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HIGHLIGHTED ARTICLE
| INVESTIGATION

Drift and Directional Selection Are the Evolutionary
Forces Driving Gene Expression Divergence in Eye and

Brain Tissue of Heliconius Butterflies
Ana Catalán,*,†,1 Adriana D. Briscoe,‡ and Sebastian Höhna†,§,**,1

*Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236, Sweden, †Division of
Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany, ‡Department of Ecology
and Evolutionary Biology, University of California, Irvine, California 92697, §Department of Earth and Environmental Sciences,

Paleontology and Geobiology, and **GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany

ABSTRACT Investigating gene expression evolution over micro- and macroevolutionary timescales will expand our understanding of
the role of gene expression in adaptation and speciation. In this study, we characterized the evolutionary forces acting on gene
expression levels in eye and brain tissue of five Heliconius butterflies with divergence times of �5–12 MYA. We developed and applied
Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models to identify genes whose expression levels are evolving through drift,
stabilizing selection, or a lineage-specific shift. We found that 81% of the genes evolve under genetic drift. When testing for branch-
specific shifts in gene expression, we detected 368 (16%) shift events. Genes showing a shift toward upregulation have significantly
lower gene expression variance than those genes showing a shift leading toward downregulation. We hypothesize that directional
selection is acting in shifts causing upregulation, since transcription is costly. We further uncovered through simulations that parameter
estimation of OU models is biased when using small phylogenies and only becomes reliable with phylogenies having $ 50 taxa.
Therefore, we developed a new statistical test based on BM to identify highly conserved genes (i.e., evolving under strong stabilizing
selection), which comprised 3% of the orthoclusters. In conclusion, we found that drift is the dominant evolutionary force driving gene
expression evolution in eye and brain tissue in Heliconius. Nevertheless, the higher proportion of genes evolving under directional than
under stabilizing selection might reflect species-specific selective pressures on vision and the brain that are necessary to fulfill species-
specific requirements.

KEYWORDS Brownian motion; natural selection; stabilizing selection; Ornstein–Uhlenbeck; RevBayes

Species and populations diverge through the accumulation
of genetic changes that affect coding or non-coding ge-

nomic regions thatGenetic variationaffectinggeneexpression
has the potential of changing gene expression patterns in a
spatiotemporal manner by changing gene expression profiles
in specific organs and cell types at particular developmental

stages (Carroll 2005; Signor and Nuzhdin 2018). This spa-
tiotemporal attribute of gene expression might enable evolu-
tionary change in a compartmentalized manner, allowing for
change where it is required but also allowing for the needed
processes to remain conserved. Phenotypic diversity caused
by changes in gene expression encompasses a great variety of
traits, including changes affecting an organism’s coloration
(Nadeau 2016), size, and shape (Ahi et al. 2017), as well as
sensory perception and behavior, among other phenotypes
(Lee et al. 2000; Wanner et al. 2007). Even though major
advances have been made in linking gene expression varia-
tion to a phenotype (Catalán et al. 2016; Glaser-Schmitt and
Parsch 2018), discerning the evolutionary forces that shape
gene expression level variation among closely related species
is an area that needs further research.

To understand the evolutionary forces acting on gene ex-
pression it is necessary to model within- and between-species
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geneexpressionvariance.Neutral geneexpressiondivergence
between species leads to gene expression differences through
divergence alone. Thus, neutral changes in gene expression
provide a null hypothesis to detect deviations from the
expected neutral gene expression divergence. A linear re-
lationship between divergence time and gene expression
variance has been proposed for closely related species, as-
suming a clock-like (i.e., constant through time) rate of gene
expression divergence (Khaitovich et al. 2004, 2005a). An-
other approach to study the evolutionary forces shaping gene
expression evolution, which is motivated by statistical phylo-
genetics, is fitting Brownian motion (BM) models. BM mod-
els are often used to describe the rate of change of continuous
traits through time taking into account the known phylogeny
of the taxa of interest (Felsenstein 1985). Thus, in a BM
context, the parameter s2 is often described as the volatility
parameter that determines the rate at which a trait’s value
diffuses away from its current state (Bedford and Hartl
2009). Fitting BMmodels to investigate gene expression evo-
lution has shown that stabilizing selection and evolution
through drift can be readily characterized (Kalinka et al.
2010; Wong et al. 2015).

Ornstein–Uhlenbeck (OU) models have also been used to
study continuous trait evolution in a phylogenetic context
(Hansen 1997; Butler and King 2004). OU models, an exten-
sion to BMmodels, include two extra parameters, a and u. As
in a BM context, s2 is the rate at which a trait changes
through time and the parameter a is the force pulling back
the diffused trait to an optimum state. This is analogous to
stabilizing selection pulling back a trait to its optimum value
after having experienced a departure from it. u is described as
the trait’s optimum state at a particular time point toward
which the pull of a is aimed (Hansen 1997; Butler and King
2004). OU models offer a useful framework to generate hy-
potheses about the evolutionary forces acting on transcrip-
tome levels, whether it is drift, stabilizing selection, or
directional selection (Bedford and Hartl 2009; Rohlfs and
Nielsen 2015; Wong et al. 2015; Chen et al. 2017; Stern
and Crandall 2018).

In this study, we used five closely related species of
Heliconius butterflies to explore the evolutionary forces shap-
ing gene expression variation in combined eye and brain tis-
sue. Heliconius charithonia, H. sara, H. erato, H. melpomene,
and H. doris (Figure 1) belong to four of the seven distinct
Heliconius phylogenetic clades with divergence times ranging
from 5.5 to 11.8 MYA. Beside showing great diversity in wing
color patterns (Kronforst and Papa 2015), Heliconius butter-
flies also show diversity in life history traits (Salcedo 2010;
Merrill et al. 2015), mating systems (Beltrán et al. 2007;
Walters et al. 2012), and behavior (Mendoza-Cuenca and
Macías-Ordóñez 2005; Merrill et al. 2019). Since Heliconius
butterflies are diurnal species, visual stimuli provide key
sources of information about the environment. For example,
flowers and oviposition sites, potential mates, or predators
are all targets of interest to butterflies in which the first line
of perception is visual (Finkbeiner et al. 2014, 2017). After

visual cues are detected by the visual system, the detected
information travels to the brain where it is processed, and its
output can result in a specific behavior or physiological re-
sponse. Thus, the brain’s processing and output together with
the visual system have the potential of being finely tuned
according to a species’ life history. In the case of Heliconius
butterflies, high diversity of adult compound eye retinal mo-
saics (between sexes and species) has been described
(McCulloch et al. 2016, 2017), as well as species-specific dif-
ferences in brain morphology (Montgomery et al. 2016).
Which evolutionary forces are shaping adult eye and brain
expression in Heliconius is one question we seek to investi-
gate, and in that way, gain an understanding of the potential
role of interspecies gene expression differences in speciation
and adaptation.

Therefore, in this studywe investigatedwhichevolutionary
forces are driving gene expression variation in combined eye
and brain tissue. More specifically, we aimed to identify if
expression variation in individual genes is evolving, for ex-
ample, through drift, stabilizing selection, or directional se-
lection. To this end,wegenerated a set of orthoclusters shared
amongourfive butterfly species togetherwith expressiondata
for each gene in each orthocluster. We characterized the
selective forces acting on gene expression levels, thereby
revealing the fraction of the transcriptome evolving under
drift, directional selection, and stabilizing selection.

Materials and Methods

Data set, samples, and RNA-sequencing

De novo transcriptome assemblies for H. charithonia, H. sara,
and H. doris were downloaded from Dryad with data identi-
fier doi: 10.5061/dryad.ds21fv5 (Catalán et al. 2018).
Transcriptomes from H. erato and H. melpomene were
downloaded from Dryad with data identifier doi: 10.5061/
dryad.8d724 (Smith et al. 2016). RNA-sequencing (RNA-seq)
data for all the species were downloaded from ArrayExpress:
E-MTAB-6810 (Catalán et al. 2018). The RNA-seq data
were generated as follows: pupae were obtained from The

Figure 1 Phylogenetic relationship of the Heliconius species used in this
study showing divergence times at each node (Kozak et al. 2015).
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Butterfly Farm, Costa Rica Entomological Supply and allowed
to eclose under controlled laboratory conditions.

Biological replicates for females (F) andmales (M) for each
species were generated: H. charithonia (F = 6, M = 6), H.
sara (F = 5, M = 6), H. erato (F = 3, M = 3), H. doris (F =
6,M= 6), andH.melpomene (F= 4,M=4). Three days after
eclosion, the butterflies were flash frozen at 280� until RNA
extraction. Combined eye and brain tissuewas dissected from
the same individual by removing the antennae, palps, and
proboscis from the head capsule. RNA was extracted using
TRIzol (Thermo Fisher Scientific, Waltham, MA) following
the manufacturer’s instructions. RNA was purified using a
NucleoSpin RNA II kit (Macherey-Nagel, Bethlehem, PA).
Purified RNA was quantified using a Qubit 2.0 Fluorometer
(Thermo Fisher Scientific) and RNA integrity was checked
using an Agilent Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA), with RNA integrity number (RIN) ranging
from 8 to 10. RNA-seq libraries were prepared for each indi-
vidual using a TruSeq RNA Sample Preparation Kit v2 (Illu-
mina, San Diego, CA). Double-stranded cDNA libraries were
quantified, quality checked, normalized, and pooled for se-
quencing according to their concentrations. Pooled libraries
were run on a 2% agarose gel to size select fragments of
�240–600 bp. cDNA was recovered using a Geneclean III
kit (MP Biomedical, Santa Ana, CA) and purified using Agen-
court AMPure XP beads (Beckman Coulter, Brea, CA). Se-
quencing was conducted at the University of California,
Irvine Genomics High-Throughput Facility using a HiSeq
2500 (Illumina), paired end 100-cycle sequence run.

Reads were mapped to their corresponding transcriptome
using Bowtie (Langmead et al. 2009), and FPKM (fragments
per kilobase permillionmapped read) values were calculated
for each species and used for downstream analysis (Catalán
et al. 2018). Annotation files for each transcriptome were
downloaded from doi: 10.5061/ dryad.ds21fv5 (Catalán
et al. 2018) with the exception of the transcriptome annota-
tion for H. erato, which was newly annotated. For the anno-
tation of the H. erato transcriptome, TransDecoder (version
5.0.2) was used to identify candidate coding regions. The

predicted coding sequences were utilized to identify orthol-
ogous hits in the UniProt, FlyBase, and Pfam databases using
blastp (2.2.30) (Altschul et al. 1990; Chintapalli et al. 2007;
Punta et al. 2012) (Appendix I).

Orthology assessment

Orthology across species was determined by using the
Unrooted Phylogenetic Orthology (UPhO) pipeline
(Ballesteros and Hormiga 2016). UPhO uses an all-species
pairwise blastp search and a Markov clustering algorithm
(MCL) (version 1.0.0) (Enright et al. 2002) to cluster se-
quences according to sequence similarity. Clustered se-
quences were aligned with MAFFT (version 7.3.05) (Katoh
and Toh 2008) and curated after alignment with trimAl (ver-
sion 1.3) (Capella-Gutiérrez et al. 2009). Phylogenetic infer-
ence for each sequence cluster was done using RAxML
(version 8.2.10) (Stamatakis 2006) and orthology was
assessed for each generated tree using the UPhO algorithm.
A matrix with log2 FPKM values was generated for each
orthocluster, which was used to analyze and model gene ex-
pression variance (Appendix I).

Modeling gene expression evolution

To study the forces driving gene expression evolution, we
implemented a set of six different statistical models (Table 1).
Each one models the mean species gene expression level
(between-species variance) and the gene expression levels
of individual samples per species (within-species variance).
How these mean species gene expression levels evolve, or
not, along the phylogeny and over time, is specific and central
to each model. We estimated the parameters of each model
and performed Bayesian model selection using Bayes factors
to establish which model describes the observed data best,
and thus which process is most likely to drive gene expression
evolution in the five Heliconius species of our study (see
below).

The simplest model of gene expression assumes that all
species have the exact same mean gene expression level. In
this case, we only have one parameter, m, which defines the

Table 1 Summary of the models implemented in this work

Model Description Parameters

Equal species means All species have the same mean gene expression level m: global mean gene expression level
Unequal species means All species have their own independent mean gene

expression level
mi: mean gene expression level per species

Brownian motion Random drift of the species’ mean gene expression level
along the phylogeny

s2: rate of drift

Brownian motion with shift Random drift with one branch having a different rate
(directional selection)

s2
B: rate of drift background branch

s2
F: rate of drift foreground branch

Ornstein–Uhlenbeck Stabilizing selection of the species mean gene expression
level evolving along the phylogeny

s2: rate of drift
a: strength of selection
u: optimal gene expression level

Ornstein–Uhlenbeck with shift Directional selection due to a shift in optimal gene
expression level

s2
B: rate of drift background branch

s2
F: rate of drift foreground branch.

uB: optimal gene expression level background branch
uF: optimal gene expression level foreground branch
a: strength of selection

Gene Expression Evolution in Butterflies 583



mean gene expression level of all species. The expression
level Xij of individual i from species j is modeled using a
normal distribution with Xij � Norm(m, d

2
i ). We chose a uni-

form prior distribution between 220 and +20 for the mean
gene expression parameterm. Note that we assume that every
species has its own gene expression variance parameter d

2
i

(see below). This model assumes that there is no evolution
of gene expression levels, i.e., gene expression levels are com-
pletely conserved among species.

The second model that we implemented was a model
where each species has its own gene expression mean mi.
Thus, wemodeled the gene expression level Xij of gene i from
species j using a normal distribution with Xij � Norm(mi, d

2
i ).

In this model, each species has a different mean gene expres-
sion level, but these gene expression levels do not evolve
under an evolutionary model; they are intrinsically different
without any mechanistic reason (no phylogenetic signal). As
with the first model, we assumed a uniform prior distribution
between 220 and +20 for each mean gene expression
level mi.

The third model that we implemented was a phylogenetic
BM model (Felsenstein 1985). We assume that any gene
expression value at the root of the phylogeny is equally prob-
able. Then, the mean gene expression levels m evolve along
the lineages of the phylogeny. The BM model specifies that
the focal variable, m in our case, is drawn from a normal
distribution centered around the value of the ancestor, mA.
The amount of change, i.e., the rate of random drift, is de-
fined by the parameter s2. We assumed a log-uniform prior
distribution between 10E25 and 10E5 for the drift parame-
ter s2. Thus, the mean gene expression levels mi for the

species of the phylogeny are distributed according to a
multivariate normal distribution where the covariance
structure is defined by the phylogeny (Felsenstein 1985).
This means that more closely related species are expected
to have a more similar mean gene expression level because
they share more evolutionary history (i.e., they are more
recently diverged), which is modeled by the covariance
structure. Such a phylogenetic model of gene expression
evolution has been applied previously by Bedford and Hartl
(2009). Importantly, the BM model only defines how the
mean gene expression levels evolve but does not allow for
any sample variance of the individuals of a species. There-
fore, we extended the standard phylogenetic BM model to
allow for within-species sample variance, where again the
expression level Xij of individual i from species j is normally
distributed with Xij � Norm(mi, d

2
i ) where d

2
i is the within-

species variance parameter (Ives et al. 2007; Rohlfs and
Nielsen 2015). This extension to allow for within-species
variance was developed for all phylogenetic models (BM,
BM with shift, OU, and OU with shift).

The fourthmodel thatwe implementedwas aphylogenetic
BMmodelwith branch-specific rates of evolution, thus detect-
ing directional selection. The mean gene expression level
evolves under a BMmodel (i.e., random drift) where the rate
of evolution for branch k is given by s

2
k (O’Meara et al. 2006;

Eastman et al. 2011). Thus, a branch with a higher rate of
evolution s

2
k signifies more change in gene expression levels

than under a constant rate random drift model (the BM
model). Directional selection can therefore be detected by
inferring an elevated estimate of s

2
k compared with the back-

ground rate of drift s2. Specifically, we applied a background

Figure 2 Pairwise correlation between five Heliconius species and their respective per gene expression variances. The correlation strength between per
gene expression variances was estimated by calculating Pearson’s r correlation coefficient.
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rate of drift s
2
B to all branches except the chosen foreground

branch, which received its own rate of drift s
2
F.

The fifth model we implemented was a phylogenetic OU
process (Hansen 1997). Similar to BM, the OU process mod-
els the evolution of the mean gene expression level per spe-
cies along a phylogenetic tree. However, unlike BM, themean
expression level diffuses with rate s2 and is attracted with
strength a to an optimum level u. Thus, the OU process has an
expected variance of s2/2a that is independent of time, i.e.,
does not increase with increasing time but instead stabilizes.
The variance becomes small if either the strength of selection
is large or the rate of drift is small. This is, in fact, a major
problem for OU models, which cannot distinguish if attrac-
tion (or selection) is strong or diffusion is weak (Ho and Ané
2014; Cooper et al. 2016).

The sixthmodelwe implementedwas anOUprocesswith a
branch-specific shift in both the rate of drift s2 and the opti-
mum gene expression level u (Rohlfs et al. 2014; Uyeda and
Harmon 2014). Thus, this branch-specific OU model is anal-
ogous to the branch-specific BM model, allowing for direc-
tional selection in an OU framework. Specifically, we tested if
there was significant support for the chosen foreground
branch, which received its own rate of drift s2

F and optimum
uB to be different from the background rate of drift s2

B and
optimum uB. We used the same prior distributions as before,
and assumed that both parameters for the background and
foreground branches are drawn from the identical prior
distribution. This model has, in total, five free additional
parameters along with the five nuisance parameters (the
within-species variances). Thus, we expect that this model
is more prone to be overparameterized for our data set with
five species. Nevertheless, our Bayesian approach for
parameter estimation and model selection integrates over
parameter uncertainty, and penalizes extra parameters by
integrating over the prior distribution.

Parameter estimation and model selection

We estimated parameters for our different models in a Bayes-
ian statistical framework. Thus, we approximated the poste-
rior distribution of the model parameters using Markov chain
Monte Carlo (MCMC) sampling (Metropolis et al. 1953;
Hastings 1970). We ran a separate MCMC analysis for each
model and gene, 2393 analyses per model. Every model pa-
rameter was updated twice per MCMC iteration where the
order of parameter updates was chosen randomly. We ap-
plied the same settings of the MCMC algorithm for each
model. First, a burn-in phase of the MCMC algorithm was
run for 2000 iterations with auto-tuning every 100 iterations.
Then, the actual MCMC simulation was run for 50,000 iter-
ations with sampling 10 iterations, yielding 5000 samples
from the posterior distribution (Höhna et al. 2017).

Model selectionwasperformedusingmarginal likelihoods.
Marginal likelihoods are the probability of the data for a
specific model integrated over all possible parameter values.
From the marginal likelihood we can then compute Bayes
factors andmodel probabilities (i.e., weights of amodel being
the true model generating the data given a set of candidate
models). We approximated the marginal likelihoods using
stepping-stone sampling (Fan et al. 2011). The stepping-
stone algorithm implemented in RevBayes consisted of
128 MCMC runs, where each MCMC run had the likelihood
function raised to the power of b computed by the quantiles
of a b probability distribution (Höhna et al. 2017).

Data availability

The five different models that we used in our study are
implemented in Bayesian phylogenetic inference software
RevBayes v1.0.8 (Höhna et al. 2016). For efficient computa-
tion, we implemented the restricted maximum likelihood al-
gorithm for BM (Felsenstein 1985) and OUmodels (FitzJohn
2012; Freckleton 2012). The source code and compiled

Figure 3 Testing for a phylogenetic signal in gene expression levels of Heliconius using BM. Significance is shown at model probability . 0.75 (solid red
line, Bayes factor . 3, positive support) and model probability . 0.95 (dashed red line, Bayes factor . 20, strong support). (A) Shows the comparison
between the two nonphylogenetic models (identical vs. independent species mean). (B) Shows the model probability of the BM model compared with
the independent species mean model. (C) Shows the model probability of the BM model compared with the identical species mean model. BM,
Brownian motion.
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executables of RevBayes are available from https://github.
com/revbayes/revbayes, and tutorials about the analyses are
available from https://revbayes.github.io/tutorials/. Supple-
mental material available at FigShare: https://doi.org/
10.25386/genetics.9736253.

Results

One of our main objectives in this study was to detect the
evolutionary forces acting on gene expression by identifying
deviations of gene expression variation from the variation
expected from phylogeny alone. With this aim, we used tran-
scriptomic data from combined eye and brain tissue of five
Heliconius species (H. charithonia, H. sara, H. erato, H. doris,
and H. melpomene) (Figure 1). From orthologous genes pre-
sent and expressed in the five species, we built an expression
matrix using log2-transformed FPKM values, which formed a
data set of 2373 orthologous expressed genes (Appendix I).
We used this data set to investigate the evolutionary forces
shaping gene expression variation across species.

Testing for equality of within-species variance in gene
expression levels

Previous models that assess the evolutionary forces acting on
gene expression levels (Warnefors and Eyre-Walker 2012;
Rohlfs et al. 2014) assume equal gene expression variance
across species. Assuming equality of variance when it is not
the case can lead to high type I error rates (Gastwirth et al.
2009). To test for equality of variance of gene expression
across our five species, we calculated the within-species var-
iance in gene expression. We calculated the within-species
gene expression variance by calculating the gene expression
variance from the mean, as measured in FKPMs, for each

gene (as we have 6–12 biological replicates per species)
and tested for a correlation of gene expression variance be-
tween every species pair (Figure 2).

In Figure 2, each black dot represents the value of the
variance for each gene of the Heliconius species presented
on either of the axes. From this pairwise assessment, we
found no significant correlation among all possible pairs,
with Pearsons’s r values ranging from 0.07 to 0.2 (Figure
2). Since gene expression variance across species is hetero-
geneous, and hence not correlated across species, we treated
per gene expression variance as a random variable when
fitting BM and OU models.

Testing for a phylogenetic signal

First, we started checking whether we could detect a phylo-
genetic signal from our gene expression data by using BM
models. To test for this, we used two nonphylogenetic models
where either all species had identical mean gene expression
levels (model 1) or all species had their own independent
mean gene expression levels (model 2). For each gene, we
computed the probability of the BM model having produced
the observed data, i.e., a high probabilitymeans that it ismore
probable that the gene expression levels evolved under a BM
model, whereas a low probability means that it is more prob-
able that the gene expression levels evolved under a non-
phylogenetic model (model 1 and model 2). A model
probability of .0.75 corresponds to a Bayes factor of .3
(positive support) and a model probability of .0.95 corre-
sponds to a Bayes factor of .20 (strong support) (Figure 3).

Figure 4 Posterior mean estimates of the rate of gene expression change
(s2 in blue) and the 95% threshold computed (red) using Monte Carlo
simulations. The genes were sorted by an ascending estimate of s2. Inset:
close-up of genes whose s2 is not significantly bigger than zero.

Figure 5 Model probability when testing model suitability when fitting
an OU model for the assessment of stabilizing selection. Significance is
shown at model probability . 0.75 (solid red, Bayes factor . 3, positive
support) and model probability . 0.95 (solid red, Bayes factor . 20,
strong support). There are only seven genes with significant support for
stabilizing selection through an OU model. OU, Ornstein–Uhlenbeck.
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Our results show that for the majority of gene expression
levels (2369 out of 2393) a phylogenetic signal can be re-
covered. Since RNA-seq data have high sensitivity to exper-
imental and environmental noise, gene expression levels are
prone to strong stochastic changes. The identification of a
phylogenetic signal in most genes shows that BM models are
suited to the investigation of the evolutionary forces acting on
our gene expression data set.

Testing for conserved gene expression levels

The next question we explored was how prevalent conserved
gene expression levels are in combined eye andbrain tissue of
Heliconius. This question could be answered with our pre-
vious results by computing how oftenmodel 1, with identical
species means, was recovered (Figure 2C). However, our
model selection procedure relied on computing marginal
likelihoods, which are intrinsically sensitive to the choice
of prior distribution (Berger 1990; Kass and Raftery 1995;
Sinharay and Stern 2002). Therefore, we additionally per-
formed a sensitivity analysis of s2 = 0 using Monte Carlo
simulation as follows (Goldman 1993). First, we estimated
the posterior distribution of all parameters under the iden-
tical species mean model (the only parameters were the per
gene expression variances), then we used 1000 parameter
samples from the posterior distribution to simulate gene
expression data sets (e.g., a data set consisting of a single
gene with five species and 6–12 individuals per species) un-
der the identical species mean model, yielding 1000 simu-
lated data sets per gene in total. Then, for every gene of the
2393 genes, we estimated s2 for each simulated data set as
well as the original data set, which amounted to a total of
2,395,393 MCMC analyses. Finally, we calculated if the
mean posterior estimate of the empirical data set was
.95% of the mean posterior estimates of the simulated data
sets. In cases where the mean posterior estimate of s2 was
not larger than the mean estimate of 95% of the simulated
data sets, we concluded that these genes are highly con-
served (Figure 4).

By using the described approach, we uncovered a set of
83 orthoclusters whose rates of gene expression evolution
(Figure 4) and gene expression levels (Supplemental Mate-
rial, Figure S1) across species are highly conserved. A s2 not
significantly different from zero can be caused by stabilizing
selection hindering gene expression divergence, resulting
in more similar gene expression patterns across different
Heliconius species than expected.

Testing for stabilizing selection acting on gene
expression levels

Subsequently, wemoved forward into implementing anOU to
investigate the strength of stabilizing selection (Bedford and
Hartl 2009; Beaulieu et al. 2012; Rohlfs et al. 2014). OU
models include two extra parameters, a and u. In a BM con-
text, if s2 is the rate at which a trait changes through time, a
is then described as a force pulling back the diffused trait to
an optimum state (u).

Weestimated themarginal likelihood foreachgeneundera
BM model and an OU model. Then, we computed the prob-
ability (i.e., support) of an OU model over a BM model using
the marginal likelihoods. Our results show very low support
for stabilizing selection under an OUmodel (Figure 5). When
the marginal likelihoods were examined, in 99.7% of the
cases a BM model explained our expression data better than
an OU model.

Testing the power to estimate stabilizing selection

Our results indicate that very few genes in Heliconius com-
bined eye and brain tissue are evolving under stabilizing se-
lection. It has previously been discussed that when working
with small phylogenies (,10 species) there is a lack of power
for parameter estimation when using an OUmodel (Beaulieu
et al. 2012; Rohlfs et al. 2014), but no simulation studies have
been done. By simulating data under an OU model using
phylogenies with varying numbers of taxa, we were able to
show how parameter estimation is biased. The attraction pa-
rameter a could only be estimated closely to the true values

Figure 6 Simulation study for the assessment of parameter estimation bias under an OU model. The relative bias in estimates of the attraction/selection
parameter (a) through 1000 simulations under s values ranging from 0.1 to 10, and a values ranging from 0.01 to 10. Simulations were performed for
phylogenies with sizes ranging from 5 to 1000 taxa. OU, Ornstein–Uhlenbeck.
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used for the simulations when the phylogenies contained
$50 taxa. Thus, we can observe that the bias observed for
parameter estimation drops considerably when the number
of taxa composing the phylogeny reaches 50 (Figure 6). This
observation holds as well for the estimation of s2 under a
range of s values (Figures S2 and S3). Our simulation study
shows that attention needs be paid when applying OU mod-
els to assess gene expression evolution for phylogenies
containing ,50 taxa.

Detection of branch-specific shifts in gene expression

To reveal genes whose gene expression patterns have puta-
tively been shaped by directional selection, we tested for
branch-specific shifts in evolutionary rates along the
Heliconius tree. To explore branch-specific shifts in gene ex-
pression, we first used a BMmodel to test for the evolutionary
rate (s2) of a focal branch being different from the back-
ground rate (i.e., the rest of the branches in the phylogenetic
tree) and assessed significance by applying Bayes factors
(Figure 7 and Figure S4). Second, we also tested branch-
specific shifts through an OU model and tested for a
branch-specific shift in gene expression level optimum (uF)
vs. the rest of the tree’s uB.

With a BM approach, we were able to detect a total of
322 branch-specific shifts when considering only tip branches
(Figure 7).We found 112 branch-specific shifts in theH. erato
linage, 70 in H. sara, 67 in H. charithonia, 44 in H. doris, and
29 in H. melpomene (Figure 7 and Figure S5). H. charithonia,
H. sara, and H. doris had more shifts toward a downregula-
tion, although only in H. charithonia and H. sara was this

difference significant (sign test, H. charithonia: P-value
6.738e205 andH. sara: P-value 1.653e206). InH. erato and
H.melpomene, more upregulated geneswere causing a branch-
specific shift, although no significant difference was found.

When implementing an OUmodel, we recovered a total of
75 genes showing a branch-specific shift in gene expression
optimum (Figure 7). From these genes, 55 also show a
branch-specific shift when implementing a BM model and
20 genes show uniquely a gene expression-level shift in op-
timum when using an OU model (Figure S6).

Next,we assessed gene expression variance of all the genes
identified as having a branch-specific shift in gene expression
throughBMandOUmodels.Whenweplotted thedistribution
of the gene expression variance, we found that upregulated
genes have a significantly lower variance when compared to
genes with a gene expression shift toward downregulation
(Figure 8).

Discussion

Gene expression evolution through genetic drift

Our study on the evolutionary forces acting on gene expres-
sion in combined eye and brain tissue ofHeliconius butterflies
reveals that drift is the dominant evolutionary force driving
gene expression divergence (81% of the transcriptome).
According to neutral expectations, phenotypic changes are
expected to accumulate as a function of time, by drift and
mutation alone (Lande 1976). Following this rationale, the
change of transcriptomic levels through drift should reflect
the divergence history of the taxa of interest. From our BM
analysis, we show that in most of the gene expression levels
in combined eye and brain, a phylogenetic signal can be re-
covered (Figure 3). Nevertheless, we have to keep in mind
that a phylogenetic signal can also be recovered even if other
evolutionary forces are acting on the transcriptome, such as
stabilizing selection or directional selection (Harmon et al.
2010). There are other evolutionary scenarios, beside drift,
which resemble a random walk as modeled by BM. For ex-
ample, directional selection that varies in strength and direc-
tion in a random fashion from one generation to the next can
also be described as having a BM behavior. Similarly, for
strong stabilizing selection, when the trait’s optimum
changes randomly, It can also be described by BM. For exam-
ple, in a study investigating pulsed evolution in vertebrates,
the authors included BM to model incremental phenotypic
change, where the trait of interest followed a wandering
optimum (Landis and Schraiber 2017). Thus, drift, randomly
varying selection, and varying stabilizing selection can be
modeled by BM.

Evolutionary rates of gene expression, which have been
investigated at both population and species level, show that
the proportion of the type of evolutionary force acting
on transcriptomic levels is not constant across taxa
(Whitehead and Crawford 2006a; Landis and Schraiber
2017; Nourmohammad et al. 2017; Stern and Crandall

Figure 7 Bar plot showing branch-specific shifts on gene expression
levels in Heliconius. Bars in light blue show branch shifts identified by
BM models and dark blue bars show branch shifts identified by OU
models. BM, Brownian motion; OU, Ornstein–Uhlenbeck.
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2018). For example, when examining the evolutionary forces
acting on gene expression levels in several fish populations,
the authors reported that the dominant force driving expres-
sion changes was genetic drift (Whitehead and Crawford
2006b). Comparably, in studies concerning primates, genetic
drift was the main force driving gene expression evolution
(Khaitovich et al. 2005b; Chaix et al. 2008). The proportion of
gene expression levels evolving by drift depends on the
strength of natural selection acting on the interrogated tran-
scriptome. For example, in a comparison between different
organ types in mammals, gonad gene expression showed the
lowest phylogenetic signal when compared to other organs
like cerebellum or heart (Brawand et al. 2011). In Heliconius
butterflies, other organs would need to be tested to get a
more global understanding of how gene expression is evolv-
ing in the whole organism.

We further explored our expression data by comparing the
expectedgeneexpressiondivergenceunder aBMmodel to the
observed data. Consequently, we simulated expression levels
for 10,000 genes along the known Heliconius phylogeny and
computed the mean of the pairwise species differences. Sim-
ilarly, we computed the mean pairwise differences of the
observed gene expression data. Alternatively, we can also
derive the expected divergence in gene expression levels be-
tween two species over time under BM. Both species evolve
under random drift and, thus, their gene expression values
are normally distributed with variance s2 3 T, where T is the
time since the most recent common ancestor of the two spe-
cies. Therefore, the difference in gene expression levels be-
tween the two species is normally distributed with variance
23 s23 T. Since we are only interested in the absolute value
of the gene expression difference, we use a truncated normal
distribution instead. From this truncated normal distribution
with mean zero and variance 2 3 s2 3 T, we compute the
expected gene expression difference through time (Figure 9).
For the empirical data, we estimate s2 using a sum of squares
approach. We find that our observed gene expression data
have a close fit to the simulated data (Figure 9).

Gene expression evolution through stabilizing selection

Studies done in Drosophila and mammals have shown that
stabilizing selection is the main evolutionary force driving

gene expression evolution (Rifkin et al. 2003; Lemos et al.
2005; Rohlfs and Nielsen 2015). In contrast to these studies,
in Heliconius, we discovered that only 3% of gene expression
levels are either highly conserved (Figure 4) or are evolving
through stabilizing selection (Figure 5). Factors such as tissue
type, gene functionality turnover, or epistatic levels have the
potential to influence the degree of stabilizing selection act-
ing on the transcriptome (Larracuente et al. 2008; Kalinka
et al. 2010; Romero et al. 2012). Additionally, in groups that
have experienced an adaptive radiation, such as Heliconius
butterflies (Kozak et al. 2015), and have thus recently expe-
rienced an elevated rate of trait evolution, directional selec-
tion might be more recurrent than stabilizing selection.
Factors such as the evolutionary history, the topology of the
phylogenetic tree (e.g., the depth of the phylogeny), and the
type of continuous trait being studied will determine if a
model describing drift or stabilizing selection describes the
data best (Fay and Wittkopp 2008).

OU models are suitable models to study the force of
stabilizing selection acting on a phenotype since the a param-
eter simulates the strength of selection keeping a trait close to
an optimum (Beaulieu et al. 2012), as several studies exem-
plify (Kalinka et al. 2010; Brawand et al. 2011; Stern and
Crandall 2018). When we applied an OU model to identify
stabilizing selection on gene expression, we detected param-
eter estimation biases as shown by our simulation study (Fig-
ure 6). For small phylogenies, accurate parameter estimation
is challenging since statistical power is weak with small sam-
ple sizes (Rohlfs et al. 2014), and parameters like a and s2

tend to be overestimated (Beaulieu et al. 2012). Specifically,
it is very challenging with small phylogenies to distinguish
between conserved gene expression levels due to low values
of drift (i.e., no change) vs. high values of directional selec-
tion (i.e., drift is removed due to selection) (Appendix II).
Therefore, we propose that for small phylogenies, testing
for s2 = 0 under a BM framework and assessing for signifi-
cance by applying Monte Carlo simulations is a better ap-
proach to uncover stabilizing selection. From our estimates
on the rate of gene expression evolution (s2 ranging from
�0 to 9) and using Monte Carlos simulations to test for a
s2 significantly different from zero, we show that for 88%
of the data we have a false discovery rate # 5%. Thus, the

Figure 8 The gene expression variances for all the genes showing a shift toward an up- and a downregulation are depicted as box plots for each
species. Numbers above the box plots show the total number of genes identified with a BM and an OU model. Wilcoxon test: * P , 0.05, ** P , 0.01,
and *** P , 0.001. BM, Brownian motion; OU, Ornstein–Uhlenbeck.
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likelihood that our Monte Carlo simulation approach for
assessing conserved genes is reporting a false positive is very
low for larger values of the rate of evolution (Appendix II).

When using this approach, we identified 83 genes with
conserved gene expression levels across species. These genes
might be involved inmaintaining conservedprocesses that are
essential for the function of eye and brain tissue inHeliconius.
For example, from the top 10 genes with the most conserved
gene expression levels, we found the transcription factor
bobby sox (bbx) (Group_674, Appendix I). BBX belongs to
the high-mobility box domain superfamily, which is involved
in transcription, replication, and chromatin remodeling
(Chintapalli et al. 2007). BBX has also been found to have
orthologs in flies, humans, and mice (Nitta et al. 2015), sug-
gesting high essentiality of bbx expression. Another highly
conserved orthocluster (Group_977, Appendix I) was anno-
tated as glaikit (Chintapalli et al. 2007), which is known to be
essential for the formation of epithelial polarity and nervous
system development (Dunlop et al. 2004).

To complement our BM approach, we further explored our
data by simulating 10,000 genes under an OUmodel under a
range of s2 and a values, and computed the mean differences
between pairs of species. We observed a reasonably good fit
to our data (Figure 10), but it is worth pointing out that a
steeper change in gene expression divergence is observed
between closely related species when compared to the calcu-
lated expected divergence. This suggests that different evo-
lutionary scenarios might explain the data better at different
depths of the phylogeny, but could also be a characteristic
signal of our data set. Consequently, adding more species,

including those that are closely related, could not only im-
prove OU parameter estimation but could also help disen-
tangle the evolutionary forces acting on gene expression
divergence, particularly between closely related species. Ad-
ditional to the implementation of BM and OU models to in-
dividual genes (as we have done in this study), investigating
how whole-gene networks or groups of coexpressed genes
are evolving following BM/OU models along a phylogeny
will increase the power to detect deviations to neutral expec-
tation in small phylogenies (Schraiber et al. 2013). This ap-
proach was implemented in yeast where genes belonging to
the same gene pathway were jointly analyzed, resulting in
the identification of pathways with constrained and accelera-
ted gene expression evolution, even when using small phy-
logenies. Such an approach could be explored with our data
set once we have identified the genes that are evolving to-
gether because they form part of the same pathway.

Gene expression evolution through genetic
directional selection

To reveal branch-specific shifts in gene expression levels, we
applied BM andOUmodels allowing for branch-specific shifts
at the tips of thephylogeny.Using this approach,we found that
16% of the genes show a branch-specific shift, toward either
up- or downregulation, with increased expression levels
showing lower variance than expected (Figure 8, Figure S5,
and Appendix II for false discovery rate analysis). The direc-
tion of a gene expression shift might be influenced by its
mode of regulation. For example, in yeast, it was found that
regulatory mutations affecting trans-regulatory factors were
more likely to cause an increase in gene expression. Con-
versely, mutations in cis-regulatory elements were found to
be skewed toward a decrease in expression (Metzger et al.
2016). On the other hand, it has been observed that muta-
tions affecting gene expression are more prone to cause a
downregulation as opposed to those mutations causing an
upregulation, which tend to be less frequent and to cause
bigger expression changes (Khaitovich et al. 2005b). Because
random mutations increase entropy, there is a higher chance
that a mutation in a regulatory regionwill decrease or disrupt
the binding site of a transcription factor causing downregu-
lation (Chaix et al. 2008). Investigating the mutation dynam-
ics affecting gene expression variation in Heliconius will help
us understand how mutational variance is linked to changes
in gene expression (Hodgins-Davis et al. 2015).

Overall, if directional selection is causing a branch-specific
shift in gene expression one would expect to see low within-
species variance, whereas if the shift is caused by a relaxation
of purifying selection or balancing selection, greater within-
species variance would be expected. When we looked at the
degree of variability between genes showing a shift toward a
higher or a lower expression level, we observed that down-
regulated genes have significantly higher variance than
genes showing upregulation (Figure 8). From this observa-
tion, we hypothesize that relaxation of purifying selection
might be driving the shifts causing downregulation on gene

Figure 9 Between-species gene expression divergence plotted as a func-
tion of divergence time according to the Heliconius phylogeny. Red: s2

from gene expression levels observed in Heliconius. Blue: simulated gene
expression divergence under random drift with different values of s.
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expression, a pattern that could eventually lead to a loss of
expression. However, balancing selection or experimental
noise could also lead to elevated within-species variance.
Because of the cost of gene expression, it is expected that
only those genes that are essential and have fitness effects
will continue to be expressed, whereas genes that are not will
eventually stop being transcribed (Stern and Crandall 2018).
However, a shift toward downregulation does not always
have to be a consequence of relaxed purifying selection. For
example, in the orthocluster with identifier Group_449_-
clean_0, a sevenfold lower expression shift was detected in
the branch leading to H. doris (Figure S7) and significantly
less variance than was expected transcriptome-wide (Fisher’s
exact test, P-value , 0.001). Directional selection favoring
downregulation of gene expression can occur in a scenario
where fine-tuning of expression levels is necessary for opti-
mal cell or tissue function (Cayirlioglu et al. 2008; Catalán
et al. 2016).

On the other hand, genes showing a branch-specific shift
toward upregulation have significantly lower variances when
compared to expression level shifts toward downregulation
(Figure 8). This observed pattern could be a result of direc-
tional selection acting on gene expression levels leading to a
reduction in the variation observed in gene expression. It is
possible that to achieve an increase in gene expression levels,
the selective forces leading to upregulation would have to be

sufficiently strong to result in a greater investment of energy
allocated to transcription costs (Wagner 2005; Lang et al.
2009). Some of the genes having the most extreme branch
shifts in expression, either toward a higher or a lower expres-
sion level, are involved in enzymatic activity (Appendix I).
Enzymes support biochemical and physiological processes,
helping the optimization of tissue function (Wagner and
Altenberg 1996; Feller and Gerday 1997). Thus, optimal en-
zymatic activity might be a key factor for species-specific
brain and eye function, which in turn might be optimized
for the species-specific life history and ecological niche. An
approach to further test for positive selection acting on the
genes showing a branch shift would be to take a population
genetic approach and identify selective sweeps (Fraser et al.
2010; Catalán et al. 2012, 2016). This approach would pro-
vide a second line of evidence for positive selection acting on
the transcriptome but will require demographic studies for
each species (Kim and Stephan 2002).

A factor possibly influencing the proportion of transcrip-
tome levels found tobeevolving throughdrift, or stabilizingor
directional selection is the methodology used for orthology
assessment. In our analysis of gene expression variation, we
assessed variation in orthoclusters where an orthologous hit
was found for each of our fiveHeliconius species. Additionally,
because de novo transcriptome assemblies are prone to form
chimeric transcripts, we used strict filtering criteria when

Figure 10 Between-species gene expression diver-
gence plotted as a function of divergence time
according to the Heliconius phylogeny. Red:
s2 from gene expression levels observed in
Heliconius. Blue: simulated gene expression diver-
gence under different values of s. Each panel shows
estimates for a different value of a.
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assessing for orthology (see Materials and Methods). Genes
with fast-evolving protein rates—to the point that orthology
assessment becomes challenging—might also show gene ex-
pression shifts, which would not be detected in our experi-
mental design. For example, orthology assessment for genes
showing sex-biased gene expression, which tend to have
higher evolutionary rates than unbiased genes, might require
an alternative method. In fact, from the orthoclusters that we
identified in this study, only two included genes with sex-
biased expression (Catalán et al. 2018).

With this work, we have generated a set of candidate
genes that are putatively evolving through directional selec-
tion, and that have the potential to be involved in the
processes of adaptation and speciation. To test the role of
these genes in such processes, functional validation will be
necessary to gain deeper insight in the evolutionary conse-
quences of gene expression shifts. Techniques like in situ
hybridization, RNA interference, and clustered regularly
interspaced short palindromic repeats/Cas9 are tools that
can be used to shed light on the functionality of these genes.
Particularly interesting could be those genes whose gene
expression levels have shifted to the degree of showing ab-
sence of expression (Figure S8). The evolution of gain and
loss of gene expression across a phylogeny requires a suit-
able theoretical framework that should be explored care-
fully, since such events have the potential to cause big
phenotypic shifts.
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