5 both of these measures yield the same results. Both
integrators compute more Krylov vectors per projection and also a larger total number of
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Krylov vectors than exponential methods. The gap in the number of vectors, both total
and per-projection, is largest for coarse step sizes and is somewhat reduced for smaller size
of h, but is never zero. The gap in the number of Krylov vectors between these implicit
methods and exponential integrators grows as the stiffness of the problem is increased.

We illustrate these effects quantitatively with the Allen-Cahn problem which exhibited
a typical outcome among the problems in the test suite. Some Krylov statistics for the
problem are listed in Table 3.3. Using Exp4 as a representative of the exponential meth-
ods, we see that Ros4 and Radau5 always computed more Krylov vectors than Exp4 per
projection for all step sizes, e.g. 36.6 vectors for Ros4 and 38 for Radau5 compared to just
23.7 for Exp4 for the first projection (first column) at coarse step size. The total number
of computed vectors was higher as well, e.g. 1441 for Ros4 and 1755 for Radau5 compared
to only 518 for Exp4 at coarse step size. The gap sizes shrank as the step size was reduced
but remained significant. For the smallest h, Ros4 computed about 10.8 vectors for all
three projections. Exp4 computed 9.9 for the first, which was only marginally smaller, but
6.4 and 4.1 for the remaining two projections. In the first two Newton iterations, Radau5
computed two projections with 13.5 vectors and two with 9, which were both higher than
the corresponding projections of Exp4. The gap in the total number of Krylov vectors was
also reduced but remained significant with Ros4 computing 1731 vectors and Radau5 2135
vectors compared to only 813 for Exp4.

This example highlights an important structural difference between the methods. For
the exponential methods in the products of type f(A)b that have to be calculated the b
vectors used after the first projection are equal to the nonlinear remainder terms R(Y ) which
have smaller magnitudes than the b vectors for the first stage (which is the right-hand-side
function F ), causing the basis sizes for the second two projections to be smaller than that
of the first. The b vectors of Ros4 are not remainder terms but rather combinations of F (y)
and stage values ki which are not necessarily expected to decrease in magnitude. As such
there is no falloff in basis size, so the gap with the exponential methods is even larger for
the later projections. The basis sizes for Radau5 fall off as the error in the Newton iteration
is reduced, but the basis sizes of both projections in each Newton iteration were always
larger than that of the corresponding projection in the exponential methods.

As with all the problems, for Allen-Cahn there was an increase in the difference in both
the size of the basis and total vectors computed by the implicit methods compared to the
exponential integrators, though in Table 3.1 we saw that the change in CPU time was modest
for this problem so we expect the change in the vector count to be modest as well. For the
coarsest step size, the ratio of the number of Krylov vectors for the first projection of Ros4
versus Exp4 increased from 1.54 to 1.63 in going from the small to large problem size. The
other projections were similar. The ratio of the total number of Krylov vectors increased
from 2.78 to 2.88. The inflation in the CPU cost was from 345% of Exp4 to 449%, which
was larger than might be expected for the changes in vector count, but there are two reasons
for this. The first is that the cost of computing the Krylov vectors grows quadratically with
the number of Krylov basis vectors m. (Specifically its 2m2N when using modified Gram-
Schmidt orthogonalization, and 4m2N − 4/3m3 when using Householder orthogonalization
[58]). Even a modest inflation in the extra number of vectors computed by an implicit
method will result in a substantial increase in the CPU time. The second is that the larger
basis sizes of the bigger problem cause the Krylov iterations to take up a greater proportion
of the total CPU time, which causes the higher Krylov costs of the implicit methods to
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matter more. Similar increases in vector count happened for Radau5 though the CPU time
went up more severely due to the use of the Householder orthogonalization for the larger
problem. The gap in the number of Krylov vectors increased at smaller step sizes as well
commensurate with the inflation in CPU time.

Cost via number of Krylov projections: The integrators require computation of different
numbers of Krylov projections per step and the difference in total CPU cost is a balance be-
tween the number of projections per step versus the number of vectors taken per projection.
Ros4 always computes four projections per step and Radau5 required at least two Newton
iterations (hence four projections) in our experiments. Thus, both methods required more
projections per step and more vectors per projection than the exponential methods’ three
projections resulting in higher CPU cost. Recall however that BDF4 usually required only
two projections per step yet still had the higher CPU cost. From Table 3.3 we can see
the reason for this is that the higher number of vectors taken per projection outweighs the
smaller number of projections. For the largest problem size, as the step size decreased to
h = 0.005 BDF4 required only two Newton iterations. In that case it required 49.7 and 25.3
Krylov vectors for the first and second projections whereas Exp4 required only 25.5 and
18.0 for the first two, but also required 8.4 vectors in a third projection. This balanced out
to BDf4 needing 2777 total Krylov vectors compared to 2072 for Exp4, a ratio of 1.34 as
many Krylov vectors as Exp4. However, it also needed 1.7 times as much CPU time. The
disproportionate increase in CPU time comes from the quadratic scaling of cost with basis
size m. The larger basis sizes for BDF4 result in a higher CPU cost per Krylov vector. For
most problems BDF4 required only two Newton iterations at all step sizes, yet the larger
basis sizes meant that both a higher number of total vectors and greater cost per vector
resulted in a bigger overall CPU cost.

Obviously in cases where BDF4 requires more than two Newton iterations the perfor-
mance gap was even greater. For the Advection-Diffusion-Reaction problem, BDF4 took
as many as four Newton iterations. Some statistics for the problem are displayed in table
3.4. As before, there is still a sizable difference in basis sizes per projection between BDF4
and the exponential methods, but now the total Krylov vectors is no longer similar so the
difference in CPU time becomes even greater, e.g. on the small problem size at coarse time
step BDF4 took 1580 total vectors compared to only 639 for Exp4 resulting in 415% greater
CPU time for BDF4.

Comparison of Krylov performance between exponential integrators: As we saw in the
previous section and as Tables 3.3 and 3.4 confirm Exp4 takes slightly more Krylov vectors
on the second projection compared to EpiRK4, but fewer on the third projection than both
EpiRK4 and ERow4, resulting in it having generally the best performance. As an example,
for the Allen-Cahn problem with N = 1502 at the coarsest step size, Exp4 used 55.2 vectors
for its second projection compared to 50.5 and 54.8 for EpiRK4 and ERow4 respectively.
However, it needed only 26.2 vectors for the third projection compared to 41.9 and 41.8
for EpiRK4 and ERow4. In balance, Exp4 computed fewer total Krylov vectors to give
about 10% better overall CPU performance. Across all the problems, Exp4 computed up to
20% fewer total Krylov vectors compared to the other two methods and typically 10% less.
Comparing EpiRK4 with ERow4 we found the performance of these two methods to be
quite similar to each other with the total number of vectors always within 6% and typically
within 2%.
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3.5.3 Krylov adaptivity

As we saw in the precision diagrams, reducing the step size can sometimes reduce the cost
of the Krylov iterations so dramatically that computing a solution with a smaller value
for h results in a lower CPU time despite a larger number of steps being computed. A
particularly visible example of this is BDF4 on the Burgers problem with N = 1500 where
the slope of a portion of the performance curve is positive (Fig. 3.2). In many cases there
is a transition point at which the slope changes sign, as for BDF4 used on the Burgers
problem with N = 500 where the slope becomes negative at tolerance values of about 10−7.

The reason lowering step size can lower CPU cost is the Krylov iteration’s quadratic
scaling of cost with basis size. We can see in Tables 3.3 and 3.4 that the number of Krylov
vectors needed per projection decreases by a factor of 1.5 to 2.0 each time h is halved
(although it varies somewhat with problem and step size). Because of the quadratic cost
scaling, each time the step size is halved the CPU time per projection is reduced between
1.52 and 2.02 times, i.e. by a factor larger than two. If the Krylov projections were the entire
computational cost, halving the step size would always lower the CPU time. However, as
the cost of the Krylov projections decrease they account for an ever smaller percentage of
the total computational cost and other components, such as the calculation of the Jacobian,
become more relevant. As a result, at some point lowering the step size further starts to
increase the overall CPU time.

This crossover phenomenon is meaningful for how variable time step methods should be
implemented. If lowering the step size reduces CPU cost, it is more cost efficient to compute
with smaller h even if the extra accuracy is not needed for coarse tolerances. However if
the step size is lowered too much, the CPU time will start to increase. This suggests the
need for an adaptivity algorithm which is able to adjust the step size to find the ”sweet
spot” step size for which CPU time is lowest. Early attempts at developing such Krylov
adaptivity algorithms can be found in [27, 50], but so far there is only limited study of how
effectively these algorithms find an optimal step size.

3.6 Performance optimization of exponential integrators: efficient fifth order
EPIRK methods.

In this section we demonstrate that the performance on exponential integrators can be fur-
ther improved with careful design of a method. Specifically, we will show that it is possible
to construct fifth order EPIRK shemes which have the same per time step computational
cost as the fourth order methods described above. While these schemes were originally
introduced in [67], their performance was not carefully studied. Here we present a more de-
tailed performance analysis which builds on and further extends the results of the previous
sections.

Recently a new class of EpiRK methods have been introduced [67]. The general form of
EpiRK schemes is

Yi = yn + ai1ψi1(gi1hJn)hFn +
i−1∑
j=2

aijψij(gijhJn)h∆(j−1)R(yn), i = 1, .., (s− 1)

yn+1 = yn + b1ψs1(gs1hJn)hFn +
s∑
j=2

bjψsj(gijhJn)h∆(j−1)R(yn), (3.14)
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where ψij(z) functions are defined as

ψij(z) =

s∑
k=1

pijkϕk(z), (3.15)

s is the number of stages and the divided-differences ∆(j−1)R(yn) are computed using the
nodes yn, Y1, Y2,...,Ys−1. The coefficients aij , gij , bj and pijk are chosen based on the
order conditions. The flexibility in choosing the coefficients offered by this ansatz allows
development of more efficient schemes. Specifically, it was shown in [67] that it is possible
to derive a fifth-order EpiRK method EpiRK5S3 which has the same number of stages as
the EpiRK4 scheme. The coefficients for the fifth order EpiRK5S3 method are listed in
Table 3.5.

From comparing the structure of the EpiRK5S3 scheme with other exponential schemes
discussed above, we can expect this method to be the most efficient integrator for two main
reasons. First, just like the fourth-order exponential methods EpiRK4, ERow4 and Exp4,
the EpiRK5S3 scheme requires only three Krylov projections per time step, but since the
method is fifth-order it provides more accuracy. Second, since the coefficients gij in (3.14)
scale the Jacobian Jn we can expect fewer Krylov vectors needed for calculation of the
terms ψij(gijhJ)b if gij < 1. Inspecting the coefficients gij in Table 3.5 for a fixed j we
can see that the second and the third Krylov projections have the maximum gij (j = 2, 3)
coefficients smaller than 1 and therefore we can expect that EpiRK5S3 will require fewer
Krylov vectors for these projections compared to schemes where evaluations must be made
with coefficients gij ≥ 1. Figure 3.3 and Table 3.6 illustrate how these features of the scheme
translate to CPU savings.

Table 3.5: Coefficients of fifth order EpiRK methods.

EpiRK5S3:a11

a21 a22

b1 b2 b3

 =

0.4165701558065186
0.8624674370127457 1.3293114699172297

1.0 1.1546830340501577 0.3093149208665580


g11g21 g22
g31 g32 g33

 =

0.4165701558065186
0.8624674370127457 0.5

1.0 0.73041615760832766 0.32507696706078277



Fig. 3.3 provides precision diagrams comparing the performance of EpiRK5S3 with the
other exponential methods for advection-diffusion-reaction, Allen-Cahn, Brusselator and
Gray-Scott problems. To accommodate the increased accuracy of EpiRK5S3, the integra-
tors were run with smaller tolerances for the Krylov iterations and at larger step sizes than
for the comparisons with the implicit integrators. The EpiRK5S3 method exhibits better
performance than other exponential integrators. The statistics of the Krylov projections
performance for the Gray-Scott problem in Table 3.6 illustrates that computational advan-
tage of the scheme is due to more than just the higher order of the method. For brevity, the
statistics of the other problems are left out but the results are similar. The Krylov basis
size for the EpiRK5S3’s first projection is similar to the other methods as the Jacobian
is unscaled except by h for all the methods in this case. However, the basis sizes of the
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second and third projections are lower than for the other methods. For example, in the
case of h = 0.02 EpiRK5S3’s second projection has a basis size of 76.4 vectors, whereas the
basis size for the method with the next smallest basis, EpiRK4, is 87.2 vectors which gives
a savings of 10.8 vectors. Exp4 has the largest basis size of all the methods at 93.8 vec-
tors, a 17.4 vector difference with EpiRK5S3. However, the Jacobian of EpiRK5S3’s second
projection is scaled only by g32 = 0.73 times h, so we expect only a modest savings. Its
third projection has the Jacobian scaled by g33 = 0.33 times the step size, so we expect the
savings to be greater in that case. Looking again at the case when h = 0.02, the basis size
for EpiRK5S3’s third projection is 45.0 vectors. The method with the next smallest basis
size is Exp4 with a basis size of 46.8 vectors, which is a difference of 1.8 vectors. However,
Exp4 also has the Jacobian of its third projection scaled by 0.33h so the small difference is
expected. It’s worth reiterating that Exp4 uses the ϕ1 function for its third projection while
EpiRK5S3 uses higher-order functions, accounting for its small advantage. The remaining
methods do not scale the Jacobian beyond multiplying by h so we expect them to have
much poorer performance. Indeed, the next best method is ERow4 with a basis size of 78.0
vectors, a difference of 33 vectors compared to EpiRK5S3, i.e. 173% as many. Overall,
these savings result in higher efficiency of EpiRK5S3. For h = 0.02, EpiRK5S3 requires
only 84% of the CPU time of the next best method, Exp4. As the step size gets smaller,
the performance advantage of EpiRK5S3 shrinks but remains non-trivial. In conclusion,
we can see that scaling the Jacobian with favorable coefficients gives significant reduction
in Krylov basis size resulting in better overall performance, making it an important design
criteria when deriving new methods.

Table 3.6: Average Krylov vector counts and total CPU time.

(a) 2D Gray-Scott problem with N = 1502

Ave. Krylov vectors per step Projs. Total CPU time
Proj. 1 Proj. 2 Proj. 3 per step vectors Total % Exp4

h = 0.02:
EpiRK5S3 106.4 76.4 45.0 3 1130 12.9 84%
EpiRK4 106.8 87.2 82.4 3 1382 16.6 109%
ERow4 103.8 93.4 78.0 3 1376 16.9 110%
Exp4 107.2 93.8 46.8 3 1239 15.3 100%

h = 0.01:
EpiRK5S3 63.5 45.9 26.8 3 1362 11.1 85%
EpiRK4 65.0 52.4 48.4 3 1653 13.7 105%
ERow4 63.1 56.9 45.3 3 1653 13.8 105%
Exp4 65.3 57.0 27.5 3 1498 13.1 100%

h = 0.01:
EpiRK5S3 39.4 27.2 15.8 3 1646 10.1 84%
EpiRK4 40.4 31.1 27.4 3 1978 12.6 104%
ERow4 39.3 34.2 24.8 3 1964 12.2 101%
Exp4 40.1 34.1 16.2 3 1809 12.1 100%

3.7 Comparisons of variable time step implementations

In the previous sections we have presented a detailed analysis that illustrated how each part
of an integrator effects its overall performance. In order to clearly demonstrate how the
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structure of a method and the parts it is comprised of affect the performance, we needed
to use the constant step sizes in our experiments. However, this raises the question of
whether the computational savings predicted by these experiments are still available when
these methods are used in the context of variable time step algorithms. In this section,
we address this issue and validate our results using comparisons between a well-tested and
widely available implementation of a variable step size implicit integrator and a new variable
step size exponential method.

As a benchmark implicit integrator we choose the ROWMAP implementation [75] of
the GRTK4T implicit Rosenbrock method (Ros4). The core Rosenbrock scheme of this
code was also used above in the constant time step experiments. The ROWMAP method,
however, is a variable time step implementation that was specifically created to reduce the
computational cost of Krylov projections per step. This goal was accomplished by employing
the MAP (multiple Arnoldi process) algorithm which reuses the Krylov basis of the first
stage of Ros4 in subsequent stages by extending it by a fixed number of additional vectors.
Specifically, the Krylov basis for the first stage is computed using the usual Arnoldi process
with the basis size determined based on the specified tolerance. Rather than computing
the basis of the second stage from scratch, the MAP algorithm reuses the basis of the first
stage by supplementing it by three more Krylov vectors. Likewise, the third stage extends
the basis of the second stage with an additional vector, and the fourth stage extends the
basis of the third stage by three vectors. As a result, only seven more vectors are computed
in addition to the basis of the first stage. It was shown in [74] that using MAP preserves
the fourth order of the method. Here we use the MATLAB implementation of ROWMAP
algorithm available at http://numerik.mathematik.uni-halle.de/forschung/software.

The variable step size exponential integrator we used is the fifth-order EpiRK5P1, a
newly derived method from the class of EpiRK integrators described in section 3.6. This
algorithm was implemented using the adaptive Krylov projection algorithm proposed by
Niesen and Wright [50]. The detailed description of the adaptive EpiRK methods can be
found in [69]. Here we outline the main ideas behind the structure of the method. The
adaptive EpiRK methods employ the Niesen-Wright adaptive Krylov projection algorithm
which replaces computation of one large, computationally expensive Krylov basis needed to
evaluate a linear combination of ϕ-functions-vector products of the form

u(t) = ϕ0(tA)b0 + ϕ1(tA)b1 + ϕ2(tA)b2 + ...+ ϕp(tA)bp, A ∈ RN×N , bi ∈ RN , (3.16)

at t = 1 with several cheaper Krylov projections to approximate u(t) with 0 < t < 1. It is
based on the observation by Skaflestad and Wright [63] that u(t) is the solution to the ODE

u′(t) = Au(t) + b1 + tb2 + ...+
tp−1

(p− 1)!
bp, u(0) = b0, (3.17)

and if t0 = 0 < t1 < ... < tk < tk+1 < ... < tend = 1 then values u(ti) can be computed
iteratively using the exact formula

u(tk+1) = ϕ0(τkA)u(tk) +

p∑
i=1

τ ikϕi(τkA)

p−i∑
j=1

tjk
j!
bi+j , τk = tk+1 − tk. (3.18)

The recurrence relation ϕq(A) = ϕq+1(A)A+ 1
q!I can be employed to express equation (3.18)
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in a simplified form

u(tk+1) = τpkϕp(τkA)wp +

p−1∑
j=0

τ jk
j!
wj , (3.19)

with wj ’s computed recursively as

w0 = u(tk), wj = Awj−1 +

p−j∑
l=0

tlk
l!
bj+l, j = 1, ..., p. (3.20)

Linear combination (3.16) can then be adaptively computed by stepping equation (3.19)
over a set of subintervals 0 = t0 < t1 < ... < tk < tk+1 = tk + τk < ... < tend = 1 and
evaluating each term ϕp(τkA)wp using a Krylov projection. The computational tradeoff is
that the series of Krylov projections for ϕp(τkA)wp for a scaled matrix τkA require only a
small Krylov basis compared to the basis size needed for evaluating ϕp(A)bp. Computing a
series of such terms with small basis is found to be computationally cheaper than computing
(3.16) with a single large Krylov basis given that the complexity of the Arnoldi iteration
scales quadratically with the basis size. The values τk in the algorithm are chosen adaptively
using error estimates and the cost function, the details of this selection can can be found in
[50].

The coefficients of EpiRK5P1 are chosen so as to allow the method to use Niesen-
Wright adaptivity while preserving the projection minimizing feature discussed in sec-
tion 3.3, i.e. the terms f(A)b and f(cA)b sharing the same b vector can still be com-
puted with the same Krylov basis. Interpreted through the general form of EpiRK meth-
ods (3.14), this projection minimizing property is equivalent to computing terms associ-
ated with coefficients g1j , g2j , ..., gsj , with a single Krylov projection, for each j. This
feature can be retained in an algorithm with Niesen-Wright adaptivity since the terms
ψ1j(g1jA)b, ψ2j(g2jA)b, ..., ψsj(gsjA)b can be calculated using (3.19) with a single sweep
of steps over subinterval 0 = t0 < t1 < ... < tk < tk+1 = tk + τk < ... < tend = 1
if the functions ψij(z) consist of a single ϕk(z)-function, for some k, and not a linear
combination of ϕk(z)’s. Such approach works as follows. Without loss of generality, let
g1j < g2j < ... < gsj and ψ1j(z) = ψ2j(z) = .. = ψsj(z) = ϕk(z) for some k. Note
that in case of a single ϕk(z), equation (3.16) reduces to u(t) = tkϕk(tA)bk. All of the
terms ψ1j(g1jA)b, ψ2j(g2jA)b, ..., ψsj(gsjA)b can then be computed in a single sweep over
0 = t0 < t1 < ... < tk < tk+1 = tk + τk < ... < tend = 1 by observing that ϕk(gijA)b is
equal to computing the now reduced form of u(t) at time t = gjk/gsk and dividing by tk.
EpiRK5P1 is constructed with ψi1(z) = ϕ1(z), ψi2(z) = ϕ1(z), ψi3(z) = ϕ3(z). It is a fifth
order method with coefficients listed in Table 3.7. It is worth noting that the flexibility of
the general structure of the EpiRK class of methods allows the fifth order methods with
only three stages to be constructed, while the accuracy of previously proposed exponential
integrators with three stages did not exceed the fourth order. This is an advantage of the
EpiRK class over both the exponential and implicit forms of the Rosenbrock methods. An
embedded fourth order EpiRK method was also derived to provide the automatic step size
control mechanism; the coefficients are the same as for EpiRK5P1 except that g32 = 0.5,
and g33 = 1.0.
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Table 3.7: Coefficients of EpiRK5P1.

EpiRK5P1:a11

a21 a22

b1 b2 b3

 =

0.3512959269505819
0.8440547201165712 1.6905891609568963

1.0 1.27271273173568923 2.271459926542262227


g11g21 g22
g31 g32 g33

 =

0.3512959269505819
0.8440547201165712 1.0

1.0 0.71111095364366870 0.62378111953371494



The variable step adaptive EpiRK5P1 and ROWMAP methods were compared on the
six problems from section 3.4.2 over the same time intervals. The comparisons were done
twice - with two different choices of how the Jacobian was evaluated. In a first set of
comparisons, EpiRK5P1 computed an explicit exact (i.e. not numerically differentiated)
Jacobian matrix and computed matrix-vector products Jv using matrix multiplication,
while ROWMAP used a matrix-free first-order finite differences estimate of terms Jv. Just
as in [75], ROWMAP was tested and found to be not significantly less accurate when
using the numerical approximation compared to using an explicit Jacobian. In a second
set of comparisons, EpiRK5P1 also used a finite differences approximation of terms Jv.
The first set of comparisons is discussed here and the second set in a later paragraph. In
the first set, except for the degenerate nonlinear diffusion problem, both integrators were
compared over the range of tolerances Atol = Rtol = {10−2, 10−3, ..., 10−7}. In the case of
the degenerate nonlinear diffusion problem, the EpiRK5P1 method used tolerances Atol =
Rtol = {10−2, 10−3, ..., 10−8}, while ROWMAP used tolerances scaled by a factor of 10−3 of
those for EpiRK5P1 to make the performance of the methods more comparable (Fig. 3.4).
The tolerances for the Krylov process were not kept fixed as in the constant time step case
but rather chosen relative to the accuracy requirements of the current time step. Specifically,
EpiRK5P1 stopped the Krylov process when res < 0.1 ∗ hn ∗min(Atol, Rtol ∗ ||yn||), where
res is the Krylov residual and 0.1 is a safety factor. ROWMAP terminated the Krylov

process when hn ∗
√

1
N

∑
( res
Atol+Rtol∗abs(yn))2 < 0.1.

The results of the comparisons are shown in Fig. 3.4. It can be seen that EpiRK5P1
generally outperforms ROWMAP, particularly for fine tolerances. While the use of Niesen-
Wright adaptivity with the exponential integrator and the MAP algorithm with the implicit
integrator makes direct comparison of Krylov performance difficult, the profiler shows that
computing the Krylov projections remains as the dominant computational cost of the al-
gorithms. To that extent the generally better performance of EpiRK5P1 can be attributed
to an overall lower Krylov cost, consistent with what was seen in the constant time step
case. In the case of the degenerate nonlinear diffusion problem, while EpiRK5P1 performed
better for small tolerances, ROWMAP did better for coarse tolerances. As noted in section
3.5, this problem is not very stiff and the difference in performance between exponential
integrators and implicit integrators is not significant. EpiRK5P1 performed better at fine
tolerances due to its higher order.

Note that the ROWMAP algorithm and implementation have been developed and op-
timized over a relatively long time period [75], while the variable step EpiRK methods
with Niesen-Wright adaptivity are a very recent development [69]. The resulting exponen-
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tial algorithm can be further optimized and perfected. In particular, the error estimators
and the cost functions within the Neisen-Wright adaptivity algorithm can be improved.
An illustration of this is the precision diagram for the Burgers equation in Fig. 3.4(d).
The performance of the EpiRK5P1 suffered at coarse tolerances because the Niesen-Wright
adaptivity algorithm performed suboptimally when the Jacobian was scaled coarsely by
a large step size h. As the tolerances tightened and the Jacobian was scaled better, the
adaptivity algorithm made better choices of the substep sizes τk. Our preliminary results
show that the error estimators and the cost function used by the Niesen-Wright algorithm
can be further refined and we will report on the improved adaptive EpiRK methods in fu-
ture publications. The comparisons with inexact Jacobian presented in the next paragraph
further illustrate this point, since the error estimators and the cost functions have not been
adjusted to account for the inexact Jacobian approximation.

The second set of comparisons, where both integrators used a finite differences approx-
imation of terms Jv, are shown in Fig. 3.5. Except for the case of the Burgers and the
degenerate nonlinear diffusion problem, both integrators used tolerances Atol = Rtol =
{10−2, 10−3, ..., 10−7}. For better relative comparison, for the Burgers problem EpiRK5P1
used tolerances Atol = Rtol = {10−2, 10−3, ..., 10−7} while ROWMAP used tolerances 10−3

of those of EpiRK5P1, and on the degenerate nonlinear diffusion problem EpiRK5P1 used
tolerances Atol = Rtol = {10−2, 10−3, ..., 10−11} while ROWMAP used tolerances 10−2

those of EpiRK5P1. Compared to the case when using an exact Jacobian, EpiRK5P1
suffered from reduced accuracy and poorer Krylov performance. When using an explicit
Jacobian matrix, the Niesen-Wright algorithm uses sparsity information about the matrix
in the cost function used to adaptively choose basis sizes and values of τ . With the numer-
ical estimate that information is unavailable and the current implementation falls back to
a less accurate default estimate making the adaptivity perform less optimally. Compared
to ROWMAP, EpiRK5P1 also exhibited more sensitivity to approximation error in the
Jacobian and loses overall accuracy when using a finite difference estimate. Nevertheless,
despite the performance reduction, EpiRK5P1 generally compared well with ROWMAP.

In summary, much work remains to be done in optimizing the performance of adaptive
exponential integrators, but early comparisons show that even newly developed adaptive
exponential schemes exhibit promising performance compared to implicit integrators.

3.8 Conclusions and future work

In this paper we demonstrated that new exponential methods can perform better than some
of the implicit methods typically used for large stiff problems. We have identified the reason
for their performance advantage being the efficiency of the Krylov projections in evaluation
of exponential-like matrix functions compared to rational matrix functions required by the
implicit methods. These results represent one of the first careful numerical studies that
provide a quantitative insight into what type of computational savings one might expect
in using the latest exponential integrators compared to standard methods. The analysis
details how the structure of an integrator, i.e. the number and the nature of Krylov pro-
jections it requires, affects its performance and provides guidelines for constructing and
implementing efficient exponential integrators. These results instruct selection of appropri-
ate time integrators for other problems. In addition, we have demonstrated computational
efficiency of the newly introduced three-stage fifth order EpiRK methods. We have verified
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the performance advantages of the core EpiRK schemes when they are employed as con-
stant times step integrators and when these methods are developed into variable step size
adaptive integrators. The work has highlighted the importance of development of effective
adaptive strategies and the promising research directions in this area. Larger scale problems
and parallel implementations of the methods need to be studied and analyzed. We plan to
address these questions in future publications.
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(c) Allen-Cahn 2d, N = 502
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(d) Allen-Cahn 2d, N = 1502
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(e) Brusselator 2d, N = 502

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

CPU time in seconds (log scale)

G
lo

ba
l E

rr
or

 (
lo

g 
sc

al
e)

Brusselator2d, N = 150x150

 

 
Exp4
EpiRK4
ERow4
BDF4
Ros4
Radau5−H

(f) Brusselator 2d, N = 1502

Figure 3.1: Precision diagrams for the Advection-Diffusion-Reaction, Allen-Cahn, and Brusselator
problems. Note that the axes scale changes from graph to graph.
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(a) Burgers 1d, N = 500
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(b) Burgers 1d, N = 1500
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(c) Gray-Scott 2d, N = 502
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(d) Gray-Scott 2d, N = 1502
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(e) Degenerate Nonlinear Diffusion 1d, N =
500
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(f) Degenerate Nonlienar Diffusion 1d, N =
1500

Figure 3.2: Precision diagrams for the Burgers, Gray-Scott and Degenerate Nonlinear Diffusion prob-
lems. Note that the axes scale changes from graph to graph.
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(c) Brusselator 2d, N = 1502
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Figure 3.3: Precision diagrams comparing the coefficient-optimized EPiRK5S3 method to the other
exponential methods.
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(a) Advection-Diffusion-Reaction 2d, N =
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(b) Allen-Cahn 2d, N = 1502
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(c) Brusselator 2d, N = 1502
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(d) Burgers 1d, N = 1500
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(e) Degenerate Nonlinear Diffusion 1d, N =
1500
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Figure 3.4: Precision diagrams comparing variable time step implementations of Krylov-adaptive
EpiRK5-P1 with ROWMAP-GRK4T. EpiRK5P1 uses an exact Jacobian while
ROWMAP uses a finite differences approximation of the Jacobian.
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(b) Allen-Cahn 2d, N = 1502

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CPU time in seconds (log scale)

G
lo

ba
l E

rr
or

 (
lo

g 
sc

al
e)

 

 
EpiRK5−P1 − Adaptive
RMap − GRK4T

(c) Brusselator 2d, N = 1502
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(d) Burgers 1d, N = 1500
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(e) Degenerate Nonlinear Diffusion 1d, N =
1500
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(f) Gray-Scott 2d, N = 1502

Figure 3.5: Precision diagrams comparing variable time step implementations of Krylov-adaptive
EpiRK5-P1 with ROWMAP-GRK4T. Both methods use a finite differences approxima-
tion of the Jacobian.
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Table 3.3: Average Krylov vectors counts and total CPU time. Note: BDF4 and Radau5 list the
projections of their first four Newton iterations in columns Proj. 1, Proj. 2, etc.

(a) 2D Allen-Cahn problem with N = 502

Average # of Krylov vectors per step Projs. Total CPU time
Proj. 1 Proj. 2 Proj. 3 Proj. 4 per step vectors Total % Exp4

h = 0.02:
Exp4 23.7 18.6 9.5 n/a 3 518 0.21 100%
EpiRK4 23.1 16.8 14.7 n/a 3 546 0.23 110%
ERow4 22.8 18.6 13.9 n/a 3 553 0.24 114%
BDF4 48.1 32.1 5.1 n/a 3.00 598 0.29 139%
Ros4 36.6 36.2 35.8 35.5 4 1441 0.72 345%
Radau5 38 | 38 26 | 27 16 | 16 8 | 8 4.00(×2) 1755 1.11 533%

h = 0.01:
Exp4 15.1 10.8 5.6 n/a 3 628 0.25 100%
EpiRK4 15.0 9.7 7.7 n/a 3 646 0.29 112%
ERow4 14.8 10.7 7.0 n/a 3 649 0.28 111%
BDF4 31.2 17.4 2.1 n/a 2.47 843 0.33 132%
Ros4 20.1 19.7 19.7 19.4 4 1576 0.61 238%
Radau5 22 | 22 15 | 15 9 | 8 4 | 4 3.20(×2) 1848 1.04 410%

h = 0.005:
Exp4 9.9 6.4 4.1 n/a 3 813 0.35 100%
EpiRK4 10.0 5.7 4.4 n/a 3 801 0.37 108%
ERow4 9.9 6.4 4.3 n/a 3 820 0.37 107%
BDF4 17.6 8.9 n/a n/a 2.00 978 0.47 136%
Ros4 10.9 10.8 10.9 10.7 4 1731 0.61 175%
Radau5 14 | 13 9 | 9 5 | 4 n/a 3.0(×2) 2135 1.15 333%

(b) 2D Allen-Cahn problem with N = 1502

Average # of Krylov vectors per step Projs. Total CPU time
Proj. 1 Proj. 2 Proj. 3 Proj. 4 per step vectors Total % Exp4

h = 0.02:
Exp4 67.1 55.2 26.2 n/a 3 1485 6.15 100%
EpiRK4 66.2 50.5 41.9 n/a 3 1586 6.62 108%
ERow4 64.5 54.8 41.8 n/a 3 1611 6.92 112%
BDF4 138.0 95.0 18.7 1.0 3.14 1763 11.75 191%
Ros4 109.1 107.4 106.4 104.9 4 4278 27.62 449%
Radau5-H 110 | 111 79 | 80 49 | 49 27 | 27 3.50(×2) 5046 146.91 2388%

h = 0.01:
Exp4 40.9 31.7 14.6 n/a 3 1744 5.75 100%
EpiRK4 41.0 28.9 20.4 n/a 3 1803 5.76 100%
ERow4 39.9 31.5 21.9 n/a 3 1866 5.86 102%
BDF4 90.3 50.4 4.9 n/a 2.94 2466 12.52 218%
Ros4 64.5 63.1 62.8 62.0 4 5045 23.19 403%
Radau5-H 64 | 64 45 | 45 28 | 28 n/a 3.00(×2) 5492 124.14 2159%

h = 0.005:
Exp4 25.5 18.0 8.4 n/a 3 2072 6.05 100%
EpiRK4 25.5 16.1 10.9 n/a 3 2100 5.65 93%
ERow4 25.0 17.9 9.4 n/a 3 2091 5.67 94%
BDF4 49.7 25.3 1.0 n/a 2.03 2777 10.28 170%
Ros4 32.8 32.0 32.3 31.8 4 5153 16.70 276%
Radau5-H 39 | 38 27 | 26 15 | 15 n/a 3.00(×2) 6398 108.99 1800%
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Table 3.4: Average Krylov vectors counts and total CPU time. Note: BDF4 and Radau5 list the
projections of their first four Newton iterations in columns Proj. 1, Proj. 2, etc.

(a) 2D Advection-Diffusion-Reaction problem with N = 502

Average # of Krylov vectors per step Projs. Total CPU time
Proj. 1 Proj. 2 Proj. 3 Proj. 4 per step vectors Total % Exp4

h = 0.01:
Exp4 25.9 24.3 13.7 n/a 3 639 0.26 100%
EpiRK4 25.9 22.7 22.2 n/a 3 708 0.25 96%
ERow4 25.2 23.9 20.3 n/a 3 694 0.26 100%
BDF4 73.4 65.9 54.6 31.9 4.00 1580 1.08 415%
Ros4 42.8 42.1 42.4 42.2 4 1695 0.86 331%
Radau5 60 | 70 53 | 63 48 | 57 44 | 53 11.3(×2) 8782 8.34 3208%

h = 0.005:
Exp4 17.6 16.0 9.6 n/a 3 863 0.24 100%
EpiRK4 17.3 14.9 14.2 n/a 3 926 0.30 125%
ERow4 17.3 16.0 13.6 n/a 3 936 0.29 121%
BDF4 42.5 37.5 26.9 5.8 3.94 1911 0.87 363%
Ros4 23.6 23.5 23.5 23.4 4 1877 0.64 267%
Radau5 35 | 38 30 | 33 27 | 29 23 | 26 7.4(×2) 6957 4.39 1829%

h = 0.0025:
Exp4 12.5 10.8 7.1 n/a 3 1216 0.35 100%
EpiRK4 12.5 10.0 9.3 n/a 3 1270 0.37 106%
ERow4 12.5 10.8 9.1 n/a 3 1297 0.36 103%
BDF4 23.7 19.8 10.9 1.8 3.11 2022 0.71 203%
Ros4 14.3 14.3 14.4 14.3 4 1834 0.63 180%
Radau5 21 | 21 18 | 17 15 | 14 11 | 11 5.18(×2) 5902 2.83 809%

(b) 2D Advection-Diffusion-Reaction problem with N = 1502

Average # of Krylov vectors per step Projs. Total CPU time
Proj. 1 Proj. 2 Proj. 3 Proj. 4 per step vectors Total % Exp4

h = 0.01:
Exp4 47.2 42.8 20.1 n/a 3 1101 3.18 100%
EpiRK4 47.4 40.9 39.7 n/a 3 1280 4.09 129%
ERow4 45.2 41.0 34.6 n/a 3 1208 3.86 121%
BDF4 186.0 152.9 121.0 76.6 4.00 3755 33.78 1062%
Ros4 115.6 113.0 113.4 112.9 4 4549 31.54 992%
Radau5 147 | 174 117 | 138 100 | 116 88 | 101 9.3(×2) 8782 260.52 8192%

h = 0.005:
Exp4 27.3 23.8 12.2 n/a 3 1265 2.71 100.0%
EpiRK4 27.0 22.2 21.1 n/a 3 1405 3.19 118%
ERow4 26.3 23.5 19.1 n/a 3 1376 3.08 114%
BDF4 112.0 93.7 67.1 13.8 3.94 4858 27.88 1029%
Ros4 54.2 53.1 53.6 53.3 4 4283 15.95 589%
Radau5 77 | 91 62 | 74 52 | 63 49 | 59 6.5(×2) 14210 129.60 4782%

h = 0.0025:
Exp4 16.6 14.1 8.1 n/a 3 1552 2.83 100%
EpiRK4 16.4 12.9 12.0 n/a 3 1652 2.89 102%
ERow4 16.3 14.1 11.4 n/a 3 1675 3.30 117%
BDF4 56.9 45.7 25.5 n/a 3.00 4744 15.88 561%
Ros4 24.4 24.0 24.2 24.1 4 3867 8.33 294%
Radau5 39 | 43 31 | 34 25 | 27 21 | 24 4.7(×2) 10686 55.83 1973%
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4 New adaptive exponential propagation iterative
methods of Runge-Kutta type (EPIRK)

4.1 Abstract

Exponential integrators have emerged as an efficient alternative to commonly used time-
integrators. Recently a new class of exponential propagation iterative methods of Runge-
Kutta type (EPIRK) has been introduced [67]. These schemes possess a structure that
makes them computationally advantageous compared to other exponential methods. In
addition, the general EPIRK formulation offers flexibility that allows derivation of new ef-
ficient techniques. In this paper, we use this feature to derive new EPIRK methods which
are particularly designed to take advantage of the adaptive Krylov algorithm [50]. The
adaptive Krylov method significantly reduces the computational complexity of evaluating
products of matrix ϕ-functions and vectors necessary for implementing an exponential in-
tegrator. We present the derivation of the new adaptive EPIRK methods, construct new
schemes and illustrate the computational savings they offer using numerical examples.

4.2 Introduction

Recently exponential integrators have emerged as an alternative to standard implicit and
explicit techniques for solving large stiff systems of ODEs. While the history of exponential
methods dates back to the 1960’s [12, 55, 37], construction of efficient exponential schemes
for general nonlinear stiff systems is a fairly recent development [37, 20, 13, 5, 33, 35, 19,
27, 66, 30, 53]. It has been demonstrated that exponential schemes can outperform other
stiff integrators. In particular, in [41] it was shown that Krylov-exponential propagation
iterative methods (EPIRK) can be more efficient than implicit Newton-Krylov schemes.
These preliminary results are encouraging, but much research remains to be done to de-
velop efficient exponential algorithms for very large scale problems typically addressed by
high-performance computing. Implicit stiff integrators have a long history and many ex-
tensions of such schemes have been constructed to overcome practical challenges in solving
general and specific large-scale problems. In particular, effective adaptive strategies, which
are key to efficiency of a stiff integrator, have been studied in the context of implicit schemes
for decades [34]. Practical stiff exponential integrators are at a much earlier stage of develop-
ment and questions such as adaptivity, error estimators, coupling with spatial discretization
and parallelization remain to be fully investigated. In this paper we address the question
of adaptivity and propose a new class of adaptive schemes of the exponential propagation
iterative Runge-Kutta (EPIRK) type. These techniques possess the computational advan-
tages of the EPIRK methods [67] while employing an adaptive Krylov projection algorithm
[50] to further reduce computational cost.

A detailed history and overview of exponential integrators have been presented in previous
publications (e.g. [31, 45, 67]). The following brief discussion is intended to provide the
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reader with better understanding of how the work presented here fits into the general field
of exponential methods. Historically, the first exponential integrators were introduced to
solve problems of type y′ = f(y) = Ly +N(y), where the stiffness is confined to the linear
part Ly of the operator f(y). First examples of such methods date back to 1960’s, but
research in this field is continuing to this day [37, 18, 13, 5, 33, 28, 53, 43, 16]. Unsplit
integrators for a general operator f(y) gained interest in their own right (see [19, 27].
Several formulations to construct general exponential methods of this type were proposed
[27, 30, 66] and their performance has been studied and compared to standard explicit and
implicit methods [27, 32, 41]; a recent review [31] outlines progress in the field. The main
feature of an exponential integrator is that the approximate solution is expressed in terms
products of the exponential-like functions of the Jacobian ϕk(A) (A ∈ RN×N )) and some
vectors v (v ∈ RN ) as explained in the subsequent sections. These evaluations constitute
the major computational cost of an exponential method [41]. Thus the efficiency of an
exponential method depends on how many of such evaluations are needed and how fast
they can be approximated. For general Jacobian matrices, these evaluations are typically
done with a Krylov projection algorithm [3]. The class of EPIRK methods was designed to
minimize these computational costs allowing derivation of high-order methods with the same
complexity as schemes of lower order [66, 68, 67]. However, up to now the proposed EPIRK
schemes used a single standard Krylov projection method for each evaluation of a product
ϕk(A)v. Since the computational complexity of a Krylov projection scales quadratically
with the number of Krylov vectors it requires, if large Krylov basis size is needed, evaluation
of ϕk(A)v becomes expensive. Recently an idea of using adaptivity to reduce the cost of
these computations was introduced [50]. In this work we utilize the ideas of adaptive Krylov
projections and modify the algorithm to combine it with the EPIRK framework. Such an
approach allows us to derive new efficient exponential integrators of high-order and better
efficiency then previously proposed schemes.

The paper is organized as follows. Section 4.3 provides an introduction to the EPIRK
methods and motivates the need for development of adaptive techniques. The main ideas
behind the adaptive Krylov algorithm are outlined in section 4.4. The new adaptive EPIRK
methods and their derivation are described in section 4.5 along with the ideas underlying
their construction. Numerical examples to demonstrate performance of the new schemes
are given in section 4.6.

4.3 Background and motivation

Exponential integrators solve general nonlinear stiff systems of ODEs

y′ = f(y), y(x0) = y0, y ∈ RN . (4.1)

With the help of an integrating factor e−f
′(y0)x the system (4.1) can be re-written in an

integral form

y(x0 + h) = y0 + hϕ1(hA0)f(y0) + h

∫ 1

0
ehA(1−θ)r(y(x0 + hθ))dθ. (4.2)

where A0 = f ′(y0) ∈ RN×N is the Jacobian matrix, the nonlinear remainder of the first-
order Taylor expansion is denoted as r(y) = f(y) − f(y0) − f ′(y0)(y − y0) and ϕ1(z) =
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(ez − 1)/z is an analytic function with its matrix-valued form ϕ1(hA0) defined via the
Taylor series expansion. An exponential integrator is then constructed by choosing an
appropriate approximation for the nonlinear integral in (4.2). A polynomial approximation
to the nonlinear remainder function r(y) in (4.2) will result in an exponential scheme which
computes the solution as a linear combination of the products of type ϕk(γhA)bk with
bk ∈ RN and functions ϕk(z) defined as

ϕk(z) =

∫ 1

0
ez(1−θ)

θk−1

(k − 1)!
dθ, k = 1, 2, .... (4.3)

Since approximating terms of type ϕk(γhA)bk is an expensive computation, special care
must be taken in developing a quadrature formula for the nonlinear integral in (4.2). EPIRK
methods have been introduced to address this issue [66, 67]. These schemes construct a
Runge-Kutta type approximation to the nonlinear integral in a way that minimizes both:
the number of total required evaluations of ϕk(γhA)bk products and the computational
complexity of these evaluations when Krylov projections are used.

The general form of an EPIRK scheme is given as:

Yi = y0 + ai1ψi1(gi1hA0)hf(y0) +
i−1∑
j=2

aijψij(gijhA0)h∆(j−1)r(y0), i = 1, .., (s− 1)

y1 = y0 + b1ψs1(gs1hA0)hf(y0) +

s∑
j=2

bjψsj(gsjhA0)h∆(j−1)r(y0), (4.4)

where ψij(z) functions are defined as

ψij(z) =

s∑
k=1

pijkϕk(z), (4.5)

s is the number of stages in a method and the forward differences ∆(j−1)r(y0) are computed
on the nodes y0, Y1, Y2, ..., Ys−1 (recall that for any y, the remainder function can be evalu-
ated as r(y) = f(y) − f(y0) − A0(y − y0) and r(y0) = 0). The coefficients aij , gij , bj and
pijk are chosen based on the order conditions.

The following is one of the structural features of the EPIRK methods that allows one
to reduce the computational complexity of an exponential integrator. Some of the most
popular and efficient methods to evaluate terms of type ψij(gijhA0)v (v is a vector) are
the Krylov projection-based algorithms [15]. Since the Arnoldi iteration lies at the base of
the Krylov projection and it is scale invariant [3], for a fixed j all corresponding terms in
(4.4) can be calculated using only one Krylov projection. Thus the total number of Krylov
projections required to advance the solution over one time step using (4.4) is equal to the
number of stages of the EPIRK method used. We will return to this point in Section 4.5
and use this feature to construct an efficient adaptive exponential method.

An algorithm for solving the order conditions for methods up to order five has been
developed and several schemes have been constructed in [67]. It is particularly interesting
to note that the EPIRK structure allows derivation of fifth order methods with only three
stages. All previously derived exponential integrators with three stages did not exceed order
four [27, 30, 32, 31]. The reason such derivation is possible is the flexibility of the order
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conditions allowed by the EPIRK formulation. In Section 4.5 we will describe how this
property is used to derive adaptivity focused EPIRK methods.

We can illustrate the need for adaptive algorithms by considering precision diagrams for
the test problems studied in [41]. For example, consider the two dimensional Allen-Cahn
problem [33]:

ut = α∇2u+ u− u3, x, y ∈ [0, 1], t ∈ [0, 0.2] (4.6)

with α = 0.1 and the Neumann boundary conditions and initial conditions given by u = 0.4+
0.1(x+ y) + 0.1 sin(10x) sin(20y). Figure 4.1 displays precision diagrams for solving the N -
dimensional system of ODEs that results from centered finite-difference discretization of the
equation (4.6) on 150 grid points in each spatial dimension (i.e. dimensionality of the system
is N = 1502). Figure 4.1(a) displays curves corresponding to solving the system with six
methods: three exponential integrators - Exp4 [27], exponential Rosenbrock method ERow4
[32] and EPIRK4 [66] - and three implicit methods - Backward-Differentiation Formula
based scheme BDF4, Rosenbrock method Ros4 and Radau5 [23]. Figure 4.1(b) shows only
exponential integrators of order four (Exp4, ERow4, EPIRK4) and the fifth-order three
stage method EPIRK5-S3. All of the integrators were coupled with the Krylov projection
algorithm to approximate terms like ψij(gijhA0)v for the exponential integrators and terms
(I − γhA0)−1bk for implicit schemes. All of these methods require three Krylov projections
to be executed at each time step. The integrators were compared by picking an initial step
size of h = 0.02 for all the integrators and successively halving the step size over five sets
of computations. A reference solution was computed using MATLAB’s ode15s integrator
with absolute and relative tolerances set to 10−14 and the error was defined as the 2-norm
of the difference between the computed solution and this approximation.

As can be seen from the graphs in Fig. 4.1, all of the precision diagram curves show a
bend to the right for large values of h. In other words, it appears that it is actually more
computationally efficient to compute with a smaller step size (i.e. h at the start of the
curve bends) then with the larger time step. It has been shown in [41] that the cost of
the Krylov projection portion of the algorithm is responsible for this fact. The cost of the
Krylov projection algorithm is O(m2), where m is the size of the Krylov subspace, i.e. the
number of Krylov vectors computed. If for large time steps the number of Krylov vectors
required to achieve a given tolerance grows significantly, the total cost of an integrator will
also increase. Thus it is prudent to ask whether it is possible to construct adaptive methods
which reduce the Krylov cost and mitigate or eliminate the bend in the precision graphs for
large step sizes h. Below we describe how to construct adaptive EPIRK-Krylov methods
that improve computational efficiency in this way.

4.4 Adaptive Krylov projection algorithm

As illustrated above, the computational cost of the Krylov algorithm to approximate terms
of type ψij(gijhA0)v depends on the size of the Krylov basis m required to achieve the
prescribed accuracy, and scales as O(m2). Obviously, the size of the Krylov basis m depends
on the eigenvalues of A0, vector v and the values of gij and h. As h is increased, so is
the size of the basis. In fact, for large sizes of the time step h, computing m Krylov
vectors might become prohibitively expensive. One strategy to address this problem is to
reduce h. However, for a given problem a large h could be perfectly acceptable and, in
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Figure 4.1: Precision diagrams for the 2D Allen-Cahn problem. Note that the axes scale changes
from graph to graph.

fact, desirable from the perspective of the accuracy of the overall integrator, especially one
which is high order. Thus changing the global h can be an inefficient way to reduce m. An
alternative approach would be to develop an algorithm to evaluate ψij(gijhA0)v separately,
outside the global time stepping with h. As part of such a method, h can be scaled within
this evaluation, perhaps iteratively, to compute this product with the desired accuracy
and efficiency. An example of such an approach would be using the scaling-and-squaring
algorithm [46] to compute ψij(gijhA0). This method, however, is too computationally
expensive for large matrices. A more efficient approach has been proposed in [62, 50] and
can be summarized as follows.

The goal of the adaptive Krylov algorithm is the evaluation of a linear combination of
type

ϕ0(A)b0 + ϕ1(A)b1 + ϕ2(A)b2 + ...+ ϕp(A)bp, (4.7)

where A ∈ RN×N and bi ∈ RN for i = 0, ..., p. Skaflestad and Wright [63] observed that the
function

u(t) = ϕ0(tA)b0 + tϕ1(tA)b1 + t2ϕ2(tA)b2 + ...+ tpϕp(tA)bp (4.8)

is the exact solution of the ODE system

u′(t) = Au(t) + b1 + tb2 + ...+
tp−1

(p− 1)!
bp, u(0) = b0. (4.9)

and the expression (4.7) is simply u(t) evaluated at t = 1. If the interval [0, 1] is split into
subintervals 0 = t0 < t1 < ... < tk < tk+1 = tk + τk < ... < tK = tend = 1, solution u(tk+1)
can be expressed exactly in terms of u(tk) as

u(tk+1) = ϕ0(τkA)u(tk) +

p∑
i=1

τ ikϕi(τkA)

p−i∑
j=0

tjk
j!
bi+j , τk = tk+1 − tk. (4.10)
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Using the recurrence relation ϕq(A) = ϕq+1(A)A+ 1
q! we can simplify (4.10) to

u(tk+1) = τpkϕp(τkA)wp +

p−1∑
j=0

τ jk
j!
wj , (4.11)

where wj ’s can be computed as

wj = Aju(tk) +

j∑
i=1

Aj−i
j−i∑
l=0

tlk
l!
bi+l, j = 0, 1, ..., p, (4.12)

or recursively via

w0 = u(tk), wj = Awj−1 +

p−j∑
l=0

tlk
l!
bj+l, j = 1, ..., p, (4.13)

Clearly only one evaluation of the ϕ-function product is needed for each step τk and this
computation involves a matrix scaled by τk. Since 0 < τk < 1, we can expect that evaluating
ϕp(τkA)wp requires fewer Krylov vectors than computing ϕp(A)wp. Now the challenge is in
finding an efficient way to choose τk’s, k = 1, ...,K so that computing K Krylov subspaces
of size mk is cheaper than calculating one large Krylov subspace for ϕ-functions evaluated
at the unscaled matrix A.

Niesen and Wright [50] developed an algorithm to choose the step sizes τk adaptively.
They use error estimates for the time-stepping [22] and Krylov projection [57] to construct
a cost function C(τk,mk) (in flops), which helps to determine whether it is more compu-
tationally efficient to reduce τk or increase the size of the Krylov subspace mk. The value
of τk is then chosen so that the error estimation is within the prescribed tolerance and the
flops count provided by the cost function is minimized.

To summarize, for a given integration time step h the adaptive Krylov algorithm replaces
executing one Krylov projection to approximate the terms of type ψij(gijhA0)v with several
Krylov evaluations of terms ψij(τkgijhA0)v. The terms scaled by τk require fewer Krylov
basis vectors to achieve prescribed tolerance. The adaptive substepping approach is more
efficient if the total computational cost of evaluating the small Krylov subspaces for all K
substeps is smaller than computing one large Krylov subspace for the large h. Since the cost
of one Krylov projection scales quadratically with the number of Krylov vectors it requires,
it is possible that computing a few small Krylov bases is computationally cheaper than
calculating one large Krylov subspace. Numerical examples presented below verify that this
property saves computational time compared to non-adaptive algorithms.

The potential computational savings of the adaptive Krylov method can be illustrated us-
ing the numerical examples of section 4.6. For each of the problems we extracted a Jacobian
matrix J at a particular integration time t and set vector v to be equal to the right-hand-
side function of the spatially discretized equation. For a series of step sizes h, we evaluated
ϕ1(hJ)v with the non-adaptive and the Niesen-Wright adaptive [50] implementations of
the Krylov algorithm. The 2D problems began with h = 0.1 and the 1D Burgers problem
with h = 0.01. Each successive h was half the size of the previous. Both algorithms were
given an accuracy tolerance of 10−8. The residual function used in the Krylov algorithm
to estimate the error is somewhat conservative, and in general the non-adaptive implemen-
tation produced a result up to an order of magnitude more accurate than the specified
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tolerance, whereas the adaptive version produced a result up to two orders of magnitude
more accurate than the tolerance. In both cases, the extra accuracy was typically more
modest but always better than the given tolerance, with the adaptive algorithm almost
always more accurate than the non-adaptive version. Figure 4.2 compares the CPU times
of the two Krylov algorithms. It is evident from the graphs that the adaptive algorithm
is more efficient. The statistics of the Krylov algorithm presented in table 4.1 makes the
advantage of the adaptive Krylov more evident. As we can see, even if the total number of
the Krylov vectors computed by adaptive algorithm far exceeds the total number needed by
a non-adaptive scheme (e.g. see tbl. 4.1 for Gray-Scott problem with h = 0.1), the efficiency
of computing smaller Krylov subspaces far outweighs the increase of the total number of
vectors computed each integration time step. In the subsequent sections we construct ex-
ponential integrators which take advantage of both: the efficient structure of the EPIRK
methods and the adaptive Krylov technique.

4.5 New adaptive EPIRK-Krylov methods

Recall that the structure of the EPIRK methods takes advantage of the fact that the
Arnoldi iteration is scale invariant. Since each of the stages involves computing terms of
type ψp(gipA0)bp, i.e. where p is fixed and i = 1, .., s, the invariance property allows us to
approximate all of these terms at the cost of computing only one Krylov basis. To ensure
the accuracy of the approximation, we can choose the value of i such that gip = max

1≤j≤s
{gjp}

and calculate the Krylov basis Sm = span{v1, v2, ..., vm} for this term. All of the remaining
terms can then be computed by reusing this basis at the expense of calculating for each i the
term ψp(gipHm) for a small matrix Hm obtained as a side product of the Arnoldi iteration.
The latter operation can be done via Padé approximation and is a cheap computation
compared to the construction of the Krylov basis.

Suppose now we want to evaluate the terms ψp(gipA0)bp using an adaptive method out-
lined in the previous section. In order to preserve the computationally advantageous prop-
erty that all of these terms for fixed p and i = 1, ..., s are computed with one adaptive Krylov
sweep, we will adopt the following strategy. Consider, for example, a general three-stage
EPIRK method:

Y1 = y0 + a11ψ11(g11hA0)hf(y0)

Y2 = y0 + a21ψ21(g21hA0)hf(y0) + a22ψ22(g22hA0)hr(Y1)

y1 = y0 + b1ψ31(g31hA0)hf(y0) + b2ψ32(g32hA0)hr(Y1) + b3ψ33(g33hA0)h∆2r(y0), (4.14)

with ∆2r(y0) = r(y0)− 2r(Y1) + r(Y2) = −2r(Y1) + r(Y2) (recall r(y0) = 0) and

ψij(z) =

3∑
k=1

pijkϕk(z). (4.15)

Without loss of generality suppose the coefficients gi1 are ordered as g11 ≤ g21 ≤ g31. The
adaptive Krylov algorithm described above allows computing function

u(t) = ϕ0(tA)b0 + tϕ1(tA)b1 + t2ϕ2(tA)b2 + ...+ tpϕp(tA)bp (4.16)

at points t = tk over some interval 0 = t0 < t1 < ... < tK = tend with variable τk =
tk+1 − tk. If in the EPIRK method we choose ψ11(z) = ψ21(z) = ψ31(z) = ϕp(z), set
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Figure 4.2: Comparison of efficiency of adaptive versus non-adaptive Krylov approximation of
ϕ1(hJ)v, where J is a Jacobian from each of the listed problems.
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Table 4.1: Performance statistics of non-adaptive and adaptive Krylov algorithms for estimating
ϕ1(hJ)v.

(a) 2D Advection-Diffusion-Reaction problem with N = 1502

Non-adaptive Adaptive Niesen-Wright
# of # of # of vectors Total # of

Krylov vectors CPU time substeps per substep Krylov vectors CPU time
h = 0.1: 328 21.1 9 55.2 497 1.69
h = 0.05: 195 3.31 5 51.1 255 0.87
h = 0.025: 110 0.92 5 33.8 169 0.43
h = 0.0125: 64 0.30 1 64 64 0.25
h = 0.00625: 39 0.12 1 40 40 0.12
h = 0.003125: 25 0.07 1 26 26 0.06

(b) 2D Allen-Cahn problem with N = 1502

Non-adaptive Adaptive Niesen-Wright
# of # of # of vectors Total # of

Krylov vectors CPU time substeps per substep Krylov vectors CPU time
h = 0.1: 90 0.53 5 32.4 162 0.36
h = 0.05: 63 0.26 1 64 64 0.24
h = 0.025: 44 0.14 1 46 46 0.13
h = 0.0125: 32 0.08 1 32 32 0.07
h = 0.00625: 23 0.05 1 23 23 0.04
h = 0.003125: 17 0.03 1 17 17 0.03

(c) 2D Brusselator problem with N = 1502

Non-adaptive Adaptive Niesen-Wright
# of # of # of vectors Total # of

Krylov vectors CPU time substeps per substep Krylov vectors CPU time
h = 0.1: 315 28.2 16 50.0 800 6.43
h = 0.05: 226 8.68 9 53.4 481 3.66
h = 0.025: 161 3.95 5 59.8 299 2.64
h = 0.0125: 115 1.91 5 42.8 214 1.46
h = 0.00625: 82 0.99 1 86 86 0.96
h = 0.003125: 59 0.55 1 62 62 0.53

(d) 1D Burgers problem with N = 1500

Non-adaptive Adaptive Niesen-Wright
# of # of # of vectors Total # of

Krylov vectors CPU time substeps per substep Krylov vectors CPU time
h = 0.01: 235 2.99 14 39.9 559 0.12
h = 0.005: 164 0.84 15 26.9 404 0.07
h = 0.0025: 115 0.27 5 41.4 207 0.05
h = 0.00125: 81 0.10 4 34.0 136 0.03
h = 0.000625: 57 0.04 1 59 59 0.02
h = 0.0003125: 41 0.02 1 42 42 0.02

(e) 2D Gray-Scott problem with N = 1502

Non-adaptive Adaptive Niesen-Wright
# of # of # of vectors Total # of

Krylov vectors CPU time substeps per substep Krylov vectors CPU time
h = 0.1: 267 14.2 30 29.1 874 4.47
h = 0.05: 183 5.22 11 37.8 416 2.51
h = 0.025: 124 2.25 12 25.5 306 1.14
h = 0.0125: 83 1.01 5 30.0 150 0.78
h = 0.00625: 55 0.48 1 56 56 0.48
h = 0.003125: 36 0.24 1 36 36 0.27
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A = g31hA0 in (4.16), and pick t∗1 = g11/g31 and t∗2 = g21/g31 where t∗1 and t∗2 are not
necessarily equal to any tk’s, then all three terms ψ11(g11hA0)hf(y0), ψ21(g21hA0)hf(y0)
and ψ31(g31hA0)hf(y0) can be calculated within one adaptive Krylov sweep of the interval
0 = t0 < ... < tend = 1. In this case we are only interested in evaluating a single ϕ-function
ϕp(τkA)bp, where bp = hf(y0). All other vectors bi are zero and the formula (4.13) for
computing u(tk+1) simplifies to

w0 = u(tk), wj = Awj−1 +
tp−jk

(p− j)!
bp. (4.17)

As we are marching over the interval 0 = t0 < t1 < ... < tn = 1, once u(t) = tpϕp(tA)bp
is calculated using formulas (4.11) and (4.17), we can compute ϕp(tA)bp by simply scaling
u(t) with tp. Specifically, to calculate the terms ψ11(g11hA0)hf(y0), ψ21(g21hA0)hf(y0)
and ψ31(g31hA0)hf(y0), we need to compute u(t∗1), u(t∗2), and u(1), and scale each by t∗1

p,
t∗2
p, and 1 respectively. Ordinarily the adaptivity procedure only computes u(t) at times

t = tk+1 = tk + τk, where τk is chosen adaptively to reduce the computational cost. We can
find approximations at times t∗1 and t∗2 by constraining the adaptivity procedure to choose τk
such that t∗1 and t∗2 are included in the set {tk}nk=0. However, such an algorithm could make
us choose τk which is not necessarily optimal from the computational complexity point of
view. Instead, even if t∗1 and t∗2 are not equal to any tk chosen by the adaptivity procedure,
we can still calculate u(t∗1) and u(t∗2) without requiring the computation of any additional
Krylov basis beyond those needed for the times tk. To accomplish this, we use the following
approach. Suppose that t∗1 and t∗2 fall between two successive times tk and tk+1 both in the
set {tk}nk=0. u(tk+1) is computed from u(tk) by formula (4.11) with τk = tk+1 − tk. Note
that the same formula can be used to calculate u(t∗i ), i = 1, 2, without recomputing the
Krylov basis used in computation of u(tk+1) if we only replace τk with τ∗i = t∗i − tk. Since
tk < t∗i < tk+1 and τ∗i < τk, the same Krylov basis used for calculation of u(tk) will yield
approximation of equal or better precision to u(t∗i ), i = 1, 2.

We can employ a similar procedure to calculate the terms ψ22(g22hA0)hr(Y1) and
ψ32(g32hA0)hr(Y1) using only one adaptive Krylov computation by choosing ψ22(z) =
ψ32(z) = ϕp(z) and setting A = max{g22, g32}hA0 and ensuring that u(t) is computed
at t = min{g22, g32}/max{g22, g32}.

In general, an s-stage EPIRK method will require s executions of the adaptive Krylov
algorithm. Each adaptive Krylov sweep will calculate all of the terms ϕp(giphA0)bp for fixed
p and i = 1, ..., p. Note that the term ψss(z) is present only in the last stage of an s-stage
EPIRK method. Therefore function ψss(z) does not have to contain only the term ϕs(z)
and can be chosen as any linear combination of any ϕj(z)’s.

Now we will derive the EPIRK methods that allow the adaptive strategy outlined above
to work. In [67] we have found the order conditions for general EPIRK methods (4.4) for
schemes up to order five and developed an algorithm to systematically solve these order
conditions. Table 4.2 lists the order conditions for three-stage EPIRK methods up to order
five. To derive the adaptive Krylov-friendly EPIRK methods we prescribe appropriate
coefficients pijk in (4.5) and employ the algorithm of section 4 in [67] to solve the conditions
of Table 4.2 using a Mathematica script.

First, we constrain the methods (4.4, 4.5) to schemes with ψij(z) = ψj(z) for any i =
1, .., s, i.e. in (4.5) we set pijk = pjk. Then, we define the matrix of coefficients of ϕj(z)
functions in (4.5) for a three-stage EPIRK method as P = {pjk}sj,k=1. We find that if P
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is a diagonal matrix the solution to the seventeen order conditions in Table 4.2 does not
exist. However, it is possible to solve the order conditions and consequently derive families
of EPIRK methods when

P = P1 =

p11 0 0
p21 0 0
0 0 p33

 (4.18)

and

P = P2 =

p11 0 0
0 p22 0
p31 p32 p33

 . (4.19)

Both of these P matrices lead to the adaptive Krylov-friendly EPIRK schemes since, as we
discussed above, the only requirement for a three-stage method is that functions ψ11(z) and
ψ22(z) contain only one ϕj(z) function.

Solving the order conditions with P = P1 and P = P2 we derive two fifth-order EPIRK
methods whose coefficients are listed in Table 4.3. Note that we have obtained families of
EPIRK methods rather than just two schemes since the coefficients p21, p33 and g22 for
EPIRK5-P1 and coefficients p22, g22 for EPIRK5-P2 are arbitrary.

We can verify the order of the methods by applying them to the following simple nonlinear
oscillator test problem [6]:[

y′1
y′2

]
=

[
y2

−y2
1y2 − y1

]
,

[
y1(0)
y2(0)

]
=

[
1
1

]
. (4.20)

Since the Jacobian matrix is only 2 by 2 in this case, we can use Padé approximation to
compute the products of ψj(γA0)v. Figure 4.3 shows that the newly constructed methods
do, in fact, exhibit the theoretically predicted order. Note that since the new fifth-order
integrators have only three stages, their computational complexity is the same as many
previously derived fourth-order methods, such as the well-known Exp4 integrator [27].
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Figure 4.3: Order diagram demonstrating the fifth-order convergence of the EPIRK5-P1 and
EPIRK5-P2 methods. The fourth order Exp4 method is included for comparison.
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Table 4.2: Order conditions for three-stage EPIRK methods (4.4) up to order five.

Tag Ci Order conditions for EPIRK methods (4.4) up to order five.
C1 b1p11 − 1 = 0
C2 b1g31p11 − 1 = 0

C3
6a211b2p

2
11p21 + 3a211b2p

2
11p22 − 12a211b3p

2
11p31 + 6a221b3p

2
11p31 . . .

− 6a211b3p
2
11p32 + 3a221b3p

2
11p32 − 2a211b3p

2
11p33 + a221b3p

2
11p33 − 2 = 0

C4 b1g
2
31p11 − 1 = 0

C5
12a311b2p

3
11p21 + 6a311b2p

3
11p22 − 24a311b3p

3
11p31 + 12a321b3p

3
11p31 . . .

− 12a311b3p
3
11p32 + 6a321b3p

3
11p32 − 4a311b3p

3
11p33 + 2a321b3p

3
11p33 − 3 = 0

C6
12a211b2g11p

2
11p21 + 6a211b2g11p

2
11p22 − 24a211b3g11p

2
11p31 + 12a221b3g21p

2
11p31 . . .

− 12a211b3g11p
2
11p32 + 6a221b3g21p

2
11p32 − 4a211b3g11p

2
11p33 + 2a221b3g21p

2
11p33 − 3 = 0

C7
12a211b2g32p

2
11p21 + 4a211b2g32p

2
11p22 − 24a211b3g33p

2
11p31 + 12a221b3g33p

2
11p31 . . .

− 8a211b3g33p
2
11p32 + 4a221b3g33p

2
11p32 − 2a211b3g33p

2
11p33 + a221b3g33p

2
11p33 − 2 = 0

C8 b1g
3
31p11 − 1 = 0

C9
30a411b2p

4
11p21 + 15a411b2p

4
11p22 − 60a411b3p

4
11p31 + 30a421b3p

4
11p31 . . .

− 30a411b3p
4
11p32 + 15a421b3p

4
11p32 − 10a411b3p

4
11p33 + 5a421b3p

4
11p33 − 6 = 0

C10
30a311b2g11p

3
11p21 + 15a311b2g11p

3
11p22 − 60a311b3g11p

3
11p31 + 30a321b3g21p

3
11p31 . . .

− 30a311b3g11p
3
11p32 + 15a321b3g21p

3
11p32 − 10a311b3g11p

3
11p33 + 5a321b3g21p

3
11p33 − 6 = 0

C11
60a211a21a22b3p

3
11p21p31 + 30a211a21a22b3p

3
11p22p31 + 30a211a21a22b3p

3
11p21p32 . . .

+ 15a211a21a22b3p
3
11p22p32 + 10a211a21a22b3p

3
11p21p33 + 5a211a21a22b3p

3
11p22p33 − 4 = 0

C12
30a211b2g

2
11p

2
11p21 + 15a211b2g

2
11p

2
11p22 − 60a211b3g

2
11p

2
11p31 + 30a221b3g

2
21p

2
11p31 . . .

− 30a211b3g
2
11p

2
11p32 + 15a221b3g

2
21p

2
11p32 − 10a211b3g

2
11p

2
11p33 + 5a221b3g

2
21p

2
11p33 − 6 = 0

C13
30a211b2g

2
11p

2
11p21 + 15a211b2g

2
11p

2
11p22 − 60a211b3g

2
11p

2
11p31 + 30a221b3g

2
21p

2
11p31 . . .

− 30a211b3g
2
11p

2
11p32 + 15a221b3g

2
21p

2
11p32 − 10a211b3g

2
11p

2
11p33 + 5a221b3g

2
21p

2
11p33 − 6 = 0

C14
60a311b2g32p

3
11p21 + 20a311b2g32p

3
11p22 − 120a311b3g33p

3
11p31 + 60a321b3g33p

3
11p31 . . .

− 40a311b3g33p
3
11p32 + 20a321b3g33p

3
11p32 − 10a311b3g33p

3
11p33 + 5a321b3g33p

3
11p33 − 6 = 0

C15

60a211b2g11g32p
2
11p21 + 20a211b2g11g32p

2
11p22 − 120a211b3g11g33p

2
11p31 . . .

+ 60a221b3g21g33p
2
11p31 − 40a211b3g11g33p

2
11p32 + 20a221b3g21g33p

2
11p32 . . .

− 10a211b3g11g33p
2
11p33 + 5a221b3g21g33p

2
11p33 − 6 = 0

C16
20a211b2g

2
32p

2
11p21 + 5a211b2g

2
32p

2
11p22 − 40a211b3g

2
33p

2
11p31 + 20a221b3g

2
33p

2
11p31 . . .

− 10a211b3g
2
33p

2
11p32 + 5a221b3g

2
33p

2
11p32 − 2a211b3g

2
33p

2
11p33 + a221b3g

2
33p

2
11p33 − 2 = 0

C17 b1g
4
31p11 − 1 = 0
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Table 4.3: Coefficients of fifth-order adaptive Krylov-friendly EPIRK methods.

EPIRK5-P1 p =

 1 0 0
p21 0 0
0 0 p33


a11a21 a22
b1 b2 b3

 =

0.35129592695058193092
0.84405472011657126298 1.6905891609568963624

p21
1.0 1.2727127317356892397

p21

2.2714599265422622275
p33


g11g21 g22
g31 g32 g33

 =

0.35129592695058193092
0.84405472011657126298 g22

1.0 0.71111095364366870359 0.62378111953371494809



EPIRK5-P2 p =

 1 0 0
0 p22 0
−1/3 −1/3 87/10


a11a21 a22
b1 b2 b3

 =

0.46629408528088195806
0.88217912653363865140 2.3790406635847858247

p22
1.0 2.1432388712929812169

p22
0.30756483189169759000


g11g21 g22
g31 g32 g33

 =

0.46629408528088195806
0.88217912653363865140 g22

1.0 0.92074916488140031449 0.79791561832664517267



EPIRK4 p =

1
0 1
0 −1 6



a11a21 a22
b1 b2 b3

 =


27(s2+18)

12(54−3s2+2s3)
18s(s2+18)

24(54−3s2+2s3)
0

1
96(54−s2)(54−3s2+2s3)2

729(s2+18)3
384(54−2s2+2s3)2

162(s2+18)3

 , s = ±
√

30

g11g21 g22
g31 g32 g33

 =

1/3
2/3 2/3
1 1 1


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4.6 Numerical examples

In this section we demonstrate how adaptivity improves performance of the exponential
integrators . We choose several test problems that are routinely used to study performance
of stiff integrators (e.g. see [23]). The test problems we selected are:
ADR 2D. Two-dimensional advection-diffusion-reaction equation [9]:

ut = ε(uxx + uyy)− α(ux + uy) + γu(u− 1
2)(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

where ε = 1/100, α = −10, and γ = 100. Homogeneous Neumann boundary conditions
were used and the initial conditions were given by u = 256(xy(1− x)(1− y))2 + 0.3.

Allen-Cahn 2D. Two-dimensional Allen-Cahn equation [33]:

ut = α∇2u+ u− u3, x, y ∈ [−1, 1], t ∈ [0, 1.0]

with α = 0.1, using no-flow boundary conditions and initial conditions given by u =
0.1 + 0.1 cos(2πx) cos(2πy).

Brusselator 2D. Two-dimensional Brusselator problem [39, 22]:

ut = 1 + uv2 − 4u+ α∇2u, x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = 3u− u2v + α∇2v,

with α = 0.2. We used Dirichlet boundary conditions with initial and boundary values
given by

u = 1 + sin(2πx) sin(2πy),

v = 3.

Burgers. One-dimensional Burgers equation:

ut + uux = νuxx, x ∈ [0, 1], t = [0, 1]

with ν = 0.03 and with Dirichlet boundary conditions and initial and boundary values given
by u = (sin(3πx))3(1− x)3/2. The uux term is discretized as

uux =
u2
i+1 − u2

i−1

4∆x
, i = 1, ..., N

where N is the number of spatial grid points chosen for the problem.

Gray-Scott 2D. Two-dimensional Gray-Scott problem [21]:

ut = du∇2u− uv2 + a(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = dv∇2v + uv2 − (a+ b)v,

with du = 0.2, dv = 0.1, a = 0.04, and b = 0.06. Periodic boundary conditions were used
and the initial conditions were given by

u = 1− e−150(x− 1
2

)2+(y− 1
2

)2 ,

v = e−150(x− 1
2

)2+2(y− 1
2

)2 .
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In all the problems the ∇2 term was discretized using the standard second-order finite
differences. Note that the stiffness in these problems is due primarily to the diffusive term of
the equations. These test problems could also be solved using the split exponential schemes
which address problems of type y′ = f(y) = Ly+N(y) where only the linear term Ly is stiff
(e.g. see [37, 28, 31, 11, 16, 43]). While comparative study of split versus unsplit schemes
is far outside the scope of this paper, we note that it is far from evident whether split or
non-split schemes are more efficient for general, even potentially splittable problems. Unless
evaluation of exponential functions of L is particularly optimized for a specific L and/or
adapted to be reused over the course of time integration, the unsplit Krylov methods can
be as efficient as the split Krylov schemes since both algorithms will require evaluating
products ϕk(A)v with matrices A having similar spectrums. More detailed discussion of
this question can be found in [31, 41, 67].

The precision diagrams shown in figure 4.4 and the statistics of the Krylov algorithm per-
formance in tables 4.4a-4.4e demonstrate the advantages of the adaptive EPIRK methods.
As we can see from the figure 4.4 the adaptive integrators are more efficient for all step sizes,
with computational savings growing significantly as h increases. Note that the computa-
tional savings increase for problems that are more ”Krylov-intensive” (i.e. require larger
Krylov subspace sizes) such as Burgers, Brusselator or Gray-Scott systems compared to the
less ”Krylov-intensive” Allen-Cahn equation. The graphs demonstrate that the adaptive
integrators do not only have an improved efficiency but also help rectify the precision curve
”bending” phenomenon present for non-adaptive schemes for large step sizes (e.g. compare
with fig. 4.1). Some oscillatory behavior in the precision graphs of the adaptive schemes
(e.g. fig. 4.4a,c,e) indicates that the adaptivity algorithm can be further improved. A
better adaptive predictor will not only straighten the ”bending” curve but, in fact, reverse
the bending (e.g. fig. 4.4d). Such improvement will require better error estimators for the
adaptive algorithm and will be the subject of our future investigations.

Tables 5.1a-e provide the statistics of the non-adaptive and adaptive Krylov algorithms
averaged over the course of integration. This data gives a more detailed look at the ad-
vantages of adaptive methods. As we can see from all the cases, while the total number
of Krylov vectors computed each time step is larger for the adaptive schemes, each of the
Krylov projections they execute requires a much smaller size of the Krylov space compared
to non-adaptive integrators. Thus, the quadratic in Krylov space size complexity of the
Arnoldi algorithm ensures that the overall CPU time spent on an adaptive time step is
much smaller than for the non-adaptive step. Note that in extreme cases of very small h
(e.g. tbl. 4.4c for h = 0.00625, 0.003125), the adaptive algorithm can take only one sub-
step, which makes it equivalent to the non-adaptive algorithm. In such cases the efficiency
of the adaptive method is slightly worse than for the non-adaptive method since the for-
mer requires some additional calculations. However, this difference is essentially negligible
compared to the savings achieved if the overall step size is split even once by the adaptive
method.

To summarize, the results presented in this section clearly illustrate the advantages of
the adaptive exponential integrators over the non-adaptive schemes and suggest avenues
for improvement and further development of the new methods. The key advantage of the
adaptive Krylov algorithm is that it uses several Krylov projections with small Krylov bases
as compared to the non-adaptive method which requires one projection but with a large
Krylov basis. This method is incorporated into the larger framework of EPIRK methods.
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(b) Allen-Cahn N = 1502
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(c) Brusselator N = 1502
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(d) Burgers N = 1500
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(e) Gray-Scott N = 1502

Figure 4.4: Precision diagrams comparing performance of adaptive versus non-adaptive versions
of the EPIRK5-P1 and EPIRK5-P2 integrators for the Advection-Diffusion-Reaction,
Allen-Cahn, Brusselator, Burgers and Gray-Scott problems. Note that the axes scale
changes from graph to graph.
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The EPIRK structure allows derivation of high-order exponential integrators which have the
same computational complexity as lower order schemes. Thus the combination of the adap-
tive Krylov and the EPIRK framework allows us to construct efficient adaptive exponential
methods of high-order.

The methodology presented in this paper can be used to derive a multitude of adaptive
exponential integrators and investigations of which schemes are the most efficient will be
one of the subjects of our future research. A parallel implementation of these schemes is
currently underway and will allow testing these integrators on very large scale problems.
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Table 4.4a: Average performance statistics of non-adaptive and adaptive Krylov algorithms per
Krylov projection within EPIRK5-P1 and EPIRK5-P2 integrators for 2D ADR prob-
lem with N = 1502

Non-adaptive Adaptive
# of
Krylov
vectors
per pro-
jection

Total #
of Krylov
vectors per
time step

CPU
time

# of sub-
steps per
projection

# of
Krylov
vectors per
substep per
projection

Total #
of Krylov
vectors per
time step

CPU
time

h = 0.04:
EPIRK5-P1 141.1 424 12.01 6.67 34.2 685 4.04
EPIRK5-P2 149.3 448 13.17 6.83 35.2 724 4.45

h = 0.02:
EPIRK5-P1 77.6 233 7.84 3.50 39.2 349 4.62
EPIRK5-P2 80.8 242 8.11 1.67 66.7 288 5.83
h = 0.01:
EPIRK5-P1 44.3 133 6.39 1.00 45.3 136 4.63
EPIRK5-P2 45.8 137 6.54 1.00 46.9 141 4.78

h = 0.005:
EPIRK5-P1 27.4 82 6.61 1.00 28.1 84 4.78
EPIRK5-P2 28.1 84 6.93 1.00 28.8 68 5.08
h = 0.0025:
EPIRK5-P1 17.8 54 7.79 1.00 18.1 54 5.86
EPIRK5-P2 18.2 55 8.20 1.00 18.5 56 5.90

Table 4.4b: Average performance statistics of non-adaptive and adaptive Krylov algorithms per
Krylov projection within EPIRK5-P1 and EPIRK5-P2 integrators for 2D Allen-Cahn
problem with N = 1502

Non-adaptive Adaptive
# of
Krylov
vectors
per pro-
jection

Total #
of Krylov
vectors per
time step

CPU
time

# of sub-
steps per
projection

# of
Krylov
vectors per
substep per
projection

Total #
of Krylov
vectors per
time step

CPU
time

h = 0.5:
EPIRK5-P1 151.7 455 14.4 11.3 32.7 1082 7.03
EPIRK5-P2 156.7 470 16.7 12.5 31.4 1143 7.22
h = 0.25:
EPIRK5-P1 83.9 252 12.2 8.3 24.5 595 8.26
EPIRK5-P2 87.9 264 12.5 8.4 24.9 622 8.59

h = 0.125:
EPIRK5-P1 46.8 140 10.0 6.0 18.1 330 8.08
EPIRK5-P2 50.9 150 11.0 6.1 18.4 338 8.41

h = 0.0625:
EPIRK5-P1 26.0 78 9.16 3.7 14.0 152 8.33
EPIRK5-P2 28.3 85 9.99 3.3 15.1 150 8.62
h = 0.03125:
EPIRK5-P1 14.4 43 9.43 2.5 10.0 72 9.06
EPIRK5-P2 16.3 49 10.4 2.5 10.6 80 9.90
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Table 4.4c: Average performance statistics of non-adaptive and adaptive Krylov algorithms per
Krylov projection within EPIRK5-P1 and EPIRK5-P2 integrators for 2D Brusselator
problem with N = 1502

Non-adaptive Adaptive
# of
Krylov
vectors
per pro-
jection

Total #
of Krylov
vectors per
time step

CPU
time

# of sub-
steps per
projection

# of
Krylov
vectors per
substep per
projection

Total #
of Krylov
vectors per
time step

CPU
time

h = 0.05:
EPIRK5-P1 196.2 589 39.35 9.00 46.6 1281 18.28
EPIRK5-P2 202.8 609 41.46 10.33 45.2 1370 19.48

h = 0.025:
EPIRK5-P1 122.1 366 32.13 5.92 40.5 719 21.10
EPIRK5-P2 126.4 379 33.55 8.42 32.2 816 21.92
h = 0.0125:
EPIRK5-P1 75.7 227 27.70 4.00 38.3 386 20.73
EPIRK5-P2 78.9 237 28.92 3.75 36.6 395 22.22

h = 0.00625:
EPIRK5-P1 46.9 141 25.39 1.00 48.0 144 22.17
EPIRK5-P2 48.8 146 25.97 1.00 50.2 151 21.78
h = 0.003125:
EPIRK5-P1 28.7 86 24.39 1.00 29.5 88 20.5
EPIRK5-P2 30.0 90 25.04 1.00 30.9 93 20.88

Table 4.4d: Average performance statistics of non-adaptive and adaptive Krylov algorithms per
Krylov projection within EPIRK5-P1 and EPIRK5-P2 integrators for 1D Burgers prob-
lem with N = 1500

Non-adaptive Adaptive
# of
Krylov
vectors
per pro-
jection

Total #
of Krylov
vectors per
time step

CPU
time

# of sub-
steps per
projection

# of
Krylov
vectors per
substep per
projection

Total #
of Krylov
vectors per
time step

CPU
time

h = 0.02:
EPIRK5-P1 152.0 456 279.57 17.13 32.0 1626 20.94
EPIRK5-P2 164.7 494 277.28 22.27 29.4 1911 24.75
h = 0.01:
EPIRK5-P1 88.5 266 114.26 12.31 24.2 905 24.31
EPIRK5-P2 97.7 293 122.96 17.07 21.7 1087 27.52

h = 0.005:
EPIRK5-P1 51.7 155 82.12 9.18 17.8 501 28.37
EPIRK5-P2 58.1 174 90.97 10.91 17.5 570 31.96

h = 0.0025:
EPIRK5-P1 30.1 90 77.45 5.07 14.5 234 34.98
EPIRK5-P2 35.0 105 88.84 6.34 14.7 283 37.50
h = 0.00125:
EPIRK5-P1 18.1 54 86.71 3.64 10.8 128 49.02
EPIRK5-P2 21.4 64 100.56 4.25 11.7 151 51.21
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Table 4.4e: Average performance statistics of non-adaptive and adaptive Krylov algorithms per
Krylov projection within EPIRK5-P1 and EPIRK5-P2 integrators for 2D Gray-Scott
problem with N = 1502

Non-adaptive Adaptive
# of
Krylov
vectors
per pro-
jection

Total #
of Krylov
vectors per
time step

CPU
time

# of sub-
steps per
projection

# of
Krylov
vectors per
substep per
projection

Total #
of Krylov
vectors per
time step

CPU
time

h = 0.05:
EPIRK5-P1 167.2 502 28.65 12.33 33.3 1164 14.17
EPIRK5-P2 173.0 519 31.43 9.17 40.8 1097 16.49

h = 0.025:
EPIRK5-P1 99.5 299 22.76 7.33 28.7 641 15.18
EPIRK5-P2 104.2 313 23.39 9.75 24.5 717 15.61
h = 0.0125:
EPIRK5-P1 59.6 179 18.08 4.04 25.1 307 14.92
EPIRK5-P2 63.0 189 19.13 4.46 25.6 329 16.22

h = 0.00625:
EPIRK5-P1 35.9 108 16.52 1.69 28.6 127 14.70
EPIRK5-P2 38.0 114 18.13 1.67 32.8 131 15.39
h = 0.003125:
EPIRK5-P1 21.7 65 18.08 1.40 19.1 74 15.55
EPIRK5-P2 23.1 69 18.62 1.33 20.8 77 16.11
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5 Implementation of parallel adaptive-Krylov
exponential solvers for large scale stiff problems

5.1 Abstract

Recently exponential integrators have been receiving increased attention as a means to solve
large stiff systems of ODEs. Preliminary performance analysis demonstrated that exponen-
tial integrators hold promise compared to state-of-the-art implicit methods. However much
work remains to be done to understand in detail possible computational advantages these
methods may offer in practice. This is particularly true for supercomputer-scale problems
as there has been very little work on parallelizing exponential methods. In this paper we
describe an implementation of a suite of parallel exponential solvers. We present some
performance tests on four stiff benchmark problems of a particular adaptive-Krylov expo-
nential propagation iterative Runge-Kutta (EPIRK) method from the suite, and compare
efficiency with the Newton-Krylov implicit solver CVODE.

5.2 Introduction and background

Exponential integrators have received renewed interest in recent years as a means to solve
large stiff systems of ODEs. First appearing in the literature in the 1960’s [12, 55, 37], they
were originally limited to the treatment of small systems, due to the high computational cost
of evaluating the exponential-like functions of a matrix. A proposal by Van der Vorst [15]
for using Krylov projection techniques for the efficient evaluation of the matrix exponential
terms made application of exponential integrators to large-scale systems feasible. Since then,
attention to exponential integrators has increased and a number of methods for systems of
ODEs have been proposed [19, 5, 20, 27, 13, 33, 35, 30, 66, 53, 32, 72].

Preliminary results [41] show that exponential integrators can be competitive with other
classes of integrators at the single processor scale, most notably compared with Newton-
Krylov implicit methods, which are the currently most widely used class of methods for large
scale stiff problems [34]. However more research is needed to understand what, if any, com-
putational advantages exponential methods offer for practical applications. In particular,
performance of exponential methods on parallel systems remains largely untested. To our
knowledge there has been only one study of a parallel implementation of exponential inte-
grators [42], using Leja point approximation instead of Krylov projection, but comparisons
with other integrators were not made.

In this paper we describe a parallel implementation of a suite of exponential solvers de-
signed for easy extensibility to both new schemes and different techniques for approximation
of the matrix exponential terms. We detail the structure and Krylov-based implementa-
tion of a particular member of the suite, the EPIRK5P1 integrator taken from the class
of exponential propagation iterative Runge-Kutta (EPIRK) methods [67], and present per-
formance results using four stiff benchmark problems. The method was designed in [69]
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to efficiently take advantage of an adaptive Krylov technique [50], making it particularly
well-suited for dealing with the wide spectra associated with parallel-scale stiff problems.
As a performance baseline, we compare the efficiency of EPIRK5P1 against the CVODE
solver [25], a parallel implementation of a Newton-Krylov implicit solver used today on
state-of-the-art massively parallel systems to treat a wide variety of large-scale problems
of current scientific interest. While Newton-Krylov solvers use preconditioning when pos-
sible to maximize efficiency and scalability, currently no efficient preconditioners exist for
Krylov-based exponential integrators and the issue of preconditioning is not addressed in
this work.

The structure of this paper is as follows. Section 5.3 describes EPIRK5P1 and its adaptive
Krylov implementation and contrasts its mathematical structure with the Newton-Krylov
BDF methods found in CVODE. The software structure of the parallel exponential solver
suite is also detailed. Section 5.4 details the stiff test problems and the setup of the ex-
periments. The results of the numerical experiments and a discussion of the performance
difference between the integrators is presented in section 5.5. Finally, some conclusions and
possibilities for future work are given in section 5.6.

5.3 Description of EPIRK5P1

We are considering exponential time integrators for problems of the form

y′ = f(y(t)), y(t0) = y0, y ∈ RN , (5.1)

where N is large and the system is stiff. To derive an exponential method, the system is
first linearized using Taylor expansion around y0 to give

y′ = f(y0) + J0(y − y0) + r(y) (5.2)

where J0 = f ′(y0) is the Jacobian matrix, and r(y) = f(y) − f(y0) − f ′(y0)(y − y0) is
the nonlinear remainder of the expansion. Then applying the integrating factor e−J0t and
performing a change of integration variable, the integral form of the system

y(t0 + h) = y(t) + (ehJ0 − I)(hJ0)−1hf(y) + h

∫ 1

0
ehJ0(1−s)r(y(t0 + hs))ds (5.3)

is produced. An exponential method is constructed by numerically approximating the inte-
gral term. In particular, approximating the r(y(t0+hs)) term inside the integral using poly-
nomial approximation will result in linear combinations of the exponential-like ϕ-functions

ϕk(z) =

∫ 1

0
ez(1−θ)

θk−1

(k − 1)!
dθ, k = 0, 1, 2, · · ·

acting on vectors bi ∈ RN , i.e. expressions of the form

ϕ0(hJ)b0 + ϕ1(hJ)b1 + ϕ2(hJ)b2 + · · ·+ ϕi(hJ)bi. (5.4)

A particular type of quadrature produces the exponential propagation iterative Runge-
Kutta (EPIRK) class of methods, described in detail in [67]. The numerical experiments of
sections 5.4 and 5.5 will focus on one EPIRK method chosen from the software suite, the
EPIRK5P1 scheme [69] shown in formula (5.5) with coefficients listed in Table 5.1.

70



Y1 = y0 + a11ϕ1(g11hJ0)hF0

Y2 = y0 + a21ϕ1(g21hJ0)hF0 + a22ϕ1(g22hJ0)hr(Y1)

y1 = y0 + b1ϕ1(g31hJ0)hF0 + b2ϕ1(g32hJ0)hr(Y1) + b3ϕ3(g33hJ0)h[−2r(Y1) + r(Y2)],
(5.5)

EpiRK5P1:a11

a21 a22

b1 b2 b3

 =

0.3512959269505819
0.8440547201165712 1.6905891609568963

1.0 1.27271273173568923 2.271459926542262227


g11g21 g22
g31 g32 g33

 =

0.3512959269505819
0.8440547201165712 1.0

1.0 0.71111095364366870 0.62378111953371494



Table 5.1: Coefficients of EpiRK5P1.

We choose this particular method for its fifth order accuracy and because it was designed
specifically to take advantage of the adaptive Krylov technique described in section 5.3.2,
making it particularly efficient.

Approximation of the ϕk(A)v terms which make up the methods, e.g. the term ϕ1(g11hJ0)hF0

in EPIRK5P1, is the primary computational challenge for exponential integrators. Today
there are multiple techniques which are potentially suitable for large-scale problems, such
as Krylov projection methods, polynomial approximation, contour integrations, and others.
It remains to be seen which methods are most efficient for which types of problems. A
preliminary comparison of the efficiency of some of the methods on various problems can be
in found in [8]. In this paper we focus on Krylov projection techniques due to their appli-
cability to a wide range of problems. In sub-section 5.3.1 we describe the basic application
of Krylov projection techniques to the evaluation of the ϕk(A)v terms, and in sub-section
5.3.2 we detail the particular adaptive Krylov algorithm used in the implementation of
EPIRK5P1.

5.3.1 Krylov approximation of the ϕk(hJ)v terms

As mentioned in the introduction, traditional techniques for evaluating the ϕk(hJ)v terms,
such as Taylor or Padé approximation, are prohibitively expensive for large matrices, so
we turn to Krylov subspace projection techniques. The terms are approximated by pro-
jecting onto the Krylov subspace Km(hJ, v) = span{v, (hJ)v, (hJ)2v, . . . , (hJ)m−1v}. An
orthonormalized form of the Krylov basis is generated iteratively using the Arnoldi iteration
[57], which uses a modified Gram-Schmidt process to orthonormalize the basis vectors and
store them column-wise in a matrix Vm. An m×m upper Hessenberg matrix

Hm = V T
m (hJ)Vm (5.6)

is also computed as a side product. Since Vm is an orthogonal matrix, the product of a
function of a matrix times a vector f(hJ)v can be approximated by orthogonally projecting
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onto the Krylov subspace as

f(hJ)v ≈ VmV T
mf(hJ)VmV

T
mv.

By equation (5.6),
V T
mf(hJ)Vm ≈ f(Hm)

allowing f(hJ)v to be approximated by

f(hJ)v ≈ Vmf(Hm)V T
mv.

Further, since v/||v||2 is the first column of Vm, the approximation simplifies to

f(hJ)v ≈ ||v||2Vmf(Hm)e1, (5.7)

which is the approximation used in implementations. This approximation has lower compu-
tational cost than direct evaluation because Hm is expected to be a small matrix, making
computation of f(Hm) considerably cheaper than evaluation of f(hJ). f(Hm) is typically
computed using Taylor or Padé approximation [46], such as with the Padé algorithm of
Higham [24]. Benchmarks show that the cost of computing f(Hm) is typically negligible
compared to the cost of producing the Krylov basis itself.

We note that Arnoldi algorithm does not need an explicit representation of the J matrix
and the generation of the Krylov basis requires only the implementation of a routine which
evaluates the action of the matrix on a vector, i.e. a procedure JT imesV (v) which returns
a vector equivalent to J ∗ v. This so-called “matrix-free” implementation is typical in
Krylov-based methods [34] and is employed in both EPIRK5P1 and CVODE.

The Arnoldi algorithm can be applied to each ϕk(hJ)v term in an exponential integrator
individually in order to compute the next time step. For example in EPIRK5P1 shown
in (5.5), there are six ϕk(hJ)v terms which can each be computed with a separate in-
vocation of the Arnoldi algorithm. However, the Arnoldi iteration has a scale invariance
property which can be used to compute some of the terms together with a single Krylov
basis. If by equation (5.6), Hm = V T

m (hJ)Vm for matrix hJ , then αHm = VmT (αhJ)Vm
for matrix αhJ . In other words, terms of the form ϕk(αhJ)v which involve the same
vector v can be computed using a single basis even if the Jacobian matrix is scaled differ-
ently in each term. In the case of EPIRK5P1, this means the three terms ϕ1(g11hJ0)hF0,
ϕ1(g21hJ0)hF0, and ϕ1(g31hJ0)hF0 can be computed using a single Krylov basis, the two
terms ϕ1(g22hJ0)hr(Y1) and ϕ1(g32hJ0)hr(Y1) can be computed using a second basis, and
the term ϕ3(g33hJ0)h[−2r(Y1) + r(Y2)] with a third basis, for a total of three invocations of
the Arnoldi algorithm to compute each time step. This forms an important contrast with
Newton-Krylov implicit methods which must perform the Krylov algorithm each Newton
iteration and thus a variable number of times each time step. This point will be discussed
further in section 5.3.3.

While evaluating the ϕk(Hm) terms using Krylov approximation is significantly more
efficient than direct methods such as Taylor or Padé approximation, performing the Krylov
iterations is still the primary computational cost of Krylov-based integrators. The cost is
determined by how rapidly the iterations reach a desired accuracy, i.e. how many iterations
m are needed. The factors which determine this rate of convergence are the function f , the
spectrum of J , the magnitude of h, and the magnitude and orientation of v. It was shown in
[26] that in the special case where J is a Hermitian negative semi-definite matrix, the rate of
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Number of Krylov vectors
h ϕ1(hJ0)f(u0) ϕ2(hJ0)f(u0) ϕ3(hJ0)f(u0)

0.01 62 56 49
0.005 40 35 31
0.0025 26 22 19

Table 5.2: Effect of scaling of the Jacobian by the time step size h on Krylov basis size

convergence is superlinear once m ≥
√
||hJ || (although in practice it usually occurs at much

smaller m), but theoretical convergence results are difficult in general. Theoretical results
[26] and numerical experiments [66, 41] indicate that the Krylov iteration converges faster
for f = ϕk(z) as in exponential integrators compared to when it is applied to a rational
function 1/(1− z) as in Newton-Krylov implicit methods.

The degree of scaling of the Jacobian by the time step h is particularly important, both
because its impact on the number of required Krylov vectors needed for a given accuracy
is high and because the step size can be controlled, offering a means to modulate the
computational cost. We illustrate the effect of the scaling on the Krylov convergence with
the following experiment. Consider the 2D Gray-Scott problem

ut = du∇2u− uv2 + a(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = dv∇2v + uv2 − (a+ b)v,

with du = 0.2, dv = 0.1, a = 0.04, and b = 0.06, periodic boundary conditions, and initial
conditions

u = 1− e−150(x− 1
2

)2+(y− 1
2

)2 ,

v = e−150(x− 1
2

)2+2(y− 1
2

)2 .

The problem is discretized using the second order centered finite difference approximation on
a 150×150 uniform grid. Table 5.2 displays the number of Krylov vectors needed to achieve
a tolerance of 10−6 for the terms ϕ1(hJ0)v, ϕ2(hJ0)v, and ϕ3(hJ0)v when J0 = f ′(y0) and
v = f(y0), for three different values of h. We can see that each reduction in the magnitude
of h by 1/2 significantly reduces the number of Krylov vectors needed to achieve the desired
accuracy. The computational cost of performing the Krylov iteration grows quadratically
with the number of Krylov vectors needed, i.e. as O(m2), so the scaling of the Jacobian by
h has a marked effect on the computational cost of Krylov-based integrators.

The quadratic growth in cost with basis size makes controlling Krylov cost through scal-
ing of the matrix crucial in Krylov-based integrators due to the following phenomenon.
Ordinarily increasing step size h in a time integrator results in lower computational cost
because fewer time steps are needed to reach the final solution. However in a Krylov-based
integrator, if h becomes too large then the increased Krylov cost may outweigh the savings
from computing fewer time steps. This phenomenon is portrayed by the solid line labeled
”No Adaptivity” in the illustration (not actual data) of a precision diagram, shown in Fig-
ure 5.1. Each point on the curve corresponds with a solution computed at a particular time
step size. As represented by the lower right point, for the smallest step size a high accuracy
solution of 10−8 is computed but at high computational cost as many time steps are needed.
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As the step size is increased, less accurate solutions are produced but initially at lower com-
putational cost, such as for the points at accuracies 10−7 and 10−6. However as the step
size is increased further, even less accurate solutions are produced but now at increasing
computational cost, such as for the points with accuracies 10−5 and 10−4. Clearly even if
only a solution of accuracy 10−4 or 10−5 is needed, it is better to use a smaller time step
and compute a solution of accuracy 10−6 at lower cost. We would like an algorithm which is
able to adaptively scale the matrix to give the lowest cost solution for the accuracy we need.
The hypothetical performance of such an algorithm is portrayed by the dashed line labeled
”With Adaptivity”. The points on the vertical portion of the curve above the inflection
point with accuracies 10−5 and 10−4 represent solutions computed more efficiently if we
were to modulate the step size to minimize cost. For example if our accuracy requirement
for a solution is 10−4, rather than computing the solution to an accuracy of 10−4 requir-
ing 300 seconds of CPU time as on the solid line, we could instead lower the step size to
that used for the solution with accuracy 10−6 and get a more accurate solution for only 10
seconds of time. The points below the inflection of the curve with accuracies 10−6, 10−7,
and 10−8 are the same as on the solid line, and represent solutions for which lowering the
time step size further would increase the computational cost instead of lowering it. Since
increasing the step size would give too inaccurate a solution, the step size is already at its
optimal value and the adaptivity algorithm cannot help further.

As described, modulation of h is one means to control the Krylov cost. However, the
downside of controlling cost through the step size is that h scales the Jacobian for all the
ϕk(hJ0)v terms in a scheme together without giving individual control of each term. In the
next section we describe a more sophisticated adaptive Krylov algorithm which allows each
term to be modulated independently, and describe its use in EPIRK5P1.
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Figure 5.1: Illustration of the importance of Krylov adaptivity for the control of computational cost.
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5.3.2 Krylov adaptivity

The approach to Krylov adaptivity we implemented was proposed in [62, 50] to evaluate
linear combinations of the form

ϕ0(A)v0 + ϕ1(A)v1 + · · ·+ ϕp(A)vp, (5.8)

more efficiently. It’s based on the observation that

u(tk+1) = ϕ0(τkA)u(tk) +

p∑
i=1

τ ikϕi(τkA)

p−i∑
j=1

tjk
j!
vi+j , τk = tk+1 − tk, (5.9)

is the solution to the initial value problem

u′(t) = Au(t) + v1 + tv2 + ...+
tp−1

(p− 1)!
vp, u(0) = v0. (5.10)

By stepping from t0 = 0 to t1 = t, equation (5.9) implies that

u(t) = ϕ0(tA)v0 + tϕ1(tA)v1 + t2ϕ2(tA)v2 + ...+ tpϕp(tA)vp, (5.11)

and so linear combination (5.8) can be interpreted as the solution to the ODE (5.10) at
t = 1. Using the recurrence ϕq(A) = ϕq+1(A)A+ 1

q!I, equation (5.9) can be simplified to

u(tk+1) = τpkϕp(τkA)wp +

p−1∑
j=0

τ jk
j!
wj , (5.12)

where the wj vectors be computed recursively by

w0 = u(tk), wj = Awj−1 +

p−j∑
l=0

tlk
l!
vj+l, j = 1, ..., p. (5.13)

Equation (5.12) provides a way to compute expressions of type (5.8) adaptively by step-
ping the solution u(t) from t = 0 to t = 1 along time points 0 = t0 < t1 < · · · < tk <
tk+1 = tk + τk < · · · < tK = tend = 1. For each u(tk+1), a single Krylov projection must
be performed for the τpkϕp(τkA)wp term. Therefore over the K time steps from t0 = 0 to
tK = tend = 1, a total of K Krylov projections must be computed. Since 0 < τk < 1, each
projection will cost fewer Krylov vectors than computing ϕp(A)wp in a single projection
with an unscaled matrix. Surely the more substeps taken, the cheaper will be each projec-
tion. The key is to find the best tradeoff between the number of Krylov vectors needed per
projection versus the K number of projections. The implementation of EPIRK5P1 uses the
approach described in [50] for choosing τk. It uses an error estimator to predict how many
Krylov vectors will be needed for a particular size of τk, and then chooses the τk anticipated
to meet the error tolerance for the lowest number of flops.

In section 5.3.1 we noted that terms f(A)v and f(cA)v sharing the same v vector can
be computed together using a single Krylov evaluation. For example, in EPIRK5P1 the
three terms ϕ1(g11jJ0)hF0, ϕ1(g21jJ0)hF0, and ϕ1(g31jJ0)hF0 can all be computed together
with the same Krylov basis, allowing all three terms to be evaluated for the cost of one
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projection. That work saving property can also be used with formula (5.12) as well. We
explain by example. From formula (5.11), we see that if we wish to compute a linear
combination composed of a single term ϕk(tA)vk, i.e. if all other terms ϕj(tA)vj where
j 6= k are zero, then we can compute it as ϕk(tA)vk = u(t)/tk. Therefore to compute the
term ϕ1(g11hJ0)hF0 in EPIRK5P1, we can compute it as u(g11)/g11. We can do similarly
for the ϕ1(g21hJ0)hF0 and ϕ1(g31hJ0)hF0 terms by computing u(g21)/g21 and u(g31)/g31

respectively. Clearly then all three terms can be evaluated by stepping formula (5.12) over
times t0 = 0 to tK = tend = 1 as long as g11, g21, and g31 are included in the set of
times {tk}Kk=0. We emphasize that this approach is possible only if the terms to be grouped
are composed of single ϕk terms and not linear combinations. (Note, though, that the
ϕ3(g33hJ0)h[−2r(Y1) + r(Y2)] term in EPIRK5P1 does not share its vector with any other
terms and therefore is allowed to be composed of any linear combination of ϕk(z) functions.)
The scheme of EPIRK5P1 was derived explicitly with this property in mind [69].

Ideally the τk’s are chosen to minimize the cost by optimizing the number of Krylov
iterations per projection versus the number of projections K. Choosing τk such that the
times tk include intermediate times t̂j , e.g. 0 = t0 < t1 < · · · < t̂j = g11 < · · · < tk <
tk+1 = tk + τk < · · · < tend = 1, might result in sizes for τk which give suboptimal cost.
In fact it’s possible to compute intermediate solutions u(t̂j) without computing additional
Krylov basis other than those for times tk chosen without regard to t̂j . If for example
tk < t̂j < tk+1 = tk + τk, besides computing u(tk+1) using formula (5.12) with τk, we can
also compute u(t̂j) using the same formula, but instead using τ̂j = t̂j − tk instead of τk. By
the scaling property of the Arnoldi iteration, the same Krylov basis can be used for both
u(tk+1) and u(t̂j). Since τ̂j < τk, the solution for u(t̂j) will be of equal or higher accuracy
than that for u(tk+1).

To illustrate the computational benefit of using Krylov adaptivity, the precision diagram
in Figure 5.2 shows two implementations of EPIRK5P1 applied to the Gray-Scott 2d prob-
lem from section 5.3.1. The green curve corresponds to a non-adaptive Krylov implemen-
tation, and the blue curve to an adaptive Krylov implementation. Both implementations
use constant time stepping. Each point on the curves gives the CPU time and error for the
solution computed with a particular time step size, starting with a step size of 0.1 and each
subsequent point half the size of the previous. As can be seen, the adaptive Krylov im-
plementation consumes significantly less CPU time than the non-adaptive implementation,
particularly for large step sizes when the Jacobian matrix is scaled coarsely.

5.3.3 Comparison with CVODE

We compare the performance of EPIRK5P1 with the parallel Newton-Krylov implicit ODE
solver CVODE [25], a variable-order, variable-timestep implementation of the fixed-leading
coefficient variant of the BDF schemes

q∑
i=0

αn,iy
n−i + hnβn,0f(yn) = 0. (5.14)

The yn are the approximations to y(tn), q is the order of the method, which ranges from one
to five, the coefficient an,0 = −1, and the remaining coefficients an,i and βn,0 are determined
by the order and the previous step sizes.
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Figure 5.2: Adaptive Krylov versus non-adaptive Krylov implementations of EPIRK5P1.

To compute the implicit term yn, each integration step the nonlinear system

G(yn) = yn − hnβn,0f(yn)−
q∑
i=1

αn,iy
n−i = 0, (5.15)

is solved using the Newton iteration. Let yn(k) be the k-th iteration of the Newton iteration.
The initial guess of the Newton iteration yn(0) is a predicted value computed explicitly from
previous time steps. This gives an initial guess which is quite accurate and allows the
Newton iteration to converge in a small number of iterations.

Each step of the Newton iteration the solution to the linear system

M [yn(m+1) − yn(m)] = −G(yn(m)), (5.16)

must be approximated, where M is the matrix I − hnβn,0Jn. The approximation is done
using the GMRES Krylov solver [58]. A major determiner of the difference in efficiency
between EPIRK5P1 and CVODE is the rate of convergence of the Krylov iteration when
computing ϕk(gijhJ)v versus the linear system (5.16) by GMRES. It was shown in [26]
that for Hermitian negative semi-definite matrices, the rate of convergence for computing
ϕk(A)v is faster than for approximating the linear system [I −A]x = v, when the matrix is
the same in both cases. Theoretical results are difficult for general matrices, but the idea
has been numerically demonstrated for some other types of matrices as well, e.g. in [66, 41].
However, as seen in section 5.3.1 the scaling of the matrix has a significant impact on the
number of Krylov iterations as well. For EPIRK5P1, the Jacobian is scaled by hgij . For
CVODE, the Jacobian is scaled by hβn,0. Clearly then the scaling of the Jacobian will be
influenced by what step sizes h must be chosen to achieve a specified error tolerance, and
by the particular coefficients of the scheme, both of which can be quite different between
the two integrators.

In EPIRK5P1, terms ϕk(gijhJ)v with the same vector v are computed together each
time step using the same Krylov basis. The scaling of the matrix used in the evaluation is
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determined by the largest gij coefficient for the group, which corresponds to the bottom row
of Table 5.1. We see that the Jacobian of the first Krylov evaluation is scaled by 1.0h, the
second evaluation by about 0.71h, and the third by about 0.62h. In CVODE the Jacobian
is scaled by hβn,0, where βn,0 depends upon the order of the BDF scheme. While CVODE
changes the order dynamically each time step, almost all time steps are integrated using the
fourth or fifth order scheme on the test problems. In the fourth order case βn,0 is 11/25 and
in the fifth order case it is 60/137, coefficients significantly smaller than the gij coefficients
of EPIRK5P1.

How these factors balance out on the test problems will be discussed in the results section.

5.3.4 The software

EPIRK5P1 is implemented as part of a suite of exponential time integrators written in C++
and parallelized using MPI. Since the software is oriented towards developing and testing
new exponential methods and new approximation methodologies for the ϕk(A)v terms, it
is designed with easy extensibility in mind. New schemes within a previously implemented
class, e.g. the EPIRK class, can be created simply by specifying their coefficients, and
new approximation algorithms for the ϕk(A)v terms can be added without affecting the
implementation of previously created methods. We discuss the software structure further
below. The software is also designed to accept problems written for the CVODE solver
suite. This means the exponential methods can accept as input parameters handles to the
routines implementing the right-hand-side f(v) and Jacobian times a vector J ∗ v functions
from a problem written for CVODE. Time integrating a problem written for CVODE with
an exponential integrator can thus be done in just a few lines of initialization code.

The other configuration parameters which can be specified are the following :

• Initial time step size

• Maximum time step size

• Absolute error tolerance

• Relative error tolerance

• Initial integration time

• Final integration time

• ϕk(A)v approximation algorithm, e.g. adaptive-Krylov

• Maximum Krylov basis size (when using Krylov approximation to evaluate the ϕk(hJ)v
terms)

The basic structure of the software is illustrated in Figure 5.3. Each exponential integra-
tor belongs to a corresponding mathematical class, e.g. EPIRK5P1 belongs to the EPIRK
class of methods. The mathematical structure of each class is implemented using NVEC-
TOR in a C++ abstract base class, represented in the diagram by the dashed box labeled
“Abstract class implementations”. A new scheme within the class is derived by inherit-
ing from the abstract base class and specifying its coefficients. In the figure the specific
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schemes are the circles within the dashed box labeled “Schemes”, with each scheme con-
nected to its parent base class by a line. The use of any particular approximation algorithm
for the ϕk(A)v terms, e.g. Krylov approximation, is not hardcoded into any of the class
implementations, but rather evaluation of the terms is done via an abstract interface, repre-
sented by the rectangle with rounded corners in the middle of the diagram. This allows the
exponential integrators to use different approximation algorithms simply by changing an
input configuration parameter. The abstract interface accepts requests for approximations
to a set of terms of the form ϕk(A)v and hands the requests to the specified underlying
approximation algorithm, as represented by the lines connecting the abstract interface to
the approximation algorithms inside the dashed rectangle labeled “ϕk(A)v approximation”.
The approximation routine is then free to internally compute the terms in whatever manner
will give the best efficiency. The results are always returned through the interface in an
NVECTOR structure. To maximize efficiency, it is important to call the approximation
algorithm such that all terms which can share computational cost be listed together. For
example, the current implementation for the EPIRK class calls the interface three times
per time step for a three stage method like EPIRK5P1. On the first call it requests the
interface to return approximations to the three terms ϕ1(g11hJ0)hF0, ϕ1(g21hJ0)hF0, and
ϕ1(g31hJ0)hF0. If the interface passes that request to the non-adaptive Krylov approxima-
tion algorithm, the routine would compute the three terms internally using a single Krylov
basis. On the second call it requests approximations to the two terms ϕ1(g22hJ0)hr(Y1) and
ϕ1(g32hJ0)hr(Y1), both of which would be computed together using a second basis, and the
third time for the term ϕ3(g33hJ0)h[−2r(Y1) + r(Y2)] which is computed alone. Of course
not all approximation methods operate at their best efficiency for the same grouping of
terms. For example as discussed in section 5.3.2, the adaptive-Krylov approximation algo-
rithm can compute together all terms sharing the same v vector, sharing the cost amongst
all the terms. However, iteration (5.12) can also be used to compute together all terms in
the same Runge-Kutta stage, e.g. it can compute together the three terms ϕ1(g31hJ0)hF0,
ϕ1(g32hJ0)hr(Y1), ϕ1(g31hJ0)hF0 in the third stage, sharing the cost amongst all three
terms. For some problems that may be more efficient. Therefore an implementation within
one of the abstract base classes will always give a correct result no matter what approxima-
tion algorithm is specified, but might not give the best efficiency if the grouping of terms
it specifies is non-ideal for the particular algorithm. When using a different approximation
technique, it might be better to re-implement the class using a grouping of terms that is
most efficient for it. Unfortunately there seems to be no simple interface which gives both
correctness and maximum efficiency in all cases.

Parallelization of the exponential methods is done at the vector level in the same manner
as in CVODE, i.e. through CVODE’s parallelized NVECTOR data structure. All vec-
tors being computed, whether the solution at the current time step y(tn) or intermediate
scratch vectors, are internally represented as NVECTOR vectors. The usual set of algebraic
vector operations, such as vector addition and scaling, norms, etc. can be applied to the
NVECTOR vectors, and those operations are done in parallel. Parallelization is done in
the standard data-parallel approach in which each N-dimensional vector is split across all
the processors and MPI communication is used to implement the vector algebraic opera-
tions. This has the advantage that the commonly used operations of vector addition and
scaling are computed locally without any inter-processor communication. By defining the
time integrator’s scheme in terms of the NVECTOR operations, the method is naturally
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parallelized. The vectors outputs from the right-hand-side f(v) and Jacobian times vector
J ∗ v functions, which constitute implementations of ODE problems for CVODE, are also
represented as NVECTOR data. Choosing to use the NVECTOR structure internally in
the exponential methods makes compatibility with those functions simple. It also removes
underlying implementational differences in the vector operations as a source of performance
difference when comparing the efficiency of exponential solvers with CVODE, allowing a
more direct comparison of the efficiency of the algorithms themselves. The parallelization
of the f(v) and J ∗ v routines are handled by the problem implementation and in general
must be done directly using MPI. Discretization of the differential operators typically re-
quires exchange of boundary values between processors and other operations which don’t
map onto the standard NVECTOR operations. Naturally the final computed result of the
f(v) and J ∗ v functions is still returned in an NVECTOR data structure.

The primary computational and communication costs in CVODE and the exponential
integrators are the vector dot products used in the Krylov iteration, and the evaluation of
f(y), and the J ∗ v routine, all of which grow in communication cost with increasing size of
N , and thus being a scalability constraint. Nevertheless, the scalability bottleneck of those
operations is greatly overshadowed by the algorithmic scalability constraints of the Krylov
iteration. As problem size increases, the spectrum of the Jacobian matrix widens and the
number of Krylov iterations needed to achieve a given accuracy tolerance grows. We saw
this phenomenon in the form of scaling of the Jacobian matrix in section 5.3.1, as illustrated
in Table 5.2. This bottleneck can be treated with preconditioning or with Krylov adaptivity.
We discuss how Krylov adaptivity ameliorates the growth in Krylov cost in section 5.5.

It should also be noted that the maximum Krylov basis size and the maximum time step
size can have a significant effect on efficiency. A maximum basis size is typically needed for
large problems due to limited computer memory, but judiciously constraining the basis size
has the effect of forcing the integrator to take correspondingly smaller time steps to maintain
accuracy. This can prevent the CPU time from moving past the inflection in Figure 5.1,
as per the arguments in section 5.3.1, and acts in a manner similar to Krylov adaptivity.
Clearly a shrewdly chosen maximum time step size can also act similarly. Configuration
of the parameters for greatest efficiency is problem dependent, and we do not attempt to
optimize the parameters in the numerical experiments, but we give a simple example of the
phenomenon in the numerical results section 5.5.

5.4 Setup of experiments

We tested the performance of EPIRK5P1 on the following four stiff test problems.

ADR 2D. Two-dimensional advection-diffusion-reaction equation [9]:

ut = ε(uxx + uyy)− α(ux + uy) + γu(u− 1
2)(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

with ε = 1/100, α = −10, γ = 100, homogenous Neumann boundary conditions, and initial
conditions u0 = 256(xy(1− x)(1− y))2 + 0.3.

Allen-Cahn 2D. Two-dimensional Allen-Cahn equation [4]:

ut = α∇2u+ u− u3, x, y ∈ [−1, 1], t ∈ [0, 1.0]
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with α = 0.1, no-flow boundary conditions, and initial u = 0.1 + 0.1 cos(2πx) cos(2πy).

Brusselator 2D. Two-dimensional Brusselator problem [39, 23]:

ut = 1 + uv2 − 4u+ α∇2u, x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = 3u− u2v + α∇2v,

with α = 0.2, Dirichlet boundary conditions, and initial and boundary values

u = 1 + sin(2πx) sin(2πy),

v = 3.

Gray-Scott 2D. Two-dimensional Gray-Scott problem [21]:

ut = du∇2u− uv2 + a(1− u), x, y ∈ [0, 1], t ∈ [0, 0.1],

vt = dv∇2v + uv2 − (a+ b)v,

with du = 0.2, dv = 0.1, a = 0.04, and b = 0.06, periodic boundary conditions, and initial
conditions

u = 1− e−150(x− 1
2

)2+(y− 1
2

)2 ,

v = e−150(x− 1
2

)2+2(y− 1
2

)2 .

In all four problems the ∇2 term was discretized using standard second-order finite dif-
ferences. The resulting square uniform 2D spatial grid of size

√
N ×

√
N was distributed

across a 2D square grid of P processors with
√
P processors per side. Each processor would

thus receive a square sub-grid of the spatial domain of dimension
√
N/
√
P per side. To

compute the finite-difference approximation in the right-hand-side function f(y) and the
J ∗v function, every function call each processor exchanges the boundary values of its spatial
sub-grid with its neighboring processors using pairs of MPI Send and MPI Recv calls.

Both an adaptive Krylov and non-adaptive Krylov implementation of EPIRK5P1 were
compared with CVODE on all four problems at four sizes per problem. All three integra-
tors were run using variable time stepping at five absolute error tolerances ranging from
ATOL = 10−4 to ATOL = 10−9, each tolerance differing by a factor of ten. The errors were
computed using the standard 2-norm. All problems were run at four sizes, with the number
of processors ranging from 16 processors to 1024 processors, each size differing by a factor of
four in number of processors. At all sizes of problem, each processor was assigned a subgrid
of size 80×80, the dimensions chosen to give each processor significant computational work
while keeping the CPU usage of the runs within the limits of our allocation’s account limit.

In general, EPIRK5P1 requires significantly fewer time steps than CVODE to achieve
the same accuracy, in extreme cases requiring nearly an order of magnitude fewer steps.
This meant the Jacobian matrix would be scaled far more coarsely for EPIRK5P1 than in
CVODE, resulting in much higher Krylov cost per time step for the non-adaptive Krylov
implementation. The adaptive Krylov implementation of EPIRK5P1 would manage the
coarser scaling by subdividing the projections as described in section 5.3.2 and is less affected
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by coarse scaling. However, to put the two integrators on a more even footing and facilitate
more direct comparison of the rate of convergence in the Krylov iteration for the two
methods, the time step sizes for EPIRK5P1 were limited to be the same size as the average
step size chosen by CVODE.

All tests were performed on the Texas Advanced Computing Center (TACC) Stampede
system, a 6,400 node Linux cluster connected with Mellanox FDR Infiniband. Each node
contains 2 Intel Xeon E5 (Sandy Bridge) processors clocked at 2.7GHz and an Intel Xeon
Phi Coprocessor. The Phi coprocessors were not used in our tests.

5.5 Numerical results

The precision diagrams for the experiments are shown in Figures 5.5 through 5.8. From the
graphs we see that EPIRK5P1 is generally competitive with CVODE, particularly when
implemented with adaptive Krylov. For small problem size the adaptive Krylov and non-
adaptive Krylov implementations perform similarly for all four problems, but as problem
size increases the non-adaptive Krylov implementation scales comparatively poorly and
begins to be overtaken by CVODE. The adaptive Krylov implementation of EPIRK5P1
remains competitive. For example, in the case of the Brusselator problem in Figure 5.7,
the adaptive Krylov and non-adaptive Krylov implementation perform nearly identically in
the 16 processor size of the problem and significantly outperform CVODE. For the coarse
error tolerance of 10−4, both versions of EPIRK5P1 are over ten times as fast as CVODE.
For fine tolerances the performance is closer, but even at the smallest tolerance of 10−9,
both cases of EPIRK5P1 require less than one fifth as much time as CVODE. By the
1024 processor size, CVODE now basically performs the same as the non-adaptive Krylov
implementation of EPIRK5P1, although the adaptive Krylov implementation of EPIRK5P1
still performs the best. For an error tolerance of 10−4, the adaptive version of EPIRK5P1
is over twice as fast as the other two cases. For fine tolerances the CPU times are closer,
but the adaptive implementation of EPIRK5P1 still uses less than 80% the CPU time as
the other two integrators.

For Krylov-based integrators, performing the Krylov iterations is the dominant CPU cost.
As such the relative performance between the integrators can be understood by examining
their Krylov statistics. To illustrate the cost tradeoffs between the integrators, we examine
the Krylov statistics of the integrators for the Gray-Scott and ADR problem, which are
the problems for which EPIRK5P1 performs comparatively worst and best respectively
compared to CVODE.

We begin with the Gray-Scott problem. Table 5.3 shows the Krylov statistics for the
smallest size of the Gray Scott problem. We note that the non-adaptive Krylov implemen-
tation must compute a relatively large number of Krylov vectors for the Krylov approxi-
mation of the three terms with vector hF0, but only about a single Krylov vector for the
remaining terms due to their small magnitude. In terms of computational cost, this means
EPIRK5P1 must effectively perform only a single Krylov approximation each time step, as
the other two approximations are of negligible cost. The adaptive Krylov implementation
has the same cost structure, except the costly approximation for the hF0 terms is split
over multiple projections, lowering the total CPU cost. In contrast, each Krylov projec-
tion in CVODE is less expensive than the non-adaptive approximation for the hF0 terms
in EPIRK5P1 due to the favorable scaling of the matrix by the γ coefficient. However, it
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must also compute more than one projection each time step, one for each Newton iteration.
For coarse tolerances, and thus larger time steps, it must compute an average of about
1.49 projections per step. For lower error tolerances, the Newton iteration converges more
quickly, within 1.29 iterations. In balance, the need to compute more nontrivial Krylov
approximations per time step than EPIRK5P1 results in higher overall cost, despite the
lower cost of each Krylov approximation.

Table 5.4 displays the Krylov statistics for the largest problem size. The overall statistical
breakdown is very similar. EPIRK5P1 still must compute one costly Krylov approximation
each time step and then two additional approximations of negligible cost. Compared to
the non-adaptive Krylov approximations, CVODE must compute less expensive Krylov
approximations but more than one per time step, similar to the small problem size case.
The rate of convergence of the Newton iteration is about the same as in the small problem
size. However, with the larger problem size the spectrum of the Jacobian is enlarged and
the number of Krylov iterations needed in each approximation increases, driving the CPU
time up. The larger basis sizes now result in the non-adaptive Krylov implementation of
EPIRK5P1 being more expensive than CVODE in balance. For example, for the coarsest
tolerance of 10−4, the CPU time for the non-adaptive Krylov version of EPIRK5P1 is
nearly twice that of CVODE. In the adaptive Krylov case, by splitting the approximation
into lower cost projections the overall CPU cost is kept lower than CVODE for the coarser
tolerances. For example, for an error tolerance of 10−4, the CPU time for the adaptive
Krylov EPIRK5P1 is only 40.7 seconds compared to the 59.9 seconds of CVODE. For
the four finest tolerances, CVODE had lower CPU cost than even the adaptive-Krylov
EPIRK5P1 for the Gray Scott problem. EPIRK5P1 took 109% the time of CVODE for a
tolerance of 10−6 and the performance difference progressively increased up to 121% at a
tolerance of 10−9. For the other problems, the adaptive Krylov implementation maintained
lower CPU cost than CVODE for all tolerances.

The Krylov cost structure of the integrators on the ADR problem is similar to the Gray-
Scott case (and the other problems) but the costs are more modest. As before, almost all
of the Krylov vectors were computed for the first hF0 term with the remaining two terms
not contributing a significant number of additional vectors. Here too CVODE needed to
compute more than one projection per time step, one per Newton iteration, putting it at
a disadvantage to EPIRK5P1 in terms of the number of nontrivial projections computed
per time step. The basis sizes per projection were similar between the non-adaptive Krylov
version of EPIRK5P1 and CVODE for this problem. Therefore due to the smaller number
of projections per time step, the non-adaptive EPIRK5P1 had a net efficiency advantage
over CVODE on both the small and large problem sizes.

Naturally the adaptive Krylov implementation of EPIRK5P1 fared even better, overall,
and was able to outperform CVODE at all tolerances for both problem sizes. However,
for the small size of problem, the basis sizes were small to the point that the Krylov
adaptivity procedure did not need to split the projections, and the performance between
the non-adaptive case and adaptive case was essentially the same. For the large size of the
problem at coarse tolerances, the basis size for the first hF0 term was large enough that
the Krylov adaptivity algorithm split the projection into several sub-projections, giving
it a performance advantage over the non-adaptive case. For example at tolerance 10−4,
the adaptivity procedure split the hF0 term into an average of 3.2 projections with basis
sizes only 20.2 vectors each versus the non-adaptive implementations single projection of
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(a) EPIRK5P1

Non-adaptive Krylov Adaptive Krylov
Absolute error tolerance Absolute error tolerance

1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

hF0:
Projections per step: 1 1 1 1 1 1 4.0 6.2 3.7 2.9 2.0 5.9
Vectors per projection: 23.3 21.6 18.9 16.7 14.0 11.7 10.5 7.8 8.8 8.8 9.2 2.5
Total vectors per step: 23.3 21.6 18.9 16.7 14.0 11.7 42.2 48.4 32.3 25.0 18.1 14.8

hr(Y1):
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.02 1.02 1.04 1.00 1.00 1.00 1.00 1.00 1.00
Total vectors per step: 1.00 1.00 1.00 1.00 1.02 1.04 1.00 1.00 1.00 1.00 1.00 1.00

h[−2r(Y1) + r(Y2)]:
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.0 1.01 1.02 1.00 1.00 1.00 1.00 1.00 1.00
Total vectors per step: 1.00 1.00 1.00 1.0 1.01 1.02 1.00 1.00 1.00 1.00 1.00 1.00

Time steps: 35 48 72 107 167 251 35 48 72 107 167 251
CPU time: 0.42 0.46 0.56 0.66 0.79 0.93 0.39 0.53 0.60 0.76 0.96 2.36

(b) CVODE

Absolute error tolerance
1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

Newton iters per time step: 1.49 1.62 1.42 1.47 1.38 1.29
Krylov iters per Newton iter: 14.5 12.4 12.0 9.7 8.1 7.2

Time steps: 35 47 71 106 167 251
CPU time: 0.52 0.74 1.00 1.37 1.84 2.44

Table 5.3: Krylov statistics for Gray-Scott 2D with grid size 320× 320.

40.0 vectors. As a result the adaptive implementation required only 5.17 seconds of time
compared to the non-adaptive version’s 9.57 seconds. As the error tolerances became finer,
the Krylov basis sizes were reduced in size to the point that the adaptivity procedure
employed fewer and fewer splits and the performance of the non-adaptive and adaptive
implementations converged.

5.5.1 Impact of configuration parameters on performance

The previous experiments were conducted with the maximum time step size for the exponen-
tial integrators limited to the average step size taken by CVODE. This allowed comparison
of the Krylov cost between the two types of integrators for similar scaling of the Jacobian.
However, both types of integrators can accept a number of input parameters which can
impact efficiency. For EPIRK5P1, an efficaciously chosen maximum time step size can keep
the integrator running close to the optimal balance point between Krylov cost per time step
versus the total number of time steps, as represented by the inflection point in Figure 5.1. A
judiciously chosen maximum Krylov basis size can have a similar effect by forcing the time
step to be lowered to maintain accuracy, thus scaling the Jacobian to a more manageable
degree as well. The efficiency of CVODE is affected similarly by restrictions to time step
size and Krylov basis size, but in addition the Krylov cost can be indirectly affected by
restricting the number of Newton iterations, as doing so will lower the number of Krylov
projections computed each time step and will force a reduction in the time step size that
reduces the scaling of the Jacobian.
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(a) EPIRK5P1

Non-adaptive Krylov Adaptive Krylov
Absolute error tolerance Absolute error tolerance

1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

hF0:
Projections per step: 1 1 1 1 1 1 206 174 163 140 96.7 64.0
Vectors per projection: 198 178 160 135 110 92.5 10.0 10.2 10.2 10.1 10.1 10.2
Total vectors per step: 198 178 160 135 110 92.5 2068 1777 1662 1417 977 651

hr(Y1):
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.05 1.18 2.00 1.00 1.00 1.00 1.00 1.00 1.12
Total vectors per step: 1.00 1.00 1.00 1.05 1.18 2.00 1.00 1.00 1.00 1.00 1.00 1.12

h[−2r(Y1) + r(Y2)]:
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.00 1.03 1.16 1.00 1.00 1.00 1.00 1.00 1.02
Total vectors per step: 1.00 1.00 1.00 1.00 1.03 1.16 1.00 1.00 1.00 1.00 1.00 1.02

Time steps: 35 50 72 112 173 257 35 50 72 112 173 257
CPU time: 104 109 118 117 114 116 40.7 50.6 68.6 91.9 96.2 95.5

(b) CVODE

Absolute error tolerance
1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

Newton iters per time step: 1.44 1.47 1.40 1.36 1.32 1.27
Krylov iters per Newton iter: 128 102 89.2 74.0 62.6 52.1

Time steps: 32 49 73 109 165 256
CPU time: 57.9 60.7 63.1 69.0 74.0 78.8

Table 5.4: Krylov statistics for Gray-Scott 2D with grid size 2560× 2560.

An exhaustive examination of how the parameters can be set for optimal performance is
outside the scope of this paper but we give a single example of how limiting the maximum
time step can reduce the CPU time for both the non-adaptive Krylov and adaptive Krylov
implementations of EPIRK5P1. When set to an absolute error tolerance of 10−4 on the
2560 × 2560 size of the Gray-Scott problem, computed with a maximum time step size
equal to the average step size taken for CVODE as hmax = 0.0029, the non-adaptive Krylov
implementation of EPIRK5P1 required about 104 seconds of time to compute 35 time steps,
and the adaptive Krylov implementation needed 40.7 seconds for the same number of steps,
as shown in Table 5.4. When the maximum time step size was further reduced to hmax =
0.0006, the non-adaptive Krylov implementation of EPIRK5P1 used only 27.4 seconds of
time to compute 167 time steps while the adaptive Krylov implementation required only
about 23.0 seconds for the same number of steps. This means the non-adaptive Krylov
implementation took only 26% of the total CPU time in the reduced step size case compared
to the prior case, and the adaptive Krylov implementation just 57%, giving significant
reductions in both cases.

While it is not surprising that choosing a step size close to the optimum balance between
Krylov cost per step versus total computed time steps gives better efficiency for the non-
adaptive Krylov implementation, it is interesting to note that the same holds true for the
adaptive Krylov case as well. In principle, an adaptive Krylov procedure which makes
optimal splits should give the best possible performance without the need for manually
modulating the time step size. The fact that the CPU time could be reduced by nearly
half in the Gray-Scott example by lowering the maximum time step size is an indication of
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(a) EPIRK5P1

Non-adaptive Krylov Adaptive Krylov
Absolute error tolerance Absolute error tolerance

1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

hF0:
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 6.2 4.6 4.1 4.0 4.2 4.6 5.7 4.1 3.4 3.6 3.8 4.1
Total vectors per step: 6.2 4.6 4.1 4.0 4.2 4.6 5.7 4.1 3.4 3.6 3.8 4.1

hr(Y1):
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.24 1.57 1.81 1.00 1.00 1.00 1.00 1.26 1.78
Total vectors per step: 1.00 1.00 1.00 1.24 1.57 1.81 1.00 1.00 1.00 1.00 1.26 1.78

h[−2r(Y1) + r(Y2)]:
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.00 1.41 1.80 1.00 1.00 1.00 1.00 1.00 1.48
Total vectors per step: 1.00 1.00 1.00 1.00 1.41 1.80 1.00 1.00 1.00 1.00 1.00 1.48

Time steps: 125 200 266 409 527 658 125 200 266 409 527 658
CPU time: 0.17 0.20 0.26 0.39 0.56 0.76 0.19 0.26 0.33 0.51 0.69 0.95

(b) CVODE

Absolute error tolerance
1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

Newton iters per time step: 1.82 1.73 1.59 1.60 1.82 1.62
Krylov iters per Newton iter: 6.8 5.3 4.7 3.6 2.9 2.8

Time steps: 124 200 265 409 525 660
CPU time: 1.11 1.61 2.25 3.07 3.91 4.56

Table 5.5: Krylov statistics for ADR 2D with grid size 320× 320.

room for improvement in the algorithm.

5.5.2 Impact of Krylov adaptivity on scalability

Because the number of Krylov iterations increases with problem size due to the widening
spectrum of the Jacobian, the CPU cost increases with problem size even if the grid density
per processor remains constant. As such, Krylov-based integrators generally scale poorly
with problem size without preconditioning, although Krylov adaptivity can improve scala-
bility significantly. To illustrate this, Figure 5.4 shows the relationship of problem size to
CPU time for each of the four problems. For all four problems, the CPU times were for
the case where the absolute tolerance is 10−6, but the curves are similar in the other cases.
We see that for all problems, the performance of the non-adaptive Krylov implementation
of EPIRK5P1 generally scales poorly with problem size, having a much steeper slope com-
pared with the adaptive Krylov implementation of EPIRK5P1 or CVODE. In contrast, the
adaptive Krylov version of EPIRK5P1 scales considerably better, generally scaling the best
of all three integrators.

5.6 Conclusions and future work

This paper describes the implementation for what is to our knowledge the first parallel
implementation of a suite of Krylov-based exponential integrators and gives some initial
performance results for an adaptive Krylov-based implementation of the EPIRK5P1 solver.
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Figure 5.4: Algorithmic scaling of the integrators with problem size. Solutions computed to an
absolute tolerance of 10−6 in all cases.

88



(a) EPIRK5P1

Non-adaptive Krylov Adaptive Krylov
Absolute error tolerance Absolute error tolerance

1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

hF0:
Projections per step: 1 1 1 1 1 1 3.20 1.88 1.84 1.40 1.02 1.00
Vectors per projection: 49.0 30.1 29.0 21.8 17.0 13.2 20.2 19.8 19.6 19.2 17.3 13.6
Total vectors per step: 49.0 30.1 29.0 21.8 17.0 13.2 64.7 37.1 36.1 26.8 17.7 13.6

hr(Y1):
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.14 1.35 1.46 1.00 1.00 1.00 1.00 1.00 1.12
Total vectors per step: 1.00 1.00 1.00 1.14 1.35 1.46 1.00 1.00 1.00 1.00 1.00 1.12

h[−2r(Y1) + r(Y2)]:
Projections per step: 1 1 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0
Vectors per projection: 1.00 1.00 1.00 1.00 1.16 1.34 1.00 1.00 1.00 1.00 1.00 1.00
Total vectors per step: 1.00 1.00 1.00 1.00 1.16 1.34 1.00 1.00 1.00 1.00 1.00 1.00

Time steps: 124 235 274 435 658 1022 124 235 274 435 658 1022
CPU time: 9.57 6.53 7.10 6.48 6.94 7.52 5.17 5.65 6.25 7.45 7.47 7.79

(b) CVODE

Absolute error tolerance
1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

Newton iters per time step: 1.82 1.52 1.50 1.52 1.61 1.59
Krylov iters per Newton iter: 43.1 27.5 26.5 16.8 11.6 8.3

Time steps: 123 234 274 435 656 1021
CPU time: 34.1 28.7 31.2 31.5 33.7 34.4

Table 5.6: Krylov statistics for ADR 2D with grid size 2560× 2560.

Our experiments show EPIRK5P1 to be on par, both in terms of computational efficiency
and algorithmic scalability, with a production implementation of an implicit Newton-Krylov
solver on a set of stiff benchmark problems when integrated without preconditioning. We
discussed some of the features of the software suite, which include its extensibility to new
exponential schemes and alternate ways of approximating the ϕk(hJ)v terms, and its ability
to accept problems written for CVODE. Utilizing these features, in the future we intend to
extend the suite to include newly developed exponential methods, and to test the integrators
on a large scale problem of current scientific interest.

While the performance results are encouraging, further questions must be addressed. The
comparisons were made on 2D test problems, and it remains to be seen how the exponen-
tial integrator performs on more complex application problems. Furthermore the problems
were tested without preconditioning. While our results show Krylov adaptivity can signif-
icantly improve the algorithmic scalability of the method, development of preconditioning
for exponential integrators will be important for problems for which efficient preconditioners
already exist for Newton-Krylov implicit solvers. Some recent work on split [56] and hybrid
exponential integrators might offer preconditioning-like solutions for exponential methods
and we plan to investigate these methods in the future.
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Figure 5.5: Precision diagrams comparing nonadaptive and adaptive Krylov implementations of
EPIRK5P1 against CVODE for ADR2d.
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Figure 5.6: Precision diagrams comparing nonadaptive and adaptive Krylov implementations of
EPIRK5P1 against CVODE for AllenCahn2d.
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Figure 5.7: Precision diagrams comparing nonadaptive and adaptive Krylov implementations of
EPIRK5P1 against CVODE for Brusselator2d.
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Figure 5.8: Precision diagrams comparing nonadaptive and adaptive Krylov implementations of
EPIRK5P1 against CVODE for GrayScott2d.
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6 Conclusions

6.0.1 Summary

In this thesis we conducted a performance study of Krylov-based exponential integrators
with the goal of determining how to improve their computational efficiency. Various design
criteria of exponential schemes were investigated through thorough performance benchmark-
ing and some of the lessons were applied to the construction of new exponential methods of
higher efficiency. The construction of the new schemes was done in the context of the new
EPIRK class of exponential integrators, which provides a high degree of flexibility for tailor-
ing the methods for performance. New methods of note are the EPIRK5S3 method which
has fifth order accuracy for lower computational cost than current fourth order methods,
and the EPIRK5P1 and EPIRK5P2 integrators which provide similar performance benefits
while also allowing the methods to employ a Krylov adaptivity algorithm which further
improves efficiency quite substantially.

Detailed performance comparisons with Krylov-based implicit methods were also pre-
sented. The results showed that the exponential-like ϕk(A) matrix functions which consti-
tute exponential schemes give an inherent performance advantage over Krylov-based implicit
methods, which must compute a more costly matrix rational function. Various structural
tradeoffs between exponential and implicit methods were discussed, and it was demonstrated
that overall exponential methods can perform favorably compared with implicit methods.

A software suite of parallel exponential integrators was introduced and described. The
software is designed to allow easy extensibility to new exponential schemes and alternate
techniques for the approximation of the ϕk(A) functions. Performance of the Krylov-
adaptive EPIRK5P1 method from the suite was compared with the popular Newton-Krylov
CVODE solver and shown to perform favorably on unpreconditioned problems across a
range of problem sizes. Krylov adaptivity was shown to be particularly useful in managing
the growth of Krylov cost with increasing problem size. To our knowledge, our software
provides the first parallel implementation of Krylov-based exponential integrators. Per-
formance comparisons with CVODE represent the first preliminary performance study of
exponential integrators compared to Krylov-based implicit solvers on parallel-scale prob-
lems.

6.0.2 Future work

There is still much to be done if exponential integrators are to become commonly used
for large-scale scientific problems. The performance testing in this thesis was done using
a number of stiff benchmark problems, but larger and more sophisticated problems need
to be tested if exponential integrators are to gain the attention of practitioners. While we
discussed some first results on the scalability of Krylov-based exponential integrators, a
more extensive examination of how exponential integrators scale to very large problem sizes
is particularly important for parallel scale computing. Further performance optimization of
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exponential schemes and their implementations should continue. In light of these needs we
briefly note some ways what has been discussed in this thesis can be extended and improved.

We discussed the idea of tailoring the coefficients of a scheme to increase the efficiency
of a method. Two examples were the EPIRK5S3 and EPIRK5P1 schemes. While the
coefficients improved the performance of the methods over previously derived schemes, the
constants are likely not optimal. Derivation of even better schemes might offer significant
performance improvement.

We showed that the use of Krylov adaptivity improves the efficiency of exponential in-
tegrators considerably when large time step sizes are taken, but the algorithm could be
improved. The discussion in section 5.5.1 showed that even when using Krylov adaptivity,
imposing a maximum time step size below that needed to achieve the error tolerance could
still further improve the efficiency, nearly halving the CPU time over adaptivity alone in
some cases. An ideal adaptivity algorithm would partition the ϕk(hJ)v terms optimally
regardless of the time step size, and the improved CPU times seen in section 5.5.1 would
be achieved by a more ideal algorithm without manual intervention. However, there are
significant challenges to improving the adaptivity algorithm in its current form. We saw
from our performance results shown in Table 5.4, that for large problems the adaptivity
procedure may need to split the ϕk(hJ)v terms across hundreds of sub-projections. The cur-
rent adaptivity algorithm chooses the scaling of the matrix in each sub-projection without
consideration of the other sub-projections, effectively assuming the matrix scaling chosen in
the current sub-projection will be equally good for all other sub-terms. Empirical tests show
this assumption is false. However determining a partitioning of the ϕk(hJ)v terms which
is globally optimal, with the matrix possibly scaled differently in each sub-term, would be
mathematically difficult. Furthermore, the error control is done to a specified tolerance
for each sub-projection, but there is currently no accounting of how errors propagate from
sub-term to sub-term. Controlling the error of the final result across hundreds of sub-terms
would also be difficult. Rather than try to improve the algorithm by partitioning the pos-
sibly hundreds of sub-projections more optimally, a more practical solution might be to
modulate the time step size directly. The Krylov adaptivity algorithm can be parameter-
ized to allow no more than K sub-projections for each term. If the adaptivity procedure
finds it needs to take more than the allowed number of sub-projections, the step size could
be reduced until that is no longer the case. In cases where the number of splits needed falls
below K, the step size would be relaxed up to the size needed to achieve the error tolerance
for the time step. This approach is nothing more than an automation of the parameter
configuration experiment discussed in section 5.5.1, and the expected improvement in effi-
ciency would be the same as found in those results. Experience with those tests shows that
heuristically limiting K to just two or three would give the best results.

Scalability is a primary concern for large scale computing, and is a particular challenge for
Krylov-based integrators. We discussed in section 5.5.2 how increasing problem size causes
the spectrum of the Jacobian to widen, resulting in the number of Krylov vectors needed per
term to increase. Our tests showed that Krylov adaptivity can provide a significant improve-
ment to the scalability of Krylov-based exponential integrators. The benefit of adaptivity
stems from the observation that the cost per Krylov vector increases quadratically with
the basis size of each projection, but by subdividing the ϕk(hJ)v terms into multiple sub-
projections with smaller basis sizes, adaptivity prevents the cost per vector from growing
too large. However adaptivity cannot lower the total number of Krylov vectors that must
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be computed, it can only prevent the cost per vector from growing by spreading the vectors
over multiple smaller sized projections. A methodology for mitigating the increase in the
number of Krylov vectors needed per projection as the spectrum grows with problem size
would be desirable. For Krylov-based implicit integrators, preconditioning is the primary
means for minimizing the number of Krylov vectors which must be computed, and is the
chief means of making such methods scalable. While there have been some early results
[47, 71], currently no efficient preconditioning strategies exist for exponential integrators.
Development of effective preconditioning could significantly improve the scalability of ex-
ponential integrators and make them competitive with implicit integrators on problems for
which good preconditioning approaches already exist.

Implicit-explicit (IMEX) methods can be efficient for problems which can be split into
stiff and non-stiff portions. Semilinear problems of the form y′ = Ly + N(y) where the
stiffness is primarily constrained to the L operator, such as many diffusion-reaction prob-
lems, are common examples of such systems. Since the problem is stiff, integrating the
problem with an explicit integrator is typically cost prohibitive, but by treating the stiff
portion with implicit time integration and the non-stiff portion with explicit integration
IMEX methods can save cost over applying a fully implicit method to the problem. As
a tradeoff, IMEX methods typically have reduced stability compared to fully implicit in-
tegration. Currently there is work to develop hybrid implicit-exponential integrators [70],
which replace the explicit treatment of the non-stiff portion with exponential integration.
While exponential methods are generally more computationally costly than classical ex-
plicit integration, such hybrid methods may prove efficient for problems where the limited
stability of IMEX methods requires smaller time step sizes than needed for accuracy. An
advantage of such methods would be that preconditioning strategies for the implicit portion
of IMEX methods would carry over to implicit-exponential methods, possibly providing a
middle ground to finding preconditioning approaches for exponential methods directly.

There are a variety of other means for approximating the ϕk(hJ)v terms besides Krylov
techniques. Some examples are polynomial approximation, such as Chebyshev [52] or Leja
point approximation [10], improvements to Taylor approximation [2], and contour integral
approximation [33, 59, 73]. Depending on the problem, some of these techniques may prove
to be more efficient than Krylov approximation, and in some cases and may scale better
on large parallel machines. Currently performance comparisons between approaches are
limited [7, 8] however, particularly scalability studies for parallel implementations. Our
software is designed to accommodate alternative methods for approximating the ϕk(hJ)v
terms and we hope to use it for comparison of approaches.

Finally there needs to be more studies of the application of exponential integrators to
large-scale scientific problems of current interest. The majority of performance analysis so
far has been done using benchmarking problems. There have been a number of cases of ap-
plying exponential integrators to scientific applications on the single-processor scale, ranging
from magnetohydrodynamics [65, 40] to option pricing [64, 38], but to our knowledge there
have been none on the parallel scale. Better understanding of how exponential integrators
perform on very large problems of current interest in high performance computing would
help popularize them in the scientific community.
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