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ARTICLE

Bypassing the Kohn-Sham equations with machine
learning
Felix Brockherde1,2, Leslie Vogt 3, Li Li 4, Mark E. Tuckerman3,5,6, Kieron Burke4,7 & Klaus-Robert Müller1,8,9

Last year, at least 30,000 scientific papers used the Kohn–Sham scheme of density functional

theory to solve electronic structure problems in a wide variety of scientific fields. Machine

learning holds the promise of learning the energy functional via examples, bypassing the need

to solve the Kohn–Sham equations. This should yield substantial savings in computer

time, allowing larger systems and/or longer time-scales to be tackled, but attempts to

machine-learn this functional have been limited by the need to find its derivative. The present

work overcomes this difficulty by directly learning the density-potential and energy-density

maps for test systems and various molecules. We perform the first molecular dynamics

simulation with a machine-learned density functional on malonaldehyde and are able to

capture the intramolecular proton transfer process. Learning density models now allows the

construction of accurate density functionals for realistic molecular systems.
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Kohn–Sham density functional theory1 (KS-DFT) is now
enormously popular as an electronic structure method in a
wide variety of fields2. Useful accuracy is achieved with

standard exchange–correlation (XC) approximations, such
as generalized gradient approximations3 and hybrids4. Such
calculations are playing a key role in the materials genome
initiative5, at least for weakly correlated materials6.

There has also been a recent spike of interest in applying
machine learning (ML) methods in the physical sciences7–11.
The majority of these applications involve predicting properties
of molecules or materials from large databases of KS-DFT
calculations12–15. A few applications involve finding
potential energy surfaces within molecular dynamics (MD)
simulations16–19. Fewer still have focussed on finding the
functionals of DFT as a method of performing KS electronic
structure calculations without solving the KS equations20–23,24. If
such attempts could be made practical, the possible speed-up in
repeated DFT calculations of similar species, such as occur in ab
initio MD simulations, is enormous.

A key difficulty has been the need to extract the functional
derivative of the non-interacting kinetic energy. The
non-interacting kinetic energy functional Ts[n] of the electron
density n is used in two distinct ways in a KS calculation1, as
illustrated in Fig. 1: (i) its functional derivative is used in the Euler

equation which is solved in the self-consistent cycle and (ii) when
self-consistency is reached, the ground-state energy of the system
is calculated by E[n], an orbital-free (OF) mapping. The solution
of the KS equations performs both tasks exactly. Early results on
simple model systems showed that ML could provide highly
accurate values for Ts[n] with only modest amounts of training20,
but that the corresponding functional derivatives are too noisy to
yield sufficiently accurate results to (i). Subsequent schemes
overcome this difficulty in various ways, but they typically lose a
factor of 10 or more in accuracy22, and their computational cost
can increase dramatically with system complexity.

Here we present an alternative ML approach, in which we
replaced the Euler equation by directly learning the
Hohenberg–Kohn (HK) map v(r) → n(r) (red line in Fig. 1a)
from the one-body potential of the system of interest to the
interacting ground-state density, i.e., we establish an ML-HK
map. We show that this map can be learned at a much more
modest cost than either previous ML approaches to find the
functional and its derivative (ML-OF) or direct attempts to model
the energy as a functional of v(r) (ML-KS). Furthermore, we
show that it can immediately be applied to molecular calculations
by calculating the energies of small molecules over a range of
conformers. Moreover, as we have already implemented this
approach with a standard quantum chemical code (Quantum
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Fig. 1 Overview of approach and motivation. a Mappings used in this paper. The bottom arrow represents E[v], a conventional electronic structure
calculation, i.e., KS-DFT. The ground-state energy is found by solving KS equations given the external potential, v. E[n] is the total energy density functional.
The red arrow is the HK map n[v] from external potential to its ground state density. b (Top) How the energy error depends on M, the number of training
points, for ML-OF and ML-HK with different basis sets for the 1D problem. b (Bottom) Errors in the PBE energies (relative to exact values) and the ML maps
(relative to PBE) as a function of interatomic spacing, R, for H2 with M= 7. c How our Machine Learning Hohenberg–Kohn (ML-HK) map makes
predictions. The molecular geometry is represented by Gaussians; many independent Kernel ridge regression models predict each basis coefficient of the
density. We analyze the performance of data-driven (ML) and common physical basis representations for the electron density
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Espresso25) using a standard DFT approximation
(Perdew–Burke–Ernzerhof (PBE)), this can now be tried on much
larger scales.

The ML-HK map reflects the underlying computational
approach used to generate a particular electron density, but is
not restricted to any given electronic structure method. Many
molecular properties, including but not limited to the energy, are
dependent on the electron density, making the ML-HK map more
versatile than a direct ML-KS mapping. We also establish that
densities can be learned with sufficient accuracy to distinguish
between different DFT functionals, thus providing a route to
future functional development via generation of precise densities
for a range of molecules and conformations.

Results
We will first outline theoretical results, most prominently the
ML-HK map, and then illustrate the approach with simulations of
one-dimensional (1D) systems and three-dimensional (3D)
molecules.

ML-HK map. Previous results show that for an ML-OF approach,
the accuracy of ML-KS kinetic energy models TML

s n½ � improve
rapidly with the amount of data. However, minimizing the total
energy via gradient descent requires the calculation of the gra-
dient of the kinetic energy model TML

s (Fig. 1) and calculating this
gradient is challenging. Due to the data-driven nature of, e.g.,
kernel models, the machine-learned kinetic energy functional has
no information in directions that point outside the data mani-
fold26. This heavily influences the gradient to an extent that it
becomes unusable without further processing20. There have been
several suggestions to remedy this problem, but all of them share
a significant loss in accuracy compared to Ts[n]21, 22, 27.

Here, we propose an interesting alternative to gradients and the
ML-OF approach. Recently, it has been shown that the HK map
for the density as a functional of the potential
can be approximated extremely accurately using semiclassical
expressions28. Such expressions do not require the solution of any
differential equation, and become more accurate as the number of
particles increases. Errors can be negligible even for just two
distinct occupied orbitals.

Inspired by this success, we suggest how one might circumvent
the kinetic energy gradient and directly train a multivariate ML
model. We name this the ML-HK map:

nML½v�ðxÞ ¼
XM
i¼1

βiðxÞk v; við Þ: ð1Þ

Here each density grid point is associated with a group of model
weights β. Training requires solving an optimization problem for
each density grid point. Although this is possible in 1D, it rapidly

becomes intractable in 3D, as the number of grid points grows
cubically.

The use of a basis representation for the densities, as in

nML½v�ðxÞ ¼
XL
l¼1

uðlÞ½v�ϕlðxÞ; ð2Þ

renders the problem tractable even for 3D. A ML model that
predicts the basis function coefficients u(l)[v] instead of the grid
points is then formulated.

Predicting the basis function coefficients not only makes the
ML model efficient and allows the extension of the approach to
3D but also permits regularization, e.g., to smooth the predicted
densities by removing the high-frequency basis functions, or to
further regularize the ML model complexity for specific basis
functions.

For orthogonal basis functions, the ML model reduces to
several independent regression models and admits an analytical
solution analogous to kernel ridge regression (KRR, see
Supplementary Eq. (5)):

βðlÞ ¼ KσðlÞ þ λðlÞI
� ��1

uðlÞ; l ¼ 1; ¼ ; L: ð3Þ

Here, for each basis function coefficient, λ(l) are regularization
parameters and KσðlÞ is a Gaussian kernel with kernel width σ(l).
The parameters λ(l) and σ(l) can be chosen individually for each
basis function via independent cross-validation (see refs. 12, 29).
This ML-HK model avoids prior gradient descent procedures
and, with it, the necessity to “de-noise” the gradients. Due to the
independence of Eq. (3) for each l, the solution scales favourably.

Functional and density-driven error. How can the performance
of the ML-HK map be measured? It has recently been shown how
to separate out the effect of the error in the functional F and the
error in the density n(r) on the resulting error in the total energy
of any approximate, self-consistent DFT calculation30. Let ~F be an
approximation of the many body functional F, and ~nðrÞ the
approximate ground-state density when ~F is used in the Euler
equation. Defining ~E½n� ¼ ~F½n� þ R

d3r nðrÞ vðrÞ yields
ΔE ¼ ~E ~n½ � � E½n� ¼ ΔEF þ ΔED ð4Þ

where ΔEF ¼ ~F½n� � F½n� is the functional-driven error, while
ΔED ¼ ~E ~n½ � � ~E½n� is the density-driven error. In most DFT
calculations, ΔE is dominated by ΔEF. The standard DFT
approximations can, in some specific cases, produce abnormally
large density errors that dominate the total error. In such
situations, using a more accurate density can greatly improve the
result30–32. We will use these definitions to measure the accuracy
of the ML-HK map.

Table 1 Energy errors for the 1D data set

M ML-OF ML-HK (grid) ML-HK (other)

ΔE ΔEF ΔED ΔE ΔED ΔEML
D ΔED (Fourier) ΔED (KPCA)

MAE Max MAE Max MAE Max MAE Max MAE Max MAE Max MAE Max MAE Max

20 7.7 47 7.7 60 8.8 87 3.5 27 0.76 8.9 9.7 70 0.58 8 0.15 2.9
50 1.6 30 1.3 7.3 1.4 31 1.2 7.1 0.079 0.92 0.27 2.4 0.078 0.91 0.011 0.17
100 0.74 17 0.2 2.6 0.75 17 0.19 2.1 0.027 0.43 0.18 2.4 0.031 0.42 0.0012 0.028
200 0.17 2.9 0.039 0.6 0.17 2.9 0.042 0.59 0.0065 0.15 0.02 0.46 0.017 0.14 0.00055 0.015

Errors are given in kcal/mol for various M, the number of training points. Displayed are the energy error, ΔE, the functional-driven error, ΔEF, the density-driven error, ΔED, and its approximation, ΔEML
D
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1D potentials. The following results demonstrate how much
more accurate ML is when applied directly to the HK map. The
box problem originally introduced in Snyder et al.20 is used to
illustrate the principle. Random potentials consisting of three
Gaussian dips were generated inside a hard-wall box of length 1
(atomic units), and the Schrödinger equation for one electron was
solved extremely precisely. Up to 200 cases were used to train
an ML model TML

s ½n� for the non-interacting kinetic energy
functional Ts[n] via KRR (for details, see Supplementary
Methods).

To measure the accuracy of an approximate HK map, the
analysis of the previous section is applied to the KS DFT problem.
Here F is just Ts, the non-interacting kinetic energy, and

ΔEF ¼ ~Ts½n� � Ts½n�; ð5Þ

i.e., the error made in an approximate functional on the exact
density. Table 1 on the left gives the errors made by ML-OF for
the total energy, and its different components, when the density is
found from the functional derivative. This method works by
following a gradient descent of the total energy functional based
on the gradient of the ML model TML

s ,

n jþ1ð Þ ¼ n jð Þ � ϵP n jð Þ
� � δ

δn
EML n jð Þ

� �
; ð6Þ

where ϵ is a small number and P(n(j)) is a localized PCA
projection to de-noise the gradient. Here, and for all further 1D
results, we use

EML½n� ¼ TML
s ½n� þ

Z
dx nðxÞ vðxÞ: ð7Þ

The density-driven contribution to the error, ΔED, which we
calculate exactly here using the von Weizsäcker kinetic energy33,
is always comparable to, or greater than, the functional-driven
error, ΔEF, due to the poor quality of the ML functional
derivative20. The calculation is abnormal and can be greatly
improved by using a more accurate density from a finer grid. As
the number of training points M grows, the error becomes
completely dominated by the error in the density. This shows that
the largest source of error lies in the use the ML approximation of
Ts to find the density by solving the Euler equation.

The next set of columns analyzes the ML-HK approach, using a
grid basis. The left-most of these columns shows the energy error
we obtain by utilizing the ML-HK map:

ΔE ¼ EML nML½v�� �� E
�� ��: ð8Þ

Note that both ML models, TML
s and nML, have been trained

using the same set of M training points.
The ML-HK approach is always more accurate than ML-OF,

and its relative performance improves as M increases. The
next column reports the density-driven error, ΔED, which is an
order-of-magnitude smaller than that of ML-OF. Lastly, we list an
estimate to the density-driven error

ΔEML
D ¼ EML nML½v�� �� EML½n��� ��; ð9Þ

which uses the ML model TML
s for the kinetic energy functional in

1D. This proxy is generally a considerable overestimate (a factor
of 3 too large), so that the true ΔED is always significantly smaller.
We use it in subsequent calculations (where we cannot calculate
TML
s ) to (over-)estimate the energy error due to the ML-HK map.
The last set of columns are density-driven errors for other

basis sets. Three variants of the ML-HK map were tested. First,
direct prediction of the grid coefficients: in this case, uðlÞi ¼ ni xlð Þ,
l= 1, …, G. Five hundred grid points were used, as in Snyder,
et al.20. This variant is tested in 1D only; in 3D the high

dimensionality is prohibitive. Second, a common Fourier basis is
tested. The density can be transformed efficiently via the discrete
Fourier transform, using 200 Fourier basis functions in total. In
3D, these basis functions correspond to plane waves. The back-
projection u 7!n to input space is simple, but although the basis
functions are physically motivated, they are very general and not
specifically tailored to density functions. The performance is
almost identical to the grid, on average, although maximum
errors are much less. For M= 20, the error that originates from
the basis representation starts to dominate. This is a motivation
for exploring, third, a Kernel PCA (KPCA) basis34. KPCA35 is a
popular generalization of PCA that yields basis functions that
maximize variance in a higher dimensional feature space. The
KPCA basis functions are data-driven, and computing them
requires an eigen-decomposition of the Kernel matrix. Good
results are achieved with only 25 KPCA basis functions. The
KPCA approach gives better results because it can take the non-
linear structure in the density space into account. However, it
introduces the pre-image problem: it is not trivial to project the
densities from KPCA space back to their original (grid) space
(Supplementary Note 1). It is thus not immediately applicable to
3D applications.

Molecules. We next apply the ML-HK approach to predict
electron densities and energies for a series of small molecules. We
test the ML models on KS-DFT results obtained using the PBE
XC functional36 and atomic pseudopotentials with the projector
augmented-wave (PAW) method37, 38 in the Quantum
ESPRESSO code25. As the ML-OF approach applied in the
previous section becomes prohibitively expensive in 3D due to
the poor convergence of the gradient descent procedure
(Supplementary Note 2), we compare the ML-HK map to the
ML-KS approach. This approach models the energy directly as a
functional of v(r), i.e., it trains a model

EML½v� ¼
XM
i¼1

αik vi; vð Þ ð10Þ

via KRR (for details, see Supplementary Methods).
We also apply the ML-HK map with Fourier basis functions.

Instead of a TML
s ½n� model, we learn an EML[n] model

EML½n� ¼
XM
i¼1

αik ni; nð Þ; ð11Þ

which avoids implementing the potential energy and XC
functionals.

Both approaches require the characterization of the Hamilto-
nian by its external potential. The external (Coulomb) potential
diverges for 3D molecules and is, therefore, not a good feature to
measure the distance in ML. Instead, we use an artificial Gaussian
potential of the form

vðrÞ ¼
XNa

α¼1

Zα exp
� r� Rαk k2

2γ2

� �
; ð12Þ

where Rα are the positions, and Zα are the nuclear charges of the
Na atoms. The Gaussian potential is used for the ML representa-
tion only. The width γ is a hyper-parameter of the algorithm. The
choice is arbitrary but can be cross-validated. We find reasonable
results with γ= 0.2 Å. The idea of using Gaussians to represent
the external potential has been used previously39. The Gaussian
potential is discretized on a coarse grid with grid spacing Δ=
0.08. To use the discretized potential in the Gaussian kernel, we
flatten it into a vector form and thus use a tensor Frobenius
norm.
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Our first molecular prototype is H2, with the only degree of
freedom, R, denoting the distance between the H atoms. A data
set of 150 geometries is created by varying R between 0.5 and 1.5
Å (sampled uniformly). A randomly chosen subset of 50
geometries is designated as the test set and is unseen by the
ML algorithms. These geometries are used to measure the out-of-
sample error reported below.

The remaining 100 geometries make up the grand training set.
To evaluate the performance of the ML-KS map and the ML-HK
map, subsets of varying sizes M are chosen out of the grand
training set to train the EML[v] and nML[v] models, respectively.
Because the required training subsets are so small, careful
selection of a subset that covers the complete range of R is
necessary. This is accomplished by selecting theM training points
out of the grand training set so that the R values are nearly
equally spaced (see Supplementary Note 3 for details).

For practical applications, it is not necessary to run DFT
calculations for the complete grand training set, only for the M
selected training points. Strategies for sampling the conformer
space and selecting the grand training set for molecules with more
degrees of freedom are explained for H2O and MD simulations
later on.

The performance of the ML-KS map and ML-HK map is
compared by evaluating EML[v] that maps from the Gaussian
potential to the total energy and the combination of nML[v] that
maps from Gaussian potential to the ground-state density in a 3D
Fourier basis representation (l= 25) and EML[n] that maps from
density to total energy. The prediction errors are listed in Table 2.

The mean average error (MAE) of the energy evaluated using
the ML-HK map is significantly smaller than that of the ML-KS
map. This indicates that even for a 3D system, learning the
potential-density relationship via the HK map is much easier
than directly learning the potential-energy relationship via the KS
map.

Figure 1b shows the errors made by the ML-KS and the
ML-HK maps. The error of the ML-HK map is smoother than the
ML-KS error and is much smaller, even for the most problematic
region when R is smaller than the equilibrium bond distance
of R0= 0.74 Å. The MAE that is introduced by the PBE
approximation on the H2 data set is 2.3 kcal/mol (compared to
exact CI calculations), i.e., well above the errors of the ML model
and verifies that the error introduced by the ML-HK map is
negligible for a DFT calculation.

The next molecular example is H2O, parametrized with three
degrees of freedom: two bond lengths and a bond angle. In order
to create a conformer data set, the optimized structure (R0= 0.97
Å, θ0= 104.2 using PBE) is taken as a starting point. A total of
350 geometries are then generated by changing each bond length
by a uniformly sampled value between ±0.075 Å and varying the

angle θ between ±8.59° (±0.15 rad) away from θ0 (see
Supplementary Fig. 1 for a visualization of the sampled range).
For this molecule, the out-of-sample test set again comprises a
random subset of 50 geometries, with the remaining 300
geometries used as the grand training set. Because there are
now three parameters, it is more difficult to select equidistant
samples for the training subset ofM data points. We therefore use
a K-means approach to find M clusters and select the grand
training set geometry closest to each cluster’s center for the
training subset (see Supplementary Note 4 for details).

Models are trained as for H2. The results are given in Table 2.
As expected, the increase in degrees of freedom for H2O
compared to H2 requires a larger training set size M. However,
even for the more complicated molecule, the ML-HK map is
consistently more precise than the ML-KS map and provides an

Table 2 Prediction errors on H2 and H2O

Molecule M ML-KS ML-HK

ΔE ΔRo Δθ0 ΔE ΔEML
D ΔRo Δθ0

MAE Max MAE Max MAE Max

H2 5 1.3 4.3 2.2 — 0.70 2.9 0.18 0.54 1.1 —
7 0.37 1.4 0.23 — 0.17 0.73 0.054 0.16 0.19 —
10 0.080 0.41 0.23 — 0.019 0.11 0.017 0.086 0.073 —

H2O 5 1.4 5.0 2.1 2.2 1.1 4.9 0.056 0.17 2.3 3.8
10 0.27 0.93 0.63 1.9 0.12 0.39 0.099 0.59 0.12 0.38
15 0.12 0.47 0.19 0.41 0.043 0.25 0.029 0.14 0.064 0.23
20 0.015 0.064 0.043 0.16 0.0091 0.060 0.011 0.058 0.024 0.066

Errors are shown for increasing numbers of training points M for the ML-KS and ML-HK approaches. In addition, the estimated density-driven contribution to the error for the ML-HK approach (Eq. (9))
is given. Energies are given in kcal/mol, bond-lengths in pm, and angles in degrees
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Fig. 2 Result of the comparison for H2O. (Top) Distribution of energy errors
against PBE on the H2O data set for ML-KS and ML-HK. The errors are
plotted on a symmetric log scale with a linear threshold of 0.01, using
nearest neighbor interpolation from a grid scan for coloring. Black dots mark
the test set geometries with averaged bond lengths. (Bottom left)
Comparison of the PBE errors made by ML-HK and ML-KS on the test set
geometries. (Bottom right) Energy landscape of the ML-HK map for
symmetric geometries (R vs. θ). All models were trained on M= 15 training
points. Energies and errors in kcal/mol. A black cross marks the PBE
equilibrium position
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improved potential energy surface, as shown in Fig. 2. With an
MAE of 1.2 kcal/mol for PBE energies relative to CCSD(T)
calculations for this data set, we again show that ML does not
introduce a new significant source of error.

The ML maps can also be used to find the minimum energy
configuration. The total energy is minimized as the geometry
varies with respect to both bond lengths and angles. For
optimization, we use Powell’s method40, which requires a starting
point and an evaluation function to be minimized. For the H2O
case, the search is restricted to symmetric configurations with a
random symmetric geometry used as the starting point. Results
are reported in Table 2. The optimizations consistently converge
to the correct minimum regardless of starting point, consistent
with the maps being convex, i.e., the potential energy curves are
sufficiently smooth to avoid introducing artificial local minima.

For larger molecules, generating random conformers that
sample the full configurational space becomes difficult. Therefore,
we next demonstrate that MD using a classical force field can
also be used to create the grand training set. As an example, we
use benzene (C6H6) with only small fluctuations in atomic
positions out of the molecular plane (Supplementary Fig. 2).
Appropriate conformers are generated via isothermal MD
simulations at 300, 350, and 400 K using the General Amber
Force Field (GAFF)41 in the PINY_MD package42. Saving
snapshots from the MD trajectories generates a large set of
geometries that are sampled using the K-means approach to
obtain 2000 representative points for the grand training set.
Training of nML[v] and EML[n] is performed as above by running
DFT calculations on M= 2000 points. We find that the ML error
is reduced by creating the training set from trajectories at both the
target temperature and a higher temperature to increase
the representation of more distorted geometries. The final ML
model is tested on 200 conformational snapshots taken from an
independent MD trajectory at 300 K (Fig. 3a). The MAE of the
ML-HK map for this data set using training geometries from 300
and 350 K trajectories is only 0.37 kcal/mol for an energy range
that spans more than 10 kcal/mol (Table 3).

For benzene, we further quantify the precision of the ML-HK
map in reproducing PBE densities. In Fig. 4, it is clear that the
errors in the Fourier basis representation are larger than the
errors introduced by the ML-HK map by two orders of
magnitude. Furthermore, the ML-HK errors in density
(as evaluated on a grid in the molecular plane of benzene) are
also considerably smaller than the difference in density between
density functionals (PBE vs. LDA43). This result verifies that the

ML-HK map is specific to the density used to train the model and
should be able to differentiate between densities generated with
other electronic structure approaches.

Ethane (C2H6), with a small energy barrier for the relative
rotation of the methyl groups, is also evaluated in the same way.
Using geometries sampled with K-means from 300 and 350 K
classical trajectories, the ML-HK model reproduces the energy of
conformers with a MAE of 0.23 kcal/mol for an independent
MD trajectory at 300 K (Fig. 3b). This test set includes
conformers from the sparsely-sampled eclipsed configuration
(Supplementary Fig. 3). Using points from a 400 K trajectory
improves the ML-HK map due to the increased probability of
higher energy rotamers in the training set (Table 3). The training
set could also be constructed by including explicit rotational
conformers, as is commonly done when fitting classical force field
parameters41. In either case, generating appropriate conformers
for training via computationally cheap classical MD significantly
decreases the cost of the ML-HK approach.

As additional proof of the versatility of the ML-HK map, we
show that this approach is also able to interpolate energies for
proton transfer in the enol form of malonaldehyde (C3H4O2).
This molecule is a well-known example of intramolecular proton
transfer, and our previous AIMD and ab initio path integral
studies44 found classical and quantum-free energy barrier values
of 3.5 and 1.6 kcal/mol, respectively, from gradient-corrected
DFT. In this work, classical MD trajectories are run for each
tautomer separately, with a fixed bonding scheme, then combined
for K-means sampling to create the grand training set. The
training set also includes an artificially constructed geometry that
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Fig. 3 Energy errors of ML-HK along classical MD trajectories. PBE values in blue, ML-HK values in red. a A 20 ps classical trajectory of benzene. b A 20 ps
classical trajectory of ethane

Table 3 Energy and density-driven errors of the ML-HK
approach on the MD data sets

Molecule Training trajectories ΔE ΔEML
D

MAE Max MAE Max

Benzene 300 K 0.42 1.7 0.32 1.5
300 + 350 K 0.37 1.8 0.28 1.5
300 + 400 K 0.47 2.3 0.30 1.8

Ethane 300 K 0.20 1.5 0.17 1.3
300 + 350 K 0.23 1.4 0.19 1.1
300 + 400 K 0.14 1.7 0.098 0.62

Malonaldehyde 300 + 350 K 0.27 1.2 0.21 0.74

Errors are given in kcal/mol for different training trajectory combinations
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is the average of tautomer atomic positions. For the test set, we
use snapshots from a computationally expensive
Born–Oppenheimer ab initio MD trajectory at 300 K. Figure 5a
shows that the ML-HK map is able to predict DFT energies
during a proton transfer event (MAE of 0.27 kcal/mol) despite
being trained on classical geometries that did not include these
intermediate points.

We show, finally, that the ML-HK map can also be used to
generate a stable MD trajectory for malonaldehyde at 300 K
(Fig. 5b). In principle, analytic gradients could be obtained for

each timestep, but for this first proof-of-concept trajectory, a
finite-difference approach was used to determine atomic forces.
The ML-HK-generated trajectory samples the same molecular
configurations as the ab inito MD simulation (see Fig. 6 and
Supplementary Table 1) with a mean absolute energy error of
0.77 kcal/mol, but it typically underestimates the energy for out-
of-plane molecular fluctuations at the extremes of the classical
training set (maximum error of 5.7 kcal/mol, see Supplementary
Fig. 4). Even with the underestimated energy values, however, the
atomic forces are sufficiently large to return the molecule to the
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equilibrium configuration, thus resulting in a stable trajectory.
The new set of coordinates could be further sampled to expand
the training set in a self-consistent manner. Using iterative ML-
HK-generated MD trajectories would eliminate the need to run
computationally expensive MD simulations with KS DFT and
would provide an iterative approach to reduce the energy errors
for conformations not included in the classical training set.

Discussion
For several decades, DFT has been a cross-disciplinary area
between theoretical physics, chemistry, and materials sciences.
The methods of each field cross-fertilize advances in other fields.
This has led to its enormous popularity and widespread success,
despite its well-known limitations in both accuracy and the
systems and properties to which it can be applied.

The present work represents a key step forward toward adding
an additional ingredient to this mix, namely the construction of
functionals via ML. While previous work showed proofs of
principle in 1D, this work is a demonstration in 3D, using real
molecules and production-level codes. We also demonstrate
that molecular conformers used in the training set can be gen-
erated by a range of methods, including informed scans and
classical MD simulations. This opens the possibility that ML
methods, which complement all existing approaches to functional

approximation, could become a new and very different approach
to this problem with the potential to reduce the computational
cost of routine DFT calculations significantly.

Our method, directly learning the HK density-potential map,
overcomes a major bottleneck in previous methodologies that
arises in 3D. Our approach avoids solving an intermediate more
general problem (the gradient descent) to find the solution of the
more specific problem (finding the ground-state density). This is
called transductive inference by the ML community and is
thought to be key to the success of statistical inference methods45.
Following a direct prediction approach with the ML-HK map
increases the accuracy consistently on both 1D examples and 3D
molecules. We are also able to learn density models that out-
perform energy models trained on much more data. This quan-
titative observation allows us to conclude that learning density
models is much easier than learning energy models. Such a
finding should be no surprise to practitioners of the art of
functional construction (see, e.g., ref. 28), but the present work
quantifies this observation using standard statistical methods. As
the ML-HK map accurately reflects the training densities, more
exact methods could also be used to generate the training set
densities for functional development.

We have also derived a scheme for using basis functions to
render the approach computationally feasible, which allows for
facile integration of the method into existing DFT codes. Another
advantage is the possibility to take the innate structure of the
densities into account, i.e., spatial correlations are preserved by
using low-frequency basis functions. Again, this fits with the
intuition of experienced practitioners in this field, but here we
have quantified this in terms of machine-learned functionals.

Direct prediction of energies (e.g., the ML-KS map) always has
the potential to lead to conceptually easier methods. But such
methods must also abandon the insights and effects that have
made DFT a practical and usefully accurate tool over the past half
century. Many usefully accurate DFT approximations already
exist, and the corrections to such approximations can
be machine-learned in precisely the same way as the entire
functional has been approximated here23. If ML corrections
require less data, the method becomes more powerful by taking
advantage of existing successes. Furthermore, existing theorems,
such as the viral theorem46, might also be used to construct the
kinetic energy functional directly from an ML-HK map. In the
case of orbital-dependent functionals, such as meta-GGA’s
or global hybrids, the method presented here must be extended to
learn, e.g., the full density matrix instead of just the density.

We also note that, for all the 3D calculations shown here, we
machine-learned E[n], the entire energy (not just the kinetic
energy), which includes some density-functional approximation
for XC. However, with a quantum chemical code, we could have
trained on much more accurate quantum chemical densities
and energies. Thus, the ML-HK maps, in principle, allow the
construction of (nearly) exact density functionals for
molecular systems, with the potential to significantly reduce the
computational cost of quantum chemistry-based MD simulations.
All this points to useful directions in which to expand on the
results shown here.

Methods
Kohn–Sham DFT. The KS-DFT computational electronic structure method
determines the properties of many-body systems using functionals of the electron
density. The foundation is the HK theorem47, which establishes a one-to-one
relationship between potential and density, i.e., at most one potential can give rise
to a given ground-state density.

Kohn–Sham DFT avoids direct approximation of many-body effects by
imagining a fictitious system of non-interacting electrons with the same density as
the real one1 (see Supplementary Note 5 for details). Its accuracy is limited by the
accuracy of existing approximations to the unknown XC energy, while its

a

b

Fig. 6 The space of malonaldehyde conformers generated by all MD
methods. a The training set of 2000 representative conformers selected
from the classical MD trajectories (red points) by K-means sampling. Test
points from an ab initio MD trajectory (turquoise) and the independently
generated MD trajectory using the ML-HK model (blue) sample the same
coordinate space (offset from the molecular plane for clarity). b A closer
view of the region outlined with a dashed box for the ab initio (turquoise) and
ML-HK (blue) trajectories
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computational bottleneck is the solution of the Kohn–Sham equations that describe
the non-interacting particles.

Here, 3D DFT calculations for ML models are performed with the Quantum
ESPRESSO code25 using the PBE XC functional36 and PAWs37, 38 with
Troullier–Martins pseudization for describing the ionic cores48. All molecules
are simulated in a cubic box (L = 20 bohr) with a wave function cutoff of 90 Ry
(see Supplementary Note 3 for details). The 1D data set is taken from ref. 20.

Kernel ridge regression. KRR49, 50 is a ML method for regression. It is a
kernelized version of ridge regression that minimizes the least squares error and
applies an ‘2 (Tikhonov) regularization. Let x1; ¼ ; xm 2 Rd be the training data
points and let Y= y1; ¼ ; ym

	 
T
be their respective labels. KRR then performs the

following optimization:

min
α

Xm
i¼1

yi �
Xm
j¼1

αjk xi; xj
	 
�����

�����
2

þ λαTKα; ð13Þ

where k is the kernel function and λ is a regularization parameter. K is the kernel
matrix with Kij= k(xi, xj). Eq. (13) has the following analytical solution:

α ¼ Kþ λIð Þ�1Y: ð14Þ

Most popular is the Gaussian (radial basis function) kernel that leads to a smooth,
non-linear model function in input space corresponding to a linear function in an
infinite dimensional feature space29.

For the ML-HK map (Supplementary Methods), the canonical error is given by
the L2 distance between predicted and true densities

eðβÞ ¼
XM
i¼1

ni � nML vi½ ��� ��
L2

ð15Þ

¼
XM
i¼1

ni �
XL
l¼1

XM
j¼1

βðlÞj k vi; vj
	 


ϕl

�����
�����
L2

: ð16Þ

The ML model coefficients β(l) can be optimized independently for each basis
coefficient l via

βðlÞ ¼ KσðlÞ þ λðlÞI
� ��1

uðlÞ; l ¼ 1; ¼ ; L: ð17Þ

Cross-validation. Note that all model parameters and hyper-parameters are
estimated on the training set; the hyper-parameter choice makes use of standard
cross-validation procedures (see Hansen et al.12). Once the model is fixed after
training, it is applied unchanged out of sample.

Exact calculations. Relative energy errors of the ML models trained on KS-DFT
calculations are determined by comparing to accurate energies from the Molpro
Quantum Chemistry Software51 using the full configuration interaction method for
H2 and CCSD(T)52 for H2O.

Molecular dynamics. For benzene, ethane, and malonaldehyde, GAFF para-
meters41 were assigned using the AmberTools package53. Geometry optimizations
were performed using MP2/6-31g(d) in Gaussian0954. Atomic charge assignments
are from RESP fits55 to HF/6-31g(d) calculations at optimized geometries and two
additional rotational conformers for ethane.

For the three larger molecules, classical isothermal MD simulations were run
using the PINY_MD package42 with massive Nosé–Hoover chain (NHC)
thermostats56 for atomic degrees of freedom (length= 4, τ= 20 fs, Suzuki–Yoshida
order = 7, multiple time step = 4) and a time step of 1 fs. The r-RESPA multiple
time step approach57 was employed to compute rapidly varying forces more
frequently (torsions every 0.5 fs, bonds/bends every 0.1 fs). Systems were
equilibrated for 100 ps before collecting snapshots every 100 fs from 1 ns
trajectories. Snapshots were aligned to a reference molecule prior to DFT
calculations for the ML model. For malonaldehyde, the ML training set geometries
were selected from trajectories for both enol tautomers as the GAFF force field does
not permit changes in chemical bond environments.

For malonaldehyde, an additional Born–Oppenheimer MD simulation using
DFT was run using the QUICKSTEP package58 in CP2K v. 2.6.259. The PBE XC
functional36 was used in the Gaussian and plane-wave scheme60 with DZVP-
MOLOPT-GTH (m-DZVP) basis sets61 paired with the appropriate dual-space
GTH pseudopotentials62 optimized for the PBE functional63. Wave functions were
converged to 1E-7 Hartree in the energy using the orbital transformation method64

on a multiple grid (n= 5) with a cutoff of 900 Ry for the system in a cubic box (L=
20 bohr). A temperature of 300 K was maintained using massive NHC
thermostats56 (length= 4, τ= 10 fs, Suzuki–Yoshida order = 7, multiple time step
= 4) and a time step of 0.5 fs.

In order to generate the MD trajectory with the ML-HK model, we used the
Atomistic Simulation Environment65 with a 0.5 fs timestep and a temperature of

300 K maintained via a Langevin thermostat. A thermostat friction value of 0.01
atomic units (0.413 fs−1) was chosen to reproduce the fluctuations in C atoms
observed for the DFT-based trajectory (Supplementary Note 3). In this proof-of-
concept work, atomic forces were calculated using central finite differences, with
ϵ= 0.001 Å chosen to conserve the total energy during the simulation. The last 1 ps
of a 4 ps trajectory was used to evaluate the performance of the ML-HK model.

Data availability. All data sets used in this work are available at http://quantum-
machine.org/datasets/.
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