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Cerebellar Morphometry and Cognition in the Context of
Chronic Alcohol Consumption and Cigarette Smoking

Valerie A. Cardenas , Christina M. Hough, Timothy C. Durazzo , and Dieter J.
Meyerhoff

Background: Cerebellar atrophy (especially involving the superior–anterior cerebellar vermis) is
among the most salient and clinically significant effects of chronic hazardous alcohol consumption on
brain structure. Smaller cerebellar volumes are also associated with chronic cigarette smoking. The pre-
sent study investigated effects of both chronic alcohol consumption and cigarette smoking on cerebellar
structure and its relation to performance on select cognitive/behavioral tasks.

Methods: Using T1-weighted Magnetic Resonance Images (MRIs), the Cerebellar Analysis Tool
Kit segmented the cerebellum into bilateral hemispheres and 3 vermis parcels from 4 participant groups:
smoking (s) and nonsmoking (ns) abstinent alcohol-dependent treatment seekers (ALC) and controls
(CON) (i.e., sALC, nsALC, sCON, and nsCON). Cognitive and behavioral data were also obtained.

Results: We found detrimental effects of chronic drinking on all cerebellar structural measures in
ALC participants, with largest reductions seen in vermis areas. Furthermore, both smoking groups had
smaller volumes of cerebellar hemispheres but not vermis areas compared to their nonsmoking counter-
parts. In exploratory analyses, smaller cerebellar volumes were related to lower measures of intelligence.
In sCON, but not sALC, greater smoking severity was related to smaller cerebellar volume and smaller
superior–anterior vermis area. In sALC, greater abstinence duration was associated with larger cerebel-
lar and superior–anterior vermis areas, suggesting some recovery with abstinence.

Conclusions: Our results show that both smoking and alcohol status are associated with smaller
cerebellar structural measurements, with vermal areas more vulnerable to chronic alcohol consumption
and less affected by chronic smoking. These morphometric cerebellar deficits were also associated with
lower intelligence and related to duration of abstinence in sALC only.

Key Words: Cerebellum, Alcohol, Smoking, Ataxia, Cognition, MRI.

CONSISTENT EVIDENCE DEMONSTRATES a co-
occurrence of alcohol use disorder (AUD) and cerebel-

lar pathology (Andersen, 2004; Baker et al., 1999; Harper and
Kril, 1993; Torvik and Torp, 1986; Victor et al., 1959, 1989),
including alcohol-related cerebellar atrophy (e.g., Davila
et al., 1994; Sullivan et al., 2000a, b), which contributes to the
hallmark impairments of gait and balance in chronic alcohol

abusers (Baker et al., 1999; Currie et al., 2013; Sullivan, 2003;
Sullivan et al., 2000a, 2006, 2009, 2010; Vassar and Rose,
2014; Victor et al., 1959). With the neocerebellum also
involved in neurocognition, alcohol-related cerebellar pathol-
ogy has also been associated with impairments in nonmotor
and higher-order cognitive functions, such as attention shift-
ing (Allen et al., 1997), working memory (Chanraud et al.,
2010; Chen andDesmond, 2005a, b; Hayter et al., 2007), exec-
utive skills (Nakamura-Palacios et al., 2014), and language/
verbal tasks (Booth et al., 2007). Moreover, patients with
cerebellar pathology unrelated to excessive alcohol use
demonstrate deficits in executive functioning, language skills,
and affective behaviors (Schmahmann and Sherman, 1998).
Such findings support the theory that cerebellar dysfunction
may mechanistically contribute to cognitive dysfunction,
motor impairment, and postural instability in AUD.
Recent work has also linked smaller cerebellar volumes to

chronic cigarette smoking. An early analysis found smaller
cerebellar gray matter density in smokers versus nonsmok-
ers, but no difference in gray matter volume (Gallinat et al.,
2006). A later voxelwise analysis localized a cluster of signifi-
cant gray matter volume reduction in Crus I, a region in the
posterior lobe of the cerebellar hemispheres, in smokers com-
pared to never-smokers (Kuhn et al., 2012), although these
findings were not replicated in a similar study (Fritz et al.,
2014). More recently, smaller bilateral cerebellar gray matter
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volumes have been reported in smokers (Franklin et al.,
2014; Vnukova et al., 2017). Lastly, 3-week-abstinent alco-
hol-dependent treatment seekers (ALC) who smoke (sALC;
many of whom contributed to this cerebellar structural anal-
ysis) showed poorer performance on postural stability tasks
compared to their nonsmoking counterparts (nsALC; Sch-
midt et al., 2014), an effect that could be mediated by cerebel-
lar structural abnormalities (Vassar and Rose, 2014).

In addition to studies showing group differences between
substance users and controls, research has suggested that
substance use contributes to accelerated brain aging. Exces-
sive alcohol use and smoking have both been reported to
amplify age-related volume loss in the brain (Durazzo et al.,
2014b, 2017; Pfefferbaum et al., 1992). A recent voxel-based
structural analysis measured gray matter volumes in 110
brain regions in those with AUD and controls aged 25 to
65 years to examine for potential alcohol-related accelerated
aging. Results indicated that, in the later decades of life, the
brain age of the chronic drinkers was increased by an impres-
sive 12 years, consistent with the accelerated brain aging the-
ory in substance users (Guggenmos et al., 2017). Similarly,
we recently compared cortical and subcortical volumes in
nonsmokers and smokers aged 22 to 70 years without any
other substance use disorder and also found chronic smoking
associated with accelerated age-related volume loss in sub-
cortical white and gray matter regions, including the cerebel-
lum (Durazzo et al., 2017).

In this study, we investigated effects of both chronic alcohol
consumption and cigarette smoking on cerebellar structure
and their relations to performance on select cognitive tasks, as
their joint and separate effects on the cerebellum have not pre-
viously been reported. The Cerebellar Analysis Tool Kit
(CATK; Cardenas et al., 2014; Price et al., 2014) was used to
segment the cerebellum as visible on T1-weighted MR images
into left and right hemispheres and 3 vermis parcels. From 2
separate neuroimaging research studies conducted concur-
rently, we constructed 4 groups of participants: sALC,
nsALC, smoking controls (sCON), and nonsmoking CON
(nsCON). We hypothesized that: (i) all cerebellar measure-
ments (area and volume) are smaller as a function of both
chronic smoking and alcohol status, with the largest effect of
alcohol consumption on the superior–anterior vermis, (ii)
smoking exacerbates the effects of alcohol on cerebellar mor-
phometry, and (iii) smaller cerebellar measures are associated
with worse performance on select cognitive/clinical tasks. We
also predicted that greater smoking and alcohol consumption
severity are associated with smaller cerebellar measures. In
addition, we explored whether group differences in cerebellar
measures related to smoking and alcohol were better explained
by a fixed factor model or by amodel of accelerated aging.

MATERIALS ANDMETHODS

Participants

Participants were drawn from 2 different research projects on
alcohol and tobacco use disorders conducted in the greater San

Francisco area. Treatment-seeking ALC participants were recruited
from substance abuse treatment programs at the San Francisco VA
Medical Center and Kaiser Permanente. The treatment seekers par-
ticipating in this research were clients of outpatient treatment pro-
grams at the local VA and Kaiser Permanente, with whom we have
had long-standing research relationships. Importantly, clinical staff
at these treatment centers distributed research study–related infor-
mation to treatment clients and those who were interested to learn
more about the study then contacted research study personnel for
screening. As such, the study participants were fully self-referred
into this research. CON, without histories of medical or psychiatric
conditions known or suspected to influence brain structural out-
come measures, were recruited from the local community. All par-
ticipants were between the ages of 25 and 70 years (see Table 1 for
demographics). Medical exclusion criteria were a current or past his-
tory of intrinsic cerebral tumors, human immunodeficiency virus or
acquired immune deficiency syndrome, cerebrovascular accident,
aneurysm, insulin-dependent diabetes, chronic obstructive pul-
monary disease, non–alcohol-related seizures, significant exposure
to known neurotoxins, demyelinating and neurodegenerative dis-
eases, Wernicke–Korsakoff syndrome, alcohol-induced persisting
dementia, and traumatic brain injury resulting in loss of conscious-
ness for more than 15 minutes. Psychiatric exclusion criteria
included schizophrenia or other thought disorders, bipolar disorder,
dissociative disorders, posttraumatic stress disorder, obsessive–com-
pulsive disorder, and panic disorder (with or without agoraphobia),
all according to DSM-IV-TR criteria. Hepatitis C, type 2 diabetes,
hypertension, and unipolar mood disorders were not exclusionary
given their high prevalence in substance use disorder.

At baseline, all ALC treatment seekers met DSM-IV-TR criteria
for alcohol dependence and were abstinent from all substances
except tobacco for an average of 20 � 11 days (nsALC: 18 � 10;
sALC: 21 � 11, p > 0.05). At the time of assessment, all smoking
participants were actively smoking at least 10 cigarettes per day, had
been doing so for the past 5 years or more, had no periods of smok-
ing cessation greater than 1 month in the 5 years prior to study, and
were not concurrently using other tobacco or nontobacco nicotine
products. No smoker was engaged in any pharmacological/behav-
ioral smoking cessation program. Nonsmoking participants never
smoked or smoked less than 40 cigarettes during their lifetime and
used no cigarette/tobacco products for 10 years prior to study. Par-
ticipants provided written informed consent according to the Decla-
ration of Helsinki, and all procedures were approved by the
institutional research review boards of the University of California
San Francisco and the San Francisco VAMedical Center.

All participants with T1-weighted Magnetic Resonance Images
(MRIs) deemed usable by experienced imagers (i.e., full cerebellum
in the field of view, no movement, good signal-to-noise ratio
assessed by visual review), and accurate cerebellar segmentations
were included in the analyses. This resulted in a final sample of 17
nsCON (48 � 12 years, 14 males), 31 sCON (49 � 9 years, 27
males), 21 nsALC (51 � 12 years, 16 males), and 23 sALC
(49 � 7 years, 21 males).

Clinical and Neurocognitive Measures

Each participant completed the Structured Clinical Interview for
DSM-IV Axis I Disorder Patient Edition, version 2.0, as well as
questionnaires assessing depressive (Beck Depressive Inventory, sec-
ond edition [Beck et al., 1996]) and anxiety (State-Trait Anxiety
Inventory, form Y-1 [state] and Y-2 [trait], STAI [Spielberger,
1983]) symptoms. Lifetime alcohol consumption was assessed with
the Lifetime Drinking History semistructured interview (Skinner
and Sheu, 1982; Sobell et al., 1988). The average number of stan-
dard alcoholic drinks (containing 13.6 g of ethanol [EtOH]) con-
sumed per month was derived for 1 and 3 years before enrollment
and over lifetime. The Fagerstrom Tolerance Test for Nicotine
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Dependence (Heatherton et al., 1991) was used to assess level of
nicotine dependence, years smoking at current level, total years of
cigarette smoking, and average number of daily cigarettes currently
smoked.

Participants completed a comprehensive neurocognitive battery
(Durazzo et al., 2013b). We focused on cognitive measures that have
been shown to be associated with cerebellar morphological integrity:
Wisconsin Card Sorting Test-64 (WCST; shifting, self-monitoring,
and use of verbal feedback to guide decision making [Heaton and
Staff, 1993]); Trail Making Test (TMT; Reitan and Wolfson, 1985):
Trails A (processing speed) and B (set-shifting, visuomotor scan-
ning, and graphomotor speed); Grooved Pegboard Test (fine motor
dexterity; Oldfield, 1971); and the Sharpened-Romberg eyes-closed
task (static postural stability; Fregly et al., 1972). Premorbid verbal
intelligence was assessed with the American National Adult Read-
ing Test (AMNART VIQ; Grober and Sliwinski, 1991) and general
intelligence with the Ward-7 Full Scale IQ (using a z-transformed
composite score based on WAIS-III Arithmetic, Block Design,
Digit Span, Digit Symbol, Information, Picture Completion, and
Similarities subtests). All measures, with the exception of the Sharp-
ened-Romberg task, are well normed and commonly used in clinical
and/or research settings (Strauss et al., 2006). In order to mitigate
the potential for nicotine withdrawal effects on function, smokers
were allowed to smoke ad libitum prior to all assessments and were
allowed to take cigarette smoking breaks, if requested.

We obtained gross laboratory markers of recent drinking for
most subjects (e.g., GGT, AST, ALT, mean corpuscular volume).
These markers were approaching or were within normal limits at
the time of assessment for all participants. The VA and Kaiser hos-
pitals also routinely conducted breathalyzers and urine substance
use assays on patients in their substance abuse treatment program,
from which we drew our participants. Prior to assessment at our
laboratory, participants’ urine was tested for 5 common substances
(THC, opiates, PCP, cocaine, and amphetamines) and participants
were breathalyzed for recent EtOH consumption. No participant
was positive for the above common substances or EtOH at the time
of assessment.

MRI Acquisition and Image Processing

MRI data were acquired on a 4.0 T Bruker MedSpec system
using an 8-channel transmit–receive head coil (Siemens, Erlangen,

Germany). A magnetization-prepared rapid gradient-echo sequence
(TR/TE/TI = 2300/3/950 ms, 7° flip angle, 1.0 mm isotropic resolu-
tion) was used to acquire 3D sagittal T1-weighted images for cere-
bellar segmentation.

We used CATK (Cardenas et al., 2014; Price et al., 2014) to seg-
ment T1-weighted MR images of the cerebellum into left and right
hemispheres and 3 vermis parcels (superior–anterior I-V, superior–
posterior VI-VII, and inferior posterior VIII-X); measures of cere-
bellar volume (total and hemispheric) or area of the 3 vermis parcels
are the focus of this report. CATK functions as a fully automated
T1 MRI cerebellum delineation and parcellation tool. It uses an
active profile-appearance modeling (AAM; Cootes, 2000; Cootes
et al., 2001; Patenaude et al., 2011) framework, which combines sur-
face-based registration with statistical models of shape and texture
derived from high-resolution T1-weighted images acquired from 43
healthy participants (mean age 44 years, range 5 to 96 years, 49%
male), providing delineation of the cerebellar hemispheres and 3 ver-
mal lobes. The advantage of this is that strong prior knowledge
about the cerebellum inherent in the data (such as the overall shape
of the cerebellar vermal lobes) is taken into account during segmen-
tation of new data, resulting in a segmentation method that enforces
smoothness according to probable variations specific to the struc-
tures. Figure 1 shows an example segmentation output for CATK.
All cerebellar segmentations were visually reviewed for accuracy by
authors VAC and CMH, and poor segmentations were excluded.

Statistics

Comparisons of demographic and clinical data between all 4
groups were conducted with univariate analysis of variance. Multi-
variate analyses of covariance (MANCOVA) using a 2 9 2 design
(alcohol-by-smoking status) examined the effects of alcohol and
smoking on 3 cerebellar volume measures (total, left cerebellar
hemisphere, and right cerebellar hemisphere) and 3 vermis cross-sec-
tional areas (superior–anterior, superior–posterior, and inferior–
posterior), while controlling for age, sex, and intracranial vault vol-
ume (ICV, estimated using FreeSurfer) (http://surfer.nmr.mgh.ha
rvard.edu/). The nonsignificant sex term and nonsignificant alcohol-
by-smoking status interaction terms were removed from final mod-
els. Age was not a significant covariate in the model for vermis areas
and was removed in the final model. A sensitivity analysis con-
ducted using G*Power (Faul et al., 2007) using our sample of 92

Table 1. Participant Demographics, Drinking, and Smoking Measures

nsCON
N = 17

sCON
N = 31

nsALC
N = 21

sALC
N = 23

%Male 82 87 76 91
Age (years) mean � SD (min–max) 48 � 12 (26 to 69) 49 � 9 (33 to 64) 51 � 12 (25 to 71) 49 � 7 (33 to 60)
Education (years) 16 � 2 15 � 2† 15 � 2 13 � 2*,‡

1-year avg drinks per montha 12 � 13 22 � 19 291 � 152 387 � 194*

3-year avg drinks per montha 14 � 13 22 � 19 248 � 135 378 � 202*

Lifetime avg drinks per montha 18 � 14 26 � 13 171 � 93 256 � 129*

Total lifetime drinks 6,759 � 5,642 9,540 � 6,691 72,403 � 53,646 100,697 � 60,623
Fagerstrom total score NA 4.8 � 1.6 NA 4.0 � 1.6
Cigarettes per day NA 18.3 � 6.7 NA 15.1 � 7.1
Years smoking at current level NA 16 � 12 NA 15 � 12
Total years of smoking NA 29 � 11 NA 26 � 9

All other pairwise comparisons, uncorrected p > 0.05.
nsCON, nonsmoking controls; sCON, smoking controls, nsALC, nonsmoking abstinent alcohol-dependent treatment seekers; sALC, smoking absti-

nent alcohol-dependent treatment seekers.
a1 standard alcoholic drink contains 13.6 g of EtOH.
*sALC < nsALC (edu) and sALC> nsALC (drinking severity measures).
†sCON < nsCON, uncorrected p ≤ 0.05.
‡sALC < nsCON, uncorrected p ≤ 0.05.
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subjects and assuming equal group sizes, conventional levels of
a = 0.05 and b = 0.20 (80% power), showed that an effect size of
0.08 could be detected. Using our smallest group size of 17 and
assuming 4 equal groups (i.e., assuming a sample of only 68 sub-
jects), an effect size 0.11 could be detected. These effect sizes are con-
sidered “small” according to Cohen (Cohen, 1988). Because of our
a priori hypotheses and relatively small number of outcome mea-
sures, we did not correct for multiple comparisons.

To explore whether the accelerated aging hypothesis better
explained our cerebellar data than the fixed factor statistical model,
we employed an alternative model of the effects of smoking and
alcohol on cerebellar volume using multivariate analysis of variance
(MANOVA) with cerebellar measures as dependent variables and
age, ICV, and alcohol-by-smoking-status-by-age interactions as
independent variables; this allowed us to model potential age-re-
lated differences in cerebellar structures among the 4 groups.

General linear modeling was used to explore relationships of
cerebellar measures (after correcting for the effects of ICV by
regressing each cerebellar measure on ICV and using the residual
predicted values as the independent variables) to measures of neu-
rocognition. Measures of neurocognition included individual tests
that focus on cerebellar function, as described above. Since the left,
right, and total cerebellar measures were highly collinear (all
r > 0.93), a composite cerebellar measure was created (0.5(to-
tal + right + left)); the composite measure and all 3 vermis mea-
sures were included as independent variables in these models with
education, age, smoking, and alcohol status as covariates. In each
group separately (sCON, nsALC, and sALC), Pearson’s correla-
tions were computed using the predicted values derived from the
general linear models to examine associations between cerebellar
measures with measures of smoking severity in sCON, and with
measures of drinking severity and abstinence in nsALC. In sALC,
associations between cerebellar and smoking severity measures were
adjusted for the monthly average of alcoholic drinks consumed over
1 year before study, and associations between cerebellar and drink-
ing severity and abstinence measures were adjusted by the Fager-
strom total score. Given our a priori hypotheses and relatively small
number of outcome measures, we did not correct the statistical sig-
nificance of these relationships for multiple comparisons.

RESULTS

Sample Characterization

Sample characteristics are summarized in Table 1. Age
and proportion of female participation did not differ between
the 4 study groups (both p > 0.55). sALC drank more than
nsALC (3-yr monthly avg, p < 0.01; 1-year monthly avg,

p = 0.06; lifetime monthly avg, p < 0.01). nsCON had more
years of education than sCON (p = 0.04) or sALC
(p < 0.01), who had fewer years of education than nsALC
(p = 0.03). sCON and sALC did not differ on measures of
smoking severity (all p > 0.10).

Main Effects of Smoking and Alcohol on Cerebellar Measures

Cerebellar and intracranial volumes are summarized in
Table 2. ICV was not significantly different among the 4
groups (p > 0.47). Total, left, and right cerebellar volumes
showed significant multivariate effects of alcohol status, F(3,
81) = 3.47, p = 0.02, age, F(3, 81) = 5.22, p = 0.002, and
ICV, F(3, 81) = 15.04, p � 0.01, but not smoking status
(p = 0.21). The ALC groups had significantly smaller (ap-
proximately 3.2%) left and right hemisphere volumes relative
to CON groups. Multivariate effects of age indicate a
decrease of approximately 2 ml in cerebellar volume with
each additional decade of age. Although the multivariate
effect of smoking status was not significant, univariate mod-
els showed significant smoking effects (all p < 0.05 uncor-
rected), and plots revealed 2% smaller cerebellar volumes in
sCON and sALC relative to their nonsmoking counterparts,
as shown in Fig. 2. Vermal cross-sectional areas showed sig-
nificant multivariate effects of alcohol status, F(3, 82) = 2.67,
p = 0.05, and ICV, F(3, 82) = 2.89, p = 0.04, with ALC
groups showing 4.4 to 5.9% smaller vermal areas relative to
CON. Age and smoking status showed no significant effects
on vermis measures (both p > 0.32), and plots comparing
smoking to nonsmoking groups showed no consistent effect
of smoking (all univariate p > 0.67), as shown in Fig. 2.

Accelerated Cerebellar Aging Model

Because age was not significantly associated with any cere-
bellar vermis measure, only the total, left, and right hemi-
sphere cerebellar volumes were examined with an accelerated
aging model. All 3 cerebellar volumes showed significant
multivariate effects of age, F(3, 80) = 5.17, p < 0.02, ICV, F
(3, 80) = 14.61, p � 0.01, and age-by-alcohol-by-smoking
status interactions, F(9, 246) = 1.91, p = 0.05. An examina-
tion of the parameter estimates from the univariate model

Fig. 1. 3D parcellation of: vermis superior–anterior lobe (lobules I–V), blue; vermis superior–posterior lobe (lobules VI–VII),magenta; vermis inferior–
posterior lobe (lobules VIII–X), red; and hemispheres, yellow and green, from a representative participant in the study.
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showed that, compared to nsCON, significantly greater vol-
ume losses with increasing age were observed in both the left
and right cerebellar hemispheres of sCON (p = 0.04 and
p = 0.05, respectively) and sALC (both p = 0.01), as illus-
trated in Fig. S1.

Neurocognitive Results

Performance on individual neurocognitive tests previously
associated with cerebellar function is summarized in Table 3.

There were no group differences due to alcohol or smoking
status for the AMNART, Grooved Pegboard Test, time to
complete the TMT Trails A or TMT Trails B tests, time to
complete the WCST, and number of nonperseverative errors
on the WCST (all p > 0.11). However, smokers (sALC and
sCON combined) made more perseverative errors and perse-
verative responses (both p < 0.02) than all nonsmokers, both
alcohol groups had markedly shorter standing times on the
Sharpened-Romberg eyes-closed tasks (p � 0.01) compared
to all CON, and there were group effects on the WCST total

Table 2. Cerebellar Measures by Group

nsCON
N = 17

sCON
N = 31

nsALC
N = 21

sALC
N = 23

Total cerebellum (mm3) 131,106 � 12,559 128,595 � 11,969 131,162 � 13,036 126,285 � 11,043
Left cerebellar hemisphere (mm3) 59,848 � 6,518 57,509 � 5,837† 57,443 � 5,813 55,885 � 4,788‡

Right cerebellar hemisphere (mm3) 59,301 � 6,335 57,168 � 5,785† 56,922 � 5,564 55,459 � 4,871‡

Superior–anterior vermis (mm2) 391 � 33 392 � 46 372 � 39& 370 � 45
Superior–posterior vermis (mm2) 208 � 28 209 � 28 193 � 25 198 � 26
Inferior–posterior vermis (mm2) 316 � 33 317 � 50 307 � 34 297 � 39
ICV (mm3) 1,376,572 � 220,548 1,469,520 � 190,085 1,458,896 � 196,621 1,430,624 � 205,340

All other pairwise comparisons, uncorrected p > 0.05.
nsALC, nonsmoking abstinent alcohol-dependent treatment seekers; sALC, smoking abstinent alcohol-dependent treatment seekers; nsCON, non-

smoking controls; sCON, smoking controls.
&nsALC < nsCON, uncorrected p ≤ 0.05.
†sCON < nsCON, uncorrected p ≤ 0.05.
‡sALC < nsCON, uncorrected p ≤ 0.05.

Fig. 2. Cerebellar measurements (mean � SEM, adjusted for age and ICV) are shown for the 4 groups. All cerebellar parcels (total, left hemisphere,
and right hemisphere volumes shown on top; superior–anterior, superior–posterior, and inferior–posterior vermis areas on the bottom) were smaller in
ALC; cerebellar volumes but not vermal areas were smaller in smokers

CEREBELLAR STRUCTURE & COGNITION IN AUD 5



number correct (smoking p = 0.04) and total errors (smok-
ing, p = 0.03; alcohol, p = 0.04). The significant pairwise dif-
ferences on these measures reported in Table 3 are consistent
with these overall smoking and alcohol effects.

Associations Between Cerebellar and Neurocognitive
Measures

Since the 2 9 2 MANOVAs reported above showed that
ICV was related to all cerebellar measures, we regressed each
cerebellar measure on ICV and used the residual predicted
values as independent variables in our cognitive model. As
summarized in Fig. 3, smaller cerebellar composite volume
was associated with lower AMNART (parameter estimate
b = 0.001, p = 0.02) and Ward-7 Full Scale IQ (parameter
estimate b = 2.3E�05, p = 0.04) scores, over and above the
effects of education. The interpretation is that each 1000-
mm3 increase in residual cerebellar volume was associated
with a 1-point increase in AMNART score and a 0.023-point
increase in the IQ z-score. None of the cerebellar measures
significantly predicted the Grooved Pegboard Test, TMT
Trails A, time to complete the TMT Trails B, or any WCST
measure (time to complete, total correct, total errors, or
number of perseverative errors). Given the reports in the lit-
erature (Bernard et al., 2015; Bernard and Seidler, 2013;
Medina et al., 2010; Sullivan et al., 2010), we were surprised
to find that no cerebellar measures predicted Sharpened-
Romberg performance over the entire group. However,
when we examined groups separately, we found that the
composite cerebellar volume measures were associated with
performance on the Sharpened-Romberg task in nsALC

(b = 0.006, p < 0.01), such that each 1000-mm3 increase in
cerebellar volume corresponded to a 1-second increase in
standing time.

Associations Between Cerebellum and Smoking/Drinking
Severity and Abstinence

Several measures of smoking and alcohol consumption
showed correlations of moderate strengths with our cerebel-
lar measures (see Fig. 4). Among sCON, the number of years
smoked over lifetime was associated with smaller total cere-
bellar volume (r = �0.31, p = 0.05) and superior–anterior
vermis area (r = �0.36, p = 0.02). Among sALC, smoking
or drinking severity measures were not associated with cere-
bellar measures, but the number of days of alcohol absti-
nence was significantly correlated with total (r = 0.52,
p = 0.01), left (r = 0.48, p = 0.02), and right (r = 0.46,
p = 0.02) cerebellar volumes, and superior–anterior vermis
area (r = 0.38, p = 0.05), with larger measures associated
with longer abstinence. There were no significant associa-
tions between drinking severity and cerebellar measures in
nsALC.

DISCUSSION

Cerebral atrophy is commonly reported in AUD and has
also been described with chronic cigarette smoking (e.g.,
Durazzo and Meyerhoff, 2007). Here, we investigated the
effects of alcohol dependence and chronic cigarette smoking
on cerebellar function and morphometry using a previously
described and validated MRI segmentation tool kit. As

Table 3. Cognitive Measures by Group

nsCON
N = 17

sCON
N = 31

nsALC
N = 21

sALC
N = 23

AMNART (verbal IQ estimate) 120 � 8 117 � 6 119 � 6 113 � 9
Ward-7 Full Scale IQ (general intelligence) 1.25 � 0.63 0.31 � 0.85† 0.49 � 0.97& 0.34 � 0.81
Grooved Pegboard Test—dominant (sec) 69 � 8 76 � 13 84 � 34 74 � 11
Grooved Pegboard Test—nondominant (sec) 73 � 12 70 � 22 67 � 29 78 � 21
Sharpened-Romberg task—eyes closed (sec)** 171 � 73 161 � 65§ 101 � 99& 101 � 99‡☆
TMT Trails A (sec) 28 � 9 32 � 9 34 � 15 31 � 9
TMT Trails B (sec) 56 � 21 71 � 20 76 � 28& 63 � 27
WCST—total time (sec) 286 � 27 374 � 76† 392 � 137& 386 � 129
WCST—total correct** 52 � 5 42 � 13†§ 50 � 6 47 � 11☆
WCST—total errors**, * 11 � 5 23 � 13†§ 14 � 6 17 � 11☆
WCST—perseverative errors* 6 � 4 12 � 6†§ 6 � 2 9 � 7☆
WCST—perseverative responses* 6 � 5 13 � 8†§ 6 � 3 10 � 9☆
WCST—nonperseverative errors 5 � 2 10 � 8† 8 � 5 8 � 5☆

All other pairwise comparisons, uncorrected p > 0.05.
AMNART, American National Adult Reading Test; sec, seconds; TMT, Trail Making Test; WCST, Wisconsin Card Sorting Test; nsCON, nonsmoking

controls; sCON, smoking controls; nsALC, nonsmoking abstinent alcohol-dependent treatment seekers; sALC, smoking abstinent alcohol-dependent
treatment seekers.

*Overall smoking effect, uncorrected p ≤ 0.05.
**Overall alcohol effect, uncorrected p ≤ 0.05.
&nsALC < nsCON (Sharpened-Romberg task, IQ) or nsALC> nsCON (WCST—total time, TMT Trails B), uncorrected p ≤ 0.05.
†sCON < nsCON (WCST—total correct, IQ) or sCON > nsCON (WCST—all other measures), uncorrected p ≤ 0.05.
‡sALC < nsCON, uncorrected p ≤ 0.05.
§sCON < nsALC (WCST—total correct), uncorrected p ≤ 0.05.
☆sCON < sALC (WCST—total correct) or sCON > sALC (Sharpened-Romberg task, other WCSTmeasures), uncorrected p ≤ 0.05.
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hypothesized, detrimental effects of alcohol dependence in
3-week-abstinent treatment seekers were found on volume
measures of bilateral cerebellar hemispheres and on sagittal
area measures of all 3 vermis sections segmented, with the
largest reductions observed in vermis areas. Though our
hypothesis that sALC would display the smallest cerebellar
measurements was not confirmed, the results did support our
hypothesis of smaller cerebellar volume as a function of
smoking status. Both smoking groups (sCON and sALC)
had smaller volumes of cerebellar hemispheres than their
nonsmoking counterparts. Vermis areas, however, did not
differ significantly between smokers and nonsmokers. The
morphometric deficits in these cross-sectional analyses were
related to long-term drinking and smoking measures, sug-
gesting that cerebellar structures may respond to chronic
substance use rather than be premorbidly determined. Fur-
thermore, the variance in cerebellar volumes is explained
almost equally well by an accelerated aging model or 1 mod-
eling group differences between nsCON and both smoking
groups (sCON and sALC).
Our observation that alcohol status was related to 3%

smaller cerebellar hemisphere volumes and up to 5.9% smal-
ler vermis areas compared to controls agrees with prior stud-
ies that observed smaller vermis (Karhunen et al., 1994;
Sullivan et al., 2000a, 2000b; Yokota et al., 2006) or volume
loss in the cerebellar hemispheres (Anderson et al., 2010;
Chanraud et al., 2007; Sullivan, 2003; Sullivan et al., 2000a,
2000b). The congruence of our findings with previous
research provides compelling evidence that CATK, the auto-
mated cerebellar measurement software used here, is valid in
clinical and nonclinical samples. The studies cited above
counted Purkinje cells in autopsy patients, manually traced
the cerebellum, or used voxel-based morphometry. Though
cell counting and manual tracing are gold standards, their
time-consuming nature limits their application to small sam-
ples, whereas voxel-based methods, although automatic,
may not be sufficiently sensitive after necessary correction
for multiple comparisons. CATK provides a straightfor-
ward, uncomplicated, and convenient way of measuring cere-
bellar volumes and areas noninvasively, quickly, and

automatically, being accurate and sensitive enough to con-
firm previously reported group differences related to chronic
alcohol consumption in new samples.
In prior ataxia research involving largely the same ALC

and CON participants of this study (89% of the ALC and
92% of the CON participants studied in this manuscript), we
showed that chronic smoking was associated with reduced
performance on the Sharpened-Romberg eyes-closed task in
both groups (Schmidt et al., 2014). Since this postural stabil-
ity task is a test of cerebellar integrity, we were not surprised
to find cerebellar structural deficits related to chronic smok-
ing. Other work had reported smoking-related volume defi-
cits in ventrolateral and dorsolateral prefrontal cortices and
cerebellum (Brody et al., 2004; Franklin et al., 2014; Fritz
et al., 2014; Hanlon et al., 2016; Vnukova et al., 2017). More-
over, we have repeatedly demonstrated that smoking exacer-
bates neuropsychological and brain structural deficits in
ALC and impedes their neurobiological and functional
recovery during abstinence from alcohol (Durazzo et al.,
2013a, 2014b, 2014c; Mon et al., 2009; Pennington et al.,
2013, 2015). Although the multivariate test for an overall
effect of smoking in the present study was not significant at
alpha = 0.05, the results of our uncorrected univariate analy-
ses were strongly suggestive of smaller cerebellar volumes in
smokers, whereas cerebellar vermis areas were not related to
smoking status (Fig. 2). Although the vermis has the same
cell types as the flocculonodular, anterior, and posterior
lobes of the cerebellum, there is some evidence in mice that
the morphology of Purkinje cells may be different in the ver-
mis (Nedelescu et al., 2018), potentially offering some expla-
nation as to why our vermis measures were not smaller in
smokers. Another possibility is that smoking affects the lat-
eral boundaries of the vermis, which are extraordinarily diffi-
cult to measure reliably and are not reflected in our
midsagittal vermis cross-sectional area.
In sCON, greater severity of smoking was related to smal-

ler cerebellar volumes and smaller area of the superior–ante-
rior vermis, even though we did not observe a significant
effect of smoking status on any vermis measure. One prior
study found putamen volume in male smokers positively

Fig. 3. Scatterplots of AMNART scores (American National Adult Reading Test) and the Ward-7 Full Scale IQ versus total cerebellar volumes (residu-
als after regression on intracranial volume); solid line shows the best linear fit
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Fig. 4. Scatterplots of measures of smoking severity or days of alcohol abstinence versus cerebellar measurements (residuals after regression on
intracranial volume); solid line shows the best linear fit
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correlated with severity of smoking but did not report a simi-
lar relationship with cerebellar volume (Franklin et al.,
2014); however, it is possible that the stringent multiple com-
parison corrections used in their voxel-based analyses may
have obscured any such a relationship. In sALC but not
nsALC, we found that greater abstinence duration was
related to greater measures of total, left, right, and superior–
anterior cerebellum. If sALC had had smaller cerebellar
measures upon treatment entry (corresponding to an addi-
tive effect of alcohol and smoking) that had partially recov-
ered before they were imaged, it might explain why a
significant multivariate effect of smoking was not observed
in our main analyses. Further research with imaging at treat-
ment entry and longitudinal follow-up is warranted to inves-
tigate whether this is the case.
In exploratory analyses across all subjects, we found that

worse performance on the AMNART, a measure of premor-
bid intelligence, and the Ward-7 Full Scale IQ, a measure of
general intelligence, was associated with smaller cerebellar
volumes. General intelligence has been linked to distributed
neocortical gray matter (Colom et al., 2006; Menary et al.,
2013), raising the possibility that large corticocerebellar net-
works also contribute to intelligence. In a recent study, inde-
pendent components analysis was used to identify brain
networks based on similar gray matter patterns across 92
healthy individuals aged 17 to 48 years. The cerebello-pari-
etal network identified in this analysis was associated with an
estimate of IQ, where greater loading of this network (i.e.,
greater inferior parietal lobe and cerebellar Crus II gray mat-
ter co-occurrence) predicted higher IQ (Yoon et al., 2017).
Earlier work using voxel-based morphometry showed that
bilateral cerebellar gray matter was associated with general
cognitive ability in older adults with a mean age of 69 years
(Hogan et al., 2011). Our results are consistent with these
previous studies and show that the relationship between cere-
bellar volume and IQ extends to a greater age range and clin-
ical samples. Across all subjects, the number of perseverative
responses on the WCST (a classic measure of executive func-
tioning) was weakly associated with the superior–anterior
vermis area (trend level p = 0.08), although smoking
explained more of the variance in WCST performance than
the vermis area. Previous reports related cerebellar structure
to WCST performance in those with an AUD (Chanraud
et al., 2007; Sullivan, 2003), but those studies did not account
for any effects of smoking on WCST performance and cere-
bellar structure. Thus, it is possible that these previously
reported relationships of cerebellar structure to WCST per-
formance were mediated by potential effects of smoking in
the samples. We did not replicate previously reported associ-
ations of cerebellar measures with Sharpened-Romberg eyes-
closed task (Bernard et al., 2015; Bernard and Seidler, 2013;
Medina et al., 2010; Sullivan et al., 2010), or associations
between TMT and cerebellum as previously hypothesized
(Zahr et al., 2010) when examined over the entire sample.
However, when the groups were examined separately, in
nsALC we observed that larger cerebellar volumes were

associated with longer times on the Sharpened-Romberg
task. Pooling all subjects to increase our sample size limited
our detection of this association, perhaps due to ceiling
effects where more subjects obtained the maximum time on
the Sharpened-Romberg tasks within the CON groups, and
the standard deviation was also smaller. In sALC, we did not
find an association between cerebellar volumes and Sharp-
ened-Romberg task. Examination of scatterplots revealed
that some sALC had maximal times despite small cerebellar
volumes, suggesting that smoking may have compensated
for the effects of alcohol in these participants.
We found a significant effect of age on cerebellar hemi-

sphere volume measures consistent with previous work on
the effects of normal aging on cerebellar volumes (Bernard
et al., 2015; Bernard and Seidler, 2014). Using a model
with the age-by-alcohol-by-smoking interaction, we found
evidence for accelerated aging of the cerebellar hemi-
spheres related to both alcohol and smoking status, where
both sCON and sALC showed steeper negative slopes with
aging than nsCON, suggesting accelerated aging for cere-
bellar volumes as a function of chronic smoking, with and
without chronic drinking. The findings for greater age-re-
lated cerebellar hemisphere volume loss in sCON relative
to nsCON are consistent with our findings in a larger sam-
ple, using FreeSurfer to quantitate cerebellar cortical vol-
umes (Durazzo et al., 2017). As in the original model, the
vermis area measures were not associated with age. A
model comparison showed that this alternative model had
almost exactly the same goodness of fit (adjusted
R2 = 0.349) as our original fixed factor model (adjusted
R2 = 0.354) and explained the same amount of variance in
our data.
Amplified cerebral oxidative stress (OxS) has been pro-

posed as a mechanism contributing to neurobiological
abnormalities related to both heavy alcohol consumption
and cigarette smoking in humans (Bloomer, 2007; Durazzo
et al., 2014a; Kim et al., 2003, 2004; Moriarty et al., 2003;
Northrop-Clewes and Thurnham, 2007) and animal models
(Anbarasi et al., 2006; Das et al., 2009; Kovacic, 2005; Men-
dez-Alvarez et al., 1998; Panda et al., 2000; Valavanidis
et al., 2009; Waly et al., 2011). It is well established that OxS
is directly associated with damage to membrane lipids, pro-
teins, carbohydrates, and DNA and RNA of brain neuronal,
glial, and vascular tissue [for reviews, see Durazzo et al.,
2014a]. Granular neurons of the cerebellar cortex are highly
susceptible to OxS (Wang and Michaelis, 2010). While not
universally accepted [see Salmon et al., 2010], increasing OxS
burden with aging is also suggested to be a fundamental
mechanism contributing to neurodegeneration in normal
aging (Halliwell, 2006; Zimniak, 2011). Collectively, our
findings of greater age-related cerebellar volume loss in
sCON and sALC suggest the chronic OxS associated with
alcohol dependence and/or chronic cigarette smoking may
interact with the OxS associated with normal aging, thus
amplifying degeneration of the cerebellar structures investi-
gated here.
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Prior research using measures of gray matter density in an
atlas that segments the cerebellum into 28 parcels has shown
sex differences in the human cerebellum (Fan et al., 2010).
There have also been reports that smoking and alcohol have
differential effects on women and men (Sawyer et al., 2017;
Sung et al., 2015). In our study, we did not observe signifi-
cant effects of sex on any cerebellar measure. However, our
sample was overwhelmingly male (see Table 1), limiting our
ability to detect sex effects. Moreover, we examined only a
small number of cerebellar parcels and did not differentiate
between gray and white matter, further limiting our ability to
detect cerebellar sex effects previously reported. Future work
should examine more women and explore differences among
cerebellar lobules, potentially revealing more effects of smok-
ing, alcohol, and sex.

SUMMARY AND CONCLUSIONS

Overall, our results demonstrate that alcohol dependence
and chronic cigarette smoking are associated with smaller
cerebellar structural measurements, with vermis areas more
vulnerable to alcohol dependence and less affected by smok-
ing. We observed some evidence that these cerebellar deficits
were associated with lower intelligence. Further evidence
within subgroups indicated that the severity of smoking or
alcohol abstinence duration was related to cerebellar struc-
ture, reflecting injury related to chronic substance use rather
than premorbid abnormalities. Although the CATK pro-
vides a quick, reliable, and automated method for cerebellar
segmentation, our results are limited due to the relatively
small number of cerebellar parcels examined; methods that
segment the cerebellum into further anatomically/function-
ally defined subdivisions might reveal more specific cerebel-
lar–cognitive associations. Our results are also limited by the
modest sample sizes, especially our correlations within sub-
groups, although a power analysis demonstrated sufficient
sample sizes to detect group alcohol and smoking differences
with small effect sizes. Despite these limitations, CATK’s
agreement with previous findings of alcohol effects in the
cerebellum using gold-standard manual tracing convinces us
that the method is valid and accurate and that our findings
of smoking exacerbating cerebellar hemisphere deficits while
relatively sparing the vermis are robust. Our findings show-
ing associations between cerebellar structure and intelligence,
smoking severity, and abstinence duration were more
exploratory and hypothesis-generating, and suggest that fur-
ther studies on the interaction of smoking, AUD, and age on
brain structure, function, and recovery are warranted to help
develop more effective AUD treatment interventions.
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Fig. S1. Scatterplots of measures of cerebellar volumes vs.
age by group; solid lines show the best linear fit
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