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The inflammasome is a multi-protein complex that serves as the first line of immune 
defense. NLRP3 is one of the most widely studied inflammasomes, which can be 
activated by a wide range of stimuli including membrane-damaging toxins, pathogen 
associated molecular patterns (PAMPs), and danger associated molecular patterns 
(DAMPs).  Chlamydia is a genus of small, Gram-negative, obligate intracellular bacteria 
comprising four species. Among them, Chlamydia trachomatis (C.t) is the leading cause 
of bacterial sexual transmitted diseases (STD) worldwide, for which there are currently 
no effective vaccines. This is due to the difficulties in identifying and delivering relevant 
T cell antigens and in developing appropriate adjuvants. Vaults are large, cylindrical 
cytoplasmic ribonucleoprotein particles found in nearly all eukaryotic cells. Recombinant 
vaults that encapsulate chlamydia epitopes are highly stable structures in vitro, therefore 
could be employed as an ideal vaccine vehicle for epitope delivery. In the first part of this 
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study, we tested the ability of vaults containing an immunogenic chlamydial epitope of C. 
trachomatis to be internalized into human monocytes and to activate the NLRP3 
inflammasome. We demonstrate that chlamydia vaults co-localized with lysosomes and 
cathepsin B release is required for the NLRP3 inflammasome activation. Our data show 
that chlamydia vaults also involve in the non-canonical inflammasome and are important 
for inflammasome activation. 
 
Chlamydia pneumoniae (C.pn) is an airborne chlamydial species responsible for human 
respiratory infection. C.pn persists within the infected tissues for periods in order to 
stimulate a chronic inflammatory response. The inflammation activated by C.pn is known 
to play an important role in the pathogenesis of atherosclerosis. C.pn has been shown to 
disseminate systemically from the lungs through infected peripheral blood mononuclear 
cells and to localize in arteries where it may infect endothelial cells, vascular smooth 
muscle cells, monocytes/ macrophages and promote inflammatory atherogenous process. 
Importantly, C.pn has recently been shown to be a new member of the human oral 
microbiota. It appears to be related to some oral infectious diseases including caries, 
periodontitis, endodonit infections, and tonsillitis. However, whether C.pn infects oral 
cells and induces cellular responses remains unknown. Therefore, we hypothesize that 
C.pn infects oral epithelial cells and activates the NLRP3 inflammasome. In the second 
part of this study, we provided evidence that C.pn infection activates the NLRP3 
inflammasome in GECs and induces IL-1β and caspase-1 secretion. Interestingly, we also 
found that C.pn is frequently present in plaques from patients with periodontitis, 
indicating a potential correlation of periodontitis with respiratory infection or 
atherosclerosis. 
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Chapter 1 Introduction 
 

1. Innate Immunology 

1.1 Pattern Recognition Receptor 

Humans are exposed to millions of potential pathogens every day. The immune system 
protects the human body from numerous pathogenic microbes at the site of infection. To 
get rid of the infections, the human body relies on both innate immunity and also adaptive 
immunity. The innate immune response consists of cells and molecules that are always 
present and are ready to impede and kill the microbes at the infection site. The adaptive 
immune response functions against the microbes that are able to evade the innate immune 
response. While adaptive immunity is specific to particular pathogens and is capable of 
creating immunological memory, innate immunity recognizes conserved features of 
pathogens and rapidly activates the inflammasome.  

The initial sensing of infection is mediated by the germline-encoded pattern recognition 
receptors (PRR), including Toll-like receptors (TLRs), NOD-like receptors, RIG-I-like 
receptors and C-type lectin receptors. These PRRs detect conserved structures among 
microorganisms, which are classified in two types: pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) [1-3]. PAMPs are 
molecules that associate with pathogens, represent pathogens, and bind with PRRs 
present at the cell surface or intracellular to activate downstream signaling pathway [4]. 
Bacterial lipopolysaccharides (LPS), endotoxins from bacteria cell membranes, flagellin, 
pepitidoglycan and nucleic acid from bacteria are all considered as PAMPs. PAMPs are 
derived from pathogens, while DAMPs are cell derived. DAMPs are also described as 
danger signals, when these molecules or signals are present in aberrant locations or 
abnormal molecular complexes that result from cell stress or tissue damages[2, 5].  

Well-studied PRRs are the toll like receptors (TLRs). TLRs are first described as toll, 
which is a receptor identified in the fruit fly Drosophila melanogaster. So far there are 
ten TLRs identified so far in human and thirteen in mice, and TLRs from 1 to 9 are 
common for both [6-8]. TLR contains N-terminal leucine-rich repeats (LRRs), a trans-
membrane region and the cytoplasmic Toll/IL-1R homology (TIR) domain. The 
extracellular LRRs are responsible for sensing and recognizing pathogens and then 
mediating ligand binding in the downstream signaling.  Once activated, most TLRs 
dimerized and the TIR domains recruit intracellular/cytosol signaling adaptors TIRAP 
(Myd88 adaptor)[8].In the downstream adaptor, MyD88 associates with IRAK-1 and/or 
IRAK-2 and activates IRAK-4. IRAK-4 recruits and phosphorylates the IRAK1/2 
complex transiently, which will further attract the (TNF)-receptor-associated factor 6 
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(TRAF6). TRAF6 in turn polyubiquinates the protein TAK1 and TAK1 then 
phosphorylates the inhibitor of NF-κB (IκB) kinase (IKK) [9, 10]. As a result, NF-κB is 
activated and translocated into the nucleus and ultimately up-regulates the transcription 
of proinflammatory cytokines like IL-1β and IL-6, which are associated with 
inflammation and cell survival.  
 

1.2 The NOD Like Receptor 

The nucleotide-binding oligomerizeation domain (NOD) like receptors (NLRs) is another 
widely studied RPP, which are intracellular sensors of PAMPs and DAMPs. NRLs are 
intracellular sensors for PAMPs and DAMPs and are generally made up of three parts: an 
N-terminal effector domain, a shared domain architecture including a nucleotide-binding 
domain (NBD), and a leucine rich repeat (LRRs) domain [11-13]. Similar to TLRs, the 
LRRs domain of NLRs detect the conserved microbial patterns (PAMPs/DAMPs) and 
then modulate NLR activities like rearrangements and oligomerization [13]. The N-
terminal effector domain is responsible for protein-protein interaction including the 
caspase-recruitment domain (CARD), pyrin domain (PYD). To date, there are 22 NLR 
genes found in the human genome and 34 in the mouse [14]. NLRs are highly conserved 
through evolution. Their homologs have been discovered in many different animal 
species (APAF1) [15, 16]. According to their N-terminal domains, NLR could be 
classified into four subfamilies:  the NLRP subfamily which expressing pyrin domains 
(PYDs), the CARDs subfamily containing NODs, the baculoyiral inhibitor of apoptosis 
repeat (BIR) subfamily, and the transactivator domain (AD) subfamily [17].  

NLRs usually cooperate with TLRs and regulate the innate immune response. We 
described TLR activation as the first signal, which activates the NF-κB activation and up-
regulates the transcription of pro-inflammatory chemokines/cytokines such as IL-1β. 
However, the up-regulated pro- IL-1β synthesis is not sufficient to induce IL-1β 
activation. A second signal is needed to boost IL-1β activation via NLRs. Once NLRs 
senses the dangerous signal, they will recruit some downstream adaptors constructed as a 
protein complex to further activate pro-caspase-1and IL-1β. We named this protein 
complex the inflammasome. Therefore, both the first and second signals are required to 
induce IL-1β secretion [18, 19]. 

 

1.3 Inflammasome 

The inflammasome is a multi-protein complex that contains NLRs and adaptors like 
caspase-1. Inflammasomes serve as the first line of immune defense against inducers of 
cellular stress [20]. Following detection of stress inducers such as infection, 
inflammasomes promote maturation and secretion of IL-1β [21].  
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Inflammasomes are often defined by their PRR family member, which will behave as a 
scaffold protein that recruits caspase-1 proteins together and induces caspase-1 activation 
at the same time. Inflammasomes such as the NLRP3 inflammasome, RIG-I 
inflammasome and AIM2 inflammasome are mostly found in the antiviral immunity. The 
NLRP3 inflammasome is one of the well-studied inflammasomes and can be activated by 
a wide range of stimuli, including membrane-damaging toxins, PAMPs and DAMPs [22-
25]. The NLRP3 inflammasome can also be stimulated by large particles such as 
monosodium urate (MSU) crystals, silica, nanoparticles, and the adjuvant, alum, which 
can lead to lysosomal damage after engulfment by phagocytes and the release of 
lysosomal proteases such as cathepsin B [26-28]. When these stimuli are detected, 
NLRP3 interacts with the adaptor, ASC (Apoptosis-associated speck-like protein 
containing a CARD), which in turn recruits the protease, pro-caspase-1. When pro-
caspase-1 is assembled into the inflammasome, it becomes auto-activated and cleaves 
into a 20 KD fragment and induces caspase-1-dependent maturation and secretion of 
proinflammatory cytokines such as IL-1β [24, 29-33]. Upon activation of the NLRP3 
inflammasome, the mature IL-1β is secreted out of the cells. In many cells such as 
monocytes and macrophages, the activated 20 KD form of caspase-1 is also secreted.  

Spleen tyrosine kinase (Syk) has also been considered a key regulator when coupled to 
the NLRP3 inflammasome during fungal infection and Chlamydia trachomatis infection. 
Phosphorylation of Syk is believed to regulate the entry of chlamydia into host cells in 
lipid raft domains. This is probably because lipid rafts have been observed to participate 
with the formation of phagosomes involving Syk recruitment [34-36]. 
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Figure 1. NLRP3-mediated caspase-1 activation requires two signals.  
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1.4 Non-canonical inflammasome 

To date, two types of inflammasomes have been classified: canonical and non-canonical 
inflammasomes. In the past decades, four different inflammasomes, namely NLRP1, 
NLRP3, NLRC4 and AIM2 have been identified and characterized. The four NLRs 
represent the canonical inflammasome pathway and are all dependent on caspase-1 
mediated activation. However, a recent study showed that the pathways leading to 
caspase-1 activation in response to microbial signals might be more complex than 
previously thought. The caspase-11 in mice and caspase-4/5 in human also play an 
alternative mechanism for caspase-1 activation [37-39]. Therefore the conception of non-
canonical is given, as an alternative mechanism for caspase-1 activation.  

 

2. Chlamydial strains 

2.1 Chlamydia trachomatis  

Chlamydia is used as a model system because its’ species represent the world's leading 
cause of preventable blindness, and is a common cause of respiratory and sexually-
transmitted infections in humans. There are three pathogenic chlamydial species found in 
the human body: Chlamydia	
   trachomatis,	
   Chlamydia	
   pneumoniae	
   and	
   Chlamydia	
  
psittaci. 

Chlamydia	
  trachomatis	
  (C.t) is the most prevalent bacterial sexually transmitted disease 
(STD) in the United States. Over 90 million new cases occur annually. C.t infections in 
women can cause pelvic inflammatory disease (PID) and result in infertility, ectopic 
pregnancy, and chronic pelvic pain [40]. Most C.t infections are asymptomatic, which 
makes it hard for women to be diagnosed, increasing the risk of transmission and spread 
of the infection [41, 42]. 
 
Identification of protective responses is a key component for vaccine development. 
Intensive studies have been done in order to dissect immunity towards to resolution of 
primary chlamydial infection, and immunity to reinfection in mouse genital infection 
model. CD4+ T cells play major role in resolving primary genital infection [43], 
particularly IFN-γ secreting CD4+ T cells (Th1 cells) [44], with or without CD8+ T cells 
or antibody [45, 46]. CD4+ T cells and/or antibody are also essential for resistance to 
reinfection. However, CD8+ T cells appear to be unnecessary against reinfection [46]. 
Development of a protective vaccine for prevention of	
  Chlamydia	
  PID is challenging due 
to difficulties in identifying and delivering relevant T cell antigens and developing a safe 
adjuvant that does not produce excessive inflammatory responses which can diminish the 
likelihood of public acceptance [47-49]. 
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Studies need to be done to understand how to inhibit C.t infection becoming serious, and 
how to improve the prospects for development of a vaccine against C.t infection. These 
are the topics for the study of the dissertation. 

 

2.2 Chlamydia pneumoniae 
Chlamydia pneumoniae (C.pn) is an airborne chlamydial species responsible for human 
respiratory infection. It’s also associated with atherosclerosis, coronary heart disease, and 
hyperlipidemia [50]. C.pn needs to persist within the infected tissues for periods of time 
to stimulate a chronic inflammatory response. The inflammation activated by C.pn is 
known to play an important role in the pathogenesis of atherosclerosis [51, 52]. C.pn has 
been shown to disseminate systemically from the lungs through infected peripheral blood 
mononuclear cells and to localize in arteries where it may infect endothelial cells, 
vascular smooth muscle cells, monocytes and macrophages and promote inflammatory 
atherogenous process [51, 53]. C.pn has recently been found in the human oral cavity and 
cause infectious diseases including caries, periodontitis, endodontitis, and tonsillitis [54]. 
We hypothesize that C.pn can infect oral epithelial cells and activate inflammation, which 
may further contribute to lung infections and heart diseases. 
 

2.3 Chlamydia psittaci 
Chlamydia	
  psittaci	
   (C.pi) usually	
   infects	
  birds	
  but	
  can	
  be	
   transmitted	
   to	
  humans by 
inhalation, contact or ingestion. The symptoms may differ due to the host. C.pi results in 
“fly-like” symptoms and even fatal cases of pneumonia [55, 56]. 
 

2.4 Chlamydia life cycle 
Chlamydia is an obligate intracellular pathogen that can only survive and be transmitted 
with in host cells. All Chlamydia species share a common biphasic developmental cycle, 
during which they reside within a specialized vacuole, called an inclusion, within the host 
cell. During infection, chlamydia converts between two morphologically and functionally 
separate forms: the elementary body (EB) and the reticulate body (RB) [57, 58]. The EB 
is infectious but metabolically inactive, while RB is noninfectious and metabolically 
active. After internalization, the EB is surrounded by an endosome membrane and forms 
an inclusion. The inclusion allows a permissive environment to EB transform into a 
larger metabolically active RB, which replicates by dividing binary fission.  After 40-48 
hours, which may vary among different strains, the RBs transfer back into the EB and 
reseals from inclusion to cytosol and even neighboring cells [59, 60]. 
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Figure 2. Life cycle of general Chlamydia species. 

 

2.5 Immune response to Chlamydia infection 
Chlamydia stimulates both the innate and adaptive immune response during infection. 
Lipopolysaccharide (LPS), the major surface antigen of Chlamydia, is recognized by 
PRRs including both TLRs and NLRs and up-regulates the expression of 
proinflammatory mediators. Studies have showed both TLR2 and TLR4 signaling via 
MyD88 are activated during infection and inducing early cytokine and chemokine 
production like IL-6 and IL-1b [61, 62]. These chemokine later recruits more immune 
cells like neutrophils, macrophages, dendritic cells and natural killer cells, resulting in 
more proinflammatory cytokines secreted to help with bacterial clearance [63]. However 
the release of cytokines may also cause chronic inflammation or tissue damage when the 
immune system fails to eliminate the bacteria. Therefore, it’s important to study and 
develop methods to more successfully activate the innate immune response to clear 
bacteria and minimize the damage caused by chronic inflammation. 
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3. Vaults 

Vaults were initially identified by Dr. Rome’s lab in 1986 when preparing chlathrin-
coated vesicles from rat liver, and were named due to their distinctive lobular 
morphology [64, 65]. Vaults are naturally occurring nanoparticles found widely in 
eukaryotes [66]. Vaults are classified as large cytoplasmic ribonucleoprotein particles 
(RNP) since they are composed of three protein species and a small-untranslated RNA. 
The most abundant protein in vaults is a 100 KD protein called major vault protein (MVP) 
that comprises over 70% of the particle mass. The other two proteins TEP1 and VPARP 
were also identified [67]. TEP1 is short for telomerase-associated protein 1, which is 290 
KD. And VPARP, also known as PARP4, was determined to be related to the enzyme 
poly-(ADP-ribose) polymerase (PARP) [68, 69]. Moreover, the RNA component (vRNA) 
was shown to associate with TEP1 [69, 70]. 

Vaults have a cap-barrel-cap structure, which describes a protein shell containing 
multiple copies of MVP and a large central cavity. Vaults are highly conserved through 
evolution and ubiquitously distributed suggesting that vaults’ function is essential and 
important, although its functionality remains mystery. Several findings show that vaults 
may potentially have a role in transport, drug resistance and innate immunity [71].  

 

3.1 Engineering vaults 

Vaults particles purified from rat liver are 13MDa and have a high conservation of copies 
of MVP. Studies showed that rat MVP sequence alone could directly express the 
formation of particles using the baculovirus system, so called engineering vaults [72].  
The engineering vaults have similar morphology to endogenous vaults in that the center 
is empty (41nm×41nm×72.5nm) [73]. Its central hollow is large enough for copies of 
foreign material. Moreover, several studies indicate that vaults are non-immunogenic and 
highly stable in vitro, so it is ideal to engineer antigens into vaults’ lumen and protect the 
immunogenic characteristics. 

 

3.2 Vaults immunogenicity 

As a naturally occurring nanoparticle, vaults appear to be an ideal structure to engineer 
for targeting tissues. It is reasonable to assume that vaults could be stable in the 
bloodstream since vaults are highly stable structures in vitro. Studies showed that vaults 
are non-immunogenic. Researchers have not found any antibodies that can be made to 
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purified-vaults [67]. In addition, in a nasal spray delivery model, the engineered vaults 
alone without any antigen inside failed to elicit an antibody response. 

 

3.3 Smart adjuvant 

An adjuvant is a pharmacological or immunological agent that is usually added to 
vaccines to enhance the recipient’s immune response. The engineered vaults with antigen 
packaged inside behaved like “smart adjuvants”, which could induce dendritic cells (DC) 
maturation and the secretion of cytokines and chemokine necessary for immune response, 
but did not cause DCs to secrete factors associated with tissue inflammation [74]. 

 

3.4 Chlamydia-vaults 

As mentioned previously, most	
  Chlamydia	
  infections are asymptomatic, increasing the 
risk of transmission of	
  Chlamydia	
  to unsuspecting females and result in PID [42, 75, 76]. 
Identification of protective responses is a key component of vaccine development. 
Intensive studies have been done in order to dissect immunity towards to resolution of 
primary chlamydial infection, and immunity to reinfection in mouse genital infection 
model.  

The full potential of vaccines relies on development of effective delivery systems and 
adjuvants and is critical for development of successful vaccine candidates. We have 
shown that vaults can be engineered	
  in	
  vitro	
  as an engineered vaccine, which effectively 
delivers antigen to general a protective immune response. However, we and other groups 
have also discovered that recombinant vaults could interact with host immune cells and 
display self-adjuvanting properties, distinguishing them from other vaccine preparations 
[71, 77-79]. Moreover, we reported that vaults engineered to contain a 
recombinant	
  Chlamydia	
   protein (MOMP-vault vaccine) induced strong protective anti-
chlamydial immune responses without eliciting excessive inflammation as measured by 
TNF-α production [74]. We will refer to this recombinant vault with MOMP as 
Chlamydial-vaults hereafter. We hypothesized that Chlamydial-vaults act as “smart 
adjuvants” and can be engineered to produce a tailored immune response against specific 
antigens by housing proteins in the central cavity of the recombinant vault that is hollow 
and large enough to accommodate multiple copies of foreign epitopes [74, 77]. Our data 
further suggests that the Chlamydial-vaults induced inflammasomes, an innate immune 
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response that could possibly account for the self-adjuvanting property of vault-vaccines 
upon phagocytosis. 
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Chapter 2 Materials and Method 
2.1 Cell culture, bacteria and treatment 

2.1.1 THP-1 cells with Chlamydia-vaults 
Human acute monocyte leukemia cell lines (THP-1) were obtained from American type 
Culture Collection (ATCC). THP-1 cells were grown in RPMI 1640 (Sigma-Aldrich) 
with 10% FBS (Invitrogen) and 10µg/ml gentamicin. Chlamydia-vaults were obtained 
from UCLA (Dr. Kathleen’s lab) and kept in 4°C before treatment.  
 
A total of 1×106 cells per well in a 6-well plate were differentiated with 500 nM Phorbol 
12-myristate 13-acetate (PMA) for 3 hours. Differentiated THP-1 cells were washed with 
1XPBS three times and incubated for 24 hours at 37°C with 5% CO2. Caspase-1 inhibitor 
Z-WEHD (100 nM) and Cathepsin B inhibitor CA-074 Me (10 µM) were applied to treat 
cells 1.5 hours before chlamydia-vaults infection. Syk-inhibitor (10 µM) was used 30 
minutes prior to addition of chlamydia-vaults. Chlamydia-vaults (250 nM) were 
incubated with cells, and after 6 hours post-incubation, we collected the supernatant from 
the treated cells. 
 

2.1.2 GEC cells with C.pn 
Gingival epithelial cells (GECs) were obtained from Dr. Ozlem’s lab (Gainesville, FL). 
GEC cells were grown in defined keratinocyte-SFM (1X) media (KM) (Invitrogen) 
containing 10% heat-inactivated fetal bovine serum (FBS), L-glutamine, bovine pituitary 
extract (BPE), and embryonic growth factor (EGF).  GEC cells were grown in a 
humidified incubator at 37 °C with 5% CO2. 

Chlamydia pneumoniae (C.pn) was obtained from Dr. Arditi’s lab (UCLA). GEC cells 
growing at 60% confluency on 6-well plates were infected with the C.pn at multiple 
multiplicities of infection (MOI.), and incubated usually 72hours in an incubator at 37 °C 
with 5% CO2. 

 

2.2 Gene product depletion by RNA interference 

THP-1 cells stably expressing shRNA against NRLP3, ASC, Syk and caspase-1 were 
obtained by transducing THP-1 cells with lentiviral particles containing shRNA. 
(Sequences are listed in Table 2.1) The shRNA was used separately to silence gene 
expression following the manufacturer’s instructions. Non-target shRNA control cells 
were also generated using an irrelevant sequence (Sigma; catalog number SHC002 V). 
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Cells (3 × 105) were plated at 35% confluency 24 hours prior to transduction and then the 
corresponding lentiviral transduction particles were added at an MOI of 3 overnight. 
Fresh media were added the next day, and transduced cells were selected by addition of 
media containing 2µg/ml puromycin (Sigma). The knockdown (KD) efficiency was 
tested by real-time PCR. mRNA was isolated from cells after indicated treatments or 
incubations using the Qiagen RNeasy Kit (Qiagen, Valencia, VA) following the 
manufacturer’s instruction. 

 

Table 2.1: Sequences of shRNA used to silence gene expression. 

 Sequence Cat. No 

NLRP3  5’-
CCGGGCGTTAGAAACACTTCAAGAACTCGAGTTCTTGAAGTG
TTTCT AACGCTTTTTG-3’ 

NM_004
8 95  

 

ASC  

 

5’-
CCGGCGGAAGCTCTTCAGTTTCACACTCGAGTGTGAAACTGA
AGAG CTTCCGTTTTTG-3’  

NM_013
2 58  

 

Syk  

 

5’-
CCGGGCAGGCCATCATCAGTCAGAACTCGAGTTCTGACTGAT
GATG GCCTGCTTTTT-3’  

NM_003
1 77  

 

Caspase -1  

 

5’-
CCGGGAAGAGTTTGAGGATGATGCTCTCGAGAGCATCATCCT
CAAA CTCTTCTTTTT-3’  

NM_001
2 23  

 
5’- 
CCGGTGTATGAATGTCTGCTGGGCACTCGAGTGCCCAGCAGA
CATT CATACATTTTT-3’  

5’- 
CCGGCTACAACTCAATGCAATCTTTCTCGAGAAAGATTGCAT
TGAG TTGTAGTTTTT-3’  

5’- 
CCGGCCAGATATACTACAACTCAATCTCGAGATTGAGTTGTA
GTAT ATCTGGTTTTT-3’  
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2.3 IL-1β & TNF-α ELISA assay 

Supernatants from treated cells were collected after post-incubation and stored at −80°C 
until ready for use in the assay. Measurement of IL-1β was carried out using human IL-
1β ELISA kit (eBioscience, San Diego, CA), following manufacturer’s instructions. 

 

2.4 Western blotting 
Supernatants from treated cells were collected and precipitated with TCA protein 
precipitation protocol. Briefly, 100% (w/v) Trichloroacetic acid (TCA) recipe was 
prepared. One volume of TCA stock to four volumes of protein sample was added and 
incubated 10 minutes at 4°C. Centrifuge the samples at 14K Revolution(s) Per Minute 
(rpm) for 5 minutes. Pellets were washed with acetone and heated in 95°C for 5 to 10 
minutes.	
  

Samples were lysed using 1× RIPA Lysis Buffer (Millipore) with 1× protease inhibitor 
cocktail (Biovision) and loaded onto a 12% SDS-polyacrylamide gel and then transferred 
to a polyvinylidene difluoride membrane (Millipore). For detection of the active caspase-
1 subunit, the blot was probed with 1 mg/ml rabbit anti-human caspase-1 antibody 
(Millipore), and then incubated again with conjugated 1:10000 dilution of anti-rabbit IgG 
horseradish peroxidase (Millipore). To detect mature IL-1β, the blot was probed with IL-
1β antibody (Cell Signaling) at a 1:1000 dilution, and then incubated again with 1:10000 
dilution of anti-mouse secondary antibody (Santa Cruz Biotechnology). Western blotting 
detection reagents (Amersham Biosciences) were used following manufacturer’s 
instructions and chemiluminescence was detected using a gel doc system (Bio-Rad). 

 

2.5 Fluorescence-activated cell sorting (FACS) 

THP-1 cells (2 × 106/well) were plated in 6-well plates and primed for 3 hours with 0.5 
µM PMA (Sigma-Aldrich, St. Louis, MO). Chlamydia-vaults were dual-labeled with the 
fluorescent dyes FITC and TRITC by primary amine reaction following manufacturer’s 
instructions (Pierce, Thermo Scientific, Rockford, IL). Unconjugated dye was removed 
by filtration on a PD-10 column (GE Healthcare, Piscataway, NJ). Primed THP-1 cells 
were incubated in duplicate with FITC-TRITC dual-labeled vaults for 6, 18, 24 or 48 
hours. Half of the treatments were incubated with bafilomycin (Sigma-Aldrich, St. Louis, 
MO), an ATPase inhibitor, for 30 minutes to neutralize all subcellular compartments. 
Cells were collected by trypsinization, washed and immediately analyzed by flow 
cytometry using a BD FACSCalibur (BD Biosciences, Franklin Lakes, New Jersey) and 
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data was analyzed using Flowjo software (Tree Star, Inc., Ashland, OR). A total of 
105 cells were analyzed. 

For FACS analysis of lymphocytes, the spleen was harvested from individual mice, and 
single cell suspensions were prepared by dissociating the lymphocytes through a 40-µm-
cell strainer (BD Falcon). Individual cells were washed with 1% PBS followed by red 
blood cell lysis treatment. Lymphocytes were re-suspended in RPMI 1640 at 4°C until 
used. For intracellular cytokine staining, lymphocytes isolated from spleen were 
incubated in RPMI 1640 in the presence of PmpG-1303–311 peptide for 6–8 hours. 
Brefeldin A (Sigma) was added 4 hours before the end of culture. Cells were directly 
stained with fluorochrome-labeled antibodies against CD3 (clone 145–2C11) or CD4 
(clone GK1.5). After washing, the cells were incubated with Cytofix/Cytoperm (BD 
Biosciences) for 1 h and stained with fluorochrome-conjugated anti-IFN-γ (clone 
XMG1.2), washed again, re-suspended in Cell Fix solution, and analyzed on a SORP BD 
LSR II (Beckman Dickinson, Franklin Lakes, NJ). FACS data were analyzed by Flowjo 
(Tree Star, Oregon). 

2.6 Chlamydia, immunization and challenge of mice 

Chlamydia muridarum (MoPn) was grown on confluent McCoy cell monolayers, purified 
on Renograffin gradients and stored at −80°C in SPG buffer (sucrose-phosphate-
glutamine) as previously described [48]. Female C57BL/6 mice, 5–6 weeks old were 
housed according to American Association of Accreditation of Laboratory Animal Care 
guidelines [48]. Mice receiving vaults were anesthetized with a mixture of 10% ketamine 
plus 10% xylazine and immunized i.n. with 100 µg chlamydia-vaults in 20 µl saline for a 
total of 3 times every two weeks. Mice were hormonally synchronized by subcutaneous 
injection with 2.5 mg of medroxyprogesterone acetate (Depo Provera, Upjohn, 
Kalamazoo, MI) in 100 µl saline 7 days prior to a vaginal challenge with 1.5×105 IFU 
of C. muridarum and infection was monitored by measuring infection forming units (IFU) 
from cervical-vaginal swabs (Dacroswab Type 1, Spectrum Labs, Rancho Dominguez, 
CA) as previously described [48]. 

2.7 Colocalization studies 

The following antibodies were used for immunofluorescence at the indicated dilutions: 
anti-early endosome antigen 1 (EEA1, G-4; 1:100; Santa Cruz Biotechnology, Dallas, 
TX), anti-lysosomal-associated membrane protein1 (LAMP1, clone H4A3; 1:100; 
Biolegend, San Diego, CA), anti-microtubule-associated protein 1 light chain 3 (LC3, 
clone 166AT1234; 1:100; Abgent, San Diego, CA), and AF488-goat anti-mouse 
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immunoglobulin G (IgG; 1:400; Invitrogen, Carlsbad, CA). For colocalization studies, 
THP-1 cells (1.5 × 105) were seeded onto 18 mm glass coverslips and incubated at 37 °C 
(with 5% CO2) for 72 hours in the presence of 10 ng/ml PMA. Purified PmpG-1-vaults 
vaults were labeled with DyLight 650 according to the manufacturer’s instructions 
(Pierce, Thermo Scientific, Rockford, IL). Coverslips containing primed THP-1 cells 
were incubated with 30 µg of DyLight 650-labeled chlamydia-vaults for 15 min, 30 min, 
and 1 h. Cells were fixed in 3.7% paraformaldehyde in 1× PHEM buffer (60 mM Pipes, 
25 mM Hepes, 10 mM EGTA, 2 mM MgCl2) for 15 minutes at room temperature. Cells 
were washed 3 times in 1× PHEM buffer before permeabilization for 10 minutes in 0.25% 
Triton X-100 in 1× PHEM buffer. Following permeabilization, the cells were washed 3 
times in 1× PHEM buffer prior to incubation in blocking solution (10% normal goat 
serum in 1× PHEM buffer) for 1 h at room temperature. Cells were further incubated with 
the appropriate primary antibody diluted in blocking solution for 1 h at room temperature, 
rinsed 3 times in 1× PHEM buffer and further incubated for 1 h in secondary antibody 
prepared in blocking solution. Following staining with the secondary antibody, the cells 
were washed 3 times with 1× PHEM buffer and mounted in VectaShield Hard Mount 
with DAPI (Vector Labs, Inc., Burlingame, CA) and visualized using a Yokagawa CSU-
22 spinning disc confocal scanner and a Hamamatsu C9100–13 EMCCD camera 
mounted on a Zeiss Axiovert 200m stand. The images were captured using Slidebook 5 
software (Intelligent Imaging Innovations, Inc., Denver, CO). The optimal conditions 
including the number of vault particles used for each experiment were determined 
empirically. Images were acquired with a 100× oil immersion objective and were 
processed using ImageJ (http://rsb.info.nih.gov/ij/). In addition, 10 images were used to 
determine colocalization by applying the Pearson’s correlation coefficient located in the 
JACoP Plugin module. 

 

2.8 RNA isolation, PCR and Real Time PCR  
RNA was isolated from cells after treatments using Trizol Reagent (Invitorgen) following 
the manufacturer’s instructions. In brief, 1 ml Trizol per well was added into 6-well 
plates. Incubating for 5 minutes, cells were collected and 200ul chloroform (Sigma-
aldrich) was added with 15 seconds shaking. Samples were spun down at 12,000g for 15 
minutes and transferred into a new 1.5ml tube. 500ul isopropanol (Sigma-aldrich) was 
added and incubated for 10 min before next 10min centrifuge. Pellet was washed with 
100% ethanol (Sigma-Aldrich) and then left for air-dry. Mixed with RNase-free water 
with appropriate amount and heated in 60°C for 10 min. 

RNA concentration was measured using a Nanodrop (Thermo Scientific, Wilmington, 
DE), and total RNA was converted into cDNA by standard reverse transcription with 
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Taqman reverse transcriptase kit (Applied Biosystems, Foster City, CA). Quantitative 
PCR was performed with 1:50 of the cDNA preparation in the Mx3000P (Stratagene, La 
Jolla, CA) in a 25 µl final volume with Brilliant QPCR master mix (Stratagene). The 
primers sequences used are summarized in Table 2.2.  

Table 2.2: Sequences of primers used to proceed. 

 

 
 
 
 

 

 

 

 

Gene Sequence 

GAPDH forward 5’-CTTCTCTGATGAGGCCCAAG-3’  

GAPDH reverse 5’-GCAGCAAACTGGAAAGGAAG-3’ 

NLRP3 forward 5’-CTTCCTTTCCAGTTTGCTGC-3’  

NLRP3 reverse 5’-TCTCGCAGTCCACTTCCTTT-3’  

ASC forward 5’-AGTTTCACACCAGCCTGGAA-3’  

ASC reverse 5’-TTTTCAAGCTGGCTTTTCGT-3’  

SYK forward 5' AGAGCGAGGAGGAGCGGGTG-3'  

SYK reverse 5'-CCGCTGACCAAGTCGCAGGA-3'  

IL-1b forward 5’-CAGCCAA TCTTCA TTGCTCA-3’  

IL-1b reverse 5’-TCGGAGATTCGTAGCTGGAT-3’  

IL-8 forward 5’-AATCTGGCAACCCTAGTCTGCTA-3’  

IL-8 reverse 5’-AGAAACCAAGGCACAGTGGAA -3’  

C.pn forward 5’-TTATTAATTGATGGTACAATA -3’ 

C.pn reverse 5’-ATCTACGGCAGTAGTATAGTT-3’ 
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2.9 Immunocytochemical staining and fluorescence microscopy 
GEC cells were grown on coverslips (Fisher brand) and then infected with C.pn and 
incubated at 37 °C. After treatment for 72 hours, supernatant was aspirated. Cells on the 
coverslips were fixed with freezing cold methanol for 10 minutes and washed with 
1XPBS three times. 0.1% of Tritonx100/ PBS was used to permeabilize cells for 15 
minutes and 5% BSA/PBS was used to block the cells for an hour. Cells were then 
stained with IMAGEN Chlamydia (Imagen) in humid environment for 15 minutes. 
During the last 5 min of incubation, Hoechst 3342 stain (Sigma) was added, and then 
cells were washed three times with PBS for 5 minutes each time. Coverslips were 
mounted with cells side down on glass slides using a small drop of mounting medium and 
then sealed to the slides with nail polish, and finally viewed on a wide field fluorescence 
microscope (Leica, Deerfield, IL).  

 

2.10 Clinical samples preparation and PCR  

Dental plaque from subgingival periodontal pockets was collected using sterile Gracey 
curettes. Plaque from the curette was transferred into 350 ul of RTF buffer (0.045% 
K2HPO4, 0.045% KH2PO4, 0.09% NaCl, 0.09% (NH4)2SO4, 0.018% MgSO4, 0.038% 
EDTA, 0.04% Na2CO3, 0.02% dithiothreitol ) [80]. Plaque samples were collected from 
10 patients. Two healthy sites and two periodontics sites were collected from each patient. 
The sites are shown in the following table 2.3. 

Table 2.3: Positions of sites of Clinique samples. 

Patient No. Healthy site A Healthy site B Diseased site C Diseased site D 
1 6DB 7DB 5DB 29DB 
2 7B 10B 2MB 3DL 
3 8DB 9MB 14DL 31ML 
4 7MB 6MB 29DL 31ML 
5 5B 6B 2DL 12DB 
6 11B 10B 19DL 18ML 
7 27B 6B 31DL 32ML 
8 8B 6B 21DL 2DL 
9 8MB 7B 6MB 2DB 
10 10B 11B 3MB 2DB 
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All the samples were incubated in 95°C for 10 minutes, and PCR was performed to 
amplify bacteria DNA using Taqman PCR kit. (Qiagen). A hot-start protocol was used in 
which samples were preheated at 94°C for 4 min, followed by amplification using the 
following conditions: denaturation at 94°C for 45 s, annealing at 60°C for 45 s, and 
elongation at 72°C for 2 min, with an additional 1 s for each cycle. Thirty five cycles 
were performed, followed by a final elongation step at 72°C for 15 min. Amplicon size 
and amount were examined by electrophoresis in a 2% agarose gel stained with a final 
concentration of approximately 0.5µg/mL ethidium bromide (EtBr) (Invitrogen, Carlsbad, 
CA) and visualized under UV light. Purified C.pn strain was applied as a positive control. 
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Chapter 3. Results: Activation of the NLRP3 
inflammasome by vault nanoparticles expressing a 

chlamydial epitope. 
 
3.1 Chlamydia-vaults activate the NLRP3 inflammasome and induce 
IL-1β secretion, as measured by an ELISA assay. 
 
THP-1 is a human monocytic cell line that can be differentiated into macrophage-like 
cells upon priming with phorbol-12-myristate-13-acetate (PMA). It synthesizes pro-IL-1β 
thereby serving as a good model for studying inflammasome activation. To evaluate 
whether chlamydia-vaults induce inflammasome activation, we measured IL-1β secretion 
from PMA-primed THP-1 cells incubated with chlamydia-vaults containing the 
chlamydial epitope, PmpG. After 6 hours of incubation, significantly higher levels of IL-
1β were detected in the supernatants from chlamydia-vaults treated than untreated cells 
(Figure 3A).  
 
Empty vaults without any epitope were also tested and no induction of immune response 
could be detected (data not shown) [74]. Therefore they were not included in the 
experimental setting hereafter. To determine whether IL-1β secretion induced by 
chlamydia-vaults is dependent on caspase-1 activation, we incubated the cells with a 
caspase-1 inhibitor, z-WEHD-fmk [81]. This inhibitor also blocks caspase-4 and caspase-
5, which could potentially modulate inflammasome activity [37]. Upon pre-treatment of 
cells with z-WEHD-fmk, chlamydia-vaults induced dramatically decreased levels of IL-
1β secretion (Figure 3A). Meanwhile, the levels of activated caspase-1 were also 
examined by ELISA and Western blot analyses. While chlamydia-vaults stimulated a 
dramatic secretion of mature caspase-1, z-WEHD-fmk treatment efficiently blocked 
caspase-1 activation as expected (Figure 3C).  
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Figure	
  3	
  PmpG-1-vaults activate the NLRP3 inflammasome and induce IL-1 secretion, as measured by an 
ELISA assay. THP-1 (1 × 106) wild type (WT) cells (A) were incubated in 6-well plates with RPMI 1640 media. 
Inhibitors of caspase-1 (ZWEHD) or cathepsin B (CA-074) were added individually 1.5 hour prior to incubation 
with PmpG-1-vaults, and the Syk inhibitor was added 0.5 h prior to incubation with PmpG-1-vaults. THP-1 
knockdown (KD) cells (B) were incubated with media alone, and 500 g of PmpG-1-vaults were added to each 
well, except the WT control (p < 0.001). (C) THP-1 (1 × 106) WT cells were incubated in 6-well plates. ZWEHD 
or CA-074 was added individually 1.5 h prior to incubation with PmpG-1-vaults, and the Syk inhibitor was 
added 0.5 hour prior to incubation with PmpG-1-vaults. (D) THP-1 knockdown (KD) cells were incubated with 
media alone, and 500 g of PmpG-1-vaults were added to each well, except the WT control. The mean ± SD of a 
representative experiment from six times was analyzed by ANOVA. In all cases, cell supernatants were 
measured in triplicate. 	
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3.2 Incubation of cells with PmpG-1-vaults activates the NLRP3 
Inflammasome  

 
The NLRP3 inflammasome could be activated by a broad range of stimuli, such as 
nanoparticles and crystals [82]. We have demonstrated that chlamydia-vaults is able to 
induce IL-1β and caspase 1 secretion from THP-1 cells. To further investigate the 
mechanism by which PmpG-1-vaults activate the NLRP3 inflammasome, we focused on 
several representative NLRP3 components that are involved in inflammasome pathway. 
These include the NLR family member NLRP3, the adaptor protein ASC, the protease 
caspase-1, and the mediators Syk and cathepsin B. To test whether these components 
play a role in vault-induced IL-1β secretion, we either applied inhibitors against each 
component or depleted some components by RNA interference. When CA-074 Me, an 
inhibitor of cathepsin B, was incubated with cells 1.5 hours before incubation with 
PmpG-1-vaults, there was a large inhibition of IL-1β secretion (Figure 3A). In contrast, 
the inhibitor alone had no effect on IL-1β secretion (data not shown). Similarly, pre-
incubation with a Syk inhibitor for 30 minutes significantly decreased chlamydia-vaults 
induced IL-1β secretion (Figure 3A). These results suggest that both Syk recruitment and 
lysosomal destabilization are involved in vault-induced inflammasome activation. To 
specifically probe for NLRP3 inflammasome activation by the chlamydia-vaults, we 
depleted ASC and NLRP3 using shRNA approach delivered by lentiviral particles. THP-
1 cells were either treated with a non-silencing shRNA control, or lentiviral constructs 
selectively knock down ASC, Syk, caspase-1, and NLRP3 
 
As compared to the non-silencing control, THP-1 cells depleted for either gene 
expression produced dramatically decreased levels of IL-1β upon stimulation with 
chlamydia-vaults (Figure 3B). These results reinforce our conclusion that PmpG-1-vaults 
induce IL-1β secretion via NLRP3 inflammasome activation. Next, we measured 
caspase-1 activation in the presence of inhibitors against upstream mediators of the 
NLRP3 inflammasome. The cathepsin B inhibitor, CA-074 Me, dampened chlamydia-
vaults mediated caspase-1 activation by approximately half, suggesting that lysosomal 
disruption may be involved in this process. In addition, the Syk inhibitor also strongly 
decreased caspase-1 activation (Figure 3C). To further confirm the specificity of these 
inhibitors on NLRP3 inflammasome inhibition, we verified the effect of inflammasome 
gene silencing on caspase-1 activation. As expected, depletion of the respective target 
genes (NLRP3, ASC, and Syk) by RNA interference significantly dampened PmpG-1-
vault-induced caspase-1 activation in THP-1 cells (Figure 3D). Moreover, there was also 
less caspase-1 activation when the cells were depleted of caspase-1 (Figure 3D). The 
knockdown efficiency of the respective shRNA constructs was confirmed by qPCR 
(Figure 6). In addition to the results on processed IL-1β and activated caspase-1 secretion 
obtained by ELISA (Figure 3), we also confirmed the protein levels of mature IL-1β and 
activated caspase-1 in the cell culture supernatant by Western blot (Figure 4). Incubation 
of THP-1 cells with PmpG-1-vaults stimulated secretion of mature IL-1β in the 
supernatant, which could be inhibited by pre-incubation with the caspase-1 inhibitor z-
WEHD-fmk (Figure 4A and B). Similarly, activated caspase-1 could be detected in the 
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supernatant of PmpG-1-vault-stimulated THP-1 cells, and its levels could be inhibited by 
z-WEHD-fmk (Figure 4C and D). To further confirm the functional specificity of the 
shRNA depletion of the inflammasome gene expression, the respective THP-1 cell lines 
were primed with 10 µg/ml LPS and the TNF-α secretion was measured by ELISA, as 
secretion of this cytokine takes place through an inflammasome-independent pathway. As 
expected, depletion of inflammasome-associated components had no effect on LPS-
induced TNF-α production in THP-1 cells (Figure 5), demonstrating that shRNA-
mediated depletion of caspase-1, ASC, NLRP3 and Syk specifically affected cytokine 
secretion via inflammasome-dependent pathway. Taken together, these results 
demonstrate that the chlamydia-vaults vaccines can activate caspase-1 and stimulate IL-
1β secretion through a signaling cascade involving the NLRP3 inflammasome. 
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Figure	
   4	
  Activation	
   of	
   NLRP3	
   inflammasome by Chlamydia-vaults leads to caspase-1 and IL-1β  maturation. 
THP-1 (1 × 106) wild type (WT) cells (A) were incubated in 6-well plates with RPMI 1640 media. ZWEHD was 
added 1.5 h prior to incubation with PmpG-1-vaults. THP-1 knockdown (KD) cells (B) were incubated with 
media alone, and 500 g of PmpG-1-vaults were added to each well, except the WT control. Culture supernatants 
were collected 6 hours post-incubation and IL-1 or caspase-1 were detected by Western blot. (A) Western blot of 
the supernatant probed for IL-1. (B) Histogram showing the intensity of the bands in the Western blots. (C) 
Western blots of the supernatant probed caspase-1. (D) Histogram showing the intensity of the bands in the 
Western blots.  
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Figure	
   5 Depletion of inflammasome-related genes does not affect TNF-a levels. THP-1 (1 × 106) knockdown 
(KD) cells were incubated in 6-well plates with RPMI 1640 media. LPS (100 ng/ml) was added as stimulator. 
Culture supernatants were collected 24 hours post-incubation, and TNF-a was measured by ELISA. TNF-a 
levels from WT cells were compared to KD cells stimulated by LPS. The values for the WT and KD cells were 
not statistically significant: p < 0.5 for WT vs caspasd-1 KD, and p < 0.5 for WT vs Syk KD cells. 
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Figure 6 The knockdown efficiency of NLRP3, ASC, Caspase-1, and Syk in THP-1 cells. Efficiency was 
measured by real-time PCR. Ct values are normalized to GAPDH and relative expression (ΔΔCt) is calculated 
compared to non-infected cells.  
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3.3 Internalized Chlamydia-vaults co-localize with lysosomes  

 
We next investigated the intracellular trafficking of chlamydia-vaults after their uptake 
by THP-1 cells. Chlamydia-vaults were dually labeled with FITC (green) and TRITC 
(red) (Figure 7A) and examined for intracellular localization by flow cytometry (Figure 
7B). As the fluorescence of FITC is sensitive to pH, this labeling strategy allows us to 
determine whether the particles enter an acidic compartment after internalization. In 
parallel, one group of cells was treated with bafilomycin to prevent re-acidification of 
vesicles before incubation with chlamydia-vaults. While the majority of chlamydia-vaults 
were in acidic compartments after 6 hours of incubation, most of them were at neutral pH 
after 24 hours (Figure 7C). These results indicate that following phagocytosis, the 
majority of PmpG-1-vaults are internalized initially into acidic compartments 
(endolysosomes or phagolysosomes), from which they escape into the cytosol.  
 
To further address the intracellular localization of chlamydia-vaults, we examined their 
co-localization with cellular compartment markers by confocal fluorescence microscopy. 
The chlamydia-vaults were labeled with DyLight650 and EEA1, Lamp1, and LC3 were 
selected for markers of early endosome, lysosome, and auto-phagosome, respectively 
(Figure 8). After 15 min, 30 min and 60 min, approximately 40% of chlamydia-vaults co-
localized extensively with EEA1 and Lamp1 (Figure 8), as calculated by a significant 
Pearson’s coefficient. This indicates that the majority of chlamydia-vaults were 
internalized into lysosomes, which led to lysosomal disruption. These results are in 
agreement with previous observation that inhibitors of cathepsin B block NLRP3 
inflammasome activation in cells incubated with chlamydia-vaults.  
 
 

3.4 Immunization with chlamydia-vaults induces an immune response 
in vivo  

 
Given that chlamydia-vaults elicit strong activation of NLRP3 inflammasome in vitro, we 
next examined its immunogenicity in vivo. To this end, mice were vaccinated vaginally 
with the chlamydia-vaults vaccine, and the immune responses were monitored. Spleen 
cells were harvested from naïve mice as well as from mice that were immunized with 
chlamydia-vaults three times. Two weeks after the last immunization, all mice were 
sacrificed and the lymphocytes were isolated from spleens and stimulated in vitro 
overnight. Single cell suspensions were analyzed by flow cytometry for expression of 
CD3, CD4, and IFN-γ, which are markers for Th1 helper cells, and were gated on cells 
that are specific for MHC peptide tetramers containing a peptide derived from PmpG-1 
(Figure 9). We observed that the cells from immunized mice contained a larger 
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percentage of specific Th1 cells within the CD4+ cell population than cells from naïve 
mice did. Taken together, these results demonstrate that the foreign epitope incorporated 
into the PmpG-1-vault vaccine is accessible to the immune system in vivo, which could 
be harnessed to elicit effective immune response to chlamydia antigens. 
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Figure	
   7 PmpG-1-vaults are internalized into an acidic compartment. (A) PmpG-1-vaults dual-labeled with 
FITC and TRITC fluorophores and incubated with PMA-activated THP-1 cells. (B) Gating scheme (black 
circle) showing the dot plot of PMA-activated THP-1 cells after PmpG-1-vaults incubation. FITC can only 
fluorescence when inside acidified chambers and fluorescence can be modified with bafilomycin which prevents 
re-acidification of vesicles while TRITC constitutively fluoresces. (C) Overlay histogram of FITC-labeled vault 
fluorescence ± bafilomycin after 6 hours and 24 hours post vault exposure. 
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Figure	
   8	
   Uptake of PmpG-1-vaults and colocalization within the endocytic pathway. (A) THP-1 cells were 
grown on 18 mm glass cover slips and treated with 30 g of DyLight 650 labeled PmpG-1-vaults for 15, 30, and 60 
minutes and imaged by confocal microscopy. For immunofluorescence staining, THP-1 cells were reacted with 
anti-EEA1 mouse mAb, anti-Lamp1 mouse mAb, or anti-LC3 mouse mAb followed by Alexa Fluor 488-
conjugated goat anti-mouse to identify endocytic compartments. (B) Colocalization of PmpG-1-vaults within 
each compartment was determined by calculation of the Pearson’s correlation coefficient of the red and green 
channels using ImageJ.. 
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Figure 9 PmpG-1-vaults immunization induces a cellular immune response in vivo. Spleen cells were harvested 
from naïve mice as well as mice immunized with PmpG- 1-vaults containing a total of 15 g PmpG-1 peptide, 7 
days after challenge. Bars indicate percentage of CD3+CD4+IFN+ (Th1) cells out of CD4+ cells following in 
vitro stimulation with PmpG-peptide (mean % ± SEM). n = 4, p < 0.001 by Student’s t-test. 
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3.5 Chlamydia vaults activate canonical and non-canonical 
inflammasomes 

 
Over the past decades, four different inflammasomes, namely NLRP1, NLRP3, NLRC4, 
and AIM2 have been identified and characterized. They are classified into canonical 
inflammasome pathways given their concurrence on the mechanism of caspase-1 
activation. However, until very recently does it appear that the pathways leading to 
caspase-1 activation in response to microbial signals are more complex than previously 
thought. The caspase-11 may act as an alternative upstream molecule of caspase-1, 
therefore constitutes a non-canonical mechanism for caspase-1 activation. Accordingly, 
this pathway can stimulate both caspase-1 dependent and independent production of IL-
1β and IL-18. The human orthologs of murine caspase-11 are caspase-4 and caspase-5. 
To examine whether caspase-4/5 are involved in IL-1β production in THP-1 cells in 
response to chlamydia-vaults, we applied caspase inhibitors that selectively block 
caspase-1, -4, and -5. While chlamydia-vaults induced considerable IL-1β secretion in 
THP-1 cells, this secretion was efficiently blocked by inhibitors of caspase-1, caspase-4 
(YVAD, Biovision), and caspase-5 (WEHD, Biovision), used either alone or in 
combination (Fig.10A). Likewise, the secretion of mature caspase-1 was also hampered 
under the same conditions (Fig.10B). The fact that both IL-1β and caspase-1 secretion 
were blocked by caspase-4, 5 inhibitors strongly indicates that non-canonical 
inflammasomes were also involved in caspase-1 activation by chlamydia-vaults. 
Recently, it was shown that the murine caspase-11 and human caspase-5 are pathogen 
recognition receptors for cytosolic LPS. We therefore examined the activation of non-
canonical inflammasomes by measuring activation of human caspase-4 in PMA- or LPS-
primed THP-1 cells (Fig.10C). Similarly to LPS-induced caspase-4 activation, 
chlamydia-vaults also stimulated caspase-4 activation, which could be inhibited in the 
presence of caspase-5 inhibitor (Fig.10C). To our best knowledge, this is the first 
observation that chlamydia-vaults or nanoparticles of any kind could activate non-
canonical inflammasomes. Therefore, we hypothesize that a full protection provided by 
chlamydia-vaults in vivo requires the activation of both canonical and non-canonical 
inflammasomes (Fig.12). 
 
Another non-canonical inflammasome identified recently was the caspase-8 dependent 
inflammasome. Our results showed that IL-1β secretion induced by chlamydia-vaults was 
inhibited when caspase-8 and Syk inhibitor were applied (Fig.11A). However, caspase-1 
secretion was not affected by caspase-8 inhibitor comparing to Syk inhibitor, which 
suggest that caspase-1 secretion was caspase-8 independent (Fig.11B). 
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Figure 10 Chlamydia-vaults activate non-canonical caspase-4&5 inflammasome. THP-1 cells were incubated in 
RPMI media in various conditions as shown above. (A) IL-1β  was measured in triplicates by ELISA kit and (B) 
Caspase-1 was measured in triplicates by ELISA kit. (C) Activated caspase-4 was detected by western blot. Data 
are collected from at least 3 independent experiments. Error bars represent ±SD, and Student’s t test was 
conducted. N.D (not detected), n.s (not significant), ***P < 0.001  
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Figure 11 Caspase-8 inhibitor could decrease chlamydia-vaults activated IL-1β  secretion but not the caspase-1 
secretion. THP-1 cells were infected with Chlamydia-vaults with inhibitors. (A)-(B) IL-1β  and caspase-
1secretion was analyzed by ELISA. Data are collected from at least 3 independent experiments. Error bars 
represent ±SD, and Student’s t test was conducted. N.D (not detected), N.S (not significant), ***P < 0.001.  

 

                          

Figure 12 Model of the effect of vault influence on activation.  

 

	
  

THP-1 
WT

WT+v
au

lts

WT+S
yk

 In
hibito

r+
Vau

lts

WT+V
au

lts
+ C

as
pas

e8
 in

hibito
r

WT+P
ice

ata
nnol +

va
ults

0

100

200

300

400

IL
#1
β%
se
cr
e*

on
%(p

g/
m
l)

***
***

THP-1 
WT

WT+v
au

lts

WT+S
yk

 In
hibito

r+
Vau

lts

WT+V
au

lts
+ C

as
pas

e8
 in

hibito
r

WT+P
ice

ata
nnol +

va
ults

0

20

40

60

80

100

Ca
sp
as
e#
1%
se
cr
e*

on
%(p

g/
m
l) ***

***

N.S.A B



	
  
	
  

36	
  

3.6. Vaults are important for inflammasome induction 
	
  
Previous in vitro work showed that vaults harboring Chlamydia antigen could stimulate 
innate immune response by activating the NLRP3 inflammasome. To further understand 
how vaults impact a chlamydial genital infection, we infected MVP KO mice that are 
deficient in endogenous vaults. MVP KO mice were infected intravaginally with 
C.muridarum following a 7-day treatment with progesterone. We found that MVP KO 
mice displayed a statistically greater bacterial burden in the genital tract after infection 
than the WT mice (Fig.13A). 
 
 
A.	
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Figure 13 Vaults are required for inflammasome activation. A. Results of bacterial burden from vaginal swabs 
following infection. *P<0.001 by two way ANOVA, n=6/group. B. Relative levels of C. trachomatis 16s rRNA 
after 48 hours of infection with MOI 1 of C. trachomatis in MEF cells from WT and MVP KO mice. C. Western 
blot of activated caspase-1 following infection with MOI 1 of C. trachomatis in MEF from WT or MVP KO mice.  

Mouse embryonic fibroblasts (MEFs) from both MVP KO and WT mice were also 
infected in vitro with C.m for 48 hours. As expected, MEFs from MVP KO mice 
accumulated more than 5 fold of C.m than the WT mice as measured by C.m 16S rRNA 
levels (Fig.13B). Moreover, C.m infection of MEFs from WT mice induced a high level 
of mature caspase-1 after 48 hours, indicating the activation of inflammasome. In 
contrast, infection of MEFs from KO mice failed to induce caspase-1 production, 
indicating that vaults are important for inflammasome induction (Fig.13C). 
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Chapter 4. Discussion and future perspectives of 
chlamydia-vaults project: 

Vaccines that prevent significant infection of the female genital tract are essential to 
reduce the incidence of PID following C. trachomatis infection. We have shown that 
vaults containing a chlamydial protein (MOMP) markedly reduces infection early after 
infection, suggesting that the self-adjuvanting vault vaccine activates innate immunity 
while not elicits excessive inflammation as measured by TNF-α production [74]. In this 
study, we characterized the innate immune response from the perspective of 
inflammasome activation. The results demonstrate that incubation of PMA-primed THP-
1 cells with PmpG-1-vaults can activate caspase-1 and stimulate IL-1β secretion through 
a process requiring the NLRP3 inflammasome. We found that the cathepsin B inhibitor 
CA-074 Me could partially inhibit this process. Interestingly, when internalized PmpG-1-
vaults were visualized in cells, we found that the vaults co-localized with lysosomes at 
early time points post-entry. Moreover, the lysosomal permeabilization assay 
demonstrated that the PmpG-1-vaults localized in acidic compartments at early time 
points, but were subsequently transferred to an environment with neutral pH. Once 
lysosomes are ruptured, they release proteases such as cathepsin B, which have been 
previously shown to activate the NLRP3 inflammasome. 
 
Syk also modulates vault-induced inflammasome activation. While the mechanism for 
this dependence is not yet known, the Syk kinase is known to be recruited into lipid rafts 
when phagosomes form [83]. It has also been proposed that MVP is involved in 
intracellular transport and is concentrated in lipid rafts [84]. Given that vaults are 
phagocytosed by cells during incubation, we speculate that PmpG-1-vaults might enter 
the cells though lipid rafts and then interact with Syk kinase and, simultaneously, 
lysosomes, in order to activate the NLRP3 inflammasome. Alternatively, the chlamydia-
vaults were engineered with a 33 amino acid–peptide called the “Z” domain. This peptide 
was derived from a staphylococcal-binding domain that can bind the Fc portion of IgG at 
a site distinct from the binding site for the Fc receptor (FcR). It has also been previously 
shown that vaults with a “Z” domain increase binding of mouse IgG [74]. We expected 
that these vaults would be internalized through the FcR, which also stimulates the Syk 
pathway [84]. Further studies should elucidate the mechanisms whereby chlamydia-
vaults stimulate Syk- and cathepsin B-dependent NLRP3 inflammasome activation. 
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Taken together, these findings support a model whereby in vivo administered vault-
vaccines are phagocytosed by antigen presenting cells as we have shown in vitro using 
BMDC [85]. Following internalization, we showed that incubation of monocytes with 
chlamydia-vaults could activate caspase-1 and stimulate IL-1β secretion through a 
process requiring the NLRP3 inflammasome. Inhibitors of the lysosomal protease, 
cathepsin B, prevented inflammasome activation, implying that lysosomal disruption 
likely plays a role in caspase-1 activation. This interpretation is consistent with the 
observation that the chlamydia-vaults are internalized through a pathway that is 
transiently acidic and leads to destabilization of lysosomes. Chlamydia-vault interaction 
within cells are unique from other reported activators of NLRP3 inflammasomes, in that 
Syk was also shown to be involved in PmpG-1-vault-induced inflammasome activation, 
which may be due to vault interactions with lipid rafts. Vault vaccines can also be 
engineered to induce specific adaptive immunity, as we have shown here that 
immunization of mice with chlamydia-vaults induces generation of chlamydia-responsive 
CD4+ cells immune cells. Vaults can also be engineered to deliver drugs and promote 
anti-tumor responses [74, 77, 78]. These studies define vault-vaccines as unique among 
other vaccines that induce NLRP3 inflammasomes, such as alum, as they are also able to 
induce specific marked T cell responses against antigens incorporated in the vault body. 
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Chapter 5. Results: Activation of the NLRP3 
inflammasome by Chlamydia in Gingival 

Epithelial Cells. 
Chlamydia pneumoniae (C.pn) is an airborne chlamydial species responsible for human 
respiratory infection. It is also associated with atherosclerosis, coronary heart disease, and 
hyperlipidemia.[50] C.pn needs to persist within the infected tissues for periods in order 
to stimulate a chronic inflammatory response. C.pn has been shown to disseminate 
systemically from the lungs through infected peripheral blood mononuclear cells to 
localize in arteries where it may infect endothelial cells, vascular smooth muscle cells, 
monocytes/ macrophages and promote inflammatory atherogenous process. [51,53]. 
Interestingly, we questioned where C.pn comes from. It has recently been shown to be a 
new member of the human oral microbiota. One clinical case reported that C.pn was 
detected in human dental plaque and may relate to periodontitis. The first line of defense 
against microbial infection lies in the tissues such as skin and oral mucosa. Human 
gingival epithelial cells (GECs) represent the prominent component of the oral cavity and 
are the common targets for periodontal-pathogen infection. Therefore, we hypothesize 
that C.pn adheres to gingival epithelial cells and infects them leading to inflammation, 
which may further contribute to oral diseases or lung infections. 

5.1 C. pneumoniae infects human gingival epithelial cells 
In order to determine the infection ability of C.pn in oral environment, we established 
GEC cells as a physiologically relevant model to study oral infection and diseases. GEC 
cells were infected with C.pn for four days and stained for cell nucleus (shows blue) and 
C.pn (shows green). Immunofluorescence microscopy results showed that the lung 
disease pathogen C.pn could infect human gingival epithelial cells during four days 
(Fig.14A). At the meantime, we found that the inclusions formed in GEC occurred at 
later time points from around 72 hours to 96 hours, while in lung epithelial cells it was 
ranged from 48 hours to 72 hours. Therefore we questioned if the infection efficiency 
differs in different cell types.  We tested the infection of C.pn in three cell lines including 
GECs, HeLa, and A459. A459 cells are lung carcinoma epithelial cells and are 
considered as an ideal model for Chlamydia infection and disease development. With the 
same multiplicity of infection of C.pn, GECs displayed the same level of infection 
efficiency as compared to HeLa and A459 cells (Fig.14B). Real-time PCR analysis of the 
C.pn 16S RNA expression level showed that C.pn attached the cells on the first day and 
infected on the second day. The cells exhibited a great bacterial burden on day 2 and 
limited growth during the infection. The C.pn 16S RNA expression level declined on day 
5 when elementary bodies exited the host through lysis or extrusion (Fig.14C). Therefore, 
we conclude that human lung pathogen C.pn could infect GEC cells. 
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Figure 14 Infection of human gingival epithelial cells C. pneumoniae. (A). GEC cells were grown on 18 mm glass 
cover slips and treated with C.pn in MOI 5 for four days and imaged by confocal microscopy. For 
immunofluorescence staining, GEC cells were reacted with either Hoechst endocytic compartments (Bio-rad), 
anti- C.pn antibody. Nuclear was showed in blue and C.pn showed in green. (B) C.pn infect efficiency was 
confirmed in Q-PCR compared with Hela cells and A459 cells in day 2, MOI 5. (c) C.pn infection level among 5 
days were examined by Q-PCR, C.pn 16s RNA was applied to detect infection. Data were collected from 4 
independent experiments. Error bars represent ±SD, and Student’s t test was conducted.  ***P < 0.001.  
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5.2 Inflammasome is activated during C.pn infection of GEC cells model. 

 
Previous studies showed that oral bacterium like Fusobacterium nucleatum could induce 
GEC to overexpress pro-IL-1β therefore leading to IL-1β secretion [86]. Moreover, C.pn 
infection in THP-1 cells was also shown to induce IL-1β secretion [87]. Therefore we 
sought to examine whether C.pn infection could trigger GEC cells to secrete IL-1β. GEC 
cells were infected with C.pn at a MOI of 5 for different time points.  To measure the 
levels of mature IL-1β, Supernatants from infected cells were collected and subjected to 
ELISA analysis. The results showed that IL-1β secretion from infected cells increased 
over the 5-day infection period, which reached the peak on day 4. In parallel, the 
uninfected group did not show a significant change over time (Fig. 15A). As the pro-
inflammatory protease caspase-1 is essential for IL-1β secretion [88], we next 
investigated the role of caspase-1 in C.pn induced IL-1β secretion. To this end, we 
collected the supernatants from both C.pn infected and uninfected groups, and the 
supernatants were concentrated according to the TCA protein precipitation protocol. 
Western blot analysis showed that the levels of caspase-1 increased from day 1 to day 4. 
(Fig.15B and C). These observations reason why IL-1β level peaked on day 4, and 
demonstrate that C.pn-induced IL-1β secretion relies on caspase-1 activation.  
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Figure 15 Caspase-1 is activated during C.pn infection in GECs. (A) ELISA measurement for IL- 1β during five 
days of C.pn infection. PBS mock group was applied as a negative control. (B) Caspase-1 secretion was checked 
with western blot, and the analysis of the caspase-1 western blot was shown in (C) by intensity of each lane. Data 
were collected from 3 independent experiments. Error bars represent ±SD, and Student’s t test was conducted.  
***P < 0.001. 
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5.3 NLRP3 inflammasome is activated in response to C.pn infection. 

 
We have shown that C.pn infection of GECs could induce inflammasome activation and 
mature IL-1β and caspase-1 secretion. It is next necessary to determine on which 
inflammasome it depends. Previous studies showed that sub-gingival bacteria could 
activate NLRP3 inflammasome in gingival epithelial cells. Moreover, NLRP3 
inflammasome was reported as a key player during C.pn infection in THP-1 cells. Of note, 
it was mentioned in the earlier chapter that the inflammasome is a multiprotein oligomer 
consisting of ASC, NLRs and caspase-1. To interrogate whether caspase-1 secretion in 
GECs was dependent on NLRP3 inflammasome activation, we silenced NLRP3 gene 
expression by using lentivirus, and the knockdown efficiency was tested by qPCR. 
(Fig.16A). One monoclonal cell line with a significant knockdown effect was selected for 
later research. The knockdown cells were cultured and infected with C.pn under the same 
conditions as the wile type cells and the control group. Supernatants were subsequently 
collected and subjected to Western blot analysis. Results showed that caspase-1 secretion 
was blocked in NLRP3 KD cells as compared with the wild-type cells and the control 
group. (Fig.14B and C)  
 
ASC is a key component of the NLRP3 inflammasome. It recruits and activates caspase-
1 , which in turn maturates cytokines such as IL-1β. Recent studies showed that upon 
NLRP3 inflammasome activation, ASC accumulates as specks and might be released to 
the extracellular space. These ASC specks and their release were regarded as a hallmark 
of inflammasome activation. By using immunofluorescence microscopy, we showed that 
ASC accumulated into speck-like structures in the cytosol on the third day of infection 
with C.pn in GEC cells (Fig.16). Along with the development of inflammation, ASC 
concentrated in the cytosol and the ASC specks were detected extracellularly on day four 
and five. Taken together, these results demonstrate that the NLRP3 inflammasome is 
activated in GECs upon C.pn infection. 
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Figure 16 C.pn-induced caspase-1 secretion in GECs requires NLRP3. (A) Results of nlrp3 relative expression 
among wild type cells and sh control and knockdown cells.  (B) Results of caspase-1 western blot from 
supernatant, and the intensity level were showed in (C).  Data were collected from 3 independent experiments. 
Error bars represent ±SD, and Student’s t test was conducted.  *P<0.5, **P < 0.01, ***P<0.001. 

GECs W
T

NLRP3 Sh

NLRP3 KD 1

NLRP3 KD 2
0.0

0.5

1.0

1.5

Nl
rp
3 

re
la

tiv
e 

ex
pr

es
sio

n GECs WT

NLRP3 Sh

NLRP3 KD 1

NLRP3 KD 2

*
**

A

B

GECs W
T

NLRP3 Sh

NLRP3 KD 2
0

1×104

2×104

3×104

4×104

5×104

in
te

ns
ity

GECs WT

NLRP3 Sh

NLRP3 KD 2

***

C



	
  
	
  

46	
  

	
  
Figure 17 C.pn-induced inflammasome activation leads to the formation of ASC. GEC cells were grown on 18 
mm glass cover slips and treated with C.pn in MOI 5 and imaged by florescent microscopy. For 
immunofluorescence staining, GEC cells were reacted with ASC-GFP showing in green. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  
	
  

47	
  

5.4 C.pn is identified in plaque samples from patients with periodontitis. 

 
We have shown that C.pn could infect human gingival epithelial cells and induce 
inflammasome activation in vitro. Previous study reported that C.pn in oral environment 
might relate to periodontal disease [89]. To determine whether C.pn exists and affects 
any oral diseases, we collected 40 samples from 10 patients with periodontitis. 
Subgingival plaque samples from the deepest pocket of each quadrant were collected for 
analysis. RTF buffer was selected to dissolve and maintain the DNA from the plaque 
samples. The PCR results turned out to be interesting that most of the samples showed 
positive for C.pn even for the ones from the healthy sites (Fig.16). Considering that 
bacteria or oral commensals might easily translocate during chewing, it would be 
reasonable to see that C.pn was also detected in healthy sites. The high frequency, 10 out 
of 10 patients’ plaques containing C.pn, indicates a potential involvement of C.pn 
infection in the disease progression. However, further experiments should be warranted 
to illustrate such involvement. 
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Figure	
   18	
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5.5 SREBPs are associated with C.pn induced NLRP3 inflammasome. 

 
Sterol regulatory element binding proteins (SREBPs) have been reported to associate 
with NLRP3 inflammasome in atherosclerosis. SREBPs also promote cell survival during 
bacteria infection by facilitating membrane repair, requiring caspase-1 activation. 
Periodontitis and C.pn infection are considered as two independent risk factors for 
cardiovascular diseases due to fatty acid imbalance [100]. Therefore, it is important and 
necessary to investigate whether SREBPs level is affected by C.pn infection in GEC cells. 
Interestingly, we found that C.pn infection induced significantly lower level of activated 
SREBP-1 in NLRP3 knockdown cells compared to the wild-type cells (Fig.16). This 
impaired presence of SREBP-1 might control cholesterol and lipid biosynthesis.  
 
 
 

	
  
Figure 19 Western blot of activated SREBP1 following infection with MOI 5 of C. pneumoniae in GEC wild type 
or knockdown cells. 
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Chapter 6. Discussion and future perspectives of 
C.pn project 

C.pneumoniae like other chlamydia species are intracellular pathogens and usually infect 
epithelial mucosa and develop a biphasic infection cycle [57].  In this study, we showed 
that C.pn could infect human gingival epithelial cells and develop its infection cycle in 
around three days. We confirmed this infection by using both confocal microscopy and 
quantitative PCR. 

Previous studies showed that the proinflammatory cytokine IL-1β is an important 
mediator during host defense against microbial organisms [90]. Crucially, the level of IL-
1β is tightly controlled since it induces chronic infections and damages tissues if being 
inappropriately released. When properly released, IL-1β activates inflammation to protect 
the host [91, 92]. IL-1β secretion occurs when other Chlamydia species infect human 
monocytes and macrophages and activate inflammasome activation. We examined IL-1β 
secretion level in this study and found that it peaked on day four. Activated caspase-1 is 
required for processing pro-IL-1β into IL-1β during inflammation [93-95]. Our results on 
caspase-1 release were consistent with IL-1β secretion, both of which increased after 
infection and reached the peak value on day 4. NLRP3 but not NLRC4 inflammasome 
was reported to be activated during C.pn infection in murine model [96]. And NLRP3 
inflammasome was also studied in GECs with oral diseases infection [97]. We confirmed 
the involvement of NLRP3 inflammasome using the NLRP3 KD cells and found that 
both the IL-1β  level and caspase-1 secretion were impaired. NLRP3 inflammasome is a 
multiprotein complex, in which its adaptor protein ASC was reported to concentrate once 
inflammasome is activated [98-100]. We did observe that ASC was concentrated during 
infection; however, whether ASC was released out of cells needs to be further determined. 

It might be surprising to witness that lung pathogens infect oral epithelial cells and 
activate inflammasome. We questioned whether this infection and inflammasome 
activation occur inevitably and how it relates to oral diseases. Periodontitis is one of the 
major concerns among oral diseases [101]. CDC reported that half of the American adults 
have periodontal disease. Its symptoms range from simple gum inflammation to serious 
damage to soft tissue and teeth loss. Our clinical results showed that periodontal patients 
had a higher risk to be infected by C.pn. Whether inflammasome activation by C.pn 
infection in patients aggravates or mitigates the diseases warrants further research. 

SREBP was reported to associate with caspase-1 during bacterial infection and could be 
up-regulated by caspase-1 [102]. Once activated, SREBP is translocated into the nucleus. 
This lipid metabolism in turn promotes cell survival and repair [102]. We extracted the 
nucleus from the cell pellet and found that the SREBP levels from the wild-type cells 
were higher than that from the NLRP3 knockdown cells during C.pn infection. These 
results indicate that caspase-1 or NLRP3 inflammasome triggers SREBP activation.  
 
In agreement with this event, in vivo study showed that dysregulation of SREBP may 
contribute to inflammation in atherosclerosis [103].  Interestingly, C.pn is identified as 
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the only chlamydia species that exerts atherosclerosis-effect. The activation of NLRP3 
inflammasome by C.pn is involved in the acceleration of atherosclerosis [96]. Moreover, 
clinical cases collected in the last two decades corroborated that periodontitis is a risk 
factor to atherosclerosis [104, 105]. However, the mechanism of which remains elusive. 
Whether C.pn related periodontitis contributes to atherosclerosis requires further 
investigation. Taken together, these findings highlight the importance of the 
inflammation induced by C.pn in oral environment. 
 
In this study, we demonstrated that caspase-1 represents a key component in C.pn 
infection that leads to pro-IL-1β processing and lipid metabolism regulation. We have 
previously showed that C.t could also activate non-canonical inflammasomes such as 
caspase-4/5. For future studies, whether C.pn infection of GECs also induces caspase-4/5 
pathways needs to be determined. 
 
In conclusion, our work not only broadens the current knowledge on the oral epithelial 
cell response to C.pn infection and the pathogenesis associated with it, but also sheds 
light on a plausible correlation of lung pathogens with oral diseases. This provides novel 
insight into the etiology and therapeutic approaches to oral diseases. 
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