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Abstract

Objective: Most neuropsychological tests were developed without the benefit of modern 

psychometric theory. We used item response theory (IRT) methods to determine whether a widely 

used test – the 26-item Matrix Reasoning subtest of the WAIS-IV – might be used more efficiently 

if it were administered using computerized adaptive testing (CAT).

Method: Data on the Matrix Reasoning subtest from 2197 participants enrolled in the National 

Neuropsychology Network (NNN) were analyzed using a two-parameter logistic (2PL) IRT 

model. Simulated CAT results were generated to examine optimal short forms using fixed-length 

CATs of 3, 6, and 12 items and scores were compared to the original full subtest score. 

CAT models further explored how many items were needed to achieve a selected precision of 

measurement (standard error ≤ .40).

Results: The fixed-length CATs of 3, 6, and 12 items correlated well with full-length test results 

(with r = .90, .97 and .99, respectively). To achieve a standard error of .40 (approximate reliability 

= .84) only 3–7 items had to be administered for a large percentage of individuals.
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Conclusions: This proof-of-concept investigation suggests that the widely used Matrix 

Reasoning subtest of the WAIS-IV might be shortened by more than 70% in most examinees 

while maintaining acceptable measurement precision. If similar savings could be realized in other 

tests, the accessibility of neuropsychological assessment might be markedly enhanced, and more 

efficient time use could lead to broader subdomain assessment.
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Wechsler Intelligence Scales; Psychometrics; Wechsler Memory Scale; Intelligence tests; Aptitude 
tests; Psychological tests

Introduction

Neuropsychological assessment methods would benefit from modernization. Many tests 

have origins in the 19th century and most elements of modern batteries were in place by 

the end of World War II (Bilder, 2011). Despite widespread advocacy for the “flexible” 

approach to neuropsychological assessment, the most widely used methods center on 

tests that include the Wechsler Adult Intelligence Scale and selected other tests that are 

considered measures of specific neurocognitive domains (Rabin et al., 2005; Rabin et al., 

2016). Most tests used today were developed based on the intuitions and ingenuity of the 

test developers. In contrast, modern psychometric approaches use a priori definitions of 

constructs and careful psychometric evaluation of how those constructs are measured.

Test refinements over recent decades have led to better understanding of many tests using 

classical test theory methods. Test publishers have generally improved their standardization 

practices through better sampling methods and improved test refinement practices. This 

work has provided greater insight into the factor structure of widely used tests and better 

definition of certain test properties (internal consistency, test-retest, and alternate-forms 

reliability). A few measures have further demon`strated external validity relative to selected 

demographic variables (e.g., age, education, race, and ethnicity), and by showing differences 

associated with specific diagnostic groups or treatment outcomes (Holdnack et al., 2011; 

Wechsler, 2008a, 2008b).

In contrast, modern psychometric theory has been used infrequently in the construction and 

evaluation of neuropsychological tests, with several noteworthy exceptions (Bilder & Reise, 

2019; Crane et al., 2008; Gershon et al., 2014; Moore et al., 2015; Mungas et al., 2003; 

Mungas et al., 2000; Yudien et al., 2019). Item response theory (IRT) offers the potential 

to better define and measure latent traits identified in many neuropsychological tests. IRT 

can further specify the precision of measurement at different levels of the construct, which 

is often particularly important in the assessment of individuals with very high or very low 

levels of ability, and critical to assure that measurement properties are comparable within 

individuals when change has taken place due to disease or interventions. These methods are 

further important to assure that our tests measure the same constructs across groups that 

differ by sex, race, ethnicity, cultural backgrounds, and clinical conditions (Bilder et al., 

2022).
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IRT can further markedly reduce test length by identifying the information contributed 

by each item to the measurement of the latent trait(s), and optimizing the combined 

information generated by subsets of test items administered in an adaptive format. 

Specifically, computerized adaptive testing (CAT) based on item response theory (IRT) 

has been extensively researched, and implementations are common around the world. 

The International Association for Computerized Adaptive Testing lists 39 large scale 

CAT programs (https://www.iacat.org/content/operational-cat-programs). These include 

the Armed Services Vocational Aptitude Test Battery and the Graduate Record 

Examination, which are used in high-stakes placement and admissions decisions. A 

clinical example is the Patient Reported Outcomes Measurement Information System 

(PROMIS) that enables efficient, fixed precision assessment of depression, anxiety, self-

reported cognitive ability/dysfunction, and more (https://www.healthmeasures.net/resource-

center/measurement-science/computer-adaptive-tests-cats). Unfortunately, CAT research has 

seldom been applied to neuropsychological assessment, with a few exceptions (Moore et al., 

2015, 2023; Yudien et al., 2019).

Adaptive testing starts by administering an item of intermediate difficulty. If the examinee 

passes that item, they next get an item that is more difficult, but if they fail the item, 

they will next get an easier item. This process continues, adjusting the difficulty of the next-

selected item until a “good” estimate (with predefined precision) of the examinee’s ability 

level is obtained. Computerized adaptive testing (CAT) (Choi, 2009, 2020) often reduces 

test length by 50% or more, resulting in markedly increased efficiency of assessment, which 

in turn can reduce assessment time and cost, and thereby increase access to additional care 

(Bilder & Reise, 2019; Gibbons et al., 2008; Reeve et al., 2007; Reise & Waller, 2009). 

Most current practice models relying on traditional testing have led neuropsychological 

assessment to be among the most time-consuming of medical diagnostic procedures, with 

associated high costs that differentially impact individuals with fewer financial resources, 

and often lead to long waiting lists so that care, even when provided, is often delayed. 

CAT has an additional advantage: because item selection and scoring are typically done 

automatically, additional time and cost savings accrue relative to traditional assessment that 

depends on manual scoring by highly trained individuals.

The National Neuropsychology Network (NNN) was created to enable assessment of widely 

used neuropsychological tests using IRT and other modern psychometric methods, and to 

facilitate development of more efficient methods to measure latent traits (Loring et al., 

2021). The NNN enables these kinds of analyses because all data are being acquired at the 

item level, in contrast to databases that comprise only summary scores.

As a proof-of-concept demonstration, we examined the Matrix Reasoning (MR) subtest 

of the Wechsler Adult Intelligence Scale, 4th Edition (WAIS-IV; Wechsler, 2008). The 

MR subtest was introduced in the WAIS-III (Wechsler, 1997), but historical roots of this 

test may be traced to the much earlier development of the Raven Progressive Matrices 

(Penrose & Raven, 1936). Factor analytic work has shown that the Matrix Reasoning 

subtest loads together with other measures (Visual Puzzles, Block Design) to form the 

WAIS-IV Perceptual Reasoning Index (Wechsler et al., 2008; Wechsler, 2008a). We recently 

used confirmatory factor analysis to demonstrate that the WAIS-IV factor structure shows 
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strong measurement invariance across a heterogeneous patient group from the NNN and the 

original healthy standardization sample (Bilder et al., 2022).

The primary goal of our analyses was to demonstrate possible savings in administration 

time of the Matrix Reasoning subtest that could be gained using IRT-based CAT item-

selection strategies, under the assumption of unidimensionality. Preliminary analyses were 

also necessary to determine if the assumption of unidimensionality was justified in our 

sample.

Method

Participants

Inclusion/exclusion—Because this project involved care-as-usual, no a priori restrictions 

on inclusion of participants were used, except that the study included only adults (ages 18 

years or older) and only those whose primary language was English. Data were collected 

from 2197 patients who were administered the Matrix Reasoning subtest of the WAIS-IV as 

part of a routine clinical neuropsychological evaluation. Patients were between the ages of 

18 and 90 years (M = 51.68, SD = 18.15), about half of whom indicated that their biological 

sex assigned at birth was Female (N = 1163). A small minority identified as Hispanic (N = 

45), while the vast majority identified as not Hispanic (N = 2059); ethnicity was unknown 

for the remaining 93 individuals.

Demographic and clinical variables—We recorded age, educational attainment, sex, 

race and ethnicity following protocols developed by the National Human Genome Research 

Institute’s “PhenX” (phenotypes and genotypes) project (McCarty et al., 2014) that were 

endorsed by the NIMH as Common Data Elements for demographic variables (Barch 

et al., 2016). Complete data dictionaries for the NNN database are available online at 

www.nnn.ucla.edu. This study was not preregistered.

Human subjects—All procedures were conducted with approval from the Institutional 

Review Boards at each site, using reliance agreements implemented by SmartIRB. Initially 

we obtained informed consent (for the first 2138 cases), and excluded participants if there 

were concerns about capacity to provide informed consent. Subsequently we received a 

waiver of informed consent so all clinic patients could be included. For participants older 

than 89, we coded age as “90+”. The UCLA IRB was the IRB of record. Participants 

were identified by Global Unique Identifiers (GUIDs) or pseudo-GUIDs, as defined by the 

NIMH. Some participants had multiple neuropsychological evaluations during their clinical 

care; in these cases, results of the first examination only were included for each examinee. 

An “examination” was operationally defined as a set of tests administered within a period of 

30 days, intended to represent a single episode of care.

Data sources and measures

All clinics administered the Matrix Reasoning subscale following standard administration 

and scoring methods set forth in the manual (Wechsler, 2008). The Matrix Reasoning subtest 

includes two sample items (A and B), and 26 test items. Item 4 is administered first unless 
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intellectual disability is suspected, in which case administration begins with item 1. If 

examinees do not obtain perfect scores on either items 4 or 5, then preceding items are 

administered in reverse order until the examinee obtains perfect scores on two consecutive 

items. Following the administration manual, items were otherwise administered in order of 

difficulty (easiest to hardest). For each item, individuals received a score of either 1 (correct) 

or 0 (incorrect). After three consecutive scores of 0, the test was discontinued. Missing 

values after the test was discontinued following three failures were later coded as 0’s (i.e., 

incorrect) for purposes of CAT simulation.

Dimensionality assessment

The Matrix Reasoning subtest is universally scored as a single construct in practice. 

Nevertheless, the IRT model to be applied here assumes “essential” unidimensionality, that 

is, the responses primarily reflect a single common dimension. Thus, it is important, prior 

to estimating an IRT model, to first empirically establish the viability of a unidimensional 

model in our sample. To evaluate unidimensionality in the present data, we first estimated 

tetrachoric correlations among the items (deleting the first five items due to very high 

proportion corrects, see Table 1) and then factor analyzed the tetrachoric correlations using 

minres extraction. To establish essential unidimensionality, we examined the ratio of the 

first to the second eigenvalue, the magnitude of factor loadings, and several indices of 

statistical fit. Specifically, we used the lavaan library (Rosseel, 2012) to fit a confirmatory 

unidimensional model specifying the items as ordinal and using diagonally weighted least 

squares estimation. We examined model chi-square, the scaled comparative fit index, scaled 

root mean squared error of approximation, and standardized root mean square residual. By 

traditional conventions, values of these indices >.90, <.05, and <.08 would be considered 

“good”.

Item response theory (IRT)

Compared to classical test theory (CTT) which focuses on test-level functioning, IRT 

focuses on item-level functioning. The chief goal of IRT is to fit a statistical model, 

called an item response function (IRF), which describes how the probability of responding 

correctly to an item changes as a function of ability or “trait” level (generally denoted as 

θ ) and properties of an item (e.g., its difficulty and discrimination). It is assumed that 

the probability of responding correctly monotonically increases as a function of θ .This 

interpretation assumes that any variation in item response is driven by one dominant 

dimension (i.e., factor), which embodies the unidimensionality assumption.

As noted, the IRF describes the probability of responding correctly given ability or “trait 

level” θ  , and it is defined by several parameters (e.g., item difficulty, guessing rate, 

discrimination). For this application we selected a model that is analogous to the well-known 

and extensively used item-level factor analytic model. Specifically, we selected the so-called 

two-parameter logistic model (2PL)1 as shown in Equation 1.

1Many additional psychometric analyses, such as evaluation of statistical and graphical item fit for alternative IRT models (e.g., a 
3-parameter model) were conducted. However, discussion of these are beyond the scope and are not detailed here. They are available 
upon request.
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P(x = 1|θ) = 1
1 + exp( − α(θ − β))

(1)

In the above, examinee individual differences in trait level are symbolized by θ , which in 

this study (and most IRT studies) is assumed to be like a Z-score with a mean θ of zero 

and standard deviation of 1.0. Test items vary in location (β) , which is the point along the 

trait continuum at which the probability of responding correctly is 50%. Thus, the location 

parameter has a scale such that positive values indicate a more difficult item, that is, an item 

that would require higher than average trait level to get correct. A negative difficulty item 

indicates an “easier” item, meaning that even individuals below the population mean may 

have a high chance to get it correct. The so-called “discrimination” parameter (α) controls 

the slope of the IRF at its reflection point – higher values indicate more discriminating 

items; more “discriminating” means that the item is better able to distinguish between 

individuals in the trait range around the item location.

In IRT, items can vary not only in discrimination, but also in how much statistical 

information they provide in discriminating among individuals. Specifically, once an IRF 

is estimated for each item, it can be easily transformed into an item information function 

(IIF) as shown in Equation 2.

 Info|θ = α2P(x = 1|θ)(1 − P(x = 1|θ))

(2)

An IIF describes how well an item can discriminate between individuals at different 

levels of ability. Items with higher discrimination (α) provide more information, but where 

that information is concentrated is determined by the location parameter (i.e., where the 

probability of a correct response is 50%).

Finally, it is critical to note that IIFs are additive across items and thus can be summed 

to form an overall scale information function (SIF). The SIF is key because it allows us 

to study how the standard error of measurement changes as a function of trait level for a 

given set of items administered, whether the full, complete battery or only a few CAT items 

are administered. Specifically, Equation 3 shows how scale information is converted to a 

conditional standard error of measurement. This is critical because information, and thus the 

standard error (SE) , is leveraged in CAT to more efficiently select items for administration.

SE θ = 1
INFO|θ

(3)

Our first analyses centered on performing traditional classical test theory psychometric 

analyses on the data. This included item-test correlations, item means and standard 
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deviations. These values were obtained using the R library psych (Revelle, 2023), alpha 
command. The IRT 2PL model parameters were estimated using the mirt library in R 

(Chalmers, 2012). Although there are no definitive approaches to evaluating model fit in 

IRT, we examined root mean square error of approximation, standardized root mean square 

residual, and comparative fit index which are output from mirt (Maydeu-Olivares et al., 

2011). These are simply IRT versions of the fit indices shown previously and similar 

“benchmarks” would apply.

Computerized adaptive testing

As noted, CAT (Wainer et al., 2000; van der Linden & Glas, 2000) has been investigated 

carefully in many assessment domains, including psychopathology assessment (see Gibbons 

et al., 2016) but has received scant attention in neuropsychological assessment. In CAT, 

an item is administered, usually of medium location parameter (e.g., around zero) and a 

response is collected and scored. Based on that response, a trait level estimate is made, and 

a new item is selected that is typically easier (if the examinee got the item wrong) or harder 

(if the examinee got the item right). More technically, the next item selected to administer is 

the one that maximizes the psychometric information (i.e., provided the most discrimination) 

at the current trait level estimate. This process of administering items, updating the latent 

trait estimate, and selecting new items to administer, continues until a termination criterion 

is met.

There are two major termination criteria used. First, items are adaptively administered until a 

fixed number, for example, 10, are administered. That is called fixed length adaptive testing. 

Second, items are administered until a standard error criterion is met. For example, items 

are administered until the standard error is at or below .30 (which would correspond roughly 

to an alpha reliability of .90). Of course, the procedure used is limited by the item bank 

one has on hand. If the test does not have enough items to provide sufficient psychometric 

information to reduce the standard error below a threshold, then a more liberal threshold is 

required.

In this research, for demonstration purposes, we conducted a real data simulation. We began 

again by filling in all cells of the data matrix after each person’s termination criterion was 

met with zeros to eliminate missing data. Therefore, the number correct for an individual 

is the number correctly answered until the stopping criterion was reached, and the number 

wrong is the sum of items missed prior to the stopping criterion plus all items after the 

stopping criterion. This demonstration is hypothetical and a “proof of concept,” but this is 

true of most real data simulations of CAT (Thompson & Weiss, 2011).

The specific CAT algorithms evaluated here were as follows. We began by selecting the 

most informative item (most discriminating item) at trait level = 0. This item was always 

Item #13 which had discrimination of 2.88 and location of −0.31. Each examinee began with 

a trait level estimate of 0 and based on the response to the first item, trait level estimate and 

standard error were updated using the expected a posteriori (EAP) method of scoring (Bock 

& Mislevy, 1982). The next item selected was the one that provided the most psychometric 

information at the current trait level estimate.
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The first set of algorithms we examined were fixed test length. Specifically, we limited 

the CAT administration to 3, 6, and 12 items respectively. We then examined a standard 

error-based CAT. Specifically, we continued administering items in CAT format until an 

examinee’s trait level estimates had a standard error below .40 (16% error variance or 

reliability of roughly .84). The three key outcome statistics are (1) the average standard 

error of measurement for each CAT condition, (2) the root mean square deviation between 

CAT and full scale trait level estimates (RMSD), and (3) the correlations, both Pearson 

and Spearman, between CAT trait level estimates and full scale estimates (i.e., based on 

all the items). The first and second indices provide degree of uncertainty around the true 

score and full scale score, respectively. The CAT versus full scale correlations are part-

whole correlations and must be positive. They should be interpreted as descriptive statistics 

reflecting the specific simulation and not as estimates of a “population” parameter. High 

correlations (e.g., >.90) imply that CAT scores would have very similar external correlates as 

the full scale scores.

Results

In the current analysis, patients were originally administered between 1 and 26 test items. 

On average, participants received around 17 items (Mean = 17.30, Median = 19, Mode 

= 24). A frequency graph of the number of items administered is shown in Supplemental 

Figure 1. In Supplemental Figure 2 is displayed a graph of the time, in minutes, to complete 

a given number of items. The line is a linear regression, and the curves are locally estimated 

scatterplot smoothing (LOESS) plots. In addition, Supplementary Table 1 shows the mean 

and median times to complete each number of items administered using no trimming and 

5% trimming to reduce the effect of outliers. These graphs and tables indicate that people 

taking between 20 and 23 items tend to spend about 8–10 min on the MR subtest.

Dimensionality assessment

The first five eigenvalues of the tetrachoric matrix were 13.09, 1.30, 0.71, 0.64, and 0.56, 

and thus 13.09/21 = 62% of the item variance was explained by the first factor. The ratio 

of the 1st to 2nd eigenvalue was 10.07, much larger than the frequently noted benchmark 

for “unidimensionality” of 3. This pattern suggests a very strong common dimension as 

expected. The results of fitting a unidimensional confirmatory model using lavaan (Rosseel, 

2012) produced a standard chi-square of 583.26 (robust 769.73) on 189 df, and scaled 

comparative fit index = .996, scaled root mean squared error of approximation = .037, and 

standardized root mean square residual = .052, all indicating an acceptable, if not excellent, 

fit.

Classical and IRT model fitting results

Basic classical test theory psychometric values are shown in the first four columns of Table 

1. Using these results, we decided to eliminate the first five items from subsequent analyses; 

these items are nearly universally passed (too high correct response rate) to provide any 

discrimination among individuals. The first set of columns contain the item-test total score 

correlations, and the item-test correlation if the item dropped from the total score. These 

values tend to be higher for items around #13 to #22 – items that are completed correctly 
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by 35–65% of the participants and the item variance is largest. The item means in the third 

column indicate that the items are well ordered by proportion correct (easy to difficult) as 

would be expected given how the test is administered and our method of treating missing 

data. Thus, our easiest item is Item #6 with a .90 correct rate, and the hardest is Item #26 

with a .08 correct rate. Coefficient alpha was .92 for both the 26-item and 21-item versions.

Estimated item parameters from the 2PL model are shown in the last two columns of Table 

1 and the corresponding item information curves are shown in Figure 1. The fit statistics 

output by the mirt program for this model were root mean square error of approximation 

= 0.04, standardized root mean square residual = .07, and comparative fit index = .99, 

agreeing almost exactly with the CFI results shown previously and revealing excellent model 

fit (Maydeu-Olivares et al., 2011).

Finally, one of the major features of IRT modeling is the graphical display of item and test 

functioning. First, in Figure 2 we display trait level (on a scale with M = 0, SD = 1.0) versus 

estimated reliability conditional on trait level (Note: the concept of “test score” reliability 

does not exactly apply to IRT, and thus this is a rough approximation based on error variance 

of trait level estimates). This graph shows that for 1.5 standard deviation below the mean to 

2 standard deviations above the mean, the reliability of trait scores is above .80, a commonly 

used “benchmark”. Most importantly, in Figure 3 scale information and conditional standard 

errors are shown for this 21-item version of Matrix Reasoning under the 2PL model. This 

figure tells the same story, but now in purely IRT terms; from around −1.5 to +2 standard 

deviations from the mean, measurement precision is relatively high, but is much lower at the 

extremes.

Computerized adaptive testing

For the fixed-length simulations for 3, 6, and 12 items, the Pearson correlation between 

CAT trait level estimates and full-length trait level estimates were .90, .97, and .99, 

respectively, and Spearman correlations were .91, .96, and .99. The average standard errors 

of measurement were .47, .35, and .29, respectively (.22, .12, and .08 error variance)2. These 

can be compared against the average standard error of .27 for the full-length test (.07 error 

variance). In these conditions, all individuals received the same number of items, but the 

specific items administered depended on their response pattern. Graphs of full length trait 

level estimates versus CAT trait level estimates for these three conditions are shown in 

Supplementary Figures 3 through 5, respectively. Clearly, as the number of items increases, 

there are: (1) an increasing range of CAT scores, (2) an increase in the number of different 

CAT scores (possible response patterns and corresponding trait level estimates equals 2 

raised to the power of the number of items), and (3) lower spread of full scale scores 

conditional on CAT scores. Finally, RMSD were .42, .22, and .08, indicating that, as the 

number of CAT items increases, the typical difference between CAT and full-scale trait level 

estimates gets smaller.

2These standard errors correspond to marginal “reliability” values of .78, .88, and .92, respectively, compared with .93 for the full 
length test.
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In the “standard error less than or equal to .40” CAT condition (16% error variance or 

reliability of roughly .84), the mean number of items administered was 6.72 (S = 5.70), 

the average standard error of measurement was .38, the RMSD was .25 and the Pearson 

correlation between CAT trait level estimates and full-length trait level estimates was r = 

.97 (Figure 4); the Spearman was .94. However, that CAT algorithm did not work for all 

individuals as described below.

In Figure 4, the trait level scores are color coded by the number of items received; these 

are grouped into 3–4, 5–13, and 21 (no one received 14–20 items). The above reported 

correlations are inflated, and RMSD deflated, due to the CAT algorithm not converging for 

individuals with very high or very low estimated trait levels, for whom all items needed 

to be administered. Supplemental Table 2 shows the number of people (and proportion of 

people) receiving specific numbers of items. The 283 individuals who required all 21 items 

(about 13%) had very high or low trait level estimates – locations on the trait where it was 

impossible to achieve a standard error of .40 or below. This is shown in Supplemental Figure 

6. Because the same items were administered, the CAT trait level estimate and full test trait 

level estimate are the same for these individuals. This is a limitation of the item pool in the 

original test; specifically at very low and very high levels of performance, the original test 

has a standard error greater than .40. This can be seen in the Scale Information Function 

plot in Figure 3, which as in most tests, shows substantial increases in error at the lower and 

upper ends of the trait. We thus estimated indices again, but with the 283 individuals who 

received all items eliminated. The new values are: average standard error = .37, RMSD = 

.26, Pearson = .93 and Spearman = .90.

Discussion

This proof-of-concept investigation demonstrated that one of the most widely administered 

neuropsychological tests – the Matrix Reasoning subtest of the WAIS-IV – might be 

administered with markedly greater efficiency using a computerized adaptive test (CAT) 

method, based on item response theory (IRT). The CAT models demonstrated that tests 

with 3 to 12 items correlated well (r = .90 to .99) with full-length subtest scores based 

on 21 items. When using a fixed-precision strategy, an average of 6.7 items was needed 

to yield a standard error of less than .4 (which indicates reliability of approximately .84), 

yielding strong correlations (r = .929 and .902 when excluding people who received all 

items) between the CAT estimate of ability and the estimate based on the full-length test. 

Many participants (1431/2197 or about 65%) required only 3 or 4 items to reach this level of 

precision.

For the Matrix Reasoning subtest alone, the results suggest the total administration time 

could be reduced from 8–10 min3 to 2–3 min on average. Given estimates for total WAIS-IV 

administration time of 60–90 min, these findings suggest that the entire WAIS-IV might be 

completed in 20–45 min following an adaptive testing format. This is based on the fact that 

3Some estimates of time to complete the MR subtest are slightly shorter, but available estimates are for different versions in different 
samples. For example, Ryan, Glass and Brown, 2007 reported for WISC-IV that the Matrix Reasoning subtest took on average 6:06 
(SD 2:32) with a range from 2:18 to 16:15. Axelrod 2001 found the WAIS-III Matrix Reasoning subtest took on average 5.3 (SD 3.8) 
minutes to administer.
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8 of 10 core subtests follow an item format. The two core subtests that do not are Coding 

and Symbol Search. It remains unclear how much time is necessary to arrive at accurate 

estimates of true scores for these subtests; this could be a valuable topic for future research. 

Our prior confirmatory factor analyses further showed that WAIS-IV index scores, including 

the Perceptual Reasoning Index to which MR contributes, might be well estimated with only 

2 subtests per index (Bilder et al., 2022).

Many other factors might alter these estimates of time needed for examination, and in cases 

where performance is inconsistent from trial to trial an adaptive algorithm might take longer 

to execute successfully. If our results hold for other tests, however, we could anticipate at 

least doubling of efficiency, which would have a major impact on the potential throughput of 

cases in existing clinics nationwide. Increasing throughput has two major implications: (1) 

increasing access to neuropsychological assessment by the many patients who may benefit 

from it; and (2) decreasing the costs in both time and money for the patients who do receive 

neuropsychological services.

If clinical neuropsychology increases use of adaptive testing methods, it will be important 

to determine how much precision we want in these assessments. The current practice, 

using fixed-length tests, probably “over-tests” many patients and provides a higher level of 

precision in measurement of the tested construct than is clinically useful. A classic example 

may be drawn from studies of the Wisconsin Card Sorting Test (WCST) in schizophrenia. 

There was once heated debate about whether it might be reasonable to use the “short” (64 

card) version of the WCST rather than the standard version (128 cards). A study (Prentice 

et al., 2008) examining individual item responses found, however, that only four cards were 

needed to provide most of the information relevant to differentiate the schizophrenia group 

from healthy volunteers.

The model fitting results from the current study revealed that item difficulty is well specified 

by the order of Matrix Reasoning items following standard administration. In our sample, 

we also found very little information was provided by the first five items. It may be that 

these items are helpful in some populations of very low ability, but it is noteworthy that these 

items were of little value in our sample, which included patients with severe neurological 

and psychiatric disorders. The IRT modeling further showed that precision of measurement 

is very good from about −1.5 to +2 standard deviations around the mean, but worse as 

values move to extremes. For applications of this test that particularly require assessment of 

patients with very low levels of ability, additional easy items would be needed. For research 

on individuals of exceptionally high abilities, more difficult items would be needed. A key 

assumption in this work is that the Matrix Reasoning subtest measures a unitary construct. 

Our dimensionality assessment revealed a ten-fold difference between the first eigenvalue 

(13.09) and the next highest eigenvalue (1.30) and the next three eigenvalues were less 

than 1, suggesting a strong first factor. Finally, a confirmatory factor analysis showed that 

the unidimensional solution had acceptable fit. Thus, the assumption of unidimensionality 

is generally sound. On the other hand, it is plausible that more than one dimension might 

be measured by the Matrix Reasoning subtest. Prior research on similar tests, such as the 

Raven Advanced Progressive Matrices (Raven, 1998), has suggested that this task involves 

Gf (general fluid intelligence, following Carroll (1993)), and more specifically inductive 
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reasoning. Carpenter et al. (1990) examined multiple logical rules involved in different 

RAPM problems and suggested a dual-process model centering on inductive reasoning 

(finding abstract relations and rules) and working memory (goal management) processes. It 

is possible that distinct, separable processes like these might be more prominent in samples 

with specific deficits or strengths in the relevant abilities.

Understanding item-level responses on the Matrix Reasoning subtest may further help 

development of novel procedures that will enable open access assessment using adaptive 

testing methods. One interesting example of this kind of innovation already has been 

undertaken with the Matrix Reasoning Item Bank (MaRs-IB; Chierchia et al., 2019). In 

theory, future development could lead to creation of large, shared, open-access banks of 

items along with their IRT parameters, that would enable free and flexible administration of 

adaptive testing of the processes involved in solving these widely used tests.

Limitations

A strength and potential weakness of the NNN sample is that it is heterogeneous, with 

inclusion of all patients examined in participating clinics. A potential weakness is that 

patients represent a wide range of conditions so the findings may not generalize to any one 

specific condition or to people who have no neuropsychological complaints. However, this 

diversity is also a strength since the findings are more likely to generalize to other clinics 

nationwide.

Another limitation is that our analyses considered each item dichotomously (as correct or 

incorrect) and did not investigate the possible selection of different response alternatives 

or qualitative response features. Further, we did not use information about how much time 

it took examinees to provide either correct or incorrect responses. Theoretically, valuable 

information may be provided by knowing which incorrect response option an examinee 

took, and further in how long it took them to arrive at those answers. Particularly relevant 

to potential future development of performance validity indicators, it may be possible in 

the future to identify selection of unusual response options, with atypically long or short 

response latencies, that do not “fit” with other estimates of the individual’s true ability as 

determined by other metrics. Very large numbers of examinees must be used to analyze data 

in this way, given that – by definition – such rare response selections are infrequent. We 

hope as our sample grows we will be able to address these issues.

Finally, several possible limitations to generalizability should be mentioned. First, this is 

a simulation rather than implementation study, so it is impossible to say how the CAT 

might change examinee response patterns. Standard administration involves progression 

from easy to more difficult items, which might enable examinees to learn as the test 

progresses. It is also possible that MR, by sequencing items in order of difficulty and 

including a stop rule, rather than giving items randomly, as is done in some achievement 

tests, might yield different scores because examinees may not get all items. To perform 

an IRT calibration study, we would suggest administering all items, not in a fixed 

order, so that item characteristics can be estimated free from possible item-order effects. 

Finally, we are sensitive to the fact that application of adaptive tests requires the use of 

computers and/or internet access. This raises a concern about unequal access that may 
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disproportionately impact patients who may not be able to access the necessary technology. 

Internet access is now prevalent in some regions (e.g., 93% in North America) but 

lower in others (43% in Africa). Even in regions with high overall access, those without 

access are disproportionately poor, from minority groups, and experience other adverse 

social and structural determinants of health outcomes4 Federal rules to eliminate “digital 

discrimination”5 raise hope that action will soon reduce current disparities at least in the 

United States. Despite these possible limitations, we believe the results of this demonstration 

suggest major practical advantages of using adaptive methods to increase efficiency and 

improve access to neuropsychological assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Item information functions for items 6–26. Note. The item information functions for items 

1–5 could not be estimated as nearly all individuals got these questions correct, and 

therefore provide no information.
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Figure 2. 
Reliability estimate conditional on trait level.
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Figure 3. 
Test information and standard error conditional on trait level.
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Figure 4. 
Computerized adaptive test estimated matrix reasoning trait levels versus full scale estimated 

trait level.
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Table 1.

Matrix reasoning classical test theory statistics and item response theory parameter estimates

Mean s raw.r r.drop

IRT Slope IRT Location

α β
V1 .99 .08

V2 .99 .09

V3 .99 .10

V4 .99 .11

V5 .95 .21

V6 .90 .30 .43 .39 1.59 −2.00

V7 .87 .33 .41 .36 1.23 −1.99

V8 .78 .42 .57 .52 1.68 −1.08

V9 .77 .42 .60 .55 1.86 −1.01

V10 .68 .47 .70 .66 2.41 −.49

V11 .71 .45 .62 .56 1.79 −.71

V12 .64 .48 .68 .63 2.13 −.38

V13 .64 .48 .74 .70 2.88 −.31

V14 .61 .49 .69 .64 2.23 −.25

V15 .52 .50 .68 .63 2.23 .04

V16 .52 .50 .74 .70 3.01 .09

V17 .41 .49 .67 .62 2.56 .40

V18 .46 .50 .74 .70 3.54 .25

V19 .33 .47 .62 .56 2.48 .62

V20 .36 .48 .67 .62 3.12 .52

V21 .32 .47 .66 .60 3.41 .61

V22 .35 .48 .65 .60 2.94 .54

V23 .21 .41 .55 .49 3.07 .95

V24 .18 .39 .52 .47 3.13 1.03

V25 .11 .31 .43 .38 3.58 1.27

V26 .08 .26 .36 .32 3.14 1.49

Note. IRT slope ( α in the 2PL equation) is a discrimination parameter; IRT Location ( β in the 2PL equation) is a difficulty parameter; s is standard 

deviation; raw.r is item to test score correlation; r.drop is item to test score correlation if item dropped.

J Int Neuropsychol Soc. Author manuscript; available in PMC 2025 February 01.


	Abstract
	Introduction
	Method
	Participants
	Inclusion/exclusion
	Demographic and clinical variables
	Human subjects

	Data sources and measures
	Dimensionality assessment
	Item response theory IRT
	Computerized adaptive testing

	Results
	Dimensionality assessment
	Classical and IRT model fitting results
	Computerized adaptive testing

	Discussion
	Limitations

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.



