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Abstract

A fundamental aspect of perception is to bind spatially
separate sensory features, essential for object
identification, segmentation of different objects, and
figure/ground segregation. Theoretical considerations
and neurophysiological findings point to the temporal
correlation of feature detectors as a binding mechanism.
In particular, it has been demonstrated that the cat visual
cortex exhibits 40-60 Hz stimulus-dependent
oscillations, and synchronization exists in spatially
remote columns (up to 7 mm) which reflects global
stimulus properties (Gray et al., 1989; Eckhom et al.,
1988). What neural mechanisms underlie this global
synchrony? Many neural models thus proposed end up
relying on global connections, leading to the question
of whether lateral connections alone can produce remote
synchronization. With a formulation different from the
frequently used phase model, we find that locally
coupled neural oscillators can indeed yield global
synchrony. The model employs a previously suggested
mechanism that the efficacy of the connections is
allowed to change on a fast time scale. Based on the
known connectivity of the visual cortex, the model
outputs closely resemble the experimental findings.
This model lays a computational foundation for Gestalt

perceptual grouping.

Introduction

Since the discovery of stimulus-driven oscillations and
long-range synchronization in the cortical areas of 17
and 18 of cats (Gray et al., 1989; Eckhorn et al., 1988),
many theoretical attempts have been made to interpret
the remarkable phenomenon of global phase locking
with no phase shift (Sompolinsky et al., 1990; K&nig
& Schillen, 1991). Others have employed

! The work was supported in part by NSF grant
IRI-9211419 and ONR grant N00014-93-1-0335.
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computational characteristics of temporal oscillations
for solving problems of pattern segmentation and
figure/ground segregation (von der Malsburg, 1981; von
der Malsburg & Schneider, 1986; Sporns et al., 1991),
and associative memory (Wang et al., 1990). Despite
intensive studies, it remains unknown whether a
network of locally coupled oscillators can yield global
synchronization. A frequently used scheme is the phase
model which represents each oscillator by a sole phase
variable and describes mutual coupling by an odd
periodic function such as sine. Characteristics of the
systems of coupled phase models have been analyzed in
applied mathematics and theoretical physics literature
(Cohen et al., 1982; Kuramoto, 1984). It has been
generally agreed that while global coupling readily
yields phase locking, a system with only local coupling
cannot generate global synchrony except in the
homogeneous case as explained later. The application
of such models to analyzing the phase locking in the
visual cortex is in part responsible for the prevailing
opinion that the phenomenon can only be explained by
long-range projections. The view, however, is not in
good accord with the anatomical data that the longest
mutual connections is about 3 mm in the cat visual
cortex (Gilbert & Wiesel, 1989). Based on plausible
neural mechanisms, we here report a new model that can
demonstrate global synchrony based on only local
coupling in a network of neural oscillators.

Model Description

As the building block, the model of a single oscillator
is defined in the simplest form as a feedback loop
between an excitatory unit and an inhibitory unit (Fig.
1A):
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Fig. 1. (A) Basic oscillator model formed by a feedback loop between an excitatory unit x; and an
inhibitory unit y;. & and B are mutual connection strengths. (B) A chain of N oscillators. Little triangles
indicate excitatory connections, and little circles inhibitory connections.
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where a and S are coupling parameters between the two
units. §; represents inputs from the other oscillators
and /; represents external stimulation. A4 is a decay
parameter, and p denotes the amplitude of a Gaussian
noise term. g,(v) is a sigmoid gain function with
threshold 6,, where r € (x, y}, and parameter T. Eq. 1
is essentially a simplification of the system proposed
by Wilson and Cowan (1972), and it has been shown
that the system produces oscillations within a wide
range of parameters. The oscillator model can be
biologically interpreted as a mean field approximation
to a network of excitatory and inhibitory neurons.

Weak coupling between oscillators (S; is relatively
small) does not disrupt the oscillatory behaviors of
individual oscillators. To study the properties of a
network of oscillators, first a chain of N oscillators is
constructed with only neighboring coupling between
excitatory units, as shown in Fig. 1B. The coupling is
defined as

W(xi_1+x,-+1) ifl<i< N
5;=12W x, ifi=1 @
2W xy ifi=N

Where W is a connection weight. Remarkably, with
uniform external input and random values for x; and y;
(namely random phases) initially, the chain is
synchronized after an initial period of "chaotic"
transitions. Fig. 2 presents a simulation with N = 30.
Notice that there is small phase differences at the

1059

beginning when nearly stable limit cycles were reached,
but the differences diminish as time went on. We note
that the longer a chain, the longer is the “"chaotic”
transition or the longer it takes to reach phase locking.
The time to reach the phase-locking stage is also related
to the overall strength of coupling (W in Eq. 2). The
stronger is the overall coupling, the shorter it takes to
get to phase-locking.

A chain of oscillators using the phase model has
been extensively studied for modeling swimming
behaviors in fish. Cohen et al. (1982) noted that phase-
locking can be reached with a chain of identical
oscillators. However, phase-locking cannot be produced
if there is no homogeneous input to the entire chain,
contradicting the experimental conditions of Gray et al
(1989). But, as will be clear later, our model of the
oscillator system does not suffer from this problem.

Eq. 2 is not a necessary condition for phase-
locking. Let us call an oscillator active if it receives an
external input. We observed that in a system defined by
Eq. 1, as long as the overall weights of the connections
converging on an active oscillator from all other active
oscillators are kept a constant, phase-locking occurs.
This condition is called the equal weight condition. Eq.
2 is a special case of this condition. Although we are
not able to prove that the equal weight condition
ensures phase locking, it is quite straightforward to see
that once the system reaches phase locking, synchrony
will be stable. This is because each oscillator in Eq. 1
will be identical after the system reaches phase locking
due to the same input S;. Positive coupling serves to
drive the oscillators close to each other in phase and it
can also correct small discrepancies among the phases of
the oscillators.

The equal weight condition is easily achieved if one
allows connection weights to be modified on a fast time
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Fig. 2. Synchrony in a chain of oscillators. The input /; = 0.8, and the initial values x;(0) and y{0) were
randomly generated within the range [0, 0.5]. The height of the ordinate of each oscillator is 1. W = 0.625
and N = 30. Other parameters a = 0.2; f = 2.5; A = 1.0; p = 0.01; 6, = 0.6; 6, = 0.15, T = 0.025.
20,000 integration steps. Vertical lines are drawn to hetp identify phase relations among the oscillators.
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scale, an idea first introduced by von der Malsburg
(1981). In this scheme, there is a pair of connections
weights from oscillator j to i, one permanent T;;, and
another dynamic J;; (so called Malsburg synapscs).
Permanent links reflect hardwired structure of a nctwork,
while dynamic links quickly change from time to time,
In computations, though, only dynamic links formed on
the basis of permanent links play the effective role.
The equal weight condition can be naturally realized by
a modification rule of dynamic links which combines a
Hebbian rule that emphasizes coactivation of oscillators
i and j and a normalization of all incoming connections
to an oscillator. More specifically, it can be
implemented by a two-step procedure: First update
dynamic links and then normalization:

AIU = ST,] h(x;) h(xj) (3a)

Jji= y(J,-j+AI,-j)/[l+§ UatATi)l  (3b)

where & and yare parameters, and function h(x)
measures whether x is active. It is here simply defined
as h(x) = 1 if <x> is greater than a constant and h(x) =0
otherwise, where the angular bracket <x> stands for
temporal averaging of the activity x.

With introduction of fast changing synapses, the
equal weight condition in Eq. 2 can now be reached by
dynamics in Eq. 3 from a normal condition §; = W(x;_;
+ Xj47), 1<i< N, and xg = x4 ; = 0 defined for
permanent links.

Modeling Cortical Oscillations

With the above analysis, we now simulate the
experiments of Gray et al. with a two-dimensional layer
of 10x24 oscillators. The oscillator layer is constructed
such that each oscillator laterally connects to its 8
nearest neighbors, 16 second nearest neighbors, and 24
third nearest neighbors. Each oscillator is assumed to
represent an entire receptive field. The permanent
coupling strengths are isotropic and fall off with
distance. This kind of lateral connections is present in
the primary visual cortex in the form of horizontal
connections (Gilbert & Wiesel, 1989). Proper dynamic
connections are formed according to Eq. 3. Following
the experimental configurations, Fig. 3 presents the
model response to two light bars corresponding to 2x7
oscillators separated by 0, 2, and 4 oscillator positions.
Oscillators under the bars were uniformly stimulated
while other oscillators received no input. Cross-
correlations were computed for two oscillators within a
bar and between the bars and then normalized for each
trial. The upper panels of Fig.3 show stimulus
configurations, and the lower panels present the
correlograms. The cross-correlations within a bar

(dashed lines) are compared to those between bars (solid
lines). When two bars formed a single long bar (Fig.
3A), the between-bar correlation is as good as the
within-bar correlation, showing that phase-locking was
reached across the entire long bar. When two bars were
separated by 2 oscillator positions, the between-bar
correlation is a little weaker than the within-bar
correlation, but is still significant. The correlations in
Fig. 3B, however, are weaker than in Fig. 3A, because
the configuration in Fig. 3B took longer to reach phase-
locking due to weaker links between the two bars. All
these results well match the experimental data (Gray et
al., 1989). In Fig. 3C, however, the between-bar
correlation is minimal while the within-bar correlation
is almost perfect, showing that phase-locking was
readily reached within each bar but there was no phase
relationship between the two bars. Note that, in this
case, there was no direct link between the two bars.

The conduction delays between oscillators have
been neglected in the above modeling, because the
delays resulting from neighboring projections are
generally much smaller than the cycle periods of the
oscillators. Introducing some delays in the horizontal
connections does not necessarily yield phase shift, as
one might expect, since neighboring oscillators are
mutually connected and they receive external input
simultaneously. Our preliminary observations show
that up to 0.5 ms delay (assuming 40 Hz oscillations)
in neighboring connections of a chain of 15 oscillators
does not prevent the chain from reaching synchronous
oscillations.

The simulation results demonstrate that the visual
cortex with its own lateral (horizontal) connections is
capable of producing phase-locking of stimulus-driven
oscillations, without resort to a global phase
coordinator, all-to-all connections (Sompolinsky et al.
1990), or adhoc phase relations among oscillators
(K6nig & Schillen, 1991). The results provide sound
computational foundations for the argument that phase-
locking of oscillations is accomplished by cortico-
cortical connections, which is consistent with more
recent experimental findings that phase-locking can
occur between the striate cortex and the extrastriate
cortex, between the two striate cortices of the two brain
hemispheres (Engel et al., 1992). In the simulations,
as mentioned earlier, the longer a light bar, the longer
it takes to reach phase-locking. Thus, if a single bar is
too long, the time it takes to form phase synchrony
will exceed the duration of stimulation with moving
stimuli, and no phase locking can possibly be observed.
This provides an explanation why no phase locking was
found when two recording sites were separated too far
away (8-12 mm, see Gray et al., 1989). Corresponding
to Fig. 2C, we also predict that if the gap between two
light bars is too long (3 mm according to Gilbert &
Wiesel, 1989), no phase locking will occur across the
two sites stimulated by the two bars.
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Fig. 3. Cross-correlation within and between two bars in a two-dimensional layer of locally coupled
oscillators. The ratio of the coupling strengths of nearest, second nearest, and third nearest neighbors is
2:1.6:1 respectively. The overall connection strength of each oscillator is normalized to 1.25. (A) The two
bars form a single long bar. (B) The two bars are separated by two oscillator positions. (C) The two bars
are separated by 4 positions. The dashed lines are the normalized cross-correlation within (1-2, 3-4) and the
solid lines between (1-3) the two bars. The average of 10 simulations is shown as in the experiments of
Gray et al. (1989). The oscillators under the bars received external input /; = 0.8, and the remaining

oscillators received no external input. The initial values x;(0) and y,(0) were randomly generated within the

range [0, 0.5]. The rest of the parameters are the same as in Fig. 2. Cross-correlations were computed for a
time interval of 10,000 integration steps after omitting the initial 3,000 steps.

Discussion

Temporal correlation promises 1o provide a conceptual
framework for object segmentation and figure/ground
segregation (von der Malsburg, 1981; von der Malsburg
& Schneider, 1986; Sporns et al., 1991). However,
there is a significant obstacle to apply this idea if
synchrony can only be produced with long-range full
connections as in associative memory models or with a
global phase coordinator (they are computationally
equivalent). Long-range connections would lead to
indiscriminate synchronization with a uniform structure,
contrary to the Gestalt laws of perceptual grouping that
emphasizes spatial and temporal relationships of the
objects. To overcome this problem, the segmentation
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network would have to bias toward individual
configurations, and the network would have to
(somehow) encode individual configurations through
learning or adhoc network configurations.
Segmentation would be confused with object
recognition, thus facing the similar challenges of
invariant recognition, etc. To this end, segmentation
would lead to the same dilemma that temporal
correlation was supposedly introduced for a rescue.
Notice that, although segmentation and recognition
have some interactions, they are two distinct processes
and segmentation is supposed to occur earlier in the
visual processing than recognition.

We believe that the mechanism elucidated here
provides a way out of this predicament. Sensory



segmentation can now be accomplished based on general
architectures with connections only in neighboring
units, the importance of which has been emphasized
(von der Malsburg, 1988). The two-dimensional array
of Fig. 3 can readily serve for segmentation based on
connectedness and proximity, two of the most
important Gestalt grouping principles. Our previous
work demonstrated that oscillator groups connected by
inhibitory links tend to desynchronize from each other
(anti-phase locking, see Wang et al., 1990). We expect
that with introduction of directional sensitivity and
inhibitory projections, the present mechanism can
significantly enhance the computational power of neural
networks for sensory processing, and more importantly,
perhaps, the understanding of neural mechanisms
underlying Gestalt principles of perception.
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