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Scaling Agricultural Policy Interventions∗
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Policies aimed at raising agricultural productivity have been a centerpiece in the fight against

global poverty. We propose a new approach for quantifying large-scale agricultural policy coun-

terfactuals that can both complement and be informed by evidence from field and quasi-experi-

ments. We develop a quantitative model of farm-level agricultural trade that captures important,

but typically neglected features of this setting, including homogeneous goods and additive trade

costs. We propose a new solution method in this environment that relies on rich but widely

available microdata. We harness field and quasi-experiments for parameter estimation, and

showcase our approach in the context of subsidies for modern inputs in Uganda. We find that

the average welfare gain from treatment, for the same sample of households, falls by 20% when

implemented at scale. At the same time, the effect for the poorest households increases at scale

as the gains shift from land onto labor, reducing the regressivity of the local intervention by more

than half. We further document how these forces are shaped by the granular economic geogra-

phy often missing in existing quantitative models and by the geographical scale of implemen-

tation, with new implications for randomized saturation designs. Finally, we discuss practical

considerations for combining our toolkit with evidence from field and quasi-experiments.
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1 Introduction

Roughly two thirds of the world’s population living below the poverty line work in agriculture

(Castaneda et al. , 2016). In this context, policies aimed at raising agricultural productivity, such

as programs providing access, training and subsidies for modern inputs and production tech-

niques, have been a centerpiece in the fight against global poverty.1 To inform these policies

using rigorous evidence, much of the recent literature studies local interventions with varia-

tion in policy exposure across households or local markets generated by randomized control

trials (RCTs) or natural experiments. While rightly credited for revolutionizing the field of de-

velopment economics, field and quasi-experiments often face the well-known limitation that

their estimates may not speak to the broader general equilibrium (GE) effects that emerge once

policies are scaled up. At the same time, an earlier literature in agriculture and development,

employing computable general equilibrium (CGE) analysis to quantify GE implications, often

rely on less well-identified moments for parameter estimation and largely abstracts from mod-

eling the granular economic geography of farm production, consumption and trade costs that

underlies the propagation of shocks and their incidence in GE.2

To make progress on these challenges, we propose a new methodology for quantifying large-

scale policy counterfactuals at the level of households in agricultural settings. We aim to quantify

how the average treatment effect and distributional implications of a local intervention differ –

for the same group of households – if the treatments are scaled up to a larger segment of the

population. Our approach can both complement evidence from field and quasi-experiments

and be informed by it.3 To be able do so, we introduce in our theory several well-known features

of agricultural trade across local markets that have been outside the scope of quantitative mod-

els and their solution methods in international trade and economic geography.4 The first is that

individual crops are best described as homogeneous goods, counter to the common assumption

of differentiated varieties that may be more suitable for cross-country trade in manufacturing.

As a result, policy shocks at scale may change which markets are connected through trade in dif-

ferent crops, an important extensive margin of adjustment that is ruled out in most quantitative

models of trade.5 Second, we allow for both additive (per-unit) and multiplicative (ad-valorem)

components of trade costs, across households and across agricultural markets. Additive trade

1See e.g. Caldwell et al. (2019) for a review of recent impact evaluations in this space.
2See e.g. de Janvry & Sadoulet (1995) for a review of this literature.
3Similar to recent work by e.g. Brooks & Donovan (2020), Gollin et al. (2021), Lagakos et al. (2021) and Porzio et al.

(2022), our analysis combines a structural model with rich microdata and evidence from RCTs or quasi-experiments
to quantify GE counterfactuals that are frequently outside the scope of reduced-form estimation.

4In addition to the two features we focus on here, we allow for non-homothetic preferences – so that food price
changes can have distributional implications beyond affecting household incomes – and technology choice in crop
production – such that the adoption of modern inputs can more flexibly affect the production function with respect
to other inputs. Our approach to modeling technology choice is similar to that in Farrokhi & Pellegrina (2022).

5Notable exceptions are Costinot & Donaldson (2016) and Sotelo (2020) who require rich additional data (on ei-
ther production possibility frontiers or farm-gate prices) to solve the model. Since such data requirements can be
hard to satisfy, especially at the level of households, we propose a new solution method that unlocks the scope for
counterfactual analysis in such an environment.
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costs can give rise to incomplete and heterogeneous pass-through of local price changes for

crops and inputs across trading pairs, in contrast to the conventional ad-valorem (”iceberg”)

assumption with complete pass-through.6

Both of these features are fundamental for modeling a granular and realistic economic geog-

raphy that underlies the propagation of shocks across markets and households within them in

this setting. But as we show, they break the convenient properties of “structural gravity” (Head

& Mayer, 2014), including the use of “exact hat algebra” as the conventional solution method

in the literature (see e.g. Costinot & Rodrı́guez-Clare (2014)). After laying out the model, we

propose a new solution method for counterfactual analysis in this environment that relies on

rich but widely available microdata on household location, production and consumption. We

first show that we can use information on trade costs between and within markets in combi-

nation with data on household-level expenditure shares and agricultural production quantities

to set up a price discovery problem. This entails solving for equilibrium farm-gate prices and

trade flows that rationalize the observed consumption and production decisions given a graph

of trade costs connecting households and markets. In turn, with knowledge of farm-gate prices

and trade costs, we can then proceed to solve for the counterfactual equilibrium, following an

approach that then becomes similar to exact hat algebra.

This approach has several advantages. First, we are able to solve the model without imposing

structural gravity and without introducing stark new data requirements – such as requiring data

on the full set of initial farm-gate prices. Second, our solution method ensures that the econ-

omy is in equilibrium before solving for counterfactuals: the household prices we obtain from

the price discovery are by construction consistent with the calibrated trade costs and the con-

sumption and production decisions we observe in the data.7 From a computational perspective,

our solution method is capable of handling high-dimensional GE counterfactuals at the level of

individual households who populate the macroeconomy. This allows us to match the unit of ob-

servation often used in experiments (individual households), as well as to speak to distributional

effects at this granular level.

We showcase our approach by evaluating the local versus at-scale implications of a subsidy

for modern inputs (chemical fertilizers and hybrid seed varieties) in Uganda.8 Drawing on the

strength of experiments for identification, we estimate the model’s key demand and supply elas-

ticities using exogenous variation in consumer and producer prices from existing RCTs

(Bergquist & Dinerstein, 2020, Carter et al. , 2020). On the supply side, we also make use of a nat-

ural experiment that exploits changes in crops’ world market prices that propagate differently to

local markets as a function of (additive) trade costs to the nearest border crossing. To calibrate

cross-market trade costs, we make use of estimates from Bergquist et al. (2022), using Ugandan

6Price changes at an origin pass through differently both across destinations with higher (-) or lower (+) additive
trade costs, and across crops or inputs with higher (+) or lower (-) unit values within a given bilateral route.

7For example, Sotelo (2020) uses province-level crop prices from agricultural surveys to calibrate and solve the
model, but these price data are not, in general, model-consistent given calibrated trade costs.

8One of the most widespread and costly agricultural policies in low-income countries. See e.g. Jayne & Rashid
(2013) and discussion below.
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market and trader survey microdata to provide information on market-to-market trade flows

and crop prices at origin and destination across crops. To calibrate within-market trade costs

between farmers and their local markets, we use observed gaps in the Ugandan National Panel

Survey (UNPS) between farm-gate prices and local markets in combination with knowledge of

farmer-level trade flows to and from the markets. Finally, we use Ugandan administrative data

on household location, production and consumption to calibrate the model to the roughly 4.5

million households who populate the country.

We then use the calibrated model to conduct counterfactual analyses. We first study how

the average and distributional effects of this policy differ between a local intervention and one

implemented at scale. We run two types of counterfactuals for each of the roughly 4,500 rural

parishes in Uganda. In each parish, we randomly select 2.5 percent of the local population (a

sample of roughly 100,000 households nationwide, or 25 per parish). We first solve for counter-

factual changes in household welfare due to an intervention that targets a 75% cost subsidy for

modern inputs only at each of these local treatment groups, keeping the rest of Uganda unex-

posed – akin to implementing roughly 4,500 separate RCTs. We then compare these local effects

to the welfare changes experienced by the same sample of households under an intervention

that scales the subsidy policy to all rural households in Uganda.

Pooling all local randomized interventions, we find that the average effect of the subsidy at

small scale is a 4.4 percent increase in household real income. This is driven almost entirely

by farmers saving on costs for the subsidized inputs and using more of them, while output and

other input prices remain mostly unaffected. However, at scale we find that the welfare effect

– for the same sample of farmers receiving the same intervention as in the local experiment –

changes by as much as + or -5 percentage points across households. This is large relative to the

local treatment effect: over a third of households experience a change greater than 50 percent of

their local effect. On average, the at-scale intervention produces a smaller welfare effect by about

20 percent (only a 3.6 percentage point gain). However, not all households are worse off at scale:

about 20 percent experience at-scale effects that exceed their gains from the local intervention.

The distributional implications underlying these differences turn out to be key. The local

intervention is highly regressive: land-rich farmers experience an 8 percent real income gain,

while land-poor farmers experience only a 2.5 percent gain. In contrast, we find that the at-

scale intervention is significantly less regressive, as land-poor farmers do better at scale (their

gains increase from 2.5 to 4 percent) while the land-rich fare worse (their gains drop from 8 to

6 percent). This is driven mostly by income effects rather than differential price index changes.

Because land-rich households use modern inputs more intensively before the intervention, the

income gains from the local subsidy (with output and factor prices mostly unaffected) are con-

centrated among this group. At scale, however, GE effects on average decrease the local market

prices of modern input-intensive crops and increase the price of local labor. The resulting re-

duction in agricultural revenues and increase in labor compensation benefit households with

higher initial reliance on wage labor relative to land-rich households. We document that these
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differences at scale are most pronounced among more remote regions, where local market prices

are less constrained by large nearby centers or border crossings, and among crops and farmers

with higher initial usage of modern inputs, where the asymmetry between partial equilibrium

gains and GE effects on local prices is larger on average.

We then use our methodology to provide new insights relevant for experimental approaches

to estimating GE effects. A growing literature employs “randomized saturation designs”, which

randomize not only treatment across individuals, but also the treatment saturation rate across

geographic areas (“clusters”), to elicit GE effects with experimental variation (e.g. Baird et al.

(2011), Burke et al. (2019), Egger et al. (2022)). Due to constraints on statistical power and

feasibility of implementation, such designs often limit the comparison to two discrete levels

of saturation, implemented within clusters that are typically villages or groups of villages. In

order to identify the impact of policies at scale (e.g. at 100% national saturation), one must thus

typically extrapolate from these two points of saturation, subject to two important assumptions:

i) that GE forces are monotonic and linear with respect to changes in the saturation rate; and

ii) that the GE forces experienced at the level of local clusters are representative of the effects of

saturation at a broader geographical scale (e.g. nationwide).

We can assess the plausibility of these two assumptions by exploring how welfare implica-

tions evolve as a function of saturation rates at different geographical scales. On the reassuring

side, our findings point to GE effects that are roughly linear as a function of the nationwide sat-

uration rate: starting with the local intervention that treats 2.5% of farmers in each parish, we

estimate how that original sample of farmers fare when the program is sequentially scaled up

in steps of 10% of the remaining rural Ugandan population, up to 100% saturation. We find that

the average gains to the initially treated farmers decline close to linearly as a function of scale-up

to the rest of the country. This provides some reassurance about the lessons that can be drawn

from designs relying on just two discrete saturation rates.

However, our results also suggest some caution about these designs. Because it is nearly im-

possible to randomize nationwide saturation rates, experiments typically randomize saturation

rates at some lower, sub-national level. We find that the geographical scale of saturation mean-

ingfully changes conclusions about the policy’s impact. In our setting, we find that increases

in saturation at the national level decrease the average rural welfare gains and flatten their re-

gressivity; however, when we instead implement the same counterfactuals in steps of 10% of the

population within subcounties (a large but feasible unit for randomization saturation),9 we find

almost no change in average welfare gains even at 100% saturation within the subcounty.10 Our

findings suggest caution when extrapolating from GE effects observed in designs that random-

ize saturation within smaller geographic units to the effects that would be observed at a broader

9Uganda is made up of roughly 800 subcounties. These are on the larger side of common definitions of “clusters,”
which we do here to be conservative.

10This is not due to the absence of GE forces under full sublocation saturation, but rather due to their different
nature compared to at national scale; also affecting distributional conclusions. Sublocation saturation leads to a
weaker reduction in the gains among rich households and a stronger increase among poorer households, which
cancel out on average in a way that they do not under national saturation.
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scale of rollout.

We conduct two additional counterfactuals to investigate the role of the granular economic

geography that our model embraces, comparing our results to those using existing approaches

in the literature. In a first comparison, we evaluate the welfare impact at scale in a setting with-

out trading frictions – as if all households were selling into one integrated domestic market.

Modeling a single market has been standard in an earlier literature using CGE models, as well as

in a more recent literature in macroeconomics on quantifying the aggregation of local shocks if

they were to occur to all agents in the economy (e.g. Buera et al. (2017), Sraer & Thesmar (2018),

Fujimoto et al. (2019)). In a second comparison, we allow for trade costs, but instead con-

sider the common workhorse structure of quantitative trade models (e.g., Costinot & Rodrı́guez-

Clare (2014) and Baqaee & Farhi (2019)), featuring ad valorem trade costs and structural gravity

with differentiated varieties – implying that all origin-destination market pairs engage in bilat-

eral trade unless the costs of doing so are prohibitive (and thus remain unaffected by policy

changes).11 In both cases, we find meaningful differences in the average and distributional im-

plications of the subsidy at scale compared to our framework, and discuss the mechanisms that

are missed when imposing coarser assumptions about the economic geography.

We also explore model validation tests and the sensitivity of our findings across different

modeling assumptions. One important innovation of our theory is to use the model-based price

discovery algorithm to be able to solve the model with the new economic features we allow for

in this setting. This involves solving for farm-gate prices at the level of households and trade

flows that rationalize the observed consumption and production decisions given a graph of trade

costs. For model validation, we are able to use data on market prices and trade flows for 260

Ugandan markets in the trader surveys collected by Bergquist et al. (2022). This allows us to

assess to what extent the model-based estimates of local crop prices and predicted trading rela-

tionships capture variation in prices and trade flows of those same markets in the survey data.

We also document our findings across parameter ranges that deviate from our preferred esti-

mates on both the supply and demand sides of the model. While results do not vary strongly

across alternative demand-side parameters in our application, the magnitude of the GE adjust-

ments are sensitive to the estimated supply elasticities. This highlights the important role that

RCTs and well-identified natural experiments can play in identifying key model parameters in a

given policy environment. We conclude with a brief discussion of practical considerations when

combining our toolkit with evidence based on fieldwork or quasi-experiments.

11Another important difference is in the question studied: whereas standard quantitative trade models aim to
measure the aggregate welfare effect of a shock, we are interested in linking the quantitative analysis to the outcomes
typically studied in impact evaluations: the average and distributional effects across individual farmers or house-
holds.
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2 Model and Solution Method

We develop a rich but tractable quantitative model that is able to capture the granular economic

geography of household location, production, consumption and trading that one can observe in

the data, as well as a number of well-known features of agricultural trade that we also document

in the microdata (see Appendix 1 and Appendix 2). These features deviate from the workhorse

structure of quantitative trade and economic geography models: i) the vast majority of local

markets do not trade with one another in a given crop, pointing to a limited degree of product

differentiation within crops; ii) trade costs appear to be additive (charged per unit of weight)

rather than multiplicative (ad valorem); iii) preferences are non-homothetic, with falling expen-

diture shares on food consumption as incomes rise; and iv) the adoption of modern inputs, such

as chemical fertilizer or hybrid seeds, changes the relative cost shares of traditional inputs (land

and labor).

In line with these features, our model features heterogeneous producers and consumers who

interact across a realistic geography. The economy is populated by farmers who are endowed

with land of heterogeneous suitability for different crops, which are modeled as homogeneous

goods. Farmers trade both labor and crops in their nearest local market. These local markets are

connected with all other markets and the rest of the world by a graph based on existing transport

infrastructure. Our model allows trade costs between farmers and markets and between markets

to have both an additive and an ad valorem (iceberg) component. Farmers are also allowed to

choose between different production techniques, where the adoption of modern inputs may af-

fect the production function with respect to traditional inputs. Preferences are non-homothetic,

such that GE price changes in agriculture can affect initially richer or poorer households asym-

metrically through the price index.

Environment

There are two kinds of agents: farmers indexed by i ∈ I and urban households indexed by h ∈ H.

There is also an agent that we call Foreign, which is indexed by F and stands for the rest of the

world. In general, each of these agents in the economy is indexed by o (origin) or d (destination)

when dealing with the trade network, and with j ∈ J ≡ I ∪ H ∪ {F} when dealing with agent

behavior. To save on notation, we dispense for now with the notion of markets and just think of

agents interacting directly with each other. We bring back such local markets when we impose

particular restrictions on trade costs and labor migration in the final model section below.

Final goods are indexed by k and can be agricultural goods, k ∈ KA, or manufacturing goods,

k ∈ KM . In turn, inputs (besides land) are indexed by n and can be intermediate goods used in

agriculture, n ∈ N I , or labor used both in agriculture and manufacturing, n = L. We use g as a

generic index that encompasses both final goods and inputs, g ∈ G ≡ KA ∪ KM ∪ NI ∪ {L}, and

let pj,g denote the price at which agent j can buy or sell good g. We will refer to the collection

of agents excluding Foreign as “Home”, which will correspond to Uganda in our quantitative
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analysis.

Farmers own land and labor in quantities Zi and Li, and they produce agricultural goods

(crops) using their own land (i.e., land is not tradable) as well as labor and intermediate goods

(such as fertilizer and seeds).12 Urban households own labor in quantity Lh and produce a man-

ufacturing good using labor.

Trade in good g from o to d is subject to iceberg and additive trade costs. Iceberg trade costs

are τod,g ≥ 1 and additive trade costs are tod,g ≥ 0 in units of a “transportation good”. We assume

that this good is produced by Foreign and that there are no trade costs for this good, so that all

agents can access it at the same price.13 Setting this price equal to one by choice of numeraire,

tod,g becomes the actual additive transportation cost from o to d for good g. Thus, for example,

if agent j buys good g from farmer i then her price is pj,g = τij,gpi,g + tij,g. We assume that these

trade costs satisfy the triangular inequality: τod ≤ τoo′ · τo′d and tod ≤ too′ + to′d for any o, o′, d.

For manufacturing goods we follow the convention in the trade literature and assume that

they only face iceberg transportation costs, hence tod,g = 0 for all g ∈ KM . Similarly, as in the

Armington model of trade, we assume that each urban household as well as Foreign produce a

differentiated manufacturing good, and use g(h) to refer to the manufacturing good produced

by urban household h and g(F ) to refer to the manufacturing good produced by Foreign.

We assume that Home is “small” in the sense that the prices of goods produced in Foreign

(i.e., crops, intermediate goods and Foreign’s manufacturing good) are exogenous and given by

p∗F,g, while Foreign’s demand for the manufacturing goods associated with any of our economy’s

urban centers is not affected by any variables in Home other than its price. In the case of inter-

mediate goods we go one step further and assume that they are imported from Foreign at exoge-

nous prices p∗i,n for all i ∈ I and n ∈ NI – this provides the needed flexibility to consider coun-

terfactuals in which arbitrary subsets of farmers experience declines in fertilizer prices through

the implementation of a government program or RCT.14

Finally, regarding notation, we use {xij} to denote the vector of some variable xij for all com-

binations of indices i and j, and {xij}i to denote the vector of xij for the given i and for all j.

Next, we turn to preferences, technology and equilibrium. To simplify the exposition, we

present the model imposing the specific functional forms on preferences and technology that

we will use in our quantitative analysis. However, we emphasize that the quantitative approach

developed below can be used with other functional forms as long as long as they satisfy a set of

common properties that we lay out in Appendix 4.B.

12We model land as not tradable in line with empirical evidence showing that land markets in sub-Saharan Africa
and other low-income regions are generally thin, with sparse rental markets and in some cases “almost non-existent”
transactions (Acampora et al. , 2022) (see also e.g. Deininger et al. (2008); Holden et al. (2010)).

13This implies that the policies we study do not lead to additional GE effects through changing (endogenous) trans-
portation costs in the country.

14We thus focus on the impact of input subsidies on farmers, and ignore potential knock-on effects on domestic
production of those inputs.
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Preferences

We assume here non-homothetic preferences in the form of Stone-Geary demand for consump-

tion of agricultural and manufacturing goods, so that households need to consume a minimum

amount of a composite agricultural good, C̄A. This composite is a CES-aggregate of the con-

sumption of individual agricultural goods with elasticity of substitution σ, while individual man-

ufacturing goods are similarly aggregated with elasticity of substitution η. Letting ξj,k denote the

expenditure share of agent j on good k and ξk ({bj,kpj,k}j , Ij) be the corresponding expenditure

share function (assumed common across all agents in Home), we then have

ξj,k = ξk

(
{bj,kpj,k}j , Ij

)
=


(bj,kpj,k)

1−σ

P 1−σ
j,A

(
ζ + (1− ζ)

Pj,AC̄A
Ij

)
for k ∈ KA

(bj,kpj,k)
1−η

P 1−η
j,M

(1− ζ)
(

1− Pj,AC̄A
Ij

)
for k ∈ KM .

Here {bj,k} are demand shifters and Ij is income of agent j. Price indices Pj,A and Pj,M corre-

spond to the CES-aggregates for agriculture and manufacturing of agent j, respectively.

Turning to Foreign, our small-open economy assumption for Home implies that Foreign’s

demand (in value) for manufacturing good g(h) can be specified directly as a function of this

goods’s individual price, XF,g(h)

(
pF,g(h)

)
. We assume that this is given by

XF,g(h)

(
pF,g(h)

)
= DF,g(h)p

1−η
F,g(h),

where DF,g(h) is some constant.

Technology

Farmers produce agricultural goods k ∈ KA using land, labor and intermediate goods with

techniques ω ∈ Ω. The production function for a farmer i producing good k with technique

ω is assumed Cobb-Douglas with cost share αi,n,k,ω for input n ∈ NI ∪ {L}. We assume that∑
n αi,n,k,ω < 1 and let αi,z,k,ω ≡ 1−

∑
n αi,n,k,ω be the corresponding cost share of land.

Letting ri,k,ω denote the return to an effective unit of land allocated by farmer i to produce

agricultural good k with technique ω, then at an interior solution to the farmer’s optimization

problem we must have

ai,k,ωpi,k = ci,k,ω({pi,n}i, ri,k,ω) ≡

(∏
n

p
αi,n,k,ω
i,n

)
r
αi,z,k,ω
i,k,ω , (1)

where ai,k,ω is a Hicks-neutral productivity shifter. Equation (1) determines ri,k,ω as an implicit

function of prices, pi,k and {pi,n}i, and productivity ai,k,ω.

Farmer i allocates land endowment Zi across different agricultural goods (or simply “crops”)

and techniques to maximize their total land returns,
∑

k,ω ri,k,ωZi,k,ω, where Zi,k,ω measures the

effective units of land allocated by farmer i to produce crop k with technique ω. We allow for de-
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creasing marginal productivity in how physical units of land Zi can be converted into efficiency

units of land for different crops and techniques, with possibly a different elasticity of substitution

between crops and techniques. Specifically, we assume that the feasible set for the allocation of

efficiency units of land across crops and techniques satisfies

∑
k

(∑
ω

Z
κ/(κ−1)
i,k,ω

) µ
µ−1

κ−1
κ


µ−1
µ

≤ Zi,

where κ is the elasticity governing the allocation of land across techniques within a given crop in

the lower nest, while µ is the elasticity governing the allocation of land across crops in the upper

nest.15 Letting πi,k,ω denote the share of land returns of farmer i coming from production of crop

k with technique ω, one can show that16

πi,k,ω = πk,ω
(
{ri,k,ω}i

)
≡

rκi,k,ω∑
ω r

κ
i,k,ω

(∑
ω r

κ
i,k,ω

)µ/κ
∑

k

(∑
ω r

κ
i,k,ω

)µ/κ ,
with total returns to land given by

Y
(
{ri,k,ω}i

)
=

∑
k

(∑
ω

rκi,k,ω

)µ/κ1/µ

.

Finally, letting qi,k,ω denote output of crop k for farmer i with technique ω, then

qi,k,ω = qi,k,ω ({pi,g}i, {ri,k,ω}i) =
πk,ω ({ri,k,ω}i)Y

(
{ri,k,ω}i

)
Zi

αi,z,k,ωpi,k
.

Turning to urban households, we assume that each urban area is associated with a single

representative urban household who produces a differentiated manufacturing good. We keep

the technology simple by assuming that manufacturing production is linear in labor, so that the

quantity of manufacturing good g(h) produced by urban household h is ahLh. Given that labor

supply is perfectly inelastic, we can then treat qh ≡ ahLh as the urban households’ endowment

15This is a nested constant elasticity of transformation production function as in Powell & Gruen (1968), De Melo
(1988), Burfisher (2021). One can also verify that this can be obtained from an extension of the Roy-Frechet mi-
crofoundations in Costinot & Donaldson (2016) and Sotelo (2020), but now allowing for a nested Frechet structure,
as in Farrokhi & Pellegrina (2022). In particular, assuming that farmer i has a continuum of plots of land with
measure Zi, and that each plot of land has productivities Xi,k,ω independently drawn from the joint distribution

H(xi) = exp

(
−γ−1∑

k

(∑
ω x
−κ
i,k,ω

)µ/κ)
with γ = Γ (1− 1/µ), then this would lead to the production function

above. The Roy-Frechet microfoundations would imply the restriction 1 < µ ≤ κ, so that the density is always pos-
itive and the mean is well defined, but this is not necessary for the more general case of a nested CES PPF that we
work with here.

16With a slight abuse of notation, for all vectors associated with farmers’ production, we write {Xi,k,ω}i for the
vector {Xi,k,ω}i,k∈KA

for any variable X.
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of manufacturing good g(h).

Equilibrium

In equilibrium, rural and urban households maximize utility taking prices as given, prices re-

spect no-arbitrage conditions given trade costs, and all markets clear. We assume that mar-

kets are competitive, but potentially subject to a rich and granular set of frictions in the trans-

actions between agents that we capture by allowing for (additive and ad valorem) agent- and

good-specific trading costs in all input and output markets.17

To formalize the definition of equilibrium, let χj,g
(
{bj,kpj,k}j , {rj,k,ω}j , {pj,g}j , Ij

)
be the ex-

cess demand function (in value) of agent j for good g given demand shifters, prices, returns,

and income, and let χF,g (•) be the corresponding excess demand function for Foreign. The ex-

cess demand functions χj,g (•) for farmers, urban households and Foreign are determined by

the results in the previous subsections, and can be found in Appendix 4.A. The equilibrium is a

set of prices, {pj,g} and trade flows {xod,g} (measured in quantity at the destination), such that

pj,g = p∗j,g for all j ∈ I and all g ∈ NI , pF,g(F ) = p∗F,g(F ), excess demand is equal to the difference

between purchases and sales for each agent j and good g ∈ KA ∪ KM ∪ {L} \ {g(F )},

χj,g

(
{bj,kpj,k}j , {rj,k,ω}j , {pj,g}j , Ij

)
= pj,g

(∑
o

xoj,g −
∑
d

τjd,gxjd,g

)
, (2)

and no-arbitrage conditions hold for all g /∈ NI ,

τod,gpo,g + tod,g ≥ pd,g ⊥ xod,g, ∀o, d, (3)

with farmer i’s income equal to the sum of land returns and wage income pi,LLi,

Ii = Yi
(
{ri,k,ω}i

)
Zi + pi,LLi, ∀i ∈ I, (4)

urban household h’s income given by

Ih = ph,g(h)qh, ∀h ∈ H, (5)

and ri,k,ω satisfying (1) ∀i ∈ I, k ∈ KA, ω ∈ Ω.18 Here the symbol ⊥ between a weak inequal-

ity and a variable indicates that the weak inequality holds as equality if the variable is strictly

positive. For example, if farmer i sells crop k to agent j then xij,k > 0 equation (3) implies that

17Note that trading frictions are also present in local labor markets when farmers are hiring or selling labor. The
presence of additive trade costs also implies that pass-through is not log linear. This leads to richer comparative
statics than in models with only iceberg trade costs and perfect competition or even monopolistic competition with
fixed markups.

18We can exclude the manufacturing good produced in Foreign from the set of equilibrium conditions since for
this good we know that pj,g(F ) = τFj,g(F )p

∗
F,g(F ) for all j. Also, in parallel to our treatment of land for farmers, we

assume that there is no market for household labor in urban areas, and hence the equilibrium system does not have
to determine the price of this good.
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τij,kpi,k + tij,k = pj,k, while if τij,kpi,k + tij,k > pj,k then equation (3) implies that xij,k = 0.

The equilibrium conditions across all crops, manufacturing goods and labor imply that there

is trade balance, which is given by the condition that Foreign runs a deficit in goods that is paid

for by the economy’s total expenditure on the transportation good (which is an income to For-

eign).

Solution of Counterfactuals

We are interested in computing the effect of shocks to technology (e.g. due to climate change or

weather shocks), intermediate good prices (e.g. due to government subsidies or extension pro-

grams), or changes in trade costs (e.g. due to rural road building), all for the agricultural sector.

Using hat notation (i.e., x̂ = x′/x), these shocks are given by {âj,k,ω},{p̂∗i,n}n∈NI and
{
τ̂od,k, t̂od,k

}
.

In the counterfactual equilibrium, equations (1)-(5) can be written as

p̂i,kpi,k = ci,k,ω({p̂i,npi,n}i, r̂i,k,ωri,k,ω)/âi,k,ωai,k,ω, ∀i ∈ I, k ∈ KA, ω ∈ Ω, (6)

χj,g

(
{bj,kp̂j,kpj,k}j , {r̂j,k,ωrj,k,ω}j , {p̂j,gpj,g}j , ÎjIj

)
=

= p̂j,gpj,g

(∑
o

x′oj,g −
∑
d

τ̂jd,gτjd,gx
′
jd,g

)
, (7)

τ̂od,gτod,gp̂o,gpo,g + t̂od,gtod,g ≥ p̂d,gpd,g ⊥ x′od,g, ∀o, d, (8)

Îi =
[
Y
(
{r̂i,k,ωri,k,ω}i

)
/Y
(
{ri,k,ω}i

)]
(1− λi,L) + p̂i,Lλi,L, ∀i ∈ I, (9)

Îh = p̂g(h), ∀h ∈ H, (10)

with p̂i,n = p̂∗i,n for all i ∈ I and n ∈ NI , and where λi,L = pi,LLi/Ii is the share of farmer’s total

income coming from wage income.

Our assumptions imply that we can use exact-hat algebra (Dekle et al. , 2007) to solve for

the endogeneous changes in the prices of manufacturing goods produced in Home, {p̂j,g} for

all g ∈ KM \ {g(F )} (recall that pF,g(F ) is fixed at p∗F,g(F )). To see this, start by noting that since

there are no additive trade costs in manufacturing then equation (3) implies that if xod,g > 0 then

τod,gpo,g = pd,g. Adding up equation (2) over all j implies that our equilibrium system entails∑
j

χj,g

(
{bj,kpj,k}j , {pj,g}j , Ij

)
= 0, ∀g ∈ KM \ {g(F )},

where we have dropped {rj,k,ω}j from the argument ofχj,g since land returns do not affect excess

demand for manufacturing goods (conditional on income). The counterfactual version of this

equation is ∑
j

χj,g

(
{bj,kp̂j,kpj,k}j , {p̂j,gpj,g}j , ÎjIj

)
= 0, ∀g ∈ KM \ {g(F )}. (11)
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We can use exact-hat algebra to compute the left-hand side of this equation as a function of

hat changes in prices and income levels given data on income levels, expenditure shares, and

Home exports of manufacturing goods.19 Given that p̂j,g(h) = τ̂hj,g(h)p̂h,g(h) and Îh = p̂h,g(h) for

all j and h, and taking as given counterfactual prices of agricultural goods and counterfactual

income levels of farmers (which are solved separately as explained below), then equation (11)

constitutes a system of equations – one for each g(h), h ∈ H – that we can use to solve for the hat

changes in the prices of the manufacturing goods produced in Home, {p̂h,g(h)}.
For agricultural goods and labor in rural production we have additive trade costs and so the

first step that we followed above for manufacturing goods does not give us an equation like (11).

Moreover, since these are homogeneous goods then prices are not directly pinned down by the

price at their origin, which is no longer predetermined. Formally, we need to deal with the fact

that the right-hand side of equation (7) as well as equation (8) are in terms of counterfactual

levels, and so we cannot use exact-hat algebra – we need information on the full vector of prices

in the initial equilibrium {pj,g} for all j ∈ I ∪ H and g ∈ KA ∪ {L}, and corresponding trade

costs to solve the system. We next explain how we can recover these prices in a manner that is

consistent with the model and the microdata.

As we discuss in Section 4, from the microdata we can either observe or directly infer the fol-

lowing set of variables: expenditure shares on agricultural goods for farmers and urban house-

holds, {ξi,k, ξh,k}k∈KA , Foreign crop prices,
{
p∗F,k

}
k∈KA

, physical crop output and cost shares for

farmers, {qi,k,ω}k∈KA and {αi,n,k,ω}k∈KA , labor endowments of farmers, {Li}, income of urban

households {Ih}, and trade costs {tod,g}, {τod,k}.20 We denote this set of observable variables

used for price discovery in agriculture by

DA =
{
{ξi,k, ξh,k, p∗F,k, qi,k,ω, αi,n,k,ω}k∈KA , Li, Ih, tod,g, τod,k

}
.

Assuming that all these variables come from the initial equilibrium in our model, we can now

rewrite excess demand functions for agricultural goods and labor (i.e., χj,g (•) for g ∈ KA ∪ {L})
for farmers, urban households and Foreign as functions of prices {pj,g}g∈KA∪{L} and data DA. We

can then “discover” agricultural goods’ prices and wages {pj,g}g∈KA∪{L} in the initial equilibrium

19Under our assumption on preferences and technology, χj,g
(
{p̂j,kbj,kpj,k}j , {p̂j,gpj,g}j , ÎjIj

)
can be evaluated as

a function of {p̂j,g}j and Îj given data on expenditure shares of agent j on all goods k, Home exports of good g, and
income Ij . We have data for income levels of urban households and expenditure shares on agriculture goods, while
data on exports and expenditure shares for each manufacturing good produced in Home are inferred from trade
costs and aggregate manufacturing exports, revenues and expenditure. As explained further in Appendix 4.E, this is a
standard procedure in the trade literature when dealing with intra-national trade flows (see for example Donaldson
& Hornbeck, 2016 and Faber & Gaubert, 2019). Income levels of farmers are obtained in the price discovery step for
agriculture described below.

20Additive trade costs are relevant only for agricultural goods and rural labor, while iceberg trade costs are relevant
for agricultural and manufacturing goods and labor, but we do not make this explicit to avoid notation clutter.
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as a solution to the following system of equations for g ∈ KA ∪ {L}:

χj,g

(
{pj,g}g∈KA∪{L} ;DA

)
= pj,g

(∑
o

xoj,g −
∑
d

τjd,gxjd,g

)
∀j, (12)

τod,gpo,g + tod,g ≥ pd,g ⊥ xod,g, ∀o, d. (13)

where these excess-demand functions are again formally presented in Appendix 4.A. Given crop

prices and data DA we can in turn compute farmer income levels, {Ii}, and shares of land returns

by crop and technique, {πi,k,ω}.21

In Appendix 4.D, we describe how to transform this price discovery step into an equivalent

problem of finding the equilibrium of an exchange economy that is integrated as a small open

economy with the rest of the world. We then show that, if there are no additive trade costs, the

goods in such an economy satisfy the connected substitutes condition in Berry et al. (2013)

and hence there is a unique equilibrium in which all agents are directly or indirectly connected

through trade. This implies that there is a unique (connected) solution to the price-discovery

step. Although we can no longer establish uniqueness analytically if there are additive trade

costs, our numerical analysis suggests that this is indeed the case in our context.22

Finally, we can obtain counterfactual trade flows
{
x′od,g

}
and prices changes {p̂j,g} as a solu-

tion to the system of equations (6)-(10) given shocks {âj,k,ω},{p̂∗i,n}n∈NI and
{
τ̂od,k, t̂od,k

}
, data DA

(used for the price discovery step in agriculture), and data on manufacturing exports by Home as

well as expenditure shares in manufacturing, {ξi,k, ξh,k}k∈KM\{g(F )} (used for the counterfactual

analysis in manufacturing).23

Additional Assumptions Used in Application

Consistent with the data described in Appendix 1 and Appendix 2, we allow input shares to vary

not only across crops and Ugandan regions but also across techniques within crops. We in-

troduce two techniques for each crop: traditional, ω = 0, and modern, ω = 1. We will map

these two techniques to data in terms of observed use of modern intermediates (chemical fertil-

izer and hybrid seeds in our setting) in production: the traditional technique makes use of land

and labor whereas the modern technique also makes use of the intermediate goods. Formally,

αi,n,k,1 > 0 = αi,n,k,0, ∀i, n ∈ NI , k. Thus, the choice of a modern technique will increase the im-

21We obtain farmer income levels as Ii =
∑
k∈KA,ω

(
1−

∑
n αi,n,k,ω

)
pi,kqi,k,ω + pi,LLi, and shares of land returns

by crop and technique as πi,k,ω =
(
1−

∑
n αi,n,k,ω

)
pi,kqi,k,ω/ (Ii − pi,LLi).

22The sufficient conditions in our proof of uniqueness no longer hold in the presence of additive trade costs be-
cause the demand for foreign goods is no longer necessarily increasing with the price of domestic goods. In lieu of an
analytical proof of uniqueness, we explore it numerically by considering 100 different initial guesses for prices drawn
randomly along the range of possible prices given the exogenous international prices and trade costs. Reassuringly,
we find the same equilibrium in all cases.

23The system of equations (6)-(10) also includes values for {ri,k,ω} and {pi,n}, which we do not observe. How-
ever, we can again use exact-hat algebra to evaluate the excess demand function on the LHS of (7) by using
land-rent shares {πj,k,ω}j (which we obtain from the price discovery step in agriculture), and similarly evaluate
ci,k,ω({p̂i,npi,n}i, r̂i,k,ωri,k,ω) using exact-hat algebra by using cost shares {αi,n,k,ω}i,k,ω in DA.
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portance of intermediates and decrease the importance of land or labor (as well as the relative

shares of the traditional inputs as observed in the data).

Our application will include millions of farmers, so we make a series of assumptions on trade

costs to ensure that the counterfactual analysis described above is computationally feasible.

First, consistent with the data, we assume that trade in agricultural goods is subject to addi-

tive trade costs, tod,g ≥ 0 and τod,g = 1 for g ∈ KA. Second, we assume that trade costs have a

hub-and-spoke structure, with each individual agent being directly connected to only one local

market (hub). Formally, we denote markets by m and let J (m) denote the set of agents con-

nected with market m. Trade costs between any two agents j ∈ J (m) and j′ ∈ J (m′) satisfy

τjj′,g = τjm,g · τmm′,g · τm′j′,g (14)

and

tjj′,g = tjm,g + tmm′,g + tm′j′,g. (15)

This assumption on trade costs allows us to define market-level prices from the prices of agents

belonging to that market. In particular, if j ∈ J (m) is a net seller of good g then the market

m price of good g is given by pm,g = τjm,gpj,g + tjm,g, while if j ∈ J (m) is a net buyer of good

g then pm,g is such that pj,g = τmj,gpm,g + tmj,g. In Appendix 4.F, we show that these market-

level prices are well defined in the sense that each of these equations yields the same price. In

our application we will refer to the markets where farmers live as parishes in Uganda and to the

markets where urban households live as cities.

Third, we assume that markets trade on a fully connected graph based on Uganda’s road

network as well as the location of border crossings with Foreign. This means that the trade cost

between any two markets can be computed as the product (for iceberg trade costs) or sum (for

additive trade costs) of trade costs along a sequence of markets that are directly connected by

a road or by a border crossing in the case of Foreign. Finally, we assume that labor markets are

local with prohibitive costs of selling or hiring labor across markets. While we thus abstract from

migration in our application below,24 the model we develop above can readily incorporate it (see

Appendix 4.G).

3 Combining the Model with Local Experiments

The complex forces governing how shocks propagate across markets described in the model

above are difficult to capture in local experiments, which are typically either too small to give

rise to GE forces that emerge at scale or use variation in relative exposures for identification

(with parts of GE forces absorbed by intercepts or fixed effects). However, local experiments can

play a critical role in informing the estimation of policy impacts at scale. At-scale counterfactu-

24Meaningful migration responses have not been found empirically in the context of the typical agricultural poli-
cies we consider here (e.g. Huntington & Shenoy (2021)), or in the context of broader shocks to agricultural produc-
tivity due to extreme weather events (e.g. Emerick & Burke (2016) and Emerick (2018)).



15

als in part depend on the locations, trade costs, and output and input markets that are directly

exposed by the policy (see next section). But they are also determined by a number of key elas-

ticities that govern responses to direct policy exposure on both the supply and demand sides of

the economy. Local experiments and quasi-experiments can offer a critical improvement in the

identification of these responses, relative to a calibration exercise that is based on observational

variation.

In this section we describe the estimation of the elasticities governing demand (ζ, σ, η) and

supply (κ, µ), and show how to exploit the advantage of local experiments in combination with

the model. Though we will use local experiments from a variety of East African countries –

Uganda, Kenya, and Mozambique – we believe using well-identified estimates from experiments

conducted in the region offer a large advance over calibration using existing estimates in the lit-

erature, which are mostly drawn from outside the region and/or outside of agriculture.25 As

discussed as part of the counterfactual analysis, we also explore the findings across a range of

alternative parameter values and model assumptions. Appendix 1 provides additional details

about the data used in the estimation.

Demand Estimation

To estimate our key demand parameter, σ, the elasticity of substitution between crops in con-

sumption, we bring to bear a demand-side experiment conducted in Bergquist & Dinerstein

(2020). This experiment was conducted in open-air maize markets in rural western Kenya, 30km

from the Ugandan border. In their experiment, individual consumers who approached maize

traders to make a purchase were offered a price discount, the size of which was randomized

across ten possible amounts. The value of the discount ranged from from roughly 0-15% of the

baseline price. Using the subsidy as exogenous variation in consumer prices, the experiment

measured resulting quantities purchased.

To estimate σ in the model, we run the following specification:

log xi,m,sd = α+ β log pi,m,sd + θm,sd + εi,m,sd,

regressing log quantity purchased by individual i from seller s in market m on date d on log

price, instrumenting for price with the randomized subsidy amount. Because the subsidy was

randomized across consumers buying from the same seller in the same market-day, we run spec-

ifications including either market-by-date fixed effects (θm,d) or seller-by-market-by-date fixed

effects (θm,sd), presented in Columns 2 and 4 of Table 1, respectively. Both specifications yield

estimates close to -1. We therefore calibrate our model with σ = 1.

One possible limitation of the above experiment is that the subsidies were fairly short-run

in their duration. One may worry that the short-term demand elasticities estimated here do not

map well to the long-term demand elasticities that are presumably more relevant for shaping the

25Rural areas across East Africa share many features, including crops grown, farming methods (mostly rain-fed
agriculture), and overall levels of development.
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impact of policies at scale. Bergquist & Dinerstein (2020) tackle this issue explicitly, exploiting

the randomized order of their treatment periods to test for evidence of inter-temporal dynam-

ics in demand (see Appendix C of Bergquist & Dinerstein (2020)). They find limited evidence

of stockpiling, which they attribute to the relative infrequency of storage in their setting (Burke

et al. , 2019). We are therefore less concerned about this issue in our setting (though we do ex-

plore the sensitivity of the counterfactual analysis across a range of higher or lower values for

σ in Section 5). However, more generally, RCTs do tend to be relatively short-run in their dura-

tion. There may therefore be a trade-off between improved identification vs. temporal mismatch

when using RCTs to estimate these key elasticities, rather than observational variation. The re-

cent push within the experimental literature to run more long-run experiments is promising for

the future availability of longer-run elasticity estimates for scale-up projections (Bouguen et al.

, 2019).

To calibrate the demand parameter ζ, that governs non-homotheticity in food consumption,

we use the following relationship that holds subject to utility maximization under Stone-Geary:

Pi,AC̄A
Ii

=
ξi,A − ζ
(1− ζ)

,

where the left-hand side is the share of household income spent on subsistence, and ξi,A is the

observed share spent on total food consumption, ξi,A =
∑

g∈KA ξi,g. We use the typical feature of

these preferences that the share of income spent on subsistence approaches zero for the richest

households, setting the left-hand side equal to zero, and calibrating ξA with the average share of

expenditure spent on total food consumption among the richest 5 percent of Ugandan house-

holds (which is close to 0.1 in the UNPS data). This yields an estimate of ζ = 0.1, implying that

the share spent on subsistence is on average 38 percent across Ugandan households. For the

elasticity of substitution across manufacturing varieties we choose η = 5, in line with the litera-

ture in international trade.

Supply Estimation

Applying the model described above to the common example of input subsidy programs, we

show in this section how one can use a small-scale RCT of a fertilizer subsidy program to es-

timate the first key supply elasticity κ, which governs farmers’ choice of land allocation across

modern or traditional planting technologies within crops. To do so, we advantage of the ex-

periment run in Carter et al. (2020), in which randomly selected farmers in Mozambique were

offered fertilizer and improved seeds at a subsidized price. Data collected on farmers’ use of

modern technologies and output by plot allows the estimation of the impact of changing input

prices (instrumented by treatment) on land allocations across technologies. To estimate κ, we

derive the following estimation equation from Section 2:
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log

(
πi,k,1
πi,k,0

)
= −

(
κ
αinputi,k,1

αlandi,k,1

)
log pinputi,k + εi,k,

where we have the relative land allocations of modern vs traditional production techniques

within maize production on the left-hand side, and the log price of intermediates (pinputi,k ) on

the right-hand side. The extent to which a price shock for modern inputs affects land alloca-

tions across production techniques within crops will be a function of the supply elasticity in the

lower nest, κ, as well as the relative cost shares of intermediates and land in modern production,

αinputi,k,1 and αlandi,k,1 respectively.

Using the data in Carter et al. (2020), we construct a price index for intermediates as the

weighted average of prices of chemical fertilizer and hybrid seeds, with weights proportional

to their relative cost shares. We then instrument this price with the randomized subsidy treat-

ment.26 Table 2 presents the estimation results of the first stage, reduced form and the IV point

estimates. For each, we report results both from a single post-treatment cross-section or using

baseline and post-treatment panel data with round and community fixed effects.27 The IV point

estimate in columns 5 and 6 is 0.83 and 0.85. Using the ratio of cost shares of land over fertilizer

and hybrid seeds, this implies that κ = 2.5. We use this estimate of the lower-nest (within-crop)

elasticity as our baseline, and explore the sensitivity of the counterfactual analysis across a range

of higher or lower values for κ.

We complement this RCT with a natural experiment in Uganda which allows us to estimate

the upper-tier supply elasticity in our model for substitution of land allocations across crops,

µ.28 The estimation equation derived from the parametrization in Section 2 above is as follows:

log

∑
ω′

π−1
i,ω′,t|k

(
qi,k,ω′,t∏
n l
αi,n,k,ω′

i,n,k,ω′,t

) 1

αland
i,k,ω′

κ
κ−1


κ−1
κ

=

(
µ− 1

µ

)
log πi,k,t + logZi,t + log b̃i,k,t (16)

The left-hand side of (16) is farmer i’s harvest quantities for crop k aggregated across both

techniques in survey year t (summed across both seasons) adjusted for the reported quantities

of labor, modern intermediates (li,n,k,ω,t) and the share of land allocated to technique ω condi-

tional on producing crop k (πi,ω,t|k). This represents an observable measure of land productivity

for a crop k and farmer i as the harvest amounts we observe under either production technique

are deflated by the inputs used across all plots of land allocated to crop k. The first term on the

26Given these data record just one snapshot of production, where some farmers were allocating 100% of production
to either modern or traditional techniques, we aggregate both left and right-hand sides to the level of local villages
broken up by treatment status, summing land allocations on the left and taking average prices on the right. This is to
avoid the assumption that those farmers could never make use of the other technology.

27Carter et al. (2020) also explore the spillover effects of the subsidy on non-treated farmers along the personal
networks of treated farmers. They report that such dynamic effects were not present in the first post-treatment round
that we use for estimation here.

28The experiment in Carter et al. (2020) did not induce changes in the allocation of land across crops that one
could use for estimating µ.
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right-hand side, log πi,k,t, is the land share for crop k (summed over both techniques) used in

producing the harvests on the left-hand. The final two terms capture farmer-specific produc-

tion shocks over time and across crops and farmer i’s land endowment, which we capture by

including crop-by-year fixed effects (θk,t), farmer-by-crop fixed effects (φi,k) and an error term

εi,k,t. Alternatively, to allow for region-specific shocks across crops over time, we also replace

θk,t with region-by-crop-by-year fixed effects (θr,k,t). The regression coefficient of interest, µ−1
µ ,

is thus estimated using changes in land allocations within farmer-by-crop cells controlling for

average changes by crop across farmers over time.

To estimate µ convincingly, we require plausibly exogenous variation in land allocations

(log πi,k,t) across crops over time by farmers that are not confounded with unobserved local pro-

ductivity shocks. To this end, we make use of the fact that additive trade costs (charged per unit)

imply that shocks to world market prices across crops k should lead to a larger reallocation of

land shares for farmers closer to the border, as the percentage change in local producer prices

is ∆pworld
pworld,t0+bordercosti

. We use shocks to world prices for coffee, as world coffee prices are both

highly relevant (more than 90% of Ugandan coffee production is exported)29 and likely exoge-

nous to domestic production (Uganda accounts for less than 2% of world coffee sales). We thus

construct the instrument as the interaction of the log distance to the nearest border crossing for

farmer i, a dummy for whether crop k is coffee, and the log of the relative world price of coffee

relative to the average world price of the other eight crops. Note that the fixed effects φik and

θkt absorb all but the triple interaction term. The identifying assumption is that farmers’ pro-

ductivity shocks in coffee production relative to other crops over time are not related to the the

interaction of the timing of coffee’s relative world prices with distance to the border.

As documented in appendix Figure A.3, the relative world price of coffee dropped signifi-

cantly over our sample period 2005-2013. All else equal, land shares used for coffee production

should have thus fallen more strongly closer to the border. Panel A of Table 3, which presents

the first-stage regression, documents that this is indeed the case: the negative point estimate on

our instrument implies that negative relative world price changes for coffee decrease land allo-

cation to coffee more for farmers closer to the border. This relationship holds both before and

after including region-by-crop-by-technology-by-time fixed effects, and when using all years of

data (2005, 2009, 2010, 2011 and 2013) or just using long changes 2005-2013. In Panel B, we re-

port estimation results before adjusting farmer harvests (qi,k,t) by inputs used in production in

the denominator of the left-hand side.30 Panel C presents the second-stage estimation of equa-

tion (16). We find statistically significant point estimates in the range of 0.45-0.75. Recall that

29Among the 9 main crops we study in Uganda, only coffee falls into this category: the share of exports to produc-
tion for coffee exceeds 90 percent in all years of our sample, whereas the sum of exports plus imports over domestic
production is close to zero (below 4 percent) for the other crops.

30Judging from Panel B, it does not seem to be the case that OLS estimates are biased upward compared to IV
estimation. If anything, the IV point estimates of harvest on land shares are somewhat larger than in OLS. This could
suggest that unobserved idiosyncratic productivity shocks pose less of an omitted variable concern in this setting
compared to potentially significant measurement error in the reported land shares allocated to different crops and
across different technology regimes on individual farmer plots in the survey data.
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this point estimate captures β = µ−1
µ ; this therefore implies estimates of µ in the range of 1.8-

4. Reassuringly, these are close to existing estimates of this parameter reported in Sotelo (2020)

(µ = 1.7). To be conservative, we pick the low estimate of µ = 1.8 as our baseline calibration.31

4 Using Microdata for Calibration of a Granular Economic Geography

In addition to estimating key elasticities with local experiments, our approach also takes seri-

ously the value of using microdata to reflect the granular economic geography of an economy

when estimating effects at scale. In this section, we show how we populate the vector of observ-

able data used in the price discovery and counterfactual solution we laid out in Section 2:

DA =
{
{ξi,k, ξh,k, p∗F,k, qi,k,ω, αi,n,k,ω}k∈KA , Li, Ih, tod,g, τod,k

}
Appendix 1 provides a summary and additional discussion of the administrative microdata

that we use below in the calibration. The rich administrative microdata we use here are increas-

ingly available in many low and middle-income countries.

We restrict the set of crops KA to the 9 most commonly grown crops in Uganda: matooke

(banana), beans, cassava, coffee, groundnuts, maize, millet, sorghum and sweet potatoes. As

documented in Appendix 2, they account for 99 percent of the land allocation for the median

farmer and for 86 percent of the aggregate land allocation. Further, we allow for a single inter-

mediate input (n ∈ NI) that encompasses chemical fertilizer and hybrid seed varieties.

To estimate the cost shares of intermediates, labor and land in the production function of

each crop x technology x location, αi,n,k,ω, we take the median of the cost shares that we observe

across households in the UNPS microdata for each of the 4 regions of the country, and appro-

priately weighted using sampling weights. Appendix Table A.9 presents the cost shares observed

in production across the 9 major crops and the two technology regimes (averaged across the 4

regional sets of parameters we use in the calibration).

To calibrate the model to the full set of local markets and households populating Uganda,

we need household-level information on pre-existing production quantities (qi,k,ω) and expen-

diture shares across crops and sectors (ξi,g, ξh,g) for the full population of households we observe

in the census microdata, which is generally not available as part of census data.32 Instead, we

use the UNPS, which includes such detailed household-level information for a nationally repre-

sentative sample of Ugandan households, to project these outcomes on a number of household

and location characteristics that are also observed in the 100 percent sample microdata from

the 2002 population census. Outcomes of interest are total harvest by production technique in

each crop, expenditure share on food, expenditures by crop within food and trade costs to the

local market (that we estimate among UNPS households as discussed above). For each of these

31This is conservative in terms of welfare impacts, and in terms of the difference between local-vs-at-scale effects.
32Household labor endowments (Li) are observed in the census data directly and equal to the number of working-

age household members in our calibration. Urban income (Ih) is computed by multiplying UNPS average urban
incomes with a city’s population. Foreign prices for crops and inputs ({p∗F,g}g) are from the FAO database.
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outcomes from the UNPS on the left-hand side, we project them (using survey weights in the

UNPS) on household and location characteristics observed in both datasets and use the pre-

dictions for extrapolation to the 100% census population. These characteristics are (in levels):

age and education of the head of the household, number of dependents, number of household

members, an asset ownership index (computed using the same assets), potential yield of a given

farmer’s location from the FAO/GAEZ database, dummies for subsistence farming and urban

households, district dummies and survey year fixed effects.33 For this estimation, we employ

Poisson pseudo-maximum likelihood (PPML), which has the nice property of preserving aggre-

gates in the predicted population data.

Trading Frictions

To calibrate trade frictions across local markets, we use survey microdata collected by Bergquist

et al. (2022) on bilateral trade flows between Ugandan markets, in addition to origin and desti-

nation prices. They collect trade flow data in a survey of maize and beans traders located in 260

markets across Uganda (while not nationally representative, these markets are spread through-

out the country). Traders are asked to list the markets in which they purchased and sold each

crop over the previous 12 months. They complement this data with a panel survey, collected in

each of the 260 markets every two weeks for three years (2015-2018), in which prices are mea-

sured for maize and beans.

This information can be used to limit the calibration of cross-market trade costs to trading

market pairs only within a given period. Consistent with the stylized facts in Appendix 2, we

estimate additive trade costs as a function of road distances between markets. Using only bi-

lateral price gaps from market pairs during months in which they observe positive trade flows

between the pair (following spatial arbitrage in the model), with information on the road dis-

tance between the markets from the transportation network database, we estimate the following

specification:

tod,g,t = (pd,g,t − po,g,t) = α+ β (RoadDistanceod) + εod,g,t,

where t indexes survey rounds and the error term εod,g,t is clustered at the level of bilateral pairs

(od). RoadDistanceod is measured in road kilometers traveled along the transportation network.

We estimate a single function of trade costs with respect to road distances across all goods, so

that tod,g = tod.34 The estimated trade cost for an additional road kilometer traveled between two

markets is 1.2 Ugandan shillings (standard error 0.289), which implies a cost of about $0.5 per

kilometer for one ton of shipments. This is consistent with additional survey data from Bergquist

et al. (2022) documenting that fuel costs for a fully-loaded 5-ton is 0.3 Ugandan shillings per kg

per km (standard error 0.024). This would imply that fuel costs account for about 25% of total

trade costs, which is consistent with existing findings (e.g., Hummels (2007)). If we replace the

33For local trade costs we do not include potential yields.
34We do so for power reasons. The dataset covers two crops, maize and beans. Including a crop-month FE in the

regression above yields very similar results.
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specification above to be in logs on both left and right-hand sides, the distance elasticity is .0258

(standard error 0.0057), which is close to existing recent evidence for within-country African

trade flows by e.g. Atkin & Donaldson (2015). We use this distance elasticity to calibrate ad

valorem trade costs τod for trade in the manufacturing good.

To calibrate the local trading frictions between farmers and their local market (tim,g), we im-

plement a similar strategy, using gaps between selling farmers’ farm-gate prices and local market

prices as reported in the UNPS.35 We first estimate:

pi,g,t = pm,g,t − tim,g,t = θm,g,t − tim,g,t

where pi,g,t is the farm-gate price of good g of farmer i in market (parish) m at year-month t and

pm,g,t is the local market price that we do not directly observe and capture with parish-by-crop-

by-harvest time fixed effects (θm,g,t). The farmer-by-crop-by-time specific residual is−tim,g,t, the

negative of the local trade cost.36

The estimated average farmer-level trade friction to their local markets ranges between 23

at the 1st and 90 shilling at the 99th percentile in the population, with an average of about 66

Ugandan shilling per kilogram, which amounts to roughly 8 percent of the average crop price.37

Finally, we use the UNPS microdata to estimate the trading frictions farmers face when hiring

or selling labor in the local market in the same way as for crop trade costs. We replace pi,g,t on

the left-hand side above with “farm-gate” wages (paid by farmer i to hired labor, i.e., inclusive

of transaction costs).38 On average, hiring farmers is subject to labor trading frictions of 248

shilling (or 10 US cents) per day for hiring a worker, or around 5% of the daily wage.

5 Counterfactual Analysis: Local vs. At-Scale Policy Impacts

Bringing together the model and solution method from Section 2, the key parameters estimated

from local experiments in Section 3, and the calibration to the granular economic geography

described in Section 4, we now proceed to quantify local vs. at-scale counterfactuals for one

of the most widespread agricultural support policies in low and middle-income countries: a

subsidy for modern inputs.39 In Section 6, we further discuss other agricultural policies to which

our approach is immediately relevant, and others to which it could be tailored.

35To ensure we are capturing farm-gate prices we restrict the sample to transactions by farmers to private traders.
Bergquist et al. (2022) document that these transactions occur at the farm-gate.

36Since the distribution of trade costs is therefore mechanically centered at zero, after predicting trade costs for the
full Ugandan population (see the next step), we shift the distribution rightwards such that a farmer in the bottom 0.1
percentile faces trade costs to the local market that are close to zero (1 Ugandan shilling).

37In the upper panel of table A.10 we also report corroborating evidence that the estimated trade costs are signifi-
cantly related to other measures of remoteness at the farmer level in the UNPS data.

38Farmers report hired person-days and expenditure on hired labor, which we use to compute daily wages on the
farm.

39These policies are widespread: in a survey of 10 African countries, Jayne & Rashid (2013) find that input subsidy
programs account for on average 28.6% of total public expenditure on agriculture. They estimate that over 60% of
sub-Saharan Africa’s population lives in a country with a major input subsidy program.
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We proceed with four main sets of results. We first present the analysis of how the welfare

impacts of a modern input subsidy differ between a local intervention and one at scale – among

the same sample of farmers – and quantify the underlying mechanisms. Second, we use our

framework to investigate how the sign and extent of GE forces can differ as a function of satu-

ration rates at different geographical scales, with new implications for randomized saturation

designs in the RCT literature. Third, we investigate the role of capturing a realistic, granular eco-

nomic geography for counterfactual analysis. Fourth, we explore the sensitivity of our findings

across alternative parameter values, highlighting the importance of using local experiments for

parameter estimation, and present additional model validation results.

Local Effects vs Scaling Up

To fix ideas, we focus on the effects of a subsidy for modern inputs (chemical fertilizers and

hybrid seed varieties in the data). We investigate the effects of an intervention that gives a 75

percent cost subsidy for these inputs across all crops.40 We run two types of counterfactuals

in the calibrated model. As depicted in Figure 1, households are located in roughly 4,500 rural

parish markets and 70 urban centers. In the local intervention, we randomly select a 2.5 per-

cent sample in each of the rural parishes (roughly 100,000 households nationwide). For each of

these markets, we then shock this random sample of households with the subsidy for modern

inputs and solve for the counterfactual equilibrium as stated in Section 2. This is akin to running

4500 separate small-scale RCTs. For the intervention at scale, we offer the subsidy to all farming

households in the economy (including the original 2.5 percent sample). In both types of coun-

terfactuals, we solve for changes in household-level outcomes across all 4.5 million Ugandan

households. We then compare the changes in economic outcomes for the sample of households

treated in the original, local-only intervention to their economic outcomes when the interven-

tion is also scaled to the rest of the Ugandan countryside.

Figures 2-4 present the main counterfactual results. In Figure 2 we start by documenting the

difference in welfare effects between the at-scale and local interventions across all∼ 100, 000 na-

tional sample households. The left panel shows the at-scale impact minus the local intervention

impact, in percentage points, for these households. The right panel aggregates to average effects

at the level of parish markets, to facilitate comparison between the average treatment effect that

a given parish would experience at scale to the average treatment effect that would be typically

measured in a local experiment.41 The black lines plot the distribution of these differences, with

the vertical bar showing the average difference. To shed light on distributional impacts, the blue

and red lines show the same effects for the top and bottom quintiles (roughly 20,000 households

each) of land shares in initial household income. Those in the bottom quintile – whom we refer

40To simplify the exercise, we leave aside for the moment the public finance dimension of the subsidy. It would be
straightforward to have this financed by a lump-sum tax in the model.

41Changes in welfare are changes in real incomes, with the price index defined as the ideal price index over manu-
facturing and agricultural consumption given by the nested Stone-Geary preferences stated in the model’s parame-
terization at the end of Section 2.
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to as “land-poor” – are smallholder farmers whose land profits from agricultural production are

relatively small and who therefore get a larger fraction of their income from labor (including the

implicit value used on their own farm, as well as any explicit value they receive from selling their

daily labor to other, larger farms). Those in the top quintile – whom we refer to as “land-rich” –

are larger landowners who have greater crop income and who tend to be net buyers of labor.42

Two main insights emerge. First, the distribution is wide, with households experiencing more

than +/- 5 percentage point changes in their welfare impact when the intervention is scaled-up

(with the average household experiencing a decrease of about 1 percentage point, or about 20%

of the average local welfare effect in appendix Table A.11). Second, scaling up the intervention

has very different effects on land-rich vs. land-poor households. We see that the mass of land-

rich households lies to the left of zero, suggesting that they tend to lose at scale relative to how

they fare under the local intervention, while the mass of land-poor households lies to the right,

on average gaining at scale. Table A.11 shows the point estimates of both local and at-scale

effects across these different groups.

To further investigate the distributional implications of scaling in this context, Figure 3 pre-

sents non-parametric estimates of the local and at-scale welfare effect as a function of initial

land income shares. We see in the left panel that while the local intervention strongly benefits

land-rich households more than the land-poor (by on average up to 5.5 percentage points), the

at-scale intervention significantly flattens this gradient (reducing this gap by more than half, to

2 percentage points). Driving this compression is the fact that land-poor households experi-

ence gains that are on average larger at scale than they are under the local intervention, with the

poorest households experiencing welfare gains that are 1.5 percentage points larger at scale. In

contrast, land-rich households fare worse at scale, with the richest experiencing a 2 percentage

point drop in their welfare gains relative to the local intervention. Qualitatively similar differ-

ences are present in the right panel when comparing land-rich and -poor households within

markets, after conditioning on parish market fixed effects, suggesting that these effects are not

driven purely by differences across locations.

Appendix Figures A.5-A.9 and Table A.12 and further investigate the underlying mechanisms

driving these differences at scale. In Figure A.5, we decompose the difference between the at-

scale effect and the local effect into different underlying components for both the effects on

nominal incomes and household price indices. Table A.12 also presents point estimates of the

average effects on these various components different groups of households. We find that GE

forces on average decrease the positive effect on land income at scale compared to the local in-

tervention for both land-rich and land-poor households, as the price of the local non-traded fac-

tor of production (labor) appreciates and (most) crop output prices fall (see Table A.12). Wages

and labor income increase on average as a result. Both effects favor (relatively) the initially land-

poor, who experience larger increases in their labor earnings and lesser reductions in their land

42Appendix Figure A.4 also presents flexibly estimated (positive) relationships between our measure of land shares
and households’ land ownership in acres or households’ calibrated total incomes. Fink et al. (2020) document similar
patterns in another African context (Zambia).
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earnings.43 Price index effects are more muted at scale vs. locally, because reductions in the rel-

ative price of food (favoring poorer households) are offset by relative price changes within food

that tend to favor richer households.

Figure 4 provides evidence on the role of remoteness. Theory suggests that the gap between

the effects of a local vs. at-scale intervention increase in market remoteness, as GE effects on

crop output prices are strongest in more remote markets, where local prices are less pinned

down by world prices at border crossings or proximity to cities. The left panel of 4 confirms

this hypothesis for access to other markets within Uganda (measured by the log of the inverse

distance-weighted sum of population in all other markets and cities d in Uganda for each origin

parish o on the x-axis:
∑

d6=o
Popd

Distanceod
). The right panel plots the same relationship with respect

to the log distance to the nearest border crossing in km on the x-axis. Both panels present the

difference in households’ welfare impact (at scale - local) in percentage points on the y-axis. We

find that deviations between local and at-scale effects tend to be more pronounced in relatively

remote rural market places.

Appendix Figures A.7-A.9 provide additional evidence on the roles played by initial technol-

ogy usage and crop planting decisions in shaping effects at-scale vs. the local intervention. We

document that land-rich households benefit more from the local intervention in part because

of significantly higher pre-existing usage of modern technology (higher cost shares for fertilizer

and hybrid seeds). Average crop prices fall most at-scale among crops with higher pre-existing

usage of modern technology, and farmers planting these crops gain more in the local interven-

tion (and relatively lose more at scale).

GE Forces as a Function of the Intervention’s Scale

Experimental approaches to capturing GE effects often employ “randomized saturation” de-

signs, in which the fraction of individuals treated is randomized across geographic areas or “clus-

ters” in order to study the market-level outcomes that emerge (see e.g. Baird et al. (2011); Burke

et al. (2019); Egger et al. (2022)). Here we use our approach to investigate how the GE effects in

our context evolve as the intervention is scaled up to an increasingly large fraction of households

nationwide, and as the geographic scale of the cluster is varied. Both have implications for the

optimal design and lessons that can be learned from randomized saturation designs.

Panel A of Figure 5 presents the welfare impact of the subsidy on the original national farmer

sample as a function of the nationwide fraction of the rural population that is also treated. The

left-most point on the x-axis corresponds to the local intervention, where only parish-level sam-

ples of 2.5% of the local population are treated. The right-most point on the x-axis corresponds

to the at-scale intervention above where 100% of rural Ugandan households receive the subsidy

43This is driven both by higher pre-existing labor income shares among the land-poor as well as slight differences in
average wage and crop price effects due to differences in crop and technology usage across households and markets.
Appendix Figure A.6 shows the same graph without the initial income share weighting (no longer summing up to
the total income effect), documenting about 1 percentage point more positive wage effects at scale (compared to the
local effect) among the land-poor, but also about 1 percentage point more negative land earning effects at scale.
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treatment. The point estimates going from left to right plot the average treatment effect on the

same initial 2.5% household sample across increases in the national saturation rate in steps of

10 percentage points of the rural population.44

The left figure in Panel A traces the average welfare impact, while the right figure displays the

average effect separately for the bottom and top quintiles of the initial land income shares. The

main insight that emerges is that the extent of GE forces appears to be a monotonic and roughly

linear function of the national saturation rate, both for the average effect in the left figure and the

distributional implications of the policy on the right in Panel A. These findings are reassuring, as

they would in principle support comparisons between just two discrete levels of saturation, as

has become common practice in randomized saturation designs.

That said, Panel A varies the saturation at the national level. In practice, randomized satura-

tion designs typically randomize the saturation within some smaller geographic unit (“cluster”).

Panel B of Figure 5 explores the role played by the size of these clusters. To illustrate, we consider

the case of a study design that uses subcounties (of which there are 811 in Ugdanda during our

study period) as the unit at which saturation is randomized. These are relatively large geograph-

ical units compared to the typical “clusters” in the literature as we discuss below. For example,

Egger et al. (2022) randomize treatment saturation at the level of sublocations in Kenya (groups

of 10-15 villages), which are smaller than Uganda’s subcounties.

Consider, specifically, a design that randomly selects 51 subcounties in which to implement

this design (each randomly picked within one of the 51 districts of Uganda). First, just to demon-

strate that these 51 subcounties are not distinct in some important way, we replicate the exer-

cise from Panel A (increasing saturation rates nationwide in increments of 10 percentage points)

and plot results for this random subset of subcounties (including roughly 6500 households of

the same national 2.5% sample as in Panel A above); the blue line in Panel B shows results that

closely mirror those in Panel A. Next, we consider the more feasible randomized saturation de-

sign in which – rather than varying the saturation rate at the national level – the saturation rate is

varied at the subcounty level, with the rate of saturation goes from 0% to 100% just within the 51

study subcounties as we move from left to right along the x-axis. Results are presented in orange

in Panel B.

Two main insights emerge from this exercise. First, in contrast to changes in national satu-

ration rates, for which we see the impact of the program decreasing monotonically with scale,

we find almost no changes in the average impact of the program as a function of subcounty-

level saturation rates, even at 100% saturation within these areas (see left side of Panel B). This

means that a design that randomizes the saturation at the subcounty level, even with extreme

differences in saturation rates, would not be able to measure GE-driven changes in the average

impact across these rates. One might then incorrectly conclude there is no change to the pro-

gram’s average impact from scaling up. Second, one would also draw the wrong distributional

44We solve for counterfactual outcomes after randomly selecting additional fractions of households within all
parishes in increments of 10% until reaching full saturation. The first 10% national saturation treats an additional
7.5% of the local population in all parishes.
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implications from a randomized saturation design at the subcounty level. While at the national

level, declines in the average welfare impact are predominantly driven by a reduction in welfare

gains among the top quintile of land-rich households, a design that randomized saturation at

the sublocation level would find weaker reductions among the land-rich and stronger increases

in gains among the land-poor as a function of local saturation rates – offsetting one another so

that the average effect across farmers is close to constant. The forces behind these trends are

that farmers’ crop prices react differently to saturation rates at more or less local geographical

scales: increasing nationwide saturation rates has significant implications on output prices (see

Table A.12), whereas changes in the saturation within sub-county populations have much more

muted implications on output prices. As a result, local increases in saturation mainly imply that

parts of the land revenue gains are capitalized into the local non-traded factor of production (la-

bor) – explaining why averages are close to unaffected, while land-poor farmers gain more (and

land-rich farmers lose less) as a function of local saturation compared to nationwide saturation.

These results suggest some caution in extrapolating from the reduced-form results observed

in a randomized saturation design what welfare impacts would look like under a nationwide

program. Even when randomizing saturation at the subcounty level – which in Uganda encom-

passes on average 32 villages and 30,000 individuals, and therefore is larger than most units

used in the existing randomized saturation literature45 – this may still be too “local” in scale,

and therefore unable to generate the type of GE forces that would emerge under a nationwide

roll-out. This by no means implies that these designs are not useful for informing predictions

of impacts at scale, but rather that the variation they generate may need to be combined with

approaches such as the one described here in order to make predictions for impacts at national

scale, a point we turn to in Section 6.

The Role of a Granular Economic Geography

In Section 2, we emphasized several features of the economic geography of rural agricultural

markets that are typically absent from existing quantitative models, but which may matter for

the propagation of shocks across markets and sectors. These include: (i) a granular economic ge-

ography with trade costs between household locations within markets and transportation routes

across markets; (ii) homogeneous goods, allowing for extensive margin impacts across trading

pairs; and (iii) additive trade costs, allowing for incomplete and heterogeneous pass-through of

price shocks. Our approach captures these and a number of additional salient features. How

much do these innovations matter, quantitatively, for the implied effects at-scale?

To this end, we compare the effect of the at-scale intervention across models with alterna-

tive geographies. In the first alternative model, we follow the tradition in CGE analysis and most

of macroeconomics, and estimate GE counterfactuals in a single integrated national market –

assuming no trade costs for output or inputs within Uganda. In the second alternative model,

we instead follow the literature in international trade and assume the Ugandan economy is sub-

45See e.g. Baird et al. (2011), Burke et al. (2019), Egger et al. (2022).
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ject to iceberg (ad-valorem) trade costs and structural gravity in a standard Armington model at

the level of parish markets trading crops.46 Except for changing assumptions on the nature of

trade frictions and product differentiation in agriculture, we keep the rest of the model and its

calibration as in our baseline.47

Figure 6 shows the comparison to a single integrated market in the left panel, and the com-

parison to the Armington model in the right panel. In both graphs, the y-axis displays percentage

point differences in the welfare impact of the at-scale intervention between the baseline model

minus the effect in the alternative model across the∼ 100, 000 households as a function of initial

land income shares on the x-axis as before. The dashed red lines indicate the sample average

of these differences. On average, the single integrated market would overestimate the welfare

gains at scale by 15%. In terms of distributional implications, the single-market economy would

miss the reversal of the policy’s regressivity at scale revealed by our model: land-poor house-

holds on the left of the x-axis experience higher gains at scale under realistic, granular economic

geography compared to a world without trading frictions, whereas land-rich households on the

right experience significantly smaller gains. Comparing this to the left panel in Figure 3, the sin-

gle market would capture less than half the GE adjustment on the distributional implications

at scale compared to the local effect. This is because crop price adjustments are muted in a

single national market place, as world market prices at the border are more binding across mar-

kets. This decreases the asymmetry between the local intervention (at unchanged initial output

prices) and the intervention at scale – benefiting land-rich households at scale whose output

prices decrease less compared to a world with a granular economic geography.

The comparison to the Armington model in the right panel of Figure 6 documents that both

the average and distributional welfare implications differ meaningfully when assuming ad-valorem

iceberg trade costs and structural gravity with product differentiation, we typically do for man-

ufacturing varieties. We find that average welfare gains under our preferred model with ho-

mogeneous goods and additive trade costs are about 50% greater than implied under the stan-

dard Armington model, which underestimates gains to land-rich households in particular. The

weaker average effects in the Armington model are due to the implied lower elasticity of sub-

stitution (i.e., finite) between the varieties of a given crop produced in different parishes. The

weaker response of the demand for crops leads to a bigger drop in prices but smaller effects on

wages.

These results indicate that embracing a granular and realistic economic geography matters

for counterfactual analysis at scale, both for average effects and distributional implications.

46We treat each parish as a single integrated markets and assume that each crop is differentiated across parishes
but that farmers within a parish produce homogeneous crops. Following the literature, we use a trade elasticity of 5
(i.e., the elasticity of substitution in consumption across varieties of each crop across different parishes).

47This Armington specification is another special case of our framework where each location produces a different
good, akin to how we model the manufacturing sector. In this specification, we use our estimated iceberg trade costs
to calibrate trade shares in the baseline equilibrium, and we can use the exact hat algebra to describe the counterfac-
tual equilibrium.
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Importance of Local Experiments in Identifying Key Elasticities and Model Validation

In Section 4, we emphasized the role that local experiments could play in rigorous identification

of key elasticities. The more sensitive the counterfactuals are to these elasticities, the more crit-

ical clean identification becomes, as biased estimates generated from observational variation

could substantially distort the implied policy impacts. In this section, we explore how alter-

native parameter estimates would alter the implications of effects at-scale. This exercise offers

both greater intuition about how key elasticities drive impacts at scale, and guidance on which

parameters are most critical to identify accurately with credible approaches. Beyond parameter

sensitivity, we also present additional model validation results.

Figure 7 presents the counterfactual results for the intervention at scale under alternative

parameter assumptions on the supply side (κ and µ) and the demand side (σ). In the upper left

panel, we see that the magnitude of the lower-tier supply elasticity, κ, is quite important for our

estimates. Higher values of κ increase the estimated welfare effects at-scale, as farmers are more

responsive to price changes in how they allocate their land across technology choices within a

given crop. This may help explain why some RCTs have found larger effects over the long-run,

as greater time for adjustment may imply larger elasticities (Bouguen et al. , 2019).

Higher values of κ also lead to larger differences between the local and at-scale intervention

in GE, as greater responsiveness on the part of others leads to larger output and factor price

changes at scale compared to local intervention (at original prices). This highlights the impor-

tance of careful identification of this parameter. Using exogenous variation in prices coming

from experiments, as we do here with an experimental fertilizer subsidy (Carter et al. , 2020), can

increase our confidence in our estimate of this key parameter for a given policy context. This

therefore represents an important role that can be played by experiments, a point we return to

in Section 6.

Conversely, our estimates are less sensitive to the upper-tier supply elasticity µ (across crops)

or the value of the demand elasticity σ (upper right and lower panels). In our setting, cost shares

of modern inputs do not differ substantially across crops, and while we find above that crops in

GE are affected differently by the subsidy policy, cost share differences remain relatively minor

(compared to shifting across production regimes within crops). How households trade off these

crops in consumption is therefore also less critical for the changes in the policy’s impact locally

vs at scale. However, in other contexts (e.g. with more strongly differing input suitability in

production across crops, or with an intervention targeted at one particular crop), both µ and σ

could play more important roles in shaping the effects at scale and their difference relative to

the local effects.

Beyond parameter sensitivity, we present additional model validation results. One important

innovation of our theory is to use the model-based price discovery algorithm to solve the model

with the new economic features we allow for in this setting. This involves solving for farm-gate

prices (at the level of household locations) and trade flows that rationalize the observed con-

sumption and production decisions given a graph of trade costs. For model validation, we are



29

able use data on crop prices and trade flows between 260 Ugandan markets in the trader surveys

collected by Bergquist et al. (2022). Comparing these market places in our baseline model and

in the data, we can assess to what extent the model-based estimates of local crop prices and

predicted trading relationships between markets capture variation in prices and trade flows of

those same markets in the survey data.

Panel A of Figure 8 compares the variation in local market prices for maize and beans across

the Ugandan markets in data vs. model. For each of 38 months of the trader survey data, we take

the median market price for each crop and market in a given month. The y-axis of the binned

scatter plot shows the residuals from a regression of the log median market prices in the trader

surveys on month-by-crop fixed effects. The x-axis displays mean deviations of log prices for

the same two crops across the same markets in the baseline equilibrium – the results from the

price discovery algorithm. Reassuringly, the model-based price variation – based entirely on ob-

served information on crop production, consumption and trade costs on a connected graph of

household locations in Uganda – presents a rather tight, positive and roughly linear relationship

to observed price variation in the same crops and markets pooled over the 38 months of survey

data.48

But part of the price variation across markets in the trader survey data was used in our cali-

bration of trade costs – in particular price gaps between trading pairs. To ensure that the model’s

relationship to the survey data is not partly mechanical in that respect, Panel B converts the data

to bilateral origin-destination price gaps (with each bilateral pair counted only once for a given

crop and month of data). We then exclude all pairs with positive trade flows (which were used to

quantify trade costs in the model calibration). The remaining bilateral price gaps in the data are

then plotted against the same market-to-market price gaps from our price discovery algorithm.

Panel B confirms a roughly linear and rather tight positive relationship between price variation

in the model to price variation in the survey data, even when excluding any moments used in

the calibration of trade costs in the model.

Finally, Panel C of Figure 8 compares the observed active trading routes in the data to the

ones predicted by our model’s price discovery algorithm. Of the 1256 bilateral trade flows for

maize observed in the data (stacked across 12 months), the model captures 968 active trading

relationships (77%). For beans, the model predicts 75% of the observed bilateral trading rela-

tionships (392/522). The reverse proportions – the fraction of crop-by-market pair relationships

predicted in the model that are captured in the trader surveys for the same markets and crops

– are somewhat lower (71% for maize and 37% for beans). One explanation for this is that the

48There are, of course, many reasons why the price deviations can differ in data vs. model. On the survey data side,
there could be measurement error, unobserved variation in crop quality, as well as temporary idiosyncratic shocks
on the day that information was collected across different market places in Uganda. On the model side, household
locations, expenditure shares and crop production moments are partly extrapolated to the population with likely
significant degrees of measurement error. Parish markets in the model are based on centroids, whereas real-world
market places that are assigned to the same parish identifier do not necessarily coincide geographically. All of these
factors would imply a somewhat noisy and attenuated relationship between model fundamentals and real world
data.
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trader surveys are based on a sample of traders, whereas the model captures aggregate trade

flows between markets. We view the high proportion of observed bilateral trading relationships

for a given crop that the model correctly predicts as another piece of reassuring evidence that the

model-based price discovery algorithm reveals meaningful economic variation across markets.

6 Discussion

This paper develops a toolkit that can be combined with field and quasi-experiments to inves-

tigate GE treatment effects at scale. We see these two approaches as complementary and hope

that, in combination, one can expand what can be learned from (quasi-)experiments or quan-

titative GE models alone. In the following discussion, we explore some concrete ways in which

we view these toolkits as complementary. We also discuss some practical considerations for

combining the two approaches, including how to broaden our approach to a wider range of

agricultural interventions and concrete tips for data collection and implementation of our ap-

proach. As a complement to our paper, we are also creating a streamlined coding toolkit that

can be combined with data for calibration and experimental estimates of local interventions to

implement our methodology in different empirical and policy settings.

6.1 Complementary Tools

What do approaches such as ours bring to experiments? Muralidharan & Niehaus (2017) discuss

three ways in which the impact of policies implemented at scale can differ from those measured

in small-scale RCTs: (1) GE and spillover effects: factor and output prices or other market-level

features may shift in ways that alter treatment effects and their distribution; (2) external validity:

treatment heterogeneity may mean that results measured among the study sample differ from

those that would be experienced by the broader population; and (3) implementation differences:

program logistics may be different at scale, as implementation moves from a researcher-run or

pilot program to a large-scale operation run by governments or other big organizations.

Our approach provides a new toolkit to investigate and quantify the first two issues. On GE

effects, the quantitative model developed here is explicitly targeted at analyzing how input and

output prices adjust – and the resulting ripple effects on factor usage, production, consumption,

and ultimately household welfare – when policies are implemented at scale. By simulating ef-

fects in the whole population or among areas not in the study sample, this toolkit also speaks

to external validity, to the extent that treatment effects and GE forces vary based on dimensions

that are modeled in our framework (such as heterogeneity in revenue or consumption impacts

driven by variation in initial crop allocations, technology and factor usage in production, expen-

diture shares in consumption, or local trade costs and linkages to other markets). Our approach

does not have much to say about the third issue of implementation differences, other than not-

ing that estimates will be more accurate the closer the experiment’s implementation is to the

final at-scale policy.49

49In principle, one could investigate counterfactuals with alternative assumptions on how implementation at scale
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Finally, in addition to helping us to learn more from experiments ex-post, our toolkit can

also provide guidance for experiments “ex-ante” to inform the experimental design and data

collection (including questions of stratification and power calculations), as we discuss below.

Conversely, what do smaller-scale experiments bring to quantitative GE models like the one

developed in this paper? We see three important roles. The first, which we demonstrate here,

is to use exogenous variation from RCTs or quasi-experiments to more credibly identify some

of the key parameters both on the supply and demand sides of the model. As documented in

the previous section, these elasticities matter for the extent and incidence of GE forces at scale.

Long-run RCTs are particularly useful here, as they give time for adjustment and are therefore

more likely to capture long-run elasticities.

A second benefit from RCTs is that the fieldwork and data collection can provide key mo-

ments for the model calibration that are frequently outside the scope of available administrative

or other microdata. For example, in our analysis above we brought to bear knowledge of bilateral

market-to-market trade flows for trade cost estimation.

A third role for RCTs is model validation. Randomized saturation designs, like the ones ex-

plored in the previous section, can be particularly useful here as they can provide empirical

counterparts to model-predicted GE forces. Although we show that randomized saturation de-

signs do not necessarily, in reduced form, yield GE impacts at a broader scale of program roll-out

(i.e. beyond the level of clusters as defined in the RCT), they can still be very useful for estimat-

ing “sublocation GE effects” – changes in crop and factor prices and other market-level features

driven by local differences in saturation – that can be compared to model-based counterfactuals

based on the same geographical clusters to validate the model. Such validation can then lend

credibility to predicted effects at a larger geographical scale, at which saturation randomization

may not be feasible.

6.2 Combining the Toolkits in Practice

Assuming one wants to combine an experiment with an approach like ours, how does one go

about it in practice?

Applying the Approach to Different Agricultural Policies

Our approach is well-suited to be off-the-shelf applicable to three common types of agricultural

interventions. The first is shocks to agricultural productivity, which enter through the b̂j,k,ω in

the model. These can include weather and climate change-driven shocks, the introduction of

new seed varieties and other technologies, and complementary inputs such as irrigation that

alter agricultural productivity. As demonstrated above, this can also include input subsidies,

one of the largest and most common agricultural policy interventions in developing countries.

Second, our approach is readily applicable to demand-side shocks, such as policies that affect

non-agricultural income, incomes in different regions (e.g. urban households) or those that

may change the direct incidence or take-up of the subsidy, and quantify implications at scale based on those assess-
ments. In practice more research may be needed in this space to learn about such differences (Duflo (2017)).
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alter consumption preferences, such as nutritional awareness campaigns (entering the model

through âj,k). Finally, our approach is relevant to policies that affect trade costs (τ̂od,k or t̂od,k in

our model). Most obviously, this includes road building initiatives, railway network extensions,

and other policies that reduce transportation costs. But other policies aimed at reducing trad-

ing frictions – for example those targeted at reducing search frictions or improving competition

of the transportation sector – could be considered subject to a well-defined mapping between

these policies and reductions in trading frictions.

Of course, there is also a range of agricultural policies for which our current model would not

be off-the-shelf appropriate and for which it would need to be substantially tailored or extended

to speak to effects at-scale. One important example is land market reforms such as those that

title land (D. Ali & Ferrara, 2015), privatize land (Manysheva, 2022), legalize land sales (Chao-

ran Chen, 2022), or put caps on farm sizes (Adamopoulous & Restuccia, 2020). Our current

model would also not be readily applicable to policies that aim to reduce risk (Donovan, 2021);

(Emerick et al. , 2016) or alleviate the impact of inter-temporal shifts in preferences (Duflo et al.

, 2011) or prices (Basu & Wong, 2015); (Burke et al. , 2019). We consider our setup and solution

method as a first and important step to unlock quantitative analysis paired with rich and granu-

lar microdata in this important policy setting, and see these and other extensions as promising

avenues for future research in this context.

Data collection and research design considerations

In the following, we offer some practical considerations for both data collection and research

design. In terms of data collection, researchers will want to collect data on production and

consumption of all major crops, not just those directly targeted by the intervention, as in GE

multiple output and factor markets can be affected. These data are crucial for estimating both

supply- and demand-side elasticities, as well as for calibrating cost shares or technology use in

production functions across crops. Given that wage effects can play an important role, capturing

input expenditures on labor (including own labor) is important, albeit often difficult to measure.

For the model calibration at scale, collecting similar covariates to those included in nationwide

administrative datasets (ideally captured using similarly-worded survey questions) can support

the extrapolation step of the model calibration in cases in which not all household outcomes in

the initial equilibrium are observed in national census data. Finally, collecting data on market

prices and trade flows is useful for calibrating trade costs between markets as well as between

households and markets. A large literature in international trade and economic geography has

documented that (easier-to-observe) freight rates typically only account for a fraction of overall

trading frictions across space (e.g., Allen (2014)). As we lay out in Section 4, knowledge of where

trade flows occur, their direction and the market prices at both origin and destination can be

used to estimate total trade costs in a theory-consistent way.

Our toolkit also offers guidance in terms of the research design. When randomized satura-

tion designs are planned, researchers can use estimates of parameter values (drawn from our

study or others in the literature), to calibrate the model ahead of time in an exercise mimicking
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a power calculation. Such model-based simulations could inform decisions about, for example,

the level at which to randomize saturation, the degree of cross-cluster spillovers or the degree of

saturation needed to detect treatment effects on GE outcomes. A calibrated version of our model

can also be used for stratification to make the estimated treatment effects representative of the

overall population. In particular, our model embraces a number of sources for heterogeneous

treatment effects that are not generally included among the standard demographic character-

istics used for stratification – such as measures of a market’s trading costs for farmers within

the market region or to other destinations (market access/remoteness), differences in regional

production functions or household expenditure shares for the same crops. In particular, rather

than merely stratifying on a number of factors, our model would allow researchers to stratify on

predicted treatment effects (both locally and at scale). Finally, clarity about the parameters to

be used in model estimation ex-ante may point researchers to additional experimental variation

that can be used for estimation.50

7 Conclusion

We propose a new approach to quantify large-scale GE counterfactuals in the context of agri-

cultural policies that can both complement evidence from field and quasi-experiments and be

informed by it. We develop a rich but tractable quantitative GE model of farm production, con-

sumption and trading. To capture a number of salient features that we document in this setting,

the model departs from the workhorse “gravity” structure in international trade and economic

geography in several dimensions. We then propose a new solution method that allows us to

study GE counterfactuals in this rich environment, without imposing additional data require-

ments that would be practically infeasible. To showcase our approach, we bring to bear admin-

istrative microdata on household locations, production, consumption and the transportation

network within and across local markets to calibrate the model to the roughly 4.5 million house-

holds populating Uganda in 2002. We use a combination of existing RCTs and variation from

natural experiments to estimate the model’s key parameters.

We find that the average effect of a subsidy for chemical fertilizers and hybrid seed varieties

on rural household real incomes can differ substantially when implemented at scale compared

to results from a local intervention that leaves output and factor prices largely unaffected. We

show that this difference extends to the policy’s distributional implications, which are regressive

according to results from the local intervention, but much less so when implemented at scale.

We also use our framework to document new insights about the sign and extent of GE impacts

as a function of saturation rates at different geographical scales. We find that while GE forces

appear to be a monotonic and approximately linear function of saturation rates within a given

50For example, even with randomized saturation designs that generate variation in agricultural prices, one may
not be able to use this variation to estimate demand for these goods, as many consumers of these products are also
producers and therefore price changes can generate changes in income. Separate experiments to identify demand-
side elasticities may be needed, such as e.g. the randomized price experiment used in Bergquist & Dinerstein (2020).
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geographical area, both their average size and distributional impact depend on the geographical

scale at which saturation is being implemented.

The framework we lay out in this paper is aimed at providing a toolkit that can be used to

complement the empirical findings from experiments and quasi-experiments related to agri-

culture. While we hope to break new ground in this context, this paper by no means exhausts

the interesting dialogue between reduced-form evidence and model-based counterfactuals. For

example, from theory to field work, that dialogue could be used to inform the design of future

RCTs to include data collection targeted at estimating key supply and demand elasticities in a

given context. From fieldwork to theory, on the other hand, that dialogue could yield additional

results on model validation, with a focus not just on the local effects in a given market place, but

also using experimental estimates of GE forces from randomized saturation designs. These and

related questions provide an exciting agenda for future research in this area.
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8 Figures and Tables

Figures

Figure 1: Ugandan Markets and Transportation Network

The figure displays the location of local parish markets, urban markets, border crossings and the road network in

Uganda. See Section 3 for discussion of the data and Section 5 for the counterfactual analysis based this geography.
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Figure 2: Difference in the Effect at Scale vs. Local Interventions
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The figure plots distributions of the difference in welfare changes from at-scale versus local interventions in percent-

age points for the identical representative sample of roughly 100k randomly selected rural households (left panel),

and their averages across parishes (right panel). Vertical bars indicate mean differences. Overall differences are plot-

ted in black. The blue line shows the effects for the top quintile of land shares in initial household income, while the

red line shows the same effects for the bottom quintile. See Section 5 for discussion.
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Figure 3: Distributional Implications
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The figure plots the welfare changes resulting from the local and at-scale interventions, respectively, as a function

of initial land shares. Estimates are for an identical representative sample of roughly 100k rural Uganda households.

The right panel uses deviations from the parish means on both axes instead of the levels plotted in the left panel.

Estimates are from local polynomial regressions. Shaded areas indicate 95 percent confidence intervals. See Section

5 for discussion.
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Figure 4: Effects as a Function of Remoteness
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The figure plots the difference in households welfare impact (at scale - local) in percentage points on the y-axis. The

left panel uses the log of the inverse-distance weighted sum of populations in all other markets and cities in Uganda

(
∑
d6=o

Popd
Distanceod

) on the x-axis, with distance measures in km. The right panel plots the same relationship with

respect to the log distance to the nearest border crossing in km on the x-axis. Estimates are from local polynomial

regressions based on the representative sample of roughly 100k rural Ugandan households. Shaded areas indicate 95

percent confidence intervals. See Section 5 for discussion.
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Figure 5: GE Forces as a Function of Saturation
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Panel A presents average welfare effects among the sample of roughly 100k Ugandan rural households as a function of national

saturation rates (steps of 10% of the rural population randomly selected from each parish). Confidence intervals are at the 95%

level. Panel B shows results for roughly 6500 households from the same 100k sample located in 51 randomly selected subcounties

(one in each district). Blue markers depict average effects for this group across nationwide saturation rates as in Panel A. Orange

markers depict the average effects across saturation rates only within the 51 subcounties, leaving the rest of Uganda untreated.
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Figure 6: Role of a Granular Economic Geography
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The figure plots local polynomial regressions of the percentage point difference in welfare effects across the roughly

100k rural households between our baseline model and the alternative model as a function of initial land income

shares. Panel A is based on the alternative assumption of a single integrated national market. Panel B is based on the

alternative assumption of an Armington model with iceberg trade costs and parish-level product differentiation in

agriculture. Shaded areas indicate 95 percent confidence intervals. The dotted red lines indicate the sample average

of these differences. See Section 5 for discussion.
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Figure 7: Sensitivity to Alternative Parameters
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The figure plots estimates from local polynomial regressions. Shaded areas indicate 95 percent confidence intervals.

See Section 5 for discussion.
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Figure 8: Model Validation Using Price Data and Trade Flows from Trader Surveys
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Panel C: Trade Flows

Data Model Model Matched Data

Panel A is based on 260 markets with price data in the trader surveys (Bergquist et al. , 2022) collected for each of

38 months during 2015-2018 and for two crops (maize and beans). We take the median market price for each crop

and market in a given month. The y-axis of the binned scatter plot shows the residuals from a regression of the log

median market prices on month-by-crop fixed effects. The x-axis displays mean deviations of log prices for the same

two crops across the same markets in the baseline equilibrium (the results from the price discovery algorithm). Panels

B and C make use of an additional dataset from the trader surveys, covering trade flows between the 260 markets for

maize and beans for each of the 12 months in 2016. In Panel B, we convert the market price dataset from Panel A for

the 12 months of 2016 into bilateral price pairs (counting each pair only once (not twice) per month and crop). The

y-axis of the binned scatter plot in Panel B are origin-destination bilateral log price gaps for each month and crop,

excluding trading pairs. The x-axis are model-based bilateral log price gaps for the same markets and crops based on

the price discovery algorithm of our model. In Panel C we compare the trade flows reported across the markets in the

trader surveys for either maize or beans for each month of data in 2016 to the bilateral trade flows from the models’

price discovery algorithm. See Section 5 for discussion.
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Tables

Table 1: Estimation of σ

Dependent Variable is Log Quantities (Instrument is Randomized Subsidy Amounts)

(1) (2) (3) (4)

VARIABLES OLS IV OLS IV

Log P -4.8067*** -0.9446 -5.0225*** -1.0020*

(0.2686) (0.6230) (0.3362) (0.5473)

Observations 1,247 1,247 1,247 1,247

Market-Day FX Yes Yes No No

Market-Day-Seller FX No No Yes Yes

1st Stage F-Stat 321 659

See Section 4 for discussion. Standard errors clustered at level of communities. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 2: Estimation of κ

Dependent Variable is log
πi1|kt
πi0|kt

(Instrument is RCT Treat Indicator)

First Stage Reduced Form IV

(1) (2) (3) (4) (5) (6)

Cross-Section Panel Cross-Section Panel Cross-Section Panel

Treat -0.75∗∗∗ -0.75∗∗∗ 0.62∗ 0.64∗

(0.05) (0.05) (0.36) (0.36)

Log Input Price -0.83∗ -0.85

(0.49) (0.50)

Observations 63 127 63 127 63 127

Community FX Yes Yes Yes

Round FX Yes Yes Yes

F-Stat 204.57 204.51

See Section 4 for discussion. Standard errors clustered at level of communities. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 3: Estimation of µ

Panel A: First Stage Regressions. Dependent Variable is log(πi,k,t)

(1) (2) (3) (4)

log(πi,k,t) log(πi,k,t) log(πi,k,t) log(πi,k,t)

VARIABLES All Years All Years 2005-13 2005-13

IV0 -0.4644*** -0.3663** -0.9344 -1.8073*

(0.1216) (0.1719) (0.6402) (1.0427)

Observations 27,650 27,647 4,580 4,580

HH-Crop FX yes yes yes yes

Crop-Year FX yes . yes .

Region-Crop-Year FX no yes no yes

Number of clusters 135 135 92 92

Panel B: Dependent Variable is Log Harvest (log(qi,k,t))

(1) (2) (3) (4) (5) (6) (7) (8)

OLS IV OLS IV OLS IV OLS IV

VARIABLES All Years All Years All Years All Years 2005-13 2005-13 2005-13 2005-13

logπi,k,t 0.3574*** 0.7969* 0.3569*** 0.6325 0.4146*** 0.9248*** 0.4253*** 0.9038***

(0.0164) (0.4221) (0.0164) (0.4952) (0.0341) (0.3097) (0.0325) (0.2163)

Observations 27,966 27,650 27,963 27,647 4,486 4,282 4,480 4,276

HH-Crop FX yes yes yes yes yes yes yes yes

Crop-Year FX yes yes . . yes yes . .

Region-Crop-Year FX no no yes yes no no yes yes

Number of clusters 135 135 135 135 95 95 95 95

1st Stage F-Stat 14.60 4.543 32.81 17.93
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Panel C: Dependent Variable is Log Adjusted Output

(1) (2) (3) (4) (5) (6) (7) (8)

OLS IV OLS IV OLS IV OLS IV

VARIABLES All Years All Years All Years All Years 2005-13 2005-13 2005-13 2005-13

logπi,k,t 0.4108*** 0.4007 0.4061*** 0.7895 0.4411*** 0.5529 0.4382*** 0.7537**

(0.0358) (0.5423) (0.0362) (0.7251) (0.0601) (0.4214) (0.0620) (0.3154)

Observations 27,966 27,650 27,963 27,647 4,486 4,282 4,480 4,276

HH-Crop FX yes yes yes yes yes yes yes yes

Crop-Year FX yes yes . . yes yes . .

Region-Crop-Year FX no no yes yes no no yes yes

Number of clusters 135 135 135 135 95 95 95 95

1st Stage F-Stat 14.60 4.543 32.81 17.93

See Section 4 for discussion. Standard errors clustered at level of counties. *** p < 0.01, ** p < 0.05, * p < 0.1
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Scaling Agricultural Policy Interventions:

Appendix (Not for Publication)

Appendix 1 describes the database used in the estimation. Appendix 2 uses the data to document

stylized facts that inform our theory in Section 2. Appendix 3 provides additional figures and

tables that we reference in the main text and in the stylized facts below. Appendix 4 presents

additional details of the model and solution method.

Appendix 1 Data

Our analysis makes use of six main datasets. This appendix provides additional details and de-

scriptive statistics.

Uganda National Panel Survey (UNPS)

The UNPS is a multi-topic household panel collected by the Ugandan Bureau of Statistics as

part of the World Bank’s Living Standards Measurement Survey. The survey began as part of the

2005/2006 Ugandan National Household Survey (UNHS). Then starting in 2009/2010, the UNPS

set out to track a nationally representative sample of 3,123 households located in 322 enumer-

ation areas that had been surveyed by the UNHS in 2005/2006. The UNPS is now conducted

annually. Each year, the UNPS interviews households twice, in visits six months apart, in order

to accurately collect data on both of the two growing seasons in the country. In particular, the

main dataset that we assembled contains 77 crops across roughly 100 districts and 500 parishes

for the periods 2005, 2009, 2010, 2011 and 2013. It includes detailed information on agriculture,

such as crop production, the amount of land allocated to each crop, labor and non-labor in-

puts used in each plot and technology used at the household-parcel-plot-season-year. Data on

consumption of the household contains disaggregated information on expenditures broken up

across crops and other consumption.

Uganda Population and Housing Census 2002

The Ugandan Census has been conducted roughly every ten years since 1948. Collected by the

Ugandan Bureau of Statistics, it is the major source of demographic and socio-economic statis-

tics in Uganda. Over the span of seven days, trained enumerators visited every household in

Uganda and collected information on all individuals in the household. At the household level,

the Census collects the location (down to the village level), the number of household members,

the number of dependents, and ownership of basic assets. Then for each household member,

the Census collects information on the individual’s sex, age, years of schooling obtained, literacy

status, and source of livelihood, among other indicators. We have access to the microdata for the

100 percent sample of the 2002 Census.
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GIS Database and Border Prices

We use several geo-referenced datasets. We use data on administrative boundaries and de-

tailed information on the transportation network (covering both paved and non-paved feeder

roads) from Uganda’s Bureau of Statistics. We complement this database with geo-referenced

information on crop suitability from the Food and Agricultural Organization (FAO) Global Ago-

Ecological Zones (GAEZ) database. This dataset uses an agronomic model of crop production to

convert data on terrain and soil conditions, rainfall, temperature and other agro-climatic condi-

tions to calculate the potential production and yields of a variety of crops. We use this informa-

tion as part of the projection from the UNPS sample to the Ugandan population at large. Finally,

we use information on world prices of crops and intermediate inputs at Uganda’s border from

the FAO statistics database.

Survey Data on Cross-Market Trade Flows and Trade Costs

The survey data collected by Bergquist et al. (2022) captures cross-market trade flows and can be

used to calibrate between-market transportation costs. They collect trade flow data in a survey

of maize and beans traders located in 260 markets across Uganda (while not nationally represen-

tative, these markets are spread throughout the country). Traders are asked to list the markets

in which they purchased and sold each crop over the previous 12 months. This information can

be used to limit the calibration of cross-market trade costs to market pairs between which there

were positive trade flows over a given period. They complement this data with a panel survey,

collected in each of the 260 markets every two weeks for three years (2015-2018), in which prices

are measured for maize, beans, and other crops. A greater description of the data collection can

be found in Bergquist et al. (2022).

Demand Estimation

To estimate the slope of the demand curve for crops in Sections 2 and 4, we bring to bear transaction-

level microdata from maize markets in rural Kenya that was collected as part of an experiment

in Bergquist & Dinerstein (2020). Though for our purposes these subjects would ideally be rep-

resentatively drawn from the same area in which the at-scale policy will be implemented, rural

areas across East Africa share many features, including crops grown, farming methods (mostly

rain-fed agriculture), and overall levels of development. This is especially true for the rural area

of western Kenya studied in Bergquist & Dinerstein (2020), which takes place 30km from the

Ugandan border. In their experiment, which took place in open-air maize markets, individual

consumers who approached maize traders to make a purchase were offered a surprise price dis-

count, the size of which was randomized across ten possible amounts. The value of the discount

ranged from from roughly 0-15% of the baseline price and was randomized across customers

within a given market-day. Using the subsidy as exogenous variation in consumer prices, the ex-

periment measured resulting quantities purchased. We use these experimental data to estimate

our key demand elasticity.
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Supply Estimation

To estimate the key supply elasticity governing farmers’ choice of land allocation across mod-

ern or traditional planting technologies, we exploit experimental variation from Carter et al.

(2020). In this RCT, randomly selected farmers in Mozambique were offered fertilizer and im-

proved seeds at a subsidized price. Data collected on farmers’ use of modern technologies and

output by plot allows estimation of the impact of changing input prices (instrumented by treat-

ment) on land allocations across technologies. We complement this RCT with a natural exper-

iment in the UNPS microdata that allows us to estimate the upper-tier supply elasticity in our

model for substitution of land allocations across crops.

Appendix 2 Stylized Facts

In this appendix, we use the data described above to document the empirical context and a

number of well-known stylized facts about agricultural trade across markets.

Major Crops, Regional Specialization and Price Gaps, Subsistence, Trading and Land
Allocations

Appendix Figures A.1, A.2 and Tables A.1-A.5 present a number of basic stylized facts about the

empirical context. Unless otherwise stated, these are drawn from the UNPS panel data of farm-

ers. First, Table A.1 documents that the 9 most commonly grown crops (matooke (banana),

beans, cassava, coffee, groundnuts, maize, millet, sorghum and sweet potatoes) account for 99

percent of the land allocation for the median farmer in Uganda (and for 86 percent of the aggre-

gate land allocation).

Second, Figure A.1 and Table A.2 document a significant degree of regional specialization in

Ugandan agricultural production across regions. Table A.2 provides information that these re-

gional differences translate into meaningful variation in regional market prices across crops: the

across-district variation in average crop prices accounts for 20-60 percent of the total variation

in observed farm-gate prices.

Third, Table A.3 documents that the majority of all farmers are either net sellers or net buy-

ers, rather than in subsistence, and this holds across each of the 9 major crops. The table also

presents evidence that there are significant movements in and out of subsistence, conditional on

having observed subsistence at the farmer level in a given season. Fourth, Table A.4 documents

that farmers buy and sell their crops mostly in local markets, which in turn are connected to

other markets through wholesale traders. Finally, Table A.5 documents that farmers frequently

reallocate their land allocations across crops over time.

Product Differentiation Across Farmers

Appendix Table A.6 looks at evidence on product differentiation across farmers. The canonical

approach in models of international trade sets focus on trade in manufacturing goods across
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countries, where CES demand coupled with product differentiation across manufacturing va-

rieties imply that all bilateral trading pairs have non-zero trade flows. In an agricultural set-

ting, however, and focusing on households instead of entire economies, this assumption would

likely be stark. Consistent with this, the survey data collected by Bergquist et al. (2022) suggest

that less than 5 percent of possible bilateral trading connections report trade flows in either of

the crops covered by their dataset (maize and beans). This finding reported in Table A.6 pro-

vides corroborating evidence that agricultural crops in the Ugandan empirical setting are un-

likely well-captured by the assumption of product differentiation across farmers who produce

the crops. Our solution method will explicitly account for these zero trade flows and allow for

endogenous switching on and off of trade flows as a result of treatment at-scale.

Nature of Trade Costs

The magnitude and nature of trade costs between farmers and local markets and across local

markets play an important role for the propagation of output and factor price changes between

markets along the transportation network. The canonical assumption in models of international

trade is that trade costs are charged ad valorem (as a percentage of the transaction price). Ad val-

orem trade costs have the convenient feature that they enter multiplicatively on a given bilateral

route, so that the pass-through of cost shocks at the origin to prices at the destination is com-

plete (the same percentage change in both locations). In contrast, unit trade costs –charged per

unit of the good, e.g. per sack or kg of maize– enter additively and have the implication that

price pass-through is a decreasing function of the unit trade costs paid on bilateral routes. Mar-

ket places farther away from the origin of the cost shock experience a lower percentage change

in destination prices, as the unit cost makes up a larger fraction of the destination’s market price.

To explore the nature of trade costs across Ugandan markets, we replicate results reported in

Bergquist et al. (2022). Specifically, we estimate:

todkt = (pdkt − pokt) = α+ βpokt + θod + φt + εodkt

where todkt are per-unit trade costs between origin o and destination d for crop k (maize or beans)

observed in month t, pokt are origin unit prices, θod are origin-by-destination fixed effects, and φt
are month fixed effects. Alternatively, origin-by-destination-by-month fixed effects (θodt) can be

included.

Following Bergquist et al. (2022), we estimate these specifications conditioning on market

pairs for which we observe positive trade flows in a given month. If trade costs include an ad

valorem component, we would expect the coefficient β to be positive and statistically significant.

On the other hand, if trade costs are charged per unit of the shipment (e.g. per sack), we would

expect the point estimate of β to be close to zero.

One concern when estimating these specifications is that the origin crop price pokt appears

both on the left and the right-hand sides of the regression, giving rise to potential correlated

measurement errors. This would lead to a mechanical negative bias in the estimate of β. To
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address this concern, we also report IV estimation results in which we instrument for the ori-

gin price in a given month with the price of the same crop in the same market observed in the

previous month.

As reported in Table A.7, we find that β is slightly negative and statistically significant in the

OLS regressions, but very close to zero and statistically insignificant after addressing the concern

of correlated measurement errors in the IV specification. Taken together with existing evidence

from field work (e.g. Bergquist & Dinerstein (2020)), these results suggest that trade costs in this

empirical setting are best-captured by per-unit additive transportation costs.

Household Preferences

Appendix Figure A.2 reports a non-parametric estimate of the household Engel curve for food

consumption. We estimate flexible functional forms of the following specification:

FoodShareit = f (Incomeit) + θmt + εit

where θmt is a parish-by-period fixed effect and f(Incomeit) is a potentially non-linear function

of household i’s total income in period t. The inclusion of market (parish)-by-period fixed effects

implies that we are comparing how the expenditure shares of rich and poor households differ

while facing the same set of prices and shopping options. As reported in the figure, the average

food consumption share ranges from 60 percent among the poorest households to about 20

percent among the richest households within a given market-by-period cell. In our model, these

nonhomothetic preferences will allow for distributional effects due to changing food prices that

result from the scaled intervention.

Modern Technology Adoption

Many policy interventions that are run through agricultural extension programs are aimed at

providing access, information, training and/or subsidies for modern technology adoption among

farmers. One important question in this context is whether adopting modern production tech-

niques could be captured by a Hicks-neutral productivity shock to the farmers’ production func-

tions for a given crop. Alternatively, adopting modern techniques could involve more compli-

cated changes in the production function, affecting the relative cost shares of factors of produc-

tion, such as land and labor.

To provide some descriptive evidence on this question, we run specifications of the following

form:

LaborShareikt = α+ βModernUseikt + θm + φk + γt + εikt

where LaborShareikt is farmer i’s the cost share of labor relative to land (including both

rents paid and imputed rents) for crop k in season t (there are two main seasons per year),

ModernUseikt is an indicator whether the farmer uses modern inputs for crop k in season t (de-

fined as chemical fertilizer or hybrid seeds), and θmkt, φk and γt are district, crop and season
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fixed effects. Alternatively, we also include individual farmer fixed effects (θi).

As reported in appendix Table A.8, we find that the share of labor costs relative to land costs

increases significantly as a function of whether or not the farmer uses modern production tech-

niques. This holds both before and after the inclusion of farmer fixed effects (using variation

only within-farmer across crops or over time). These results suggest that modern technology

adoption is unlikely to be well-captured by a simple Hicks-neutral productivity shift in the pro-

duction function. As a result, interventions at scale that affect the use of modern technologies

may also have knock-on effects on local labor demand and wages. Our model will allow for such

effects.
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Appendix 3 Additional Figures and Tables

Table A.1: Main Crops

(1) (2)

Aggregate Median

VARIABLES Share of Land Share of Land

cropID==Beans 0.1442 0.1072

(0.0086) (0.0078)

cropID==Cassava 0.1908 0.0917

(0.0121) (0.0063)

cropID==Coffee 0.0718 0.0000

(0.0048) (0.0000)

cropID==Groundnuts 0.0541 0.0000

(0.0052) (0.0000)

cropID==Maize 0.1723 0.0923

(0.0119) (0.0052)

cropID==Matooke 0.1646 0.0089

(0.0040) (0.0089)

cropID==Millet 0.0315 0.0000

(0.0021) (0.0000)

cropID==Sorghum 0.0524 0.0000

(0.0037) (0.0000)

cropID==Sweet Potatoes 0.0886 0.0259

(0.0061) (0.0070)

Observations 45 45

Total Share .859 .986

*** p<0.01, ** p<0.05, * p<0.1

Aggregate and median shares for each of the 9 crops are computed for each of four years of data from the UNPS. The

table reports the means and standard deviations across the 4 rounds of data. See Appendix 1 for discussion and

Section 3 for description of the data.



8

Figure A.1: Regional Specialization

The figure displays the crop with the highest land allocation in each Ugandan district. We use the UNPS data to

compute the mean of each crop’s land shares across 4 rounds of data. See Appendix 1 for discussion and Section 3

for description of the data.
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Table A.2: Regional Price Gaps

See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.3: Farmer Trading vs Subsistence

Panel A

Panel B

See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.4: Farmers Sell Their Crops to Local Markets

Selling Mode Count in 1000 Share

Government/LC 285.8 0.00400

Private trader in local village/market 44269 0.672

Private trader in district market 7081 0.107

Consumer at market 9744 0.148

Neighbor/ Relative 3907 0.0590

Other (specify) 610.6 0.00900

Total 65898 1
See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.5: Farmers Re-Allocate Their Land Across Crops Over Time

Panel A

Panel B

See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.6: Product Differentiation (Missing Trade Flows

(1) (2)

VARIABLES Buying Dummy Selling Dummy

Proportion Trading 0.0429*** 0.0432***

(0.0021) (0.0021)

Observations 9,146 9,146

*** p<0.01, ** p<0.05, * p<0.1
See Appendix 1 for discussion and Section 3 for description of the data.

Figure A.2: Household Preferences (Non-Homotheticity)
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See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.7: Nature of Trade Costs

(1) (2) (3) (4)

Price Gap Price Gap Price Gap Price Gap

VARIABLES OLS OLS IV (Lagged Price) IV (Lagged Price)

Origin Price -0.0605*** -0.0419** -0.0081 -0.0002

(0.0188) (0.0206) (0.0256) (0.0274)

Observations 8,524 8,430 7,153 7,079

Pair FX yes . yes .

Month FX yes . yes .

Pair-by-Month FX no yes no yes

Standard errors clusterd at level of bilateral pairs.

*** p<0.01, ** p<0.05, * p<0.1
See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.8: Technology Adoption and Production Cost Shares

(1) (2)

VARIABLES Labor Share Labor Share

Use Modern 0.1056*** 0.0423***

(0.0126) (0.0112)

Observations 26,037 25,889

District FX yes .

Crop FX yes yes

Season FX yes yes

Farmer FX no yes

Standard errors clusterd at level of farmers.

*** p<0.01, ** p<0.05, * p<0.1
See Appendix 1 for discussion and Section 3 for description of the data.
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Table A.9: Calibrated Cost Shares in Production

(1) (2) (3) (4) (5) (6)

Land Share Labor Share Intermediate Share Land Share Labor Share Intermediate Share

VARIABLES Traditional Traditional Traditional Modern Modern Modern

cropID1==Beans 0.5107 0.4893 0.0000 0.4607 0.3852 0.1541

(0.0259) (0.0259) (0.0000) (0.0041) (0.0139) (0.0154)

cropID1==Cassava 0.5566 0.4434 0.0000 0.4429 0.3785 0.1786

(0.0503) (0.0503) (0.0000) (0.0180) (0.0187) (0.0176)

cropID1==Coffee 0.6777 0.3223 0.0000 0.5428 0.2683 0.1889

(0.0571) (0.0571) (0.0000) (0.0164) (0.0202) (0.0122)

cropID1==Groundnuts 0.5134 0.4866 0.0000 0.4204 0.4253 0.1543

(0.0231) (0.0231) (0.0000) (0.0190) (0.0450) (0.0271)

cropID1==Maize 0.5000 0.5000 0.0000 0.4153 0.4335 0.1512

(0.0272) (0.0272) (0.0000) (0.0520) (0.0559) (0.0159)

cropID1==Matooke 0.6343 0.3657 0.0000 0.6180 0.2564 0.1256

(0.0455) (0.0455) (0.0000) (0.0394) (0.0275) (0.0119)

cropID1==Millet 0.5285 0.4715 0.0000 0.5485 0.3381 0.1134

(0.0174) (0.0174) (0.0000) (0.0074) (0.0039) (0.0035)

cropID1==Sorghum 0.5563 0.4437 0.0000 0.5774 0.3321 0.0905

(0.0216) (0.0216) (0.0000) (0.0062) (0.0060) (0.0051)

cropID1==Sweet Potatoes 0.5088 0.4912 0.0000 0.4721 0.3642 0.1637

(0.0258) (0.0258) (0.0000) (0.0735) (0.0800) (0.0107)

See Section 4 for discussion and Section 3 for description of the data.
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Figure A.3: Relative World Price Changes Over the Sample Period
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See Section 4 for discussion of the data.
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Table A.10: Predicted Local Trade Costs and Measures of Remoteness

(1) (2) (3) (4) (5) (6)

Transport Cost Distance to Distance to Distance to Distance to Hiring Dummy

per unit Community Road District Road Gravel Road Tarmac Road Out-of-Sample

Crop Trade Costs

Predicted tim/100 0.358** 0.503*** 2.001*** 3.859*** 6.120***

(0.181) (0.135) (0.635) (0.975) (2.344)

Observations 544 6,331 5,460 2,282 805

Labor Trade Costs

Predicted tLim/100 0.024 0.093 0.092 -0.015 -0.061***

(0.022) (0.068) (0.168) (0.369) (0.005)

Observations 6,317 5,448 2,275 803 7,853

See Section 4 for discussion. All distances are measured in km. Mean share of HHs hiring-in labor is 42% outside estimation sample.

Standard errors clustered at level of households. *** p<0.01, ** p<0.05, * p<0.1
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Figure A.4: Land Income Shares, Land Ownership and Household Incmomes
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The figure plots estimates from local polynomial regressions. Shaded areas indicate 95 percent confidence intervals.

See Section 5 for discussion.
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Figure A.5: Decomposition of Difference At Scale vs. Local Effect
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The left panel presents the difference between the at-scale effect and the local effect on components of nominal in-

comes across the initial land share distribution, while the right panel presents the same for components of the house-

hold price index. Estimates are from local polynomial regressions based on the representative sample of roughly 100k

rural Ugandan households. Shaded areas indicate 95 percent confidence intervals. See Section 5 for discussion.
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Figure A.6: Wage and Land Income Effects (Without Income-Share Weights)
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The figure plots estimates from local polynomial regressions. Shaded areas indicate 95 percent confidence intervals.

See Section 5 for discussion.
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Figure A.7: Initial Usage of Modern Inputs Across Land-Poor vs Land-Rich Households
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The figure plots estimates from local polynomial regressions. Shaded areas indicate 95 percent confidence intervals.

See Section 5 for discussion.
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Figure A.8: Effects as a Function of Initial Usage of Modern Inputs
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See Section 5 for discussion.
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Figure A.9: Effects as a Function of Initial Crop Shares
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Appendix 4 Model and Solution Method

In Appendix 4.A, we first present the excess demand functions χj,g (•) used in the text to define

the equilibrium, and we then present the excess demand functions for the “price discovery” step.

In Appendix 4.B, we present the model allowing for general functional forms on preferences and

technology for which exact hat algebra is feasible. In Appendix 4.C, we formally describe this

class of functions. In Appendix 4.D, we develop the proof for uniqueness in price discovery for

the special case with iceberg trade costs. In Appendix 4.E, we provide additional details on re-

covering trade shares in manufacturing. In Appendix 4.F, we show that the introduction of hub-

and-spoke trade costs leads to well-defined market prices. Finally, in Appendix 4.G we extend

the model to incorporate cross-market migration of labor.

Appendix 4.A Excess Demand Functions

The excess demand function for farmers are given by

χi,g
(
{bi,kpi,k}i , {ri,k,ω}i , {pi,g}i , Ii

)
=


ξg
(
{bi,kpi,k}i , Ii

)
Ii − pi,g

∑
ω qi,g,ω ({pi,g}i, {ri,k,ω}i) for g ∈ KA,

ξg
(
{bi,kpi,k}i , Ii

)
Ii for g ∈ KM,∑

k∈KA,ω αi,g,k,ωpi,kqi,k,ω ({pi,g}i, {ri,k,ω}i)− pi,gLi for g = L.

The excess demand functions for urban households are given by

χh,g
(
{bh,kph,k}h , {rh,k,ω}h , {ph,g}h , Ih

)
=


ξg
(
{bh,kph,k}h , Ih

)
Ih for g ∈ KA,[

ξg
(
{bh,kph,k}h , Ih

)
− 1 (g = g(h))

]
Ih for g ∈ KM,

where expenditure share function ξg(•) and crop output function qi,g,ω(•) are defined in the main

text. Indicator function 1 (g = g(h)) is equal to one only if manufacturing variety g belongs to

urban household h and zero otherwise.

Finally, for Foreign we have

χF,g
(
{bF,kpF,k}F , {rF,k,ω}F , {pF,g}F , IF

)
=


−∞ if pF,g < p∗F,g

]−∞,∞[ if pF,g = p∗F,g

∞ if pF,g > p∗F,g,

for g ∈ KA,

χF,g
(
{bF,kpF,k}F , {rF,k,ω}F , {pF,g}F , IF

)
= XF,g(pF,g), for g ∈ KM \ {g(F )}.

We include some variables (e.g., {rj,k,ω}j for j ∈ H ∪ {F}) that are not defined as arguments in

the excess demand functions so that they cover all agents – this is not a problem because if the

function does not depend on these arguments then there is no need to define them.
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Excess demand as functions of data DA and prices {pj,g}g∈KA∪{L} for farmers and urban

households (used for the price discovery step) are given by

χi,g

(
{pi,g}g∈KA∪{L} ;DA

)
= ξi,gIi

(
{pi,g}g∈KA∪{L} ;DA

)
−
∑
ω

pi,gqi,g,ω, for g ∈ KA,

χi,g

(
{pi,g}g∈KA∪{L} ;DA

)
=

∑
k∈KA,ω

αi,g,k,ωpi,kqi,k,ω − pi,gLi for g = L,

χh,g

(
{ph,g}g∈KA∪{L} ;DA

)
= ξh,gIh, for g ∈ KA,

χF,g

(
{pF,g}g∈KA∪{L} ;DA

)
=


−∞ if pF,g < p∗F,g

]−∞,∞[ if pF,g = p∗F,g

∞ if pF,g > p∗F,g

for g ∈ KA,

where

Ii

(
{pi,g}g∈KA∪{L} ;DA

)
=

∑
k∈KA,ω

(
1−

∑
n

αi,n,k,ω

)
pi,kqi,k,ω + pi,LLi.

Appendix 4.B General Functional Forms on Preferences and Technology

We now restate the assumptions on preferences and technology, but allowing for general func-

tional forms that satisfy certain assumptions needed for exact hat-algebra (after the price dis-

covery step), discussed formally in Appendix 4.C. The model equilibrium and solution to coun-

terfactuals in the main text and excess demand functions in Appendix 4.A also apply for these

more general functional forms.1 The purpose of this exercise is to allow researchers to customize

the model by choosing alternative preferences and technology, depending on their application

of the model.

Preferences

Agents j 6= F have indirect utility function V ({bj,kpj,k}j , Ij), where Ij denotes income, {pj,k}j
denotes prices and {bj,k}j denotes demand shifters. Let ξj,k denote the expenditure share of

agent j on good k and ξk ({bj,kpj,k}j , Ij) the corresponding expenditure share function (assumed

common across all agents in Home). Roy’s identity implies that

ξj,k = ξk

(
{bj,kpj,k}j , Ij

)
= −

∂ lnV ({bj,kpj,k}j ,Ij)
∂ ln pj,k

∂ lnV ({bj,kpj,k}j ,Ij)
∂ ln Ij

.

Turning to Foreign, our small-open economy assumption for Home implies that Foreign’s de-

mand (in value) for manufacturing good g(h) can be specified directly as a function of this

1With general functional forms for preferences and technology, the only change in excess demand functions pre-
sented above is for farmers’ excess demand for labor (g = L), where we replace αi,g,k,ω with the cost share function
αi,g,k,ω({pi,n}i, ri,k,ω).
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goods’s individual price, XF,g(h)(pF,g(h)).

Technology

Farmers produce agricultural goods k ∈ KA using land, labor and intermediate goods with tech-

niques ω ∈ Ω. Assuming constant returns to scale in agriculture, letting ri,k,ω denote the return

to an effective unit of land allocated by farmer i to produce agricultural good k with technique

ω, and letting ci,k,ω({pi,n}i, ri,k,ω)/ai,k,ω denote the corresponding unit cost function – with ai,k,ω
a Hicks-neutral productivity shifter – then at an interior solution to the farmer’s optimization

problem we must have

pi,k = ci,k,ω({pi,n}i, ri,k,ω)/ai,k,ω.

This determines ri,k,ω as an implicit function of prices, pi,k and {pi,n}i, and productivity ai,k,ω. In

turn, letting αi,n,k,ω({pi,n}i, ri,k,ω) denote the cost share of input n for farmer i producing crop k

using technique ω, an envelope result implies that

αi,n,k,ω({pi,n}i, ri,k,ω) =
∂ ln ci,k,ω({pi,n}i, ri,k,ω)

∂ ln pi,n
.

Farmer i allocates their land endowment Zi across different agricultural goods and techniques

to maximize their total land returns,
∑

k,ω ri,k,ωZi,k,ω, where Zi,k,ω measures the effective units of

land allocated by farmer i to produce crop k with technique ω. We allow for decreasing marginal

productivity in how physical units of land Zi can be converted into efficiency units of land for

different crops and techniques. Specifically, we assume that the feasible set for the allocation

of efficiency units of land across crops and techniques is {{Zi,k,ω}i|f({Zi,k,ω}i) ≤ Zi}, with f (•)
homogeneous of degree one and strictly quasi-convex. Total land returns of farmer i are then

given by

Y
(
{ri,k,ω}i

)
Zi ≡ max

{Zi,k,ω}i

∑
k,ω

ri,k,ωZi,k,ω s.t. f({Zi,k,ω}i) ≤ Zi.

Letting πi,k,ω denote the share of land returns of farmer i coming from production of crop k with

technique ω, and πk,ω
(
{ri,k,ω}i

)
the corresponding function, an envelope result implies that

πi,k,ω = πk,ω
(
{ri,k,ω}i

)
=
∂ lnY

(
{ri,k,ω}i

)
∂ ln ri,k,ω

.

Finally, letting qi,k,ω denote output of crop k for farmer i with technique ω, then

qi,k,ω ({pi,g}i, {ri,k,ω}i) =
πk,ω ({ri,k,ω}i)Y

(
{ri,k,ω}i

)
Zi

[1−
∑

n αi,n,k,ω({pi,n}i, ri,k,ω)] pi,k.

Turning to urban households, we assume that each urban area is associated with a single rep-

resentative urban household who produces a differentiated manufacturing good. We keep the

technology simple by assuming that manufacturing production is linear in labor, so that the
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quantity of manufacturing good g(h) produced by urban household h is given by ahLh. Given

that labor supply is perfectly inelastic, we can then treat qh ≡ ahLh as the urban households’

endowment of manufacturing good g(h).

It remains to parameterize all the relevant functions, namely ξg (•),XF,g (•), Y (•), and ci,k,ω(•),

and ensure that these functions are conducive to exact hat-algebra, as defined in the next sec-

tion.

Appendix 4.C Functional Forms for Exact Hat Algebra

For a function f(p) (e.g., expenditure shares, shares of land returns), exact-algebra entails writ-

ing f(p′) = g(f(p), p̂), where g(, ) is some function and p̂ = p′/p denotes the vector of ratios

(element-wise), so that we can solve for counterfactual f(p′) as a function of f(p) without nec-

essarily knowing p. Not all functions f , however, allow us to write f(p′) in this way. The goal of

this appendix is to describe the class of such functions.

Definition Let f be a smooth function from Rn to its image Im(f) ⊂ Rm. We say that this

function is ”conducive to exact hat algebra” if we can write:

f(p.p̂) = g(f(p), p̂)

for all p, p̂ ∈ Rn+, for some function g : Im(f) × Rn+ → Rm, and where p.p̂ is the element-wise

product of p and p̂.

The following proposition provides a characterization of such functions:

Proposition Suppose that f is a smooth function from Rn+ to Rm. Then these three properties

are equivalent:

• i) f is conducive to exact hat algebra.

• ii) For all p0, p1, p̂ ∈ Rn+,

f(p0) = f(p1) =⇒ f(p0.p̂) = f(p1.p̂)

(where p.p̂ denotes the element-wise product).

• iii) Consider F (x) = f(exp(x)), where exp(x) denotes the vector of elements exp(xi). There

is a linear subspace E of Rn on which F is injective, and a linear function π : Rn → E ,

equal to the identity on E, such that

F (x) = F (π(x)),∀x ∈ Rn.

This implies that level sets of F are affine, and that f can be written as a combination of

Cobb-Douglas functions (exponential of π) and an invertible function.
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Note that such definition and results may apply to the derivatives instead of the output func-

tion itself. For instance, with a production function featuring constant returns to scale, we can

observe the initial values of the gradient (in log), which corresponds to the shares of the different

inputs entering the production function. In such cases, we can use a similar approach if the gra-

dient is itself conducive to exact hat algebra, according to the definition above. By integrating,

we can then retrieve the total changes in the output function as a function of the initial values

of the log-gradient and the changes in the arguments. Let J(p) =
{
∂ log f
∂ log pi

}
denotes the gradient

of log f in log p, and assume that we can write J(p.p̂) = G(J(p), p̂) equal to a function G of the

initial values of J and the changes in prices, p̂, we have then:

log f(p.p̂)− log f(p) =

∫ log p̂

x=0
J(p. exp(x)) dx =

∫ log p̂

x=0
G(J(p), exp(x)) dx.

The proposition above can then be applied to characterize the class of such function J and their

primitives, log f .

Proof of the Proposition For the proof, it is more convenient to take the log of each argument.

Let us denote by x = log p the log of inputs and by δ = log(p′/p) the log change, so that a relative

change in variables becomes additive. Consider F (x) = f(exp(x)), where exp(x) denotes the

vector of elements exp(xi).

Proof of i) implies ii) If i) is satisfied then we can write F (x + δ) = G(F (x), δ). Suppose that

F (x0) = F (x1), we have then

F (x0 + δ) = g(F (x0), exp(δ)) = g(F (x1), exp(δ)) = F (x1 + δ)

Similarly, in terms of function f, with p = exp(x) and p̂ = exp(δ), f(p0) = f(p1) implies:

f(p0.p̂) = g(f(p0).p̂) = g(f(p1).p̂) = f(p1.p̂)

Proof of ii) implies i) To prove the converse property, let’s construct a functionK : Im(f)→ Rn

such that F (K(y)) = y for all y ∈ Im(F ). Then, for all y ∈ Im(f) and all x ∈ Rn, define g as

g(y, δ) = F (K(y) + δ)

Mechanically, by definition of K, we have: F (K(F (x))) = F (x) for any x ∈ Rn. Property ii)

implies that F (K(F (x)) + δ) = F (x+ δ) for any δ ∈ Rn. Hence we obtain

g(F (x), δ) = F (K(F (x)) + δ) = F (x+ δ)

for any x, δ ∈ Rn. In terms of function f, with p = exp(x) and p̂ = exp(δ) this implies:

f(p.p̂) = g(f(p), p̂).
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Proof of iii) implies ii) If there is such a projection,

F (x0) = F (x1)

implies:

π(x0) = π(x1)

and as such:

F (x0 + δ) = F (π(x0 + δ))

= F (π(x0) + π(δ))

= F (π(x1) + π(δ))

= F (π(x1 + δ))

= F (x1 + δ)

Proof of ii) implies iii) To prove the converse property, first notice that each level set is a trans-

lation of any other one since for any shift δ, two points x0 and x1 are on the same level set if and

only if x0 + δ and x1 + δ are on the same level set:

F (x0) = F (x1) ⇐⇒ F (x0 + δ) = F (x1 + δ)

Hence we just need to describe the shape of a single level set to find the shape of all other ones.

In the case where a level set is a point, all level sets are points and F is injective and property iii)

is trivial; so for the remainder we will assume that level sets are not points.

Let’s consider a function π : Rn → Rn such that F (π(x)) = F (x) for all x ∈ Rn. For any

x0, x1 ∈ Rn, F (π(x0)) = F (x0) and property ii) imply:

F (π(x0) + π(x1)) = F (x0 + π(x1))

when we shift both sides by π(x1). Again using property ii) applied to F (x1) = F (π(x1)) and

shifting by x0, we obtain:

F (x0 + π(x1)) = F (x0 + x1)

Combining, we obtain:

F (π(x0) + π(x1)) = F (π(x0 + x1))

Similarly, as it implies that F (2π(x)) = F (π(2x)), we obtain:

F

(
π(x0) + π(x1)

2

)
= F

(
π

(
x0 + x1

2

))
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If, in addition, F is injective on the image of π (i.e. π projects on at most a single point per level

set), then we have

π

(
x0 + x1

2

)
=
π(x0) + π(x1)

2
(A.1)

for all x0, x1. For any F,we can construct such a projection π by chosing an arbitrary point on

each level set.

Let us pick a point x0 where the derivative of F has its maximal rank over a neighborhood

of x0. Assuming property ii), the derivative is the same on all points of the level set {x;F (x) =

F (x0)} associated with point x0. We can thus define an open set around x0 that includes the level

set {x;F (x) = F (x0)} and define a projection π that is continuous on that open set. Property A.1

then implies that π is linear on that set and thus that it is an affine set in Rn.2

Since all level sets are translations of each other, all level sets are parallel affine sets of Rn.

The level set crossing the origin is then a linear subspace of Rn. Denote by E its complement.

E is crossing each level set only once, hence F is then injective on E. Denote by π : Rn → E

the projection of all points of a level set onto its intersection with E, we obtain that π is a linear

function satisfying the conditions laid out in iii).

Examples and counter-examples Cobb-Douglas production functions provide an extreme ex-

ample where we can combine the changes in output without even knowing the initial level of

output (just knowing the functional form and the relative change in inputs). Level sets for Cobb-

Douglas (in log) are planes and are thus affine as described above.

Next, consider expenditure shares across goods (depending on prices) when preferences are

CES. Based on expenditure shares, we can identify relative prices up to a common constant.

Knowledge of such relative prices is then sufficient to compute the change in expenditure shares

depending on the change in prices, as it is well documented in the literature. In this case, level

sets (in log) are all the lines parallel to the (1, ..., 1) vector.

With Stone-Geary preferences exhibiting strictly positive minimum consumption require-

ments φi for each good i, expenditure shares are given by:

fi(p/w) = φipi/w + αi

1−
∑
j

φjpj/w


depending on normalized prices pi/w. In this case, f is not conducive to exact hat algebra. For

instance, if n = 2, φi = 1 and αi = 1/2, we have:

f1(p1/w, p2/w) =
1

2
[1 + p1/w − p2/w]

for i = 1, 2. We can see that f1 = f2 = 1/2 implies p1/w = p2/w, but we cannot identify

2Note that we cannot have a disconnected level sets (e.g. the union of two affine subsets) as the average between
any two points of that level sets is again in the level set.
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its value. However, the overall level of p1/w = p2/w matters for the counterfactual outcome

f(p̂1p1/w, p̂2p2/w) as soon as p̂2 6= p̂1. The same issue arises even if we consider expenditures

instead of expenditure shares as observable outcome.

To fix this issue, a solution is to assume that one good (manufacturing good, say good i = 1)

does not have a minimum consumption requirement, i.e. φ1 = 0, such that:

f1(x) = α1

1−
∑
j 6=1

φjpj/w


for manufacturing and:

fi(x) = φipi/w + αi

1−
∑
j 6=1

φjpj/w


for other goods. Function f is now invertible up to x1, noticing that x1 does not influence any

expenditure share, and is now conducive to exact hat algebra. Note that other counter-examples

can be found for homogeneous (homothetic) functions.

Appendix 4.D Price Discovery

In this subsection, we show that, in the case with only iceberg trade costs (i.e., tod,g = 0 for all

o, d, g), the price discovery step described in Section 2 is well defined in the sense that there

is a unique set of prices {pj,g} that solves the system of equations (12)-(13) (for a given set of

Foreign prices) and excess demand functions in Appendix 4.A. To do so, we think of that system

of equations as characterizing the equilibrium of a competitive exchange economy, and so the

goal is to prove that this economy has a unique equilibrium.

We consider an equivalent economy where there is a single market with an expanded set of

goods (which we now call varieties) given by

V ≡ {(o, g) ∈ J ×KA ∪ {L} | qo,g > 0} ,

where J is the set of all agents excluding Foreign. A variety of good g produced by agent o is

indexed by (o, g) ∈ J ×KA ∪ {L}. Agent o′s endowment of (o, g) is qo,g. Naturally, no other agent

o′ 6= o has a positive endowment of (o, g) and so qo,g is also the total endowment of variety (o, g)

in the economy.

Letting po,g denote the price of variety (o, g) ∈ V , the price at which agent d has access to

variety (o, g) is then τod,gpo,g. Letting p ≡ {po,g}(o,g)∈V , the excess demand function (in value) for

a variety (o, g) ∈ V is given by

χo,g (p) =
∑

d∈J∪{F}

Xd,o,g (p)− po,gqo,g,

where Xd,o,g (•) is the expenditure of agent d on variety (o, g). For d ∈ J , and letting ξd,g ∈ [0, 1]
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denote the expenditure share of gross income of agent d ∈ J (i.e.,
∑

g pd,gqd,g) on good g,3 we

have

Xd,o,g (p) ∈

[0, ξd,gId] if o ∈ arg mino′∈J∪F po′,gτo′d,g

0 if o /∈ arg mino′∈J∪F po′,gτo′d,g
.

Id =
∑
g

pd,gqd,g,

In turn, for d = F we have

XF,o,g (p) ∈


0 if po,g > p∗F,g

[0,∞[ if po,g = p∗F,g

∞ if po,g < p∗F,g

.

We henceforth follow the convention that qo,g = 0 =⇒ po,g =∞ and Xd,o,g (p) = 0, and also let

XF (p) ≡
∑
d∈J ,g

Xd,F,g (p)

denote the aggregate expenditure on goods from Foreign (imports).

The equilibrium is a set of prices p such that the excess demand (in value) for all varieties in

V is zero,

χo,g (p) = 0, ∀ (o, g) ∈ V. (A.2)

We further assume that each agent j ∈ J produces at least one good (to ensure positive income)

and has a positive expenditure share on each good that it produces:

Assumption A1: Endowments and demand.

1.
∑

g∈K qo,g > 0, ∀o ∈ J .

2. qo,g > 0 =⇒ ξo,g > 0, ∀o ∈ J , g ∈ KA ∪ {L}.

For future purposes, note that the second part of this assumption implies that an increase in

any price po,g′ , (o, g′) ∈ V leads to a strict increase in the value of excess demand χo,g (p) for any

variety (o, g) with ξo,g > 0.

We say that a set of prices p is connected if there is only one trading block, i.e. there is no

partition {J1,J2} ofJ such that for all g ∈ KA we have (i)Xd,o,g (p) = Xo,d,g (p) = 0, ∀o ∈ J1, d ∈
J2 (i.e., no trade between the two blocks) and (ii)XF,o,g(p) = 0, ∀o ∈ J1 orXF,o,g(p) = 0, ∀o ∈ J2

3Recall that the set of goods includes labor and crops. Gross income for a household is composed of the value
of endowment of crops plus labor income. Subtracting the cost of intermediate goods (which are not included in
the set of goods because prices are exogenous) and labor (as an input) yields disposable income, which is spent on
consumption goods.



36

(i.e., it is not the case that both trade blocks trade with Foreign). Given Assumption A1, we now

show that there can be at most one connected p that solves the system of equations A.2. We

do so by appealing to the result in Corollary 1 of Berry et al. (2013) – henceforth BGH – which

states sufficient conditions under which a function is injective on a set. Applying this result to

our excess demand function {χo,g (p)}o,g over the set of connected p, we then get our desired

result.

To apply the results of BGH we need to define “good 0,” which is critical for the concept of

“connected substitutes.” We do this by considering each variety (o, g) ∈ V as a regular good and

by thinking of the value of imports, XF (p), as the “demand for good 0.” Trade balance then

implies that

XF (p) = −
∑
o,g

χo,g (p) ,

as in equation (2) of BGH.4 We next show that Assumptions 1-3 in Corollary 1 of BGH are satisfied

in our setting.

Translated to our context and notation, Assumption 1 in BGH states that the set of possible

prices P is a Cartesian product.5 This is immediately satisfied since Xo,g(p) is satisfied for all

prices p with po,g ∈ [0,∞[.

Given that expenditure shares in demand are fixed and that higher prices lead to higher in-

come (weakly), it is then easy to verify that import demand, XF (p), increases weakly with the

price of any domestic variety in V while demand for variety (o, g), χo,g(p), increases weakly with

the price of any other variety (o′, g′) ∈ V with (o′, g′) 6= (o, g). This shows that varieties in our

context are weak substitutes, and hence Assumption 2 in BGH is satisfied.

To verify that Assumption 3 in BGH is satisfied, we use the equivalent condition stated in

BGH’s Lemma 1. Translated to our context, this condition states that for any nonempty subset

V0 of V either (i) there is a variety (o, g) ∈ V0 such thatXF (p) increases strictly in po,g or (ii) there

is a variety (o′, g′) ∈ V\V0 such that χo′,g′ (p) increases strictly in po,g. We now show that this

condition is satisfied by considering the three possible cases.

First, if there is an agent o and two goods g and g′ such that (o, g) ∈ V0 and (o, g′) ∈ V\V0 then

an increase in po,g leads to an increase in revenues for agent o and an increase in demand for

variety (o, g′) through an income effect given our Assumption A1.

Second, suppose that for any agent o either all or none of the varieties are in V0 (otherwise

we are back to case one just above). Suppose also that there is a variety (o, g) ∈ V0 and a variety

(o′, g′) ∈ V\V0 such that agent o purchases good g′ from o′, i.e. such that Xo,o′,g (p) > 0. In that

case, an increase in the price po,g leads to an increase in revenues for agent o and an increase in

demand for variety (o′, g′) again through an income effect.

Finally, the third case is one where, for any agent o, either all or none of the varieties are in V0,

4BGH add +1 to demand for good “0,” but this does not affect any results nor assumptions on monotonicity.
5Here we look at prices, thus reversing all signs of the slopes in BGH, who focus instead on demand shifters (de-

noted with x). Our set P corresponds to the set X in BGH, while the set of all connected prices P∗ ∈ P corresponds
to X ∗ ⊂ X in BGH.
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and where no agent o purchases goods from agents that have varieties outside V0. As we focus

on connected price vectors, this implies that there is non-zero demand for some Foreign good

by some agent o that has some varieties (o, g) in V0. As such, an increase in the price po,g leads to

an increase in the demand for Foreign goods XF (p).

Appendix 4.E Recovering Trade Shares in Manufacturing

In Section 2, we lay out our solution method when available data include expenditure shares

ξj,g(h) for manufacturing goods for all h ∈ H and agents j ∈ I ∪ H. As in our case, such data

are not always available at such level of aggregation. Here we provide details on how to recover

expenditure shares ξj,g(h) following a method similar to Donaldson & Hornbeck (2016) and Faber

& Gaubert (2019). We assume that we can obtain aggregate information on international trade

deficit in manufacturing.

First, we need to separately infer aggregate imports and aggregate exports of manufacturing

with Foreign. Given income levels of farmers (inferred along with agricultural crop prices) and

urban households in Home (observed), we can compute overall expenditures on manufacturing

by each agent in Home as Ij · (1 −
∑

k∈KA ξj,k) for j ∈ I ∪ H. Total revenues in manufacturing

in Home are
∑

h Ih, and the difference between total expenditures and revenues in manufactur-

ing gives us Home’s overall deficit in manufacturing. Assuming that we can observe (e.g. from

international trade data) the ratio of this deficit to Home’s manufacturing imports, we can then

deduce the value of manufacturing imports by Home,
∑

j∈I∪HXj,g(F ), as well as its manufactur-

ing exports to Foreign,
∑

h∈HXF,g(h).

Next, we assume that the demand shifter in manufacturing (which can be interpreted as

quality or productivity) may vary across sources (urban households and Foreign) but is not spe-

cific to each destination, i.e. bj,g(h) = bM,g(h), ∀j ∈ I ∪H∪{F} and ∀h ∈ H∪{F}. Excess demand

for the manufacturing good of urban household h satisfies:∑
j∈J

χj,g(h)({bM,kpj,k}j , Ij) = 0.

In this expression, note again that we can simplify the arguments of function χj,g(h) since the

demand for a manufacturing good does not depend on land rents once we know farmer income

(and their expenditure share in manufacturing). For the manufacturing good produced in For-

eign, we have ∑
j∈I∪H

χj,g(F )({bM,kpj,k}j , Ij) =
∑

j∈I∪H
Xj,g(F )

where the right-hand side is observed or inferred as discussed above. Combined with pj,g(h) =

τhj,g(h)ph,g(h) for h ∈ H and pj,g(F ) = τFj,g(F )pF,g(F ), the previous displayed equations constitute a

system of equations in bM,g(h)ph,g(h) for h ∈ H and bM,g(F )pF,g(F ), which has a unique solution as

long as demand features gross substitutes, as is the case in most of the trade literature (e.g., with

CES demand). Given the solution in bM,g(h)ph,g(h) (up to a common constant), we can recover
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expenditure shares ξj,k for each agent j ∈ I ∪H and each manufacturing variety k ∈ KM .

Appendix 4.F Hub-and-Spoke Trade Costs

In this subsection, we want to show that condition (3) leads to well defined market prices once

we make the hub-and-spoke assumption on trade costs in expressions (14) and (15). To simplify

notation we ignore the subindex for g and focus on one particular agriculture good. Since we are

assuming away iceberg trade costs, then (3) entails

po + tod ≥ pd ⊥ xod. (A.3)

We define the market price associated with a farmer i ∈ J (m) by

pm(i, sells) ≡ pi + tim

if the farmer is a seller of the good and by

pm(i, buys) ≡ pi − tmi

if the farmer is a buyer of the good. Consider three farmers i1, i2 and i3 connected to market m

(i.e., i1, i2, i3 ∈ J (m)), and assume that i1 and i2 are sellers and i3 is a buyer. We first show that

pm(i1, sells) = pm(i2, sells) and then show that pm(i1, sells) = pm (i3, buys), implying that there

is a well defined market price pm.

To prove pm(i1, sells) = pm(i2, sells), assume by contradiction that pm(i1, sells) 6= pm(i2, sells).

This would imply that

pi1 + ti1m 6= pi2 + ti2m.

Without loss of generality, assume that

pi1 + ti1m < pi2 + ti2m.

Let j be the agent that buys the good from farmer i2, and let tmj be the trade cost from marketm

to agent j. Combining this with (A.3) (which holds with equality for j and i2) we get

pi1 + ti1m + tmj < pi2 + ti2m + tmj = pj ,

which indicates that j could instead buy the same good from i1 at a lower price, contradicting

condition (A.3) for j and i1, which implies

pi1 + ti1m + tmj ≥ pj .

To prove pm(i1, sells) = pm (i3, buys), assume by contradiction that pm(i1, sells) 6= pm(i3, buys).
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Assume first that pm(i1, sells) < pm(i3, buys). This implies

pi1 + ti1m < pi3 − tmi3 ,

which is a contradiction because (A.3) implies

pi1 + ti1m + tmi3 ≥ pi3 .

In words, i3 could instead buy the good from i1 at a lower price. Now assume instead that

pm(i1, sells) > pm(i3, buys) and let j1 ∈ J (m′) be the agent that is buying the good from i1 and

let j3 ∈ J (m′′) be the agent that is selling to i3, with markets m, m′ and m′′ possibly but not nec-

essarily coinciding. We again reach a contradiction as j1 could instead buy the good from j3 at a

lower price. To see this, note that

pj1 = pi1 + ti1m + tmm′ + tm′j1

while

pj3 = pi3 − tj3m′′ − tm′′m − tmi3 .

Combined with pm(i1, sells) > pm(i3, buys), these two equations imply

pj3 + tj3m′′ + tm′′m + tmm′ + tm′j1 < pj1.

The triangular inequality implies

pj3 + tj3j1 ≤ pj3 + tj3m′′ + tm′′m + tmm′ + tm′j1 < pj1 ,

which violates (A.3).

Appendix 4.G Model Extension with Seasonal Migration

In this appendix, we extend the model to allow for seasonal migration between rural markets as

well as between rural and urban markets. As for trade in goods, labor can be traded between any

two local labor markets subject to additive trade costs tod,L and/or iceberg trade costs τod,L. We

refer to this trade in labor as “seasonal migration”, since we assume that migrants consume (and

face prices) at their home location but earn wage pi,L on destination farm i, or ph,L when working

for urban household h. We do not allow for international migration, i.e., tod,L = τod,L = ∞ for

o, d ∈ {F}.
Our model exposition in Section 2 and the general functional forms in Appendix 4.B continue

to apply to the model with migration. However, since labor supply is no longer perfectly inelastic

in urban markets due to migration, we cannot treat output of manufacturing good g(h) as an
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endowment. Instead, output of manufacturing variety g(h) is given by:

qh = ah
∑
o

xoh,L,

where xoh,L are flows of labor from any origin o to urban household h, and ah is a productivity

shifter. As for wages in rural markets, we need to account for wages ph,L that clear urban labor

markets in equilibrium. Due to perfectly competitive labor markets, the urban wage follows

ph,L = ph,g(h)ah, where ph,g(h) is the price of manufacturing variety g(h) for urban household (or

city) h.

In equilibrium, rural and urban households maximize utility taking prices as given, prices re-

spect no-arbitrage conditions given trade costs, and all markets clear. The equilibrium is a set of

prices, {pj,g} and trade flows {xod,g} (measured in quantity at the destination). The equilibrium

conditions (2)-(4), laid out in Section 2, apply to the model with migration as well. Based on the

discussion above, only equilibrium condition (5) for urban income changes to:6

Ih = ph,LLh, ∀h ∈ H.

6Here, we now need to make the distinction between urban labor endowment Lh and urban employment∑
o xoh,L.




