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ARTICLE

FGF signalling controls the specification of hair
placode-derived SOX9 positive progenitors to
Merkel cells
Minh Binh Nguyen1, Idan Cohen1, Vinod Kumar2, Zijian Xu3, Carmit Bar1, Katherine L. Dauber-Decker1,

Pai-Chi Tsai4, Pauline Marangoni5, Ophir D. Klein 5,6, Ya-Chieh Hsu4, Ting Chen3,

Marja L. Mikkola2 & Elena Ezhkova 1

Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In

murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis

around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the

progenitor cell population that gives rise to these cells is unknown. Here, we show that during

embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to

give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give

rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is

dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell

formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as

precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling

in Merkel cell specification.
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The skin epithelium is an essential barrier that protects the
body from the environment, helps to maintain temperature
and keep water within the body, and performs sensory

functions1. These activities are largely provided by the epidermis,
hair follicles, and specialized cells, including Merkel cells, which
respectively serve protective barrier functions, provide thermo-
protection, and are involved in mechanosensation1–3. While
much has been learned about the development of hair follicles
and the epidermis, the processes controlling the specification of
Merkel cell are largely understudied. These mechanosensory cells
are innervated by afferent neurons and are responsible for the
tactile discrimination of the shape and texture of objects4,5.
Recent studies have shown that upon touch stimulation, Merkel
cells produce ionic currents that induce a release of neuro-
transmitters, which trigger firing of the afferent neurons
that innervate Merkel cells6–8. Moreover, mice without Merkel
cells are unable to discriminate between different textures when
performing behavioural tasks9.

Much of what we know about the biology of Merkel cells came
from studies of murine back skin, where Merkel cells are located
in specialized structures called touch domes10. Touch domes
consist of Merkel cells, specialized keratinocytes, and afferent
neurons, and are located exclusively around primary hair follicles,
which represent 1–3% of the mouse hair coat3,5,6,9,11. Although
Merkel cells were discovered more than 100 years ago, their cell of
origin is still unknown. It was long believed that Merkel cells
originate from the neural crest12 until fate-mapping experiments
showed that embryonic epidermal progenitor cells that express
keratin (KRT) 14 give rise to Merkel cells13–15. While these stu-
dies showed that Merkel cells are of skin epithelial origin, they
also raised questions as to whether a specific population of Merkel
cell precursors exists. Indeed, at embryonic day (E) 14.5 when the
first Merkel cells appear, embryonic epidermal progenitors are no
longer a single layer of cells, as epidermal stratification has
initiated and hair follicles are at the placode stage13,16,17.

In this study, we analysed the appearance of the first Merkel
cells in the skin during embryogenesis and found that these cells
appear inside of developing hair follicles. By performing lineage
tracing experiments, we discovered that SOX9(+) cells, which in
prior literature have been proven to give rise to cells of the hair
follicle lineage, including HFSCs that maintain postnatal hair
follicle growth and homoeostasis, can also give rise to Merkel
Cells. We dissected the molecular mechanisms controlling the
specification of SOX9(+) cells to Merkel cells and showed that
although SOX9 is critical for SOX9(+) cell specification to
HFSCs, it is dispensable for Merkel cell formation. Interestingly,
FGFR2-mediated signalling in the skin epithelium is critical for
Merkel cell development but is not required for HFSC specifi-
cation. Taken together, our studies uncovered that SOX9(+) cells
located within the developing hair placodes give rise to Merkel
cells through FGFR2-mediated signalling.

Results
Merkel cells form inside hair placodes during development. To
gain insights into the cell of origin of Merkel cells, we aimed to
visualize where Merkel cells appear in embryonic skin. ATOH1 is
one of the earliest Merkel cell differentiation markers16, and thus
we set out to determine where ATOH1(+) cells first appear in the
skin. We crossed Atoh1-GFP mice, which contain an enhanced
green fluorescent protein (GFP) fused to the 3′-end of the atonal
homologue 1 gene (Atoh1), with R26-mT/mG mice and collected
embryos at E15. By performing confocal imaging we demon-
strated that ATOH1-GFP(+) Merkel cells were not present in the
basal layer of the epidermis (Fig. 1a, left), and instead they were
found within primary hair placodes (Fig. 1a, right). These data are

consistent with previous studies of KRT8, an early Merkel cell
marker which appears after ATOH1 induction, showing that
KRT8(+) cells are present inside of developing hair follicles at
E1518.

The finding that Merkel cells are formed inside of developing
hair follicles prompted us to investigate whether a cell population
located in hair follicles gives rise to Merkel cells. At the time when
the first Merkel cells appear, hair follicle lineage specification has
already occurred. The hair follicles contain discrete cell popula-
tions with different locations within hair placodes19. Cells at the
leading edge of developing hair follicles express the transcription
factor LHX2, whereas suprabasal hair placode cells are positive
for the stem cell pioneer factor SOX9 (Fig. 1b–g)20–22. We
performed immunofluorescence analysis to determine whether
the first Merkel cells appear next to SOX9(+) or LHX2(+) hair
follicle cells. At E14.5, when the first Merkel cells are detected,
ATOH1-GFP(+) cells were located in hair placodes, near SOX9
(+) cells, and further away from LHX2(+) cells (Fig. 1c, f). The
proximity of Merkel cells to SOX9(+) cells was even more
apparent at E15.5, when more Merkel cells had developed
(Fig. 1d, g). Regardless of cell proximity, ATOH1-GFP(+) Merkel
cells did not co-label with SOX9 (Supplementary Fig. 1a–c) or
LHX2 (Fig. 1f, g). We thus concluded that during development,
Merkel cells originate inside of hair placodes and are located near
the SOX9(+) cell population.

SOX9(+) cells give rise to Merkel cells in hair placode. The
emergence of Merkel cells inside hair follicles prompted us to
hypothesize that one of the cell populations inside developing
hair follicles is a precursor population for Merkel cells. To test
this hypothesis, we used Sox9-CreER; R26-mT/mG and Lhx2-
CreER; R26-tdTomato mice to fate map cells originating from
SOX9(+) and LHX2(+) cells, correspondingly. Embryos were
treated with Tamoxifen at E13.5–E14.5, at which time SOX9(+)
and LHX2(+) cells are present but Merkel cells have not yet been
specified, and collected from both lines at postnatal day (P) 0
(Fig. 2a) and at E16 for Sox9-CreER; R26-mT/mG (Supplementary
Fig. 1d).

Consistent with previous findings20, our analysis of E16 and P0
Sox9-CreER; R26-mT/mG mice revealed the presence of GFP(+)
cells in the hair follicle outer root sheath (Fig. 2b and
Supplementary Fig. 1e). Interestingly, immunofluorescence ana-
lysis revealed that GFP staining was found in more than 90% of
KRT8(+) Merkel cells (Fig. 2b, c and Supplementary Fig. 1d, e).
While we observed that roughly 10% of KRT8(+) cells were not
GFP-labelled (Fig. 2b, c and Supplementary Fig. 1d, e), this is
likely due to incomplete recombination, as a similar percentage of
SOX9(+) cells remained GFP-negative (Supplementary Fig. 1f, g).
In contrast, immunofluorescence analysis of tdTOMATO in P0
Lhx2-CreER; R26-tdTomato skins revealed that only 22% of KRT8
(+) Merkel cells were tdTOMATO(+) (Fig. 2d, e). These fate-
mapping results thus show that SOX9(+) rather than LHX2(+)
cells preferentially give rise to Merkel cells.

SHH signalling promotes the specification of SOX9(+) cells.
SHH signalling has been shown to be both necessary and
sufficient for Merkel cell formation23,24. We thus asked if SHH
controls the Merkel cell lineage by regulating the establishment of
SOX9(+) cells. To test this hypothesis, we first overexpressed
SHH in the embryonic epidermis by injecting high-titre
lentiviruses expressing a doxycycline-inducible Shh-PGK-H2B-
RFP construct into the amniotic fluid of E9 Rosa26-rtTA embryos
to infect the epidermis23,25. We administered doxycycline to the
pregnant dams starting at E12 and the infected embryos were
collected at E17 (Supplementary Fig. 2a). Overexpression of SHH
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resulted in ectopic KRT8(+) Merkel cells that were located in
areas with SHH overexpression, identified by RFP expression
(Supplementary Fig. 2c), whereas in control non-infected areas,
Merkel cells were present only near primary hairs (Supplemen-
tary Fig. 2b). Interestingly, immunostaining for SOX9 showed
that the same SHH-expressing areas had ectopic SOX9(+) cells
present in the epidermis (Supplementary Fig. 2c), whereas in
non-infected control areas, SOX9(+) cells were found only inside
hair follicles (Supplementary Fig. 2b).

We next analysed whether SHH signalling is required for the
specification of SOX9(+) cells by deleting the essential SHH-
signalling signal transducer Smoothened23,26. We generated skin
epithelium-conditional knockout mice of Smoothened (Smo
cKO), by crossing Smo floxed mice with mice expressing Krt14-
Cre, which is active in embryonic epidermal progenitors starting
at E12 (ref. 27). Consistent with previous reports23,24, there was a
dramatic reduction in the number of Merkel cells in P0 Smo cKO
skin compared to control skin (Supplementary Fig. 2d). Impor-
tantly, immunofluorescence analysis of SOX9 showed that there
was an absence of SOX9(+) cells in embryonic and neonatal hair

follicles of Smo-null skin, whereas these cells were apparent in
control hair follicles (Supplementary Fig. 2d, e). Together, these
results showed that in the skin epithelium, SHH signalling
promotes specification of SOX9(+) cells and Merkel cell
formation.

SOX9 and NFATc1 are dispensable for Merkel cell formation.
SOX9(+) cells give rise to HFSCs that, in adulthood, con-
tinuously fuel the regeneration of hair follicles during each hair
cycle20,28. Importantly, transcription factor SOX9 is required for
the specification of SOX9(+) cells to HFSCs20,29. As SOX9(+)
cells also give rise to Merkel cells, we asked if SOX9 is required for
Merkel cell specification. To test this, we generated skin
epithelium-conditional knockout mice of Sox9 (Sox9 cKO) by
crossing Sox9 floxed mice with Krt14-Cre mice. Immuno-
fluorescence analysis of Sox9-null skins confirmed the loss of
SOX9 in hair follicles (Supplementary Fig. 3a). However, despite
the loss of SOX9 in the skin epithelium, immunolabelling for
early and late Merkel cell differentiation markers, KRT8 and
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KRT20, respectively, demonstrated no significant changes in the
number of KRT8(+) and KRT20(+) cells (Fig. 3a–e).

Another HFSC marker, NFATc1, starts being expressed in SOX9
(+) cells in the subsequent hair peg stage, and NFATc1 is critical
for acquiring the quiescent state of HFSCs20,30. To test if NFATc1 is
required for Merkel cell specification, we generated and analysed
skin epithelium-conditional knockout mice of Nfatc1 (Nfatc1 cKO)

by crossing Nfatc1 floxed mice with Krt14-Cre mice. As with Sox9
cKO mice, immunofluorescence analysis of Merkel cell markers
KRT8 and KRT20 showed that the number of Merkel cells was not
changed between control and Nfatc1 cKO skins (Supplementary
Fig. 3b–d). Therefore, while SOX9 and NFATc1 are important for
HFSC specification and quiescence, respectively, they are dispen-
sable for Merkel cell formation.
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Merkel cell specification requires FGFR2-mediated signalling.
While SOX9(+) cells have been shown to give rise to the hair
follicle lineage, our studies now unveil that SOX9(+) cells also
give rise to Merkel cells. We next aimed to uncover the molecular
processes that control the specification of SOX9(+) cells to the
Merkel cell lineage. Fibroblast growth factor (FGF) 20 is
expressed by hair placodes (Supplementary Fig. 4a and Supple-
mentary Fig. 4b, left) and is required for the proper development
of primary follicles31. Interestingly, transcriptional analysis of
Fgf20-null skins revealed that at E15.5, there is decreased
expression of the early Merkel cell differentiation gene, Atoh1, in
Fgf20-null skin compared to control24. To determine if decreased
expression of Atoh1 results in changes in Merkel cell numbers, we
performed immunofluorescence analysis of Merkel cell markers
SOX2 and KRT8 in Fgf20β-gal/β-gal (Fgf20-null) skins, followed by
quantification. Indeed, we observed a significant reduction in the
number of KRT8(+) and SOX2(+) cells in Fgf20-null skins
compared to controls at E16 (Fig. 4a–c) and at P0 (Fig. 4d–f).
FGF10, another FGF ligand, is also highly expressed in the
developing skin, but is localized in dermal condensates instead of
hair placodes (Supplementary Fig. 4b, right)32. Interestingly, and
in contrast to Fgf20-null skin analysis, immunofluorescence
analysis of KRT8 did not reveal any differences in the number of
Merkel cells in the skins of Fgf10-null mice compared to controls
(Supplementary Fig. 4c, d).

During primary hair formation, FGF20 functions in both the
epithelium and the mesenchyme33,34. We thus asked whether
FGF signalling functions directly in the skin epithelium to specify
Merkel cells, or indirectly through control of the mesenchyme.
Analysis of published RNA-seq data35[http://hair-gel.net]
revealed that among four FGF receptors (FGFR), only FGFR2 is
expressed at high levels in E14.5 hair placodes, whereas FGFR1

and FGFR2 are both expressed in the dermal condensate, which
consists of dermal papilla precursor cells (Supplementary Fig. 4e).
Importantly, immunofluorescence analysis using Fgfr2-mCherry
reporter mice demonstrated that FGFR2 expression overlaps with
SOX9(+) cells and KRT8(+) Merkel cells at E16 (Supplementary
Fig. 4f, g). Furthermore, by analysing the skins of E16 Fgf20β-gal

mice, we observed a gradient in the expression of FGF20β-gal

reporter in FGFR2(+) and SOX9(+) cells, where some FGFR2
(+) and SOX9(+) cells had some levels of FGF20β-gal reporter,
while others had none (Supplementary Fig. 4h, i).

To test whether transduction of FGF signalling in skin
epithelial cells controls Merkel cell formation, we generated skin
epithelium-conditional knockout mice of Fgfr2 by crossing Fgfr2
floxed mice with Krt14-Cre mice. Because there are several
FGFR2 isoforms, we generated a conditional deletion of exon 5 of
Fgfr2, which is common to all isoforms, thus abrogating FGFR2
function, as previously described36. Immunofluorescence analysis
of E16 embryos confirmed efficient loss of FGFR2 protein from
the skin epithelium of Fgfr2 cKO mice compared to controls
(Supplementary Fig. 4j). Analysis of E16 Fgfr2 cKO skins revealed
significant reductions in the numbers KRT8(+) and SOX2(+)
Merkel cells (Fig. 4g–i). SOX2 staining was observed in the
dermal condensates of control and Fgfr2-null hair follicles,
indicating that epithelial FGFR2 was not essential for dermal
condensate formation (Fig. 4g). The reduced number of Merkel
cells observed in E16 Fgfr2 cKO skins was not due to apoptotic
cell death, as assessed by TUNEL staining (Supplementary
Fig. 4l). Reduced number of Merkel cells persisted into neonatal
life, as shown by immunofluorescence analyses of KRT8 and
KRT20 in P0 control and Fgfr2 cKO mice (Fig. 4j–o). Thus,
FGFR2-mediated signalling in the skin epithelium is required for
Merkel cell formation.
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4. f Immunofluorescence staining for SOX9 (red) at P0. g Appearance of full-thickness skin engraftment of P0 skins onto Nude mice 35 days post-
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To interrogate why few Merkel cells were formed in Fgfr2 cKO
mice, we analysed embryos at E14.5, the time of Merkel cell
specification. By performing immunofluorescence studies, we
observed incomplete loss of FGFR2 protein from the skin
epithelium and the hair placode cells of E14.5 Fgfr2 cKO embryos
(Supplementary Fig. 4k). This suggests that the residual level of
FGFR2 present at the time of Merkel cell specification could allow
for a few Merkel cells to form.

FGFR2 is not required for the specification of HFSCs. As our
data showed that FGFR2 is critical for Merkel cell formation, we
next asked if FGFR2 is required for the specification of SOX9(+)
cells to HFSCs. Our analysis of primary hair follicle development
revealed that while there was a reduction in primary hair follicle
length in E16 and P0 Fgfr2-null skins compared to controls
(Fig. 5a, b and Supplementary Fig. 5a), the number of primary
hair follicles was comparable between Fgfr2 cKO and control
skins (Fig. 5c). While Fgfr2 cKO hair follicles were shorter, their
development was largely normal. Indeed, hair follicles in Fgfr2
cKO skin expressed proper hair follicle differentiation markers
AE15, which labels the inner root sheath and medulla37,38, and
AE13, which marks the cuticle and cortex of the hair shaft37,38

(Supplementary Fig. 5b, c). Furthermore, immunofluorescence
analysis also showed that SOX9(+) cells were present in both
control and Fgfr2-null hair follicles (Fig. 5d–f). Thus, we con-
cluded that the development and cell differentiation were not
arrested in Fgfr2 cKO hair follicles.

In the adult organism, HFSCs promote hair follicle growth
through the hair cycle, give rise to sebaceous glands, and express
HFSC markers, such as CD3439. As newborn Fgfr2 cKO pups fail
to form milk spots and die shortly after birth, in order to analyse
HFSCs in the postnatal skin, we performed full-thickness grafts of
P0 Fgfr2 cKO and control skins onto the backs of recipient Nude
mice20. The analysis of grafts 35 days after engraftment (P35)
showed that control and Fgfr2-null hair follicles were fully
developed, and formed hair shafts and sebaceous glands (Fig. 5h±i
and Supplementary Fig. 5d, e). Similarly to controls, Fgfr2-null
hair follicles had a club hair, indicating that these hair follicles
had progressed through one hair cycle (Fig. 5i). Furthermore,
immunofluorescence staining for HFSC markers CD34 and SOX9
revealed that both control and Fgfr2-null hair follicle bulge cells
expressed SOX9 (Fig. 5h) and CD34 (Fig. 5i). Together, these
analyses show that FGFR2-mediated signalling is not necessary
for HFSC specification.

Discussion
In this paper, we elucidated the cell of origin of Merkel cells and
identified the molecular pathways controlling Merkel cell and hair

follicle lineage formation (Fig. 6). Our data show that Merkel cells
originate from cells located inside hair placodes, which is inter-
esting, as ectodermal placode structures are known to give rise to
different sensory tissues40. For example, taste sensory cells are
known to originate from an ectodermal placode41. The develop-
ment of inner ear hair cells that are responsible for balance and
the perception of sounds also starts with the formation of an
ectodermal placode42. Our data now show that similarly to other
sensory epithelial tissues, Merkel cells that are involved in light-
touch sensations are also formed from ectodermal placodes.

By performing fate-mapping experiments, we show that SOX9
(+) and not LHX2(+) cells preferentially gives rise to Merkel
cells. Previous lineage tracing experiments showed that progenies
of SHH-expressing cells do not give rise to Merkel cells24. As
SHH-expressing cells also express LHX243, our LHX2 fate-
mapping results are consistent with these data. Furthermore,
previous studies using ShhGFPcre/+; R26YFP/+ mice44 and our
studies using Lhx2-CreER; tdTomatomice have shown to map the
majority of cells of the hair follicle lineage. As Merkel cells are
largely not labelled using either Shh-Cre or Lhx2-CreER fate-
mapping strategies, these data indicate that Merkel cells originate
from outside of the SHH- and LHX2-derived hair follicle lineages,
which is consistent with previous findings24. Intriguingly, a few
Merkel cells appear to be labelled in Shh-Cre24 and Lhx2-CreER
lineage tracing experiments. This is likely due to recent findings
showing that during development some SOX9(+) cells originate
from SHH(+) cells19. Alternatively, a gradient of expression of
SOX9 and LHX2 observed in developing hair follicles leads to a
few SOX9 and LHX2 double-positive cells at the transitional
zone22, and might thus result in labelling of Merkel cells in the
Lhx2-CreER lineage tracing experiment. Taking our study and the
published data together, we can conclude that Merkel cell pro-
genitors are predominantly SOX9(+) SHH(−) LHX2(−) cells.
While SOX9(+) cells give rise to Merkel cells, our data show that
the SOX9 protein itself is absent from ATOH1(+) Merkel cells
and SOX9 is not required for Merkel cell specification.

SOX9(+) cells were shown to give rise to developing hair
follicles and to serve as precursors of adult HFSCs, which
maintain the growth of postnatal follicles during the hair cycle20.
Our data now show that Sox9(+) cells have an additional func-
tion to give rise to Merkel cells. It is intriguing that SOX9(+) cells
gives rise to two completely different structures, the hair follicles
and Merkel cells, which perform completely different functions in
the body. Furthermore, during development, hair follicles grow
downward into the underlying dermis, while Merkel cells are
located upwards in the basal layer of the epidermis. Despite these
differences, genetic studies showed a strong correlation between
hair follicle and Merkel cell development, as genetic mutations
ablating hair follicle formation also lead to the loss of Merkel
cells23,24. Our data now provide an explanation for the observed
genetic similarities. We show that the specification of SOX9(+)
cells is affected in mutants in which hair formation is abrogated,
resulting in hair follicle defects and loss of Merkel cells. Future
studies of the SOX9(+) cell population will be needed to examine
how these cells are fated to become such diverse cell types in the
skin. One possible explanation for this is the heterogeneity within
the SOX9(+) cell population, as it has recently been shown that
some SOX9(+) cells express KRT79, a marker of terminally dif-
ferentiated hair follicle cells45,46.

Our data reveal different requirements for SOX9 and FGFR2 to
specify HFSCs and Merkel cells from SOX9(+) cells. While SOX9
is essential to specify HFSCs20, our data show that it is not
required for Merkel cell formation. We show that FGFR2-
mediated signalling in the skin epithelium is critical for Merkel
cell formation, but is not required for HFSC specification. The
importance of skin epithelial FGFR2-mediated signalling for

Embryonic
epidermal
progenitors

SHH

Gli1(+) cells Sox9(+) cells

Hair follicle stem cells

(SOX9-independent)
Merkel cells

SOX9

FGFR2

Fig. 6 Working model of the Merkel cell specification process. In the
developing skin, SHH signalling is required to specify SOX9(+) cells in hair
placodes. SOX9(+) cells give rise to both HFSCs and Merkel cells. While
SOX9 is required for SOX9(+) cell specification to HFSCs, it is dispensable
for Merkel cell formation. Conversely, FGFR2-mediated skin epithelial
signalling is required for Merkel cell formation but is not required for HFSC
specification
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Merkel cell development is very interesting. Among four FGF
receptors, only FGFR2 is expressed at high levels in the devel-
oping skin epithelium at the time of Merkel cell specification and,
importantly, we show that FGFR2 is expressed in SOX9(+) cells
and in Merkel cells.

Which FGF ligand controls Merkel cell specification? We show
that FGF20 is important for this process, as there is a reduction in
the number of Merkel cells in Fgf20-null skins. Recently, Xiao and
colleagues24 observed a drastic reduction in the expression of a
key Merkel cell differentiation factor, ATOH1, in E15.5 Fgf20 KO
compared to control. Interestingly, however, despite the reduc-
tion in ATOH1 expression at the time of Merkel cell specification,
Xiao and colleagues24 observed small reduction in Merkel cell
numbers in P0 Fgf20 KO mice compared to controls. While this
result is different to our findings, this discrepancy could be due to
differences in mouse genetic backgrounds used in two studies and
thus for some mouse genetic backgrounds lacking FGF20, other
FGF ligands can sufficiently compensate for the loss of FGF20
and specify Merkel cells. Indeed, there are more than 23 different
known genes that code for FGFs, and much redundancy between
FGFs has been reported in other developmental systems47. While
our data show that FGF10 is not required for Merkel cell for-
mation, other FGF ligands might function with FGF20 to play a
role in this process.

Overall, our findings uncover a cell of origin of Merkel cells
and identify the molecular mechanisms controlling Merkel cell
development. Uncovering the biology of Merkel cells is critical for
understanding the function of the skin as a sensory organ, and the
interaction between the skin and the nervous system2. It is also
essential for determining the mechanisms of our perception of
touch, which is critical for our survival, as well as the biological
processes that go awry in children with hypo and hyper tactile
sensitivities, including those observed in autism spectrum dis-
orders3,5,48–50. Finally, defining the mechanisms controlling
Merkel cell formation will also allow us to devise differentiation
protocols to produce Merkel cells in vitro, which is still challen-
ging. This will be important for improving upon our current
method of in vitro epidermis production, allowing us to generate
epidermis that is capable of providing both barrier and sensory
functions51.

Methods
Mice. All mice were housed at the Center for Comparative Medicine and Surgery
(CCMS), Icahn School of Medicine at Mount Sinai (ISMMS) and cared for
according to the Institutional Animal Care and Use Committee (IACUC)-
approved protocol LA11-0020. For research purposes and in cases of veterinarian-
monitored illness, we use carbon dioxide in accordance with the Panel on
Euthanasia of the American Veterinary Medical Association to euthanize animals.
At least three animals from independent litters were used for each analysis.
Immunocompromised Nude (NU-Foxn1Nu) mice and wild-type CD1 mice were
obtained from Charles River Laboratory. Fgf20β-gal mice52 were obtained from
David M. Ornitz, and were maintained on a mixed genetic background. Fgf10-null
mice have been described53. Fgfr2flox and Fgfr2-mCherry reporter mice36 were
generously provided by Philippe Soriano. Sox9-CreER was described54. Lhx2-CreER
mice were obtained from Josh Huang and will be described elsewhere. R26-mT/mG
(Stock number: 007676), Sox9flox(Stock number: 013106), Nfatc1flox(Stock number:
022786), Smoflox (Stock number: 004526), Atoh1-GFP(Stock number: 013593),
R26-rtTA (Stock number: 006965), and Krt14-Cre (Stock number: 004782) were
obtained from The Jackson Laboratory. Because Fgfr2 conditional KO mice die
shortly after birth, all analyses of these mice after P0 were performed on grafted
skin obtained using the full-thickness grafting protocols20,55,56. Briefly, full-
thickness skins from the back of sex-matched wild type and Fgfr2 conditional
knockout (cKO) P0 mice were removed and grafted onto the backs of anaesthetised
female Nude mice (nu/nu), with each recipient receiving a wild-type and cKO graft.
Grafts were secured by sterile gauze and cloth bandages, which were removed after
4 weeks. For Tamoxifen treatment, Sox9-CreER; R26-mT/mG and Lhx2-CreER;
R26-tdTomato were injected with Tamoxifen (Sigma-Aldrich; St. Louis, MO) doses
totalling 40 μg per gram body weight at E13.5 and E14.5, and pups were collected at
E16 or P0 for further analysis. Mice were genotyped by PCR using DNA extracted
from tail skin. Primers used for genotyping are provided in Supplementary Table 1.

In utero injections. R26-rtTA male mice were mated to CD1 female mice to
generate R26-rtTA embryos for ultrasound guided lentiviral injection57. A high
titre (>109 CFU) of inducible SHH overexpression lentiviral construct (LV-TRE-
SHH-PGK-H2B-RFP)58 was used to perform microinjections into the amniotic
cavities of E9 embryos. E9 timed pregnant mice were anaesthetised with 2.5%
isoflurane and 1% oxygen, and then positioned on a mouse platform (Integrated
Rail System, VisualSonics). A midline incision was performed, and uterine horns
were gently exteriorized through the incision and carefully drawn through a Par-
afilmH flap in the bottom of a sterilized Petri dish. Four to five embryos were
injected using a micropipette, with 1 μl of SHH overexpression lentivirus for each
embryo, and the uterine horn was reinserted into the peritoneal cavity. The
abdominal wall and skin were closed with sutures. Expression of the viral construct
was induced at E12 by gavage treatment of 200 μl doxycycline (10 mg per ml in
sterile water (Sigma-Aldrich) to the mice that were pregnant with the injected
pups). The pregnant mice were then fed doxycycline chow (200 mg per kg, Bio-
Serv) for 5 days. SHH overexpressed and control embryos were collected at E17 for
further analysis.

Immunofluorescence and microscopy. For immunofluorescence, tissues were
collected from mice, embedded fresh into OCT (Tissue-Tek; Torrance, CA), and
subsequently cut into 10 μm sections using a Leica Cryostat. Slides were fixed for
10 min in 4% paraformaldehyde (PFA; Electron Microscopy Sciences) in
phoshpate-buffered saline (PBS) and blocked for 1 h or overnight in PBS with 1%
Triton X-100, 1% bovine serum albumin, and 0.25% normal donkey serum.
Embryos collected after lentiviral infection for the SHH overexpression experiment
were pre-fixed for 7 min in 4% PFA at room temperature. Primary antibodies were
diluted in blocking solution and incubations were carried out for 1 h or overnight,
followed by incubation in secondary antibodies for 1 h at room temperature. Slides
were then counterstained with DAPI and mounted using antifade mounting media.
For whole-mount immunofluorescence, back skins were collected from newborn
mice and placed in 1.26 U per mL dispase (Invitrogen; Carlsbad, CA) for 4 h at 4 °
C. Then, the epidermis was peeled from the dermis and fixed in 4% PFA for 1 h at
4 °C. Skins were blocked with blocking solution for 2 h at room temperature.
Primary antibodies were diluted in blocking solution and incubations were carried
out overnight at 4 °C, followed by incubation in secondary antibodies for 2 h at
room temperature. Skins were then counterstained with DAPI or Hoechst and
mounted in antifade mounting media for imaging. TUNEL stainings were per-
formed using the Roche TUNEL kit (Roche Diagnostics) according to the manu-
facturer’s instructions. Slides were imaged using a Leica DM5500 upright slide
microscope or Confocal Zeiss LSM880 Airyscan microscope using ×10, ×20, or ×40
objectives.

Antibodies. Antibodies were used as follows: KRT14 (generous gift of Julie Segre,
National Human Genome Research Institute, MD, USA, 1/20,000); KRT8
(Developmental Studies Hybridoma Bank, TROMA-1, 1/500); KRT5 and LHX2
(generous gift of Elaine Fuchs, The Rockefeller University, NY, USA, 1/500);
KRT20 (Dako, M7019, 1/70); SOX2 (Stemgent, 09–0024, 1/150); GFP (Abcam,
ab13970, 1/1000); RFP (MBL, PM005, 1/4000); E-CADHERIN (Invitrogen,
131900, 1/2000); SOX9 (Abcam, ab185966, 1/500); β-GALACTOSIDASE (Abcam,
ab9361, 1/500); CD34 (eBioscience, 14-0341-82, 1/250); AE15 (Santa Cruz, sc
80607, 1/100); AE13 (abcam, ab16113, 1/20); FGFR2 (Cell Signaling, 23328, 1/150);
P-CAD (Fisher, BAF761, 1/400); EPCAM (BD Bioscience, 552370, 1/500). For IF,
secondary antibodies coupled to Alexa 488, 549, or 649 were obtained from Jackson
Laboratories (1/1000).

Quantifications. For quantification of Merkel cells per mm of skin59, the length of
each section was measured and the number of positively stained cells was counted.
Typical section lengths were between 7 and 14 mm. We counted a large number of
Merkel cells in the control conditions (>300 KRT8(+) cells) and then counted the
number of Merkel cells in a similar length of skin for each mutant line. Typically, at
least 100 mm of skin were counted for each condition. Quantification of touch
domes (TD): skin samples were stained with KRT8 and six non-overlapping images
of 6.55 (Field of view or 2.56 × 2.56) mm2 areas of P0 skin per animal were
quantified. The mean was calculated and used in statistical analysis. Number of
animals used, n≥4. For quantification of the number of Merkel cells per TD, 7 to 10
TDs were randomly chosen from each skin sample. The length of the hair follicles
was measured by drawing a line that starts from the bottom of the basal layer and
goes to the end of the hair follicle, and measuring the length of the line. Hair follicle
length is presented in μm.

Statistics. In all column bar graphs, mean value±one standard deviation is pre-
sented. Box-and-whisker plots show first to third quartiles around the median, with
whiskers showing minimum–maximum range and outliers presented as individual
data points. The number of biological replicates used for comparison is indicated in
each figure. To determine the significance between two groups in all experiments,
the Mann–Whitney test was performed (GraphPad Prism 5). For all statistical tests,
the p < 0.05 level of confidence was accepted for statistical significance, and actual
p-values (to four decimal places) were provided in the figure legends. Significance
levels were defined as *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant.
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Data Availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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