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Global Well-Posedness of a 3D MHD Model in Porous Media

Edriss S. Titi and Saber Trabelsi

ABSTRACT. In this paper we show the global well-posedness of solutions to a three-dimensional magnetohy-
drodynamical (MHD) model in porous media. Compared to the classical MHD equations, our system involves
a nonlinear damping term in the momentum equations due to the “Brinkman-Forcheimer-extended-Darcy” law
of flow in porous media.

MSC class: 76W05, 76S05, 35Q30, 35Q35, 76B03, 93C10, 93C20, 76B75.
Keywords: Magneto-Hydrodynamics, Porous media, Brinkman-Forchheimer-extended-Darcy model, 3D
Navier-Stokes equations
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1. Introduction

The magnetohydrodynamics (MHD) equations form the system that governs the interaction of electrically
conducting fluids and electromagnetic forces. They arise in various disciplines and applications ranging
from the prediction of the space weather, exploratory geophysics, hydrology to the design of cooling system
instruments and MHD generators. On the modeling level, the MHD model involves a coupling, through the
Lorentz force and Ohm’s law for moving electrical conductors, of the equations of fluid dynamics and the
equations of electrodynamics. Briefly speaking, the MHD system consists of coupling the Navier-Stokes
and Maxwell’s equations. Various physical situations require, sometimes, a modification or a simplification
of these equations in order to capture the underlying physical phenomena at the relevant scales.

In this paper, we consider the motion of conducting fluid in porous medium. Nowadays, it is rather common
to use the Darcy Law in the modeling of fluids momentum balance, i.e., the fluid motion, through the porous
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2 E. S. TITI AND SABER TRABELSI

medium. Darcy’s empirical law represents a simple linear relationship between the flow rate and the pressure
drop in a porous medium, i.e.,

u f =−k

µ
∇p, (1.1)

where u f is the Darcy velocity, k is the permeability of the porous medium, µ is the dynamic viscosity of the
fluid, and p is the pressure. Any deviation from this scenario of flow in porous media is termed non-Darcy
flow. Observe that Darcy’s law neglects the inertia or the acceleration forces in the fluid when compared
to the classical Navier-Stokes equations. Indeed, it is assumed that in a porous medium a large body with
large surface area of the pores, is exposed to the fluid flow so that the viscous resistance will greatly exceed
acceleration forces in the fluid unless turbulence sets in. However, several physical situations (e.g., in the
case of relatively high velocity, in the presence of important molecular and ionic effects, in the presence
of non-Newtonian fluids etc.) violate the linearity relation of Darcy’s law (see, e.g., [10, 24, 27, 13] and
references therein). An alternative approach is to use the Forchheimer correction of the Darcy law. More
precisely, instead of (1.1), one may uses the Darcy-Forchheimer law [12], given by

∇p =−µ
k

v f −γρ f |v f |2 v f ,

where γ > 0 is the Forchheimer coefficient and v f stands for the Forchheimer velocity and ρ f the density.
In other words, Forchheimer law assumes that Darcy’s law is still valid up to an additional nonlinear term
to account for the increased pressure drop for large velocity values. Then the Brinkman-Forcheheimer-
extended-Darcy equations (a generalisation actually) read

∂t u −ν∆u + (u ·∇)u +a |u|2αu +b |u|2βu +∇p = f ,

∇·u = 0, u|t=0 = u0.
(1.2)

This model was originally derived in its classical configuration (α= 1
2 ,β= 0, a > 0, and b > 0) in the frame-

work of thermal dispersion in a porous medium using the method of volume averaging of the velocity and
temperature deviations in the pores, see, e.g., [16]. A discussion of the formulation, validity and limitation
of the BFD system can be found in [25, 34]. The continuous dependence of BFeD equations on the Forch-
heimer coefficient with Dirichlet boundary conditions is studied in [21] (see also [8, 20, 22, 28, 30] and
references therein, and [7] where a coupling with the temperature is considered). The long-time behavior of
the solutions and the existence of global attractors to the BFeD system have been studied in [26, 33, 35, 36]
(see also [5] where the BFeD system is considered on R3 with the standard decay condition |u| → 0, as
|x| →∞) for restrictive range of the exponent α. Also, existence, decay rates and some qualitative prop-
erties of weak solutions are shown in [2]. In [17, 23], the BFeD system is investigated, and existence and
uniqueness of weak and strong solutions are shown. The authors of [17] assume Dirichlet boundary condi-
tions and regular enough initial data. In [23], the authors assume periodic boundary conditions (their result
can be extended to the same boundary conditions as of [17] at the price of heavy technicalities due to the use
of the maximal regularity estimates for the semi-linear stationary Stokes operator), but obtain the existence
and uniqueness of strong solution with initial data less regular than in [17]. Eventually, an anisotropic vis-
cous version of the BFeD system, and a 3D Forchheimer-Bénard convection system are studied in [4] and
[32], respectively.

In this paper, we consider the following three-dimensional MHD model of the motion of electrically con-
ducting fluid in a porous medium

S :


∂t u −ν∆u +u ·∇u −b ·∇b +a |u|2αu +∇p = 0,

∂t b −κ∆b +u ·∇b −b ·∇u = 0,

∇·u = 0, u|t=0 = u0, b|t=0 = b0,
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with periodic boundary conditions with fundamental periodic domain Ω = [0,L]3, L > 0. In system S ,
the unknowns are u the fluid velocity, b the magnetic field, and p the pressure. The viscosity ν ≥ 0 and
the magnetic resistivity κ ≥ 0, are given constants. The damping coefficients a and the exponent α are
nonnegative constants. The first equation S1 reflects the conservation of momentum of the fluid through
the periodic porous medium with basic domain Ω. On the physical level, this equation is believed to be
accurate when the flow velocity is too large for Darcy’s law to be valid. Equation S2 is the magnetic field
evolution equation. In the sequel, we will consider divergence-free initial magnetic field b0, that is ∇·b0 = 0.
Consequently, one concludes from the second equation S2 that

∂t (∇·b)−κ∆ (∇·b)+ (u ·∇)∇·b = 0,

(∇·b)(0, x) =∇·b0(x).

The above implies, for reasonably smooth u, that

∇·b(t , x) =∇·b0(x) = 0.

Hence, ∇ · b = 0 is a property of the solution, unlike the divergence-free velocity, ∇ ·u = 0, which is a
constraint.

When a = 0, system S reduces to the classical MHD equations. There is a very rich literature dedicated to
the mathematical analysis of this system. In the two-dimensional viscous and resistive case (namely fully
dissipative in fluids and in magnetic field, ν,κ> 0), the global existence of strong solutions is shown in [11].
Some results about short-time existence and uniqueness of strong solutions in the three-dimensional case are
shown in [11] and [29]. There are several interesting regularity criterion for system S (when a = 0) in the
three-dimensional case mainly based on Prodi-Serrin’s condition. We refer the reader to, e.g., [14, 15, 6, 18]
and references therein.

In the sequel, we shall intensively and implicitly use Young’s inequality

r s ≤ εr p +ε−q/p sq , r, s > 0, 1/p +1/q = 1, for p ≥ 1, q ≥ 1 and any ε> 0.

Also, we will use the Poincaré inequality
p
λ ||ϕ||2 ≤ ||∇ϕ||2,

p
λ= 2π

L
,

valid for every periodic function ϕ ∈ H 1(Ω) with zero mean in Ω. Eventually, we shall use the following
notation for the mean of a function ϕ

ϕ= 1

|Ω|
∫
Ω
ϕ(x)d x.

Let us mention that we will use these notations indiscriminately for both scalars and vectors, which should
not form any source of confusion.

Now, we are able to state our first result as follows

THEOREM 1.1. Let (u0,b0) ∈ L2(Ω)×L2(Ω) such that ∇·u0 =∇·b0 = 0, and b0 = 0. Let a,ν,κ> 0 and
α≥ 0. Then system S has global weak solutions (u(t ),b(t )) satisfying

u(x, t ) ∈ L∞(R+;L2(Ω))∩L2
loc([0,+∞); H 1(Ω))∩L2α+2

loc ([0,+∞);L2α+2(Ω)),

and

b(x, t ) ∈ L∞(R+;L2(Ω))∩L2
loc([0,+∞); H 1(Ω)), with ∇·b(t ) = 0.

In particular, the following holds true

limsup
t→+∞

(||u(t )||22 +||b(t )||22
)≤ L3 a− 1

2α−1

max{κ,ν}

(ν
λ

) 2α+2
2α−1

.
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Moreover, if α≥ 3
2 and b0 ∈ L3 α+1

α (Ω), then the solution (u(t ),b(t )) is unique, and depends continuously on
the initial data.

Concerning strong solutions to system S , we have the following:

THEOREM 1.2. Let (u0,b0) ∈ H 1(Ω)×H 1(Ω) such that ∇·u0 =∇·b0 = 0, and b0 = 0. Let a,ν,κ> 0 and
α≥ 3

2 . Then system S has a unique global strong solutions (u(t ),b(t )) satisfying

u(x, t ) ∈C 0
b([0,+∞); H 1(Ω))∩L2

loc([0,+∞); H 2(Ω))∩L2α+2
loc ([0,+∞);L2α+2(Ω)),

and

b(x, t ) ∈C 0
b([0,+∞); H 1(Ω))∩L2

loc([0,+∞); H 2(Ω)), with ∇·b(t ) = 0.

Moreover, the solution depends continuously on the initial data. Furthermore, if u0 ∈ L2α+2(Ω), then

∂t u(x, t ) ∈ L2
loc([0,+∞);L2(Ω)), u ∈ L∞

loc([0,+∞);L2α+2(Ω)), and ∂t b(x, t ) ∈ L2
loc([0,+∞);L2(Ω)).

2. Global well-posedness

In this section, we prove Theorem 1.1 and Theorem 1.2. The global (in time) existence of solutions is shown
in a classical way by proceeding in three steps. First, we use a Faedo-Galerkin approximation procedure to
show the short time existence of solutions. The reader is referred, e.g., to any textbook about Navier-Stokes
equations (e.g., [9, 31]) for details. Next, we obtain the necessary a priori bounds that allow to extend the
solution of the Faedo-Galerkin system globally in time. Eventually, we pass to the limit in the approximation
procedure using the Aubin compactness Theorem, relying on the established a priori bounds for the solution
and their derivatives (see, e.g., the details concerning similar systems in [23]).

2.1. Existence of solutions. The short-time existence of approximate solutions can be obtained through
the standard Faedo-Galerkin approximation method, see, for instance, [9, 31] (see also [23]). Thus, we will
omit this part and focus on the formal estimates.

2.2. A Priori Estimates. In this section, we perform formal calculation on system S to obtain the
needed a priori estimates.As we mentioned above, those calculations can be rigorously justified by using
the Faedo-Galerkin approximation. In the sequel, we will assume that ν,κ, a > 0.

2.2.1. L2(Ω) estimates of the velocity and the magnetic field. Since b0 satisfies ∇·b0 = 0, it follows that
∇·b(t ) = 0 for all t ≥ 0. Moreover, from equation S2, we get

d

d t

∫
Ω

b(t , x)d x = 0,

and therefore
b(t ) = b0 = 0, for all t ≥ 0. (2.1)

On the other hand, from equation S1, we have
d

d t

∫
Ω

u(t , x)d x =−a
∫

|u(t , x)|2αu(t , x)d x.

Hence, in general it is not true that u(t , x) = u0.

Now, let u0,b0 ∈ L2(Ω) such that ∇·u0 =∇·b0 = 0,b0 = 0 and α≥ 0. In this section we will establish L2(Ω)
bounds for u(t ) and b(t ). First, we multiply S1 by u and integrate over Ω to obtain

1

2

d

d t
||u||22 +ν ||∇u||22 +a ||u||2(α+1)

2(α+1) =
∫
Ω

b ·∇b ·u d x.

Next, we multiply S2 by b and integrate over Ω, and integrate by parts to get
1

2

d

d t
||b||22 +κ ||∇b||22 =

∫
Ω

b ·∇u ·b d x =−
∫
Ω

b ·∇b ·u d x
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Summing-up the latter inequalities, we can write
d

d t

(||u(t )||22 +||b(t )||22
)+2min{ν,κ} ||∇v ||22 +2a ||u||2(α+1)

2(α+1) = 0. (2.2)

Integrating this inequality with respect to time on (0, t ) leads to

||u(t )||22 +||b(t )||22 ≤ ||u0||22 +||b0||22,
∫ t

0

(||∇u(τ)||22 +||∇b(τ)||22
)

dτ≤ ||u0||22 +||b0||22
2min{ν,κ}

, (2.3)

and ∫ t

0
||u(τ)||2(α+1)

2(α+1) dτ≤ ||u0||22 +||b0||22
2a

.

Consequently, we have

u(t ) ∈ L∞(R+;L2(Ω)) ∩ L2
loc([0,+∞); H 1(Ω)) ∩ L2α+2

loc ([0,+∞);L2α+2(Ω)), (2.4)

and
b(t ) ∈ L∞(R+;L2(Ω)) ∩ L2

loc([0,+∞); H 1(Ω)),

for allα≥ 0. This bound can be slightly improved. Indeed, observe that using Hölder and Young inequalities,
one has the following

ν

λ
||u||22 ≤ a ||u||2α+2

2α+2 +L3 a− 1
2α−1

(ν
λ

) 2α+2
2α−1

. (2.5)

Next, thanks to Poincaré inequality and (2.2), we have

d

d t
||u||22 +

d

d t
||b||22 +2ν ||∇u||22 +

2κ

λ
||b||22 +

2ν

λ
||u||22 ≤ 2L3 a− 1

2α−1

(ν
λ

) 2α+2
2α−1

.

Thus, we have

d

d t

(||u(t )||22 +||b(t )||22
)+ 2

λ
max{κ,ν} ||v ||22 ≤ 2L3 a− 1

2α−1

(ν
λ

) 2α+2
2α−1

,

from which we infer that for all t ≥ 0

||u(t )||22 +||b(t )||22 ≤
(||u0||22 +||b0||22

)
e−

2
λ

max{κ,ν} t

+L3 a− 1
2α−1

max{κ,ν}

(ν
λ

) 2α+2
2α−1

(
1−e−2max

{
κ
λ

, ν
λ

}
t
)

.

Consequently, we have

limsup
t→+∞

(||u(t )||22 +||b(t )||22
)≤ L3 a− 1

2α−1

max{κ,ν}

(ν
λ

) 2α+2
2α−1

.

In particular, system S has an absorbing ball in L2(Ω)×L2(Ω), provided α≥ 0.
2.2.2. L3 α+1

α (Ω) estimate of the magnetic field. In this section we establish a priori bound for the mag-
netic field in the L3 α+1

α (Ω) norm, provided that the initial data u0,b0 ∈ L2(Ω) such that ∇·u0 =∇·b0 = 0,b0 = 0,
and in addition b0 ∈ L3 α+1

α (Ω) and α≥ 3
2 .

We multiply S2 by |b| α+3
α b and integrate over Ω to obtain

1

3

α

α+1

d

d t
||b||3

α+1
α

3 α+1
α

−κ
∫
Ω
∆b ·b |b| α+3

α d x =
∫
Ω

(b ·∇)u ·b |b| α+3
α d x

=−
∫
Ω

b ·∇(|b| α+3
α b) ·u d x.

On the one hand, by using Stroock-Varopoulos inequality (see, e.g., [19]), we have

−κ
∫
Ω
∆b ·b |b| α+3

α d x ≥ 4κ

9

α(2α+3)

(α+1)2 ||∇|b| 3
2
α+1
α ||22 ≥

5κ

9
||∇|b| 3

2
α+1
α ||22. (2.6)
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On the other hand, it is rather easy to see that∣∣∣∣∫
Ω

b ·∇(|b| α+3
α b) ·u d x

∣∣∣∣≤ α+3

3(α+1)

∫
Ω
|b| 3

2
α+1
α |∇|b| 3

2
α+1
α | |u|d x

≤ 2

3

∫
Ω
|b| 3

2
α+1
α |∇|b| 3

2
α+1
α | |u|d x

[By Cauchy-Schwarz and Young ineq.] ≤ 2κ

9
||∇|b| 3

2
α+1
α ||22 +

2

κ
||u|b| 3

2
α+1
α ||22.

Now, using Hölder and Young inequalities, we obtain

||u|b| 3
2
α+1
α ||22 ≤ ||u||22α+2 |||b|

3
2
α+1
α ||2

2 α+1
α

[By Gagliardo-Nirenberg ineq.] ≤C ||u||22α+2 |||∇|b||
3
2
α+1
α ||

3
α+1
2 ||b||3−

3
2α

3 α+1
α

[By Young’s ineq.] ≤ κ2

9
||∇|b| 3

2
α+1
α ||22 +C κ

6
1−2α ||u||

4α+4
2α−1
2α+2 ||b||

3 α+1
α

3 α+1
α

,

where C denotes a positive constant dependent on L. Now, if we assume α≥ 3
2 , then we can write

||u||
4α+4
2α−1
2α+2 ≤ 1+||u||2α+2

2α+2.

All in all, we obtain for all α≥ 3
2

d

d t
||b||3

α+1
α

3 α+1
α

+ κ

3
||∇|b| 3

2
α+1
α ||22 ≤C κ

6
1−2α (1+||u||2α+2

2α+2) ||b||3
α+1
α

3 α+1
α

.

Thanks to (2.3), we have u(t , x) ∈ L2α+2
loc ([0,+∞);L2α+2(Ω)), thus

||b(t )||3 α+1
α

≤ ||b0||3 α+1
α

exp

{
C κ

6
1−2α

∫ t

0

(
1+||u(τ)||2α+2

2α+2

)
dτ

}
≤ ||b0||3 α+1

α
exp

{
C κ

6
1−2α

(
t + ||u0||22 +||b0||22

2a

)}
.

In particular,

b(t ) ∈ L∞
loc([0,+∞);L3 α+1

α (Ω)), (2.7)

provided α≥ 3
2 .

2.2.3. H 1(Ω) estimates of the velocity and the magnetic field. In this section, we establish a priori
estimates for the velocity and the magnetic fields in H 1(Ω), provided that u0,b0 ∈ H 1(Ω) with ∇ ·u0 =
∇·b0 = 0,b0 = 0, and α≥ 3

2 .

We multiply S1 by −∆u and integrate over Ω to obtain

1

2

d

d t
||∇u||22 +ν ||∆u||22 −a

∫
Ω
|u|2αu ·∆u =

∫
Ω

(u ·∇)u ·∆u d x −
∫
Ω

(b ·∇)b ·∆u d x. (2.8)

On the one hand,

−a
∫
Ω
|u|2αu ·∆u d x = a (1+2α) |||u|α∇u||22. (2.9)
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On the other hand, since α> 1 and use Hölder and Young inequalities to get∣∣∣∣∫
Ω

(u ·∇)u ·∆u d x

∣∣∣∣≤ ∫
Ω
|u| |∇u| 1

α |∇u|1− 1
α |∆u|d x

≤ ||u |∇u| 1
α ||2α |||∇u|1− 1

α || 2α
α−1

||∆u||2
≤ 2

ν
|||u|α∇u||

2
α

2 ||∇u||2(1− 1
α

)
2 + ν

8
||∆u||22

≤ 2ε

ν
|||u|α∇u||22 +

2ε
1

1−α

ν
||∇u||22 +

ν

8
||∆u||22, ∀ε> 0. (2.10)

Next, thanks to Cauchy-Schwarz and Young inequalities, we have∣∣∣∣∫
Ω

(b ·∇)b ·∆u d x

∣∣∣∣≤ 2

ν
||b|∇b|||22 +

ν

8
||∆u||22.

Hereafter, c will denote a dimensionless positive constant that might vary form line to line. By virtue of the
Hölder inequality we have

2

ν
||b|∇b|||22 ≤

2

ν
||b||2

3 α+1
α

||∇b||2
6 α+1
α+3

[By Gagliardo-Nirenberg ineq.] ≤ c

ν
||b||2

3 α+1
α

||∇b||
2

α+1
2 ||∆b||

2α
α+1
2

[By Young’s ineq.] ≤ c

να+1κα
||∇b||22 +

κ

6
||∆b||22, (2.11)

where we used, above, the following version of the Gagliardo-Nirenberg inequality for any periodic function
ϕ ∈ H 2(Ω),

||∇ϕ||6 α+1
α+3

≤ c ||∇ϕ||
1

α+1
2 ||∆ϕ||

α
α+1
2 (2.12)

Combining the latter two inequalities, we get∣∣∣∣∫
Ω

(b ·∇)b ·∆u d x

∣∣∣∣≤ c

να+1κα
||∇b||22 +

κ

6
||∆b||22 +

ν

8
||∆u||22. (2.13)

Now, we multiply S2 by −∆b and integrate over Ω

1

2

d

d t
||∇b||22 +κ ||∆b||22 =

∫
Ω

u ·∇b ·∆b d x −
∫
Ω

b ·∇u ·∆b d x. (2.14)

We start by estimating the last term in the right-hand hand of the latter equation. On the one side, using
Cauchy-Schwarz and Young inequalities, we have∣∣∣∣∫

Ω
(b ·∇)u ·∆b d x

∣∣∣∣≤ 3

2κ
||b|∇u|||22 +

κ

6
||∆b||22. (2.15)

On the other hand, we have
3

2κ
||b|∇u|||22 ≤

3

2κ
||b||2

3 α+1
α

||∇u||2
6 α+1
α+3

[By Gagliardo-Nirenberg ineq.] ≤ c

κ
||b||2

3 α+1
α

||∇u||
2

α+1
2 ||∆u||

2α
α+1
2 b||2

3 α+1
α

[By Young’s ineq.] ≤ c

νακα+1 ||b||2α+2
3 α+1

α

||∇u||22 +
ν

8
||∆u||22, (2.16)

where we used the Gagliardo-Nirenberg inequality (2.12) for the velocity. Thus, we infer the following
estimate ∣∣∣∣∫

Ω
(b ·∇)u ·∆b d x

∣∣∣∣≤ c

νακα+1 ||b||2α+2
3 α+1

α

||∇u||22 +
ν

8
||∆u||22 +

κ

6
||∆b||22. (2.17)



8 E. S. TITI AND SABER TRABELSI

Now, we handle the remaining term using integration by parts∫
Ω

(u ·∇)b ·∆b d x =
3∑

k,l ,m=1

∫
Ω

uk ∂k bl ∂
2
m bl d x

=−
3∑

k,l ,m=1

∫
Ω
∂m uk ∂k bl ∂m bl d x −

3∑
k,l ,m=1

∫
Ω

uk ∂m∂k bl ∂m bl d x

=−
3∑

k,l ,m=1

∫
Ω
∂m uk ∂k bl ∂m bl d x −

3∑
m=1

∫
Ω

u ·∇∂mb ·∂mb d x.

Clearly, the last term of the right-hand side of this inequality vanishes. Next, integrating by parts the first
term and using the divergence free condition, we obtain

−
3∑

k,l ,m=1

∫
Ω
∂m uk ∂k bl ∂m bl d x =

3∑
k,l ,m=1

∫
Ω
∂2

m uk ∂k bl bl d x +
3∑

k,l ,m=1

∫
Ω
∂m uk ∂m ∂k bl bl d x

=
∫
Ω

(∆u ·∇)b ·b d x +
3∑

k,l ,m=1

∫
Ω
∂m uk ∂m ∂k bl bl d x.

=
3∑

m=1

∫
Ω

(∂mu ·∇)∂mb ·b d x.

Again the the first term in the second line above vanishes. Eventually, from the above we have∣∣∣∣∫
Ω

(u ·∇)b ·∆b d x

∣∣∣∣≤ ∣∣∣∣∫
Ω
|∇u| |∆b| |b|d x

∣∣∣∣ ,

and therefore it can be estimated exactly as in (2.15). Thus, we get∣∣∣∣∫
Ω

(u ·∇)b ·∆b d x

∣∣∣∣≤ c

νακα+1 ||b||2α+2
3 α+1

α

||∇u||22 +
ν

8
||∆u||22 +

κ

6
||∆b||22. (2.18)

Now, gathering (2.8-2.18), and setting ε= a(1+2α)ν
2 in (2.10), we obtain

d

d t
||∇u||22 +

d

d t
||∇b||22 +ν ||∆u||22 +κ ||∆b||22 +a(1+2α) |||u|α∇u||22 (2.19)

≤ c

(
(a(1+2α)να)

1
1−α + 1

νακα+1 ||b||2α+2
3 α+1

α

)
||∇u||22 +

c

να+1κα
||∇b||22.

Since H 1(Ω) ,→ L3 α+1
α (Ω) for allα≥ 1, we have b0 ∈ L3 α+1

α (Ω). Now, recalling that b(t ) ∈ L∞
loc([0,+∞);L3 α+1

α (Ω)),
for all α≥ 3

2 thanks to (2.7), then Gronwall’s inequality leads clearly to the fact that

∇u,∇b ∈ L∞
loc([0,+∞),L2(Ω)), ∆u,∆b ∈ L2

loc([0,+∞)),L2(Ω)), (2.20)

|u|α∇u ∈ L2
loc([0,+∞),L2(Ω)),

Now, we show that under the same assumptions on the initial data and α, we have

∂t u, ∂t b ∈ L2
loc([0,+∞),L2(Ω)). (2.21)

For this purpose, we multiply S1 by ∂t u and integrate over Ω to obtain

||∂t u||22 +
ν

2

d

d t
||∇u||22 +

∫
Ω

(u ·∇)u ·∂t u d x +
∫
Ω

(b ·∇)b ·∂t u d x + 2

2α+2

d

d t
||u||2α+2

2α+2 ≤ 0.

Now, on the one hand, ∣∣∣∣∫
Ω

(u ·∇)u ·∂t u d x

∣∣∣∣≤ ||u|∇u|||22 +
1

4
||∂t u||22.
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On the other hand, we have ∣∣∣∣∫
Ω

(b ·∇)b ·∂t u d x

∣∣∣∣≤ ||b|∇b|||22 +
1

4
||∂t u||22.

Gathering these estimates together, we get

||∂t u||22 +ν
d

d t
||∇u||22 +

1

2α+2

d

d t
||u||2α+2

2α+2 ≤ 2 ||u|∇u|||22 +2 ||b|∇b|||22.

Integrating this inequality with respect to time, we obtain∫ t

0
||∂t u(τ)||22 dτ+ν ||∇u(t )||22 +

1

2α+2
||u(t )||2α+2 ≤ ν ||∇u0||22 +

1

2α+2
||u0||2α+2

2α+2

+2
∫ t

0
||u(τ)|∇u(τ)|||22 dτ+2

∫ t

0
||b(τ)|∇b(τ)|||22 dτ. (2.22)

First, using Young’s inequality, it is rather easy to see that

||u|∇u|||22 ≤
∫
Ω
|u|2 |∇u| 2

α |∇u|2− 2
α d x ≤ ν1−α |||u|α|∇u|||22 +ν ||∇u||22.

Next, the term |||b|∇b||22 can be estimated as in (2.11) (recalling (2.7)) or only using Agmon’s inequality (see
[1])

||b||∞ ≤ c ||∆b||
3
4
2 ||b||

1
4
2 ,

where c denotes a nonnegative constant. Indeed, we have

||b|∇b|||22 ≤ ||∇b||22 ||b||2∞ ≤ c ||∇b||22 ||∆b||
3
2
2 ||b||

1
2
2 ≤ c ||∇b||82 ||b||22 + ||∆b||22, (2.23)

Therefore, thanks to (2.20), we obtain that

u|∇u|,b|∇b| ∈ L2
loc([0,+∞),L2(Ω)).

Eventually, thanks to (2.22), we infer the first part of (2.21). In order to prove the second part, we multiply
S2 by ∂t b and integrate over Ω to get

||∂t b||22 +
κ

2

d

d t
||∇b||22 +

∫
Ω

(u ·∇)b ·∂t b d x −
∫
Ω

(b ·∇)u ·∂t b d x = 0. (2.24)

Now, using Hölder and Young inequalities, we have∣∣∣∣∫
Ω

(u ·∇b) ·∂t b d x

∣∣∣∣≤ ||u|∇b|||22 +
1

4
||∂t b||22.

and ∣∣∣∣∫
Ω

(b ·∇)u ·∂t b d x

∣∣∣∣≤ ||b|∇u|||22 +
1

4
||∂t b||22.

Thus, integrating (2.24) with respect to time, we get∫ t

0
||∂t b(τ)||22 dτ+κ ||∇b(t )||22 ≤ κ ||∇b0||22 +2

∫ t

0

(||u(τ)|∇b(τ)|||22 +||b(τ)|∇u(τ)|||22
)

dτ. (2.25)

Now, using Gagliardo-Nirenberg inequality, we have using

||u|∇b|||22 ≤ ||u||2∞ ||∇b||22 ≤ c ||∆u||22 ||∇u||22 ||∇b||22 + c ||u||22 ||∇b||22
[By Young’s ineq.] ≤ ||∆u||22 + c ||∇u||42 ||∇b||42 + c ||u||22 ||∇b||22.

Furthermore, using (2.16), we have

||b|∇u|||22 ≤
c

νακα
||b||2α+2

3 α+1
α

||∇u||22 +
νκ

16
||∆u||22.

Thus, thanks to (2.7) and (2.20), we obtain

u|∇b|,b|∇u| ∈ L2
loc([0,+∞),L2(Ω)).

All in all, (2.25) provides the second part of (2.21).
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2.3. Continuous dependence on the initial data. In this section, we show the continuous dependence
of the weak and strong solutions on the initial data, in particular their uniqueness. Let (u, p,b) and (ũ, p̃, b̃)
associated to the initial data (u0, p0,b0) and (ũ0, p̃0, b̃0), respectively satisfying the respected conditions in
Theorems 1.1 and 1.2 . Therefore, if we let (v, q,d) = (u − ũ, p − p̃,b − b̃), then (v, q,d) satisfies

S̃ :



∂t v −ν∆v +u ·∇v + v ·∇ũ −b ·∇d −d ·∇b̃ +a |u|2αu −a |ũ|2αũ +∇q = 0,

∂t d −κ∆d + v ·∇b + ũ ·∇d −d ·∇u − b̃ ·∇v = 0,

∇· v = 0.

2.3.1. Weak solutions case. In this section we show the uniqueness of the weak solution provided α≥ 3
2 .

Let (u0,b0), (ũ0, b̃0) ∈ L2(Ω)×L2(Ω) such that b0, b̃0 ∈ L3 α+1
α (Ω),∇·u0 =∇·b0 =∇· ũ0 =∇· b̃0 = 0,b = b̃ = 0.

First, we multiply S̃1 by v and integrate over Ω
1

2

d

d t
||v ||22 +ν ||∇v ||22 +a

∫
Ω

(|u|2αu − |ũ|2αũ
) · v d x

=−
∫
Ω

(
(v ·∇) ũ − (b ·∇)d − (d ·∇) b̃

) · v d x (2.26)

Next, we multiply S̃2 by d and integrate over Ω
1

2

d

d t
||d ||22 +κ ||∇d ||22 =

∫
Ω

(−(v ·∇)b + (d ·∇)u + (b̃ ·∇) v
) ·d d x (2.27)

We need the following well known monotonicity fact (see, e.g., [3]): There exists a positive constant c such
that

c |u − ũ|2 (|u|+ |ũ|)2α ≤ (|u|2αu −|ũ|2αũ
) · (u − ũ).

In particular,

0 ≤ c a
∫
Ω

(|u|+ |ũ|)2α |v |2 d x ≤ a
∫
Ω

(|u|2αu − |ũ|2αũ
) · v d x. (2.28)

Now, estimate the terms appearing in the right-hand side of (2.26) and (2.27). To take advantage of the
velocity damping term, we write the following∣∣∣∣∫

Ω
(v ·∇) ũ · v d x

∣∣∣∣= ∣∣∣∣∫
Ω

(v ·∇) v · ũ d x

∣∣∣∣
[By Hölder’s ineq.] ≤

∫
Ω
|ũ| |v | 1

α |v |1− 1
α |∇v |d x ≤ |||ũ| |v | 1

α ||2α |||v |1−
1
α ||| 2α

α−1
||∇v ||2

[By Young’s ineq.] ≤ 5

ν
|||ũ|α |v |||

2
α

2 ||v ||2(1− 1
α

)
2 + ν

5
||∇v ||22

[By Young’s ineq.] ≤ a

2
|||ũ|α v ||22 +

(
2 ·5α

aνα

) 1
α−1 ||v ||22 +

ν

5
||∇v ||22. (2.29)

Now, we handle the second term in the right-hand side of (2.26) as follows∣∣∣∣∫
Ω

(b ·∇)d · v d x

∣∣∣∣= ∣∣∣∣∫
Ω

(b ·∇) v ·d d x

∣∣∣∣
[By Cauchy-Schwarz and Young’s ineq.] ≤ ν

5
||∇v ||22 +

5

ν
||b|d |||22

[By Hölder’s ineq.] ≤ ν

5
||∇v ||22 +

5

ν
||b||2

3 α+1
α

||d ||2
6 α+1
α+3

[By Gagliardo-Nirenberg ineq.] ≤ ν

5
||∇v ||22 +

c

ν
||b||2

3 α+1
α

||d ||
2

α+1
2 ||∇d ||

2α
α+1
6

[By Young’s ineq.] ≤ ν

5
||∇v ||22 +

c

κανα+1 ||b||2(α+1)
3 α+1

α

||d ||22 +
κ

6
||∇d ||22, (2.30)
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For the last term of the right-hand side of (2.26) we use the same argument as in the estimate above and get∣∣∣∣∫
Ω

(d ·∇) b̃ · v d x

∣∣∣∣= ∣∣∣∣∫
Ω

(d ·∇) v · b̃ d x

∣∣∣∣
≤ ν

5
||∇v ||22 +

5

ν
||b̃|d |||22

≤ ν

5
||∇v ||22 +

c

κανα+1 ||b̃||2(α+1)
3 α+1

α

||d ||22 +
κ

6
||∇d ||22. (2.31)

The last line of the above inequality is obtained by replacing b by b̃ in the estimate of ||bd ||22 appearing in
(2.30). Next, we estimate of the terms appearing in the right-hand side of (2.27).∣∣∣∣∫

Ω
(v ·∇)b ·d d x

∣∣∣∣= ∣∣∣∣∫
Ω

(v ·∇d) ·b d x

∣∣∣∣
[By Cauchy-Schwarz and Young’s ineq.] ≤ κ

6
||∇d ||22 +

6

κ
||v |b|||22

[By Hölder’s ineq.] ≤ κ

6
||∇d ||22 +

6

κ
||b||2

3 α+1
α

||v ||2
6 α+1
α+3

[By Gagliardo-Nirenberg ineq.] ≤ κ

6
||∇d ||22 +

c

κ
||b||2

3 α+1
α

||v ||
2

α+1
2 ||∇v ||

2α
α+1
2 + c

κ
||b||2

3 α+1
α

||v ||22
[By Young’s ineq.] ≤ κ

6
||∇d ||22 +

c

κα+1να
||b||2

α+1
α

3 α+1
α

||v ||22 +
ν

5
||∇v ||22 +

c

κ
||b||2

3 α+1
α

||v ||22. (2.32)

Next, we have ∣∣∣∣∫
Ω

(b̃ ·∇) v ·d d x

∣∣∣∣≤ ∣∣∣∣∫
Ω

(b̃ ·∇)d · v d x

∣∣∣∣≤ κ

6
||∇d ||22 +

c

κ
||v |b̃|||22.

The above term can be estimated clearly as in (2.32) replacing b by b̃. We get∣∣∣∣∫
Ω

(b̃ ·∇) v ·d d x

∣∣∣∣≤ κ

6
||∇d ||22 +

c

κα+1να
||b̃||2

α+1
α

3 α+1
α

||v ||22 +
ν

5
||∇v ||22 +

c

κ
||b̃||2

3 α+1
α

||v ||22. (2.33)

The last term to estimate is the following∣∣∣∣∫
Ω

(d ·∇)u ·d d x

∣∣∣∣= ∣∣∣∣∫
Ω

(d ·∇d) ·u d x

∣∣∣∣
[By Cauchy-Schwarz ineq.] ≤ ||∇d ||2 ||u|d |||2

[By Hölder ineq.] ≤ ||∇d ||2 ||u||2α+2 ||d ||2 α+1
α

[By interpolation ] ≤ ||∇d ||2 ||u||2α+2 ||d ||
2α−1
2α+2
2 ||d ||

3
2α+2
6

[By Sobolev ineq.] ≤ ĉ
3

2α+2 ||∇d ||
2α+5
2α+2
2 ||u||2α+2 ||d ||

2α−1
2α+2
2

[By Young’s ineq.] ≤ κ

3
||∇d ||22 + ĉ

6
2α−1

(
3

κ

) 2α+5
2α−1 ||u||

4α+4
2α−1
2α+2 ||d ||22.

where ĉ denotes the Sobolev constant. Recall that u ∈ L2α+2
loc ([0,+∞);L2α+2(Ω)), thanks to (2.4). Now,

observe that
4α+4

2α−1
≤ 2α+2 ⇐⇒ α≥ 3

2
.

Therefore, if α≥ 3
2 , then u ∈ L

2α+5
2α−1

loc ([0,+∞);L2α+2(Ω)) and we have∫
Ω

(d ·∇)u ·d d x ≤ κ

3
||∇d ||22 + cκ

2α+5
1−2α

(
1+||u||2α+2

2α+2

) ||d ||22. (2.34)
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Gathering the estimates (2.28-2.34) together, we get
d

d t

(||v(t )||22 +||d(t )||22
)

≤ c

{(
aνα

) 1
1−α + 1

κα+1να

(
||b||2

α+1
α

3 α+1
α

+||b̃||2
α+1
α

3 α+1
α

)
+ 1

κ

(
||b||2

3 α+1
α

+||b̃||2
3 α+1

α

)}
||v ||22

+ c

{
1

κανα+1

(
||b||2(α+1)

3 α+1
α

+||b̃||2(α+1)
3 α+1

α

)
+κ 2α+5

1−2α
(
1+||u||2α+2

2α+2

)} ||d ||22.

Thanks to (2.4), (2.7), and Gronwall’s inequality, we obtain clearly the continuous dependence of the weak
solution on the initial data, in particular its uniqueness provided α≥ 3

2 .
2.3.2. Strong solutions case. In this section we show the uniqueness of the strong solution provided

α ≥ 3
2 . Let (u0,b0), (ũ0, b̃0) ∈ H 1(Ω)× H 1(Ω) such that ∇ ·u0 = ∇ ·b0 = ∇ · ũ0 = ∇ · b̃0 = 0,b0 = b̃0 = 0 and

α3
2 . The proof uses the estimates of the previous section except (2.34). Indeed, using Hölder, Gagliardo-

Nirenberg, and Young inequalities, we have∫
Ω

(d ·∇u) ·d d x ≤ ||∇u||2||d ||24 ≤ c ||∇u||2 ||∇d ||
3
2
2 ||d ||

1
2
2

≤ κ

3
||∇d ||22 + cκ−3 ||∇u||42 ||d ||22. (2.35)

Eventually, Summing up (2.26) and (2.27), and using (2.28) along with (2.29–2.33) and (2.35), we obtain
d

d t

(||v(t )||22 +||d(t )||22
)

≤ c

{
(aνα)

1
α−1 + 1

κα+1να

(
||b||2

α+1
α

3 α+1
α

+||b̃||2
α+1
α

3 α+1
α

)
+ 1

κ

(
||b||2

3 α+1
α

+||b̃||2
3 α+1

α

)}
||v ||22

+ c

{
1

κανα+1

(
||b||2(α+1)

3 α+1
α

+||b̃||2(α+1)
3 α+1

α

)
+κ−3 ||∇u||42

}
||d ||22.

Thanks to (2.7) and (2.20), and Gronwall’s inequality, we obtain clearly the continuous dependence of the
strong solution on the initial data, in particular its uniqueness for all α≥ 3

2 .

REMARK 2.1. After the completion of an earlier version of this paper we become aware of the work
[37] (see also references therein). In [37] the authors prove the existence and uniqueness of strong solutions
to a variant of system S , which contains an additional nonlinear damping term in the evolution equation
of the magnetic field. In this paper we do not need the additional nonlinear damping in the magnetic field
to establish our results. Moreover, we also show the existence and uniqueness of weak solutions. The latter
has been possible thanks to the estimate that we establish in section 2.2.2 for the L3 α+1

α (Ω) norm.
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