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Abstract

Applications of Koopman Operator Theory to Highway Traffic Dynamics

by

Allan M. Avila

The ever-increasing demands on transportation systems have led to the need for a

robust and universal method for the analysis and forecasting of vehicular traffic systems.

Traditional methods are mainly model-based, that is, the analysis is performed by inves-

tigating a mathematical model that represents the target dynamics of a traffic system.

On the other hand, contemporary efforts have focused on utilizing artificial intelligence

(AI) to model or forecast vehicular traffic dynamics. Despite these large efforts, there

is still no single best-performing method for the analysis and forecasting of vehicular

traffic dynamics. This is due to the very well known fact that the unpredictable be-

haviors involved in a traffic system, like human interaction and weather, leads to a very

complicated high-dimensional nonlinear dynamical system. Therefore, it is difficult to

obtain a mathematical or AI model that explains all events and time evolution of ve-

hicular traffic dynamics. Even if such a model could be attained, it would not lead to

a robust and universal way of traffic analysis and forecast, due to its need of extensive

parameter tuning. Thus, in contrast to the model or AI-based approach, it is necessary

to develop data-driven methods that can identify dynamically important spatiotemporal

structures of traffic phenomena. In this thesis, we demonstrate how the Koopman op-

erator theory can offer a model and parameter-free, data-driven approach to accurately

analyzing and forecasting traffic dynamics. The Koopman operator theory framework is

a rapidly developing theory in dynamical systems that offers powerful methods for ana-

lyzing complex nonlinear systems. The effectiveness of this framework is demonstrated
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by an application to the Next Generation Simulation (NGSIM) data set collected by the

US Federal Highway Administration and the Performance Measurement System (PeMS)

data set collected by the California Department of Transportation. By obtaining a Koop-

man mode decomposition (KMD) of the data sets, we are able to accurately reconstruct

our observed dynamics, distinguish any growing or decaying modes, and obtain a hierar-

chy of coherent spatiotemporal patterns that are fundamental to the observed dynamics.

Furthermore, it is demonstrated how the KMD can be utilized to accurately forecast

traffic dynamics by obtaining a decomposition of a subset of the data, that is then used

to predict a future subset of the data.
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Chapter 1

Introduction

Traffic models can typically be characterized as microscopic, mesoscopic or macroscopic.

All of these methods have had their own success at capturing certain traffic phenomena.

However, a lack of consistency between simulated results and observed data has led to

years of confusion and disagreement within the traffic physics community [21]-[24]. In

this section, we describe the success and limitations of certain traffic models and the

spatiotemporal patterns typically observed in measured traffic data.

1.1 Modeling of Traffic

Microscopic traffic models view traffic as a collection of individual particles travel-

ing together. These models can be divided into classic models and artificial intelligence

models [21]. Classic microscopic models utilize mathematical equations, typically ODE’s,

to update the state of each vehicle in time. These classic models include stimulus-

response based models[1][2][6]-[9], collision avoidance models[10]-[12], desired headway

based models[2] or psycho-physical models[13]-[16] On the other hand, artificial intelli-

gence models utilize computer algorithms for updating the state of every vehicle. These

methods include the fuzzy logic based models,[17][18] the neural network models[25][26]

or models that utilize a combination of the two. [19][20]. The state of the art review
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Introduction Chapter 1

of [21] indicates that the major downfall of microscopic models is the need to store in-

formation for each vehicle, at all times. This causes the computation to scale with the

number of vehicles on the road, often times rendering the model incapable of real-time

implementation. Furthermore, these models are heavily dependant on several parame-

ters that require tuning. In order to tune such parameters detailed vehicle trajectory

data, like the NGSIM, is required but limited and costly to collect. The most simple

to calibrate of these models are the stimulus based ODE models. Despite their low cal-

ibration requirements, these models are further criticized due to their assumption that

drivers can detect small changes in their state and will instantly react to these changes

upon detecting them. In reality, drivers respond to a stimulus only when the stimulus

is beyond some threshold therefore, psycho-physical models have also been implemented

however, these models require a greater amount of parameters to be tuned. Lastly, the

fuzzy logic and neural networks or combinations of the two are hindered by the difficulty

in determining the correct sets and rules of the fuzzy logic and the ”black box” nature

of neural network models.

Mesoscopic models view traffic as a gas or sand-like material and employ statistical

mechanics to model vehicle behavior. These models do not specify the behavior of traffic

in terms of individual vehicles but rather in a more aggregated form through probability

density functions. The three well-known types of mesoscopic models are the headway

distribution models[33] the gas kinetic (GKT) models[28][29] and the cluster type models

[27]. The GKT models account for a majority of the mesoscopic models and have been

successfully extended to the case of multi-lane highways [30], multi-class vehicle interac-

tion [31] and a combination of the two [32]. The GKT models have also yielded useful

theoretical results, where in the works of [33]-[37], GKT models have been used to derive

macroscopic traffic equations. Despite there theoretical success, mesoscopic models have

always received much criticism for the high number of variables involved in their formu-
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Introduction Chapter 1

lation, which also renders many of these models impossible for real-time implementation

[22]. Lastly, much like the microscopic models these models also depend on parameters

which require tuning.

Macroscopic models view traffic as a continuum and utilize fluid mechanics based

PDE’s to describe the spatiotemporal evolution of traffic density, flow, and velocity. The

three types of macroscopic models are the first order, second order, and Helbing type

models [33]. Among the earliest attempts at analytically modeling traffic were the efforts

of [39], where the first order LWR model was defined and used to study traffic behavior.

The LWR model is relatively simple to handle and theoretically sound, as it is a simple

mass balance equation. Furthermore the LWR model has been shown to be capable of

producing the traveling wave dynamics typically observed in traffic [44]. However, some

of the criticism of first order models, as summarized in [45][24][22], are their inability

to describe unstable flow regimes or traffic oscillations and their inability of capturing

localized structures or spontaneous ”phantom” traffic jams. In light of these of shortcom-

ings, second order models which utilize a mass and momentum balance equation have

been proposed.[40]-[43]. Second order models are capable of describing traffic oscillations

and support unstable flow regimes but still possess inherent limitations. As outlined in

[46] some of the limitations of second order models are their ability to produce back-

ward traveling vehicles, the tedious and unstable numerical algorithms needed to solve

these models and their ability to produce characteristic speeds that exceed the speed

of the traveling wave, suggesting that perturbations propagate faster than traffic.Lastly,

Helbing type models, like the nonlocal GKT model [33] are third order equations that

which appends an equation for the variance of the velocity. Helbing type models have

been shown to overcome many of the previously mentioned theoretical discrepancies in

addition to having much success in reconstructing spatiotemporal patterns observed on

German highways [47]. Additionally, the development of new integration methods has
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also rendered them capable of real-time implementation. Unfortunately, even the most

promising macroscopic models often times are tedious to solve numerically, possess incon-

sistencies with observed phenomena, and lack a parameter-free implementation. Lastly,

despite being the easiest models to calibrate, a general consensus on a single correct

macroscopic model is not yet clear.

1.2 Empirical Observations of Traffic

Over the years, there has been a large effort put towards collecting empirical highway

data via either traffic cameras or magnetic sensors placed along the highway. Empirical

highway data has allowed traffic scientists to identify some common spatiotemporal pat-

terns that arise in traffic dynamics [45]-[49] [59]-[62]. Using the non-local GKT model

the works of [47] identify five different spatiotemporal patterns possible in a traffic sys-

tem. Their findings are verified by studying 160 days of traffic data collected over a

30 kilometer stretch of the German A5 highway near Frankfurt. The different patterns

identified are the pinned localized cluster (PLC), moving localized cluster (MLC), stop

and go waves (SGW), oscillating congested traffic (OCT), and homogeneous congested

traffic(HCT). The SGW and the OCT according to [47] are almost indistinguishable

without the proper data filtering techniques. In this work we will refer to both as simply

traffic oscillations or waves. Among the various types of patterns that arise, traffic waves

or oscillations are perhaps one of the most studied traffic patterns. Research efforts have

primarily focused on extracting characteristic properties of these traffic waves from data.

The properties of interest are the period of oscillation, speed of propagation, wavelength

and amplitude. According to [34] [53] [54] there is no single characteristic period of oscil-

lation found in traffic, but that typically observed periods are in the 4-20 minute range.

These oscillations are also known to propagate with an average velocity of −9± 3 miles
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per hour (MPH) according to [51] [56]-[59]. It is also found that these waves typically

maintain their amplitude profile and propagate without spreading [60] [61].The exact

cause of traffic waves is still an open topic although, empirical research has led to the

proposal of several possible mechanisms. The works of [49] [63] provide evidence showing

that lane changing maneuvers are key in the development of traffic oscillations. Addition-

ally, aggressive driving behavior [66], a bi-stability mechanism [64],merging and diverging

effects [62] and the boomerang effect [47] are also proposed mechanisms or contributors

of traffic oscillations. Localized or pinned traffic phenomenon, corresponding to the PLC

state, are typically found near bottlenecks like on/off ramps and do not propagate in

space. The MLC however, does propagate in space and corresponds to what we refer to

as a traveling traffic jam.

Typically, the noisy and spiky nature of traffic data makes it very difficult to extract

patterns or characteristics of traffic waves from raw data alone [69] [47]. This problem

has led scientists to propose several different methods for extracting the periods of oscil-

lation. Such methods include the Mauch method [48] [71]-[73], statistical based methods

and even simple visual inspection of data. Many of these methods lack objectivity in that

they don’t offer an objective way of extracting periods and since they also depend on

parameters they also lack a sense of universality. By universality we mean that the pro-

posed method or model should be capable of being readily applied to different highways,

across the world, without the need for extensive calibration. More importantly, it should

be robust in that the method should consistently yield accurate results when applied

internationally. The first attempts at empirically characterizing the country-specific dif-

ferences of traffic waves can be found in [68], where traffic data from the United States,

United Kingdom, and Germany were empirically analyzed and compared. This interna-

tional comparison was motivated by the fact that different countries have different rules

for infrastructure, vehicle class mix, driving rules and even driver behavior. The findings
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of [68] indeed confirm key differences in the periods of oscillation and speeds of propaga-

tion between the three countries. It is further stated how this country-specific dynamics

of traffic will require the re-calibration of current models or the development of new and

different models. This dilemma can only lead to at best a country-specific and at worst

location-specific modeling of traffic. The goal of this paper is to present an efficient and

robust data-driven method of accurately identifying, reconstructing, analyzing and pre-

dicting spatiotemporal traffic patterns without the need of a model. The outline of the

paper is as follows. In section two we give a general description of the Koopman operator

theory framework of dynamical systems and the details of the data-driven algorithms,

in section three we give a description of the data sets studied, in sections four and five

we demonstrate the effectiveness of our methods by applying them to the NGSIM and

Caltrans PEMS data set.
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Chapter 2

Background:Koopman Mode
Decomposition

The Koopman operator is an infinite-dimensional, linear operator that acts on a Hilbert

space of functions called the space of observables [87][88]. The spectrum of this linear

operator (eigenvalues and eigenfunctions) is capable of capturing key dynamic charac-

teristics of a linear or nonlinear dynamical system. Additionally, the Koopman modes,

corresponding to a particular choice of observable function, allow one to reconstruct

and predict the observed quantity. Together the triplet of Koopman eigenvalues, eigen-

functions, and modes yield the Koopman mode decomposition (KMD) of an arbitrary

observable [89],[90]. The most appealing feature of the KMD is its ability to be readily

applied to real-world situations via the data-driven algorithms that have been developed

in [89],[90] and [105]-[112]. These algorithms utilize data or measurements to approximate

the Koopman mode decomposition of the system. With the KMD in hand, one is able to

identify any stable or unstable modes present within the dynamics. This methodology

has already seen a wide range of success in many different areas like fluids, neuroscience,

energy, chaotic systems, control, video imaging, climate and many other complex nonlin-

ear systems [92]-[96]. In this section we will briefly outline further details of the Koopman

operator theory framework and its algorithmic implementation, and refer the reader to
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the references listed above for a more rigorous treatment of the theory.

2.1 Dynamical Systems and KMD

In what follows we consider a continuous time dynamical system whose state space

(phase space) evolves on an N-dimensional smooth manifold M. The dynamical system

is assumed to have an invertible flow map φt :M 7→M, t ∈ R. Therefore, for any initial

condition a0 ∈ M its evolution under the dynamics at some later time t is given by

at = φt(a0).

Let H be a Hilbert space of functions and let U t be the Koopman family of operators

which compose the functions in H with the flow φt. Hence, for any function f ∈ H and

time t the action of the Koopman operator on f can be expressed as follows.

U tf(a0) = f ◦ φt(a0) = f(at) (2.1)

We now move forward to discuss some of the spectral properties of the Koopman

operator. First, we note that since the Koopman operator is infinite-dimensional, its

spectrum may contain a continuous spectrum in addition to the traditional point spec-

trum of finite-dimensional operators. Assuming that the dynamical system contains only

a point spectrum we have that for any ψ ∈ H that is an eigenfunction of U t, at eigenvalue

exp(λt) for λ ∈ C, its evolution in time is as follows.

U tψ(a0) = ψ ◦ φt(a0) = exp(λt)ψ(a0) (2.2)

Next, we say that a subspace A ⊂ H is invariant to the dynamics if for any f ∈ A, its im-

age under the flow, Utf ∈ A for any time t. In cases, where the Koopman eigenfunctions

or a subset of them, form a basis for an invariant subspace of H we can represent any

8



Background:Koopman Mode Decomposition Chapter 2

function in that invariant subspace with the basis of eigenfunctions. Formally speaking,

let Ψ = {ψi}, i ∈ N be a set of Koopman eigenfunctions, λ = {λi} the set of associated

eigenvalues and let EΨ = span(Ψ) be the Koopman eigenspace associated with the basis

of eigenfunctions. Then the Koopman mode decomposition of any observable f ∈ A is

given by the following expression.[89],[90]

U tf(a0) = f ◦ φt(a0) =
∞∑
i=1

ψi(a0)exp(λit)vi (2.3)

where, vi = Pψi
(f) is the i-th component of the projection of f onto EΨ and is called a

Koopman mode. Although, together the triplet (Ψ,Λ,v) yield the KMD of an observable,

it is important to note that (Ψ,Λ) are intrinsic to the dynamical system where as the

Koopman modes vi are not. Namely, they depend on the choice of f and will change

according to that choice.

We now discuss how Koopman modes arise in practice. Let m be the number of

data snapshots acquired, let xi ∈ Rk, i ∈ {1, . . . ,m} be a single data vector at time i

and let X ∈ Mkxm be the k ×m data matrix {x1, . . . , xm}. In practice, by sampling a

continuous time dynamical system at some rate T one obtains a discrete time observation

of the system. Formally speaking, we have an observation mapping, F :M 7→ Rk where

F = (f1, . . . , fk) is assumed to be an embedding of M into k-dimensional data space.

Hence, for every data vector xi, there exists a point ai ∈M such that F (ai) = xi for all i

and ai = φi(a1) . We note that F is not unique in any way, and in the case of traffic any

observable quantity like velocity, density or flow corresponds to a different observation

map FV el, FDens, or FFlow. Now assuming there exists an invariant subspace A ⊂ H

and that the components of F are in A, we can obtain an expression for our observed

data points by taking the Koopman mode decomposition of F component-wise as shown
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below.

xt = F (at) = U tF (a1) =
k∑
i=1

Pψi
(F )ψiexp(λit) (2.4)

Where k is the number of linearly independent eigenfunctions (possibly infinite) needed

to span A. The Pψi
(F ) are the Koopman modes of the system that were introduced

earlier.

2.2 Koopman Mode Decomposition: Algorithms

As stated previously, several algorithms for approximating the eigenfunctions, eigen-

values, and modes of the Koopman operator have been developed. In this paper, the

results were obtained by utilizing the DMD algorithm developed in [99]. We briefly out-

line the details of the algorithm and its implementation to traffic data. We begin by

taking the data matrix X, which contains m snapshots xi ∈ Rkin time.

X =

[
x1 x2 . . . xm

]
(2.5)

Then forming the two time-shifted matrices X1 and X2 as follows

X1 =

[
x1 x2 . . . xm−1

]
, (2.6a)

X2 =

[
x2 x3 . . . xm

]
(2.6b)

Now, what the DMD seeks to approximate is a k by k dimensional representation of the

Koopman operator which satisfies the following relation shown below.

Xk+1 = KXk + r (2.7)

10
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Here K is a finite matrix representation of the Koopman operator, r is a residual error

term due to the fact that we only have a finite-dimensional approximation of a possibly

infinite expansion. On the other hand, in the case where a finite-dimensional invariant

subspace of H does exist the dimension of the invariant subspace may actually be less

than k. Utilizing (2.7) to rewrite (2.6b) as:

X2 =


| | . . . |

Kx1 Kx2 . . . Kxm−1

| | . . . |

+ r = KX1 + r (2.8)

We then proceed by dropping the residual term and utilizing the singular value decom-

position (SVD) of X1 = UΣV ∗ to rearrange (2.8) as follows:

X2 ≈ KX1 = KUΣV ∗ (2.9)

By rearranging (2.9) we obtain a matrix S that is related to K via a similarity transfor-

mation as shown below.

K v S = U∗X2V Σ−1 (2.10)

Since K and S are related their eigenvalues and eigenvectors are the same up to a

similarity transformation. Hence if (λk, wk) are an eigenpair of S then (λk, v = Uwk) is

an eigen-pair of K. However, since (2.9) is the discrete time system associated to the

original continuous time system, its eigenvalues {λk} lie on the unit circle.Therefore the

continuous time eigenvalues are given by ωk = ln(λk)
T

and the continuous time evolution

of the observable xkmd(t) is given by the following expression.

xkmd(t) =
k∑
i=1

b0viexp(ωit) = V diag(exp(ωt))b0, (2.11)

11
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Where V = {v1, . . . , vk} is a matrix whose columns are the eigenvectors vi and b0 is

an initial amplitude coefficient associated with the initial data snapshot x1, b0 = V †x1.

Here † represents the Moore-Penrose pseudoinversoe of a matrix. Lastly, diag(exp(ωt)

represents a diagonal matrix whose elements are exp(ωit). Next, one can evolve equation

(2.11) for m time steps in order to reconstruct the observed data or by evolving past m

time steps one can begin to predict the future state of the system. In this paper, we have

applied this technique to traffic data and utilized the obtained eigenvalues and modes to

identify, reconstruct, and predict spatiotemporal patterns that occur within the data.

12



Chapter 3

Traffic Data

In this section, we present the details of the Next Generation Simulation (NGSIM) data

set collected by the Federal Highway Administration (FHA) and the Performance Mea-

surement System (PeMs) data set collected by the California Department of Transporta-

tion (Caltrans). Both data sets are publicly available at https://ops.fhwa.dot.gov/

trafficanalysistools/ngsim.htm and http://pems.dot.ca.gov/.

3.1 NGSIM Data

The NGSIM data set provides microscopic vehicle trajectory data for a 2100ft and

1640ft segment of the US 101 and US 80 highways respectively. Data for the US 101

highway was sampled at a frequency of 10Hz for 45 minutes between the hours of 7:50am-

8:35am. A single on-ramp and off-ramp is present at approximately the 590ft and 1280ft

locations. Data for the US 80 was sampled at the same rate but first for 15 minutes

between the hours of 4:00pm-4:15pm and again for thirty minutes between the hours of

5:00pm-5:30pm. Only an on-ramp at approximately 400ft is present within the studied

section for the US 80 highway. The US 101 consists of five main lanes and one auxiliary

lane between the ramps whereas the US 80 consisted of six mainlines including a high

occupancy lane.

13
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Traffic Data Chapter 3

Since we are interested in predicting and identifying spatiotemporal patterns we must

construct macroscopic data from our trajectory data. To do this we implement the

same binning methods utilized in [75] and developed in [74] to divide the spatiotem-

poral domain [0, l]×[0, t] into individual bins by bini,j = ([i∆x, (i + 1)∆x] × [j∆t, (j +

1)∆t])i∈(1...nx),j∈(1...nt). Where nx = l
∆x

and nt = t
∆t

are the number of bins in space and

time.

Figure 3.1: Adapted from Piccoli et al, Second-order models and traffic data from mobile

sensors,. All copyright and ownership belongs to [74]

The binning formulas below were implemented with ∆x = 20 ft/bin and ∆t = 5

sec/bin. Later, in section 4 we address the sensitivity of our methods to this the choice

of aggregation window. The quantities of interest (velocity, density or flow) are assumed

constant in each bin and that trajectories leave a trace over these space-time bins.

V̂i,j = Meantrace∈bini,j
(V (trace)) (3.1)

ρ̂i,j =
Card({trace|trace ∈ bini,j})

Numlanes ∆x∆t Sampling Rate
(3.2)

Q̂i,j = V̂ ρ̂ (3.3)

14
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Where Card is the cardinality of a set.

As mentioned, the data collected for the US 101 highway was taken for a forty-five

minute interval during 7:50am to 8:35am however, the data for the US 80 highway was

collected for a fifteen minute interval during 4:00pm to 4:15pm and again for thirty

minutes during 5:00 pm to 5:30 pm this leads to the construction of three separate data

sets. Figures 3.2a-3.2c show a contour plot of the constructed velocity data sets for both

highways. Where position along the highway is along the vertical axis and time runs

along the horizontal axis. Plots of the constructed density and flow quantities can be

referenced in the appendix.

15
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(a) US 101 Highway (b) US 80 Highway 4:00 pm

(c) US 80 Highway 5:00 pm

Figure 3.2: Velocity Contour Plot

Figures 3.2a-3.2c all exhibit these blue stripes of low velocities corresponding to trav-

eling traffic jams. These features seem to propagate with constant speed and do not

decay in amplitude or spread in waveform as they pass the on/off ramps (680ft and 1280

ft). Figure 3.2a demonstrates a noticeable region of high-speed, free-flowing traffic which

occurs at the beginning of time (first 15 minutes) near then end of the highway section

(1260ft-2100ft). This pocket of high-flowing traffic is present for about the first 12-15

minutes until the first traffic jam begins to propagate into our area of study. Also, during

these first 15 minutes, the 0-1260 feet section experiences a series of small amplitude os-

16
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cillations and can be seen as the group of faint light blue stripes that precede the jam. It

is apparent how binning of the NGSIM’s detailed trajectory data leads to a construction

of macroscopic data rich with many different spatiotemporal features. For this reason,

we utilize the NGSIM data to primarily study the effects of on/off-ramps by identifying

key coherent spatiotemporal patterns.

3.2 PeMS Data

PeMS is an Archived Data User Service (ADUS) that provides over ten years of

California highway traffic data. The state of California traffic network is divided into 11

districts in PeMS. The system covers more than 30,000 miles in directional distance and

utilizes more than 6,800 controllers, 41,000 detectors, and 16,000 traffic census stations.

The data is collected in real-time and five-minute aggregates are made publicly available

through the Caltrans website. In this work, we study daily, weekly and monthly traffic

data of several different highways throughout California. Figure 3.3a below is a contour

plot of one month’s data for the US interstate 5 highway. The data spans 400 miles in the

northbound direction from the US-Mexico border to the states capital city of Sacramento.

This section of the interstate 5 highway runs through, in spatial order, the major cities

of San Diego, Orange County, Los Angeles, and Sacramento. Figure 5.4a is a contour

plot of one week’s data for the US interstate 10 highway, the data runs over 100 miles in

the eastbound direction from Los Angeles to Beaumont.

17
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(a) Velocity Data for March 2017 of the US 5
Interstate Highway from the US-Mexico border
to Sacramento

(b) Velocity Data for 03/06/17-03/12/17 of the
US 10 Interstate Highway from the City of
Santa Monica to Beaumont

Figure 3.3: Caltrans PeMs Data for the US I-5N and I-10E

The abundant historical data available and wide span of California’s highway sys-

tem renders the PeMS data set best for testing our forecasting schemes. Furthermore,

the PeMS data is already provided in macroscopic terms and eliminates the need to

bin trajectory data. Lastly, the PeMS data set is California’s current system of perfor-

mance measurement and therefore offers a more realistic setting for testing out forecasting

schemes.
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Chapter 4

Analysis of Traffic Data

In this section, we focus on demonstrating the KMD’s success at accurately extracting

and reconstructing spatiotemporal traffic patterns. We will first extract and identify

dynamically important spatiotemporal patterns by analyzing the Koopman modes. Then

we will reconstruct our data from the time evolution of the Koopman modes and analyze

any discrepancies between the raw and reconstructed data.

4.1 Koopman Mode Analysis of NGSIM Data

Before proceeding, the issue of the aggregation window used in binning the data is

addressed. We find that our methods can be sensitive to the choices of aggregation

window ∆x and ∆t. In that, aggregation windows that lead to fat (more columns than

rows) matrices often cause the matrix manipulations outlined in section 2 to be ill-

conditioned and unstable results are obtained. This dilemma is addressed by utilizing

the delay-coordinate embedding established by the Taken’s embedding theorem [76].

Takens and others [79]-[81] have shown that under certain assumptions the attractor of

the original dynamical system generating the data is recovered via this embedding. The

relation below demonstrates how l ∈ Z+ time delays are obtained from the original m

time snapshots. Now, since every original data vector xi was in Rk our newly embedded
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data vectors are in Rlk. This allows us to obtain a taller matrix(more rows) than the

original data matrix, at the expense of losing l time snapshots(columns).

X̂delay =



x1 x2 . . . xm−l

x2 x3 . . . xm−l+1

...
...

...
...

xl xl+1 . . . xm


(4.1)

Note, how in this situation we are forced to aggregate the NGSIM data due to its La-

grangian nature. However, in practice one can encounter lengthy (weekly, monthly or

yearly) data of only a few number of available sensors which will lead to a similar dilemma

of a fat data matrix. This is indeed the case for the Caltrans PeMs data which we will

utilize to test our forecasting schemes.

The method of correctly distinguishing dynamically important modes from numeri-

cal rubbish or noise is still an open problem within the Koopman operator community

[111],[113]-[116]. In the context of traffic, we are guided by the fact that traffic oscilla-

tions are typically characterized by their timescale of oscillation (period). Therefore, in

this work, we use the relations shown below to assign a timescale and growth/decay rate

to each mode, and then sort them according to their these timescales.

Timescale(ψi) =
2π

Imag(ωi)
(4.2)

Rate(ψi) = exp(Real(ωi)) (4.3)

In addition to analyzing the velocity, flow and density alone we also compute the KMD of
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these data sets simultaneously, by stacking our data sets into one tall matrix as follows.

X̂V FD =


X̂V elocity

X̂Flow

X̂Density

 (4.4)

As mentioned in section two, the eigenvalues of the Koopman operator are inherent

to the dynamics and do not depend on the choice of observable. Thus, we would expect

to obtain similar timescales across the different choices of observables. Figure 4.1a is a

stem plot of the first thirty or so timescales obtained for the US 101 highway. We can

see how the timescales across different choices of observable cluster near each other as

we would expect. However, it is still a bit difficult to say exactly which timescales or

period we have identified. Now, if we first take the average of our data and subtract it

out before embedding and decomposing, we can obtain much more agreement between

the timescales, as shown in figure 4.1b. This mean subtraction of the data is motivated

by the fact that the first continuous time eigenvalue of the Koopman operator is always

equal to one, with zero imaginary part, and corresponds to the time averages of the data.

Now since the goal of this section is to identify oscillations we seek to exclude or suppress

this time average mode from our analysis since it carries no oscillatory information.

We do this by averaging each row of our data matrix and subtracting that value from

the corresponding row. In what follows the US 101 velocities and densities were mean

subtracted before embedding using 7 delays.
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(a) Timescales Across Observables (b) Timescale Across Observables (No Avg)

Figure 4.1: US 101 Highway

In order to further demonstrate why we have chosen to subtract out our averages, we

have plotted the first three modes with averages in figure 4.2a-4.2c. We can see how the

first mode, figure 4.2a, corresponds to the time average. The second mode, figure 4.2b,

seems to correspond to the early post off-ramp drop in velocities. However, the mode

lacks an oscillatory form and has a purely real eigenvalue which indicates that this mode

should correspond to the time average when evidently it does. The third mode, figure

4.2c, begins to look coherent but has some misshaped structure. By this, we mean that

in the 0ft-1260ft section of the mode is slightly offset from the 1260ft to 2100ft section.
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(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 4.2: First Three Modes With Averages

Now if we first subtract our averages before decomposing, we obtain Figures 4.3a-

4.3b. It is clear from figure 4.3 that the first three modes all have complex eigenvalues

and do not correspond to the time averages. Furthermore, the second and third modes

are no longer misshaped and have physical significance.
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(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 4.3: First Three Modes Without Averages (on/off ramp at 680ft/1280ft)

Evidently, modes 1-3 all correspond to the initial transition of high to low velocities.

These high period modes seem spatially restricted to the post off-ramp section of the

highway (1280ft-2100ft). We can study the phase-locked properties of these modes by

superimposing them and observing the construction and destruction in amplitude that

takes place. Figure 4.4 contains plots of different superpositions between modes 1 through

3. In this figure, we can see how modes 1 and 2 superimpose constructively, figure 4.4a.

However, modes 2 and 3 seem to be slightly out of phase everywhere, except the initial

peak, figure 4.4b. Lastly, figure 4.4c illustrates the superposition of the all three modes
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(a) Modes 1-2 (b) Modes 2-3

(c) Modes 1-3

Figure 4.4: Different Superpositions of Modes 1-3

which seems to better and better capture the high to low transition of velocities that

occurs near the 15 minute mark.

Shown below in figures 4.5a and 4.5b is a plot of a top (speed vs time) and side

(position vs time) view of the superposition of modes 2 and 3 previously shown in figure

4.4b. From figure 4.5a we can see how these modes are capturing not only the initial

drop in velocities but also the propagating jams that occur near the 15 and 40 minute

marks of the original data. Figures 4.5b and 4.5c show how the speed of propagation of

these jams are not constant but rather change when propagating past the ramp section
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(a) Mode 2-3 side View (b) Mode 2-3 Top View

(c) Mode 2-4 Top View

Figure 4.5: Different Superpositions of Modes 2-4

of the highway (680ft-1280 ft).

The first three modes were dominant in the post ramp section of the highway however,

the fourth mode seems to be more spatially extended over the entire section of highway.

It has a peak in amplitude within the middle section of the highway (840ft-1260ft) and

seems to display a slight increase in amplitude between the off-ramp and mid-ramp

(2100ft-1260ft) and a decrease in amplitude between the mid-ramp and off-ramp (700ft-

0ft). This is evidence of the pumping effect referred to in [68] and [48] however, there

are other modes that better display this effect. Figure 4.6b better demonstrates the mid-
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(a) Mode 4 (b) Mode 4 Top

(c) Mode 4 Side

Figure 4.6: Mode 4

ramp peak in amplitude of mode 4. Lastly, the fourth mode is plotted on its side view

to demonstrate the exponential temporal evolution of a mode.

Modes 5-7, shown below, are again spatially extended modes however, they do not de-

cay in time like the fourth mode. The waves observed in modes 5-7 propagate through the

highway with unperturbed speed or waveform. Their near-constant speed of propagation

and stable spatial form indicates that these modes correspond to backward propagating

jams.
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(a) Mode 5 (b) Mode 6

(c) Mode 7

Figure 4.7: Globally Extended Modes

Taking superpositions of the previously shown modes better shows which waves are

phase-locked and those which are not. Figures 4.8a and 4.8b show how modes 4 and 5

and modes 6 and 7 superimpose constructively with each other. Lastly, figure 4.8c is a

superposition of modes 4-7 which has both constructive and destructive regions.
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(a) Mode 4-5 (b) Mode 6-7

(c) Mode 4-7

Figure 4.8: Different Superpositions of Modes 4-7

Mode 8, shown below, exhibits a drop in wave amplitude when propagating past the

off-ramp and again when passing the on-ramp. This effect is contrary to the proposed

pumping effect where first an increase then a decrease in amplitude is expected. Evidence

for the pumping effect is found in mode 9 where where a noticeable spike in amplitude is

present between the ramps. Mode 10 is similar to modes 1-3 in that it is predominantly

clustered in the post off-ramp section of the highway (1280ft-2100ft).
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(a) Mode 8 (b) Pumping Mode

(c) Mode 10

Figure 4.9: Globally Extended Modes

4.2 Koopman Mode Analysis of NGSIM Lane Data

A similar mode analysis can be performed lane by lane in order to investigate any lane

changing or lateral wave-like dynamics. After binning the trajectory density data lane by

lane the data matrices are stacked into one tall matrix and decomposed simultaneously.

The modes are then evolved in time and plotted side by side according to their lane. Since

the ramp density is usually much lower than the highway density the ramp density has

30



Analysis of Traffic Data Chapter 4

been multiplied by 5 to better display the income and outflow. Our modes are now two-

dimensional in space and therefore are best visualized as a movie in time. Plotted below

in figure 4.10-4.18 are snapshots of these movie modes. The first mode, again, seems to

correspond to the general transition from low to high density in the post-ramp section

of the highway. This is best seen by comparing figures 4.10c-4.10f however, it is also

apparent that not all the lanes are affected the same. In this first mode, the slow lanes

(4 and 5), are heavily affected throughout the entire period of the mode and throughout

the entire section of study. On the other hand, lane 1 farthest away from the ramp seems

mostly unaffected in the on to mid-ramp section of the highway (0ft-1240ft). Lane 3

seems to experience a traveling jam which is best seen by comparing figures 4.10a-4.18.

A laterally propagating pattern appears between figures 4.10f-4.10h, where the incoming

on-ramp traffic is seen to propagate from the on-ramp over to lane 5 and then over to

lane 4. This is intuitive and corresponds to the fact that oncoming traffic must merge

into the highway from the ramp in order to continue traveling on the highway. Likewise,

although a bit more elusive, it is possible to see in figure 4.10g and 4.10h a transition of

vehicles from lane 3 to lane 5 and into the ramp section. This corresponds to the fewer

set of vehicles that must transition into the off-ramp in order to exit the highway.
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(a) Time=.17 Seconds (b) Time=5.3 Minutes (c) Time=10.6 Minutes

(d) Time=15.56 Minutes (e) Time=21.03 Minutes (f) Time= 26.16 Minutes

(g) Time=31.29 Minutes (h) Time=36.42 Minutes (i) Time= 41.55 Minutes

Figure 4.10: 1st Koopman Mode [Period=42.73 Minutes]

The next Koopman Mode, shown below, appears to be a half period harmonic of

the first. Indeed, their spatiotemporal characteristics are similar in that there is an

overall transition of low to high densities. Again, the lane changing behavior appears

within this mode in the exact way as before. Figures 4.11b and 4.11g display how the

merging vehicles lane change from lane 5 to lane 2 and how diverging vehicles lane change

from lane 3 to lane 5. An interesting feature found in figures 4.11f-4.11h is evidence for

how these lane changing maneuvers can be catalysts for backward traveling jams. For

32



Analysis of Traffic Data Chapter 4

example, in figure 4.11f there is an apparent lane changing of vehicles into lane 2 within

the 1260ft-2100ft section. This lane changing maneuvering causes a jam to form and

propagate backward all the way into the 840ft mark along lane 2 best seen in figures

4.11f-4.11h. Lastly, it is quite clear how the on-ramp densities seem to be out of phase

with the highway densities. By this we mean that when densities appear to be high on

the highway there is little to no inflow from the ramp and likewise there is an apparent

inflow of traffic only when the density along the highway is low again. We believe this

indicates how the inflow of merging traffic precedes the spike in highway density and

likewise, a drop in density occurs when there are no more incoming vehicles.
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(a) Time=.17 Seconds (b) Time=2.56 Minutes (c) Time=5.13 Minutes

(d) Time=7.52 Minutes (e) Time=10.08 Minutes (f) Time= 12.48 Minutes

(g) Time=15.04 Minutes (h) Time=17.61 Minutes (i) Time= 20.35 Minutes

Figure 4.11: 2nd Koopman Mode [Period=21.82 Minutes]

A distinctive feature of the third mode is the activity within the on/off-ramp section

best seen in figures 4.12b-4.12c. Figure 4.12b shows a cluster of vehicles at the off-

ramp location exiting the highway which continues for the next few minutes until the

highway exiting subdues and highway entering begins in figure 4.12d. This inflow remains

until about figure 4.12f at which point lane changing into lanes 5 and 4 occurs near the

600ft and 850 ft mark. However, the clusters in lanes 5 and 4 also cause a backward

propagating traffic jam to form in those lanes, which is best seen in figures 4.12f and
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4.12g. This downstream traveling cluster of vehicles continues until about the 1800 ft

mark where lane changing into lanes 3 and 2 occurs, best seen in figures 4.12f and 4.12g.

Similarly, these lane changing maneuvers create a backward propagating jam in lane 2,

figures 4.12h-4.12i. It is interesting to note how the incoming traffic begins to diminish

starting in figure 4.12f and continues to do so until reaching a minimum at figure 4.12i.

This drop in incoming vehicles persists into figures4.12a and 4.12b and is amplified in

figure 4.12c when highway exiting is at its peak again. This is similar to the previous

mode in where we observed a noticeable phase difference between the ramp and highway

densities.
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(a) Time=.17 Seconds (b) Time=1.53 Minutes (c) Time=3.07 Minutes

(d) Time=4.61 Minutes (e) Time=6.15 Minutes (f) Time= 7.69 Minutes

(g) Time=9.06 Minutes (h) Time=10.6 Minutes (i) Time= 13.16 Minutes

Figure 4.12: 3rd Koopman Mode [Period=14.33 Minutes]

The fourth mode contains a backward traveling jam that eventually displaces laterally

and continues to propagate in the adjacent lanes. The process begins in figure 4.13i and

4.13a with the apparent inflow of merging traffic from the on-ramp which propagates

into lanes 5 and 4 shown in figures 4.13b and 4.13c. The lane changing causes a traveling

jam in lane 2 which propagates backward until momentarily halting at the 1000ft mark,

shown in figure 4.13e, and continuing in the adjacent lanes 3 and 2 shown in figures

4.13f-4.13h. Overall, the fourth mode seems to capture the dynamics of traveling traffic
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(a) Time=.17 Seconds (b) Time=1.34 Minutes (c) Time=2.67 Minutes

(d) Time=4.01 Minutes (e) Time=5.35 Minutes (f) Time= 6.69 Minutes

(g) Time=8.02 Minutes (h) Time=9.36 Minutes (i) Time= 10.7 Minutes

Figure 4.13: 4th Koopman Mode [Period=10.7 Minutes]

jam waves that have combined longitudinal and lateral travel. Traffic jams appearing in

adjacent lanes have commonly been observed during empirical studies??.

Mode 5 is similar to 4 in that it travels longitudinally and laterally over to adjacent

lanes when passing the ramp section. Therefore we, skip to Mode 6 shown below in figure

4.14. Figures 4.14c-4.14e illustrate a backward propagating jam in lanes 1 and 2 make

its way into our field of observation. The jam stops momentarily near the 840 ft mark,

moves over laterally into lanes 2 and 3 and then continues propagating down lanes 2 and

1, best seen in figures 4.14f-4.14h.
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(a) Time=.17 Seconds (b) Time=.85 Minutes (c) Time=1.71 Minutes

(d) Time=2.56 Minutes (e) Time=3.42 Minutes (f) Time=4.44 Minutes

(g) Time=5.3 Minutes (h) Time=6.15 Minutes (i) Time= 7.01 Minutes

Figure 4.14: 6th Koopman Mode [Period=7.12 Minutes]

Mode 7 is shown below in figure 4.15 and corresponds to a heavy highway wide traffic

jam that propagates through all lanes. It is interesting to see how the jam not only

propagates backward but also laterally towards the off-ramp, which gives it that apparent

north-west to south-east direction of travel. This mode can be seen to be affecting all the

lanes in the same way. The wave in this mode travels past the on/off-ramps completely

unperturbed and very well corresponds the modes found earlier in figure 4.9
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(a) Time=.17 Seconds (b) Time=.68 Minutes (c) Time=1.53 Minutes

(d) Time=2.23 Minutes (e) Time=2.90 Minutes (f) Time= 3.76 Minutes

(g) Time=4.46 Minutes (h) Time=5.13 Minutes (i) Time= 5.8 Minutes

Figure 4.15: 7th Koopman Mode [Period=6 Minutes]

Mode 8 seems to capture the drivers exiting the highway when faced with near stopped

traffic conditions. This phenomenon can best be seen by starting in figure 4.16d where

traffic jams begin to form near the post-ramp section in lanes 1, 2 and 3 and then form

in lanes 4 and 5 in figure 4.16e. By figure 4.16f the jams have propagated past the off-

ramp into the mid-section. Figures 4.15 and 4.16 show how the jams in lanes 1-3 have

propagated by, however, the jams in lanes 4 and 5 seem to stop and form a localized

cluster near the 840 ft mark. The clusters in lanes 4 and 5 cause a movement of vehicles
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(a) Time=.17 Seconds (b) Time=.68 Minutes (c) Time=1.54 Minutes

(d) Time=2.22 Minutes (e) Time=2.91 Minutes (f) Time=3.76 Minutes

(g) Time=4.45 Minutes (h) Time=5.13 Minutes (i) Time=5.64 Minutes

Figure 4.16: 8th Koopman Mode [Period=5.27 Minutes]

into the ramp best seen in figure 4.16i, after which the vehicles continue down the ramp

to exit, best seen in figures 4.16a-4.16b.

An interesting feature found in the backward propagating modes is the zig-zag motion

they tend to exhibit when passing by the mid-ramp section. Mode 10, shown below, in

figure 4.17 very well displays a lateral the displacement of a traveling jam from the slow-

moving lanes into the fast-moving lanes. The wave propagates shortly, until jumping

back into the slow moving lanes. This is best seen by starting in figures 4.17g and 4.17h

where jams begin to form within the 1260ft-2100ft mark in lanes 3-5. By figure 4.17i those
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jams have propagated laterally over to now occupy lanes 1-4. Next, in figures 4.17a and

4.17b the jams in lanes 1 and 2 continue to propagate but the lane 3 jam seems to halt

and cluster around the 0-420 ft mark. This causes a cluster of vehicles to again occupy

lanes 3-5 best seen in figure 4.17c. This zig-zag like effect could well be responsible for

the change in speeds of propagation observed earlier in figures 4.5b-4.5c.

(a) Time=.17 Seconds (b) Time=.51 Minutes (c) Time=1.02 Minutes

(d) Time=1.53 Minutes (e) Time=2.22 Minutes (f) Time= 2.7 Minutes

(g) Time=3.24 Minutes (h) Time=3.76 Minutes (i) Time= 4.2 Minutes

Figure 4.17: 10th Koopman Mode [Period=4.27 Minutes]

Next we plot the 14th mode which is much like the 7th mode in that we see backward

traveling traffic jams that span the entire highway. The interesting fact here is that the
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14th mode has a period of 3.1 minutes which is close to exactly half that of the 7th

mode which has a period of 6 minutes. Figure 4.18 illustrates the highway wide wave-like

dynamics of mode 14.

(a) Time=.17 Seconds (b) Time=.34 Minutes (c) Time=.68 Minutes

(d) Time=1.19 Minutes (e) Time=1.53 Minutes (f) Time= 1.88 Minutes

(g) Time=2.23 Minutes (h) Time=2.73 Minutes (i) Time= 3.07 Minutes

Figure 4.18: 14th Koopman Mode [Period=3.1 Minutes]

By analyzing our modes we seek to find evidence for or against past research findings.

It is mentioned in [68] how previous research has aimed at determining the effects of

bottlenecks on the amplitudes of traffic waves. The works of [48] find that on-ramps

do have an effect on the amplitudes of oscillation through what is called the ”pumping”
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effect. Specifically, it was shown how amplitudes of oscillation decrease when propagating

past on-ramps. Similarly, it assumed that off-ramps would would cause an increase

in the amplitude of oscillation but no validation for this is given in[48][68]. We find

evidence of such phenomenon in mode 9 and evidence for the exact opposite in mode

eight and ten. Figures 4.9a and 4.9c show a drop in amplitude when passing from the off-

ramp to the mid-ramp section and another drop when passing into the on-ramp section.

Additionally, the works of [83] have shown a relation between the periods of oscillation

and the amplitudes, in where they state how long periods are usually accompanied by

large amplitudes and short period oscillations usually have low amplitudes. We find

evidence for this trend, shown below in figure 4.19a where the max amplitude of each

mode is plotted against its period. Similarly, the car-following model proposed in [84]

indicates how low frequency oscillations should grow in amplitude as they propagate

through traffic and that high frequency oscillations will decay in time. Looking back to

figures 4.3-4.9, one can see how high period (low-frequency) modes tend to have growth

rates and those with higher frequencies have decay rates. Figure 4.19b below is evidence

for such a phenomenon where the growth/decay rates have been plotted against the

period.

(a) US 101 Highway: Average Amplitude vs
Period

(b) US 101 Highway: Growth/Decay Rate vs
Period
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4.3 Reconstruction of NGSIM Data

We now apply 5 delays for the US 101 and US 80 5pm highways, 3 delays for the

US 80 4pm highway and then reconstruct our data by evolving the all the modes for

an equivalent time of forty-five, fifteen and thirty minutes. Figure 4.20 below shows the

KMD reconstruction of the US 101 and US 80 velocity data sets. Plots of the density

and flow reconstruction, for both highways, can be referenced in the appendix.

(a) US 101 Highway (b) US 80 Highway 4:00 pm

(c) US 80 Highway 5:00 pm

Figure 4.20: KMD Velocity Reconstruction
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We emphasize how our method of reconstructing spatiotemporal data differs from

traditional methods utilized within the traffic physics community. Traditional methods

typically utilize statistics or nonlinear filtering techniques together with traffic flow mod-

els to reconstruct observed data [47][77][78]. The KMD differs in that it does not filter

or fit data in any way. Rather, the KMD represents the dynamics of a nonlinear sys-

tem in terms of the spectrum of a linear, infinite-dimensional, operator. The eigenvalues

and eigenfunctions of the Koopman operator capture key properties of the dynamics and

are inherent to the system. The Koopman modes capture spatiotemporal patterns that

depend on the modality of observation and offer a platform for reconstructing and fore-

casting observed quantities. The KMD accomplishes this without the need of a dynamic

model, parameter tuning or smoothing of data.

4.4 Error Analysis

While the accuracy of the KMD’s reconstruction is evident by simple visual compari-

son of figures 3.2 and 4.20, there are few discrepancies between the real and reconstructed

data. A percent error matrix was calculated according to the formula shown below. Next,

the total average error (TAE) was calculated by averaging the elements of the error ma-

trix over the space-time domain. Figure 4.21 shown below demonstrates a contour of the

percent error matrix for the US 101 highway data sets.

Error(i, j) =
|X(i, j)−X(i, j)DMD|

|X(i, j)| (4.5)

Total Average Error = meant(meanx(Error)) (4.6)
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(a) US 101 Error:12% (b) US 80 4:00pm Error:11%

(c) US 80 5:00pm Error:16%

Figure 4.21: KMD Velocity Reconstruction Average Error

The greatest sources of error in Figures 4.21a-4.21c, despite being large, all occurred

in a very localized fashion about the traffic jams. This is beneficial for the purpose of

traffic forecast and reconstruction because localized error does not distort global struc-

ture by much. Therefore, accurate reconstruction of global spatiotemporal patterns are

still obtained, which is evident in the relatively low TAE of about 12%-19% and the

strong visual similarities between the original and reconstructed data. The following

table summarizes our TAE in reconstruction. Plots of the percent error matrix for the

US 80 highway can be referenced in the appendix.

46



Analysis of Traffic Data Chapter 4

US 101 Highway US 80 Highway 4:00 PM US 80 Highway 5:00 PM

Velocity 11% 11% 16%

Density 17% 18% 19%

Flow 19% 18% 19%

Table 4.1: Table of Total Average Error

A potential source of error could be due to the residual term in equation 8. This

would imply that we have not sampled enough of the state space to obtain a sufficiently

rich basis of eigenfunctions. It may also be that the dynamics are so highly nonlinear that

theoretically, an infinite amount of eigenfunctions are needed for a perfect reconstruction.

It may also be that our system contains continuous spectrum in addition to its discrete

spectrum. Noise or any systematic error introduced by our construction of macroscopic

quantities could also be contributing to the error. A possible cause for the large errors

near the traffic jams is the fact that sharp transitions in the state cannot be captured

by a single Koopman mode but rather a superposition of several phase-locked modes.

Therefore, numerical errors in the frequency of oscillations will cause modes to be slightly

out of phase. Furthermore, this phase difference error or any other numerical errors in

growing modes will increase exponentially in time, due to the nature of equation 2.11.

The number of delays to take for an accurate reconstruction is not exactly specified by

any theorem therefore, we also explore how reconstruction error depends on the number

of delays. We do this by reconstructing the data under various delays and recording our

error each reconstruction. Applying this process to the NGSIM data sets yields figure

4.22 shown below. Figures 4.22a-4.22c all demonstrate a huge ( 23 orders of magnitude)

spike in error corresponding to the number of delays that yield a near square matrix (Not

visible in Figure 4.22a). Taking delays beyond that point we obtain stable error variation
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with increasing delays. More importantly, we can see that the method of time-delays can

yield better results than just decomposing the original data. In all cases, we observe a

drop in the TAE once the delay embedding yields a square data matrix. Moreover, this

error remains stable (less than 1% deviation) for increasing delays. Therefore, in this

work, we take sufficient delays so that our new embedded data matrix is at least tall.

(a) US 101 Highway (b) US 80 Highway 4:00 pm

(c) US 80 Highway 5:00 pm

Figure 4.22: Reconstruction Error vs Delays Used

Additionally, we also investigate the minimum number of modes needed for an accu-

rate reconstruction under 7 delays for US 101 and US 80 5pm and 4 for US 80 4pm. Now,

for every mode obtained there is a corresponding singular value resulting from the SVD
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decomposition required by the DMD algorithm. We use these singular values to sort or

rank the modes and then reconstruct our data with only one mode and increasing until

we have used all of the modes. Recording the error along the way yields figure4.23 seen

below, wherein all three cases we see that the most accurate reconstruction is obtained

by using less than the total number of modes available. This indicates that not all of the

Koopman modes obtained are dynamically important and some may correspond to noise

or numerical errors.

(a) US 101 Highway (b) US 80 Highway 4:00 pm

(c) US 80 Highway 5:00 pm

Figure 4.23: Reconstruction Error vs Modes Used
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Chapter 5

Forecasting of Traffic

The accurate forecasting of traffic is an indispensable part of any intelligent transporta-

tion system (ITS) however, this task has proven to be an elusive and challenging problem

[82][85][86]. In this work, two of the ten proposed research directions of [82] are addressed.

The first is a call for the development of responsive algorithms and prediction schemes.

Transportation agencies require forecasts that are robust to the short and long-term

changes in traffic conditions. Most of the time these changes in the system are unknown

and unexpected like adverse weather conditions or accidents. This combination of recur-

ring and not-so recurring events lead to a complex system and increase the difficulty of

accurately forecasting. This unpredictable switching of dynamics has lead to much re-

search into developing multi-regime models. These models have been extended to include

weather and accidents but with added complexity and parameters [85] [86]. The second

direction of research is the call for a generalized approach to identifying spatiotemporal

patterns in traffic. It is argued how the knowledge of spatiotemporal patterns can lead

to improved predictability of certain forecasting schemes. For example, identifying spa-

tiotemporal patterns can lead to improved ramp-metering times that dampen oscillations

as they propagate by [62]. The issue of identifying and analyzing spatiotemporal patterns

from data has already been addressed in section 4. In this section a data-driven method

for accurately forecasting short and long-term traffic dynamics is presented.
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5.1 Forecasting of NGSIM Data

We now prescribe a method for forecasting macroscopic traffic states by utilizing a

subset of s data vectors (sampling window) to predict the next p data vectors (prediction

window). We first illustrate our procedure by applying it to the NGSIM data and then

test our method for a week and month-long PeMS data set. Our forecasting scheme

involves choosing a sampling and predicting window (s, p), which dictates how much

past data we will use and how far into the future we will forecast. First, a KMD of our

sampling window is obtained and the modes are evolved, according to equation (2.11),

for s + p time steps. We then slide our window forward one time step and repeat the

procedure. Figure 5.1 below illustrates how the first three minutes of the NGSIM 101

Highway data can be used to predict the next two minutes.

(a) Raw Data (b) Forecasted Data

Figure 5.1: US 101 Highway Velocity Data

Computing the error over the prediction window leads to the plot below in figure 5.2.

The greatest source of error is in the forecasted regime and once again near or along the

traffic jams.
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(a) Error in Sampling+Forecast (b) Error in Forecast

Figure 5.2: US 101 Highway Forecast Error

By sliding our window we are able to draw forecasts at every time step along the

way and for every step we can use equation (4.6) to record the total average error TAE.

Below is a plot of the recorded predictions over the entire 45 minutes utilizing a sampling

window of 15 seconds to predict the next 25 seconds under a delay of 10 seconds.

(a) Forecasted Data (b) Error in Time of Forecast

Figure 5.3: US 101 Highway Entire Forecast
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5.2 Forecasting of PeMS Data

The previous application of the forecasting methodology to the NGSIM data was

primarily intended for illustration. The primary reason being that the NGSIM data exists

for only 45 minutes and for very short segments of only two highways. On the other hand,

the Caltrans PeMs data set provides years of historical data for hundreds of highways

across California. Additionally, the PeMs data set comes from a real-time continuously

operating source whereas the NGSIM comes from a one-time recorded experiment. First,

a 100 mile stretch of the eastbound US I-10 highway for the week of 3/6/2017-3/12/2017

is studied. The 100 mile section of highway begins near Santa Monica beach in Los

Angeles County and ends just passed the city of Beaumont in Riverside County. We use

the last 15 minutes of data to predict the next 15 minutes of data utilizing a delay of

ten minutes. Simulating over the entire week and recording the predictions made yields

the predicted data shown below in figure 5.4b, where the raw data is also plotted for

reference.

(a) Raw Data (b) Predicted data

Figure 5.4: US I-10 Highway 3/06/2017-3/12/2017

The predictions seem to be in good agreement with the raw data, figure 5.5 below
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helps identify the error over the entire week. Together is a plot of the total average

error at every time step which can help identify how the error evolves through the week.

Figures 5.5a-5.5b confirm that the highest amount of error is obtained during times of

traffic congestion. Again, the error can be seen to be very localized about the traffic

jams.

(a) Prediction Error for the Week (b) Total Average Error vs Time

Figure 5.5: US I-10 Highway 3/06/2017-3/12/2017

We now repeat the previous study for one month’s data (March 2017) of a 400 mile

stretch of the northbound US I-5 highway. Again, we use the last 15 minutes to predict

the next 15 minutes, take a delay of 10 minutes. Figures 5.6-5.7 summarize our raw data,

predicted data, and the error in our prediction.
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(a) Raw Data (b) Predicted data

Figure 5.6: US I-5 Highway March 2017

(a) Prediction Error for the Week (b) Total Average Error vs Time

Figure 5.7: US I-5 Highway March 2017

We now investigate how our error varies for different choices of sampling and predic-

tion window, by simulating our predictions for values of (s, p) that are multiples of 15

minutes. For every choice of (s, p) we test how our method performs under a delay of

s − 1 by recording the average of the TAE, the results are plotted below in figure 5.8.

It is evident and intuitive that our error will increase with longer prediction windows.
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However, a counter-intuitive aspect of figure 5.8 is that increasing the size of the sampling

window only seems to hinder our predictions. This increase in error is seen even for the

smallest simulated prediction window of 15 minutes. Overall, figure 5.8 implies that the

accurate prediction of traffic is mostly dependant on the most current traffic conditions.

Figure 5.8: Error in Prediction for Various (s, p)

Lastly, we show how our forecasting scheme is not only stable under holiday traffic

but also demonstrates how easily it can be extended to cover a network of highways. For

this simple, proof of concept, example we will forecast 70 miles of the southbound I-405,

eastbound I-210 and the northbound I-110 highways in Los Angeles. The data collected

is for the five days of December 22, 2016 - December 26, 2016. Forecasting the network

is as simple as stacking the data matrices into one tall matrix, much like in section 4,

and then applying the KMD. A plot of the raw data along with the forecasted data is

shown below in figures 5.9 and 5.10
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(a) US I-405 South Raw Data (b) US I-210 East Raw Data

(c) US I-110 East Raw Data

Figure 5.9: Raw Velocity Data for Dec 22, 2016 - Dec 26, 2016
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(a) US I-405 South Forecasted Data (b) US I-210 East Forecasted Data

(c) US I-110 East Forecasted Data

Figure 5.10: Forecasted Velocity Data for Dec 22, 2016 - Dec 26, 2016

The percent error matrices and the time evolution of the TAE are plotted together

below in figure 5.11. It is evident, that our forecasting scheme remains stable when

analyzing a network of highways during the Christmas rush of 2016.
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(a) US I-405 South Error in Forecasted Data (b) US I-210 East Error in Forecasted Data

(c) US I-110 East Error in Forecasted Data (d) Total Average Error vs Time for Network

Figure 5.11: Forecasted Velocity Data for Dec 22, 2016 - Dec 26, 2016
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Chapter 6

Conclusion

It is generally accepted that the applicability of a certain traffic model is dependant on

the level of detail required. In this view, microscopic models are typically suitable for

the off-line study of merging and linking properties of highway infrastructure, the study

of geographical effects on traffic or travel time estimation. The GKT models seem to

possess a more theoretical use by yielded a link between microscopic and macroscopic

modeling [33]-[37]. Macroscopic models have proven to be useful for the forecast and con-

trol of traffic. The inherent limitation with the model or AI-based methods is their lack

of universality and need for extensive training data. We have proposed a method based

on the spectral properties of the Koopman operator which evidently distinguishes the

different states of traffic, identifies any pinned or localized clustering phenomena (modes

1-3), identifies the proposed the pumping effect (modes 4 9). When applied to individual

lane data the KMD accurately captures the merging and diverging effects of on/off-ramps

and the lane changing effects which give rise to modes with combined lateral and lon-

gitudinal (zig-zag) travel. Our methodology provides an objective manner of extracting

the associated time and growth scales of traffic patterns. Furthermore, the hierarchy of

spatiotemporal patterns obtained can be superimposed to obtain a reconstruction of the

observed data. The KMD is capable of achieving this, in a robust manner, without the

need for tuning parameters or filtering/smoothing data.
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Ultimately, the accurate analysis and prediction of traffic can greatly improve the cur-

rent control schemes of on-ramp and street metering algorithms. The accurate forecasting

of traffic oscillations will lead to retrofitting of highway on-ramp metering algorithms.

These static controllers can be programmed to adjust their metering rate so that the

oscillation of the traveling wave is dampened as it travels by. Additionally, the accurate

forecasting of traffic can lead to the improvement of travel-time estimation algorithms

and city holiday planning. The combination of these outcomes will further lead to re-

duced fuel consumption, travel time and emissions. However, many of the state of the art

techniques still lack the ability to reliably and universally forecast traffic. In this work, we

have shown how the KMD can offer a parameter-free data-driven platform for the fore-

casting of traffic. Future works, lie in the direction of better understanding the spikes in

error present under heavy traffic conditions, applying the KMD forecasting method to

larger street traffic networks, extending these methods to microscopic trajectory data for

travel time estimations.
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Appendix A

Additional Figures

A.1 NGSIM Reconstruction

(a) US 101 Highway (b) US 80 Highway 4pm (c) US 80 Highway 5pm

Figure A.1: Density Raw Data

(a) US 101 Highway (b) US 80 Highway 4pm (c) US 80 Highway 5pm

Figure A.2: Flow Raw Data
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(a) US 101 Highway (b) US 80 Highway 4pm (c) US 80 Highway 5pm

Figure A.3: KMD Density Reconstruction

(a) US 101 Highway (b) US 80 Highway 4pm (c) US 80 Highway 5pm

Figure A.4: KMD Flow Reconstruction

(a) US 101 Error (b) US 80 4m Error (c) US 80 5pm Error

Figure A.5: KMD Density Reconstruction Error

63



(a) US 101 Error (b) US 80 4pm (c) US 80 5pm

Figure A.6: KMD Flow Reconstruction Error
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