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Abstract

Towards a Systems Understanding in Biology: Data and Modeling

by

Young Hwan Chang

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Claire J. Tomlin, Co-chair

Professor Masayoshi Tomizuka, Co-chair

Breast cancer signaling pathways and neural systems are composed of networks of mutu-
ally dependent and thus interconnected genes or neurons. Systems biology is an emerging
interdisciplinary field of study that focuses on understanding these complex interactions
using a systematic approach. The main goal is transforming biology into a fully quantita-
tive, theory-rich science to understand complex behavior and produce effective predictions.
However, since often only incomplete abstracted hypotheses exist to explain observed com-
plex behavior and functions, new techniques for identifying breast cancer signaling pathways
and neural systems need to be able to incorporate different types of experimental data and
varying levels of prior knowledge.

This dissertation describes several efforts aimed towards an understanding of these sys-
tems by developing system identification tools and computational analysis techniques to
facilitate these studies. In systems biology, models may focus on different features, different
aspects and different objectives, so there can exist several model classes.

The first class of tools that we present includes the hybrid Boolean framework and
optimization-based inference, and is developed in conjunction with existing mathematical
tools. For example, the former is a combination of ordinary differential equations (ODEs) and
Boolean networks (BNs), and the latter is that of graph models and linear time-varying sys-
tems. These tools take advantage of existing mathematical models and compensate for their
limitations or disadvantages. The second class of tools that we present includes data-driven
graph reconstruction using compressive sensing, discrete mode identification via sparse sub-
space clustering, and low-rank representation of neural activity. These adopt a data-driven
approach using little prior knowledge which has its origin in the computer vision literature.
Case studies of Human Epidermal growth factor Receptor2 overexpressed breast cancer and
neural systems for a Brain Machine Interface are given.

Since the challenge in systems biology has become to show that the identified networks
and corresponding mathematical models are enough to represent the underlying system, these
tools are developed both for identifying models and also suggesting experimental directions
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to better understand the systems. The ultimate goal of the work presented is to create
a framework to broaden the spectrum of different modeling approaches since each model
can be described through a different perspective and may highlight different aspects of the
system.
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top of x− ẋ and y − ẏ plots (black lines) for visualization (a) x− ẋ (b) y − ẏ. . 108
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Chapter 1

Introduction

“So far as the laws of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality.” (Albert Einstein)

1.1 Systems Biology

A system is composed of networks of mutually dependent and thus interconnected com-
ponents that integrate the system into a unified whole. Every system exhibits emergent
behavior, a property possessed not by the individual components on their own but by the
whole system. It is apparent from simple investigations on the brain and cancer cell de-
velopment that the structure of an entire system actually orchestrates and constrains the
behavior of the components [151].

Systems biology is an emerging field and currently undergoing enormous expansion, from
roots in molecular and genomic biology. It has generated revolutions in ecology, population
biology, and evolutionary studies and is slowly making advances into biochemistry, devel-
opmental biology, genetics, and whole-plant biology. This has led biologists to recognize
that biological systems can be studied not only in terms of their mechanistic, molecular-level
components but also simultaneously in terms of complex interactions with biological func-
tions [84]. This systems approach is integral to current research in molecular cell biology
and stands in contrast to the reductionist paradigm of molecular biology, since reductionist
mechanistic investigations would miss the vital element of orchestration [131][100].

The field of systems biology is an interdisciplinary field of study that focuses on complex
interactions within biological systems. Even though the application of mathematical model-
ing to molecular cell biology is not a new endeavor and there is a long history of mathematical
descriptions of biochemical and genetic networks, these mathematical works have not been
considered central to most of molecular cell biology. However, this attitude is changing.
Currently, system-level investigations are frequently accompanied by mathematical models,
and improved by reincarnations of existing and new technologies such as treatment of can-
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cer, mouse models, siRNA-based gene knocking down screenings, computational modeling
of disease, and personalized cancer medicine [159].

The main focus of systems biology is to understand the regulation of complex cellular
pathways and of intracellular communication in quantitative and predictable ways, so as
to shed light on complex biological functions such as metabolism, cell signaling, cell cycle,
apoptosis, and cell differentiation. For example, the genome has presented biologists with
an opportunity to study genetic processes on a genomic scale, and to achieve quantitative
understanding, not just of individual molecular mechanisms but also of their interactions and
regulation at the systems level. Since the component identification market of modern biology
is approaching saturation, understanding function is becoming increasingly important for
molecular cell biology, function which is not at the level of single genes but rather at a
higher level of abstraction involving pathways. Particularly from the end of the 20th century,
the system-level investigation concept has been used widely in the biosciences in a variety of
contexts, to understand biological systems and discover underlying properties and organisms
functioning as a system whose theoretical description is only possible using techniques which
fall under the remit of systems biology [2]. Many research papers provide definitions of
systems biology [86][84][88][83][97][6]:

• “Every object that biology studies is a system of systems.” by Francois Jacob [88]

• “Systems Biology does not investigate individual genes or proteins one at a time, as has
been the highly successful mode of biology for the past 30 years. Rather, it investigates
the behavior and relationships of all the elements in a particular biological system while
it is functioning.” by Ideker et al.[83].

• “To understand biology at the system level, we must examine the structure and dynam-
ics of cellular and organismic function, rather than the characteristics of isolated parts
of a cell or organism.” by Kitano [97].

• “Systems Biology seeks to predict the quantitative behavior of an in vivo biological
process under realistic perturbation, where the quantitative treatment derives its power
from explicit inclusion of the process components, their interactions, and realistic val-
ues for their concentrations, locations, and local states.” by the National Institute of
General Medical Science at NIH [6].

Therefore, systems biology is concerned with the study of biological functions and mecha-
nisms, underpinning inter-cellular and intracellular dynamical networks, by means of system
orientated approaches. The transformation of biology into a fully quantitative, theory-rich
science now seems inevitable, even though not yet quite within reach [161]. Also, these de-
velopments have produced great intellectual challenges to the many communities involved,
such as mathematicians, physicist, chemists, biologists and even control engineers.

Systems biology can also be defined operationally, as by the MIT Computational and
Systems Biology Initiative1, in terms of four stages - measurement (from wet laboratory bio-

1http://csbi.mit.edu/
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Figure 1.1: Operational definition of systems biology.

logical experiments), mining (bioinformatics, database and data mining), modeling (network
models, mechanistic models, and biochemical models), and manipulation (systematic exper-
iments such as molecular genetics, chemical genetics, drug treatment, cell engineering, etc.)
[84]. Therefore, a systems biology approach means investigating the components of cellular
networks and their interactions; applying experimental high-throughput and whole-genome
techniques; and integrating computational and theoretical methods with experimental ef-
forts. Thus, the overall goal of systems biology is to foster links among biology, mathemati-
cal model and engineering, and to create an interdisciplinary field in order to undertake the
systematic analysis of complex biological phenomena. More detail descriptions of the overall
operational stages are shown in Figure 1.1.

1.2 Biological Complexity

Complexity is a serious problem in biology, and it is likely that chemical and physical pro-
cesses in living cells are extremely complex. The great strength of genomic biology is its
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ability to unravel biological problems one gene (or protein) at a time. Even though this
research paradigm has dominated life sciences for over 50 years, component-by-component
analysis will not suffice in the study of signal transduction, oncogene transformation, neu-
robiology, and other processes in which many genes interact. The early stages of systems
biology have been dominated by an emphasis on studying ever more genes in simple settings
and using simple types of data. However, as the complexity of the system increases, biolog-
ical systems can be characterized by a multi-dimensional landscape which defines distinct
types of complexity. For instance, as the complexity of the system increases, the number of
molecular species under investigation increases; the type of data changes from sequence to
structure, to sub-cellular localization, and then to time-dependent changes in protein activ-
ities in cells; the complexity of the biology increases from cells to tissues, to organisms and
finally to populations.

Recently, measurement can be undertaken in a high-throughput, multivariate manner
using various kinds of array technologies. Because of these high dimensional datasets from
which it is relatively difficult to draw hypothesis by intuition, many mathematical tools
or algorithms are necessary for mining data and reducing dimensionality which generate
hypotheses or possible interpretation of these datasets. There are many successes and signif-
icant contributions to basic understanding through the use of quantitative reasoning and the-
ory, for example, the analysis of microarray data using hierarchical clustering and correlation
coefficients between genes has stood the test of time, compared to more complex approaches
[55]. This approach provides a good introduction to systems-level thinking about cellular
dynamics. For similar reasons, computational modeling is required in order to develop new
predictions, understand dynamic behaviors and design new experiments effectively. As bi-
ological systems represent complex, interconnected and even nonlinear molecular systems,
unaided human intuition cannot produce effective predictions.

It should be noted that the complexity of biological systems does not reside solely in the
number of components and interactions, nor in their associated structural and chemical prop-
erties, but also in the hierarchical connection across space and time scales from gene-level to
cell-level to organism-level to population-level. Therefore, mathematical modeling should be
composed of a multidisciplinary approach comprising dynamical and topological properties
and aims at a systems understanding of underlying molecular and cellular mechanism of
biological systems.

1.3 Mathematical Models of Biological Systems

One of the most exciting trends and important themes in systems biology involves the use
of high-throughput genomic, proteomic, and metabolomic measurement data to construct
models of complex systems and diseases. Used appropriately and effectively, mathematical
models can represent pathways in a physically and biologically realistic manner, incorporate
a wide variety of empirical observations, and generate novel and useful hypotheses. For
example, Hodgkin presents a beautiful example of biophysical modeling that is the foundation
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of neurobiology [82]. The story of Hodgkin and Huxley’s study of giant nerve fibers runs step-
by-step from the basic biology and physiology of axons and action potentials, through the
crucial electrophysiology experiments, to the now famous Hodgkin-Huxley equations. These
computational models or reconstructions of the biological system are necessarily dependent
on both prior biological understanding of the system and the existence of well-annotated
datasets describing and representing the components of these systems.

However, in almost any case, models are only rough representations of their biological
counterparts because it is challenging to construct accurate models and establish rigorous
links to experimental data. Nevertheless, mathematical models enable one to:

• elucidate network properties and formalize current knowledge in a non-ambiguous way
including quantitative data;

• check the reliability of basic assumptions, and uncover lack of knowledge and require-
ments for clarification;

• tackle multiple sources of biological complexity at the same time in an effective and
rigorous fashion;

• have significant predictive power and increase the effectiveness of experimental design
and analysis.

Biological processes can be described in mathematical terms and each process can be de-
scribed through different (mathematical) models. However, a biological object can be inves-
tigated by means of different experimental methods and the choice of a mathematical model
or an algorithm depends on the problem, the purpose, and the intention of the investiga-
tor. Professor Lauffenburger provided a similar perspective at the 2011 AACR-NCI Systems
Biology Joint Conference:

“Choose the proper approach based on your aim and what you have.”

Since a model has to reflect essential properties of the system, different models may highlight
different aspects of the same instance. For a given object of study, many models may focus
on different features of the object so there can exist many models of the given objects.

In general, modeling approaches can be either (1) based on prior biological understand-
ing of the molecular mechanism involved or (2) constructed solely by analyzing the data
itself, without having to make any assumptions about the underlying mechanism. It is also
possible to have (3) a combination of these. In a physiochemical model [3], for example,
elementary reactions such as physical association, biochemical transformation, and changes
in cellular compartment are expressed as equations that are then linked into a larger system.
Since the resulting mathematical model is based on literature whenever possible and iden-
tified with acquired experimental data, we call it a “mechanistic model” or “theory-driven
model”. However, when we have little prior knowledge, the so-called “data-driven model”
allows multivariate biological measurements to derive biological insights from the datasets.
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Figure 1.2: Spectrum of different modeling approaches in systems biology:“Choose the proper
approach based on your aim and what you have” by Professor Lauffenburger, at the 2011
AACR-NCI Systems Biology Joint Conference.

For example, data-driven models such as Bayesian inference, hierarchical clustering or classi-
fication often reveal new, surprising and unanticipated biological insight. These approaches
can extract meaningful insight by reducing complexity in data itself. Figure 1.2 shows a
spectrum of different modeling approaches in systems biology and underlying philosophy
behind these modeling approaches.

1.3.1 Mechanistic models

Mechanistic modeling seeks to describe biomolecular reactions in terms of equations derived
from established physical and chemical theory. These theory-driven models use prior knowl-
edge to represent a specific biological system and they work well for pathways in which
components and connectivities are relatively well established. For instance, equations in
biochemical reaction models refer to identifiable reactions such as activation or inhibition,
and parameters have physical interpretation such as reaction rate or binding affinity.

A model can be viewed as translations of pathway maps into a mathematical form which
should become easier and more transparent. The correct mathematical model for a biological
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system depends on the properties of the system and the objectives of the modeling effort.
Ordinary and partial differential equations (ODEs and PDEs) are most commonly used
and both can be cast in either deterministic or stochastic form. For instance, ODE models
represent the rates of production and consumption of individual biomolecular species in terms
of mass action kinetics, an empirical law stating that rates of a reaction are proportional
to the concentrations of the reacting species. Changes in localization are represented by
compartmentalization; two fundamental assumptions of the compartmentalized ODE are
that each species is well mixed within a compartment, and transport between compartments
is slow and associates with an observable rate. If these assumptions are not satisfied, then
it is necessary to change the model in which the concentration of each species is described
explicitly with respect to space, typically using PDEs. Also, the models are likely to be
hybridized by incorporating highly detailed representations of critical reactions and more
granular and flexible views of the system as a whole.

The critical decisions in the design of mechanistic models are those about specifying the
scope and level of detail. Obviously, reaction models can only encompass a small subset of all
reactions taking place in cells. If the scope is too small, predictive power is lost; if the scope
is too large, the uncertainty is overwhelming. The issue of model scope usually depends on
both biological understanding of the system and existence of datasets representing the scope
of the system.

1.3.2 Data-driven models

While mechanistic modeling approaches should be based on prior biological understanding
of the molecular mechanisms involved, when prior knowledge is sparse, alternatively data-
driven model is more appropriate. It can help us to analyze large data sets by simplifying
measurements themselves, without having to make any assumptions about the underlying
mechanism [89].

New measurement technology is permitting large-scale quantitative studies of signaling
networks. Since it is routine to obtain measurements from the same cell or tissue across
space, time and spectral image, data-driven model approaches have recently become far more
powerful due to the new measurement technologies which are high-throughput, large scale
and quantitative. Such data are hard to understand completely by inspection and intuition.
However, data-driven modeling approaches, for example, Bayesian inference, classification,
clustering and dimension reduction techniques such as principal component analysis can
derive biological insights from large-scale experiment datasets.

In addition, “more data” actually means a broader sampling of the behavior and dynamics
of the biological mechanisms [86]. Therefore, as systems biology matures, such multidimen-
sional data is critical to develop models and draw hypotheses that describe the spatial and
temporal dynamics of biological system. A significant challenge for developing models is to
continue to handle these datasets where suitable representations do not exist yet, and to
match the growing diversity and quantity of the dataset.
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1.4 Challenges in Systems Biology: it’s not just “a”

problem.

1.4.1 The data problem

We often read that biologists are being overwhelmed with data and that the field is data
rich [46]. However, we believe that biology is actually data poor relative to the complexity of
the problems being tackled. In order to develop accurate systems-wide models of biological
systems, we need a “systematic data set” which is self-consistent experimental data covering
a substantial number of biochemical processes specific to the problem under study. For
example, measurements should be collected under the same condition such as a particular
cell line, the same space and time scale, except for the independent variables [94][146].

We refer to this as a systematic data set [46]. We believe that the creation of these
data sets will be a substantial challenge. Even for simple types of data such as protein
sequence, RNA expression levels etc., we have to make sure that all test procedures and
collection data are under the same controlled conditions. Especially, for large scale and time
consuming experiments, we should perform all experiments and collect data in the same
fashion, (except for the independent variable).

Also, classifications of large data sets are quite important and should precede building
a mathematical model. These classifications could improve the organization of the data
sets in a way that reveals underlying dynamics. Therefore, the key to successful clustering
is defining what is meant by “similar” and how “close” is defined. For example, since in
general, biological data are not static but dynamic, the metric of distance might be “geodesic”
distance. Figure 1.3 shows our classification result of a Reverse Phase Protein Array (RPPA)
data set [81] based on Isometric feature mapping (Isomap) [11]. Isomap gives successful
classification among different cell lines by cell line characteristics. For example, we can see
that SKBR3 and AU565 cell lines are clustered closely because they are nearly identical at
the genetic and transcriptomic levels as well as at the level of HER family proteins (A formal
statement and explanation of Isomap are given in the Appendix). We also anticipate that the
construction of systematic data sets will involve innovation [46]: (1) the development of new
experimental methods to monitor key biological reactions in cells, tissues, and organisms;
(2) mathematical modeling of experimental methods to uncover sources of variation and
establish the “degree of belief” associated with individual measurements such as values and
their probability density functions; and (3) novel informatics methods to gather and fuse
measurements into reliable self-consistent data sets suitable for probabilistic analysis.

1.4.2 Model development

In order to build a mathematical model, we should identify the specific questions that shall
be answered, along with the background, problem and hypotheses. For available knowledge,
we can check and collect quantitative and structural knowledge such as the components of
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Figure 1.3: Successful classification of an RPPA data set [81] which includes 179 proteins
measurement with different treatments (DMSO, LAP, AKTi, LAP+AKTi) at 8 time points
(0.5hr, 1hr, 2hr, 4hr, 8hr, 24hr, 48hr, 72hr) for 15 cell lines (480×179). Shown are the
results of Isomap and we put labels such as HER2+/−, ER+/−, Luminal, BaA, PR+ and
PI3K mutant based on references. Note that the Isomap[11] result classifies RPPA data set
in a low dimension feature space and clusters the dataset in a way consistent with cell line
characteristics, for example, amplified, non-amplified, mutant type, and so on. 3-Dimensional
representation of classification result is also presented in the Appendix.

the system, interaction map or network structure, kind of interactions and experimental
results with respect to phenotype responses against different stimuli (e.g. gene knockout,
RNAi, environmental conditions). The most important thing for selection of model classes
is that we have to choose a proper model approach based on our aim and what we have.
For example, we have to consider the level of description (atomistic, molecular, cellular,
physiological), deterministic or stochastic model, discrete or continuous variables and static,
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dynamical, spatio-temporal dynamical system and so on.

1.4.3 Challenges

Many mathematical modeling applications have traditionally sought to extrapolate from
existing information and underlying principles to represent various systems. Based on these
models, we could analyze, simulate, and predict behavior to further understand the system.

However, in studying biological systems, often only incomplete abstracted hypotheses
exist to explain observed complex behavior and functions; the system dynamics is known
to be sufficiently complex, and the dimension of state variables is large (relative to that of
engineering applications) because of the complexity of the problem. Thus, the challenge has
become to show that the identified networks and corresponding mathematical models are
enough to represent the underlying system.

As an example, for developing a mechanistic model, since the parameter identification
problem includes non-convex optimization in general, we cannot guarantee that our local op-
timal parameters represent the global optimal. For a similar reason, even though there are
many data-driven approaches for inferring graph structure, there is no statistical guarantee
on how well the inferred graph structure represents the underlying system when we consider
time-varying and nonlinear systems. Also, a particularly challenging problem in data-driven
reconstruction of networks is to identify whether or not important nodes in the graph struc-
ture are missing, how many are missing, and where these nodes are in the interconnection
structure. Moreover, we should always consider measurement noise and unmodelled dynam-
ics.

In spite of these challenges, as systems biology matures, in order to continue to affect
the study of metabolic networks, protein interactions and genetic networks in systems biol-
ogy, mathematical modeling must simultaneously characterize the complex and nonintuitive
behavior of a network, while revealing deficiencies in the model and suggesting new experi-
mental directions.

1.5 Organization

This dissertation covers several mathematical tools for modeling or identifying biological
systems in systems biology. Parts of the material presented here has appeared previously
in papers: Chang and Tomlin [33][37][35][36] and Chang et al. [34][31][32][38][115]. In the
following, we provide an overview of the main themes from each of the subsequent chapters.
Though the introduction contains few citations, the appropriate references to earlier work
will be given in each chapter. Lastly, the contributions of this thesis are summarized below.

In Chapter 2, we cover a brief overview of both the Integrative Cancer Biology Program
(ICBP) and Emerging Frontiers in Research and Innovation (EFRI) project. We consider
two projects as applications for the proposed system identification tools. First, for the ICBP
project, we consider the HER2 (Human Epidermal growth factor Receptor 2) overexpressed
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breast cancer signal pathway. We have the basic skeletal framework of molecular events
functioning parallel to and downstream of HER2/3 within the PI3K/Akt pathway which will
be described in detail. Parts of the network are very well studied, yet there is a significant
part of the network which is currently unknown. Our goal is to develop and experimentally
validate an integrated computational model of responses of HER2-amplified cells to tyrosine
kinase inhibitors (TKIs) targeting the catalytic kinase function of the HER family proteins.

Second, for the EFRI project, we consider the primate motor system in a setting that
takes into consideration the strong coupling between brain, biomechanics and behavior.
Our goal is to advance our understanding of fundamental principles in the neural control
of movement in 3-dimensional space involving physical interactions with the world. The
central question is whether motor programs help a monkey control a highly redundant multi-
degree of freedom biomechanical plant or not. For this, we build a mathematical model and
analysis tool in order to test the motor program. Through this study, we anticipate that our
understanding of the primate motor system can help improve the current neuroprosthetic
approaches.

In Chapter 3, we develop a Hybrid Boolean Model (ODE+Boolean) for HER2 overex-
pressed breast cancer signal pathways with postulated epigenomic feedback. The basic idea
in this model is to combine continuous dynamical systems (an ODE model for already well-
known parts of the network) with a discrete transition system (Boolean, for postulated but
largely unknown components). This framework is easier to validate than a complete ODE
model for large and complex signal pathways to find unknown pathways which match the
response to experimental data. The advantage of using a Boolean model for the unknown
parts of the network is that relatively few parameters are needed. Thus, the framework
avoids over-fitting, covers a broad range of pathways, and easily represents various experi-
mental conditions. The overall goal of the hybrid model is to predict the behavior of HER2
overexpressed breast cancer signaling pathway, thus helping to understand unknown parts
of the pathway between experimental results and qualitative/quantitative results.

In Chapter 4, we propose a data-driven inference scheme to identify temporally evolving
network representations of genetic networks. In the formulation of the optimization problem,
we use an adjacency map as a priori information, and define a cost function which both drives
the connectivity of the graph to match biological data as well as generates a sparse and robust
network at corresponding time intervals. Through simulation studies on simple examples, it is
shown that this optimization scheme can help to capture the topological change of a biological
signaling pathway, and furthermore, might help to understand the structure and dynamics of
biological genetic networks. We use this algorithm to study a breast cancer signaling pathway
to understand short-term and long-term behaviors by capturing the dynamic evolution of
the network and understanding HER2-amplified breast cancer signal pathway with a systems
point of view. For example, for the short-term behavior after TKI is introduced, downstream
components are regulated effectively because the biological network shows Positive Negative
(PN) feedback. On the other hand, for long term behavior, the downstream components are
activated because the biological network evolves to Positive Positive (PP) feedback which
induces a slower but amplified signal response.
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In Chapter 5, we consider the problem of reconstructing network structure from observed
data, and in turn uncovering the underlying mechanisms responsible for the observed be-
haviors. First, we focus on a sparsely connected graph structure with all nodes accessible
for measurement and no measurement noise, and then propose a method for reconstructing
the graph structure without any a priori information of connectivity, based on time series
gene expression data. Our method is based on compressive sensing (CS) and we show the
importance of incoherence and demonstrate that incoherence in the sensing matrix can be
used as a guideline for designing effective experiments.

Second, we consider a more general problem in which there might be hidden nodes which
affect system dynamics, since a key challenge inherent in the network reconstruction problem
for practical use comes from the necessity to deal with noisy and partial measurements.
Then, we ask whether it is still possible to reconstruct the graph structure reliably when the
dynamics of a certain node is corrupted by arbitrarily large errors and in addition, all the
measurements are contaminated by measurement noise. We show that we can infer the graph
structure reliably by solving a two-stage convex optimization problem and demonstrate our
studies with a set of numerical example to illustrate its performance. Also, we show a simple
biological example of HER2 overexpressed breast cancer using an RPPA dataset.

In Chapter 6, we present a new spatio-temporal perspective in analyzing neural activity
dataset for the brain machine interface (BMI) system. We consider the use of a hybrid
system approach in order to understand how the brain uses motor programs to control a
highly redundant multi-degree of freedom arm. The monkey might decompose a simpler
task and determine the sequence of the discrete modes of operation in which each discrete
mode may represent a pose such as planning, execution or a certain pose or motor program.
We consider a hybrid system modeling approach to understand the operation of brain and
design a decoder map between neural activity and kinematic movements. This would be
necessary for a big step towards the next level neuroprosthetic technology.

First, we use unsupervised segmentation of neural activity via Sparse Subspace Clustering
(SSC) to identify the discrete mode. The idea is that once we interpret and extract the
features of our system such as a switching condition, the number of modes and sequences of
modes, then we could use conventional identification for a single Linear Time Invariant (LTI)
system. We demonstrate that the monkey brain does in fact operate in various discrete modes
when controlling arm movements which is a useful abstraction for engineering application.

Second, we apply Robust Principal Component Analysis (RPCA), a method well suited
for extracting data matrices’ low-rank component, for example dynamically meaningful struc-
ture, to neural spike datasets in order to extract neural signatures that signify the onset of
submovements, a type of motor primitive. We aim to identify common event-related neural
features and validate submovement-based motor primitives inferred from the hand velocity
profiles. This method allows (1) removal of sparse corruption signal or task-irrelevant signal
from data, (2) identification of task-related dynamic patterns, and (3) detection and pre-
diction of submovements. We also explore using the Random Projection (RP) techniques
and applying RP to data prior applying RPCA improved the submovement prediction per-
formance by de-sparsifying neural data while preserving certain statistical characteristics of
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aggregate neural activity.
In Chapter 7, we close with a summary of the main results presented in the disserta-

tion, as well as some thoughts on direction on future work. The key novel ideas and main
contributions in this thesis are:

• developing a hybrid Boolean framework which is easier to validate than a complete
ODE model for large and complex signal pathways, avoids over-fitting, covers a broad
range of pathways, and easily represents various experimental conditions;

• proposing an optimization-based inference scheme which is able to capture the topo-
logical change of a biological signaling pathway and might help to understand the
structure and dynamics of biological genetic networks;

• developing a data-driven algorithm for identifying gene regulatory networks which is
able to guarantee the exact reconstruction, suggest new experimental design and reveal
deficiencies in the model without any prior information;

• providing new perspectives in analyzing neural activity datasets to understand and
identify motor programs, and demonstrating that the monkey brain does in fact operate
in various discrete modes and submovements are associated with neural activity when
controlling arm movements.
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Chapter 2

Project Overviews

We provide a general overview and background of two projects that are central to this
dissertation: (1) “Modeling response to HER2 targeted therapies” in collaboration with
OHSU/UC Berkeley/LBNL/MD Anderson/UCSF Center for Cancer Systems Biology1 and
(2) “A hybrid control systems approach to the Brain-Machine interfaces for exoskeleton
control” (EFRI-M3C2) in collaboration with Brain-Machine Interface Systems Laboratory3

and Mechanical Systems Control Laboratory4. Parts of the material described here have
appeared in project proposals [72][29].

2.1 HER2 Overexpressed Breast Cancer

2.1.1 Background and significance

Approximately one quarter of sporadic breast cancers, representing about 45,000 new cases
per year in the U.S., have amplification and overexpression of the HER2 gene [138]. An
abundance of in vitro and in vivo experimental models have established that overexpression
of HER2 is a potential cause confirming a link between HER2 amplification and breast
cancer [104][78]. Furthermore, HER2-amplified breast cancer appears to represent a unique
type of solid tumor cancer due to its exquisitely HER2-dependent biology [105]. This has
been reproducibly demonstrated in engineered models of inducible HER2 overexpression and
in knockdown models of human tumor cells [40][58][9][105][133].

The antibody trastuzumab was first introduced for treatment almost a decade ago and ef-
forts to develop targeted therapies against HER2-amplified breast tumors began with the de-
velopment of trastuzumab to inhibit HER2 signaling [14][139]. Trastuzumab induces reduced
proliferation by downregulation of HER2/neu leading to disruption of factors and repression

1http://sysbio.banatao.berkeley.edu/
2http://www.nsf.gov/eng/efri/about.jsp
3http://www.eecs.berkeley.edu/∼carmena/
4http://www.msc.berkeley.edu
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of proangiogenic factors, and inhibits the effect of overexpression of HER2. Trastuzumab
showed significant clinical activity but molecular mechanisms underlying the clinical activity
of trastuzumab remain unknown and may involve a significant component of immunologi-
cal targeting of tumor cells [104][45][108]. More recently, tyrosine kinase inhibitors (TKIs)
targeting the catalytic kinase function of the HER family proteins have been developed and
represent the second generation of attempts to target HER2 signaling in HER2-amplified
breast cancers. In contrast to trastuzumab, TKIs have a solid mechanistic basis and are
well positioned to test the HER2-targeting treatment hypothesis. However, the single agent
clinical activities of this class are modest and the most extensively studied TKI, lapatinib,
which is introduced more recently, also shows efficacy but is not durable [75][22][67].

Clinical responses to trastuzumab and lapatinib are not uniform between patients and
typically are not durable. Several mechanisms have been identified that may modulate re-
sponse including (a) activating downstream mutations in the PI3K pathway, (b) cytokine and
microenvironment mediated activation of interacting networks, (c) PI3K mediated changes
in the HER3 phosphorylation-dephosphorylation equilibrium and (d) transcriptional feed-
back regulation from response related network elements. The central question that motivates
this project is:

“Do the computational models of the diverse resistance and response mechanisms

allow us to develop optimal receptor tyrosine kinase network targeted drug combinations?

2.1.2 Goals of the research

The goal of this project is to develop and experimentally validate an integrated computational
model of responses of HER2-amplified cells to lapatinib (chosen because of its comparatively
simple mechanism of action) that encompasses rapid phosphorylation (on the order of a few
minutes) and second messenger based signaling, influences from the microenvironment and
slower processes involving transcription mediated feedback regulation including epigenomic
modulation (on the order of a few days). This model will enable comparative assessment of
the relative importance of mechanisms of resistance, elucidation of mechanisms of transcrip-
tion coupled feedback and optimization of treatment timing and multi-drug combinational
strategies.

(a) Rapid phosphoprotein mediated signal transduction

HER2-amplification induced constitutive signaling is initiated by heterodimerization of HER2
with HER3 and other HER-family receptor tyrosine kinases (RTKs) to activate downstream
signaling networks including PI3K and MAPK. These, in turn, initiate downstream tran-
scriptional events including expression COX-2, CXCR4, ETS-family transcription factors
and HIF-1α that drive increased proliferation, enhance survival, alter differentiation and in-
crease migration. Initial signaling events are rapidly occurring on the time scale of minutes.
The core components of this process are illustrated schematically in Figure 2.1. Various
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Figure 2.1: A simplified schematic showing activating (arrows) and inhibiting (bars) rela-
tionship within the basic skeletal framework of molecular events functioning parallel to and
downstream of HER2/3 within the PI3K/Akt pathway. Cross-talk and relationship with
the RAF/MEK/MAPK pathway are described. Signaling proteins are shown in gray. The
drugs that will be used to perturb the circuit and interrogate the system are shown in orange
adjacent to their targets. The protein readouts that will be used to assay signaling activity
after drug treatments are shown in green at their proper locations on the circuit. Transcrip-
tional feedback relations regulating signaling network components to be further elucidated
are indicated as dashed lines (Figure 1 in [72]).

models have been developed to describe and help understand HER signaling. The most
comprehensive model to date is the Immediate-early HER Reaction Model (IERMv1.0) de-
veloped in [39], which presents an ordinary differential equation (ODE) model of the mass
action kinetics of Akt and ERK signaling, in response to stimulation of the four HER recep-
tors. The model is developed based on the immediate-early response (0-120 minutes after
receptor stimulation). To construct an accurate model, it is required to include the impact
of mutations in genes encoding downstream signaling elements, especially PI3K mutations,



CHAPTER 2. PROJECT OVERVIEWS 17

Figure 2.2: Inhibition of HER2/3 signaling by lapatinib. SKBR3 cells were treated for the
times indicated and cell lysates were assessed using western blotting. These data show that
HER2/3 signaling is inhibited at 1 hour by 50nM lapatinib but 5µM drug is required to
durably inhibit HER2/3 signaling (Figure 1 A and B [5]).

since PI3K mutations dampen biological responses to lapatinib in preclinical models and in
the clinic. Model features and parameters for PI3K network mutations may significantly al-
ter both rate constants and the PI3K signaling network structure itself. Also, it is necessary
to include a long term behavior which will be described below.

(b) Long term transcriptional feedback regulation

Despite continued treatment of tumor cells with TKIs, HER3 signaling and Akt activity
resume after 12-24 hours as shown in Figure 2.2 [136][120]. This is not an artifact of monolayer
cell culture model since it is reproducible in xenograft models in vivo [136]. If HER3 is
not permitted to escape (by siRNA knockdown), TKI inhibition is highly pro-apoptotic.
Thus, the failure to inhibit HER3/PI3K/Akt signaling significantly undermines the anti-
tumor efficacies of TKIs against HER2-driven breast cancers. These findings are entirely
consistent with the limited anti-tumor activities of these drugs seen in clinical trials and
identify inhibition of the HER2-HER3 transactivation as a rate limiting barrier.

Our collaborative groups of Dr. Gray’s Lab at OHSU and Dr. Moasser’s Lab at USCF
have extensively studied the mechanisms that allow HER3 to escape HER2-directed drug
therapy. Gene expression profiling shows no induction of novel tyrosine kinases or increased
expression of existing tyrosine kinases. There is no compensatory activation of other RTKs.
Therefore, HER3 reactivation does not seem to be due to oncogene switching. Instead, the
induction in HER3 expression is at least partially mediated through transcriptional upreg-
ulation of HER3 mRNA, a greater upregulation of total HER3 protein expression, an even
greater upregulation of membrane HER3 expression, and a decreased rate of HER3 dephos-
phorylation [136]. Therefore, although HER TKIs inhibit HER2 catalytic kinase activity in
a linearly dose-dependent manner, the HER2-HER3 complex signaling is endowed with a
robust signal buffering capacity that sustains it against a nearly two-log inhibition of HER2
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catalytic activity. Understanding and explaining this signal buffering mechanism including
transcriptional feedback regulation to HER3 is a principal goal of our modeling effort in
this project. Also, we have to validate the possibility that PI3K signaling may activate the
epigenomic transcriptional repression mechanism and it will down-regulate elements of the
HER2/3 signaling pathways, and model response of HER family inhibitors in tumors.

2.1.3 Approach and methodology

We will consider different aspects of treatment that influence treatment response: (a) rapid
phosphoprotein mediated signaling and influences of PI3K mutations thereon and (b) long
term transcriptional feedback regulation of HER3 and other proteins involved the rapid re-
sponse. We will focus on the analysis of cancer cell as a complex biological system. For this,
we develop and implement computational models of processes relevant to cancer prevention,
diagnostics and therapeutics. The integration of experimental biology with mathematical
modeling leads to new insights in cancer biology and innovative approaches to the manage-
ment of cancer.

There is a growing body of dynamic models of HER signaling. All of these models are
differential-equation based, either deterministic or stochastic ODEs. They provide insights
into the operation of HER signaling, and are building blocks upon which other models can
be based. We will build on existing models to develop models of the HER2/HER3 signaling
network, to address the central questions outlined above: rapid phosphoprotein mediated
signaling and influences of PI3K mutations thereon, influences of the microenvironment, and
long term transcriptional feedback regulation of HER3. In order to do this, we will need to
extend previous modeling efforts in several key directions, the details of which are outlined
below:

• Late-response model: we will design models to help identify a largely unknown piece
of the HER2/HER3 signaling networks involved in long term transcriptional feedback,
and investigate the mechanisms behind the relatively slow dynamics of HER3 recovery
in response to HER2 inhibition.

• Inference model: we will develop inference method to capture topological change of
temporally evolving networks and understand short-term and long-term behavior of
the HER2/HER3 signaling with a systems point of view.

• Reconstruction of gene regulatory network: we will develop new reconstruction method
which can guarantee exact reconstruction of unknown piece of the HER2/HER3 sig-
naling network or reveal deficiencies in the model.

The model will differ from existing work in important ways: it will exploit a mathematical
separation of time scales for fast and slow dynamics, incorporate underlying genetic aberra-
tions, and include parallel signaling. The inference method will be used to help understand
the roles of cooperating genetic aberrations, transcriptional and translational regulation,
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vesicle control and microenvironment in fast and slow dynamic processes. A combination of
inference analysis, reconstruction method and dynamic modeling will be used to model the
unexplored effects of modulation of transcription on HER2/3 signaling.

2.2 A Hybrid Control Systems Approach to

Brain-Machine Interfaces for Exoskeleton Control

2.2.1 Background and significance

Our goal is to advance our understanding of fundamental principles in the neural control of
movement in scenarios that involve physical interactions with the world. Furthermore, this
work will transform neuroprosthetic systems to improve the quality of life for a large number
of neurological patients. The central question that motivates this project is [29]:

“Does the brain use motor programs to help it control a highly redundant

multi-degree of freedom (DOF) biomechanical plant such as the arm?”

Here, motor programs are defined as short patterns of covariation between motor variables,
where these patterns can recur in different behaviors at different amplitudes and times [92].
Sample motor variables are joint rotations [155][154] or the muscular electromyographic
(EMG) activity acting on these joints. These programs, which are also referred to as time-
varying postural or muscular synergies [50][117], are extracted from data using dimensionality
reduction techniques such as non-negative matrix factorization [51][98]. A small number of
programs have been reported for human reaching [53][52] and these programs also have
kinematic analogues.

While motor programs are defined via statistical decomposition of movement data, Car-
mena’s group has recently found evidence that they may also be encoded within the nervous
system [113][114]. They measured forelimb EMG activity while monkeys made reaching and
grasping movements, and simultaneously recorded cells in motor cortex. They found that
there were large populations of cells sensitive to the recruitment parameters of motor pro-
grams, as well as the control of individual muscles. Most neurons were activated phasically,
prior to motor program onset, suggesting that movements could be predicted by observing
neural activity prior to program onset. This encoding framework is consistent with recent
observations that motor cortical cells are well-tuned not only to instantaneous motor pa-
rameters such as movement direction, but also to entire movement trajectories [80][118][128]
or the geometrically-simple curves into which they can be decomposed [144][145]. Moreover,
intracortical microstimulation in rat [124], cat [156] and macaque [73][74] motor cortex can
evoke complex multi-joint forelimb behaviors, via EMG patterns that Carmena’s group has
found can be decomposed into a small set of muscle synergies overlapping those seen in
natural behavior [116].

The main goal of this project is to test the motor program framework in a setting that
takes into consideration the strong coupling between brain, biomechanics and behavior. This
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Figure 2.3: Block diagram of the different experimental and theoretical components of the
system and cartoon of the behavioral tasks.

framework has generated several specific hypotheses, each of which we will test in a series
of proposed experiments that require a combination of novel experimental, theoretical, and
technical innovations. Together, we expect these will transform our understanding of the
primate motor system, and disrupt current neuroprosthetic approaches to repairing it when
damaged.

A hierarchical, distributed hybrid control system will enable system identification of
discrete motor programs planned by the monkey, based on offline data analyses of neural
recordings made while the animal makes reaching movements tracked by an exoskeleton.
Combined with a musculoskeletal model [148][162], the hybrid control system will determine
how the discrete motor programs are associated with the control of intrinsic joint rotations
and forces, not just endpoint position. Used in an online control mode, the hybrid controller
will serve not only to detect motor programs but to provide smooth, continuous prosthetic
control. The ability to perform system identification of motor programs is basic to all
components of this project, with incorporation of a musculoskeletal (MSK) model and an
online control mode being additional capabilities to be programmed. Figure 2.3 represents a
simplified schematic block diagram of the different experimental and theoretical components
of the system.
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2.2.2 Goals of the research

By the end of the project we expect to be able to synthesize all different innovations into
a single new paradigm unifying brain, biomechanics, and behavior. Visually-cued motor
plans in motor cortex will be: (a) read by a BMI, (b) interpreted by a hybrid controller
and musculoskeletal model, and (c) translated into appropriate movements and stiffness in
a multi-degree of freedom (DOF) upper-limb exoskeleton. The proposed research has the
potential to dramatically impact the following fields:

• Neurophysiology of motor control: the outcome of this study will impact systems neuro-
science by advancing our understanding of fundamental principles on the neural control
of movement in scenarios that involve physical interactions in the world. Specifically
we aim to elucidate principles of motor coordination that take into consideration the
strong coupling between brain, biomechanics and behavior.

• Hybrid system identification and control: existing theoretical frameworks such as
Kalman filtering with static decoder map dealt with dynamics, but have limitations.
Here we propose a novel framework based on Hybrid System Identification and Control
from which we can learn how the brain decomposes complex tasks into simpler tasks
and discrete modes naturally. Also, we can provide a novel control scheme to perform
a complex task and support this theory via experimental results. Moreover, the impact
of this framework will drive the development of a method for identifying hybrid sys-
tem models and design control schemes which provide an effective tool compromising
between the richness and complexity.

• Neuroprosthetic systems: brain-machine interfaces that incorporate biomechanics in
the loop will make a great impact on the quality of life for neurological patients by
providing reliable performance while interacting with real objects and in real world
scenarios. Specifically, this technology has the potential to impact millions of people
suffering from spinal cord injuries, stroke and other neurological disorders. Moreover,
the impact of this technology in the clinical realm will drive neural technology to
the next level: human machine interaction, and augmentation of sensory, motor and
cognitive capabilities in healthy subjects.

2.2.3 Approach and methodology

(a) Brain Machine Interface (BMI)

In a BMI system, the neural filter allows the experimenter to partially define the causal-
ity between brain activity and motor output, allowing movement intentions to be decoded
without needing to account for the complex sensorimotor transformations embodied in the
nervous system. Here, a novel form of filter accounting for cells’ relationship to entire move-
ment trajectories will be compared against conventional BMI decoders. As the neural filter
determines the contribution of each recorded cell to movement kinematics, neuron dropping
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can be used to investigate the effect of cells being lost within the sample available to the de-
coder, for example, due to small movements of the recording array. The influence of ongoing
sensory feedback to the cells can be tested by tasks employing sensory gating of both visual
and proprioceptive signals.

(b) Hybrid Control Scheme

The physical activity described in this study is dynamic limb motion within a BMI system.
Our research seeks to understand and model a mapping between the brain and arm motion,
to understand how the brain learns to control an exoskeleton. One of the key challenges
is to develop a representation of the subject’s intention including motion, speed of motion,
and the involved forces and torques, enabling a clear control strategy, or set of strategies.
Our technological focus in designing this representation will be a new kind of mathematical
model integrating the continuous dynamics of motion with the modal dynamics of different
poses or tasks.

Modeling techniques used today are largely based on continuous state dynamic models.
As the number of state variables increase, though, to include variables representing the nec-
essary information, such models quickly become intractable. Discrete state dynamic models
have been used in the past to model large and complex systems; these models represent all
configurations of the system as a finite set of behaviors, with dynamics modeled as simply
switching from one behavior to another. While relatively simple, these models are often too
abstract to capture important behavior. Hybrid systems provide an alternative, by com-
bining both continuous and discrete state dynamics. These systems model changes in the
system behavior as a continuous evolution interspersed with mode transition from one pose
to another.

In this project, we consider a hybrid model with a large but finite number of discrete
states. Each discrete state may represent a pose such as “reaching to desired location” or
“maintaining an endpoint condition” or motor programs. A string of symbols with associated
parameters can then be used to describe a sequence of motions, either repetitive stretching
or dynamic motions between poses. The transitions between poses are constrained by the
dynamic motion of the subject. In such a way, sequencing between modes forms a set of
elementary motions, while the continuous states record the “parameterization” of each mode:
the range of joint angles, the speed of motion, and time. Using this framework, we will
develop a “language” of motions that may be used to describe the control of internal joint
rotations and forces. This language requires relatively low bandwidth for representation
and thus control, since a simple phrase describing each pose captures a large amount of
information and describes motions that can be easily controlled using a series of simple
linear controllers indexed to each mode.

The idea of using hybrid system models to represent dynamic motion has its origins in the
computer vision literature [153]. The key novel ideas in this project are: 1) the development
of a method for system identification of hybrid system models from primate data in the
Carmena Lab and the use of such data to test the quality of our models; 2) the use of these
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models to design control law robust to experimental contingencies experienced during online
control of neuroprosthetic devices; and 3) the integration of the hybrid controller with an
MSK model to enable skillful control of an exoskeleton.

We represent this process as two maps: the first is the mapping of information about the
uncertain, internal and external environment of the agent into a top-level control decision.
The high level controller will not only detect motor program but will coordinate actions
and provide smooth transitions between modes. The second is the process that maps the
top-level control decision to the sequence of control and coordination actions that enables a
subject to complete a task or a sequence of tasks. Identifying models for this process requires
research into a paradigm that provides for the seamless integration of probabilistic, discrete
techniques with control of continuous systems.
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Chapter 3

Modeling Response of Biological
Signal Pathways using a Hybrid
Boolean Framework

Mathematical models in systems biology are often constructed by either Ordinary Differen-
tial Equation (ODE) modeling or logical (Boolean) modeling. We develop a Hybrid Boolean
Model (ODE+Boolean) for biological signal pathways with postulated epigenomic feedback
which represents long term transcriptional feedback regulation of HER3. The basic idea in
this model is to combine continuous dynamical systems (an ODE model for already well-
known parts of the network) with a discrete transition system (Boolean for postulated but
largely unknown components). We use the existing or well-known ODE model to “trigger”
signal pathways represented by a Boolean model. This framework is easier to validate than
a complete ODE model for large and complex signal pathways, for example to find unknown
pathways which match the response to experimental data. The advantage of using a Boolean
model for the unknown parts of the network is that relatively few parameters are needed.
Thus, the framework avoids over-fitting, covers a broad range of pathways, and easily rep-
resents various experimental conditions. The overall goal of the hybrid model is to predict
the behavior of biological signal pathways, thus helping to understand unknown parts of the
pathway between experimental results and qualitative/quantitative results. Extensions are
discussed, and numerical examples in biological systems as well as engineering example are
provided. The material in this chapter is based on the work in [37].

3.1 Introduction

Mathematical models in systems biology are often constructed by either ordinary differential
equation (ODE) modeling or logical (Boolean) modeling [18]. The ODE model can cap-
ture detailed “low-level” phenomena such as protein concentration and mass action kinetics
[39][87]. However, the model is estimated by determining free parameters or unknown re-
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action rate constants using typically limited experimental data, even though large amounts
of experimental data are required in order to avoid over-fitting. Moreover, ODE models
typically require a good understanding of underlying dynamics. On the other hand, logical
models such as Boolean Networks (BNs) seek qualitative rather than quantitative models of
biological systems [132][106]. BNs can succeed in capturing “high-level” phenomena such as
activation or deactivation with fewer parameters, so they can be used to evaluate model struc-
ture. However, since they cannot capture “low-level” dynamics for nonlinear systems such
as biological signal pathways, such logical models cannot guarantee accuracy. In spite of this
limitation, most research using this BN approach includes analysis of qualitative pathways
or gene regulation networks because they are easy to simulate or evaluate [132][106][129].
In this chapter, we will introduce a Hybrid Boolean Model (ODE+Boolean) to combine the
advantages of each model.

Previous work has focused on a hybrid model which uses simple continuous dynamics,
lumps the complexity into the discrete inputs and gives us the capability to analyze the model
mathematically [68][91][76]. Also, the use of hybrid (especially piecewise affine) models for the
analysis and identification of biochemical regulatory networks are proposed [163][122][90][15].
Motivated by previous work, we develop a way to combine continuous dynamical systems
(ODE, already well-known parts) with discrete transition systems (BN, unknown parts) to
cover a broad range of signal pathways. We use distinct modes with Boolean variables which
abstract the detailed nonlinear behavior of a system into piecewise continuous dynamics with
discrete transitions from one mode to another.

This framework is easy to validate and it is easy to include unknown pathways to match
the response to the experimental data with only a few parameters. The strengths of this
framework are that it:

• Avoids over-fitting using limited data (relatively few new parameters introduced);

• Covers a broad range of pathways and it is easy to simulate large networks with different
stimulations and inhibitions (close to what biologists do in their experiments);

• Can help to understand the dynamics that underlie complex interwoven networks;

• Admits analyses such as phase portraits with Boolean variables which can help to
understand qualitative dynamic behavior without simulation.

In this chapter, we study how we combine ODE models with Boolean networks in order
to cover a broad range of signal pathways. For example, in the HER2 positive breast can-
cer network [72] that we study in Figure 3.1(a), we have a well-known ODE model for the
upstream part of the gene regulatory network (red part) which triggers the unknown down-
stream part of the network (blue part, Boolean network) where only a few states can be
measured. Also, these Boolean networks affect the known ODE model by interaction or
feedback. We could build a full ODE model covering a broad range of signal pathways but
it requires many measurements to estimate all parameters and avoid over-fitting. Here, we
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(a)

(b) (c)

Figure 3.1: (a) Conceptual diagram of the hybrid Boolean framework for the HER2/3 net-
work in breast cancer (ODE: well-known model + Boolean network: unknown parts; arrow
end: activation, dash end: inhibition) [72][137] (b) conceptual representation of trajectories
in the hybrid boolean model (c) conceptual representation of “virtual state”.

propose the framework which covers a broad range of pathways but which uses limited mea-
surement data. Therefore, our proposed model might be a rather abstract representation
compared with the full ODE model. Key contributions of this work include:

• Developing a way to construct a hybrid Boolean framework for biological signaling
pathways and connect ODE to BN and BN to ODE;
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• Demonstrating how we can estimate new parameters by introducing “virtual states”;

• Providing a qualitative-quantitative modeling method and analysis of biological sys-
tems.

The rest of the chapter is organized as follows: we introduce the Hybrid Boolean Model
in Section 3.2, and present parameter estimation for the proposed framework based on the
Pontryagin Maximum Principle in Section 3.3. Also, we analyze our model and discuss
possible applications with numerical examples in Section 3.4.

3.2 Hybrid Boolean Models and Simulation

A hybrid Boolean model represents a dynamical system with interacting continuous dynamics
and discrete-event dynamics. Continuous dynamics arise as an ODE specifying how the mass
action kinetics evolves over time. Discrete components encoded as a BN can be triggered
by discrete switches encoding protein concentrations reaching unknown thresholds. Also,
the BN can affect the dynamics of the known ODE model if the ODEs have interactions
with the BN. For example, Figure 3.1(a) shows that [Akt(ODE)] activates [Rheb(BN)] which
inhibits [RAF(ODE)] (i.e., AktODE a (TSC2 a Rheb)BN a RAFODE). Therefore, there are two
classes or events which connect the ODE to the BN and vice versa in our framework and
these transitions between different dynamic systems need to be treated carefully.

3.2.1 Notation

Let {x(t) ∈ RNODE}Tk+1

Tk
denote the trajectory of the system state where NODE is the number

of state variables for the ODE; suppose that it evolves according to the governing equation
ẋ = fk(x, t), where Tk and Tk+1 represent discrete time points for the BN; the dynamic
model fk : Rn × [Tk, Tk+1]→ Rn represents the system dynamics from Tk to Tk+1. In other
words, at each discrete time Tk, a system transition could occur, and the system dynamics
fk as shown in Figure 3.1(b) could switch to another system fk+1. The transitions are
related to virtual state and threshold which are explained in the following section. Also,
we denote the Boolean state by Bp ∈ {0, 1} where p ∈ {1, ..., NBN} and the ODE state
by xq, q ∈ {1, ..., NODE} where NBN and NODE represent the number of state variables for
the BN and ODE model respectively. Here, the number of Boolean variables (NBN) is not
necessarily the same as the number of proteins represented by the BN, as our framework
needs only “event related” Boolean variables, as we discuss below.

3.2.2 Virtual State Connecting BN to ODE

As mentioned above, there are two classes of variables in our framework: a threshold con-
necting ODE to BN and a virtual state connecting BN to ODE.
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Definition (Threshold) A threshold Θij determines the activation of the BN or simply
the value of the Boolean state Bj which can affect the ODE based on the xi.

Bj =

{
1 if xi ≥ Θij

0 otherwise

Definition (Virtual state) A virtual state xvirtual is introduced as a new state variable which
is used to buffer values of another continuous state variable at the boundary of the ODE/BN,
as described below.

Intuitively, the virtual state may be described as follows: imagine two reservoirs which
are connected to each other with control valves in Figure 3.1(c). One represents a state
variable in the ODE which interacts with the BN (i.e., xRAF in Figure 3.1(a), here x de-
notes the state variable in the ODE) and the other is a virtual state (xvirtual). For example,
if the value of xAkt is greater than the given threshold (i.e., xAkt ≥ ΘAkt,Rheb), the BN,
xAkt a BTSC2 a BRheb a xRAF in Figure 3.1(a) is activated. Then, [Rheb(BN)] inhibits
[RAF(ODE)] so a certain amount of xRAF is occupied by xvirtual and blocked in the known re-
action as shown in Figure 3.1(c)(top). The amount of inhibited (“pre-occupied”) xRAF which
is stored in xvirtual can be released to xRAF once BRheb is deactivated (BRheb = 0) in Figure
3.1(c)(bottom). This occupying and releasing are explained with equations in the following
section.

(a) Inhibition Reaction

In terms of biology and biochemistry, inhibitors are molecules that prevent or block the
chemical reaction or function. Therefore, the inhibition process prevents the activation
of a certain biochemical pathway by accumulating the key product of the pathway. In
terms of modeling, we can introduce a new virtual state variable which occupies a certain
state variable when the inhibition is triggered, and releases a preoccupied amount when the

Figure 3.2: Simple examples (a) inhibition (dash end from E to B) and (b) activation (arrow
end from E to B).
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inhibition is deactivated (reversed) in equation (3.1). In other words, this virtual state can
be used as a reservoir or memory to encode the transition information.

Consider the simple example in Figure 3.2 (a) where xA, xB and xC represent state vari-
ables in a simple ODE model (assuming known reaction). Also, BD and BE represent states
in the BN, so when the concentration of xC is above a certain threshold (xC ≥ ΘC,E, where
ΘC,E is the threshold which determines the activity of the BN), the BN, [C]→ [D]→ [E] a is
activated, and it starts inhibition of xB in the ODE model. On the other hand, when xC is
below the threshold (xC < ΘC,E), the BN is deactivated, then a pre-occupied amount of xB

(= xvirtual) is released through the reverse reaction because most of the biological reactions
are reversible. Therefore, the threshold is the amount of xC which can affect the ODE model
by triggering BN feedback (i.e., BE = 0 or 1). Here we formulate the inhibition reaction
from BN by introducing a virtual state, xvirtual, as shown below:[

If xC ≥ ΘC,E → BE = 1 (occupy xB)
If xC < ΘC,E → BE = 0 (release xB)

]
⇐⇒

[
xB

k1−→ xvirtual

xB ←−
k2

xvirtual

]

ẋB = −k1xBBE + k2xvirtualBE

ẋvirtual = k1xBBE − k2xvirtualBE (3.1)

where BE represents the Boolean state of [E] and xB, xvirtual represent states of [B] and
[virtual state] in the ODE model respectively. Without loss of generality, the inhibition
reaction between virtual state and known state (i.e., xB) could be any nonlinear dynamics
but here, we assume a simple linear model for the inhibition reaction. Also, we can guarantee
mass conservation because ẋB + ẋvirtual = 0 in equation (3.1).

(b) Activation Reaction

An activation in biology or biochemical sciences generally refers to the process whereby
something is prepared or excited for a subsequent reaction. In other words, an activation
is the process which helps in developing a certain biochemical pathway or reaction. For
example, in cellular signaling pathways, a reversible phosphorylation of proteins is an im-
portant regulatory mechanism. Enzymes called kinases (phosphorylation) and phosphatases
(dephosphorylation) are involved in this process. Many enzymes and receptors are switched
“on” or “off” by phosphorylation and dephosphorylation. A reversible phosphorylation re-
sults in a conformational change in the structure in many enzymes and receptors, causing
them to become activated or deactivated.

Modeling for activation is parallel to modeling for inhibition but we have to take the
initial condition into consideration for the activation process. For inhibition cases, the system
dynamics is the same as without the BN when the signal pathway is not triggered (i.e., BE = 0
if xc < ΘC,E in equation (3.1)) since the BN could affect the ODE model after triggered.
For the activation processes, we modify the chain as two consecutive inhibition processes by
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using Boolean algebra. For example, consider the simple example case in Figure 3.2 (b).
The only difference between the inhibition in Figure 3.2 (a) and this is that BE activates xB.
When xC is above a certain threshold, the BN is activated and it activates or increases xB

in the ODE model. On the contrary, when xC is below this threshold, the BN is deactivated
and the reverse reaction occurs. We introduce BĒ between xB and BE as “BE → xB”⇐⇒
“BE a BĒ a xB”:[

If xC ≥ ΘC,E → BE = 1, BĒ = 0 (increase xB)
If xC < ΘC,E → BE = 0, BĒ = 1 (decrease xB)

]
⇐⇒

[
xB

k1←− xvirtual

xB −→
k2

xvirtual

]

ẋB = −k1xBBĒ + k2xvirtualBĒ

ẋvirtual = k1xBBĒ − k2xvirtualBĒ (3.2)

Therefore, the main difference between inhibition processes (3.1) and activation processes
(3.2) is the “triggering behavior”. For the activation case in equation (3.2), the virtual state
can be increased (prepared) before triggering (i.e., BĒ = 1 if xC < ΘC,E) which is exactly
consistent with the biological definition, for example, an activation reaction in biology refers
to the process whereby something is prepared.

(c) Multiple Pathways

In this section, we present how to handle multiple pathways by showing a simple example
(Figure 3.1(a)); there are multiple pathways (i.e., Akt a TSC2 a Rheb→ mTorC1→ S6K1→
S6 a PI3K and Akt a TSC2 a Rheb a RAF). Here, we only need two Boolean variables (BS6,
BRheb) and two virtual states (for xPI3K, xRAF respectively). They include abstract information
about the pathways which are denoted by BNs. Therefore, the only thing we have to do
is finding a Boolean network which affects ODE by using Boolean algebra. Moreover, we
typically need only a few virtual states at the point connecting from BN to ODE or “event
related” Boolean variables which is the end point of Boolean network and affects ODE (i.e.,
BS6, BRheb).

3.3 Parameter Estimation

The Hybrid Boolean model introduces new parameters such as kinetic constants k1, k2 in
equation (3.1) and (3.2) and threshold (ΘC,E) which are unknown and only weakly con-
strained by experimental knowledge. For example, a threshold should be between 0 and
maximum of concentration. A crucial problem for this framework is that these parameters
are difficult to estimate because they are correlated with each other in the system under
consideration. In this case, there might be many local optima and the parameters might
be poorly determined because of lack of data, or there might be ambiguities brought by
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redundancy in the system. However, we can reformulate the hybrid Boolean framework as a
nonlinear optimal control problem and then identify parameters with virtual state variables
and Boolean variables.

3.3.1 Reformulation and Nonlinear Switched Dynamical System

We can reformulate the hybrid Boolean model in a simple but abstract way. Consider the
example in Figure 3.2(a) again and suppose that we know the dynamics of [A] [B] and [C]
with known reaction rates k and kr as follows:

ẋA = −kxAxB + krxC

ẋB = −kxAxB + krxC

ẋC = kxAxB − krxC (3.3)

We introduced virtual states and new reactions in equation (3.1) with unknown reaction
rates k1 and k2. Define x = [xA xB xC xvirtual]

T = [x1 x2 x3 x4]T where x4 is a virtual state.
Then, we can combine BN (3.1) and known ODE (3.3) by formulating a hybrid Boolean
model as shown below:

ẋ =


−kx1x2 + krx3

−kx1x2 + krx3

−k1x2BE + k2x4BE + kx1x2 − krx3

k1x2BE − k2x4BE

 =


−kx1x2 + krx3

−kx1x2 + krx3

kx1x2 − krx3

0

+


0 0
−x2 x4

0 0
x2 −x4

[k1BE

k2BE

]

, f(x) +
[
g1(x) g2(x)

] [u1

u2

]
= f(x) + g(x)u (3.4)

where each ui is a piecewise continuous function (i.e. u1 = k1BE ∈ {0, k1}, u2 = k2BE ∈
{0, k2}). Here, BE and BE are Boolean states of [E] which are either 0 or 1 exclusively. Also,
we can nicely decouple the hybrid Boolean model ([ODE] + [BN]) as f(x) (known dynamics)

Figure 3.3: Nonlinear switched dynamical system with state feedback.
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and given state feedback g(x)(BN) as shown in Figure 3.3 and then, the parameter estimation
problem reduces to an optimal control problem in constrained nonlinear switched dynamical
systems. Moreover, each optimal input ui includes new parameters such as thresholds and
reaction rates in an abstract way. Once we find the optimal control input, we could use this
to determine such information.

3.3.2 The Pontryagin Maximum Principle [57]

By reformulation, we can now formulate the parameter estimation as a control problem.
For parameter estimation problems, the objective is to minimize the squared error between
experimental data and simulated data from our model. Our attention will be focused on
the following optimal control problem: minimize with respect to all piecewise continuous
functions of time u(·), the final time T and the performance criterion is as follows:

min
u(·)

J(u, T ) = min
u(·)

φ(x(T ), T ) +

∫ T

t0

L(x,u, t)dt (3.5)

which is subject to the nonlinear dynamic system as follows:

ẋ = h(x,u, t) = f(x) + g(x)u(t), t ∈ [0, T ] (3.6)

where f(x), g(x) are continuously differentiable in x and continuous in t, and that the same
is true for the terminal cost φ. Also, L is denoted as follows:

L(x,u, t) =

Nd∑
i=1

q(i)‖xi(t)− xi,d(t)‖2 + u(t)TRu(t) (3.7)

where Nd is the number of observable species from experimental data and the other con-
straints are:

ui(t) ∈ {0, kj}, t ∈ [0, T ] (3.8)

xj(t) ≥ 0, t ∈ [0, T ] (3.9)

where kj are new parameters which we have to estimate and xj(t) represents the concentra-
tion of species which is non-negative. We can drop the last constraint (3.9) because we use
a mass action kinetics in which mass conservation holds. Also, we can apply the linear pro-
gramming relaxation of a 0-1 integer program here. In mathematics, the linear programming
relaxation of a 0-1 integer program is the problem that arises by replacing the constraint
that each variable must be 0 or 1 by a weaker constraint, that each variable belong to the
interval [0, 1]. This relaxation technique transforms an NP-hard optimization problem into
a related problem that is solvable in polynomial time. Therefore, we can apply the same
relaxation technique:

0 ≤ ui(t) ≤ kj, t ∈ [0, T ] (3.10)
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Since we do not know the upper limit kj, we apply a penalty for each input ui(t) with the
resulting relaxation as shown below:

0 ≤ ui(t), t ∈ [0, T ] (3.11)

Also, we can penalize for exclusiveness of each input in (3.4) because u1 = k1BE and u2 =
k2B̄E should be exclusive by our definition in equation (3.4). For example, if BE = 1,
then u1 = k1 but u2 = 0. Here, we use a relaxation technique which allows us to solve the
optimization problem efficiently but results in our solution not being exactly the same as that
of the original integer programming formulation in equation (3.8). For example, our solution
might not be fully consistent with the threshold-crossing feedback or sharp transition, for
example, “on/off” behavior. Thus, we might not provide clear estimation of thresholds,
switching time and parameters because of loss of information by simplifying these processes
but our model could still be used to approximate continuous phenomena by concatenating
different models using discrete variables.

We are now ready to formulate the Maximum Principle [57]. First, we can define Lagrange
multipliers to adjoin the constraints to the performance index. Since the constraints are
determined by the differential equation (3.6), an associated multiplier or co-state p(t) is a
function of time and equal to the gradient of the optimal value function evaluated along the
optimal trajectory. Thus, the augmented performance index is given by:

φ(x(T ), T ) +

∫ T

0

{L(x,u, t) + pT (t)(f(x(t)) + g(x(t))u(t)− ẋ(t))}dt (3.12)

The Maximum Principle can be written in a more compact and symmetric form with the
help of the Hamiltonian function:

H(x,u,p, t) = L(x,u, t) + pT (t)(f(x(t)) + g(x(t))u(t)) (3.13)

and we can integrate (3.12) by parts and consider the equation under the calculus of varia-
tions with respect to x(t) and u(t):

φ(x(T ), T )− pT (T )x(T ) + pT (0)x(0) +

∫ T

0

[H(x,u,p, t) + ṗT (t)x(t)]dt (3.14)

We consider the above equation in the calculus of variations with respect to x(t) and u(t)
as follows:

(
∂φ

∂x
− pT )δx |t=T +pT δx |t=0 +

∫ T

0

{(∂H
∂x

+ ṗT )δx +
∂H

∂u
δu}dt (3.15)

For a stationary point, the following conditions should be satisfied for all allowable variations:

ẋ =
∂H

∂p
= h(x,u) (3.16)

−ṗ =
∂H

∂x
=
∂h

∂x

T

p+
∂L

∂x
(3.17)

u∗(t) = arg min
u
H(x∗,u,p∗, t) (3.18)
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and the boundary condition is as follows:

p(T ) = (
∂φ

∂x
)T |t=T (3.19)

The Lagrange multiplier p(t) is a dynamic variable and it evolves backward in time with
the final condition p(T ). In contrast to the Hamilton Jacobi Bellman (HJB) solution to the
infinite horizon optimal control problem, the Euler-Lagrange solution is explicitly solved for
as a function of time u(t), not as a feedback law. Also, the resulting optimal trajectory is
only valid for the specified initial condition x(to). Since the Euler-Lagrange equations specify
the conditions for the existence of a stationary point, they represent necessary conditions for
an optimal trajectory.

3.3.3 Numerical Examples

(a) Example 1

Consider the simple example in the previous section (equation (3.3) where k = 0.01, kr =
0.005). First, we simulate our model in equation (3.3) under the following constraints given
for the BN. We then use the synthesized data as “experimental data” to estimate parameters
using the proposed method:

Boolean Network:
if xC ≥ TC = 15: k1 = 0.1 k2 = 0.0 [Inhibition]
if [BN triggered] and xC < TC = 15

k1 = 0.0 k2 = 0.1 [Release]
otherwise

k1 = 0.0 k2 = 0.0

Figure 3.4(a) shows simulated (desired, dotted line) data and we use these as our experi-
mental data. Figure 3.4(b) shows the estimated input u∗ (i.e., u1 = k1BE, u2 = k1B̄E) from
which we can extract useful information such as k1(= 0.1) and triggering point (threshold,
TC ≈ 15). Obviously, since we use relaxation in equation (3.10) and (3.11), our solution
might be a local minimum.

(b) Example 2

Consider another example with different constraints for the BN as shown below:

Boolean Network (with hysteresis):
if xC ≥ 20 = T1

k1 = 0.2 k2 = 0.0 [Inhibition]
if [BN triggered] and xC < 15 = T2

k1 = 0.0 k2 = 0.1 [Release]
otherwise

k1 = 0.0 k2 = 0.0
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Figure 3.4: Simulated and estimated result for example 1: (a) input data (xd), estimated
data (x) and estimated threshold (Tc) (b) estimated parameter k1.

Figure 3.5(a) and (c) show simulated data for the ODE with BNs using different initial
conditions. If we use the data in Figure 3.5(a), we find that u∗ is close to zero (within the
numerical error) in Figure 3.5(b), obviously meaning that there is no triggering signal to the
downstream pathway. Then, we can extract only one piece of information (i.e., TC ≥ 20). If
we had another data set (Figure 3.5(c)), we could get more useful information as shown in
Figure 3.5(d) because the data includes dynamic behavior from downstream of BN. We can
infer the Boolean state based on the virtual state x4 which tells us not only new parameters
k1 and k2 but also when the transition occurs (i.e., threshold). Since we use relaxation in
equation (3.10) and (3.11), estimated parameters are not the same as true parameters but
they are close to the values as shown in Figure 3.5(d).

In general, we have several datasets because of different conditions or control of experi-
ments such as different initial conditions or different drug combinations. First, we can find
the optimal control input (i.e., feasible parameter sets P1, P2, P3, ...) for each data set (D1,
D2, D3,...). Then, we can specify the feasible set (i.e., P ∗ = P1 ∩P2 ∩P3 ∩ ...) based on find-
ing the intersection of all feasible parameter sets from different datasets. Therefore, as the
number of experimental datasets increases, we would expect our parameter set to approach
the true parameter set.

(c) Application in engineering (Parallel Parking)

A parameter estimation for the hybrid Boolean framework can be used for finding a locally
optimal sequence of modes and corresponding switching times between modes in hybrid
systems. For example, parallel parking requires turning the steering wheel at certain points
and releasing it at others, like transitions in a hybrid system (Figure 3.6(a)(b)). We formulate
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Figure 3.5: Simulated and estimated result for example 2: (a)(b) BN is not triggered (c)(d)
BN is triggered at a different initial condition. (a) Input data and estimated data (not
triggered) (b) estimated parameter (c) input data and estimated data where T1 and T2

represent thresholds respectively (d) estimated parameter k1 and k2.
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Figure 3.6: Parallel parking example: (a)(b) (dotted line) x, y, θ are desired trajectories
and (solid line) trajectories are generated by the input u∗ (c) optimal mode sequence and
switching time based on input u∗.
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this problem based on our framework and here, we assume that we can use brake and steering
wheel only in order to make the problem simple. Suppose that we have a desired trajectory
(x, y, θ in Figure 3.6(b)) for parallel parking but we do not know the control input/sequence
(vel, steer in Figure 3.6(b)) as we don’t know the amount of virtual state. A simple unicycle
model is expressed as shown below and a cost function penalizes error ‖x − xd‖, ‖y − yd‖
and ‖θ − θd‖:

X =


x(t)
y(t)
θ(t)
v(t)
φ(t)

 , f(X) =


v(t) cos θ(t)
v(t) sin θ(t)

1
L
v(t) tanφ(t)

0
0

 , g(X) =


0 0 0
0 0 0
0 0 0

Kbrake 0 0
0 KSR KSL

 (3.20)

where Kbrake is 15, KSR is 10 and KSL is 20 in our example. By applying our parameter
estimation method, we can get a locally optimal mode sequence and switching time sequence
with estimated parameters as shown in Figure 3.6(c), close to true parameter values.

3.4 Analysis of Hybrid Boolean model

In this section, we will compare and discuss the hybrid Boolean model and ODE model.

3.4.1 Comparison Between Hybrid Boolean Model and ODE
Model

So far, we have developed a hybrid Boolean model and represented how to estimate pa-
rameters. It is reasonable to compare this framework with a pure ODE model, in terms
of model size and ease of estimating parameters. The hybrid Boolean model uses distinct
modes with Boolean variables which abstract the detailed nonlinear behavior of a system
with discrete transitions from one mode to another. Therefore, the model could provide a
useful abstraction in understanding physical behavior. Also, it could provide a certain foun-
dation for modeling and understanding biological systems at desired levels of approximation
or abstraction. For example, large and multi-scale dynamical systems can be simplified by
replacing certain state variables for relatively slow dynamics as piecewise constant approxi-
mations. In general, the assumption of mass action kinetics is that there is a large number
of molecules which are homogeneously mixed. However, these assumptions may fail inside a
cell because there are only a few molecules governing the reaction. These dynamics are best
modeled using discrete transitions. The other thing we have to consider is steady state. We
introduce new states and reactions which are interconnected with existing states so equilib-
rium points for the new model are affected by these interactions as follows:

[No interaction (ODE only)]

ẋi = fi(x)
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[Inhibition(or Activation)(BN) : xi a xj (or xi → xj)]

ẋi = fi(x)− η(xi, xj) + ψ(xvirtual)

ẋvirtual = η(xi, xj)− ψ(xvirtual)

where each fi(x) represents the known ODE model. Therefore, if there is no interaction,
which means η(·) = ψ(·) = 0, an equilibrium point satisfies fi(xeq) = 0, ∀i. On the other
hand, for the hybrid Boolean model, an equilibrium point should satisfy fi(xeq) = 0, ∀i with
constraints such as η(xi, xj)−ψ(xvirtual) = 0. Also we can formulate biological reactions in a
general form as shown below:

ẋ = f(x, y, z, w, ...) +
m∑
i=1

kirzi −
m∑
i=1

kixyi +
n∑
j=1

γjwj −
o∑
l=1

ηlx

where f(x, y, z, w, ...) represents known dynamics or existing ODE and zi represents the
concentration of the complex XYi so the second and the third terms in the RHS represent
the reaction in which X participates, the fourth term represents inflow into X and the last
term represents outflow from X. Here, the inflow and outflow represent a cascade type signal
pathway. Therefore, an equilibrium point satisfies f(x, y, z, w, ...) = 0 with constraints such

as
m∑
i=1

kirzi −
m∑
i=1

kixyi +
n∑
j=1

γjwj −
o∑
l=1

ηlx = 0, so the interactions from BN to ODE affect

the behavior of system dynamics.

3.4.2 Switching Surface

Hybrid Boolean models deal with nonlinear effects by invoking discrete mode switching
when certain states reach or exceed threshold values. These thresholds can be represented
as switching surfaces in the phase plane which invoke discrete mode switching. Therefore,
a phase plane of a hybrid Boolean model shows a multi-dimensional space with different
system dynamics. Consider a simple hybrid model as follows:

ẋ1 = −k1x1B1 + k1rx1B̄1

ẋ2 = −k2x2B2 + k2rx2B̄2 (3.21)

where B1 = 1 if x1 ≥ T1 > 0 and B2 = 1 if x2 ≥ T2 > 0 and each xi ≥ 0 because the states
in biochemical reactions represent concentrations which are nonnegative. Also, here x1 and
x2 are decoupled with each other but in general, these could be coupled in a complex way.
Figure 3.7 shows a phase plane with Boolean variables. In this example, we have two Boolean
variables so there are four cases which are (BN : 00, 01, 10, 11); one stable system (11), two
saddle points (01,10) and one unstable system (00). Consider point (x1, x2) = (T1, T2). Each
threshold (solid line) can be used as a sliding mode surface which attracts trajectory flow
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Figure 3.7: Phase portrait of a simple hybrid model.

φt(x) and makes all trajectories flow toward (T1, T2). Define S1 = x1 − T1 which is a sliding
surface if it satisfies the condition S1Ṡ1 < 0:

S1Ṡ1 = (x1 − T1)ẋ1 = (x1 − T1)(−k1x1B1 + k1rx1B̄1)

if x1 > T1, S1Ṡ1 = (x1 − T1)(−k1 x1) < 0

if x1 < T1, S1Ṡ1 = (x1 − T1)(+k1rx1) < 0

Similarly, we can prove S2 = x2 − T2 is also a sliding mode surface. Therefore, we have two
equilibrium points of the system which are (0, 0) and (T1, T2) in equation (3.21). Moreover,
we can consider a “drug model” with this simple model. In biological experiments, small
molecule inhibitors may be used as drugs, usually these are replenished every day in order to
make the drug concentration constant xdrug ≈ C. Therefore, we can combine the drug model
which inhibits x1 as ẋ1 = −kdrugx1xdrug ≈ −kdrugCx1 ≈ −k′drugx1 and consider the phase
plane with Boolean variable for different concentration of drug (different k′drug) as shown in
Figure 3.8. The graphical representation shows that the sliding surface cannot attract the
flow of dynamics if enough drug is used. However, if we put a small amount drug, flows
are still captured by the sliding surface. Therefore, intuitively, we can consider this Boolean
variable as a barrier and we can calculate the amount of drug which can overcome this
barrier or change the domain of attraction. This graphical representation could be extended
to multiple dimensions and could be useful to understand or gain intuition about complex
biological networks.
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Figure 3.8: Phase analysis for a simple example with drug model.

3.5 Conclusions

In this chapter, we have shown how to combine an ODE model, representing a known net-
work, with an unknown part represented by a BN. The BN could represent a broad range of
biological systems. We proposed the concept of a “virtual state”, a variable containing tran-
sition information, and we presented the parameter estimation method for our framework.
Numerical examples in biology and engineering were presented. We also briefly showed that
a graphical representation could help to understand biological systems and be useful in the
control context. We are currently applying our framework to HER2 over-expressed breast
cancer, where short term phosphoprotein mediated signaling is very well studied, yet there
is a significant part of the network such as long term transcriptional feedback regulation
of HER3 and influences of PI3K mutations which are currently unknown. Also, we are
extending our framework to consider measurement noise.
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Chapter 4

Optimization-based Inference for
Temporally Evolving Networks

The problem of identifying dynamics of biological networks is of critical importance in order
to understand biological systems. In this chapter, we propose a data-driven inference scheme
to identify temporally evolving Boolean network representations of genetic networks. In the
formulation of the optimization problem, we use an adjacency map as a priori information,
and define a cost function which both drives the connectivity of the graph to match biolog-
ical data as well as generates a sparse and robust network at corresponding time intervals.
Also, we extend this algorithm for the continuous time case, and formulate the problem as a
Linear Quadratic (LQ) Optimal Control problem by using a given graph structure as a priori
information. Through simulation studies on simple examples, it is shown that this optimiza-
tion scheme can help to capture the topological change of a biological signaling pathway,
and, furthermore, might help to understand the structure and dynamics of biological genetic
networks with a systems point of view. As an example, we apply this algorithm to study a
breast cancer signaling pathway [72] to understand short-term and long-term behaviors by
capturing the dynamic evolution of the network. The material in this chapter is based on
the work in [36][31][32].

4.1 Introduction

Modeling of biological genetic networks has received much recent research attention. Many
current data-driven inference algorithms such as Bayesian network models of genetic net-
works formed by coding a priori knowledge on the regulatory relationships into probabilistic
models [127][61][166], are limited in their ability to represent temporally evolving dynamics.
On the other hand, there are many studies of identification of regulatory networks using
deterministic models such as ordinary differential equations (ODEs) or linear models based
on least squares identification [134][12][135]. However, such assumptions about the model
structure could be problematic because prejudices are automatically imposed which then
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restrict the representation and understanding of biological data. For example, a key as-
sumption of a mass action kinetics model is that there is a large number of molecules which
are homogeneously mixed, an assumption which may fail inside a cell when there are only
a few molecules governing the reaction. Therefore, such “theory-driven” modeling requires
a good understanding of the dynamics of the signaling pathway. However, often models of
biological systems are too complex to understand because of the large number of components
involved and the nonlinearity of the reaction or interaction. As a result, the behavior of these
systems in general cannot be completely understood from a systems point of view.

On the other hand, logical models like Boolean Networks (BNs) seek completely quali-
tative rather than quantitative models of biological systems. BNs can succeed in capturing
high-level phenomena such as activation or deactivation with fewer parameters than their
ODE counterpart, and can be used to evaluate model structure. However, they cannot cap-
ture transient response, only steady state. In spite of this, there are many applications of
Boolean networks to modeling and analyzing biological systems because they are easy to
simulate or evaluate, as well as an increase in research activities to address questions arising
from biological applications [142][171].

Since a graph is a natural way to represent a biological network, if a system can be
abstracted into a graph, it might help to understand the biological network. A graph is a
set of vertices which represents states, and a set of edges which depicts the relationship or
connection between two or more states. A given connectivity or adjacency map is a signed,
directed graph GR = (V,E, S) where V is a set of vertices, E is a set of directed edges,
and S : E → {−1, 0,+1}. For example, eij = 1 represents the case in which input node j
activates output node i. If input node j inhibits output node i, then eij = −1. If input node
j does not affect output node i, then eij = 0. Also, graphs are well-suited for situations in
which there is little prior or explicit knowledge of the dynamics. Moreover, if we can build
a graph model to represent biological data, we could escape imposed prejudices from the
model structure. There are several graph mining approaches to biological networks [4][77].
These approaches represent biological networks as graphs, where nodes represent genes and
edges represent relationships between each gene, and discover frequent patterns or motifs [4]
in these graphs. They focus on structural features of networks and can effectively uncover
the functional interaction structure of a biological network. Also, these approaches consider
time-invariant networks and local or modular behavior of large networks. Recent studies
[164][96] have proposed a concept of a temporal sequence of network motifs where the motifs
change according to the dynamic nature of the biological system and can describe pivotal
developmental events which cannot be captured by the static network approach; the former
[164] develops algorithms for graph-rewriting rules based on machine learning techniques,
which brings complexity issues with analyzing very large graphs [164]. On the other hand,
the latter [96] applies a temporal sequence of network motifs analysis by reconstructing the
active sub-networks (3-node sub-graphs).

In this chapter, we focus our attention on identifying time-varying linear models of sparse
biological networks represented as graphs. We develop time-varying linear models, where the
model remains constant for a time step or a series of time steps. This can capture dynamics
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which change over time and can allow the graph at each time step to be sparse. With this
approach in mind, our question becomes how to infer the graph structure from a set of data
and how to find the most reasonable model among many possible configurations, since our
problem formulation has fewer constraints than theory-driven modeling. We assume a priori
information is given as a connectivity map; however this is not necessary, as the map may
include all possible connections in the case of no a priori information. In the HER2 positive
breast cancer signal pathway that we study, parts of the network are very well studied,
yet there is a significant part of the network which is currently unknown. Therefore, we
can include the well known signaling pathway as a priori information and may include all
possible connections for the unknown parts.

In general, including known information helps to find a more biologically reasonable
model. For example, without any a priori information, our algorithm can find the most
reasonable model in the sense of minimizing a cost function, but if we include known infor-
mation as a connectivity map, we find the most reasonable model satisfying the connectivity
map. Despite uncertainties about details for a given biological system, we often have reason-
able qualitative knowledge about interactions of each gene, so we can use this information
as a priori information. In this setting, the model behavior is solely based on this quali-
tative information which guarantees biologically reasonable behavior: a sparse and smooth
evolving network. We formulate our cost function based on those assumptions. Then, us-
ing convex optimization techniques, we find the sparsest time-varying graph consistent with
experimental observations [31]. Also, the reconstructed graph shows the signal propagation
through the sparse network that drives the placement of links and nodes. It might help to
uncover the underlying dynamics and how the system dynamics evolves over time.

The rest of this section is organized as follows: Section 4.2 presents the proposed method
related to modeling of biological networks and an optimization problem formulation with
simple examples. Section 4.3 presents an example of the biological network of HER2 over-
expressed breast cancer which has motivated our work. In Section 4.4, we consider a contin-
uous time case, present a problem formulation with a graphical model and reformulate it as
an LQ optimal control problem. In Section 4.5, we apply the proposed algorithm to simple
example through simulation studies. Finally, conclusions are given in Section 4.6.

4.2 Method

We define a state vector x(t) = [x1(t), ..., xn(t)]T , the components of which represent con-
centrations of proteins or states in a biological network and n represents the number of
components or states. The evolution of state x(t) can be modeled using an ordinary differ-
ential equation (ODE):

ẋ(t) = f(x(t), p) (4.1)
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where p is a parameter set. The nonlinear dynamic system (4.1) can be approximated by a
linear system based on forming the Jacobian around steady states as shown below:

δẋ(t) =
∂f

∂x
δx(t) +

∂f

∂p
δp = Aδx(t) +Bδp (4.2)

A system in the form of (4.2) can be considered as a weighted directed graph. In this, A
represents connectivity and B represents the sensitivity to parameter variation. If Aij is zero,
node j has no direct effect on node i. Also, if Aij > 0, node j activates node i. Similarly, if
Aij < 0, node j inhibits node i. In [141][77], a convex optimization is constructed as follows:

min
A,B̄
||( ˙̃X − B̄ − AX̃)W ||F

subject to card(A) ≤ k,Ai,j > 0, Ar,s < 0 (4.3)

where X̃(= [X1 X2 ... XL]) represents time course data set with different stimulations and/or
inhibitions and each Xi represents the matrix form of n different components at M different

time points Xi =


xi1,1 xi1,2 ... xi1,M
xi2,1 xi2,2 ... xi1,M
... ... ... ...
xin,1 xin,2 ... xin,M

. Also, B̄(= [B1 B2 ... BL]) represents the set of

sensitivities of parameter variation with Bi =

M︷ ︸︸ ︷
[bi ... bi], and W represents a weighting matrix

for specific experiments. Also, k is a given positive constant which represents maximum
connectivity, all Ai,j > 0 represent activation edges (node j activates node i) and all Ar,s < 0
represent inhibition edges (node s inhibits node r). Therefore, this approach gives us the
optimal static graph map consistent with various experimental data sets.

We extend this idea to a dynamic graph model. First, we define X = [XT
N , X

T
N−1, ..., X

T
1 ]T ∈

Rn·N×1 where Xk ∈ Rn×1 represents experimental data or known values (normalized or
Booleanized biological data) at time k for 1 ≤ k ≤ N , the components of which represent
concentrations or activities in a biological network, n is the number of states of Xk, and N
is the number of discrete time steps. We define an augmented matrix G = f(G1, G2, ..., GN)
which is a function of the dynamic graph Gk where each Gk ∈ Rn×n is a connectivity map at
time k for 1 ≤ k ≤ N which is based on a priori information, or a connectivity map denoted
by GR. The augmented matrix, G, satisfies an evolution of the state Xk as Xk = GkXk−1.
In contrast to previous methodologies for dynamic graph analysis [164][96], we formulate
a convex optimization-based inference method, where we embed the dynamics of a linear
time-varying representation, and enforce sparsity and smooth evolution at corresponding
time intervals.
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4.2.1 Dynamic Graph (Linear Time Varying System)

The state Xk evolves along with time and constitutes the following linear time-varying sys-
tem:

Xk = GkXk−1 (4.4)

where Gk = g(GR,Xk|Xk−1) is a function of both the connectivity map and time series
data. Note that Gk describes how the edge activities evolve over time. For example, for
given connectivity map GR, we allow the change of strength of connection to drive our
dynamic model consistent with biological system or experimental data. At each time step,
only a few of edges may evolve based on the relationship between Xk and Xk−1. If all the
interactions between each component are properly identified, we can reconstruct the map Gk

in terms of the connectivity and strength. For instance, Gk(i, j) = 0.5 represents that node
j activates node i with strength 0.5. The strength might be related to the reaction rate and
the concentration of other species, demonstrated by the Jacobian of a mass action kinetics
model.

The goal of system identification of biological systems is to infer each Gk for 1 ≤ k ≤ N
consistent with both a biological data set X and a priori information GR. In general, a gene
regulation network (GRN) has the following characteristics [10]:

• Directionality: regulatory control is directed from regulators to regulated genes.

• Sparsity: each single gene is controlled by a limited number of other genes, which is
small compared to the total gene content (and also to the total number of transcription
factors) of an organism.

• Combinatorial control: the expression of a gene may depend on the joint activity of
various regulatory proteins.

Since GRNs have a sparse structure with combinatorial control, we should reconstruct the
sparsest graph consistent with experimental observations. We can construct an optimization
problem as follows:

min
Gk

||Xk −GkXk−1||+ γ||Ak|| subject to Gk = g(GR,Xk|Xk−1) (4.5)

where the second term in the cost function penalizes the cost of adding edges in order to
avoid heavy combinatoric computation, Ak is defined as follows:

Ak = Gk ∩ (Gk ∩Gk−1)c = Gk −Gk−1 (4.6)

and γ is a positive constant. Therefore, Ak enforces the network to be sparse and thus the
cost function represents a trade-off between reconstruction error and sparsity. Here we define
the function g as shown below:

Gk = g(GR,Xk|Xk−1) = GR⊕MAP = ProjMAPGR (4.7)
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where ⊕ is defined as a projection operator onto MAP ∈ Rn×n whose i-th column is a
column vector, the components of which are all one if Xk−1(i) is active, which means the
state of the i-th element is over the threshold. On the other hand, if Xk−1(i) is non-active,
then the i-th column of MAP is a zero column vector. Therefore, this projection gives us
all possible candidate edges based on both Xk−1 and GR. For example, if xi at the (k−1)th
step is active, then the i-th column of GR contains the candidate edges. On the other hand,
if xi at (k − 1)th step is not active, we cannot use the i-th column of GR as candidate
edges. By using (4.7), our method generates a sparse network representation without any
Lasso-type regressions in (4.5).

If we implement the optimization problem for every single step as shown in equation
(4.5), the penalty term for sparsity does not play the role of generating a sparse network, but
instead uses all possible edges. In other words, distributing signal to all possible nodes (dense
network) gives us a lower cost than distributing signal to only a few nodes (sparse network)
in our formulation (4.5). We can think about this by considering dynamic programming in
optimization. The main idea behind dynamic programming is that, to solve a given problem,
we need to solve different parts of the problem (subproblems), then combine the solutions
of the subproblem to reach an overall solution in a recursive manner. Similarly, in order to
find the sparsest smoothly evolving graph, we need to have a certain connection between
every subproblem. For example, when we consider the overall time horizon in problem (4.8),
the penalty term for sparsity can play a key role in generating a sparse graph structure
by connecting the discrete time dynamics at each time step with those at different time
steps. Then, we can construct a convex optimization problem for the proposed identification
problem as shown below:

min
G1,...,GN

N∑
k=1

||Xk −GkXk−1||2 + γ{
N∑
k=2

||Gk −Gk−1||F + ||G1||F + ||GN ||F}

subject to Gk = g(GR,Xk|Xk−1) (4.8)

Note that the first term of problem (4.8), the summation of ||Xk − GkXk−1||, forces the
minimization of the reconstruction error for a given dynamical network at time k for 1 ≤
k ≤ N . Also, the second term, the summation of ||Gk −Gk−1||F plays the role of realizing a
smooth evolution and minimizes the change in network evolution. Finally, with the penalty
term ||G1||F + ||GN ||F which acts as a boundary constraint, we can find the sparsest dynamic
graph. We can also arrange and reformulate equation (4.8) as follows:

min
G
||X − GX ||2 + γ||(GT − G)×W ||F
subject to given X ,W
Gact
k ≥ 0, Ginhib

k ≤ 0, Gothers
k = 0 (4.9)
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where G =


On GN On ... On

On On GN−1 ... On

... ... ... ... ...
On On ... On G1

On On ... On In

, X =


XN

XN−1

...
X1

X0

 and W =


In On

On In
In On

On In
... ...
... ...

 where X ∈

Rn·(N+1)×1, G ∈ Rn·(N+1)×n·(N+1) and W ∈ Rn·(N+1)×2·n for 1 ≤ k ≤ N . Note that the first
term of the cost function in equation (4.9) is a reconstruction error cost and the second
term plays the role of connecting each discrete system with another and realizing a smooth
evolution of the network by selecting effective edges with inequality constraints.

4.2.2 Static Graph (Linear Time Invariant System)

If we assume that the graph model does not evolve with time (static graph Gk = G) such as
with a linear time invariant system [77], we can modify the structure of G and constraints
as shown below for a fixed pattern graph:

G =


On G On ... On

On On G ... On

... ... ... ... ...
On On On On G
On On On On In


Gact ≥ 0, Ginhib ≤ 0, Gothers = 0 (4.10)

where G = ḡ(GR) does not depend on time (compared with Gk = g(GR,Xk|Xk−1) for a
linear time-varying system). Note that for a fixed graph structure, the optimal solution
represents the average connectivity map [77].

4.2.3 Dynamic Graph vs. Static Graph

We can compare the dynamic graph and static graph method: the main difference in cost
function from dynamic and static graph is the penalty for sparsity as follows:

||(GT − G)W )||F,dynamic =


On −GN

∆GN−1 On

On ∆GN−2

... ...
On ∆G1

G1 On

 (4.11)
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(a) (b)

Figure 4.1: Possible cases for inhibition edge (dash end) where X and Y represent different
genes or states; 1 represents activated state and 0 represents deactivated state: (a) inhibition
reaction is triggered and (b) inhibition reaction is not occurred.

||(GT − G)W )||F,static =


On −G
On On

On On

... ...
On On

G On

 (4.12)

where ∆Gk = Gk+1 − Gk. Also, if we modify the constraint for a dynamic graph similar
to the static graph approach, the dynamic graph approach gives us a lower cost than the
static graph approach because the structural constraint restricts the degrees of freedom in
choosing edges:

min
G
||X − GX ||2 + γ||(GT − G)×W ||F ≤ min

Ḡ
||X − ḠX ||2 + γ||(ḠT − Ḡ)×W ||F

(4.13)

where G represents the optimal solution of the dynamic graph approach and Ḡ represents
the optimal solution of the static graph approach.

4.2.4 Inhibition Edges

Based on our formulation of the optimization problem, we can find the optimal solution
which satisfies a trade-off between representation of data (dynamics), sparsity and smooth
evolution. However, the optimal solution does not include any inhibition edges (a) because it
is not necessary according to our optimization problem as shown in Figure 4.1. For example,
if X is active (1) and Y is not active (0), then there might be two possible cases: X inhibits
Y (X a Y connected, Figure 4.1 (a)) or no connection between X and Y (Figure 4.1 (b)).
Having no connection would give the lower cost. However, we can handle inhibition edges
using Boolean logic as an algebraic constraint as shown below:

Y = not Ȳ (=∼ Ȳ) (4.14)

Also, we extend this algebraic constraint to a normalized state as shown below:

Y + Ȳ = 1 (4.15)
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Figure 4.2: (a) Inhibition edge (X inhibits Y) (b) modified edge (X activates Ȳ, and the
relation between Ȳ and Y is defined by Boolean logic or algebraic constraint)

Consider the simple case shown in Figure 4.2, in which state X inhibits state Y. Using an
algebraic constraint (4.14), we can change the inhibition edge to an activation edge with the
new state Ȳ as shown below:

X a Y ⇔ X a (∼ Ȳ)⇔ X→ Ȳ − Y (4.16)

Hence, we extend states if there are inhibition edges and introduce a diagonal weighting
matrix M, which makes all species have the same penalty as shown below:

min
G
||M× (X̄ − GX̄ )||2 + γ||(GT − G)×W ||F (4.17)

where X̄ represents extended states andMii = {1, 1√
2
}. If there exist x and x̄ for a specific

state, Mii =
1√
2
, and otherwise, Mii = 1.

4.2.5 Numerical Examples

In this section, we consider simple examples to illustrate the proposed inference scheme.

(a) Simple Gene Regulatory Network

We first consider a simple example composed of four genes. The a priori information and the
snapshot of gene expression are shown in Figure 4.3. Here we do not consider state extension
for inhibition edges which means the optimal solution does not include any inhibition edges.
By varying the parameter γ, we can sweep out the optimal trade-off curve between the
reconstruction error and the sparsity of a solution as shown in Figure 4.4. We can choose
the optimal parameter γ∗ by the graphical representation: the extreme point γ∗ on the trade-
off between the sparsity and the reconstruction error. Once we fix the parameter γ∗, we solve
the constrained convex optimization problem (4.28) using CVX [19]. Figure 4.5 shows the
dynamics of the connectivity graph. We can capture the temporal graph not only in terms
of connection but also strength of the edge. From the optimal graph representations, we
could extract how the signaling pathway evolves over time with a systems point of view.
Also we can compare the two approaches: dynamic and static graph approach with average
of dynamic graph.
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Figure 4.3: (a) a priori connectivity map where the arrows indicate activation and blunted
lines denote inhibition. (b) snapshots of gene expression from time step k=1 to k=4 (red or
1: activated states, green or 0: deactivated states)

Figure 4.4: Trade-off curve between the model fitting (||X −GX ||2) and the sparsity (||(GT −
G)×W ||F ) with tuning parameter γ.

(b) Simple Gene Regulatory Network with different structure

Here, we add 1 edge which connects node 3 to node 2 as shown in Figure 4.6 and solve the
optimization problem again. We can see the difference of the strength of edge 12 (e12) com-
pared with above example. Basically, for the previous example, the optimal graph shows the
robust pathway distributing power evenly (e12 and e13 in Figure 4.5) because both pathways
are effective equally. However, for this example, an additional pathway (e32) changes the
topology of the graph which makes the optimal graph choose the more effective or econom-
ical path (e13 − e32) shown in Figure 4.7. In other words, the optimal solution shows that
the strength of e12 decreases because there exists a more effective pathway (e13 − e32).
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Figure 4.5: The optimal solution for example (a): the magnitude of each edge represents
the strength of connection. Also, we compare the result from the dynamic and static graph
approaches with the average of the dynamic graph.

Figure 4.6: a priori connectivity map with an additional edge (e32) which connects from
node 3 to node 2.

4.3 Biological Signal Pathway Examples

4.3.1 p53 Signal Pathway

Aswani et al. [8] proposed a graph-theoretic topological control applied to the p53 signaling
pathway. We apply our approach to understand how the controller affects the biological
pathway and capture the evolution of signaling pathway. We define X = [x1, x2, x3, x4]T =
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Figure 4.7: An optimal solution for example (b): an additional pathway(e32) changes the
topology of graph which makes the optimal graph to choose more effective path (e13 − e32)
rather than e12 (for example (a), the optimal graph shows distributing power evenly, e12 =
e13)

(a) (b)

Figure 4.8: (a) an abnormal p53 pathway in Figure 3(c) [8] (b) the abstract model which
includes the effect of controller.
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Figure 4.9: (top) normalized time course plots for the abnormal p53 pathway with controller
in Figure 4 (c) [8] (lower) dynamic evolution of each edge of abnormal p53 pathway with
the controller: the p53 regulates MDM2 similar to the normal p53 pathway by increasing
strength of inhibition edge ([p53]-[cyclinG]-[MDM2]).

[xMDM, xp53, xcyclinG, xc] where xc is an imaginary state which represents the proposed control
scheme (actually removing the edge in [8]):

xc = xMDM if controller Off

xc = 0 if controller On (4.18)

Hence, by introducing this imaginary state, we have an abstract model of abnormal p53
signaling pathway with controller in Figure 4.8(b). Also, we can define GR as follows based
on Figure 4.8(b) including the state extension due to incorporating the inhibition edges:

GR =

x1 x̄1 x2 x̄2 x3 x4︷ ︸︸ ︷
0 0 e21 0 0 0
0 0 0 0 e31̄ 0
0 0 0 0 0 0
0 0 0 0 0 e42̄

0 0 e23 0 0 0
e14 0 0 0 0 0

 =


0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

 (4.19)
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Figure 4.10: Possible cases for a normal p53 signaling pathway with different combinations
of both [Ras] and [L26] where H represents an active state and L represents a non-active
state [8]: the p19 ARF mainly regulates MDM2 and it cannot affect MDM2 from p53 through
p19 ARF.

Here, we normalize the data and then apply our algorithm. We can capture the dynamic
evolution of the graph in Figure 4.9. The controller causes the p53 concentrations to increase
to higher levels by regulation edge from MDM2 to p53 and causes increased strength of
inhibition edge ([p53]-[cyclin G]-[MDM2]). In other words, p53 regulates MDM2 similar to
the normal p53 pathway [8]. If the controller is not applied again, the strength of edge ([p53]-
[cyclin G]-[MDM2]) decreases and the strength of activation edge [p53]-[MDM2] increases.
This causes MDM concentrations to increase to higher levels which cause regulation p53 by
inhibition edge ([MDM2]-[Controller]-[p53]) similar to the abnormal p53 pathway [8].

We can also apply our algorithm for the normal p53 pathway in order to compare with
the abnormal p53 pathway with controller. In a normal p53 pathway, we can consider all
possible combinations of both Ras and L26 as two input signals. Here, the basic assumption
is that the inhibition reaction is stronger than the activation reaction. Then, we find that
the p19 ARF mainly regulates MDM2 and it cannot affect MDM2 from p53 through p19 ARF
as shown in Figure 4.10. Hence, we can use the same abstract model in Figure 4.8(b) for
a normal p53 signaling pathway. The optimal solution gives us that the normal p53 cell
uses mainly inhibition edges from p53 to MDM2 through cyclin G which means p53 regulates
MDM2, as shown in Figure 4.11. Therefore, the controller drives the abnormal p53 cell to
the normal p53 cell by removing the inhibition edge from MDM2 to p53 as Aswani et al. [8]
proposed.
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Figure 4.11: (top) normalized time course plots for the normal p53 pathway shown in Figure
4(a)[8] (lower) the dynamic evolution of each edge of the normal p53 pathway: the edge
activity shows that the normal p53 cell uses mainly inhibition edges form p53 to MDM2
through cyclin G.

4.3.2 HER2 Overexpressed Breast Cancer

The experimental studies were done for investigating the effects of Tyrosine Kinase inhibitors
(TKIs) on the BT474 and SKBR3 cell lines [137]. In this work, short term effects and long
term effects of applying Gefitinib (a TKI) to those cell lines were studied and important
effects of how the cancer cells overcome or escape from the inhibitory effects of TKIs were
discovered. The authors in [137] showed that HER3 is recruited from the cytoplasm to the
cell membrane by vesicular trafficking to increase the triggering signal in order to escape
from HER2 inhibition. Also, they tested the effects of vesicular trafficking: when vesicular
trafficking was stopped, phospho-HER3 and phospho-Akt did not survive the inhibition of
HER2.

We suspect there might be short-term and long-term topological changes because the TKI
can inhibit and regulate downstream effectively in the short-term but it cannot regulate for
the long-term. Therefore, we hypothesize that during the short-term, there might be Positive
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Figure 4.12: Bifan motif of nucleus, which is two-layered graphs with edges from nodes in
top- to bottom-layer: there is a fail-safe mechanism, HER2-HER3 signaling which is buffered
is protected against an inhibition of HER2 catalytic activity, and a compensatory mechanism
by cross-talk between MAPK and Akt which results in robust activation of buffering.

Negative (PN) Feedback [95] so the TKI inhibits HER3 effectively. However, for long-term
behavior, even a small triggering signal could amplify the phospho-Akt signal, because of
Positive Positive (PP) Feedback which is similar to vesicular trafficking. On the other hand,
if the topology does not change, TKI should be able to regulate downstream over the long
term even though HER3 is recruited by vesicular trafficking.

We define the a priori map from biological information [137][5][87] where we include a
nucleus model to capture this possible topology change. The behaviors of the nucleus are not
yet understood, however we abstract it with the switch as shown in Figure 4.12. Basically,
there is a fail-safe mechanism, HER2-HER3 signaling which is buffered so that it is protected
against an inhibition of HER2 catalytic activity and it is driven by the negative regulation
of HER3 by Akt [5]. Also, there is a compensatory mechanism by cross-talk between MAPK
and Akt which results in robust activation of this buffering. However, the compensatory
buffering prevents apoptotic tumor cell death from occurring as a result of the combined
loss of MAPK and Akt signaling [5]. For example, once a signal is triggered and either MAPK
or Akt is high, then the nucleus stays active so MAPK and/or Akt are trying to keep the
compensatory buffering. However, once both MAPK and Akt are down regulated, the nucleus
is deactivated for all time.

We apply the proposed optimization technique and the result is shown in Figure 4.13
and 4.14. Here, we use the generated data based on biological experimental data (western
blot [137][5]). By applying the proposed method, we find that there are three main phases:
before TKI is introduced (triggering network), right after TKI is introduced (short-term)
and long term behavior after TKI is introduced. We can capture the topology change of
the biological network: for the initial stage (Figure 4.14 (a)), the signal is triggered and
propagated along activation edges. After TKI is introduced, downstream components such
as phospho-HER3, PI3K, Akt and MAPK are regulated because TKI inhibits and regulates
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Figure 4.13: The upper two figures show the normalized biological data and the assumed
nucleus level. The other (lower) figures show the strength of the downstream edges. For
example, the edge connecting HER23 to MAPK (middle figure) is activated from step 4 to
step 9 but deactivated from step 9 to 18.

downstream components. Moreover, the biological network shows PN Feedback which effec-
tively modulates signal responses. Finally, for long term behavior, even if a small triggering
signal is introduced (because of TKI inhibition, step 17-step 20), the downstream compo-
nents are not regulated but are activated because the biological network evolves to Positive
Positive (PP) Feedback which induces a slower but amplified signal response and enhances
bi-stability.
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4.4 Continuous Time Case

As we discussed, we infer discrete time dynamics from a set of data with a priori graph struc-
ture information and focus on how to find the most reasonable model among many possible
configurations [36]. We can extend this idea for the continuous time case. The identification
problem has led to Linear Quadratic (LQ) Optimal control problem with two main penalty
functions by which we can match the experimental data with a sparse representation using
a priori information of structure.

As we mentioned earlier, since a graph model is a natural way to represent a biological
signal pathway, it does not require any constraints on dynamics such as mass action kinetics
or Hill function representations, used in Ordinary Differential Equation (ODE) models. Also,
many different measurement techniques are developed which allow us continuous data acqui-
sition. Therefore, the inference scheme for the continuous case can be useful to build models
with fine-sampled data set and identify general systems using graphical representation.

4.4.1 Problem Statement

Recall biological network model (4.1) where the components of which represent concentration
of proteins and p is a parameter set. As we mentioned earlier, many studies in systems
biology impose a structure on f(·), such as mass action kinetics or Hill function dynamics,
and identify parameters using least-square criteria. However, in the previous section, we
presented a precursor to this algorithm for the discrete time-varying influence map which
can be formulated as a discrete time-varying linear system. Here, we basically extend this
idea for the continuous case. The nonlinear dynamic system (4.1) can be approximated by
a time-varying linear system based on forming the Jacobian around steady states as shown
below: 

δẋ1(t)
δẋ2(t)
...

δẋn(t)

 =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

... ... ... ...

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn



δx1

δx2

...
δxn

 = G(t)δx(t) (4.20)

where we assume there is no parameter variation (δp = 0). A system in the form of (4.20)
can be considered as a temporally evolving weighted directed graph. Then, G(t) is a time-
varying adjacency matrix, or influence map, of dimension n×n which describes the temporal
evolution of the edges with strength change. In general, G(t) is a sparse matrix [10]:

Gi,j(t) =
∂fi
∂xj

=

{
6= 0 if node j can affect node i directly

= 0 otherwise
(4.21)

where Gi,j(t) is non-zero if there exists a direct connection between node j (input node) and
node i (output node). Otherwise, Gi,j(t) is zero.
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Figure 4.15: A simple graph model.

Definition. (Component) Let G(t) be a time-varying adjacency matrix which represents a
dynamic graph with n nodes and k edges where k is the number of candidate edges from a
priori information. The component of G(t), denoted e(t) = comp(G(t)), is a k × 1 vector
whose elements are the nonzero entries of G(t).

Example. Consider the dynamic graph shown in Figure 4.15. Following the conventions
introduced above, the corresponding adjacency matrix G(t) has the form:

G(t) =


0 e21 0 e41

0 0 0 0
e13 0 0 e43

0 e24 0 0

 (4.22)

Its component e(t) is constructed by extracting the nonzero elements from each column,
which produces the vector:

e(t) = [e13, e21, e24, e41, e43]T , [e1, e2, e3, e4, e5]T (4.23)

Using e(t), we can reformulate system (4.20) as follows (for example, n = 4, k = 5):
ẋ1

ẋ2

ẋ3

ẋ4


n×1

=


0 e21 0 e41

0 0 0 0
e13 0 0 e43

0 e24 0 0


n×n


x1

x2

x3

x4


n×1

=


0 x2 0 x4 0
0 0 0 0 0
x1 0 0 0 x4

0 0 x2 0 0


n×k


e13(t)
e21(t)
e24(t)
e41(t)
e43(t)


k×1

= A(x)e(t)

= e1(t)


0
0
x1

0

+ e2(t)


x2

0
0
0

+ e3(t)


0
0
0
x2

+ e4(t)


x4

0
0
0

+ e5(t)


0
0
x4

0

 (4.24)

where A(x) ∈ Rn×k is a linear function of x, which can be constructed from a priori infor-
mation, representing possible influence modes of biological networks. For example, the first
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mode, [0 0 x1 0]T in equation (4.24) shows that node 1 activates node 3 (i.e, x1 → ẋ3 → x3).
Also, each ei(t) represents a time-varying coefficient or an activity of i-th mode ∈ Rn×1.
Therefore, we can assign the network topology by adding edges, for example, if there are
suspicious interactions among nodes. Here, we are using a similar notion to modal analysis
in mechanical vibration systems but the main difference is that our mode is constructed by a
graph model. For example, each ei(t) is similar to a generalized coordinate in modal analysis
and each column vector (influence mode) represents the eigenvector in modal analysis.

In order to find all ei(t) which drive our system dynamics with influence modes, we
formulate a Linear Quadratic (LQ) optimal control problem, as a regulation problem (x(t)→
xd(t)) with control inputs both e(t) and ė(t). Once we solve the LQ problem, ei(t)

∗ shows
the optimal activity or sequence of each mode over time which drives our dynamic system
to match biological data.

4.4.2 Time-Varying Linear System

In order to formulate the LQ optimal control problem, we define the controlled system as
follows:

dx(t)

dt
= A(x)e(t) (4.25)

and the optimal control is sought to minimize the quadratic performance index as follows:

J =
1

2
(x(tf )− xd(tf ))TS1(x(tf )− xd(tf ))

+
1

2

∫ tf

0

{[x(t)− xd(t)]TQ1[x(t)− xd(t)] + ė(t)TRė(t) + e(t)TQ2e(t)}dt (4.26)

where S1, Q1 and Q2 are positive semidefinite matrices and R is a positive definite matrix.
The LQ problem as formulated above is concerned with tracking of the desired trajectory

(xd(t), biological data). In the performance index J , the first term penalizes the deviation
of x(tf ) from the desired trajectory at the final time. Inside the integral, the first term
penalizes the transient deviation of x(t) from the desired trajectory xd(t) which represents
the error dynamics. The second penalizes the change of activity of edges (dynamic graph)
which attempts to minimize the variation of activity of edges over time (smoothly evolving).
Also, the third term penalizes the activities of edges. Therefore, the second and third term
attempt to achieve a sparse and smoothly evolving biological network.

In order to use a general LQ framework, first, we define ė(t) = v(t) and x̄(t) = x(t)−xd(t).
Here, we assume that we know xd(t) and ẋd(t) for 0 ≤ t ≤ tf because once we have xd(t) then
we can get ẋd(t) by using the derivative of a polynomial fitting. We define an (n + k) × 1-
dimensional state X(t) = [x̄(t)T , e(t)T ]T . Then, the state equation for the enlarged state
vector can be formulated as follows:

d

dt

[
x̄(t)
e(t)

]
=

[
0n×n A(x)n×k
0k×n 0k×k

] [
x̄(t)
e(t)

]
+

[
−ẋd(t)
v(t)

]
= A(x)X(t) +

[
−ẋd(t)
0k×1

]
+

[
0n×1

v(t)

]
= A(x)X(t) +W (t) + V (t) (4.27)



CHAPTER 4. OPTIMIZATION-BASED INFERENCE 63

where A(x) is also a linear function of x. Note that the augmented system is still a linear
system because there is no multiplication between A(x) and x̄(t). Also, the performance
index (4.26) can be written as follows:

J =
1

2
X(tf )

T

[
S1 0
0 0

]
X(tf ) +

1

2

∫ tf

0

{X(t)T
[
Q1 0
0 Q2

]
X(t) + V (t)T

[
0 0
0 R

]
V (t)}dt

=
1

2
X(tf )

TSX(tf ) +
1

2

∫ tf

0

{X(t)TQX(t) + V (t)TRV (t)}dt (4.28)

The problem is now reformulated as a standard LQ problem with the exception of R which
is a singular matrix. However, we are interested in v(t) so the solution of the continuous
time LQ problem is given by the state feedback control law as shown below:

V (t) = −R+P (t)X(t) = −
[
0 0
0 R−1

]
P (t)X(t) =

[
0

v∗opt(t)

]
(4.29)

−dP (t)

dt
= A(x)TP (t) + P (t)A(x)− P (t)TR+P (t) +Q (4.30)

where P (tf ) = S and equation (4.30) is a Riccati equation and proofs can be found in the
Appendix.

Note that the Riccati equation (4.30) includes A(x) term in A, yet we can handle this
easily by replacing x by xd: this trick is reasonable because our optimal control input, v∗opt(t),
drives x(t) to xd(t) by choosing proper Q1, Q2 and R. Otherwise, we would have to solve a
Two Point Boundary Value Problem (TPBVP) by numerical iteration.

Proposition. The Riccati equation (4.30) can be solved by replacing x by xd, using Q,R
which drive x to xd.
proof : Consider L = XTP2X as a Lyapunov function, then we can differentiate a Lyapunov
function as follows:

L̇ = XT{A(x)TP2 + Ṗ2 + P2A(x)}X + (W + V )TP2X +XTP2(W + V ) (4.31)

Select a Riccati equation which satisfies A(xd)
TP2 + Ṗ2 + P2A(xd) = −Q + P T

2 R+P2 and
consider ∆A satisfying A(xd) = A(x) + ∆A, then we can reformulate the Riccati equation
as follows:

A(x)TP2 + Ṗ2 + P2A(x) = −Q+ P T
2 R+P2 − (∆ATP2 + P2∆A) (4.32)

where intuitively, if x→ xd, ∆A becomes zero matrix. Also, we can reformulate L̇ as follows:

L̇ = XT{−Q+ P T
2 R+P2 − (∆ATP2 + P2∆A)}X + (W + V )TP2X +XTP2(W + V )

= −XTQX + (R+P T
2 X + (W + V ))TR(R+P T

2 X + (W + V ))− (W + V )TR(W + V )

−XT (∆ATP2 + P2∆A)X (4.33)



CHAPTER 4. OPTIMIZATION-BASED INFERENCE 64

We pick the optimal input V = −R+P T
2 X and we can use the relations:

(W + V )TR(W + V ) = V TRV = XTP T
2 R+P2X and W TRW = 0

By using these relations, we can formulate 4.33:

L̇ = −XTQX +W TRW − (W + V )TR(W + V )−XT (∆ATP2 + P2∆A)X

= −XT (Q+ P T
2 R+P2 + ∆ATP2 + P2∆A)X (4.34)

Thus, by choosing Q,R large enough to guarantee L̇ < 0, we can drive x → xd (i.e., ∆A
becomes zero matrix). Also, we can evaluate the dynamic graph e(t) by integration:

e∗(t) =

∫ t

0

v∗opt(τ)dτ (4.35)

Therefore, this proposed LQ optimal control framework allows us to capture pivotal devel-
opment events and dynamics of the temporally evolving system.

4.5 Numerical Example

In this section, we consider numerical examples to illustrate the proposed scheme. In order
to understand the method, we first present the procedure step by step with a well-known
unicycle model which gives us intuition. Then, we apply our scheme to biological systems.

Example 2. (A Unicycle Model) Consider the kinematic model of a UAV:

ẋ1 = v cosψ

ẋ2 = v sinψ

ψ̇ = u2 (4.36)

where (x1, x2) is the Cartesian location of the UAV and (v, u2) is the control input encom-
passing the linear and angular velocities, as shown in Figure 4.16. By introducing another
state, we can extend the equations as follows:

ẋd1 = xd3 cosxd4
ẋd2 = xd3 sinxd4
ẋd3 = u1

ẋd4 = ψ̇ = u2 (4.37)

where xd3 is the velocity (v) of UAV and xd4 represents the yaw angle of UAV. Suppose that
we do not know the equation of motion of a UAV system (4.37) but we can access the output
y(t) = [xd1, x

d
2, x

d
3, x

d
4, u1, u2]T = xd(t). Although we do not know the exact dynamics, we can
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(a) (b)

Figure 4.16: (a) A simple unicycle model (b) trajectory of the UAV.

Figure 4.17: A graphical model of a simple unicycle model.

draw the a priori influence map shown in Figure 4.17 which shows the relation or interaction
between each state. For example input y5(u1) affects the linear velocity (y3) of UAV and
the velocity affects positions (y1, y2) of the UAV. Based on this connectivity map, we can
formulate a linear system as follows:


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


x3 0 x4 0 0 0
0 x3 0 x4 0 0
0 0 0 0 x5 0
0 0 0 0 0 x6



e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)

 = A(x)e(t) (4.38)

Can we find the activities of all edges e(t) = [e31(t), e32(t), e41(t), e42(t), e53(t), e64(t)]T =
[e1(t), e2(t), e3(t), e4(t), e5(t), e6(t)]T based on the measurements? We can apply the proposed
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(a) (b) (c)

Figure 4.18: (a) xd and x based on the optimal solution (b) the connectivity and strength
of each edge (optimal solution) (c) ẋd and ẋ based on the optimal solution.

LQ optimal control problem by replacing x by measurements xd and finding the optimal
solution which shows the connectivity and strength of each edge. Also, we can compare the
true nonlinear dynamic system (4.37) with the optimal solution in Figure 4.18 (c).

Figure 4.18 shows the optimal solution for example 2. For example, Figure 4.18 (b)
represents the activity of the edges and we can see e53(e5) and e64(e6) which is close to
1 because our dynamics is nothing but integration (ẋ3 = u1 = 1 × y5 and ẋ4 = u2 =
1 × y6). Also, the piecewise linear system with the optimal solution is consistent with the
true nonlinear dynamic system. Therefore, although we do not have an exact dynamic model
for UAV system, we can reconstruct the time-varying linear system with a priori map. The
optimization result would help us to understand the actual dynamics or gain intuition.

Example 3. (Biological Signaling Pathways) Consider the system of coupled positive and
negative feedback networks as follows [96]:

dA

dt
= k1h(out, τA)(10− A)− k2A

dB

dt
= k1h(out, τB)(10− A)− k2B (short term)

dC

dt
= k1h(out, τC)(10− C)− k2C (long term)

dO

dt
= (kstiS + fAA+ fCC)(10−O)− (fBB + kmin)O

(4.39)
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(a) (b)

Figure 4.19: (a) A graph model of simple biological network (b) simulation result (PN
feedback (for short-term) and PP feedback (for long-term behavior)).

where ksti = 0.04, kmin = 0.4, fA = 0.012, fB = 1.5, fC = 0.008, k1 = 0.2, k2 = 0.25, τA = 5,

τB = 0, τC = 10 and h(out, τ) =
out(t− τ)3

out(t− τ)3 + 13
. Here, we consider the change of topology

of the network (for the short term, Positive Negative (PN) feedback (A,B only) and for
the long term, Positive Positive (PP) feedback (A,C only))[96]. In Figure 4.19, we can see
that output signal (O) goes to zero once the stimulation (S) or input signal goes to zero for
short term behavior because of PN feedback. However, for the long term, even a small pulse
input can make the output signal stay with high amplitude because of PP feedback. This
abstraction model represents HER2 overexpressed breast cancer signal pathway. Define
xd(t) = [x1, x2, x3, x4, u] = [O,A,B,C, S], e(t) = [e21, e31, e41, e12, e13, e14, e15] and the a
priori map as shown in Figure 4.19 (a). Then, a piecewise linear system can be formulated
as follows:


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 0 x2 x3 x4 u
x1 0 0 0 0 0 0
0 x1 0 0 0 0 0
0 0 x1 0 0 0 0





e21

e31

e41

e12

e13

e14

e15


(4.40)

Here, we introduce constraints that all edges eij(t) are positive, representing activation
edges. Therefore, for inhibition edges such as e13(t), we replace y3 by −y3 in order to satisfy



CHAPTER 4. OPTIMIZATION-BASED INFERENCE 68

(a) (b) (c)

Figure 4.20: (a) x and xd (b) the activity of edges (c) ẋ and ẋd

Figure 4.21: A modified graphical model of the simple biological network of Figure 4.19 (a).

our constraints. Also, we use a gradient projection method for constrained optimization
which makes our feasible solution satisfy these constraints.

Figure 4.20 shows that the optimal activities of all edges (e(t)) cannot drive our system
to be consistent with desired output (biological data) at some points. This result is expected
because our simulation data are generated by equation (4.39) which includes self-degradation
terms such as −k2A,−k2B,−k2C. However, in our graphical representation in Figure 4.19,
there are no self-degradation edges so there is no way to decrease the concentration of states
themselves. Therefore, if our graphical model can not represent the experimental data well,
our model can reveal deficiencies in the model. Then, we should suspect our graphical model
and update or modify by adding new edges, which are self-degradation edges, as shown in
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(a) (b) (c)

Figure 4.22: (a) x and xd (b) the activity of edges (c) ẋ and ẋd.

Figure 4.21.
Figure 4.22 shows that the optimal control input can drive our system to be consistent

with desired output quite well. Here we have included degradation edges (e11, e22, e33, e44)
so it can reflect the underlying dynamics (4.39). Also, we can understand the behavior with
a systematic point of view. For example, we can see that for the short term, the edges
(e21, e31, e13) related to [A] and [B] are activated, meaning PN feedback. For long term, the
edges related to [A] and [C] are activated, showing PP feedback (e21, e12, e41, e14). Also, for
example, e21(t) shows a sharp pulse at the point at which [A] start to increase. We can
interpret this sharp pulse as a trigger which activates the relation between x1 and x2. Once,
e21(t) shows zero value meaning that the edge is deactivated (switched off). Therefore, by
using continuous model, we can capture the underlying dynamics or key signal pathways
over time.

4.6 Conclusions

In this chapter, we have proposed a data-driven inference scheme in order to understand and
identify a model for temporally evolving biological networks. For the discrete time case, the
inference problem has led to a convex optimization problem with two main penalty functions
such as sparsity and reconstruction error using a priori information of structure. For the
continuous case, the identification problem has led to an LQ control problem with two main
penalty functions by which we can match the experimental data with a sparse representation
using a priori information of structure. We show that the proposed schemes can be useful to



CHAPTER 4. OPTIMIZATION-BASED INFERENCE 70

capture the dynamic evolution of the network and use this algorithm for studying a breast
cancer signaling pathway to understand short-term and long-term behaviors by capturing
the dynamic evolution of the network with a systems point of view. Also, a logical next step
would be to develop a theory-driven mechanism model such as an ODE by understanding
the actual dynamics.
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Chapter 5

Data-driven Graph Reconstruction
using Compressive Sensing

In studying biological systems, identifying the underlying gene regulatory networks from
data has been important and will continue to affect the study of gene regulatory networks.
We consider the problem of reconstructing a gene regulatory network structure from time
series gene expression data, and in turn identifying and uncovering the underlying network
structure responsible for the observed behaviors. First, we focus on a sparsely connected
graph structure with all nodes accessible for measurement and no measurement noise. A
method for reconstructing the graph structure without any prior knowledge of connectivity is
proposed. The proposed method is based on compressive sensing, where for a measurement
model T = Ωβ̄, we denote by β̄ the network structure to be identified, Ω the sensing
matrix, and T the measurement. The issue of coherence is discussed and it is demonstrated
that incoherence in the sensing matrix can be used as a performance metric and guideline
for designing effective experiments. Second, we consider a more general problem in which
there might be hidden nodes which affect system dynamics. We ask whether it is still
possible to reconstruct the graph structure reliably when the dynamics of a certain node is
corrupted by arbitrarily large errors and in addition, all measurements are contaminated by
measurement noise. By solving a two-stage convex optimization problem, the graph structure
can be reconstructed reliably. In our studies, for both problems, a set of numerical examples
demonstrates the performance of the proposed method. The material in this chapter is based
on the work in [33][34][35].

5.1 Introduction

Mathematical modeling of biological signaling pathways can provide an intuitive under-
standing of network behavior in systems biology [85] [160] [102]. However, since often only
incomplete knowledge of the network structure exists and the system dynamics are known
to be sufficient complex, the challenge has become to show that the identified networks and
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corresponding mathematical models are enough to represent the underlying system. This
is also a problem of interest to the control community, with many projects related to sys-
tem identification in biological networks [143][169][168][47][122][16]. There exist necessary
and sufficient conditions for network reconstruction for linear time invariant (LTI) systems
[70] and recent work [167] demonstrates this even while considering noise and unmodelled
dynamics. However, even though there are many data-driven approaches for inferring graph
structure, for time-varying or nonlinear systems, there is no statistical guarantee on how well
the inferred graph structure represents the underlying system [141][77][111][110]. In order to
continue to have a great impact in systems biology, identification of the graph topology from
data should reveal deficiencies in the model and suggest new experimental directions [35].

Many approaches using gene expression data either focus on static data or on time series
of gene expression data. The latter approach has the advantage of being able to identify
dynamic relationships between genes since the spatio-temporal gene expression pattern is the
result of both the network structure and integration of regulatory signals. However, data-
driven reconstruction of the network structure itself remains in general a difficult problem.
Moreover, measurement noise and nonlinearities in the system dynamics make this problem
even more challenging. A particularly challenging problem is to identify whether or not
important nodes in the graph structure are missing, how many are missing, and where
these nodes are in the interconnection structure. Recent work [167] addresses the problem
of data-driven network reconstruction, together with measurement noise and unmodelled,
nonlinear dynamics, yet this work points out that these complications impose a limit on the
reconstruction, and with stronger nonlinear terms the method fails.

Since biological regulatory networks are known to be sparse, meaning that most proteins
interact with only a small number of proteins compared with the total number of possible
proteins, many methods [142][77][111][110] take advantage of sparsity. Given this assump-
tion, the methods typically use l1-norm optimization, which leads to a sparse representation
of the network and improves the ability to find the actual network structure. Even though
many methods [111][110] show that the reconstruction results are fairly good, the methods
cannot guarantee exact recovery. This stems from the fact that the incoherence condition for
T = Ωβ̄ is typically not satisfied for the matrix Ω where β̄ is the signal to be reconstructed,
T is the measurement, and Ω is known as the sensing matrix. Incoherence provides a met-
ric of performance: this is one of the motivating factors for the use of compressive sensing
(CS)[23]. Such a metric can indicate us how accurately the inferred graph structure matches
the true underlying structure.

In this chapter, we are interested in directed graphs such as signaling pathways and
metabolic networks. We develop a new algorithm for network reconstruction based on CS.
First, we focus on sparse graph structures using limited time series data with all nodes
accessible and no measurement noise. In the HER2 positive breast cancer signaling pathway
that we study [31][32], time series data sets consist of 8 time point measurements of 20
protein signals, and we would like to use this data to identify a graph structure which could
have 20×20 or 400 edges. Applying the proposed method enables us to test the ability of the
network reconstruction algorithm to accurately and efficiently recover the network structure
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based on the gene expression data taken from a simulated biological pathway in which the
structure is known a priori. Also, the limitation of the proposed method’s performance is
explained when the dataset has naturally high coherence, and the way to overcome this
limitation by designing effective experiments is discussed.

Second, the proposed algorithm is extended to a more general but challenging problem:
(1) we take into account partially corrupted data with large error and (2) we consider small
measurement noise affecting all the data. For example, system dynamics may be affected
by missing nodes, or data could be corrupted arbitrarily by human error. The question is
whether one can still recover the graph structure reliably under these conditions. Inspired
by a robust error correction method [25], the exact recovery of the graph structure can be
guaranteed under suitable conditions on the node dynamics, provided that hidden nodes
can affect relatively few nodes in the graph structure. We discuss whether it is possible to
reconstruct the graph structure reliably when our measurement data is corrupted by noise
and there exist hidden nodes in the network. Also, a set of numerical examples is provided to
demonstrate the method, based on the synthetic protein expression data and RPPA (Reverse
Phase Protein Assay) dataset [81] taken from the HER2 positive breast cancer pathway.

The rest of this chapter is organized as follows: Section 5.2 presents brief overview of
compressive sensing. We discuss about how CS helps in reconstructing gene regulatory
networks in Section 5.3 and provide numerical examples in Section 5.4. We extend the
proposed algorithm to a more general problem considering hidden nodes and measurement
noise in Section 5.5. Finally, conclusions are given in Section 5.6.

5.2 Compressive Sensing

Consider measurements T ∈ Rm of a signal β̄ ∈ Rn:

T = Ωβ̄ (5.1)

where Ω ∈ Rm×n. Equation (5.1) may be represented in terms of the inner products of β̄
with the rows Ωi of Ω.

One key question [147] is how many measurements m are needed to exactly recover the
original signal β̄ from T :

• If m ≥ n and Ω is a full rank matrix, then the problem is determined (or overdeter-
mined) and may be solved uniquely for β̄ (if it is overdetermined, sometimes there may
be no solution).

• If m < n, the problem is underdetermined even if Ω has full rank. We know that
T = Ωβ̄ restricts β̄ to a subspace of Rn, but β̄ cannot be determined uniquely.

For the underdetermined case, the least squares solution β̄∗ = arg min
β̄
||β̄||l2 = Ω∗(ΩΩ∗)−1T

is typically used as the “best guess” in many applications. However, often the least squares
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solution is not satisfactory, especially if β̄ is sparse, meaning that many of its components
are zero, because least squares regularization does not encourage sparsity but distributes the
coefficients, meaning that almost all components are nonzero [147]. Yet if β̄ is sparse, one
might intuitively expect that fewer than n measurements are needed to recover β̄. It is thus
of interest to obtain a good estimator for underdetermined problems in which β̄ is assumed
to be s-sparse for some 1 ≤ s ≤ n, meaning that at most s of the elements of β̄ can be
non-zero. Therefore, in principle, we need only s measurement to reconstruct β̄. This is the
main motivation for CS:

“CS theory asserts that one can recover certain signals and images from far fewer samples
or measurements than traditional method use. For example, the number of measurements
needed to recover β̄ ∈ Rn is a number of measurements proportional to the compressed size
of the signal (S), rather than the uncompressed size (n) [24].”

To make this possible, CS relies on two properties: sparsity, which pertains to the signals
of interest, and incoherence, which pertains to the sensing matrix. CS exploits the fact
that many natural signals are sparse or compressible in the sense that they have concise
representations when expressed in the proper basis. Incoherence expresses the idea that
objects having a sparse representation in a certain basis should be spread out in the domain
in which they are acquired. For example, a Dirac delta function in the time domain is
spread out in the frequency domain. Much of the CS literature [23][24][27] discusses sensing
mechanisms in which information about a signal β̄ ∈ Rn is obtained by a linear functional
recording the values as follows:

Tk = 〈Ωk, β̄〉, k = 1, ...,m (5.2)

where Tk ∈ R is the kth component of the measurement T ∈ Rm, written in terms of the
inner product of signal β̄ with the k-th row Ωk ∈ Rn of the sensing matrix Ω ∈ Rm×n. There-
fore, we simply measure the correlation between the object β̄, which we wish to reconstruct,
and the sensing matrix Ω and then, T is a vector of sampled values of β̄ in the time or space
domains. For example, if the sensing waveforms, Ωk, are indicator functions of pixels, then T
is the digital image data collected by image sensors. If the sensing waveforms are sinusoids,
then T is a vector of Fourier coefficients [27]. Since the time series gene expression data
are represented by integration of regulatory signals through the network structure, we could
formulate the gene regulatory relation into equation (5.2) where T and Ω are constructed by
time series gene expression data and β̄ represents the network structure which is assumed
to be sparse and unknown.

Proposition [147]. Suppose that any 2s columns of an m × n matrix Ω are linearly inde-
pendent (this is a reasonable assumption if m ≥ 2s). Then, any s-sparse signal β̄ ∈ Rn can
be reconstructed uniquely from Ωβ̄.
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In fact, the proof [147] of the above proposition also shows how to reconstruct an s-sparse
signal β̄ ∈ Rn from the measurement T = Ωβ̄ where β̄ is the unique sparsest solution to
T = Ωβ̄;

β̄ = arg min
β̄
||β̄||l0 subject to T = Ωβ̄ (5.3)

where ||β̄||l0 :=
∑n

i=1 I(β̄i 6= 0) is the cardinality of β̄. However, l0-minimization is com-
putationally intractable (NP-hard in general). A simple but very effective way to solve
l0-optimization is l1-minimization (or basis pursuit) which is a convex optimization problem
and can be solved by linear programming. Several theoretical results [26] ensure that basis
pursuit works whenever the measurement or sensing matrix Ω is sufficiently incoherent, de-
fined as follows:

Definition [23] The coherence of a matrix M is denoted by

µ(M) = max
j<k

|〈Mj,Mk〉|
||Mj||2||Mk||2

where Mj and Mk denote columns of M . We can say that a dictionary1 is incoherent if
µ is small. Coherence is a key property in the compressed sensing framework because if
two columns are closely correlated, it will be impossible to distinguish whether the sparse
component in the signal comes from one or the other.

Theorem 1 [26] Let ξ1, ..., ξm ∈ {1, ..., n} be chosen randomly. Then with high probability,
every one-dimensional s-sparse discrete signal f : {1, ..., n} → C can be recovered from a
partial collection f̂(ξ1), ..., f̂(ξm) of Fourier coefficients as long as m > cs log n for some
positive constant c where f̂(ξ) := 1

n

∑n
x=1 f(x)e−2πixξ/n.

Numerical experiments suggest that in practice, most s-sparse signals are in fact recovered
exactly once m ≥ 4s or so [23]. Therefore, if the sensing matrix Ω satisfies the incoherence
condition, the signal β̄, which is assumed to be sufficiently sparse and represents the graph
structure in our case, can be exactly recovered from the condensed dataset without any
prior knowledge such as the number of nonzero elements, their locations, and their values.
On the other hand, if the incoherence condition is not satisfied, the exact recovery cannot
be guaranteed [35][24]. However, by adding more informative dataset, the coherence can be
reduced.

1A dictionary in Rd is a finite collection of unit-norm vectors that spans Rd. If there are n elements in
the dictionary, we say its size is n. A dictionary can be represented by a d× n matrix D whose columns are
the elements of the dictionary.
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5.3 How does CS help in reconstructing gene

regulatory networks?

A novel sensing/sampling paradigm known as compressed sensing or CS goes against the
common wisdom in data acquisition [24]. To make this possible, CS designs efficient sens-
ing mechanisms, captures the useful information content embedded in a sparse signal and
condenses it into a small amount of data. This remarkable feature of CS is that the sensing
is completely nonadaptive so one simply chooses a sensing matrix or selects a collection of
sensing vectors (i.e., each row of sensing matrix) a priori and measures correlations between
the signal and sensing vectors [7].

We formulate the reconstruction problem into the CS framework by constructing the
sensing matrix (Ω) and measurement (T ) from the given time series gene expression data.
Here, the graph structure which is denoted by β̄ is nonadaptive, or fixed, even though the
strength of connection may change over time. In graph theory, a digraph can be represented
by G = (V,E) where V and E represent vertices and edges respectively. Since the dynamics
of biological networks are typically unknown, often the best we can do is to derive a linear
dynamical system representation which encodes connectivity between genes and the relative
strength of the connection. For example, any arbitrary complex directed graph (G) can be
represented by a time-varying linear system ẋ = A(t)x + B(t)u where x ∈ Rn represents
gene expression, A(t) ∈ Rn×n is a system matrix or unknown influence map, B(t) ∈ Rn×q

is the known input matrix and u ∈ Rq is the control input which can directly affect certain
nodes (i.e., drug treatments). Thus, any dynamical system can be represented by a graph
model G = (V,E) = (A,B) or vice versa [99].

Although one could consider continuous time/space signals, we restrict our attention to
discrete signals. Let Xk ∈ Rn and Y k ∈ Rn be the measured data where k is a time step
index, and Uk ∈ Rq be the known input. The relationship between Xk, Y k and Uk can be
described by Y k , ∆Xk/∆T = (Xk+1 − Xk)/∆T = AkXk + BkUk where Bk ∈ Rn×q is
assumed to be known and ∆T represents a sampling time. The main goal is to find a sparse
graph representation, Ak, using measured time series data. A directed graph Ak can be
denoted as follows:

Ak =
d⋃
i=1

Pk(Gi) =
d∑
i=1

αkiGi =
d∑
i=1

αki sit
T
i (5.4)

where d is the number of non-zero elements or edges in the directed graph, Pk is a projection
onto the basis of the graph structure and αki ≥ 0 is a scaling factor. Here, a graph structure
can be denoted by Gi(= sit

T
i ∈ Rn×n) where si, ti ∈ Rn are standard bases. By definition,

bases of the graph structures Gi and Gj are orthogonal to each other, e.g., Gi ⊥ Gj or
(sTi sj)(t

T
i tj) = 0. As an example, if the jth node activates the ith node (i.e., Akij > 0), this

can be represented by Akij = αkeie
T
j where ei, ej are the standard or canonical basis and αk

is a time-varying scaling factor. Here, different scaling represents the relative strength of the
connection over time even though the structure itself is fixed. In the generic sparse setting,
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union models are nonlinear but we denote the union by both time-varying scaling factor and
the basis of the graph structure in equation (5.4). Figure 5.1 shows a simple example:

A =
[
α1e2 α2e3

]
n×d

[
eT1
eT2

]
d×n

(5.5)

where A represents the influence map which represents both connectivity (or graph structure
denoted by e2e

T
1 , e3e

T
2 ) and the relative strength of the connection denoted by α1 and α2

where e2e
T
1 , e3e

T
2 are the basis elements of the graph structure. Therefore, for the time-

varying case, αi can change over time by which we can handle nonlinear dynamics. The
difficulty of inferring graph structure is to show that the inferred graph structure is enough
to accurately represent the underlying system because of the limited measurement. CS helps
us to tackle this difficulty by providing a guarantee of the exact recovery under incoherence
conditions.

5.3.1 Problem Formulation

In this section, we present how to formulate the original reconstruction problem into CS
framework. Consider a linear time invariant map with no control input (Uk = 0) for sim-
plicity (without loss of generality, if there is a control input, we can subtract that term, i.e.,
Y k −BkUk = AXk):

Y k =


α11 α12 ... α1n

α21 α22 ... α2n

... ... ... ...
αn1 αn2 ... αnn

Xk = AXk (5.6)

where Xk, Y k ∈ Rn are measurements at time step k, each αij represents the connection
between node i and j, or the matrix A thus defines the corresponding influence map at

Figure 5.1: A simple example (n = 3, A ∈ R3×3): graph structure is sparse and can be
represented by the direct sum of only two basis graphs or two edges (d = 2 � 9) where
(eT2 e3)(eT1 e2) = 0.
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time k (note that here, A is time invariant). However, in general, a biological system is
more complex and has nonlinear behavior, so we could also consider a more general case as
follows:

Y k =


α11ξ(x

k
1) α12ξ(x

k
1) ... α1nξ(x

k
1)

α21ξ(x
k
2) α22ξ(x

k
2) ... α2nξ(x

k
2)

... ... ... ...
αn1ξ(x

k
n) αn2ξ(x

k
n) ... αnnξ(x

k
n)



φ(xk1)
φ(xk2)
...

φ(xkn)

 (5.7)

where xki represents the ith components ofXk, αij represents a graph structure with nonlinear
components ξ(·) and φ(·). In systems biology, ξ(·) and φ(·) are nonlinear functions of the

state xki in many cases, for example, mass action kinetics or Hill functions φ(xki ) =
xki

H

1+xki
H .

This model (5.7) can describe different model classes such as simple biochemical reactions or
gene regulatory networks. For example, if we choose constants for the diagonal components,
αiiξ(x

k
i ) = αii; linear terms for the off-diagonal components, αijξ(x

k
i ) = αijx

k
i ; and linear

terms for the φ(·), φ(xki ) = xki ; then the dynamics of xi can be described as yki = (xk+1
i −

xki )/∆T = αiix
k
i +

∑n
j=1,j 6=i αijx

k
i x

k
j where αij represents connections or edges between node

i and j or simply the reaction rate of the mass action kinetics. Therefore, in principle, we
can consider a model that includes all monomials, bionomials, and other combinations in
dictionary. Here, for simplicity in explaining the main idea, first we consider the case in which
ξ(·) = 1, thus a time invariant map defined solely by the αij, but we still use a nonlinear
term φ(·). The general case will be considered with the numerical examples presented later.
Equation (5.7) can be reformulated as follows:

Y k =

(
d∑
l=1

βlevle
T
wl

)
Φ(Xk) (5.8)

where e{·} ∈ Rn is a unit vector, ul, vl, wl are indicator indices such that 1 ≤ ul, vl, wl ≤ n,
d is the number of nonzero elements or αij (i.e., edges of the graph structure) which is
unknown but assumed to be small (d� n2) and βl is the corresponding nonzero αij. We de-

note Φ(Xk) =
[
φ(xk1) φ(xk2) ... φ(xkn)

]T
and define Yk = ΨkY k where Ψk(=

[
ψk1 , ..., ψ

k
n

]
)

is a randomly chosen orthonormal matrix with independent identically distributed (i.i.d.)
random variables (i.e., ψki ⊥ ψkj and ||ψki ||2 = 1) chosen to reduce coherence in the sensing
matrix which will be discussed in equation (5.12) and (5.13):

Yk = ΨkY k = Ψk

(
d∑
l=1

βlevle
T
wl

)
Φ(Xk)

=
[
ψkv1Φ(Xk)T ... ψkvdΦ(Xk)T

]
n×n·d ×

β1ew1

...
βdewd


n·d×1

+
n2−d∑
j=1

0 · ψkvjΦ(Xk)Tewj

=
[
ψk1Φ(Xk)T ... ψknΦ(Xk)T

]
n×n2 β̄n2×1

= X k(Ψk,Φ(Xk))β̄ (5.9)
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where d, ul, vl, wl, βl are unknowns. By indicating possible model classes in X k(·), we can
estimate β̄ based on l1-norm optimization. For example, consider a 3-node directed graph
(n = 3) as shown in Figure 5.1 and then there exist only 3 edges among possible 9 edges

(n2), i.e., the graph structure can be described in a matrix form as

 0 0 0
α21 0 0
0 α32 0

 and

then β̄ =
[
0 0 0 α21 0 0 0 α32 0

]T ∈ R9×1. Also, for M measurements, or different
experimental datasets, we can stack all measurements as follows:

T =


Y1

Y2

...
YM


M ·n×1

=


X 1

X 2

...
XM


M ·n×n2

β̄n2×1 = Ω(X )β̄ (5.10)

where Ω(X ) is denoted as our sensing matrix. In (5.10), β̄ represents the s-sparse network
structure which we want to reconstruct from the data by solving the l1-norm optimization:

min |β̄|l1 subject to T = Ω(X )β̄ (5.11)

5.3.2 Reconstructing GRNs (Problem Solution)

In this section, the condition for exact recovery of β̄ in (5.10) will be discussed.

Proposition. If the sensing matrix Ω(X ) which we construct from time series data multi-
plied by a randomly chosen orthonormal matrix, Ψk, has 2s linearly independent columns,
then any s-sparse network structure β̄ can be reconstructed uniquely from T = Ω(X )β̄.

proof : (Suppose not) then there are two s-sparse graph structures β̄1, β̄2 with Ω(X )β̄1 =
Ω(X )β̄2 (or Ω(X )(β̄1−β̄2) = 0). However, β̄1−β̄2 is 2s-sparse, so there is a linear dependence
between 2s columns of Ω(X ) (contradiction).

The above proposition asserts that if the unknown s-sparse signal β̄ is reasonably sparse,
it is possible to recover β̄ by convex optimization under the incoherence condition on the
sensing matrix which is required by the traditional CS assumption. For example, Ω(X ) ∈
RM ·n×n2

has 2s linearly independent columns and if M ·n < 2s, the number of data samples
M can be increased by generating {X k,Yk} based on the given dataset {Xk, Y k} with
different Ψk. Although the sensing matrix Ω(X ) is composed of the redundant dictionaries
Φ(Xk)T , the coherence of the sensing matrix can be reduced by multiplying a randomly
chosen orthonormal matrix Ψk at each time step k. For example, consider the following case
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in which two columns from the sensing matrix are chosen:

〈


φ(x1

1)ψ1
1

φ(x2
1)ψ2

1

...
φ(xM1 )ψM1

 ,

φ(x1

1)ψ1
2

φ(x2
1)ψ2

2

...
φ(xM1 )ψM2

〉 = φ(xk1)2

M∑
k=1

ψk1
T
ψk2 = 0 (5.12)

where the two columns of the sensing matrix are orthogonal so linearly independent (zero
coherence). However, some parts of the matrix Ω(X ) might have high correlation because of
redundant dictionaries. As an example, consider the first and second columns of the sensing
matrix:

〈


φ(x1

1)ψ1
1

φ(x2
1)ψ2

1

...
φ(xM1 )ψM1

 ,

φ(x1

2)ψ1
1

φ(x2
2)ψ2

1

...
φ(xM2 )ψM1

〉 =
M∑
k=1

φ(xk1)Tφ(xk2) (5.13)

µ1,2 =

∑M
k=1 φ(xk1)Tφ(xk2)√∑M

k=1 φ(xk1)
2
√∑M

k=1 φ(xk2)
2

(5.14)

What if time series gene expressions are correlated each other? Is it still possible to reduce
coherence of the sensing matrix in this case? For example, if time-course gene expression of
two different genes xk1, x

k
2 are closely correlated over time, the corresponding sensing matrix

is not incoherent. Intuitively, as an example, if the gene expression data of two different
genes are exactly the same over time, it is impossible to distinguish whether the influence
comes from one or the other. This is a natural property in the CS framework. In order to
reduce the coherence, a more informative dataset should be added to our sensing matrix. In
biological systems, this can be done by inhibiting or stimulating a certain gene by applying
inhibitors or enzymes which can manipulate the gene expression.

5.3.3 A simple linear map case

Consider a simple linear model which can explain the link between coherence and eigenvalues,
eigenvectors or initial conditions. Since biological systems are typically much more complex
than a simple linear model, this cannot give us an exact recipe for generating the incoherent
sensing matrix; however, this simple linear model can be used to illustrate how inhibition or
stimulation helps reduce the coherence. A simple linear model can be denoted by:

ẋ = Ax (5.15)

where x ∈ Rn, A ∈ Rn×n. Let λi be an eigenvalue of A and ri be the corresponding
eigenvector (i.e., Ari = λiri). If A is diagonalizable, then any vector in an n-dimensional
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Figure 5.2: Reducing coherence of sensing matrix (n = 3, A ∈ R3×3): we randomly generate
kth time step input and stack measurements (M). By increasing the number of measure-
ments, M , we can reduce the coherence of our sensing matrix Ω even though we generate
the input data randomly. If we add more informative dataset in a systematic way, we can
reduce coherence more effectively with fewer M .

space can be represented by a linear combination of the right and left eigenvector (denoted
li) of the matrix A:

x(t) =
n∑
i=1

(li · x0)rie
λit =

n∑
i=1

cirie
λit (5.16)

where x0 = x(t = 0) and ci , li · x0. Consider the first and second columns of the sensing
matrix and calculate the coherence (note φ(xki ) = xi for this simple linear case):

〈


φ(x1

1)ψ1
1

φ(x2
1)ψ2

1

...
φ(xM1 )ψM1

 ,

φ(x1

1)ψ1
1

φ(x2
1)ψ2

1

...
φ(xM1 )ψM1

〉 =
M∑
k=1

xk1x
k
2

=
M∑
k=1

( n∑
p=1

n∑
q=1

cpcqe
λpk∆T+λqk∆T rp,1rq,2

)
(5.17)

where xk1 = x1(k∆T ), xk2 = x2(k∆T ), rp,1 and rq,2 represent the first component of rp and the
second component of rq respectively. Therefore, the coherence between separate time series
vectors depends on the initial conditions (cp, cq), eigenvalues (e(λp+λq)k∆T ) and eigenvectors
(rp,1, rq,2). The result indicates that if the gene expression data of two different genes are
highly correlated, they should be isolated from each other. For example, when the dynamics
of two nodes are exactly the same because they have the same eigenvector, then experiments
to inhibit or stimulate certain genes could be used to differentiate them [35]. Figure 5.2
shows that the coherence of the sensing matrix is decreased as we increase the number of
measurements M .
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5.4 Numerical Examples

In this section, numerical examples are illustrated, and the incoherence condition and recon-
struction result will be discussed.

Example 1.(Time invariant map A whose nonzero elements are either 1 or −1): a random
graph structure is generated in which there is no isolated node and the elements of A are also
randomly chosen (aij ∈ {−1, 0,+1}) as shown in Figure 5.3(a) and the data is generated by
simulating a linear model Y k = AΦ(Xk) = AXk in Figure 5.3(b). From now on, throughout
the paper, the performance of CS will be compared with the performances of the || · ||l1 and
|| · ||l2 norm optimizations, defined below1:

|| · ||l1 : min
A

1T |A|1 s.t. Y k = AXk ∀k = 1, ...,M

|| · ||l2 : min
A

||A||l2 s.t. Y k = AXk ∀k = 1, ...,M

Figure 5.3 (c) shows the result of the inferred graph structure based on given {Xk, Y k}
without any a priori information. Here, there are 7 states (n = 7) so the directed graph
structure A has 49 elements. So, the X-axis of Figure 5.3 (c) shows each element of graph
structure. For example, when A is in R7×7, there are 49 elements in the graph structure. l2-
regularization does not encourage sparsity but distributes the coefficients to be more similar
to each other. Also, for the small M (≤ n) case, both l1-optimization and CS give similar
results (exact recovery).

Example 2.(Time invariant map A whose elements are randomly chosen): a more general
graph structure is considered whose elements are randomly chosen (not binary) and more
data samples (M > n).

Figure 5.4 (c) shows the inferred graph structure. The inferred graph structure using
CS is quite accurate as compared to l1- and l2-norm optimizations but it is not an exact
reconstruction because here, the incoherent condition is not satisfied. Also, for l1-norm
optimization when M > n, the solution is infeasible because of redundancy (see Appendix).
So, the l1-norm optimization problem is modified as follows when M > n:

min 1T |A|1 + γ

M∑
k=1

||Y k − AXk||2

where γ is a tuning parameter or trade-off between sparsity and reconstruction error.

1 || · ||l1 refers to the element-wise sum of absolute values (note that it is not the operator l1 norm). || · ||l2
refers to the Frobenius norm.
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Figure 5.3: (Example 1) 7 states, 14-sparsity (14 � 49), 7 time points: (a) randomly
generated graph (red:activation, blue:inhibition), (b) simulated data based on (a), (c) re-
construction based on optimization l1, l2 and CS where the green line represents the true
structure.
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Figure 5.4: (Example 2) 10 states, 29-sparsity (29� 100), 16 time points: randomly gener-
ated graph (red:activation, blue:inhibition), (b) simulated data based on (a), (c) reconstruc-
tion based on optimization l1, l2 and CS where the green line represents the true structure.

5.4.1 Incoherent Sensing Matrix: design a new biological
experiment in a smart way

As we mentioned above, if the sensing matrix has high coherence, we need to acquire more
measurements or make our sensing matrix the satisfy the requirement m > cs log n (prac-
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Figure 5.5: (Example 3) By reducing coherence, we can get better performance (7 states,
17-sparsity (17 � 49), 11/21 time points: (a) randomly generated graph (red:activation,
blue:inhibition), (b) coherence of sensing matrix Ω(X ) M = 11, (c) coherence of sensing
matrix M = 21, (d) recovery of graph structure M = 11, (e) recovery of graph structure
M = 21 where the green line represents the true structure in (d) and (e).

tically, m ≥ 4s) [24]. In the following example, we illustrate that the incoherence of the
sensing matrix can be used as not only a good metric to guarantee exact recovery but also
a guideline for designing new experiments.

Example 3.(Increasing performance by forcing incoherence on the sensing matrix ): Figure
5.5 shows the result for a 17-sparse network with 7 states. The comparison of coherences of
the sensing matrices is shown in Figure 5.5 (b) and (c), and the reconstructed results are
presented in (d) and (e) respectively. Since data itself has high correlation in Figure 5.5(b),
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Figure 5.6: (Example 3’) By reducing coherence, we can get better performance (15 states,
36-sparsity (36 � 225), 40/80 time points: (a) randomly generated graph (red:activation,
blue:inhibition), (b) coherence of sensing matrix Ω(X ) M = 40, (c) coherence of sensing
matrix M = 80 (d) recovery of graph structure M = 40, (e) recovery of graph structure
M = 80 where the green line represents the true structure in (d) and (e).

the reconstruction result shows some errors in (d). However, for M = 21 (which means
adding new data points), coherence is reduced in Figure 5.5 (c) and the exact recovery is
presented in (e).

Similarly, Figure 5.6 shows the result for a large network which has 36 edges with 15
states. We can compare the coherences of the sensing matrices in Figure 5.6 (b) and (c) and
the recovered results in (d) and (e) respectively. The entries of the sensing matrix in (c) are
more uniformly distributed in magnitude than those of (b). Also, only 80 measurements are
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needed to reconstruct the graph structure exactly (instead of 225).
Numerical examples show that if the sensing matrix is incoherent enough, the recon-

struction of the exact graph structure is almost always guaranteed. Here, coherence was
decreased by adding more data points, but in practice, we could design new experiments to
add more data points. This idea can be helpful for designing new experiments. For example,
if time series data sets show high correlation between xi and xj or the sensing matrix has
high coherence, new experiments can be designed which inhibit or stimulate either xi or xj.
Then, by stacking all measurements as shown in equation (5.10), coherence between xi and
xj can be reduced. On the other hand, if we do experiments which do not affect xi and xj,
new experimental data set would not help to recover the graph structure because there would
still exist a high coherence between xi and xj. Therefore, the coherence metric can not only
guarantee exact graph structure recovery, but also provide a guidance for new experiments
in a smart way.

Moreover, as the number of states (n) increases, the CS method is more efficient in
reconstructing the graph structure because we estimate an s-sparse signal among n2 elements
and need m measurements (n2 � m ≥ 4s, if n is big enough). For example, if n = 30 and
s = 80, we need at most 4s = 320 measurements instead of n2 = 900.

5.4.2 Linear Time Varying Case

As we mentioned above, the proposed method can handle a time-varying influence map which
has nonlinear terms ξ(·), φ(·) in equation (5.7). The graph structure is randomly generated
in Figure 5.7 (a) including nonlinear terms as shown in equation (5.18) in which there are 6
linear terms and 8 nonlinear terms among 6 states and an 18 time points data set is used for
reconstruction. After considering nonlinear terms in our dictionary, the proposed method is
applied. Figure 5.7 (b) shows time series data and (c) shows the exact reconstruction of the
graph structure (there are 72 elements; the first 36 elements are related to linear terms and
the other 36 elements are related to nonlinear terms). In general, for the nonlinear case as
shown in equation (5.18), the influence map or strength of the connection is time-varying so
nonlinear terms should be included in dictionary. Also, in order to guarantee exact recovery,
the coherence condition should be handled carefully because this sensing matrix is more
likely to be coherent.

∆X

∆T
=


0 0 −0.136 0 0.464− 0.35x1 0
0 0 0 0 0.13x2 0
0 0.44x3 0 0 0 0

−0.4x4 0 0 0 −0.49x4 0
0 0 0 0.662 0 −0.17x5

0 0.105 0.594− 0.42x6 0.333 −0.42x6 0




x1

x2

x3

x4

x5

x6

 = AkXk

(5.18)
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Figure 5.7: Time Varying case (6 states, 18 time points, (6+8)-Sparsity (14� 72 (36 linear+
36 nonlinear)): (a) randomly generated graph (red:activation, blue:inhibition), (b) experi-
mental data (concentration), (c) recovery of graph structure where the green line represents
the true structure.

5.5 Graph Reconstruction with Hidden Nodes

One of the main contributions of the proposed method in the previous section is the conver-
sion of the problem of inferring graph structure into the CS framework and the demonstration
that one could recover sparse graph structures from only a few measurements. However, for
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practical use, the proposed method needs to be able to deal with both sparsely corrupted
signals and measurement noise. In general, the assumption of accessibility or observability
of all nodes [35] is not satisfied; this is especially true in biological systems. For example,
consider the following set of biochemical reactions: x1 → x2 a x3, i.e., x1 induces a direct
positive regulation (activation) on x2, x2 induces a direct negative regulation (inhibition)
on x3. Now assume that x2 is a hidden node, and we would like to infer the relationship
between x1 and x3. From the above regulation relationship, we know that x1 induces an
indirect negative regulation on x3 (through the hidden node x2). In this case, even though
x2 is not observable, the indirect negative regulation between x1 and x3 can be inferred.
A more interesting and challenging example is one in which an unknown protein (i.e., x4)
affects an observable protein (i.e., x3) directly, as shown in Figure 5.8.

In this study, we focus on the case in which the hidden node affects observable nodes
directly as shown in Figure 5.8 (b). Also, without loss of generality, this hidden node
dynamics could be any arbitrary dynamic models; for example, the number of the hidden
nodes can be larger than the number of observable states. Or, even if there is no hidden node,
a small portion of the biological experiment dataset could be contaminated by large error
in practice, for example, mislabeling, or improper use of markers or antibody. Moreover, all
biological datasets are contaminated by at least a small amount of noise from measurement
devices in general. Therefore, the proposed method should be robust.

Here, the question is whether it is still possible to reconstruct the graph structure re-
liably when measurements are corrupted. Since hidden nodes and measurement noise are
considered, the number of time points is assumed to be greater than that of the previous
case [35] (i.e., no corruption and no measurement noise). Thus, the number of rows of the
sensing matrix is assumed to be greater than the number of columns. In [25], two decoding
strategies for recovering β̄ ∈ Rn from a measurement T = Ωβ̄+e+z is introduced by Candès
and Randall, where Ω ∈ Rm×n(m ≥ n), e is a possible sparse vector of large errors and z is
a vector of small error affecting all the entries. It is shown that two decoding schemes allow
the recovery of β̄ with nearly the same accuracy as if no sparse large errors occurred. Our
contribution is converting the problem of inferring the graph structure with hidden nodes

(a) (b)

Figure 5.8: (a) Simple graph structure without a hidden node (b) and with a hidden node
x4.
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into the highly robust error correction method framework [25], in order to recover the sparse
graph structure from measurement data corrupted by hidden node dynamics.

5.5.1 Sparse corruption

Consider the graph structure shown in Figure 5.8 (right) with a hidden node (i.e., x4) and no
measurement noise. Suppose the system dynamics are as follows (for simplicity, we consider
a linear time invariant case in this section):

y(k) =
1

∆T


∆x1(k)
∆x2(k)
∆x3(k)
∆x4(k)

 =

[
Ao,o Ao,uo
Auo,o Auo,uo

]
x1(k)
x2(k)
x3(k)
x4(k)

 =

[
Ao,o Ao,uo
Auo,o Auo,uo

] [
Xo(k)
Xuo(k)

]
(5.19)

where Xo(k) =
[
x1(k) x2(k) x3(k)

]T
represents observable states and Xuo(k) = x4(k) is an

unobservable or hidden node. Also, an influence map can be decomposed into 4 categories:
Ao,o, Ao,uo, Auo,o and Auo,uo. For example, Ao,o represents the influence map from observable
states to observable states and Ao,uo shows the influence map in which hidden states can
affect observable states’ dynamics, etc.. As per our assumption, the influence of unobservable
on observable nodes is assumed to be sparse (i.e., Ao,uo is sparse). The observable node’s
dynamics can be denoted by

yo(k) = Ao,o

x1(k)
x2(k)
x3(k)

+ Ao,uox4(k) = Ao,oXo(k) + uk (5.20)

where yo(k) are observable states from y(k), Ao,o ∈ Rn×n represents the influence map from
the observable states, n is the number of observable states and the influence map from hidden
nodes (Ao,uox4(k)) can be denoted by input uk ∈ Rn which is assumed to be sparse and
unknown. In other words, hidden nodes can affect only a few nodes’ dynamics (intuitively, if
hidden nodes affect all nodes, there is no way to reconstruct the graph structure). Therefore,
in order to satisfy this assumption, we need some knowledge of the graph structure. Roughly
speaking, our methodology breaks down large-scale networks into small networks and then
infers the network structure.

Our sensing matrix can be constructed by using equation (5.9):

Yk = Ψkyo(k) = Xkβ̄ + Ψkuk (5.21)

where Ψk ∈ Rn×n is a randomly chosen orthonormal matrix with i.i.d. random variables, Xk
was defined in the section 5.3 and β̄ represents the unknown graph structure. Also, M time
point measurements can be stacked as follows:

Y =


Y1

Y2

...
YM

 = Ωβ̄ + diag{Ψ1,Ψ2, ...,ΨM}ū = Ωβ̄ + Ψ̃ū = Ωβ̄ + e (5.22)
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where Y ∈ RM ·n, Ω ∈ RM ·n×n2
and Ψ̃ ∈ RM ·n×M ·n are known, β̄ ∈ Rn2×1 represents the

sparse graph structure and ū =
[
uT1 uT2 ... uTM

]T ∈ RM ·n×1 is a sparse vector with possibly
large errors from hidden nodes. Without loss of generality, ū can also represent arbitrary
corruptions by human error during biological experiment.

5.5.2 Two-step refinements for sparse large corruption

Consider the recovery of the graph structure β̄ from the corrupted vector Y . Suppose the
number of rows of the sensing matrix Ω is greater than the number of columns (i.e., M > n,
we need more time points if hidden nodes may exist) and consider a matrix Q∗ which
annihilates the sensing matrix Ω on the left (Q∗Ω = 0) where Q∗ is any (M · n− n2)×N · n
matrix whose kernel is the range of Ω in RN ·n (rank(Q∗) + nullity(Q∗) = N · n):

Ỹ = Q∗Y =��
�* 0

Q∗Ω · β̄ +Q∗e = Q∗e

Then, the following two-step optimization problem enables us to reconstruct graph structure
exactly.

1) Step 1: the corrupted signal or unmodelled dynamics is filtered out from the mea-
surement:

u# = arg min |ū|l1 s.t. Ỹ = Q∗e = Q∗Ψ̃ū = Q̃ū (5.23)

If we could somehow get an accurate estimate ê = Ψ̃u# from equation (5.23), the following
equation represents the problem of reconstructing the graph structure β̄.

2) Step 2: a sparsely connected graph structure is inferred using CS [35]:

min |β̄|l1 s.t. Y − ê = Ωβ̄ (5.24)

We assume all nodes are accessible for measurement (meaning that there is no hidden node,
e = 0) [35], so we can solve Step2 directly without Step1 since Y = Ωβ̄. Also, the intuition
is that Y (= Ωβ̄ + e) can be decomposed as the superposition of an arbitrary element in
V (= Y −QQ∗e) and of an element in V ⊥(= QQ∗e) as shown in Figure 5.9. In other words,
PV ⊥(Y ) = QQ∗ where PV ⊥ is the orthonormal projector onto V ⊥:

• Ỹ = 0: there is no hidden node =⇒ Y ∈ R(Ω)

• Ỹ 6= 0: Y cannot be represented by Ωβ̄ so there might be hidden nodes or our dictio-
naries in the sensing matrix Ω are not sufficient to represent Y (revealing deficiencies
in our model).

The two step convex optimization problems (5.23) and (5.24) are l1-norm optimization prob-
lem in CS. Thus, if the sensing matrices Q̃ and Ω satisfy the incoherence condition, signals ū
and β̄ can be recovered exactly [35][24]. Here, there are many possible choices of Q∗ but we
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Figure 5.9: Geometric view of two consecutive l1-norm optimization programmings.

have to choose Q∗ to satisfy the coherence condition for the exact recovery of ū [35]. To choose
such a Q∗, observe that Ω can be denoted as follows using Singular Value Decomposition
(SVD):

Ω =
[
U1 U2

] [Σ 0
0 0

] [
V T

1

V T
2

]
= U1ΣV T

1 (5.25)

where U1 ∈ RN ·n×n2
, U2 ∈ RN ·n×(N ·n−n2),Σ ∈ Rn2×n2

, V1 ∈ Rn2×n2
and V2 ∈ Rn2×(N ·n−n2).

Suppose we choose Q∗ such that Q∗ = WUT
2 . Then:

Q∗Y = Q∗Ωβ̄ +Q∗e

(WUT
2 )Y = (WUT

2 )U1ΣV T
1 β̄ + (WUT

2 )e

WUT
2 Y = WUT

2 Ψ̃ū

where W ∈ R(N ·n−n2)×(N ·n−n2) can be used as a tuning matrix for satisfying the incoherence
condition.

5.5.3 Sparse corruption with measurement noise

While considering influence from hidden nodes is interesting, it still may not be realistic
to assume that except for hidden nodes, one is able to measure the node dynamics with
infinite precision. A better model would assume that there is measurement noise. Consider
the problem of recovering the graph structure β̄ from the vector Y which is corrupted by
measurement noise n:

Y = Ωβ̄ + z (5.26)

where z = e+n = Ψ̃ū+n, n is a Gaussian noise N (0, σ) assumed to be bounded ||n||l2 ≤ ε.
In general, we can consider any corruption decomposed into sparse large error ū and small
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magnitude error n. Then, modified two-step refinements can be applied as follows:

Ỹ = Q∗Ωβ̄ +Q∗z = Q∗e+Q∗n

u# = argmin |ū|l1 s.t ||Ỹ −Q∗Ψ̃ū||l2 ≤ ε1

β# = argmin |β̄|l1 s.t. ||Y − Ωβ̄ − ê||l2 ≤ ε2, ê = Ψ̃u#

where the parameters ε1, ε2 above depend on the magnitude of the small errors ε, which can
be determined as in [25].

5.5.4 Numerical Examples

Consider simple examples in which we have a linear time invariant influence map (we note this
goes beyond the results in [70] due to the consideration of hidden node dynamics with mea-
surement noise). For the LTI model, we generate a random graph structure whose elements
are randomly chosen. Here, we either randomly pick a node whose dynamics is corrupted
by a hidden node, or choose an arbitrary time point data in which data is contaminated by
an arbitrarily large error. For the hidden node’s dynamics, random signals with Gaussian-
distributed random variables are used for representing highly nonlinear system dynamics
and the amplitude is chosen to be similar to the magnitude of observable node dynamics
ẋ as shown in Figure 5.10(c) and Figure 5.11(c) (middle). Also, all the measurements are
assumed to be contaminated by small measurement noise. Finally, the proposed method is
applied for studying HER2 overexpressed breast cancer signaling pathway using an RPPA
(Reverse Phase Protein Assay) dataset [81] where both linear and nonlinear quadratic terms
are considered in the sensing matrix. The performance of CS is compared with the perfor-
mances of the || · ||l1 and || · ||l2 norm optimizations.

Example 4.(With measurement noise and arbitrary corruption by human error): Figure
5.10 (a) shows a randomly generated graph structure which has 5 nodes and 10 edges and
(b) represents the dataset ẋ, corruption signal ui and noise ni. As shown in Figure 5.10 (c),
a small portion of the dataset is assumed to be largely corrupted by human error (ui) and
measurement noise (ni) is assumed to be small (2% of the magnitude of the dynamics). Fig-
ure 5.10 (b) and (d) show the result of two-step refinements respectively. By estimating and
filtering out ẑ from Y , the graph structure can be reconstructed quite accurately as shown in
Figure 5.10 (d) where the X-axis represents indices of the influence map (i.e., 1st, 2nd, ..., nth
rows of influence map).

Example 5.(Corrupted by a hidden node with measurement noise): a specific node is selected
randomly and corrupted by a hidden node as shown in Figure 5.11 (i.e., node 4, e4 ≈ 15% of
the magnitude of ẋ). Also, measurement noise is considered and assumed to be small (1% of
the magnitude of the dynamics). Figure 5.11 (a) shows a randomly generated graph structure
which has 5 nodes and 11 edges and (c) represents the dataset ẋ, corruption signal ui and
noise ni. By estimating ẑ from Y , the corrupted signal can be filtered out and reconstructed
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Figure 5.10: (Example 4) Time invariant case with measurement noise (5 states, 100 sample
points, 10-Sparsity (a) randomly generated graph (red:activation, blue:inhibition), (b) re-
covery of corrupting signal z = e+ n where the magnitude of u, n are about 60%, 2% of the
magnitude of ẋ respectively, (c) experimental data ẋ, corrupting signal e and measurement
noise n, (d) recovery of graph structure where the green line represents the true structure.

graph structure is shown in Figure 5.11 (d). In this case, only node 4 is corrupted by a
hidden node so we can reconstruct the graph structure exactly, except the corrupted node
(indices 16-20 in Figure 5.11(d)).
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Figure 5.11: (Example 5) Time invariant case with measurement noise (5 states, 80 sample
points, 11-Sparsity (a) randomly generated graph (red:activation, blue:inhibition, Node 2 is
corrupted by hidden node dynamics) (b) recovery of corrupting signal z = e + n where the
magnitude of u, n are about 15%, 1% of the magnitude of ẋ respectively, (c) experimental
data ẋ, corrupting signal e and measurement noise n, (d) recovery of graph structure where
the green line represents the true structure.

Example 6.(HER2 Overexpressed breast cancer): we apply the proposed algorithm to study
a breast cancer signaling pathway by reconstructing the graph structure using an RPPA
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Figure 5.12: (Example 6: biological system) RPPA dataset (SKBR3 cell line, Serum [81])
(a) gene expression date [0-48hr] (b) l1 optimization result (c) l2 optimization result (d) CS
reconstruction result.

dataset [81]. Here, the simply connected part is chosen from the large scale network (3
nodes, known to be simply connected, i.e., PI3K→ PDK→ Akt and PDK→ Akt→ mTOR)
in order to satisfy our assumption that the influence on observable nodes from a hidden node
should be sparse. For the simply connected case, the CS reconstruction result matches the
true structure exactly while l1- and l2-optimizations fail to reconstruct the known structure
as shown in Figure 5.12 and Figure 5.13.

Also, an abstract model of breast cancer signal pathway proposed by Dr. Moasser is con-
sidered as shown in Figure 5.14 (b) where PHLPP isoforms are a pair of protein phosphatases,
PHLPP1 and PHLPP2, which are important regulators of Akt serine-threonine kinases (Akt1,
Akt2, Akt3) and conventional protein kinase C (PKC) isoforms. PHLPP may act as a tumor
suppressor in several types of cancer due to its ability to block growth factor-induced sig-
naling in cancer cells [20]. PHLPP dephosphorylates Ser473 (the hydrophobic motif) in Akt,
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Figure 5.13: (Example 6: biological system) RPPA dataset (SKBR3 cell line, Serum [81])
(a) gene expression date [0-48hr] (b) l1 optimization result (c) l2 optimization result (d) CS
reconstruction result.

thus partially inactivating the kinase [62]. Unfortunately, in our RPPA dataset, we do not
have PHLPP so we simply consider three nodes (AktpT308,AktpS473 and mTOR). Figure 5.14
(c) shows the result of proposed method using RPPA dataset and the reconstructed graph
structure matches up to known structure. Especially, our result can capture the partial
inactivating characteristics of PHLPP (i.e., mTOR(→ PHLPP) a AktpS473).

5.6 Conclusion

The proposed methods for reconstructing sparse graph structures based on time series gene
expression data without any a priori information is useful and performs quite well. First, the
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Figure 5.14: (Example 6: biological system) RPPA dataset (SKBR3 cell line, Serum [81])
(a) gene expression date [0-48hr] (b) abstract model by Dr. Moasser (c) CS reconstruction
result.

time invariant influence map is presented and the importance of incoherence is discussed.
Also, we illustrate that incoherence in the sensing matrix can be used as a guideline for
designing effective experiments. The proposed method is also applied to the time-varying
(nonlinear) case and the results are discussed.

Second, the proposed method is extended to the cases in which the dynamics is cor-
rupted by hidden nodes and the measurement is corrupted by human error in addition to
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measurement noise. Using a two-step refinement procedure, we demonstrate good perfor-
mance for the reconstruction of graph structure. A set of numerical examples is implemented
to illustrate the method and its performance. Also, a simple biological example of HER2
overexpressed breast cancer using an RPPA dataset is studied. We are currently applying
our method to recover HER2 signaling pathway, where a significant part of the network is
currently unknown.
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Chapter 6

Mode Identification based on Neural
Activity (I)(II)

Introduction

Decoding the map between neural spike signals in the brain and movements of the arm is of
great interest in the area of neuroscience. The main goal is to advance our understanding
of fundamental principles in the neural control of movements. Ultimately, such a decoder
can be used as a brain-machine interface (BMI), allowing paralyzed patients, for example,
to control an exoskeleton attached to their arms. Many brain-machine interface (BMI)
researchers have demonstrated the feasibility of using (adaptive) input-output models for
reconstructing hand trajectories [30][48][112]. For example, some recent research has focused
on the relationship between kinematic parameters such as reach direction and speed, and
measured response of motor cortex neurons. In this view, neural response encodes movement
parameters in a straightforward manner such as the spatial tuning of cortical response for
reach direction [65][64]. All of the current proposed models of neural encoding basically
demonstrate the ability to encode and store the relationships between neural firing rates and
hand trajectories. In order to design a decoder, model parameters are adjusted to minimize
the error between model output and actual hand movements based on a statistical criterion
such as mean square error.

Although the individual neural response per neuron shows temporal properties, until
recently most studies have focused on the spatial, rather than temporal structure of the
neural response. Several recent studies [41][42][165] focused on the temporal complexity
and heterogeneity of single-neuron activity in the premotor and motor cortices. In [41],
Churchland et al. showed that neural activity patterns in the primary motor cortex and
premotor cortex associated with nearly identical velocity profiles can be very different. Yu
et al. considered the problem of extracting smooth, low-dimensional neural trajectories
that summarize the activity recorded simultaneously from many neurons during individual
experimental trials [165]. They proposed a novel method for extracting neural trajectories
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– Gaussian-process factor analysis (GPFA) – which unifies smoothing and dimensionality-
reduction operations in a common probabilistic framework.

Much of the motor control literature has dealt with the possibility that movements may
be programmed via combinations of discrete motor primitives [93][21][121][63][117][115][113].
Several studies suggested forms of motor primitives which are united in providing the nervous
system with a putative mechanism for reducing both the number of degrees of freedom it has
to control, and the frequency at which this control needs to be executed. One example of a
motor primitive is a submovement, which is the focus of this chapter. In [71], the hand speed
profile as a function of time resulting from arm movements is a sum of bell-shaped functions,
each of which called “submovement”. The speed profile of a simple, well-controlled movement
looks like a single bell-shape. The speed profile of a more complex movement looks like a
sum of several bell-shapes. This suggests that the control of hand position may involve
discrete mode transitions in the brain. Neural spike signals from the brain may encode
information about the occurrence of these mode transitions, which could signify the onset of
submovements.

For BMI, movements need to be predicted in real time. This motivated the use of a hybrid
systems approach, where movement prediction occurs whenever discrete mode transition is
detected. Determining the discrete modes of operation of the brain would be a big step
towards a hybrid systems approach to decoding the map between neural activity and hand
kinematics. The purpose of this chapter is to present a new spatiotemporal perspective in
analyzing neural activity data, which consists of the spike rates of a group of neurons as
a function of time. The spike rate of neuron, or unit, is obtained by counting its action
potentials within a time bin and dividing by the duration of that bin. The data are collected
from a lab monkey which is instructed to repeatedly perform a simple task. Rows of the data
matrix will represent the spatial dimension and columns will present the temporal dimension.

In Part I, we use unsupervised segmentation of neural activity via Sparse Subspace Clus-
tering (SSC) to identify the mode. Once we interpret and extract the features of our systems
such switching conditions, the number of modes and sequences of modes, then we could use
a conventional system identification for a single LTI system. Also, we demonstrate that the
monkey brain does in fact operate in various discrete modes when controlling arm move-
ments.

In Part II, robust principal component analysis (RPCA) will be applied to the data ma-
trix to extract temporal characteristics of neural activity by decomposing the matrix into a
low-rank component and a sparse component. This allows us to identify the similarities in a
spatial and temporal structures when the monkey performs similar tasks at different times.
This differs from an approach like principal component analysis (PCA), which breaks down
under large data corruption, and cannot extract temporal information [42]. In the context of
neural activity, the low-rank matrix corresponds to the common features of neural activity
across similar motor primitives, which are submovements in this study; the sparse matrix
represents the uncommon component across submovements, and is interpreted as noise or as
signal unrelated to submovement onset. Using RPCA, we test whether submovements are
associated with neural activity and how well neural activity reflects the onset of submove-
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ments across different task conditions. These findings open doors to many potential areas of
research, and is a step in both understanding how the brain works and improving the quality
of life of many neurological patients. The material in this chapter is based on the work in
[38][115].

The rest of this section is organized as follows: Section 6.1 presents the main motivation
for the hybrid system approach for brain model. In Section 6.2, we introduce sparse subspace
clustering and show how we apply this algorithm to a neural dataset. Section 6.3 shows
the results of applying SSC, with discussion. From Section 6.4, we consider a low-rank
representation of neural activity for detecting submovement. In Section 6.4, we characterize
the task-relevant pattern and introduce RPCA. Section 6.5 discusses disentanglement of the
low-rank and sparse components and the necessity of random projection. In Section 6.6, the
application of neural activities is presented. Finally, conclusions are given in Section 6.7.
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I. Mode Identification of Neural
Response via Sparse Subspace
Clustering

6.1 Motivation

Hybrid systems are heterogeneous dynamics systems whose behaviors are determined by
interacting continuous and discrete dynamics. The main advantage of hybrid models is that
they can be used to approximate continuous phenomena by concatenating different models
from a simple class using discrete variables. For example, a nonlinear dynamical system can
be approximated by switching among various linear models.

Due to their many potential applications, hybrid systems have had great impact on many
areas, such as air traffic control and systems biology, during the last decade [149][150][69].
However, most of the theoretical developments have used an assumption that a hybrid model
is available. In some cases, it is possible to obtain the model starting from theoretical
or physical knowledge, or intuition. On the other hand, it is often too complicated or
even impossible to derive a theory driven model. For example, the brain might generate a
combination or sequence of discrete, time-varying motor programs to effect motion. However,
because the number of motor programs, the model parameters, the discrete state, and the
transition condition are all unknown, the identification problem is challenging in that there is
a coupling between the estimation of the model parameters and the segmentation of data into
discrete states. For such systems, a model needs to be identified on the basis of experimental
data first.

In this section, we assume a hybrid linear time-invariant (LTI) system and are concerned
with offline data analysis for identification of a hybrid model of brain. There are various
approaches to identify hybrid LTI systems: iterative algorithms which sequentially estimate
the parameters of the model and classify the data, statistical clustering of measured data via
a Gaussian mixture model, support vector machines and so on [119][123][109][79]. Here, we
use unsupervised segmentation of neural activities via Sparse Subspace Clustering (SSC).
Once we interpret and extract the features of our system, then we might use conventional
identification for a single LTI system. Also, we show that SSC techniques strongly suggest
that the brain does in fact operate in discrete modes.
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6.2 Sparse Subspace Clustering

In some studies, the neural signals used for decoding movement have been reduced in di-
mensionality, for example, by locally linear embedding (LLE; [44]), or by a modified form
of factor analysis known as Gaussian-process factor analysis (GPFA; [130] [165] [43]). Also,
studies using neural activities to decode movement parameters frequently use a population
vector algorithm (PVA), linear regression (Wiener) decoders [158] [157], or Kalman-based
filters [103] [112].

We have attempted to classify discrete behavioral states from neural activities related to
discrete motor program as shown in Figure 6.1. For example, motor cortical neurons convey
some information about kinematic parameters or speed profiles, but except in the average of
many neurons and trials, their firing is poorly correlated with speed profiles. Also, the brain
might generate a combination or sequence of discrete, time-varying motor programs. If we
can classify the sequence of different motor programs, this information can be used to infer
the exact transitions or pick effective neural activities for both a discrete and continuous
decoder. For example, for estimating the speed profile using a discrete decoder, we consider
neural activities around the experimental “Go” cue, but sometimes actual movements occur
with delay. Moreover, for actual application of the closed-loop BMI, we do not have a
“Go” cue so we have to detect this triggering signal from the neural activity. Similarly, for
the continuous decoder, there might exist a finite number of subsystems where switching
or transitions might occur, so if we can cluster neural activities based on the corresponding

Figure 6.1: Conceptual diagram of discrete motor programs.
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Figure 6.2: Center-out task in manual control.

subsystems, this might be helpful to better understand our system. In this study, we consider
the problem of clustering a collection of unlabeled neural activities assumed to lie near a
union of lower dimensional spaces. For example, each neural activity corresponding to a
different motor program might lie on a different subspace.

6.2.1 Experimental Setup

Center-out data involves a monkey performing center-out tasks, in which the monkey first
places its hand at the center of a playing surface as shown in Figure 6.2 (left). Then, one
of the eight targets around the center lights up, prompting the monkey to prepare to move
its hand there. Finally, a “Go” cue signals the monkey to move its hand from the center
location to the indicated target as shown in Figure 6.2 (middle, right).

All procedures were conducted in compliance with the National Institute of Health Guide
for Care and Use of Laboratory Animals and were approved by the University of Califor-
nia, Berkeley Institutional Animal Care and Use Committee. While the monkey is either
moving freely in one-dimension or performing center-out tasks, single unit activity (SUA)
of approximately 150 neurons was recorded; this data will be referred to as “neural data”.
Roughly speaking, SUA is the rate at which a neuron fires signals called neural spikes. The
two-dimensional hand position and velocity is also recorded; this data will be referred to as
“kinematics data”.

6.2.2 Method

In general, we do not know in advance how many subspaces there are nor any information
about their dimensionality. Here, we apply sparse subspace clustering (SSC). Suppose the
observed neural activities are the columns of a matrix U = [u1,u2, ...,uN ] ∈ Rn×N , where
N is the total number of time points, n is the number of neurons and ui represents neural
activity at time i. In this study, we assume that we are given neural activities ui ∈ Rn over
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Figure 6.3: Results of SSC applied to neural data set. Each colored dot represents a different
mode, so that at each time, the brain is in one of the specified number of modes. (a) The
clustered group is highly correlated with kinematics (x-velocity)((a) bottom) and we con-
struct low-dimensional embedding using classical multidimensional scaling (MDS) as shown
in (b) [Carmena Lab data, paco, center-out task, 100ms bin].

time which are distributed on a union of unknown linear subspaces S1 ∪ S2 ∪ ... ∪ SL where
there are L subspaces of Rn of unknown dimensions d1, d2, ..., dL. More precisely, we have a
group X ⊂ Rn consisting of N points in Rn, which may be partitioned as follows:

X = X0 ∪ X1 ∪ ... ∪ XL (6.1)

where X0 accounts for possible outliers and for each l ≥ 1, Xl is a collection of Nl unit-
normed vectors chosen from Sl. A basic assumption is that neural activities for different
motor programs might lie on different subspaces so if we could classify each neural activity
into different groups, we could recover all the unknown subspaces or sequences of neural
activities.

The key idea of the SSC algorithm [56] is to find the sparsest expansion of each column
ui of U as a linear combination of all the other columns. We expect that the sparsest
representation of ui would only select vectors from the subspace in which ui happens to lie.
This motivated Elhamifar and Vidal [56] to consider the following optimization problem:

min
z∈RN

||z||l1 subject to Uz = ui and zi = 0 (6.2)

where the idea is that whenever zj 6= 0, ui and uj belong to the same subspace. Once we
solve the optimization problem, we form the affinity graph G with nodes representing the N
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Figure 6.4: Results of SSC when applied to a portion center-out data (1000 time bins). Each
colored dot represents a different mode. The colored dots are overlaid on top of 2D position
and velocity plots (black lines) for visualization (a) x− y (b) ẋ− ẏ.

data points and sort the eigenvalues of the normalized Laplacian of G in descending order.
Then, we apply spectral clustering techniques to the affinity graph. Figure 6.3 shows the
sequence of clustered group by applying SSC where each dot is overlaid on top of kinematics
data for visualization. Each clustered group shows high correlation with actual velocity
profile (we color-coded into velocity profile to see correlation).

SSC is not limited to only being able to determine a certain number of modes. When
the number of modes is increased, we again see the clustered group corresponding to the
end point kinematics. For example, if five modes are chosen, we have the positive velocity
(orange, light blue), negative velocity (dark red), and zero velocity (dark blue, light green).
The negative velocity profile is highly correlated with the dark red group. The orange mode
seems to correspond to the beginning of a series of movements and the dark red mode seems
to correspond to the end of a series of movements. Transition between two modes may be
indicative of the onset of submovements.

Also, we modified our input matrix including previous step to consider dynamics of neural
activities as follows:

U =

[
u1 u2 ... uN
u0 u1 ... uN−1

]
∈ R2n×N (6.3)

Then, the clustered result is shown in Figure 6.4 (a) and (b) show trajectories of position
(x, y) and velocity (ẋ, ẏ) respectively. Here, we allow four subspaces group and we color the
plot line with corresponding subspaces or cluster groups to interpret the result easily. Also,
Figure 6.5 (a) and (b) represent phase portraits of x and y respectively. Obviously, we can
see that neural activities are highly correlated with end point kinematics or dynamics.
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Figure 6.5: Results of SSC when applied to a portion of center-out data (1000 times bins).
Each colored dot represents a different mode. The colored dots are overlaid on top of x− ẋ
and y − ẏ plots (black lines) for visualization (a) x− ẋ (b) y − ẏ.

6.3 Result and Discussion

6.3.1 Mode Identification via Sparse Subspace Clustering

Compared to one-dimensional free movements, center-out tasks are much more complicated
for the brain to perform because the monkey needs to wait for and respond to specific
instructions that it is trained to follow, and execute hand movements satisfying externally
imposed requirements.

From the results, we show that SSC can separate the neural data vectors into groups or
clusters, and it can reveal the modes which are highly correlated with dynamics of the end
point as shown in Figure 6.5. Each figure summarizes the result of SSC when applied to
1000 time bins (100 seconds) of the center-out data where the colored dots are overlaid on
top of various kinematics plots.

The two plots in Figure 6.4 show kinematics where each of the four modes occur with
respect to position and velocity. The dark blue group seems to correspond to the hand being
in the bottom half plane in both x − y space and ẋ − ẏ space. This suggests that there is
a mode corresponding to the hand moving away from the center towards one of the lower
targets. The orange group, on the other hand, suggests that there is a mode corresponding
to the hand moving back to the center away from the lower targets. The light blue and light
green groups make similar suggestions for the upper targets.

The two plots in Figure 6.4 show that perhaps the modes are related to both the position
and velocity at the same time, so we overlaid the colored dots on the phase portrait, for
example, x − ẋ and y − ẏ plots in Figure 6.5. While either time plots shown in Figure
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6.3 or overlaid on top of position and velocity plots as shown in Figure 6.4 does not reveal
clear correlations between kinematics and the discrete modes identified by SSC, a simple
overlaying the different colored dots on top of phase portraits represents clear correlations as
shown in Figure 6.5. Here, we see in Figure 6.5 that each mode corresponds to one quadrant
in the y − ẏ space. The figure reveals a correlation between identified discrete modes and
kinematics in the x direction that was not as obvious: two of the modes have an S shape in
x− ẋ space, while the other two modes have a reflected S shape.

6.3.2 Mode Prediction

Each mode that SSC identifies in the center-out data has an associated range space in which
the neural spike vectors lie. Once the modes and the range space of each mode are determined
from the training data set, we can predict the modes of the neural data vectors in the test
set as shown in Algorithm 1:

Algorithm 1: Mode Prediction via SSC

Input: training set [X1, X2, ..., Xk], nsub (the number of modes) and test data set
[Xk+1, Xk+2, ...].

Output: Range space Uj and predicted mode.

1: Mode Identification:
2: Run SSC for training set then we can get clustered result.
3: Calculate range space Uj for each subspace nsub
4: Prediction: calculate error for test data Xk+1

5: ej = ||(I − Puj)Xk+1|| = ||(I − UjUT
j )Xk+1||

6: set Xk+1 ∈ R(Ul) where l = argmin
j
ej

As an example, for the center-out data set, we used the first 1000 time bins as a training set
to establish the range spaces of each mode. Afterwards, we used the range spaces to predict
the modes of the remaining 4000 time bins. Then, we compared the predicted modes to the
obtained modes by clustering all 5000 time bins at once. The prediction accuracy is 98.5 %.
The result of mode prediction in the center-out data is shown in Figure 6.6. The prediction
shows the same patterns in x− ẋ and y − ẏ space with a few misclassifications. This result
shows that SSC is able to identify discrete modes which the brain continues to exhibit over
400 seconds when performing center-out tasks. This implies that the brain uses the same
time-invariant motor program so that SSC prediction is applicable over the duration of 400
seconds.
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Figure 6.6: SSC prediction results in a portion of center-out data (1000 time bins used for
training to predict modes of 4000 time bins). Each colored dot represents a different mode.
The colored dots are overlaid on top of x− ẋ and y − ẏ plots (black lines) for visualization.
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II. Low-rank Representation of
Neural Activity and Detection of
Submovement

In this study, Robust Principal Component Analysis (RPCA) is applied to neural spike
datasets to extract neural signatures that signify the onset of submovements, a type of motor
primitive. Given neural activity recorded from rhesus macaques during a set of reaches be-
tween targets in a horizontal plane, we aim to identify common event-related neural features
and validate submovement-based motor primitives inferred from the hand velocity profiles.
Such features represent common dynamic patterns across many experimental trials and may
be used as a signature to detect of discrete events or state transitions such as submovement
onset. We present RPCA, a method well suited for extracting data matrices’ low-rank com-
ponent, which represents dynamically meaningful structure. When applied to experimental
data collected from monkeys, this method allows (1) removal of sparse corruption signal or
task-irrelevant signal from data, (2) identification of task-related dynamic patterns, and (3)
detection and prediction of submovements. We also explored using the Random Projection
(RP) technique, a powerful method for dimensionality reduction. Applying RP to data prior
to applying RPCA improved the submovement prediction performance by de-sparsifying
neural data while preserving certain statistical characteristics of aggregate neural activity.
The material in this part is based on the work presented in [38][115].

6.4 Characterizing Task-relevant Patterns

Neural activity is typically studied by averaging noisy spiking activity across multiple ex-
perimental trials to obtain an approximate neural firing rate that varies smoothly over time.
However, if neural activity is more a reflection of internal neural dynamics rather than re-
sponse to external stimulus, the time series of neural activity may differ even when an animal
is performing nominally identical tasks [165]. This is particularly true of behavioral tasks
involving perception, decision making, attention, or motor planning. In these settings, it
is critical that the neural data not be averaged across trials, but instead be analyzed on a
trial-by-trial basis [42]. Moreover, stimulus representations in some sensory systems are char-
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Figure 6.7: Velocity profile of a complex movement following a simple movement (exper-
imental data). Thick green line: data. Thick red line: Reconstruction of data following
submovement decomposition. Dashed red lines: individual submovements.

acterized by the precise spike timing of a small number of neurons [66][140][101], suggesting
that the details of operations in the brain are embedded not only in the overall neural spike
rate, but also the timings of spikes.

Neural models of supervised learning are usually concerned with processing static spatial
patterns of intensities. For example, traditional PCA may be applied to the neural population
activity. However, PCA does not find dimensions relevant to dynamical structure because
traditional PCA begins by calculating data covariance, which describes the ellipsoid that
best fits the data without regard to temporal information [42]. In the following section, we
will show that the low-rank component of the data, which is related to the dynamical features
in the population activity, can be extracted by using RPCA. Then, we will use the low-rank
neural features to detect and predict the onset of submovements.

6.4.1 Submovement Decomposition

According to Gordon et al. [71] and Fishbach et al.[59], the hand speed profile as a function
of time resulting from arm movements can be represented by a sum of bell-shaped functions,
each of which is called a “submovement”. One biological interpretation of submovement
decompositions is that instead of applying continuous control to the arm, the brain controls
arm movements by initiating discrete submovements. The velocity profile of a more complex
movement looks like a sum of several bell-shapes, where submovements following the first
can be interpreted as corrections to the initial submovement. A complex movement following
a simple one is shown in Figure 6.7.
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Figure 6.8: (a) RPCA applied to computer vision. A typical example of video surveillance
where the low-rank component represents the unchanging background and the sparse com-
ponent represents the movements in the foreground. (b) RPCA applied to neural systems.
The low-rank component putatively represents (submovement relevant) neural signatures
and the sparse component represents neural activity unrelated to submovement onset.

Rohrer and Hogan outline various types of roughly bell-shaped functions representing sub-
movements and present algorithms for fitting sums of bell-shaped functions to kinematic data
[125][126]. The types of bell-shape functions include the Gaussian curve, support-bounded
log-normal curve, and the minimum jerk curve [1][60][152][71]. In this study, the planar ve-
locity of the monkey’s hand is decomposed using methods similar to in [126] into minimum
jerk curves. In the subsequent RPCA analysis, submovements with small amplitude and/or
long duration are ignored to avoid artifacts of overfitting.

6.4.2 Robust Principal Component Analysis (RPCA)

Suppose we are given a large data matrix M, which has common features in the low-rank
component and may contain some anomaly in the sparse component as shown in Figure 6.8
(a). It is natural to model the common variations as approximately the low-rank component
L, and the anomaly as the sparse component S. For example, in video surveillance, we need
to identify activities that stand out from the background given a sequence of video frames
[28]. Figure 6.8 (a) shows that if we stack the video frames as rows of a matrix M ∈ Rq×Px·Py

where q is the number of frames, and Px and Py represent the number of pixels of 2-D images
respectively, then the low-rank component L corresponds to the stationary background and
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the sparse component S captures the moving objects in the foreground. Using RPCA, we
can decompose M:

M = L + S (6.4)

We can formulate this as follows:

min
L,S
||L||∗ + λ||S||1 subject to M = L + S (6.5)

where ||L||∗ denotes the nuclear norm of the matrix L, i.e., the sum of the singular value of
L, and ||S||1 =

∑
ij |Sij| represents l1-norm of S. Choosing the tuning parameter λ to be

λ = 1/
√

max(n1, n2), works well for incoherent matrices where n1, n2 represent the dimension
of matrix M [28]. For practical problems, however, it is often possible to improve performance
by choosing λ according to prior knowledge about the solution. Once we decompose M as
L + S, then the low-rank component (L) represents the common features and the sparse
component (S) represents anomalies in the dataset M.

6.4.3 Neural population dynamics

The motor and premotor cortex have been extensively studied but their basic response
properties are poorly understood [42]. Also, there is debate about whether neural activity
relates to muscles or to abstract movement features. One possibility is that motor cortical
activity represents movement parameters as per equation (6.6) and dynamical system that
generates movements as per equation (6.7) [42]:

xi(t) = fi(param1(t), param2(t), param3(t), ...) (6.6)

ẋ(t) = g(x(t)) + u(t) (6.7)

In (6.6), xi(t) is the firing rate of neuron i at time t, fi is its tuning function, and each paramj

may represent a movement parameter such as hand velocity, target position or direction. In
(6.7), x ∈ Rn is a vector describing the firing rate of all neurons where n is the number of
neurons, ẋ is its derivative, g is an unknown function, and u is an external input. In (6.7),
neural activity is governed by some underlying dynamics and dynamical features should be
present in the population activity.

Although neural population dynamics is typically much more complex than a simple
linear model, here we simply consider a linear model because a piecewise linear modeling is
the process of developing a series of locally linear models which approximates a nonlinear
system such as (6.7). This example can be used to illustrate how we construct our input
matrix M for analyzing neural activity data and in this setting, the low-rank component
corresponds to the characteristics of dynamical system. Consider a simple linear model where
unit activities reflect the underlying dynamical features as follows:

ẋ(t) = Ax(t) + u(t) (6.8)



CHAPTER 6. MODE IDENTIFICATION BASED ON NEURAL ACTIVITY (I)(II) 115

where A ∈ Rn×n represents the system or plant matrix and u ∈ Rn represents an external
input such as sensory input or task cue which affects the neural activity. We will align neural
activity with the times that a monkey is engaged in a repeated task, so for simplicity, we
assume no external input (u = 0). Then, if the initial vector x0 = x(t = 0) is aligned
with eigenvector rk of the matrix A, the dynamics is simple, ẋ = A · rk = λkrk where
λk is the corresponding eigenvalue; the solution of this equation is x(t) = rke

λkt. If A is
diagonalizable, then any vector in an n-dimensional space can be represented by a linear
combination of the right and left eigenvectors (denoted lk) of the matrix A:

x0 =
n∑
k=1

(lk · x0)rk =⇒ x(t) =
n∑
k=1

ηkrke
λkt (6.9)

where ηk , lk · x0 ∈ R and x(t) =
[
x1(t), x2(t), ..., xn(t)

]T
.

Consider high dimensional time series data xj[t] ,
[
xj(1) xj(2) ... xj(T )

]
∈ Rn×T

where the superscript represents jth submovement (j = 1, ..., q), (·) represents the sample
time points, n is the number of neurons and T is the number of time points. By (6.9), we
can write xj[t] as

xj[t] =

[
n∑
k=1

ηjkrke
λk1·∆T

n∑
k=1

ηjkrke
λk2·∆T ...

n∑
k=1

ηjkrke
λkT ·∆T

]
(6.10)

where ηjk represents the initial condition for jth submovement and ∆T represents a sampled
time or time bin (in this study, we choose ∆T = 50 ms). Therefore, neural activity xj[t]
reflects underlying dynamics related to eigenvalues (λk) and eigenvectors (rk), even though
the initial condition may be different across submovements (ηjk). If we stack the neural
activities xj[t] across all the submovements and represent these data as a matrix M ∈ Rq×n·T

as shown in (6.11) and Figure 6.8 (b), then we can extract common dynamical features.

M =


x1

1[t] x1
2[t] ... x1

n[t]
x2

1[t] x2
2[t] ... x2

n[t]
... ... ... ...
xq1[t] xq2[t] ... xqn[t]

 =
[
X1 X2 ... Xn

]
, X (6.11)

where Xi ,
[
eTi x1[t]; eTi x2[t]; ...; eTi xl[t]

]
∈ Rq×T represents the temporal neural activity of

the ith neuron, ei ∈ Rn is a unit vector, and q is the number of submovements across
all data. Note that we aligned each time series data xj[t] to the same temporal condition
(submovement onset) as shown in Figure 6.8 (b) but we do not separate different types of
submovement. For example, submovements with different reach directions, or with different
ordinal positions in an overlapped series of submovements, are combined in our input matrix
X. Even though the activity of each neuron may vary significantly across submovements,
some portion of the variability may reflect common features.
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6.5 Disentangling the low-rank and sparse

components

In the previous section, we showed how to construct our input matrix X. However, it is still
not clear whether separation into a low-rank and a sparse component makes sense. In [28],
Candès et al. discuss the identifiability issue. For example, suppose the matrix M is equal
to e1e

∗
1. Then, we cannot decide whether it is low-rank or sparse since M is both sparse

and low-rank. To make the problem meaningful, Candès et al. require that the low-rank
component L must not be sparse. In other words, the singular vectors of the low-rank matrix
L should be reasonably spread out. Another identifiability issue arises if the sparse matrix
has low-rank. For example, this will occur if all the nonzero entries of S occur in a few
columns or in a few rows. To avoid degenerate situations, they assume that the sparsity
pattern of the sparse component is by random variables from a uniform distribution. In
many applications in image and video analysis, practical low-rank and sparse separation
gives visually appealing solutions.

However, only a small subset of the whole ensemble of neurons is active at any moment,
as seen in the dataset shown in Figure 6.9 (a) and Figure 6.11 (a). This implies that the
singular vectors of the low-rank component may not be reasonably spread out due to the
sparsity of the input matrix M. This observation about the neural data makes the solution
to the separation problem seem ambiguous. However, random projection (RP) can both
succinctly summarize our sparse data in a lower-dimensional space, while at the same time
de-sparsify the data so that they can be reliably separated into a low-rank and a sparse
component.

6.5.1 Random Projection (RP)

Recent theoretical work has identified random projection as a promising dimensionality re-
duction technique[49]. Projecting the data onto a random lower-dimensional subspace pre-
serves the similarity of different data vectors, for example, the distances between the points
are approximately preserved. Also, RP can reduce the dimension of data while keeping clus-
ters of data points well-separated [49]. Moreover, using RP is computationally significantly
less expensive than using techniques such as PCA because RP is data-independent.

The idea of RP is that a small number of random linear projections can preserve key
information. Theoretical work [49][17][54] guarantees that with high probability, all pairwise
Euclidean and geodesic distances between points on a low-dimensional manifold are well-
preserved under the mapping Ψ : Rn → Rm,m < n. Consider a linear signal model

y(t) = Ψx(t) =
n∑
i=1

xi(t)ψi ∈ Rm (6.12)

where Ψ =
[
ψ1 ψ2 ... ψn

]
is an m × n projection matrix whose elements are drawn

randomly from independent identical distributions. First, note that the dimensionality of the
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data x is reduced since m < n. Also, if we define Yi ,
[
ēTi y1[t]; ēTi y2[t]; ...; ēTi yl[t]

]
∈ Rq×T

where ēi ∈ Rm and Y ,
[
Y1 Y2 ... Ym

]
, then

YT = (Ψ⊗ IT )XT or Y = X(ΨT ⊗ IT ) (6.13)

where ⊗ represents the Kronecker product1 and IT ∈ RT×T is an identity matrix.

6.5.2 Identifiability, dimensionality reduction and benefits

By using RP, we can handle the identifiability issue because our input matrix Y ∈ Rq×m·T

is denser than the original input matrix X ∈ Rq×n·T . RP also preserves the similarity of the
data vectors well and reduces the dimension. Furthermore, because our data are sparse, no
information is lost from performing RP on X.

(a) Identifiability

Suppose our input X in equation (6.11) can be decomposed as X = L + S:

X = L + S =

dL∑
i=1

σiuiv
∗
i +

dS∑
i=1

λiaib
∗
i (6.14)

where σi are the positive singular values, ui ∈ Rq×1,v∗i ∈ R1×n·T are the left- and right-
singular vectors of L, and dL represents the rank of the matrix L. dS is the number of sparse
components in S, and ai ∈ Rq,bi ∈ Rn·T are sparse with only one nonzero entry respectively.
By using RP, we have for Y,

Y = X(ΨT ⊗ IT ) = XR = LR + SR

=

dL∑
i=1

σiui(R
Tvi)

∗ +

dS∑
i=1

λiai(R
Tbi)

∗

=

dL∑
i=1

σiuiṽ
∗
i +

dS∑
i=1

λiaib̃
∗
i (6.15)

where we denote (ΨT ⊗ IT ) by R. As we mentioned above, our input X is sparse, so the
singular vectors of the low-rank matrix L might not be reasonably spread out. This is
especially true for v∗i , shown in Figure 6.9(a) (upper). However, by using RP (multiplying
by R), the singular vectors ṽi of the resulting matrix become reasonably spread out, as
shown in Figure 6.9(a) (lower).

1If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗B is the mp × nq
block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB
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Figure 6.9: (a) (upper) Input matrix X and singular value decomposition (SVD) (X =
UxΣxV

∗
x). (lower) Randomly projected input matrix Y and SVD (Y = UyΣyV

∗
y). Note that

since rank(X)=6, Ux ∈ Rq×6,Σx ∈ R6×6,V∗x ∈ R6×n·T . In order to show how well singular
vectors are spread out, we show the absolute value of each component. White represents
zero value. (b) RPCA results. We run RPCA for sparsely corrupted Xcorruption,Ycorruption.
(We added sparse corruption to X as shown in Figure 6.10.) Left y-axis represents the norm
of X− L and the right y-axis shows the rank of L.
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Figure 6.10: RPCA output. (a) For λ = 0.113, both Lrpca and Lrp-rpca have rank 6
(≈ rank(X)) as shown in Figure 6.9(b). There is a big difference between Srpca and the
constructed corrupted signal (X − Xcorr) (b) For λ∗ = 0.141, Srp-rpca is close to X − Xcorr

but the low-rank components are misidentified by both RPCA and RP-RPCA because both
Lrpca and Lrp-rpca have rank 15.
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(b) Compressive Sensing (CS) and Recovery of the exact signal

Compressive Sensing (CS) theory states that with high probability, every k-sparse signal
z ∈ Rn (i.e., every signal z having only k nonzero components) can be recovered from just
m(≥ ck log(n/k)) linear measurements b = Az. Here, A represents an m×n measurement (or
encoding) matrix drawn randomly from an acceptable distribution for satisfying incoherence
condition and c is a small constant [13]. CS decoding involves recovering the signal z ∈ Rn

from its measurements b = Az ∈ Rm where m < n in general. Although such inverse
problems are generally ill-posed, CS recovery algorithms exploit the additional assumption
of sparsity in the basis A to identify the correct signal z from an uncountable number of
possibilities.

In equation (6.13), we can consider (Ψ⊗ IT ) as a measurement matrix A. Then, since we
choose a incoherent matrix Ψ drawn randomly with i.i.d. and the coherence of Ψ is exactly
the same as that of Ψ⊗ IT (i.e., µ(Ψ) = µ(Ψ⊗ IT )), we can recover the exact signal X from
the randomly projected signal Y. Recall that the jth columns of XT and YT represent the
high dimensional time series data and projected time series data of the jth submovement
respectively. Since the measurement matrix Ψ⊗ IT satisfies the coherence condition and the
jth column of XT , XT

(:,j), is known to be sparse, we can recover the original data from YT
(:,j)

by solving the l1-minimization:

min
z
||z||1 subject to YT

(:,j) = (Ψ⊗ IT )z (6.16)

Therefore, since our input X is sparse and the measurement matrix is incoherent by choice
of Ψ, RP does not lose any information even though dimensionality is reduced.

(c) Dimension Reduction and Eccentric Distribution

The dimension of the original input X is q× (n ·T ), where q is the number of submovements,
n is the number of neurons, and T is the number of time points. The dimension of the new
input Y after application of RP to X is q × (m · T ) where m < n. For example, suppose
our data contain the neural activity of 100 cells (n = 100), a typical value. Also, suppose
that we consider 20 time points for each neuron (T = 20) and 400 submovements (q = 400).
Then, the dimension of the original input X ∈ Rq×n·T is 400× 2000. Using RP with m = 60,
the dimension of the projected input Y ∈ Rq×m·T can be reduced to 400× 1200.

In [49], Dasgupta showed that even if the original distribution of data samples is highly
skewed (having an ellipsoidal contour of high eccentricity), its projected counterparts will be
more spherical. For example, neural activity data vectors often form very eccentric clusters.
As shown by the different amplitude for different neurons in Figure 6.11 (a), some neurons
are highly activated (30-40 spikes/sec) but others typically have only a few spikes per second.
Since it is conceptually much easier to design algorithms for spherical clusters than ellipsoidal
ones, this feature of random projection can simplify the separation into the low-rank and
sparse components. Therefore, using RP, we can reduce the computational complexity of
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Figure 6.11: RPCA input matrix. |X| ∈ Rq×n·T (a) and randomly projected input matrix
|Y| ∈ Rq×m·T (b) where q = 832(submovements), n = 64(units),m = 45, T = 28(time points),
and their averaged neural activity across all submovements |X̄|, |Ȳ| (red color represents
submovement onset times for each Xi,Yj where i = 1, 2, . . . , n and j = 1, 2, . . . ,m).

the non-smooth convex optimization, in particular l1 and nuclear norms minimization, used
in RPCA2.

6.5.3 Simple Examples

To illustrate the issue of identifiability and how RP can alleviate the issue, we consider a
simple example: we generate a sparse low-rank input matrix X ∈ R50×2·10 (q = 50, n = 2,
T = 10) where the rank of X is 6. Figure 6.9(a)(upper) shows X and its singular value
decomposition (SVD). Each row of the matrix containing the right-singular vectors V∗x of
X has many zeroes by construction. After applying RP, we obtain Y which is much denser;
each row of V∗y has fewer zeroes. By using RP, singular vectors in the low-rank component
of the input matrix become reasonably spread out. Note that in this example we chose the
same dimension for the input X and Y (m = n). This is done so that Ψ ∈ Rm×n in equation

2Many speedup methods were developed in optimization by avoiding large-scale SVD. In [107], Mu et al.
demonstrated the power of projected matrix nuclear norm by reformulating RPCA and in [170], Zhou et al.
demonstrated the effectiveness and the efficiency of Bilateral Random Projections. However, both methods
consider a dense matrix X while in this study we consider the case when the input matrix X is sparse.
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Figure 6.12: The low-rank matrices from both RPCA and RP-RPCA where X are input
matrices from Figure 6.11 and we choose m = n = 64 for the comparison.

(6.12) is invertible, allowing us to compare the outputs of RPCA and RP-RPCA directly, as
described below. In general, choosing m < n makes Y much denser because information is
compressed by RP.

Figure 6.9(b) shows the statistics of both RPCA and RP-RPCA (in which RPCA is
applied to the matrix Y) as a function of the tuning parameter λ, and Figure 6.10 shows
the output of RPCA and RP-RPCA for two values of λ. To evaluate the performance of
separation into a low-rank and a sparse component, we add sparse corruption for X as follows:

Xcorruption = X + Scorruption

Ycorruption = XcorruptionR = XR + ScorruptionR

where R = (ΨT⊗IT ) is the projection and Ycorruption is the projected corrupted input matrix
Xcorruption. To compare the performance of RP-RPCA with RPCA, we first decompose
Ycorruption into a its low-rank and sparse components. Then, we invert the projection:

Xcorruption = Lrpca + Srpca (orginal RPCA)

= YcorruptionR
−1

= (Lrpca
Y + SrpcaY )R−1

, L̄rpca + S̄rpca (RP-RPCA)

where we define L̄rpca , Lrpca
Y R−1 and S̄rpca , SrpcaY R−1. In this example, inverting R is

possible because we choose Ψ ∈ Rm×n where m = n. If m < n, then we have to solve
l1-minimization in equation (6.16) to obtain L̄rpca and S̄rpca instead.

Figure 6.9(b) shows the result of running RPCA with different λ values in equation (6.5).
In this example, λ∗ = 1/

√
max(q, n · T ) = 1/

√
50. Since our input is still sparse in this case,

the rank of both Lrpca, L̄rpca is 15 for λ∗ = 0.141 (rank(X) = 6). If we choose λ = 0.113
(discounting the penalty for sparse component), the ranks of Lrpca, L̄rpca are approximately
6, which is the same as the rank of the original input X. With this choice of λ, for RPCA we
find that ||X−Lrpca|| is much bigger than the original corruption signal ||X−Xcorruption|| =
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||Scorruption||. On the other hand, for the RP-RPCA, we have ||X − L̄rpca|| ≈ ||Scorruption||.
Therefore, for RP-RPCA, the separation of the low-rank component and sparse component
is close to the true solution but for original RPCA, we have misidentification in both the
low-rank and sparse components. Figure 6.10 shows the output of RPCA and RP-RPCA
with two different λ values. We can easily see that Srpca shows characteristics of the low-rank
component in Figure 6.10 (middle columns of each panel).

6.6 Application to Neural Data

6.6.1 Experimental Setup

The experiment involved an adult male rhesus macaque instructed to make visually-guided
planar reaches with its right hand. To elicit additional submovements, the task was made
more difficult by imposing “target jumps”, i.e., changes in the position of the target mid-
way through the reach. Neural units from primary motor and dorsal premotor cortex were
recorded from chronically-implanted arrays. Spikes were sorted and binned every 50ms.

Hand velocity data (sampled at 100 Hz) were decomposed into a sum of minimum-jerk
basis functions. Figure 6.11 (a) shows the actual neural activities aligned with movement
onset. The aligned neural activity shows that the ratios between units’ mean firing rates are
fairly constant from the salient vertical striations in the plots and temporal patterns exists
across all the submovements. Also, as mentioned previously, the neural population activities
are sparsely active (white color represents 0 spikes/sec) and show eccentric behavior; for
example, some neurons have a much higher spiking rate than others.

6.6.2 Prediction

In order to extract the common features, we divide our dataset into training (70%) and test
(30%) datasets. First, we run RPCA and RP-RPCA to extract the low-rank components,
and then use these components as signatures or templates to detect submovement onset.
Here, we simply use a correlation function as our metric:

γk =
〈sk, T̄〉
||sk||||T̄||

(6.17)

where T̄ represents the extracted temporal characteristics or template (in this case, an av-
erage of the low-rank component across submovements). The neural activity signal can be de-
noted as sk =

[
xk1[t] xk2[t] ... xkn[t]

]
∈ R1×n·T (for RPCA) or sk =

[
yk1 [t] yk2 [t] ... ykm[t]

]
∈

R1×m·T (for RP-RPCA). For practical purposes, we can choose a correlation threshold and
if the correlation is over the chosen threshold, we label a submovement onset as detected.
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(a)

(b)

Figure 6.13: Correlation between neural activity and the common feature extracted by
RPCA and RP-RPCA (a) dataset: jeev0617 (movements: ≥ 3.5cm) (b) dataset: jeev0702
(movements: ≥ 1cm).

6.6.3 Results

Figure 6.12 shows the low-rank matrix from both RPCA and RP-RPCA using input matrices
X in Figure 6.11. For simple comparison, we choose m = n since we do not need to solve
equation (6.16). Since X is sparse and has an eccentric distribution, the singular vectors
may not be reasonably spread out. Applying RPCA directly to X would result in the low-
rank component being composed of only highly modulated neural activity. On the other
hand, RP-RPCA can extract a low-rank component from a more distributed set of neural
dimensions than RPCA alone can. Figure 6.13 shows correlations between neural activity
and the extracted common feature in test datasets. To accurately predict submovement onset
times found by submovement decomposition, the correlation function should peak around the
movement onset time (time 0). The RPCA result (left) shows many false positives, indicated
by the spurious peaks far away from time 0. For RP-RPCA, we compare the performance
for different projection dimensions (m = 26(40% of the number of original dimensions, i.e.,
neural units), 45(70%), 52(80%) and 64(100%); n = 64) in Figure 6.13(a). For m = 26,
there exist inconsistent modulations across different submovements. However, for m = 45
and m = 52, the correlation functions consistently peak around the submovement onset time
even though the input matrix dimension is reduced. Similarly, Figure 6.13 (b) shows that
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Figure 6.14: Histogram of the prediction results: for each submovement, we look for the
time at which the correlation functions in Figure 6.13 is maximum (a) dataset: jeev0617 (b)
dataset: jeev0702.

RP-RPCA results represent high modulation around onset while RPCA result shows many
spurious peaks far way from onset time, where the task was made more difficult by imposing
“target jumps”.

Figure 6.14 (a) and (b) show the histograms that summarize our prediction results. Each
bar counts the number of times that the submovements are predicted to lie in each time
interval. For each submovement, we look for the time at which the correlation functions in
Figure 6.13 is maximum. Figure 6.14 (a) RP-RPCA (m = 45, 52, 64) shows that 80% of
the predictions are accurate within ±0.25s. Figure 6.14(b) shows the prediction results of
“target jump case”.

In practical terms, for the application in a brain-machine interface, one would threshold
the correlation signal online to generate real-time submovement onset detection. Figure 6.15
represents receiver operating characteristic (ROC) curve based on Figure 6.13. Here, we
vary thresholds for correlation score and show ROC result. We define True Positive (TP),
False Positive (FP), False Negative (FN) and True Negative (TN) as follows:
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Figure 6.15: Receiver Operating Characteristic (ROC) curve of different thresholds: (a)
jeev0617 (b) jeev0702.

Algorithm 2: TP, FP, FN and TN can be formulated as follows;
1: if γk ≥ Θ (k ∈ S) then
2: TP ← TP + 1
3: else
4: FN ← FN + 1
5: end if
6: if γk ≥ Θ (k ∈ Sc) then
7: FP ← FP + 1
8: else
9: TN ← TN + 1
10: end if

True Positive Rate (TPR) = TP/(TP+FN)
False Positive Rate (FPR) = FP/(FP+TN)
Accuracy (ACC) = (TP+TN)/(TP+FN+FP+TN)
Specificity (SPC) = 1-FPR

where γk represent a correlation function defined by equation (6.17) and set S is defined by
the region which is close to movement onset time, for example, ±0.2sec. around movement
onset time. In order to predict movement onset correctly, γk ≥ Θ when k ∈ S and γk < Θ
when k ∈ SC . In Figure 6.15, we can see that the overall prediction performance based
on RP-RPCA is better than the performance based on RPCA. In order to choose proper
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(a)

(b)

Figure 6.16: Trade-off for choosing threshold level: as we choose large threshold, we can
reduce false positive rate but we lose the true positive rate as well; (a) jeev0617 (b) jeev0712.

threshold, trade-offs have to be made for reducing false positive rate while having reasonable
true positive rate. Figure 6.16 shows a trade-off example of different thresholds, for example,
if we increase threshold level, we can reduce false positive rate but we lose true positive rate
as well.

Figure 6.17 shows the ROC curves for different monkeys or tasks where paco0716 rep-
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seba1226 (dim.=173, onset±0.2s, prefilter>3cm)
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Figure 6.17: Receiver Operating Characteristic (ROC) curve for different monkeys or tasks
where we prefiltered certain submovements with small amplitude in order to avoid artifacts
of overfitting.

resents “center-out” task and seba1226 represents “random-pursuit” task which requires
animal to reach to a (stationary) target shown anywhere in workspace (except near cursor’s
currently location) and then, hold it there for a target hold time.

Also, for the BMI application, once RP-RPCA had been run on the data, real-time
submovement onset detection decisions would need to be based on matches between online
data and the portion of the RP-RPCA template prior to submovement onset.

6.7 Conclusion

In this study, we analyze a neural activity dataset with different spatiotemporal perspectives
in order to understand the basic neural response properties and extract neural signatures.
First we identify discrete modes and demonstrate that the monkey brain operates in various
discrete modes when controlling arm movements, using unsupervised segmentation of neural
activity via sparse subspace clustering.

Second, we develop a new method, the combination of random projection and RPCA,
for the neural data which is naturally sparse. This is the first application known to us of
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RPCA to neuronal data. We apply the proposed method to neural spike data sets in order
to validate the method and extract a low-rank elements of motor cortical activity. Such
features represent common dynamic structures in the neural activity and can be used as
a signature to detect motor primitives such as submovements. We explore the benefits of
using Random Projection (RP) and show that using RP can improve the overall prediction
performance.
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Chapter 7

Conclusion

Even though many new techniques for identifying biological systems have been developed,
they need to be able to incorporate different types of experimental data and varying levels of
prior knowledge about the biological system. In order to reverse engineer biological systems
based on prior knowledge and datasets, we discuss how to develop and choose a proper
mathematical model, and identify an optimal type of experiment, and requirements on the
data set in terms of quality and size as well as underlying assumptions. This thesis presents
new mathematical tools which fill a gap between existing systems modeling tools in order to
overcome the limitation of present mathematical models in systems biology.

The key novel ideas in this thesis are:

• a Hybrid Boolean Framework for modeling response of biological signal pathways is
developed by taking advantage of existing mathematical tools and compensating for
their limitation or disadvantages (Chapter 3);

• an optimization-based inference scheme is developed which is able to not only identify
a model for temporally evolving biological networks but also capture how the gene
regulatory network evolves over time, by combining dynamical system approach with
a graph model (Chapter 4);

• a data-driven algorithm for identifying gene regulatory network is proposed which is
able to reconstruct the graph structure exactly and suggest new experimental direction
as well as reveal deficiencies in the model, based on compressive sensing (Chapter 5);

• new spatio-temporal perspectives in analyzing neural activity datasets are developed
to understand the neural activities and extract neural signatures (Chapter 6).

In order to deal with applying these techniques to real biological systems, the construction
of systematic data sets is needed since often, currently available data size and data quality
make the application of these mathematical tools a challenge. Thus, we anticipate that
the construction of systematic datasets can accelerate systems biology, which involve inno-
vations that include the development of new experimental methods, the establishment of
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degree of belief associated with individual measurements, and the protocol of self-consistent
experiment.

The tools presented in this thesis have applications to engineering systems. For example,
the Hybrid Boolean framework and optimization-based inference scheme have applications
as we presented. On the other hand, the proposed data-driven approaches can be applied
to diverse areas such as another biological system, social network, communication and engi-
neering systems.

Moreover, the developed tools can also be used in conjunction with existing tools. As
an example, RP-RPCA, which is developed for analyzing neural activities, can be applied
to cluster and classify high dimensional microarray datasets of biological systems. In this
context, the low-rank component represents the integrated regulatory signals through the
common gene regulatory network across all different cell lines, and the sparse component
might represent the signals corresponding to heterogeneity of mutant cell lines. Then, clus-
tered datasets by using RP-RPCA might be useful for identifying graph structure, and the
identified structure is applicable to building either a hybrid model or a mechanistic model.

These are other avenues for our future direction. Recently, the area of big data is partic-
ularly interesting to many communities, especially systems and control engineers. In order
to make big data useful, we need to understand these data with a systems point of view and
investigate how to handle them. These steps are necessary for being able to build a model
and to understand underlying systems. Extending system approaches to large datasets will
be challenging because of high dimension, complexity and the nature of the limitation of
available knowledge. However, it seems promising because of the similarity in organization
of dataset and systems with respect to biological systems.

In order to go beyond this, innovative ideas and open discussion will be required. Es-
pecially, a tight collaboration between biologists, medical doctors, neuroscientists, and engi-
neers will be the key driver for fully understanding our systems.
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Appendix A

Nonlinear Dimension Reduction

A common task in the analysis of large microarray datasets is sample classification based
on gene expression patterns. This process can be divided into two steps: class prediction
and class discovery. For example, when gene expression arrays are used for cancer cell
classification, class prediction assigns tumor samples into pre-existing groups of malignancies,
while class discovery reveals previously unknown cancer subtypes. The newly discovered
tumor subtypes may have different clinical patterns, respond differently to certain drugs, and
require more or less aggressive surgical and radiological treatment. Class discovery may also
reveal previously unknown processes in cancer biology and define more specific indications
for certain drugs. For instance, specific drugs may be used to target newly discovered tumor
subtypes, thus facilitating pharmacogenomic drug design and development. These goals will
soon become achievable with the results from microarray studies using large sample.

A variety of methods for Nonlinear Dimension Reduction (NDR) have been developed
over the years. Isometric feature mapping (Isomap), locally linear embedding and Laplacian
eigenmap are typical examples. The basic principles underlying these methods are, however,
very similar.

They first speculate a local neighborhood structure around each datum to form a global
neighborhood graph superimposed on the whole data set and then calculate the embeddings
of the data set by preserving as much as possible the invariance of all neighborhood structures
in the low-dimensional representation space. The neighborhood structure of a datum can be,
for example, the isometric frame of its neighbors, the local coefficients that reconstruct the
datum from its neighbors, or the locality relationship between the datum and its neighbors.

The most common methods to determine the neighbors of a datum are the k-nearest
neighbor (NN) and ε-NN methods, defining neighbors as its k nearest ones and the ones whose
distances from the datum are smaller than the threshold ε respectively. The performance of
the NDR techniques highly depends on the choice of the neighborhood size k or ε or method.
Here, we adopt Isomap rather than other NDR methods to generate the data embeddings
of each cluster. This is due to the fact that intrinsic properties of Isomap is in concordance
with the requirements of classifying large microarray datasets.

The Isomap method consists of three steps:
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Figure A.1: 3-Dimensional representation of classification of RPPA dataset (K=15).

• constructing the neighborhood graph of the data set based on Euclidean distance;

• computing the distance of the shortest paths between data pairs in the graph;

• taking the lengths as the approximate interpoint geodesic distances constituting the
geodesic distance matrix of the whole data set on which multidimensional scaling
(MDS) is applied to construct the global low-dimensional embeddings.

Figure 1.3 shows Isomap result of RPPA data set. Isomap gives successful classification
among different cell lines by cell line characteristics. For example, SKBR3 and AU565 cell
lines are clustered together because both cell lines are nearly identical at the genetic and
transcriptomic levels as well as at the level of HER family proteins. Figure A.1 and A.2
represent another view of classification results.
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Figure A.2: 3-Dimensional representation of classification of RPPA dataset (K=20).
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Appendix B

Proofs for equation (4.30)

proof :
(for convenience, we will use abbreviated notations without (x), (t))∫ tf

0

d

dt
{XTPX}dt

= X(tf )
TP (tf )X(tf )−X(0)TP (0)X(0) =

∫ tf

0

{ẊTPX +XT ṖX +XTPẊ}dt

=

∫ tf

0

{(AX +W + V )TPX +XT ṖX +XTP (AX +W + V )}dt

Select P which satisfies following equation:

ATP +
dP

dt
+ PA = −Q+ P TR+P, P (tf ) = S

Using P , we can reformulate (4.30) as follows:

0 = −1

2
X(tf )

TSX(tf ) +
1

2
X(0)TP (0)X(0) +

1

2

∫ tf

0

{XT (−Q+ P TR+P )X

+(W + V )TPX +XTP (W + V )}dt

Then, we can combine the cost function (4.26) and above equation as follows:

J =
1

2
X(0)TP (0)X(0) +

∫ tf

0

{XTP TR+PX + (W + V )TPX +XTP (W + V ) + V TRV }dt

We have the following relation because of the specific structure of R, V and W as follows:

V TRV =
[
01×n v(t)T

] [0n×n 0n×k
0k×n Rk×k

] [
0n×1

v(t)

]
=
[
−ẋd(t)T v(t)T

] [0n×n 0n×k
0k×n Rk×k

] [
−ẋd(t)
v(t)

]
= (W + V )TR(W + V )
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Using this relation, we can reformulate J as follows:

J =
1

2
X(0)TP (0)X(0) +

∫ tf

0

{XTP TR+PX + (W + V )TPX +XTP (W + V )

+(W + V )TR(W + V )}dt

=
1

2
X(0)TP (0)X(0) +

∫ tf

0

{(R+PX +W + V )TR(R+PX +W + V )}dt

To minimize J , Vopt = −R+PX − W but as we defined the structure of V and W in
equation (4.27), V only satisfies the following condition: V ∗ = −R+PX. However, when we

plug in V ∗, the optimal cost is J∗ =
1

2
X(0)TP (0)X(0) which is the same as using Vopt since

W TRW = 0.
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Appendix C

Analysis of l1 and l2 regularization

1) || · ||l1 optimization vs. CS:

l1 regularization has many of the beneficial properties of l2 regularization, but yields sparse
models which are more easily interpreted. Also, the model or graph structure produced under
an l1 penalty often outperform those produced with an l2 penalty. It provides a regularized
feature selection method, and can give a low variance feature selection.

min 1T |A|1
s.t. Y k = AXk k = 1, ...,M

where k is a time step index, M is the number of measurements and Xk, Y k ∈ Rn. The
Lagrangian associated with above equation is given by

L(A,Λ) = 1T |A|1 +
M∑
k=1

λk
T

(Y k − AXk)

where Λ = {λ1, ..., λM} ∈ Rn×M , λi ∈ Rn is the Lagrange multiplier.

L(A,Λ) =
n∑
i=1

n∑
j=1

|aij|+
M∑
k=1

n∑
i=1

λki (y
k
i − aiXk) =

n∑
i=1

n∑
j=1

|aij|+
M∑
k=1

n∑
i=1

λki (y
k
i −

n∑
j=1

aijx
k
j )

where ai is the ith row of matrix A, Y k =
[
yk1 , y

k
2 , ..., y

k
n

]T
and Xk =

[
xk1, x

k
2, ..., x

k
n

]T
. Its

minimizer becomes

∂L
∂apq

= sgn(apq) +
∂

∂apq

( M∑
k=1

λkp(y
k
p −

n∑
j=1

apjx
k
j )

)

= sgn(apq) +
M∑
k=1

λkp
∂

∂apq

(
− apqxkq

)
= sgn(apq) +

M∑
k=1

λkp(−xkq)

∂L
∂λrp

= yrp −
n∑
j=1

apjx
r
j
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where 1 ≤ p, q ≤ n and 1 ≤ r ≤M . The optimality condition is given by

∂L
∂apq

= 0 :
M∑
k=1

xkqλ
k
p

∗
= sgn(a∗pq)

∂L
∂λrp

= 0 : yrp =
n∑
j=1

a∗pjx
r
j

Therefore, if the number of time points is bigger than the number of states (i.e., M > n,
if we can measure many time points or use several data sets, this condition can be easily
satisfied), we might have infeasible solution:

sgn(a∗11)
sgn(a∗12)

...
sgn(a∗1n)

 =


x1

1 x2
1 ... xM1

x1
2 x2

2 ... xM2
... ... ... ...
x1
n x2

n ... xMn



λ1

1

λ2
1

...
λM1


For example, λk1 can be zero. Obviously, an n × M matrix has at most rank n so some
of λk1, k = 1, ...,M can be zero, which means some of the constraints do not have to be
satisfied (infeasible solution). This is basically l1 optimization for overdetermined systems
of equations. Thus, in order to guarantee feasibility for large M > n, we have to solve the
following problem:

min 1T |A|1 + γ
M∑
k=1

||Y k − AXk||2

where γ can be used as a tuning parameter which handles the trade-off between sparsity and
data fitting. On the other hand, CS uses the incoherent matrix for the sensing matrix which
basically spreads the norm of the representation on the whole set of parameters.

2) || · ||l2 optimization vs. CS:

While l2 regularization is an effective mean of achieving numerical stability, it does not
encourage sparsity because the l2 penalty forces the coefficients to be more similar to each
other in order to minimize their joint 2-norm.

min ||A||l2
s.t. Y k = AXk k = 1, ...,M

Without loss of generality, the above optimization problem is exactly the same as:

min ||A||2l2 s.t. Y k = AXk k = 1, ...,M



APPENDIX C. ANALYSIS OF L1 AND L2 REGULARIZATION 152

By using similar approach for l1 optimization problem, the optimality condition is given by

∂L
∂apq

= 0 :
M∑
k=1

xkqλ
k
p

∗
= 2|a∗pq|

∂L
∂λrp

= 0 : yrp =
n∑
j=1

a∗pjx
r
j
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