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ABSTRACT OF THE DISSERTATION

Remote sensing of clouds for solar forecasting applications

by

Felipe Mejia

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Professor Jan Kleissl, Chair

A method for retrieving cloud optical depth (τc) using a UCSD developed ground-

based Sky Imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is

motivated from the analysis of simulated images of various τc produced by a Radiative

Transfer Model (RTM). From these images the basic parameters affecting the radiance

and RBR of a pixel are identified as the solar zenith angle (SZA), τc, solar pixel an-

gle/scattering angle (SPA), and pixel zenith angle/view angle (PZA). The effects of these

parameters are described and the functions for radiance, Iλ(τc,SZA,SPA,PZA), and the

red-blue ratio, RBR(τc,SZA,SPA,PZA), are retrieved from the RTM results. RBR, which

is commonly used for cloud detection in sky images, provides non-unique solutions for

xv



τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and

then decreases. Therefore, the RRBR algorithm uses the measured Imeas
λ

(SPA,PZA), in

addition to RBRmeas(SPA,PZA) to obtain a unique solution for τc. The RRBR method is

applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric

Radiation Measurement program (ARM) site over the course of 220 days and compared

against measurements from a microwave radiometer (MWR) and output from the Min

[MH96a] method for overcast skies. τc values ranged from 0-80 with values over 80

being capped and registered as 80. A τc RMSE of 2.5 between the Min method [MH96b]

and the USI are observed. The MWR and USI have an RMSE of 2.2 which is well within

the uncertainty of the MWR. The procedure developed here provides a foundation to test

and develop other cloud detection algorithms.

Using the RRBR τc estimate as an input we then explore the potential of using

tomographic techniques for 3-D cloud reconstruction. The Algebraic Reconstruction

Technique (ART) is applied to optical depth maps from sky images to reconstruct 3-D

cloud extinction coefficients. Reconstruction accuracy is explored for different products,

including surface irradiance, extinction coefficients and Liquid Water Path, as a function

of the number of available sky imagers (SIs) and setup distance. Increasing the number

of cameras improves the accuracy of the 3-D reconstruction: For surface irradiance,

the error decreases significantly up to four imagers at which point the improvements

become marginal while k error continues to decrease with more cameras. The ideal

distance between imagers was also explored: For a cloud height of 1 km, increasing

distance up to 3 km (the domain length) improved the 3-D reconstruction for surface

irradiance, while k error continued to decrease with increasing decrease. An iterative

reconstruction technique was also used to improve the results of the ART by minimizing

the error between input images and reconstructed simulations. For the best case of a nine

imager deployment, the ART and iterative method resulted in 53.4% and 33.6% mean

xvi



average error (MAE) for the extinction coefficients, respectively.

The tomographic methods were then tested on real world test cases in the Uni-

versity of California San Diego’s (UCSD) solar testbed. Five UCSD sky imagers (USI)

were installed across the testbed based on the best performing distances in simulations.

Topographic obstruction is explored as a source of error by analyzing the increased error

with obstruction in the field of view of the horizon. As more of the horizon is obstructed

the error increases. If at least a field of view of 70◦ is available for the camera the accuracy

is within 2% of the full field of view. Errors caused by stray light are also explored by

removing the circumsolar region from images and comparing the cloud reconstruction to

a full image. Removing less than 30% of the circumsolar region image and GHI errors

were within 0.2% of the full image while errors in k increased 1%. Removing more than

30◦ around the sun resulted in inaccurate cloud reconstruction. Using four of the five

USI a 3D cloud is reconstructed and compared to the fifth camera. The image of the fifth

camera (excluded from the reconstruction) was then simulated and found to have a 22.9%

error compared to the ground truth.

xvii



Chapter 1

Introduction

1.1 Motivation: The Need for Solar Forecasting

The transition from conventional fossil energy to renewable energy has been aided

by continued improvements in renewable technologies, but this progress is met with new

challenges. Solar energy, for example, has an inherent variability that unlike current

energy sources, that provide a steady reliable energy source, requires larger regulation by

ancillary generators to balance generation and demand during periods of high variability.

Accurate forecasting of these periods of high variability will support management of the

electric grid and electricity markets and therefore ensure a more economical integration

of solar power (Mathiesen et al., 2013). Currently several different methods are used

to forecast at different spatial and temporal resolutions including numerical weather

prediction (e.g. Lorenz et al., 2009; Mathiesen et al., 2011), and satellite image-based

forecasting (e.g. Hammer et al., 1999). For short term forecasting, whole-sky imagery

has been used (e.g. Urquhart et al., 2013).

1



2

1.2 The need for improvements in cloud detection

Physics-based solar forecasting using whole-sky imagery requires geolocating

clouds in the sky images, estimating their optical depth, motion, and dynamics (Chow et

al., 2011). To estimate a clouds optical depth τc, the most advanced methods separate the

image into clear sky, thin cloud and thick cloud and assign a τc to each of these groups.

To distinguish thin and thick clouds, the red-blue ratio (RBR) (or a function of RBR) has

been used as the default method (Koehler et al., 1991; Shields et al., 1993; Chow et al.,

2011; Ghonima et al. 2012; Roy et al., 2001). It is defined as the ratio of the signal from

the red channel to the signal from the blue channel. The RBR method takes advantage

of Rayleigh scattering being greater in the blue wavelengths than the red wavelengths.

When Rayleigh scattering is the predominant form of scattering, such as in clear skies,

the RBR for a given view angle is smaller than under cloud scattering. RBR successfully

differentiates clear sky from thin clouds and to a more limited extent thick clouds, but the

RBR has not been applied to differentiate τc. It is also difficult to apply the RBR method

in the circumsolar region as thick dark clouds have lower RBRs than clear sky (Chow et

al., 2011). In fact we will demonstrate through radiative transfer modeling (Chapter 3)

that RBR by itself is ineffective for differentiating τc even for homogeneous cloud layers.

Differences in τc can greatly affect the irradiance available for solar energy production.

For this analysis we consider the of-accuracy requirement of global horizontal irradiance

(GHI) to be 5% Fig. 1.1a. Fig. 1.1b and 1.1c demonstrate the corresponding absolute

and relative error in τc for a 5% error in GHI. Relative τc accuracy required for solar

forecasting is large for thin cloud (τc ∼ 1) and thick clouds (τc > 30). A minimum occurs

at τc=16 where a 21% error in τc is permissible for avoiding an under-prediction of GHI

by 5%.
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Figure 1.1: a) Irradiance divided by clear sky irradiance as a function of τc for homoge-
nous clouds as derived from SHDOM. The black line represents the results while the
blue and red are 5% offsets in GHI. 1.1b) Error bounds of 5% on 1.1a converted to
absolute intervals for τc. For example, for GHI to stay within 5% of its value at τc=30,
τc cannot be more than 7.7 below 30 and not more than 15.6 above 30. 1.1c) Same as
1.1b but the y-axis is divided by τc.

Most current cloud detection methods are designed empirically using look-up

tables and/or thresholds that are adjusted to work with a specific imager and cloud

conditions (see section 1.3). The present work breaks new ground in that it attempts to

improve our fundamental understanding of the impact of radiative transfer (RT) and τc

on the radiance and RBR of a given pixel in a sky image. To analyze this relation, the

Spherical Harmonic Discrete Ordinate Method (SHDOM) (Evans et al., 1998; Pincus

et al., 2009) is used to produce synthetic overcast sky images (chapter 2) and analyze

the determinants of sky imager radiances (chapter 3). The results reveal non-linearities

and non-monotonic behavior in radiances and RBR that explain many of the challenges

previously observed with empirical cloud detection methods. The insights gained through

RT are utilized to develop a τc retrieval algorithm for sky imagery (section 3.6). The

algorithm is compared to other methods in section 3.9.
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1.3 Review of sky imager cloud detection methods and

geometrical factors

Individual pixel cloud detection using the output image from sky imagers is

based on either the radiance measurement or the ratio between radiance measurements

for different wavelengths. Cloud detection algorithms using single channel radiance

have found limited success (McGuffe et al., 1989; Kegelmeyer et al., 1994) due to

the similarities in radiance values between clear skies and thick clouds in the visible

spectrum. More success has been obtained when cloud detection uses the ratio between

radiance measurements at different wavelength bands. One such algorithm is the RBR

method, which uses the ratio of camera measurement in the red channel to the blue

channel to classify a pixel as cloudy or clear. A fixed RBR threshold between clear sky

and cloudy sky (Koehler et al. 1991) led to successful identification of opaque clouds

but consistently failed to distinguish thin and clear skies. However, in a study of contrail

clouds Koehler et al. (1991) observed that the ratio of RBR to the clear sky RBR was

similar between contrail cases and permitted a method for identifying thin clouds. In

other words, knowing the clear sky value, aids in the detection of thin clouds. The main

factors affecting the clear sky RBR were found to be the solar zenith angle (SZA, Fig.

1.2), solar pixel angle/scattering angle (SPA), pixel zenith angle/view angle (PZA, see

Figs. 1.2, 1.3b, 1.3c for illustrations of these angles), and changes in aerosol properties.

This lead to the development of clear sky libraries (CSL) (Shields et al.,1993; Chow et

al. 2011) to express clear sky RBR value under any condition. CSL are constructed by

binning pixel values from clear sky images into matrices as a function of SZA (Fig. 1.2),

SPA and PZA. From the CSL it is then possible to simulate a clear sky (Fig. 1.3a) for

any given day, allowing the calculation of the ratio of measured RBR to clear sky RBR.
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Figure 1.2: Diagram of the UCSD sky imager (USI) and related solar and sky geome-
tries. SZA is the solar zenith angle. The SPA is the angle subtended by the vector
pointing at the sun and the vector pointing at the pixel in question. The PZA is the
angle formed by the vector pointing at the pixel in question and zenith. It is important
to note that SPA = SZA+ PZA only holds in 2D, but not in 3D because the incident and
scattering directions may not be in the same azimuthal plane. An example of this is
illustrated in Fig. 1.3.
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Figure 1.3: (a) Clear USI image created from a clear sky library (CSL) for a solar
zenith angle of 60 on 26 March 2013, 15:00:00 UTC. For the image in (a) Solar Pixel
Angles and Pixel Zenith Angles are shown in (b) and (c), respectively. The red lines
in Figs b. and highlight the pixels with SPA=60, and PZA=60, respectively, which are
often used in the following chapters to illustrate relationships with cloud optical depth
and radiance. North is located on the bottom right corner of the image.

The red-blue difference (RBD, Heinle et al., 2010) uses the same principles as the

RBR for cloud detection but attempts to eliminate the strong directional variability in the

RBR due to variability in the radiance, I∆λ, of the blue channel as seen in eqn. (1.1, 1.2) ,

RBR =
Ir

Ib
= 1+

(Ir− Ib)

Ib
, (1.1)

RBD = Ir− Ib = Ib(RBR−1), (1.2)

where Ir is the I∆λ in the red channel, and Ib is the I∆λ in the blue channel. However,

Ghonima et al. (2012) found minimal differences in performance between RBD and RBR

retrieval with RBR outperforming RBD. Gauchet et al. (2012) used RBD combined with

a different approach to account for the directional effects in cloud detection, in which they

segmented images into five zones, solar disk, circumsolar disk, extended circumsolar disk,

main zone, sky horizon, and orographic horizon. The Radiance and red-blue difference

(RBD) thresholds to separate clear sky, bright cloud, and dark cloud varied by zone.

These approaches have led to improved accuracy of cloud detection, yet limited progress
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has been made towards understanding the phenomena that influence the performance

of these methods. Although a direct relationship with aerosol optical depth (τa) and

RBR is observed for small τa, (τa <0.3) (Ghonima et al., 2012) no direct relationship has

been found between RBR, or other variables determined from sky imagers, and larger

optical depths (τ >0.3) such as those found typically in clouds. This has limited sky

imager cloud detection to a binary classification in which the image is segmented into

cloud or clear sky. The lack of research on τc classification also stems from the fact that

τc are challenging to measure accurately and large spatio-temporal variability. Instead,

a radiative transfer model is applied here to investigate the interrelationships between

radiances, radiance ratios (RBR), and τc and devise a method to detect τc.
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Chapter 2

Homogeneous radiative transfer

modeling of sky images and

comparison to measurements

2.1 SHDOM model and input parameters

Radiance measurements can be obtained from a 1D model for homogeneous

clouds but for comparison with future work a 3D-RT model was used. SHDOM is

an explicit 3D-RT model that uses discrete ordinates to integrate the radiative transfer

equation spatially, while spherical harmonics are used to save memory when computing

scattering. SHDOM is more computationally efficient compared to Monte Carlo (MC)

methods when solving the whole sky radiance field. SHDOM is also found to be within

2-3% (close to the noise level) of the MC models in the Intercomparison of 3D Radiation

Codes (I3RC) (Marshak et al., 2005; Cahalan et al., 2005). Because of its computational

efficiency and accuracy, SHDOM is selected for this analysis. SHDOM radiative transfer

calculations are performed for 161 liquid water overcast skies with homogeneous τc,

8
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ranging in τc from 0 to 80 at solar zenith angles ranging from 21◦ to 70◦ and for

wavelengths corresponding to the peaks of the USI cameras red (620 nm), green (520

nm) and blue (450 nm) channels.

Yearly average Aerosol Robotic Network (AERONET) data from the Atmospheric

Radiation Measurements (ARM) Southern Great Plains (SGP) site for the year of 2013

for aerosol effective radius, and refractive index is used to calculate the single scattering

properties of the aerosols in the SHDOM simulation (Holben et al. 1998; Holben et al.

2001) (Table 2.1).

Table 2.1: Atmospheric radiative properties for the ARM site used as input to SHDOM.
τa and Rayleigh optical depth are averages for the year 2013 from AERONET data.

Red (620 nm) Green (520
nm)

Blue (450 nm)

τa [-] 0.0784 0.1010 0.1212
Rayleigh optical depth [-] 0.0875 0.1627 0.2296
Aerosol Effective Radius(Re)
[m]

3.9 3.9 3.9

Aerosol Re distribution Lognormal Lognormal Lognormal
Refractive index [-] 1.42 -0.002i 1.41 -0.002i 1.40 -0.002i

Background Rayleigh and aerosol optical depths are also obtained from yearly

averages taken from the sun-tracking photometer at the ARM SGP site. Spectral surface

reflectances of 0.043, 0.068, and 0.071 were used for the blue, green and red channel

simulations, respectively (Marchand et al. 2004). A cloud droplet effective radius of 8 m

(Min et al., 2003) is used to obtain the single scattering properties of the clouds in the

SHDOM simulations. Given the desired τc, cloud liquid water content (LWC) for input

to SHDOM is computed as (Stephens et al. 1978),

LWC ≈ 2
3

τcρlre

∆z
, (2.1)
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where ρl is the density of liquid water and ∆z is the cloud geometric thickness. In this

study, LWC is assumed constant between a cloud base of 1 km and cloud top of 2 km,

giving a ∆z of 1 km.

The SHDOM output radiance field is used to reproduce a sky image that would

be obtained through a fisheye lens with an equisolid angle projection (Miyamoto et al.,

1964),

r′ = 2 f sin(
PZA

2
), (2.2)

where f is the focal length, and r is the distance from the principal point in the image

plane.

2.2 USI hardware and calibration of the signal to radi-

ance

On March 14, 2013 we deployed two USIs (serial numbers 1.7 and 1.8) at the

ARM SGP site. The instrument domes were cleaned weekly. Daytime images from

the USIs were collected continuously every 30 sec for 220 days. Since USI 1.8 was

located closer (at 200 m distance) to the instruments used for validation, it is used for

the analysis. The optical setup included a Sigma 4.5 mm fisheye lens, an IR filter, and

an Allied Vision GE2040 CCD camera (Fig. 1.2). The fisheye lens creates an equisolid

angle projection onto the CCD resulting in an image where the solid angle subtended on

each CCD cell (pixel) is approximately constant. Custom apertures were inserted into the

lens of both USIs with diameters of 700 m and 1000 m for USI 1.7 and 1.8, respectively.

A Bayer color filter on the CCD separates pixels into red, green and blue pixels allowing
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for multispectral images. Three different images are taken at different exposure times

and combined to create a high dynamic range (HDR) image (Urquhart et al., 2015). The

signal measured by each pixel is related to the amount of photons that are transmitted

through the optics and converted to a voltage. The signal measured can therefore be

calibrated to estimate the irradiance, E∆λ at a wavelength band, incident on a pixel. The

radiance Imeas
∆λ

observed by each pixel can then be calculated using

Imeas
∆λ

=
E∆λ

∆Ω∆λ
=

C1λ ∗ v
∆tAin∆Ω∆λ

=C2λ∗v, (2.3)

where v is the camera measurement in counts at a given pixel, C1λ (units of J / count)

is a calibration factor between v and E∆λ, C2λ (units of Wm−2st−1nm−1) is a calibration

factor between v and Imeas
∆λ

, Ain is the area of the pixel, ∆Ω is the solid angle, and ∆λ is

the wavelength band. Given the equisolid angle lens, Ain, ∆Ω, and ∆λ are constant across

the image sensor, resulting in a linear relationship (ignoring optical errors, and camera

sensor nonlinearities) between the camera signal v and the radiance I∆λ at the PZA as

C2λ =
I∆λ(PZA,SPA)
v(PZA,SPA)

. (2.4)

The calibration constant C2λ is obtained as the average (denoted as overbar in Eq. 2.4)

of 131 overcast (cloud fraction (CF) is greater than 0.9) images on 98 different days.

Overcast skies are preferred because the radiance is more homogeneous and since the

method by Min et al. (2003) could be applied to obtain the τc that is input to SHDOM.

C2λ values are 1.16 x 10-4 , 1.11 x 10-4 , and 9.69 x 10-5 Wm−2st−1nm−1 for the red,

green and blue channels, respectively. Fig. 2.1 demonstrates the three signal calibrations

with a relative root mean square error (RMSE) of 0.155, 0.148, and 0.144 for the red,

green and blue channel respectively. This RMSE is within the range of the radiance

variability expected in overcast clouds Szczodrak et al. (2001). Field calibration to
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modeled SHDOM data was preferred here as lab calibrations of sky imagers are rarely

available. Therefore the calibration method presented here is more widely applicable and

provides a calibration that is consistent with the Min et al. method. Validation of the field

calibration with independent lab calibration is left for future work.

Figure 2.1: SHDOM radiance (I∆λ(PZA,SPA) versus USI pixel signal value
(v(PZA,SPA )). Dots with greyscale indicate density while the blue line is the best
fit line.

Other ground based sky imaging designs have also been developed (Seiz et al.,

2007; Souza-Echer et al., 2006; Calbo et al., 2008; Cazorla et al., 2008; Heinle et al.,

2010; Roman et al., 2012; Gauchet et al., 2012) with the most dissimilar design consisting

of a downward pointing camera capturing the sky from a reflection off a spherical mirror

(Pfister et al., 2003; Kassianov et al. 2005; Long et al., 2006; Mantelli et al., 2010;

Martinez-Chico et al., 2011). Most ground imaging devices follow a relationship between

the cameras signal and radiance similar to Eq. 2.3 differing only in the wavelength region

∆λ, calibration factors C1λ, and C2 and optical and sensor errors, with non-equisolid lens

camera systems requiring ∆Ω , to be specified per pixel. Therefore the method presented

here can be adapted easily to images from other sky imaging systems.



13

2.3 Lens and Camera Imperfections

To adjust for errors due to an imperfect lens the decrease of radiance in the

radial direction (vignetting) were corrected by using measurements under a Labsphere

integrating sphere (LIS). The LIS provides uniform light inside of the sphere. USI 1.7

was placed inside the LIS and images were taken. Fig. 2.2 demonstrates the vignetting

effects of a different USI that was deployed at ARM. Vignetting was corrected as,

Vc =
v0

vx
V, (2.5)

where v is the original signal, vc is the corrected signal, v0 is the average signal value at

the center of the uniform image and vx is the signal value of the uniform image at the

pixel location being corrected. For USI1.7, v0 = 1645 and vx is the green line in Fig. 2.2.

Figure 2.2: Uniformity of signal values versus pixel distance from center, taken from
12 images with USI 1.7 under a Labsphere Integrating Sphere (LIS). In the LIS pixel
signal should be homogeneous.

USI 1.7 vignetting was corrected directly using the LIS. Unfortunately USI 1.8

uses a slightly different setup and USI 1.8 was not available for LIS. Instead USI 1.8 was
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corrected by comparing to USI 1.7 under a single overcast sky image at ARM as,

Vc =
v7(PZA)
v8(PZA)

V (PZA), (2.6)

v7 and v8 are the signal of USIs 1.7 and 1.8 value under the overcast sky, respectively

(Fig. 2.3).

Figure 2.3: Pixel-by-pixel USI 1.7 signal for red, green and blue divided by USI 1.8
signal (v7 / v8 in Eq. 2.6) versus sky imager zenith angle for an overcast sky. The
greyscale shows the number of occurrences and the red line shows the mean. Since
laboratory calibrations for USI 1.8 were not available, field data from an adjacent imager
that was lab-calibrated (USI 1.7) were used to reduce vignetting for USI 1.8.



15

2.4 Comparison of real and synthetic (SHDOM) images

and stray light correction

Example measured images and their SHDOM equivalent images are illustrated in

Fig. 2.4. Differences between the clear sky image (Fig. 2.4a) and the synthetic image

(Fig. 2.4b) highlight the impacts of stray light as well as the vertical smear stripe caused

by the CCD sensor (Fig. 2.4c). The stray light is particularly strong in the circumsolar

region causing enhancement of the red radiance of up to 50%. Stray light is caused

by light from the direct beam being scattered through the optics (mainly the protective

acrylic dome). This means that stray light is strongest for τc=0 and should decrease to

zero once clouds are thick enough to eliminate the direct beam which occurs at roughly

5< τc <12 depending on the solar zenith angle. Particular optical reflections are observed

as circular patterns throughout the image that are aligned with the solar azimuth. While

stray light patterns are often consistent for the same sun position, misalignments in the

camera optics (e.g. during instrument maintenance) can lead to stray light changing

under constant SPA, and PZA making it difficult to implement a general stray light

correction, for example through a look-up table. Stray light leads to brighter pixel values

than expected, which in turn can lead to misclassifications of clear sky as thin clouds (in

the range 0< τc <3). To mitigate some of the stray light effects the SHDOM results for

clear sky (τc = 0) are replaced by the measurements from the CSL for the rest of this

analysis.

Fig. 2.4d-f demonstrate USI images and a synthetic image from SHDOM for

τc of 30. The cloud optical depth for input to SHDOM was determined from Min et al.

measurements. The majority of the sky (PZA<80) red radiance differs by less than 5%.

At τc=30 direct normal irradiance (DNI) is absent and stray light can be neglected.
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Figure 2.4: (a) Clear sky USI image for 26 March 2013, 15:00:00 UTC, (b) synthetic
image from SHDOM for τc of 0 and SZA of 60, (c) percent error in red channel radiance,
(d) USI image for 05 May 2013, 14:08:00 UTC (e) Synthetic Image for SZA of 60 and
τc of 30, and (f) percent error in red channel radiance.
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Chapter 3

Impact of geometrical parameters and

cloud optical depth on radiance and

RBR.

As described in chapter 1 individual channel radiance and RBR are the most funda-

mental parameters for cloud detection in sky images. To obtain τc, the functions Iλ(/tauc)

and RBR(τc) must be parameterized. Furthermore, geometrical parameters (PZA, SPA),

and solar position (SZA) have been found to affect RBR(τc) and Iλ(τc) (Shields et

al.,1993) such that we must obtain RBR(τc,SZA,PZA,SPA) and Iλ(τc,SZA,PZA,SPA)

to solve the inverse problem. With the aid of the SHDOM it is possible to analyze each

of these parameters individually. In this chapter, we will discuss example cases under

various SPA, PZA, and SZA to demonstrate how each variable affects Iλ and RBR.

17
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3.1 Solar pixel angle

Fig. 3.1a demonstrates for the red and blue channel that radiance decreases with

increasing SPA for non-thick clouds (τc <30). For thin clouds (τc=1) the radiance peaks

in the solar region as a result of the forward scattering peak of the cloud phase function.

As τc increases, radiance becomes constant with SPA.

Figure 3.1: a) SHDOM red radiance over various sun pixel angles (SPA) at PZA =
60◦, and SZA= 60◦ (Pixels used for Fig. 3.1 are highlighted as a red line in Fig. 1.3c).
Results are shown for different cloud optical depths from clear (τc = 0) to thick clouds.
b) RBR as a function of SPA at constant PZA = 60◦ and SPA= 60◦.

Fig. 3.1a shows that the blue radiance is larger than the red radiance under clear

skies, except for very small SPA, while for cloudy skies the two radiances are more

similar. Therefore, most cloud detection methods assume that RBR is higher for clouds

than for clear sky; however, Fig. 3.1b demonstrates that this is not always the case. At

small SPA (SPA< 6◦) the RBR of thick clouds is lower than that of clear sky. Moreover,

as demonstrated by the τc=1 case thin clouds have a higher RBR at SPA< 30◦ than thick

clouds. For τc <=10 RBR increases as SPA approaches the solar region. At higher τc

(τc >=30) RBR becomes constant over SPA. Note that all of the statements in chapter 3

strictly only apply for the SZA and PZA shown in the figure, but Figs. 3.1-3.3 indicate
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that the conditions SZA= 60, SPA = 60, PZA = 60 are representative for a wide range of

conditions.

3.2 Sky imager zenith angle

Near the horizon (large PZA), diffuse irradiance is commonly observed to be

enhanced. Horizon brightening is indeed observed for clear skies in Fig. 3.2a. As clouds

become thicker the dependence of radiance on PZA is inverted and radiance decreases

with increasing PZA. The radiative transfer transitions into the diffusion regime, where it

is only dependent on PZA. On the other hand the RBR dependence has a similar shape

independent of the τc (Fig. 3.2b). Pixels near zenith have lower RBR than those near the

horizon.

Figure 3.2: a) Red and blue channel radiances and b) RBR over various PZA at constant
SPA = 60, and SZA = 60. Pixels used for Fig. 3.2 are highlighted as a red line in Fig.
1.3b.
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3.3 Solar zenith angle

The effects of SZA are intuitive and consistent to what is observed during a

sunset and therefore not graphically presented; the red and blue radiance is observed to

decrease with increasing SZA. The decrease in radiance is caused by the decrease in

extraterrestrial horizontal flux as SZA increases. On the other hand, RBR is found to

increase with increasing SZA, reflecting the increase in airmass with increasing SZA.

Increased airmass causes more blue light to be scattered back into space than red light.

3.4 Cloud optical depth

Fig. 3.3a illustrates the ambiguity that arises when attempting to differentiate

cloud optical depth with radiance. Radiance reaches a peak at τc= 3.25 and almost for the

entire range of τc there are two τc that lead to the same radiance. Fig. 3.3b on the other

hand, demonstrates the ambiguity of τc detection using only RBR. SHDOM simulations

demonstrate that as τc increases RBR increases until it reaches its maximum around τc=

2 and then decreases until converging to a constant value for τc >20. This creates the

following challenges: (i) RBR is insensitive to cloud τc for τc >20 and therefore thick

clouds of different τc cannot be distinguished. (ii) There is ambiguity because of the

non-monotonic behavior. For example, clouds with a τc of 1.5 have similar RBR values

to clouds of τc >20. While (outside the solar region, see Fig. 3.1b) RBR is a useful

differentiator between clouds and clear sky more information is needed to differentiate

between different τc.

Note that while Figs. 3.3a and b demonstrate the radiance and RBR for a section

of the sky these curves change throughout the sky. The dependence is illustrated for a

few geometric cases through the τc for which the peak in the red radiance is observed.

In the circumsolar region red radiance peaks at τc ∼ 0.75 while clear sky has a higher
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radiance than thick clouds (τc >5). A similar trend is observed for RBR, where clear sky

has a higher RBR than thick clouds (τc >5). Approaching PZA=0 and on the opposite

side of the sun (SPA> 60◦), the red radiance peaks at τc=8.75. Near the horizon (PZA

> 80◦) the red radiance peaks again at lower τc=1.25.

In addition, Fig. 3.3a highlights one of the main challenges of ground based

images compared to satellite based cloud detection. In satellite based τc detection, the

measured radiance can be used to calculate τc (Nakajima et al., 1990) as the measured

(upwelling) radiance monotonically increases with higher τc. This same method cannot

be used for ground based imagery as radiance increases for thin clouds peaks and then

begins to decrease. This means that there can exist two τc that produce the same radiance.

It is again important to also note that the curves in Fig. 3.3 depend on SPA and PZA. For

example, in the circumsolar (SPA< 30◦) region red radiance peaks at τc ∼ 0.75 while

clear sky has a higher radiance and higher RBR than thick clouds (τc > 5). Approaching

PZA=0 and far from the sun (SPA> 60◦), the red radiance peaks at τc =8.75. Near the

horizon (PZA> 80◦) the red radiance peaks again at lower τc =1.25.

Figure 3.3: Red and blue channel blue channel radiance (a) and RBR (b) versus τc for
SPA of 45◦, SZA of 60◦ and PZA of 45◦.
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3.5 Expressing cloud optical depth through geometrical

and solar parameters

Since it is currently computationally infeasible to use SHDOM to solve τc

(Iλ,RBR,SZA,SPA,PZA ) in real-time ( 10 sec) as required for sky imager solar forecast-

ing, the homogeneous cases described in section 3.1 are used instead to create interpolants.

As seen in Figs. 3.3a and 3.3b τc (Iλ,SZA,SPA,PZA ) and τc (RBR,SZA,SPA,PZA ) are

multivalued functions. Therefore two separate interpolants are created for each function.

τc (Iλ,SZA,SPA,PZA ) is split into τc that are higher than the peak radiance and τc that

are lower than the peak radiance. τc (RBR,SZA,SPA,PZA ) is similarly split into τc that

are higher than the peak RBR and τc that are lower than the peak RBR. Section 3.6 will

describe how these interpolants are used to find up to two τc (Imeas
λ

) (one for the higher

and one for the lower branch of τc) and how a unique τc is obtained.

3.6 Radiance red blue ratio (RRBR) method for cloud

optical depth measurement

We have shown that it is difficult to distinguish between different τc by using RBR

alone. As demonstrated in Fig. 3.3 radiance and RBR are non-monotonic functions of τc

with generally two τc associated with the same radiance or RBR. However, for most cases,

there is a unique τc solution for a pair of RBR and radiance. The RRBR method attempts

to obtain this solution by first solving τc (Iλ,SZA,SPA,PZA ) and then substituting the

(usually two) τc solutions into RBR(τc,SZA,SPA,PZA) and identifying the correct τc as

the one with the smallest |RBRmeas(SZA,SPA,PZA)−RBR(τc,SZA,SPA,PZA)| , where

RBRmeas(SZA,SPA,PZA) is the measured RBR. The algorithm for the RRBR method

is depicted graphically in Fig. 3.4. Iλ at a wavelength of 620 nm is used because its



23

variations with τc are larger than the other wavelengths. This larger dynamic range

reduces the errors caused by instrument noise.

The algorithm begins by comparing Imeas
620 (SZA,SPA,PZA) against max(I620(τc,

SZA,SPA,PZA)) (e.g. 0.19 Wm−2st−1nm−1 in Fig. 3.3a), where Imeas
620 (SZA,SPA,PZA)

is the measured radiance in the cameras red channel. Heterogeneity in clouds can cause

Imeas
620 (SZA,SPA,PZA) to be larger than max(I620(τc,SZA,SPA,PZA)); in this case as the

pixel conditions fall outside the range of the method the algorithm reverts back to τc

assignment solely based on RBR and τc(RBR,SZA,SPA,PZA) is used to find τc. If there

are two solutions, then the τc associated with the maximum red radiance is used as there is

no way to differentiate between the multiple solutions. Clouds brighter than the SHDOM

radiance peak were found to only occur in 5.4% of all pixels.

If Imeas
620 (SZA,SPA,PZA) is within the range of I620(τc,SZA,SPA,PZA), then τc is

calculated from τc(Imeas
620 ,SZA,SPA,PZA). If only one solution is found the τc is assigned

based on τc(Imeas
620 ,SZA,SPA,PZA) and RBR(τc,SZA,SPA,PZA) is not considered. When

two solutions are found, they are input into RBR(τc,SZA,SPA,PZA) and the one closest

to RBRmeas(SZA,SPA,PZA) is assigned.
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Figure 3.4: Flowchart of the radiance red blue ratio (RRBR) method for τc estimation. If
Imeas
620 (SZA,SPA,PZA) is saturated (e.g. in the solar disk), τc is assigned Not-a-Number.

An example τc estimate is presented in Fig. 3.5. The darker clouds are correctly

identified as higher τc, even though the RBR is lower than for the thinner clouds, for

example for the clouds between the sun and the horizon. In the circumsolar region, the

RBR is largest but the RRBR method correctly identifies a thinner cloud. The black

points in Fig. 3.5b corresponds to undetermined τc due to signal saturation. Since

saturated pixel values near the sun exceed the dynamic range of the USI sensor, the RBR

defaults to 1, the red radiance is unknown, and no τc can be assigned. In practice one

could interpolate across the saturated region, but we prefer showing the raw results in

this paper.
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Figure 3.5: (a) USI image for 25 March 2013, 22:10:00 UTC. (b) τc retrieval from the
RRBR method. Pixels inside the black ring are the pixels used for averaging and com-
parison with the MWR (Section 6.4) (c) RBRmeas(SPA,PZA). (d) Imeas

620 (SZA,SPA,PZA).
For this scene, the MWR measured a τc of 0.56 and the USI measured a τc of 0.20, the
highest τc readings within 10 minutes of this image are 19.4 and 15.3 for the MWR and
USI respectively.

3.7 Impact of 3-D effects

Although the RRBR method is developed from overcast scenarios, we also apply

this method to broken cloud scenes. The largest 3-D effect is the geometric difference

in a broken clouds optical path (τp) compared to an overcast clouds τp (Hinkelman et

al., 2007). Fig. 3.6 illustrates the definition of τp as the optical thickness along the path
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of the direct solar beam, while τc is the optical thickness integrated along the vertical

direction. For overcast clouds the τp is simply related to the τc as,

τc = τpcos(SZA). (3.1)

Figure 3.6: Illustration demonstrating differences between RRBR measured cloud
optical depth, cloud optical depth and cloud optical path.

But for partial cloud cover the optical path changes along the cloud and as a

result it affects Iλ, which in turn affects the RRBR retrieval. Ignoring horizontal photon

transport, the RRBRs τc is then a function of the τp as in equation 3.1, which unlike the

actual τc changes across the square cloud. Fig. 3.7 demonstrates how the RRBR method

retrieves τc for a 1 km x 1 km square cloud with a 0.2 km cloud geometric thickness. τc

is observed to increase in the same way that τp increases. Therefore differences between

the actual τc and the RRBRs τc will occur based on the geometry of the cloud. Again

ignoring horizontal photon transport, in ideal cases, such as a cubic cloud, the region

of uniform path length where the actual τc and the RRBRs τc are similar are limited to
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SZA<<45 ◦. For square clouds with a small vertical extent, the region of uniform path

length is increased while for a square cloud of large vertical extent the region of uniform

path length is decreased compared to the cubic cloud. For a parallelogram cloud aligned

with the solar beam, the local homogeneity is extended to include most of the cloud base.

The specifics of defining when clouds can be considered locally homogeneous will be

left for future work. When horizontal photon transport is included it would be expected

to decrease the area of homogeneity.

Figure 3.7: (a) SHDOM simulated sky image of a 1km x 1km square cloud with cloud
geometric thickness of 0.2 km at a SZA=60◦ and τc =10 (b) and RRBR τc retrieval. The
RRBR τc is 8 0.2 km from the cloud edge facing the sun.

The second major 3-D effect is that heterogeneous clouds are brighter than

homogeneous clouds under the same τc. This is caused by increased upwelling solar

irradiance from the unshaded part of the scene illuminating the cloud from below. The

reflected light from the cloud underside increases brightness. This is demonstrated in

Fig. 3.8 where overcast and square clouds where compared for two different spectral

surface reflectance (R) for τc=10. The results demonstrate that the cloud bottom radiance

increases 5% due to a spectral surface reflectance of 0.08 at a wavelength of 620 nm.

Adjusting the RRBR method to account for these effects is left for future work.
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Figure 3.8: Relative difference in red radiance [-] between square and overcast clouds,
(a) for surface reflectance R = 0.08 and (b) R =0 (c) difference between (a) and (b).

3.8 Impact of aerosols

The chosen τa is an additional source of error in the reference SHDOM simula-

tions. Higher actual τa values than those in the simulations may lead to τa being classified

as τc , while smaller τa lead to a reduced τc estimate. This error is small since most τc are

much larger than the variations in τa in the US. Furthermore, this error is not important

for solar forecasting as spectral effects aside only the total atmospheric optical depth

is of interest to estimate ground irradiance, not the partition between τa and τc . As

demonstrated in Fig. 3.9 variations in AOD from 0 to 0.2 lead to changes in Iλ and RBR

of less than 5%.
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Figure 3.9: (a) Red radiance and (b) RBR for liquid clouds with τa= 0, 0.078, and 0.2,
and ice clouds with τa= 0.078 versus τc for SPA= 45◦, SZA= 60◦ and PZA= 45◦.

The RRBR method was derived based on SHDOM results for a single layer liquid

clouds but the model could be extended to ice clouds with additional SHDOM runs.

Fig. 3.9 demonstrates results from ice cloud simulations, with an effective radius of 100

m. Ice clouds are not assessed in this paper as none of the methods used for validation

provide information for ice clouds. As for cloud scenes with multiple layers, the RRBR

method represents the additive τc of all cloud layers.

3.9 Cloud optical depth measurements for validation

The Min et al. method (Min and Harrison. 1996b; Min et al. 2003) is designed

to estimate τc for conditions with homogenous clouds using the measured atmospheric

transmittance of global radiation (also referred to as clearness index). The atmospheric

transmittance is obtained using a multifilter rotating shadowband radiometer (MFRSR)

as,

T =
GHI415nm

GHI415nm
0

, (3.2)
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where GHI415nm is the global horizontal irradiance, and GHI415nm
0 is the top of the

atmosphere GHI, both at a wavelength of 415 nm. The MFRSR measurements at a

wavelength of 415 nm is used in Eq. 3.2 to reduce effects of gaseous absorption. GHI0

is adjusted from the true TOA GHI to remove τa influences on T, by applying Langley

regression calibrations from the direct normal irradiance (DNI) on clear skies to the GHI

(Harrison et al. 1994; Min et al. 1996b). A discrete ordinate radiative transfer model

is applied to identify the τc corresponding to the measured T (Min et al. 1996a). By

default a cloud effective radius (re) of 8 µm is assumed in the Min et al. method, but

when liquid water path (LWP) values are available from a microwave radiometer (MWR),

then re is solved iteratively. re is first solved for with Eq. 3.3 using LWP from the MWR

and the Min et al. τc . Once its obtained it is used as an input in the discrete ordinate

model, which provides a different τc , which leads to a different re , and this process is

repeated until the changes in τc are below a threshold value. Min et al. concluded that

the uncertainty in the inferred cloud properties caused by re was less than 5%. Since the

Min et al. method uses GHI measurements to estimate τc , the τc is representative of the

sky hemisphere. At the ARM site the Min et al. τc is sampled and reported every 20 sec.

Since the Min et al. method only works for liquid clouds only data with cloud height

less than 9 km as observed from a ceilometer was used. Accurate τc are obtained with

this method for τc >10 but for τc <10 the Min method is no longer valid (Turner et al.,

2004.) τc is also measured by a MWR. The MWR is a microwave receiver that detects

the microwave emissions of the vapor and liquid water molecules. It measures cloud

liquid water path (LWP) in the zenith direction within a field of view of 6◦ (Liljegren et

al. 2000; Cadeddu et al. 2013). τc can then be estimated as (Stephens et al. 1978)

τc ≈
3
2
∫

LWCdz
ρlre

=
3/2LWP

ρlre
) (3.3)
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where LWC is the cloud liquid water content and ρl is the density of liquid water. A re

of 8 µm is assumed, as in the Min et al. method. The MWR has an irregular timestep

ranging from 20 to 40 sec. The uncertainty in the LWP obtained from the MWR is ±

0.03 mm (30 g m−2, Morris et al., 2006) which corresponds to a τc of ± 5.6 with Eq. 8.

3.10 Comparison in overcast conditions with Min algo-

rithm

Data from the Min et al. algorithm is compared to the average τc from an entire

USI image. Since the Min et al. method assumes overcast skies, only conditions with

cloud fraction (CF)>0.7 are used for this analysis yielding 5197 datapoints (about 43

hours of data). The mean transmission of horizontally heterogeneous clouds is higher

than the transmission of a uniform cloud with the same mean optical depth (Hinkelman

et al., 2007). This is caused by the nonlinear relationship between τc and radiance.

To adjust the heterogeneous USI τc retrieval to be consistent with the Min et al.

method, the USI τc was converted to irradiance for each pixel using a look up table,

averaged over the entire image in irradiance space, and then converted back to τc. The

look up table was developed from the homogeneous library of images. Fig. 3.10 compares

results from both methods. An R2 of 0.99 reflects the high correlation between the two

methods. The relative RMSE decreases as τc increases as demonstrated in Table 3.1, with

thin clouds (τc <10) having an RMSE of 27.2% and thick clouds (τc >30) having an

RMSE of 5.8% with the overall RMSE being 8.2%. RMSE at τc >10 is well below the

21% required for solar energy applications (Fig. 1.1) and validates the RRBR method for

thick overcast clouds (τc >10), but for τc <10 the Min et al. method is no longer valid

(Turner et al., 2004) and the relative RMSE increases drastically. These differences in

RMSE between τc highlight the difficulties in detecting thin clouds correctly.
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Note that the zero MBE between Min and RRBR for CF > 0.7 is partially a result

of the cross-calibration in overcast conditions (since the cross-calibration data required

CF > 0.95 the cross-calibration and validation data are different). However, the other

errors between Min and RRBR in Table 3.1 are non-zero because (i) some of the data

used for the comparison was not used for radiometric calibration, (ii) differences in the

wavelengths of measurement (620 nm for RRBR and 450 nm for USI), (iii) radiation

differences as USI uses diffuse radiance while Min uses global irradiance to derive τc.

Nevertheless the cross-calibration is expected to reduce the mean bias difference between

Min and RRBR methods and the related error metrics are not representative of a truly

independent dataset especially for the CF > 0.7 scenario.

Table 3.1: Statistics of RRBR comparison against the Min et al. method in overcast
skies (cloud fraction > 0.7), and microwave radiometer (MWR) measurements. RMSE[-
] is the absolute root mean square error, RMSE[%] is the relative root mean square error,
MAE[%] is the relative mean average error, and MBE[%] is the relative mean bias error.

Method CF τc R2 RMSE
[-]

RMSE
[%]

MAE
[%]

MBE
[%]

Min > 0.7 All 0.99 2.5 8.2 6.1 0.0
Min > 0.7 < 10 0.55 1.6 27.2 20.6 12.1
Min > 0.7 > 10 &

< 30
0.88 1.8 9.3 7.2 -1.2

Min > 0.7 > 30 0.97 3.4 5.8 4.5 -1.0
MWR All All 0.98 3.6 19.0 11.3 1.1
MWR > 0.7 All 0.97 4.3 14.3 9.3 2.1
MWR < 0.7 All 0.68 2.2 85.0 46.6 -14.4
MWR < 0.7 < 10 0.58 1.5 71.7 49.9 -11.3
MWR < 0.7 > 10 &

< 30
0.42 4.5 31.9 24.6 -16.7

MWR < 0.7 > 30 0.50 24.8 56.8 52.8 -52.8
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Figure 3.10: Comparison of RRBR τc retrievals from the sky imager versus the Min et
al. method applied to MFRSR measurements for USI cloud fractions greater than 0.7.

3.11 Heterogeneous and homogenous cloud conditions

with the microwave radiometer

The RRBR method is compared to τc estimates from the microwave radiometer

(MWR) using the 12,422 pixels in each USI image with PZA< 6◦. Fig. 3.11 shows the

comparison of the two methods. Overcast conditions result in a RMSE of 3.6 or 19.0%

and R2 of 0.98 again well within the minimum error requirement of 21%. Since overcast

data were already validated in Section 3.10 we now focus on cloud fractions of less than

0.7.
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Figure 3.11: Comparison of USI RRBR versus MWR measurements of cloud optical
depth for CF<0.7 in black and CF> 0.7 in red.

The RMSE is 2.23 for the heterogeneous cases, which is well within the uncer-

tainty of the MWR measurements of ± 5.6 but that corresponds to a relative RMSE of

85.0% that exceeds the objectives set at the beginning. Just like in overcast conditions

(section 6.2), RMSE is highest for thin clouds (τc < 5) at 71.7%, decreases at medium

cloud thickness (10< τc < 30) to 31.9%, and increases once again for thick clouds (τc >

30) to an RMSE of 56.8%. The heterogeneous cases are associated with a higher relative

RMSE of 85.0% compared to 8.2% reported in section 3.10 for the homogeneous Min et

al. method. The lower correlation of 0.66 between the two methods is probably related (i)

the uncertainty of the MWR, and (ii) random errors in τc retrievals under heterogeneous

cloud conditions due to incomplete overlap of the field-of-view of the USI and MWR,
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(iii) 3-D cloud effects (Section 3.7) and (iv) uncertainty in the MWR τc related to the

assumption of re =8 µm. While the SHDOM model calculations also assume constant

re , this only affects the single scattering properties of the cloud, more specifically the

phase function. Consequently, the MWR algorithm is more sensitive to re as re errors are

linearly proportional to MWR errors.

A mean bias error (MBE) of -14.4% is observed demonstrating a tendency for the

RRBR method to under predict τc . This can further be analyzed when MBE is split into

τc categories. Thick clouds (τc > 30) have the highest MBE of -52.8% compared to thin

clouds (τc < 10) that have an MBE of -11.3%. As described in section 3.7 heterogeneous

clouds are brighter than homogeneous clouds because of the reflected light from the

ground surface, leading to higher radiance measurements and lower τc . Another factor

that causes higher USI radiance measurements in heterogeneous clouds are cloud sides.

Since clouds sides are no longer obscured such as those in overcast clouds, an increase

in cloud illumination relative to overcast clouds increases radiance. For clouds that are

thicker than the red radiance peak (τc =7.25) this increased radiance along the sun-facing

edge of the cloud results in an under prediction of τc. The fact that MBE become more

negative with increasing τc could be a result of neglecting 3D effects in the RRBR

method.
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Chapter 4

Cloud tomography applied to sky

images: Part I: A virtual testbed

4.1 Basic Principle

Using the results from 3.6 we can now estimate τc, as such we can use this

estimate to solve the 3-D cloud problem. To solve for this 3-D cloud scene, we need to

know the k, at any point in the cloud scene. Similar problems exist in medical imaging,

archaeology, and, generally, remote sensing. The measurements used for tomographic

reconstruction are based on the measurements of line integrals. For medical imaging of

tissue, these are measurements of attenuated radiation as

I = I0e−
∫

k(x,y,z)ds (4.1)

where I0 is the emitted radiation and s is the path along the beam. By taking several

measurements of I from different perspectives, k can be solved. Computed tomography

(CT) scans achieves this by using an inverse radon transform to convert I measurements

36
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into k. For our application, we need to find the unknown k of clouds from measurements

of I by multiple sky imagers. The following two methods are applied to multiple camera

images.

4.2 Algebraic Reconstruction Technique

In the atmospheric sciences, tomographic techniques for cloud reconstruction

have focused on MWR measurements of the line integrals of cloud emission from various

azimuth and zenith directions (PAA,PZA). The cloud domain is discretized and a system

of linear equations is set up to relate k and MWR measurement I (Huang et al. 2008). k is

obtained by solving the system of linear equations. For SIs, we obtain τi estimates from

the radiance red-blue ratio (RRBR) method (Mejia et al. 2016), were i is the pixel index.

The RRBR method uses a look up table method of homogenous clouds to estimate τi

and, therefore, we calculate k such that the sum of k is τi. τi is then a vector of individual

scalar τi from each pixel in a sky image, defined at pixel zenith angles (PZA, or view

angle) and azimuthal angles (PAA). k is a vector of all extinction coefficients in the

domain with corresponding x, y, z coordinate. A system of linear equations between k

and τc is then,

Ak = τi. (4.2)

We approximate line integrals by assuming that only one grid cell contributes at each

z level, such that A is a matrix with ones when the element aim satisfies the following
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equalities:

xim = nearest(zitan(PZA)sin(PAA)+ xsi) (4.3)

yim = nearest(zitan(PZA)cos(PAA)+ ysi) (4.4)

and zero everywhere else. i is the pixel index and m = 1, ...,Nm is the domain point index

that covers all points where k is defined in the Nm = NxNyNz 3D carthesian domain. xsi

and ysi are the coordinates of the SIs. Nearest represents rounding to the nearest grid

point. This provides a sparse matrix reducing the computational cost of solving the

system of equations. An example of these equalities is demonstrated in Fig. 4.1.

To solve this system of equations, we will use the ART of Gordon et al. (1970).

ART is a family of algorithms used to reconstruct a domain k by solving a system of

linear equations. The conventional ART method iteratively adjusts k as,

k j = k j−1 +(
τn−ank
||a2

n||
an) (4.5)

where an is the n-th row of the matrix A, which corresponds to the relation between one

pixel in an image and the entire atmospheric domain (i.e. all k in 3-D), τn is the n-th

element of τc, and j is the iterative step. Our implementation slightly differs by iteratively

adjusting k as,

k j = k j−1(1+(w(
τn

ank
−1) (4.6)
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Figure 4.1: Conceptual diagram of ray tracing to create matrix A in Eq. 4.2 for one SI
pixel.

where w is a weighting term set to 0.2. Eq. 4.6 is preferred over Eq. 4.5 as it naturally

limits k to only positive values as opposed to the original ART method. The solutions k j

are further constrained by requiring k j=0 when τn=0. k j are only updated (applying Eq.

4.6) for the corresponding non-zero elements of an, i.e. for cloudy pixels.

4.3 Iterative Retrieval

Another approach developed by Levis et al. (2015) is to iteratively simulate the

line integral I through a radiative transfer model and apply a gradient descent to the

difference between measured and simulated I. To solve for k in 3-D, we will iteratively

run SHDOM simulations to minimize the error, Imeas− I for each pixel in an image. The
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dependence of Imeas− I on k is described by the integral form of the radiative transfer

equation,

I(s,ω) = e−
∫ s

0 k(s′)dsI(s0,ω)+
∫ s

0
e−

∫ s
s′ k(t)dtJ(s′,ω)k(s′)ds′ (4.7)

where I(s0,ω) is extraterrestrial radiance, s is the position vector along the view path (i.e.

line integral) illustrated as the dashed line in Fig. 4.1, ω is the unit vector representing

the angular direction of the view path, t is a dummy variable for integration and J is the

source function. Neglecting emission from the cloud, the source function J is,

J(s,ω) =
w
4π

∫ 4π

0
I(s,ω′)P(s;ω,ω′)dω

′ (4.8)

where P is the phase function, and w is the single scattering albedo. Eq. 4.7 shows

that I explicitly depends on the local k through the integral along the view path. When

discretized, this means that I depends on the k located along that I view path as illustrated

in Fig. 4.1. This integral of k in Eq. 4.7 is easily iterated to minimize Imeas− I (described

in Eq. 4.9 below), but J causes the iterative process for one direction to depend on the

iterations at all other angles through 3-D scattering effects. As demonstrated in Eq. 4.7

and 4.8, I also implicitly depends on k through J because scattering anywhere in the

domain can increase J at a particular view path. J depends on the I in all directions such

that iterating neighboring pixels affect all other pixels. To solve this problem, Levis et al.

did not update J in the iterative process and instead J from a first guess k simulation was

input to Eq. 4.7, leaving Imeas only a function of local k through the view path integral.

Fig. 4.2 demonstrates the flow chart of the implementation of this iterative process.
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Figure 4.2: Flow chart of the iterative retrieval method. Dashed, dotted and dashed
dotted arrows correspond to pixel, constant source function and constant pixel iterations
respectively.

Therefore, the iterative process to minimize Imeas− I consists of adjusting k at grid point

m following a gradient descent method as

k j
m,i = k j

m,i−1− γ
dIi−1

dkm
, (4.9)

where j is the constant source function iterative step, i is the gradient descent iterative step,

and γ is the step size. Each iterative step considers a different pixel Ii until convergence

is met when the change in the total image error is less than 1% of the original error as,

∑ |Imeas− Ii|−∑ |Imeas− Ii−1|< 0.01∗∑ |Imeas− Ii=0|, (4.10)

where ∑ represents summation over all pixels in all images.Once this convergence

criterion is met the J is recalculated until the change in the total image error decreases to

1% of the original error as,
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∑ |Imeas− I j|−∑ |Imeas− I j−1|< 0.01∗∑ |Imeas− I j=0|, (4.11)

4.4 Constraining Cloud Base and Cloud Top Height

Fig. 4.3 demonstrates one of the clouds scenes with a cloud top height (CTH)

of 1.2 km and a cloud base height (CBH) of 820m. As seen in Fig. 4.3, cloud artifacts

are erroneously reconstructed below and above the real cloud layer. In general, this is

because Eq. 4.2 is ill-conditioned. For clouds at low heights or closely spaced imagers

(i.e. small CBH / l), this is because of a lack of different perspectives for those low level

points. To remove these artifacts, we will assume that no clouds are present 250 m below

the CBH or 250 m above the cloud top height (CTH). For this simulated case, the CBH

and CTH are the heights of the highest and lowest non-zero kLES, respectively. kLES

are the extinction coefficients calculated from the LES results. The height restriction

could also be applied in practice. For example, ceilometer data is used to determine the

CBH within 250 m accuracy. Estimating CTH is more challenging, but CTH could be

estimated with temperature and humidity profiles from radiosoundings.
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Figure 4.3: 2-D slice through k from Large Eddy Simulation (LES) averaged along the
y-axis. b) Reconstructed average y-axis k from 9 sky imagers with a distance between
imagers of 1.5 km using the Algebraic Reconstruction Technique (ART) method.

4.5 Outline of Testing Layout

For this study, we are interested in reconstructing the 3D extinction coefficient

k (x,y,z) within a solar forecast domain. Sky imagers can usually provide valuable

solar forecast information up to 15 min. Given that cloud speeds from the Large Eddy

Simulations (LES) described in Section 4.6 vary between 8 to 10 m/s, domains should

be on the order of 5 to 10 km. We chose a cloud domain of 6.4 by 6.4 km horizontal

and 5 km vertical size with 50 m horizontal and 40 m vertical resolution for a total of

2,080,768 k points.

To better understand the ideal deployments we will also do a sensitivity study.

For the sensitivity study we are interested in characterizing the effects of the number of

imagers and the distance between imagers. A problem arises when doing such study as

the methods to estimate τi have errors that are independent of number of imagers and

the distance between imagers. For example, it is well documented that clouds are more

difficult to detect in the circumsolar region (Yang et al. 2014) and that deployments with
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fewer clouds in the circumsolar region will perform better. As such, we will remove

any random errors associated with the location of the clouds relative to our cameras. To

remove this source of error, we used a perfect τi defined as

τc = AkLES. (4.12)

4.6 Models and Input Parameters

The 3-D reconstruction methods were tested in the virtual testbed from Kurtz et

al. (2017). This virtual testbed uses UCLAs LES to model a realistic 3-D atmospheric

boundary layer with continental cumulus clouds at high resolution for a time period of

24 hours. Periodic boundary conditions represent infinite domains with the same ground

cover, which allows the cloud and atmospheric turbulence to spin up and create realistic

cloud shapes and dynamics, such as condensation, evaporation, and deformation. From

the LES run, two representative time instances with cloud fractions of 6.8% and 33.3%

are selected for reconstruction. The LES liquid water content (LWC) is inputted into

the Spherical Harmonic Discrete Ordinate Method (SHDOM) to produce radiance fields

(Imeas ) at a constant SZA of 45◦. The SHDOM radiance field reproduces a 1701 by 1701

pixel sky image as obtained through a fisheye lens with an equisolid angle projection as

described in section 2.1.

4.7 Sky Imager Deployment Layouts

Aside from assessing the different reconstruction techniques, we are also inter-

ested in a sensitivity study to understand the tradeoffs between different SI deployment

variables, which are the number of imagers and distance between imagers (Fig. 4.4). A

similar study done by Huang et al. (2008) with microwave radiometer (MWR) tomogra-
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phy found that the optimal number of MWR was 4 and that the optimal distance between

MWR was 4 km. Nguyen et al. (2014) demonstrated that the optimal distance between

imagers for stereography is directly related to the CBH and, as such, the optimal distance

between imagers is only valid for the CBH of our test case, which is 0.94 km.

To compare the tradeoffs of using multiple imagers, we simulated 1, 2, 4, and 9

imagers with locations outlined in Fig. 4.4. The 1 imager setup was located at the center

of the domain, while the 2, 4 and 9 imager setups are located at distance that minimizes

reconstruction error which is 6, 4 and 3 km for 2, 4 and 9 imagers respectively. To obtain

the optimal distance between imagers, we tested a setup of 2, 3, 4 and 9 imagers evenly

spaced from the center of the domain at distances l= [0.25 0.5 1.0 1.5 2.0 3.0 4.0 6.0] km

for the 2, 3, and 4 imager setup, and l= [0.25 0.5 1.0 1.5 2.0 3.0] km for the 9 imager

setup.
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Figure 4.4: Layout of sky imager deployments with different number of imagers and
distance (l) between imagers, a) 2 imagers along the x-axis, b) 3 imagers, c) 4 imagers,
and d) 9 imagers. Red dots represent imager locations and the green circle (green outline
when imager located at center of domain) represents the center of domain.

4.8 Error Metrics

Since measuring cloud properties of real life clouds is extremely challenging

one of the main benefits of using simulated test cases is that we are able to validate the

errors in spatially-resolved cloud properties. To this end, we are interested in analyzing

errors in extinction coefficient, image red (620 nm) pixel brightness, and surface Global

Horizontal Irradiance (GHI). The red pixel brightness is used arbitrarily as any of the

red, green, blue channels can be used. While perfect k retrievals would automatically

result in perfect image pixel brightness and surface GHI, erroneous k retrievals may have

different impact on GHI and image errors, which are more relevant in the practice of
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solar forecasting. We will quantify these errors by calculating the domain MAE and

mean bias error (MBE) defined as

MAE =
abs(kLES− k)

abs(kLES)
, (4.13)

MAE =
kLES− k

kLES
, (4.14)

where overbars denote averages and k can also be replaced with GHI or pixel brightness.

For k, the averages are over all LES grid points in x, y, z. For GHI, the averages are over

surface grid points in x and y. For pixel brightness, the averages are over all pixels of all

sky images.

4.9 Validation

Using a 9 imager deployment with a separation of 1.5 km, the ART method is

able to decrease the k error down to 1.2% and 0.02% after 50 million iterations for a

33% and 6.8% CF respectively. The higher CF case converges slower continuing to

decrease in error after 50 million iterations while the low CF case converges after 10

million iterations. These results are dmonstrated in Fig. 4.5. As see in Fig. 4.5 the error

of the ART is minimal after 10 million iterations with a correct τc input but a correct τc

is difficult to obtain. The ART method will not correct for any errors and is dependent on

the accuracy of the τc estimate which for our case is obtained from the RRBR method.

To correct for these errors we will use the iterative method described in 4.3.
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Figure 4.5: Convergence of ART. 33.3% and 6.8% CF test cases represented as the
dashed and dotted lines respectively.

To test that the iterative method can converge on a solution we input the correct

source function into the method and offset the k to see the convergence of the method.

Fig. 4.6 demonstrates that the method is able to correctly converge back down to 0.3%

and 0.2% image and k MAE. The k are offset based on using the RRBR method to as an

input into the ART method producing a first estimate with error.
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Figure 4.6: Convergence of Iterative method k and image errors represented as the
dashed and dotted lines respectively.

4.10 Optimal SI Distance Separation

The ART method is used to analyze optimal deployments because of its low

computation cost. Using an Intel Core i7-3770 3.4GHz computer the ART methods

completes within about 30 seconds as opposed to 2 to 10 days with the iterative method.

The ART method (Section 4.2) is applied on a perfect cloud optical depth field as defined

in Eq. 4.12. Fig. 4.7 shows that the accuracy of the retrieved k increases with the distance

between imagers both for k and image error. GHI, on the other hand, does not improve

after 1.5 km. The error decreases the most between l= 0.25 km and l= 0.5 km; for larger

l, the method continues to improve but at a lower rate. Fig. 4.8 and 4.9 demonstrate

the results for 4 and 2 imagers, respectively. 4 imagers demonstrated similar results to

Huang et al. with an optimum between 2 km< l <4 km for k, GHI and image error
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perform worse as l increases beyond 4 km. The 2 imager setup continues to improve

with increased separation. This suggests that for solar forecasting a 1 km seperation is

sufficient for accurate GHI estimation while for accurate k larger separation is needed.

Figure 4.7: Domain averaged mean absolute error in (a) k, (b) image pixel error, and (c)
Global Horizontal Irradiance (GHI) for retrievals with 9 imagers at different distances l.
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Figure 4.8: Domain averaged error in extinction coefficient k (a), image pixel error (b),
and Global Horizontal Irradiance (GHI) (c) for retrievals with 4 imagers at different
distances l.

Figure 4.9: Domain averaged error in extinction coefficient k (a), image pixel error (b),
and Global Horizontal Irradiance (GHI) (c) for retrievals with 2 imagers at different
distances l.
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4.11 Optimal number of SIs

As seen in Fig. 4.10, the number of SIs improves the overall reconstruction of the

cloud domain. Similar to Huang et al., we observe a large performance increase when

using 4 imagers compared to 2 or 3, and less improvement with additional imagers.

Figure 4.10: Domain averaged error in extinction coefficient k (a), image pixel error (b),
and Global Horizontal Irradiance (GHI) (c) for retrievals with 2, 3, 4, 5 and 9 imagers
at their respective optimal separation.

Although improvements in GHI and image pixel error between 4 and 9 imagers

are minimal for an ideal case, using 9 imagers greatly increases the robustness of the

cloud scene reconstruction in real applications. Two mechanisms are expected to benefit

tomographic methods applied to 4 or more imagers in real applications. The first is that

dirt on the dome of one imager does not contaminate the results. In single-imager cloud

decision, dirt is often identified as a cloud since its red-blue-ratio is closer to clouds than

clear sky. The ART limits the impact of the dirt because the only solution that can satisfy

a spot in one image that is not present in any other images is a cloud located immediately

above the imager. Such a low cloud would be invisible to the other imagers as data at

large zenith angles is poorly resolved and therefore excluded. The constraint on minimum
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CBH then results in the clearing of that cloud (see Sec 4.4). The second is that using data

from the circumsolar region becomes unnecessary. As stated previously (section 4.1) the

circumsolar region in the sky hemisphere is a common source of error. With 9 imagers, it

is possible to ignore the circumsolar region in every imager as the neighboring imagers

are able to fill in the missing data for the circumsolar region. Fig. 4.10 demonstrates that

in an ideal case there are minimal improvements in 3-D reconstruction when more than 4

imagers are available, but removing the pixels with less than a 30◦solar pixel angle i.e.

scattering angle (SPA) in each image, the error increase by over 50% for 5 or less imagers

but almost equals the solution for images including the solar region for 9 imagers. This

suggests that for real deployments, at least 9 imagers are recommended.

Figure 4.11: Domain averaged error in k for retrievals with 2, 3, 4 and 9 imagers using
the full image (same as Fig 4.10. (a) in black) and removing the circumsolar region
with SPA< 30◦ in each image.

Fig. 4.12 demonstrates the various ground based irradiance calculated from the

reconstruction at various distance separation and number of imagers. Fig. 4.13 demon-

strates the various reconstructed cloud scenes as a vertical average at various distance
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separation and number of imagers. Fig. 4.14 demonstrates the various reconstructed

cloud scenes as a average in the x direction at various distance separation and number of

imagers.
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Figure 4.12: Spherical Harmonic Discrete Ordinate Method (SHDOM) simulated clear
sky index (kt) from the reconstructed extinction coefficient field from different number
of imagers (columns) at different l (rows). Black dots represent imager locations.
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Figure 4.13: Reconstructed vertically averaged extinction coefficient k from different
number of imagers (columns) at different l (rows). The bottom right graph is the correct
k.
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Figure 4.14: Reconstructed extinction k averaged in the x direction from different
number of imagers at different l, bottom right is correct k.
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4.12 3D Reconstruction Methods

To isolate characteristics of the reconstruction methods, we now focus on a

specific deployment. We will focus our attention on a 9 imager deployment with l =

1.5 km. We use 9 imagers because this is the optimum scenario to demonstrate the

limitations of the methods and not the deployments, while maintaining l = 1.5 km since

it becomes increasingly difficult to obtain permissions to install camera systems away

from the location of interest. For example, at a utility scale power plant with a typical

dimension of 2 × 2 km, l = 3 km would require obtaining permissions from adjacent

property owners.

4.13 Results of Algebraic Reconstruction Technique

As described in section 4.2 the ART method requires an input τc to calculate k.

For this section we will use the RRBR (Mejia et al. (2016)) method to obtain an estimate

of τc. The RRBR method uses both radiance and red blue ratio values to estimate τc based

on a homogenous cloud look-up table of SHDOM simulations. Since the RRBR is based

on a homogeneous clouds it has a propensity to underestimate τc because on average

homogeneous clouds are darker than heterogeneous clouds. This underestimation in τc is

seen in Fig. 4.15 and Table 4.1 as the k MBE is -17.1%. MAE for k is 53.4% while the

GHI MAE is significantly lower at 1.53%.
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Table 4.1: Error statistics of Algebraic Reconstruction Technique (ART) and iterative
method. MAE[%] is the relative mean average error, and MBE [%] is the relative
mean bias error. DNI is the Direct Normal Irradiance and GHI is the Global Horizontal
Irradiance. k is the extinction coefficient and τ is the vertical sum of k.

ART Iterative method
τ MAE[%] 34.8 17.2
τ MAE[-] 0.0481 0.0238
τ MBE[%] -17.1 -2.8
k MAE[%] 53.4 33.6
k MAE[-] 0.00025 0.00015
k MBE[%] -17.1 -2.8
GHI MAE[%] 1.53 0.85
GHI MAE[-] 10.1 5.6
GHI MBE[%] -0.04 0.12
GHI(kt < 0.98) MAE[%] 21.8 0.86
GHI(kt < 0.98) MAE[-] 68.9 2.7
GHI(kt < 0.98) MBE[%] 14.2 0.15
DNI MAE[%] 1.3 0.81
DNI MAE[-] 10.5 6.5
DNI MBE[%] 0.46 0.32
Image Pixel MAE[%] 4.3 1.1
Image Pixel MBE[%] -1.3 -0.6

Removing all grid points with kt > 0.98, the MAE of GHI increases to 21.8%.

Most cloudy grid points are correctly identified with 98.8% of k being correctly separated

as k=0 or k 6= 0 (Table 2). k voxels that are misidentified are either thin clouds (τ <0.5),

e.g. in the north west of the domain (as seen in Fig. 4.17) or at the edges of clouds.

Table 4.2: Contingency table of observed extinction coefficient and reconstructed
Algebraic Reconstruction Technique (ART) extinction coefficient, k.

ART/
Observation

k = 0 k 6= 0

k = 0 94% 0.8%
k6= 0 0.4% 4.8%
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Figure 4.15: Vertical sum of k (τ), from Large Eddy Simulations (LES) (ground
truth), a), reconstructed from Algebraic Reconstruction Technique (ART), b), and their
difference (c). North (N) is up and East (E) is to the right per convention.

Figure 4.16: N/S sum of k from LES (ground truth, a), reconstructed from ART (b),
and their difference (c). North (N) is up and East (E) is to the right per convention.
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Figure 4.17: 3-D depiction of reconstructed k from the Algebraic Reconstruction
Technique (ART) (a) and ground truth (b).

4.14 Results of Iterative retrieval

The iterative method is based on the assumption that iteratively minimizing

the image error further minimizes the extinction coefficient errors. To decrease the

computational cost, k from the ART method is input to the iterative method providing

an accurate first estimate. Fig. 4.18a) demonstrates that the iterative method further

decreases the image error. After 13 iterations, the image MAE decreases from 4.3 to
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0.7% and 13.2% to 7.0% for the 6.8% and 33.3% CF cases respectively. The k MAE also

decreases with the decrease in image error going from 53.4% to 33.6% and 83.2% to

66.4% in the 6.8% and 33.3% CF cases respectively.

Figure 4.18: (a) Image pixel red brightness mean average error (MAE) for each iteration.
(b) MAE of k at each iteration.

The iterative method decreases the error from the initial ART estimate. k MAE

decreases nearly 20 percentage points and 36%. The under-predictive tendencies are

resolved with the k MBE improving from -17.1% to -2.8%, the MAE GHI of cloudy

regions improving from 21.8% to 0.85%, and the MBE GHI of cloudy regions improving

from 14.2% to 0.15%.

4.15 Application to solar forecasting

Table 4.1 demonstrates that the MAE in GHI is small compared to the error in k

for both the ART and the iterative method. For atmospheric science applications, this

means that the methods require further improvements to provide high quality 3-D cloud

reconstructions. For solar energy applications, surface GHI is the more important value,
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and as such the ART method is well suited for solar forecasting.

To demonstrate the potential of the ART for solar forecasting applications, the

GHI map from the ART method in section 4.13 is advected using the average cloud speed

from the LES. Fig. 4.19 demonstrates MAE of persistence, conventional SI and the ART

forecasts relative to the ground truth measurements from the LES. In less than 1 minute

forecast horizon, the ART method beats persistence in terms of MAE. The magenta

line demonstrates a forecast using a conventional 2-D cloud representation and trinary

cloud decision (Yang et al. 2014). The ART method significantly improves upon the

conventional method at nowcast (0 minute forecast) and throughout the first 2 minutes

of forecast. The improvements are due to better representation of 3-D clouds as well as

the use of a k instead of a trinary system. At longer forecast times, the clouds evolve in

shape and thickness and the advantage of better cloud initial conditions decreases.
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Figure 4.19: Global Horizontal Irradiance (GHI) forecast mean average error (MAE)
for persistence forecast in red, state-of-the-art forecast in magenta, and Algebraic
Reconstruction Technique (ART) forecast in black. The persistence forecast assumes
that the current GHI persists for the next 5 minutes. For ART GHI forecasts, the 3D
reconstructed k field is first advected with the Large Eddy Simulation (LES) cloud
speed. Then Spherical Harmonic Discrete Method (SHDOM) 3-D radiative transfer
simulations yield surface GHI.
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Chapter 5

Cloud tomography applied to sky

images: Part II: A real world case

study

5.1 Outline of testing layout

As demonstrated in an ideal case in Mejia 2017 et al. a 3D cloud reconstruction

can be made using multiple camera images in an ideal case. The findings demonstrated

that having more imagers improves a 3D reconstruction but after 4 sky imagers improve-

ments significantly decrease. Similar to this, it was found that an increased separation

between imagers resulted in improved reconstruction accuracy. At a distance separa-

tion of 1.5 km most of the improvements may be obtained. Based on these results and

available locations, 5 UCSD sky imagers (USI) were deployed across UCSD and nearby

areas as demonstrated in Fig. 5.1. Considering USI 1.1 the center of the domain the four

other imagers had an average distance of 1.315 km from the center of the domain. To

analyze these methods on real imagers we will use the 4 outer imagers (excluding the

65
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center imager) for cloud reconstruction and use the center imager for error analysis and

validation.

Figure 5.1: Map of real world deployed UCSD sky imagers

5.2 Topographic obstruction

In real world imagery, it is commonly observed that topographical variations

result in image obstruction. Buildings, trees and hills may block the sky from the

imager decreasing the information obtained by the reconstruction. To analyze this, we

reconstructed a simulated cloud scene with the locations of the deployments described in

section 5.1 but removing pixels with a pixel zenith angle (PZA) greater than a threshold.
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By removing PZA greater than a value between 40-85 we are estimating the results of

obstructions in the horizon. We are mainly focusing on obstructions in the horizon, as

those are normally caused by factors that cannot be changed by relocating the imager,

as opposed to simply moving an imager to a roof to be above a small tree. Fig. 5.2

demonstrates the increase in error as more of the image is obstructed. Up to a PZA

of 75 the reconstruction is unchanged and removing these parts of the image results in

no change. From here there is a notable increase in error from a PZA of 50-75. If an

obstruction of more than 50◦ PZA is observed the reconstruction is no longer accurate as

the errors in k are greater than 100%.

Figure 5.2: Domain averaged error GHI, k and image error as a function of obstructed
PZA. 40 represents a reconstruction were pixels with PZA greater than 40 were not
used for the reconstruction.
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5.3 Solar region

It has been observed that the area of a sky image close to the sun (circumsolar

region) is difficult to distinguish between various forms of clouds and clear sky. This

is both a characteristic of the circumsolar region (Mejia et al.) as well as a result of

stray light, light that is scattered from dust or within the optics that causes errors in the

radiance measurement. Since this region causes a large uncertainty, we are interested in

knowing how much of this region we can remove before significantly loosing information

for the reconstruction. To do this we analyzed the same simulations as in section 5.2 but

this time we removed pixels with solar pixel angles (SPA) less than a threshold. Fig. 5.3

demonstrates the increase in error as we remove more of the image. There is no increase

in error when removing less than 10◦ SPA. The error begins to increase after 10◦ SPA

and takes a significant jump after a SPA of 30◦. This suggests that we can ignore pixels

with SPA less than 10◦ without losing accuracy in the reconstruction; as such we will

remove these pixels from the images that we use.
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Figure 5.3: Domain averaged error GHI, k and image error as a function of circumsolar
region removed. 20 represents a reconstruction were pixels with SPA smaller than 20
were not used for the reconstruction.

5.4 ART

Fig. 5.4 demonstrates the real image and the simulated image from a reconstructed

cloud field. It is important to note that Fig. 6 (a) was not used for the reconstruction

and is only used for validation. To vertically constrain the cloud domain, measurements

from a ceilometer located in the center of the domain were used, with an output of 950m.

Using a 10% uncerntainty we constrain the cloud base height to 90% of the Ceilometer

measurement or 820m (rounding to the lowest voxel). Using local soundings at 12:00:00

UTC we constrain the cloud top height based on the atmospheric inversion which is
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1060m (rounding to heighest voxel). The reconstructed cloud has a MAE for the image

in the red wavelength (620 nm) of 28.9%. It is able to get the general shape of clouds

but struggles with small clouds and holes inside of clouds. Small clouds are difficult for

the method since errors in geometric calibrations lead to the clouds being identified in

different locations, resulting in small clouds not being identified. Another large source of

error is the circumsolar region. Because of its high-peaked source function it is dificult to

simulate the solar region. As well as this there is stray light that causes the circumsolar

region to be brighter than simulations. To remove this source of error we will exclude the

circumsolar region from the error analysis, removing pixels within a solar pixel angle of

150. This decreases the error down to 22.9%.

Figure 5.4: (a) Real USI image taken at center of domain corresponding to USI 1.1 in
Fig. 1 on April 14th 2017 at 17:03:00 UTC. (b) Simulated image from reconstructed
cloud field using imagers 1.2, 1.9 1.14 and not USI 1.1.

Fig. 5.5 demonstrates an image that was used for the reconstruction. Since this

image was used for the reconstruction the accuracy of the simulated image increases and

the MAE goes down to 20.8%.
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Figure 5.5: (a) Real USI image taken at center of domain corresponding to USI 1.2 in
Fig. 1 on April 14th 2017 at 17:03:00 UTC. (b) Simulated image from reconstructed
cloud field using imagers 1.2, 1.9 1.14 and not USI 1.1.

Fig. 5.6 demonstrates a timeseries of the reconstructed 3-D cloud scene as well

as the ground truth and simulated image.
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Figure 5.6: Timeseries of ground truth images, reconstructed images, image error and
3-D cloud depiction for (a) May 14th 2017 at 18:00:00 UTC (b) May 14th 2017 at
18:02:30 UTC (c) May 14th 2017 at 18:05:00 UTC (d) May 14th 2017 at 18:07:30 UTC.
(e) May 14th 2017 at 18:10:00 UTC (f) May 14th 2017 at 18:12:30 UTC.
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Chapter 6

Conclusion

Using 3D radiative transfer models we have been able to explore the geometric

and cloud parameters that affect whole sky imagery. Synthetic images demonstrate that

SZA, τc, SPA, and SZA all significantly and often non-linearly and non-monotonically

affect radiance Iλ and RBR of sky image pixels. For thin clouds, Iλ(SPA) increases

rapidly as it approaches the sun, as a result of the strong forward peak in the cloud phase

function. On the other hand, for thick clouds Iλ(SPA) is found to be near constant with

solar pixel angle for τc >30. PZA has two main effects, horizon brightening for thin

clouds, and horizon darkening for thick clouds. Thick clouds fall in the diffusion regime

where Iλ decreases with PZA, but is independent of other parameters.

At a SZA of 45◦ is demonstrated to increase with increasing τc for thin clouds.

It reaches a peak at a τc between 0-5, depending on SPA and PZA. At τc greater than

5, Iλ(τc) decreases with increasing τc. Similar characteristics are observed for the

RBR although it does not decrease as much after reaching its maximum, making it an

effective tool for distinguishing between clear sky and thick clouds. However, neither

Iλ(τc) nor RBR(τc) are monotonic, leading to the difficulties in cloud detection and τc

characterization with one parameter. The RRBR method combines the RBR and Iλ to
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overcome the non-monotonic nature of each individual parameter.

Summary statistics of the different comparisons are presented in Table 3.1. For

overcast skies the RRBR yields τc that are consistent with the Min et al. method.

For heterogeneous cloud fields (cloud fraction < 0.7), comparisons with microwave

radiometer (MWR) measurements of LWC at zenith demonstrated that the RRBR method

provides τc estimates with typical R2 of 0.68 and RMSE of 2.2 which is well within

the uncertainty of the MWR instrument (± 5.6) but more work needs to be done to

validate that heterogeneous clouds are within the 21% uncertainty required for solar

applications. As demonstrated by the relative RMSE in Table 3.1, the RRBR method

provides accurate τc for overcast thick clouds. The relative RMSE is larger for τc < 10 for

all comparison datasets and future development requires a new comparison method for

thin clouds. These results validate the RRBR method for overcast clouds but consistent

under-predictions of heterogeneous cloud optical depth requires improvement in the

method.

Characterizing the cloud heterogeneity effects may improve the RRBR method.

As the RRBR method is based on interpolants developed from simulations of homo-

geneous overcast skies, cloud heterogeneity violates the assumptions and is likely the

leading source of errors. Errors due to cloud heterogeneity have been analyzed mainly

in the context of satellite remote sensing. Varnai et al. (1998) and Chambers et al.

(1997) observed that the cloud spatial reflectance variation is smoother than variations

in τc. They hypothesized that optically thicker clouds would scatter more light to their

thinner neighboring clouds causing the thinner clouds to appear brighter and thicker

(looking from space), while the thinner clouds would scatter less light to the thicker

clouds making them appear darker and thinner than expected for a homogeneous cloud

scene. A similar but opposite effect is observed in ground based imagery, where thicker

clouds shade their neighboring thinner clouds making them appear darker and thicker
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but this effect is moderated by the location of the sun relative to the clouds. Fig. 3.5

also shows that sun-facing cloud edges scatter more light, increasing Iλ, and leading

to thinner τc estimates than the cloud edges on the opposite side. Cloud edges facing

away from the sun will be shaded by the rest of the cloud and will be estimated as

being thicker. These 3-dimensional effects introduce noise in RRBR estimations of τc.

Although the comparison methods presented here are able to highlight some errors in the

RRBR method no method was accurate enough to provide information about thin clouds

(τc < 10) and future development requires a new comparison method for thin clouds.

With the ability to obtain pixel-by-pixel τc estimates we are able to expand on

this to estimate the 3-D distribution of clouds in the atmosphere through tomographic

methods. Summary statistics of the ART and the iterative methods are presented in Table

1. The k MAE is 53.4% using the ART and decreases to 33.6% after 41 iterations of the

iterative method. The ART method using τ from the RRBR method reflects the under-

predicting tendencies of the RRBR as demonstrated by the -17.1 MBE of k. Although the

iterative method decreases the error, the computational cost is high as it takes 37 days to

reconstruct 1 cloud scene, while the ART method takes 30 seconds. The range in days is

directly related to the cloud fraction as more cloud voxels must be solved. For this reason

the ART is used for solar forecasting applications. The ART method is demonstrated

to beat persistence at a 1 minute forecast horizon, demonstrating its potential for solar

energy applications.

We have introduced tomographic methods to multiple sky images to reconstruct

3-D fields of extinction coefficients by using simulations of images in an atmosphere

created from 3-D heterogeneous cloud scene from LES. As expected, more imagers

increases the accuracy of a 3-D cloud reconstruction. This is especially true for up to

4 imagers after which the benefits of more imagers decrease. Although having more

imagers improves the accuracy of the 3-D reconstruction, it also increases the capital and
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operations and maintenance cost of the imagers, creating a tradeoff between having more

imagers and improving accuracy. The distance between imagers also plays an important

role in reconstruction accuracy. In these idealized scenarios with a 1 km cloud height, an

increase in separation between imagers led to an increase in 3-D reconstruction accuracy

up to 3 km. This is because a diversity in perspectives better constrains cloud dimensions.

It is important to note that these conclusions are for an idealized image and these results

need to be validated in real images as well as to account for both topographic obstructions

and non-ideal lens distortion. As buildings and trees commonly obstruct the horizon in

an image imagers where the cloud appears at a large zenith angle may not contribute to

the reconstruction of that cloud. Further, cases with clouds or obstructed by other clouds

as in multiple cloud layers need to be investigated.

Using UCSD solar testbed 5 sky imagers were deployed across UCSD and nearby

areas. Images from 4 of the cameras were used to reconstruct 3D clouds and compare

to the fifth camera. A comparison between the simulated reconstructed image and

ground truth image led to a 22.9% error. Sources of real world errors were also explored.

Topographic obstruction were found be within 2% of ideal error with at least a field of

view of 70 ◦. This was done by removing parts of the image representative of trees and

building in an image. The effect of stray light on cloud reconstruction was also explored

by running the ART method with removing increasing portions of the circumsolar region.

GHI and k errors were within 0.2% and 1% respectively when removing less than 30◦

around the sun.
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