
UC Berkeley
UC Berkeley Previously Published Works

Title
A thousand-genome panel retraces the global spread and adaptation of a major fungal 
crop pathogen

Permalink
https://escholarship.org/uc/item/54s357c0

Journal
Nature Communications, 14(1)

ISSN
2041-1723

Authors
Feurtey, Alice
Lorrain, Cécile
McDonald, Megan C
et al.

Publication Date
2023

DOI
10.1038/s41467-023-36674-y

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/54s357c0
https://escholarship.org/uc/item/54s357c0#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-023-36674-y

A thousand-genome panel retraces the
global spread and adaptation of a major
fungal crop pathogen

Alice Feurtey1,2,3, Cécile Lorrain 2, Megan C. McDonald4,5, Andrew Milgate 6,
Peter S. Solomon 4, Rachael Warren 7, Guido Puccetti1,8, Gabriel Scalliet 8,
Stefano F. F. Torriani8, Lilian Gout9, Thierry C. Marcel 9, Frédéric Suffert9,
Julien Alassimone 2, Anna Lipzen10, Yuko Yoshinaga10, Christopher Daum 10,
Kerrie Barry10, Igor V. Grigoriev 10,11, Stephen B. Goodwin 12,
Anne Genissel 9, Michael F. Seidl13,14, Eva H. Stukenbrock 3,15,
Marc-Henri Lebrun9, Gert H. J. Kema 13, Bruce A. McDonald 2 &
Daniel Croll 1

Human activity impacts the evolutionary trajectories of many species world-
wide. Global trade of agricultural goods contributes to the dispersal of
pathogens reshaping their genetic makeup and providing opportunities for
virulence gains. Understanding how pathogens surmount control strategies
and cope with new climates is crucial to predicting the future impact of crop
pathogens. Here, we address this by assembling a global thousand-genome
panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all
production areas worldwide. We identify the global invasion routes and
ongoing genetic exchange of the pathogen amongwheat-growing regions.We
find that the global expansion was accompanied by increased activity of
transposable elements and weakened genomic defenses. Finally, we find sig-
nificant standing variation for adaptation to new climates encountered during
the global spread. Our work shows how large population genomic panels
enable deep insights into the evolutionary trajectoryof amajor croppathogen.

Human activity has broken down natural barriers to gene flow for
many species through trade and travel. Reshaped species distributions
helped spread invasive plants and pathogens1. A major contributor to
the range expansion of pathogens is the distribution of suitable host

species. Pathogens and their hosts often share a common evolutionary
history either through co-evolution or through shared constraints of
their common environment2,3. Discrepancies in the evolutionary his-
tory of hosts and their pathogens can be caused by host jumps,
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significant differences in gene flow, or local adaptation. Agricultural
pathogens have often emerged during the domestication of their host
species4 causing significant threats to food production. Increased
global trade of agricultural products has precipitated serious disease
outbreaks over the past decades5. Crop pathogens are exposed to
globally homogeneous host conditions created by planting genetically
similar crop cultivars and application of similar pesticidal compounds
to control diseases6,7. Furthermore, climate change reshapes the geo-
graphic distribution of pathogen species, with poleward range
expansions being suspected since the 1960s8. Range expansions may
lead to significant changes in the geneticmake-up of pathogen species
by founder effects and shifting barriers to gene flow9. Understanding
how emerging pathogens surmount control strategies and cope with
climate adaptation is crucial to predict the future impact of crop
pathogens in a changing world.

Outbreaks of fungal diseases on crops are reported regularly
across continents5. In addition to episodic damage, most crop patho-
gens are endemic and continuously reduce yields. The ascomycete
Zymoseptoria tritici is a major pathogen of bread and durum wheat,
causing the disease Septoria tritici blotch, which is now reported in
most wheat-growing regions and causes significant damage10. The
center of origin of Z. tritici is located in the Middle East, where sister
species are found to infect wild grasses11. The emergence of Z. tritici
was concomitant with the domestication of wheat11. The timing and
shared geographic origin of the pathogen and domesticated wheat
strongly suggests coevolution between the two species. The pathogen
harbors extensive standing variation from individual infected leaves to
large agricultural regions12,13. As a consequence, the pathogen showed
rapid responses across all major wheat-producing areas to overcome
host resistance and gain tolerance to fungicides in less than a decade10.
Population genomic analyses showed that rapid adaptation of the
pathogen was facilitated by parallel evolution across geographic
regions14,15. However, a comprehensive picture of pathogen dispersal
and adaptation across the global distribution range is lacking.

Here, we assembled over one thousand genomes of the fungal
crop pathogen Z. tritici to retrace worldwide invasion routes out of its
Middle Eastern origin and identify ongoing genetic exchange among
major wheat-producing regions. We show that the global expansion
was accompanied by increased activity of transposable elements and
weakened genomic defenses. Finally, we identify standing genetic
variation for adaptation to new climates encountered during the glo-
bal spread.

Results
Global genetic structure of the pathogen tracks the historical
spread of wheat
We assessed the evolutionary trajectory of the pathogen in conjunc-
tion with the history of global wheat cultivation (Fig. 1a). For this, we
assembled a worldwide collection of Z. tritici isolates from naturally
infected fields (Fig. 1b). We selected isolates covering most wheat
production areas, both in the center of origin of the crop (i.e., the
Fertile Crescent in the Middle East), and in areas where wheat was
introduced during the last millennia (i.e., Europe and North Africa), or
last centuries (i.e., the Americas and Oceania; Fig. 1c). We called var-
iants in a set of 1109 high-quality short-read resequencing datasets
(Supplementary Data 1, 2) covering 42 countries and a broad range of
climates. Using a joint genotyping approach, we produced raw variant
calls mapped to the telomere-to-telomere assembled reference gen-
ome IPO323. To assess genotyping accuracy, we used eight isolates
with replicate sequencing data to analyze discrepancies. We adjusted
quality thresholds targeting specifically the type of genotyping errors
observed in our data set (Fig. S1). The improved filtering yielded
8,406,818 high-confidence short variants (short indels and SNPs). The
final variant set included 5,578,488 biallelic SNPs corresponding to
14.1% of the genome.

We tested whether global diversity patterns of pathogen popu-
lations are likely a consequence of the history of wheat cultivation. We
first performed unsupervised clustering of genotypes and identified
eleven well-supported clusters (Fig. 2a, Figs. S2,3). Over 90% of the
genotypes were clearly assigned to a single cluster (Fig. 2a, Supple-
mentary Data 3). Two clusters were identified among genotypes ori-
ginating from the pathogen center of origin, distinguishing collections
from Iran and Middle Eastern regions. Genotypes from Africa and
Europe split into two distinct genetic clusters without any apparent
secondary structure within clusters. This lack of any fine-scale struc-
ture is remarkable given the extensive geographic sampling of Eur-
opean genotypes and suggests extensive gene flow within the
continent. Genotypes from Oceania grouped into three distinct clus-
ters marked by collections from Tasmania, the Australian mainland,
and New Zealand. Genotypes fromNorth America formed two clusters
along a North-South separation. Finally, South American genotypes
formed two clusters split along the Andes (Chile versus Argentina and
Uruguay). Some uncertainty exists in the assessment of regional
population structure by low coverage of major wheat-producing
countries such as Russia and Ukraine. Septoria tritici blotch is only
sporadically reported in China. In complementary analyses, we found
that a phylogenetic network accounting for the high frequency of
recombination consistently reflected the global population structure
(Fig. S4). A principal component analysis of all genotypes confirmed
the nested genetic structure with differentiation at the continent level,
subdivisions within some continents and the existence of admixed
genotypes (Fig. 2b, Fig. S5).

We analyzed the history of population splits and admixture using
allele frequency information (Fig. 2c). The analyses largely supported a
genetic structure shaped by the introduction of wheat across con-
tinents. The historical relationships between clusters show an early
divergence of the Middle Eastern and North African clusters matching
the early introduction of agriculture in these regions. Populations in
Europe and the Americas share a similar time point of divergence
consistent with extensive contributions of European genotypes to the
Western hemisphere. Oceanian groups have diverged as a single
branch from genotypes most closely related to extant European
populations. Matching the introduction of wheat to Oceania from the
European continent, the Australian and New Zealand pathogen
populations share a common origin rooted in European genetic
diversity. Populations from Australia show also a striking loss of
diversity and higher linkage disequilibrium compared to European
diversity consistent with a significant founder effect (Fig. 2d, e). Simi-
larly, populations in South and North America have reduced genetic
diversity compared to extant European populations as suggested
previously based on Sanger sequencing16. The highest diversity was
found in populations from Africa and the Middle East closest to the
center of origin. Overall, the global genetic structure of the pathogen
reveals multiple founder events associated with the introduction of
wheat to new continents.

Ongoing gene flow among regions should lead to admixed gen-
otypes. We found that nearly 10% of all analyzed genotypes showed
contributions from at least two clusters. The most significant recent
geneflowwasdetected betweenMiddle Eastern/North African clusters
and European clusters in North Africa (i.e., Algeria and Tunisia) as well
as Southern and Eastern Europe (i.e., France, Italy, Hungary, Ukraine,
Portugal, and Spain; Supplementary Data 3). We found a particularly
high incidence of recent immigration in a durum wheat population in
the south of France. The population consisted only of hybrids or aty-
pical genotypes suggesting either recent migration from North Africa
or host specialization on durum wheat varieties. Additionally, we
found hybrid genotypes with European ancestry in both North Amer-
ica and in Oceania. The relatively balanced ancestry proportions in
these hybrids suggest very recent gene flow dating back to only a few
generations. We further investigated past gene flow between clusters
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by allowing Treemix to infer migration events, thus creating a popu-
lation network (Fig. S6a–d). Three distinct recent migration events
were best explaining the data with specific migration routes from the
Middle East/African clusters to North America, from an Australian
cluster to South America and between two Oceanian clusters (Fig.
S6d). However, themigration events did not affect the overall shape of
the inferred population tree (Fig. 2c, Fig. S6b–d). To better understand
effects of long-distance gene flow, we investigated the relationship
between relatedness among genotypes (i.e., identity-by-state) and
geographic distance. At the continent level, we observed a negative
relationship between identity-by-state and geographic distance (Fig.
S7). The wide distribution of identity-by-state values shows that
although closely related isolates tend to be found at closer geographic
distance, distantly related isolates can be found at both far and close

geographic distances. Long-distance migration events are most likely
caused by international trade similar as for other crop pathogens17–19.
In combination, our findings show an important role of long-distance
dispersal impacting the genetic make-up of populations from indivi-
dual fields to continental scale genetic diversity.

Relaxation of genomic defenses against transposable elements
concurrent with global spread
Transposable elements (TEs) are drivers of genome evolution. In Z.
tritici, TE activity created beneficial mutations for fungicide resistance
and virulence on the wheat host20,21. Rapid recent adaptation of the
pathogen has benefitted from the activity of TEs with consequences
for genome size22. Unchecked transposition of TEs can be deleterious
and an array of defenses mechanisms has evolved to counteract their

Domestication
~10,000 BP

Early spread
~8000-5000 BP

~ 1790 CE
~ 1550 CE

~ 1600 CE

Number of genomes
50
100

South America
n = 50

Europe
n = 593

North America
n = 210

Oceania
n = 135

Middle East
n = 80

Africa
n = 37

a b

c

Fig. 1 | Global sampling of the wheat pathogen Zymoseptoria tritici retracing
the historical spread of its host. a Schematic representation of the introduction
of wheat across continents. b Septoria tritici blotch symptoms caused by Z. tritici

on wheat leaves. Pictures taken by B. A. McDonald, ETH Zurich. c Map of the
sampling scheme for the global collection of 1109 isolates for whole-genome
sequencing.
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activity both at the genomic and epigenetic level including targeted
mutations and silencing23. To analyze the effectiveness of genomic
defenses against active TEs, we screened all genomes for evidence of
TE insertions.Wemapped short-read sequencingdata on the reference
genome and a species-specific TE sequence library. We classified evi-
dence for TEs in each of the analyzed isolates as reference TEs (i.e. also
present in the reference genome) and non-reference TE (i.e. absent).
Detected TEs among isolates were binned into loci (width 100 bp) to
account for uncertainties about the precise mapping of the insertion
point.We found that the frequency spectrumofTE insertions is heavily
skewed towards low frequencies with 77% of TE insertions being found
in single isolates (~0.1% frequency) and 96%of insertionswere found in
ten or fewer isolates (<1%; Fig. S8a) consistent with strong purifying
selection. The Z. tritici genome contains both core and accessory
chromosomes (i.e., chromosomes not shared among all isolates of the

species; Fig. 3a)24. Accessory chromosomes have higher TE densities
(15–33% vs. 5.5–19%24; Fig. 3b) reflecting lower selection pressure on
accessory chromosomes25. Beyond this, accessory chromosomal
regions are broadly differentiated from core regions based on
sequence, transcription and epigenetic feature sets (Fig. 3c). The pri-
mary differentiator (i.e., the first principal component) separated
euchromatic and heterochromatic (H3K9me2) chromosomal seg-
ments. These differences in epigenetic marks were matching TE den-
sity variation, consequences of genomic defenses (i.e., repeat-induced
point mutations), and GC content. The number of TE insertions was
not correlated with GC content but was positively correlated with the
presence of facultative heterochromatin (H3K27me3) and negatively
correlated with euchromatin marks. H3K27me3 is also a hallmark of
accessory chromosome segments consistent with previous
findings26–28. Short insertion/deletion (indel) polymorphism was
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Oceania). b Principal component analysis, showing the first and second compo-
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distributions represent the distribution for each PC. PCs 1 to 8 are shown in Fig S4.
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positively correlated with the heterochromatic accessory regions,
consistent with purifying selection acting against indels mostly in
gene-dense regions.

The pathogen genome shows variation in TE content among
populations from different continents, suggesting that the TE content
was influencedby the colonization historyof the species22,29. Hence, we
tested whether recently established populations were differentiated

from center-of-origin populations. We found that TE insertion poly-
morphisms (TIPs) aremost often specific to a genetic cluster with only
31% of insertions shared by two or more populations (Fig. S8b). We
used TIPs as a genetic marker and found that population differentia-
tion was matching differentiation assessed using short variants (Fig.
S8c). Hence, the population history of the pathogen was an important
factor shaping TE content. We also found that the per-individual TE
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content has increased in most areas outside of the center of origin. TE
detection using short read sequencing data is constrained by
sequencing depth, hence we accounted for depth in our comparative
analyses of TE content (Fig. 3d). The TE content of the Middle Eastern
and African genomeswas lower than in any other regions ranging from
164–394 (median = 302) and 184–429 TIPs (median = 300), respec-
tively, including only samples with coverage below 35. In contrast, the
Oceanian, North American and South American genomes contained
among the highest TE numbers (258–513, median = 373; 283–513,
median = 462; 237–476,median = 375 TIPs, respectively) and European
genomes showing intermediate TE counts (209–669, median = 334
TIPs, including only samples with a coverage below 35).

The increase in TE content was broadly spread among super-
families and included both DNA transposons and retrotransposons
(Fig. S9, 10). Some superfamilies showed particularly strong signatures
of expansion outside of the Middle East and Africa including Copia
retrotransposons (RLC) andother LTR retrotransposons (RLX) (Fig. 3e,
f). The RLC expansion is mainly driven by the Deimos element with an
increase from 11.3 copies on average in genomes from the Middle East
and Africa to an average of 50.8 copies per genome outside the center
of origin (Fig. 3g and S9, 10). The RLX superfamily expansion is driven
by the Styx element, generally more present outside the center of
origin (Fig. 3g and S9,10). The Styx activity was shown to affect asexual
reproduction on the host30. We also observed population-specific
expansions such as the LINE (RIX) Juno element mostly present in
North American and Australian populations, the Helitron (DHH)
Fatima expanded primarily in the Australian population, and the DTX
miniature inverted-repeat TE (MITE) Unicorn most widespread in
North American and New Zealand populations (Fig. S9,10). The broad
increase in TE content outside of the center of origin suggests a
relaxation of genomic defenses over the evolutionary history of the
pathogen on wheat.

Many ascomycetes share a genome defense mechanism against
TEs that can rapidly introduce targeted mutations into newly dupli-
cated sequences, called repeat-induced point mutation (RIP)31,32. RIP
machinery is active in genomes of Z. tritici, with high levels of RIP-like
mutations identified in genomes from the center of origin and wild-
grass-infecting sister species29,33. We analyzed the global panel for
evidence of RIP-like mutations by reporting the RIP composite index.
Themedian index is above 1 inTE sequences across all genetic clusters.
However, we found that RIP strength varies considerably among
genetic clusters with the strongest signatures found in genomes from
Middle Eastern and African isolates (Fig. 4a). The Middle Eastern and
African clusters tend to include genomeswith both lowTE content and
strong RIP signatures (Fig. 4b, S8a, b). In more recently colonized
regions, genomes showed a negative correlation between the strength
of RIP signatures and the amount of TEs per genome (p value <2.2e−16;
slope of 6.7 × 10−4 in all populations outside of the Middle-East and
slope of 4.6 × 10−4 in the European population only; Fig. 4b & S11a, b).
The association between TE content and strength of RIP signature is
consistent with genomic defenses being less capable to prevent new
TE insertions following migration out of the center of origin.

How genomic defenses against TEs are modulated in fungi
remains largely unknown. TheRIPmachinery is activatedduring sexual

recombination in Neurospora34, thus suggesting that reduced sexual
reproduction could lower the efficacy of RIP. In Z. tritici, sexual
reproduction can occur during the wheat growing season but most
reproduction is thought to occur at the end of the season35. The rate of
sexual reproduction is high in all populations aswe found that the ratio
of mating types was consistently close to 50:50 (Fig. S11c). Alter-
natively, the RIP machinery could have lost function in some popula-
tions. In this case, TEs should show bimodal signatures of RIP with old
TEs carrying signatures of historical RIP activity and recent insertions
with noorweakRIP signatures. Indeed, a high percentage of TEs shows
only weak evidence for RIP (composite index <0.5) in genetic clusters
outside of the Middle East and Africa (mean = 20.1%, range from
11.3–34.6%; Fig. S11d). By contrast, in the center of origin all genomes
had less than 10%of TEs showingweak evidence for RIP (mean= 7.48%,
min = 5.18%). We confirmed the bimodal RIP signatures by analyzing
individual TEs in 20 chromosome-level assembled genomes (Fig. 4c).
All genomes shared a major RIP composite index peak of ~2. A sec-
ondary peak indicative of TEs without RIP was found in genomes from
the Americas, Oceania, and Europe. Despite the higher TE activity, we
found no evidence that the loss in RIP functionality also led to high
gene duplication events. The strength of RIP signatures is associated
with the size of the TEs as small elements show little to no RIP sig-
natures (Fig. 4d) consistent with the RIP machinery being inactive on
small repeats23. In Neurospora crassa, two pathways mediate RIP with
one dependent on RID and one on Dim234. In Z. tritici, the Dim2
methyltransferasewas functionally linked to the occurrence of RIP-like
mutations in repeats including during mitosis33,36. Furthermore, the
presence of a functional dim2 copy is strongly correlated with lower
GC content of TEs, hence deamination of cytosines33,36. The dim2 gene
was duplicated multiple times in some genomes causing loss-of-
function mutations triggered by the RIP mechanism itself33,37. We
found that the ancestral copy of dim2 shared higher identity with the
functional copy of dim2 in the genomes of the Middle Eastern isolates
than other populations (Fig. S11e). The European populations hadboth
the largest range in the number of detected paralogs and the highest
copy numbers overall (Fig. S11f). This is consistent with a deleterious
runaway gene-duplication process affecting amolecular component of
the RIP machinery, explaining the loss of RIP efficacy within the
species.

Adaptation to fungicides and changing climates along con-
tinental gradients
Globally distributed pathogens experience significant environmental
heterogeneity that potentially constrains or facilitates future range
expansions and adaptation. The use of pesticides across the globe to
combat agricultural pathogens has triggered the parallel emergenceof
resistance with significant economic consequences6. To retrace the
global emergence of fungicide resistance in Z. tritici, we analyzed
mutations in resistance genes using isolates collected over three dec-
ades (1986 to 2016). This time span covers the introduction of several
major fungicides to agricultural fields. Resistance to the ubiquitously
used azole fungicides is often mediated by mutations in the CYP51
gene38. RecentNorth Americanpopulations gained the Y137Fmutation
but not the I381V or V136A mutations rising in frequency in Europe

Fig. 3 | Transposable element expansion outside of the pathogen’s center of
origin. a Presence of each chromosome in the 1109 isolates assessed by depth of
coverage. Yellow colors in panels a–c represent the known accessory chromo-
somes while the core chromosomes are shown in teal. b Mean number of trans-
posable element insertion polymorphisms (TIPs) per 10-kb window for each
chromosome. The dotted line represents the genome-wide mean. c Principal
component analysis using genomic, epigenomic and transcriptomic information
per 10-kbwindowaswell as number of variants (short variants and TIPs).dDot plot
showing the number of TIPs and the genome-wide depth of coverage for each
sequenced isolate. The color and shape differentiate the genetic clusters identified

based on the genome-wide short variants. Names of the clusters include an
abbreviation of continents and a more precise geographical location (MEA: Middle
East and Africa; NA: North America; SA: South America; OC: Oceania). e Violin plots
of the number of TIPs per DNA transposon (class II) TE family and per cluster. TIP
numbers were normalized by the median from the three clusters found in the
center of origin. Only TE families with a median number of insertions above eight
are represented. fViolinplots of the numberof TIPs per retrotransposon (class I) TE
family and per isolate with identical normalization as in panel e. g Number of TIPs
per isolate for two TEs showing an increase out of the center of origin.
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over the same period (Fig. 5a). European populations harbored the
most diverse set of azole resistance mutations, consistent with the
early and intense applications of this fungicide class. The I381V and
V136A mutations occurred at high frequency since the early 2000s,
whereas the S524Tmutationwas onlyobserved at a low frequencywith
a delayed onset. Resistance arose later in Oceania and North America,
consistent with the later application of azoles in those locations. No
resistance mutations were detected in the Middle Eastern or African
populations, matching the absence of azole treatments in those
regions. We found similar geographic patterns for the E198AK muta-
tion in the beta-tubulin gene associated with benzimidazole resistance
as well as for the G143A mutation in the mitochondrial gene cytb,
known to cause resistance to Quinone outside inhibitors fungicides
(Fig. 5b). As expected from their more recent introduction, mutations
related to resistance to succinate dehydrogenase inhibitors (SDHI)
were only observed in the most recently sampled populations in Eur-
ope (Fig. S12). Overall, the global analyses of fungicide resistance sig-
natures show how European populations consistently developed the
first known mutations to newly introduced fungicide.

Changes in climatic conditions create complex challenges for
plant breeders to create resilient crops39. Concurrently, pathogen
populations are exposed to changes in temperature and humidity
patterns. The historic spread of Z. tritici has likely created significant
selection pressure to adapt to climates associated with the global
range ofwheat cultivation.Here,weanalyze the genetic architectureof
climate adaptation by mapping standing variation along climatic
clines. The pathogen is endemic to regions with distinct climates, from
the dry and warm conditions in the Middle East to the temperate
oceanic climate ofWestern Europe and the humid continental climates
of some North American locations. We performed genotype-
environment association (GEA) mapping based on the climatic condi-
tions of the sampling locations. We analyzed a total of 19 bioclimatic
variables covering annual trends, seasonality, and extreme environ-
mental factors, such as the maximum temperature of the warmest
month or the precipitation of the driest quarter year (Fig. 5c, d, Sup-
plementary Data 4).

We identified 1956 variants significantly associated with at least
one climatic variable and 640 variants with a minor allele frequency
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(MAF) higher than 5%. The number of associated variants per climatic
variable ranged between 36 and 541 (for BIO9 and BIO6 respectively),
including 1–190 significant SNPs with a MAF > = 5% per climatic vari-
able (Fig. 5e).We investigatedwhether variant classes were enriched in
the set of significantly associated SNPs. Using permutations, we found
that both non-synonymous and intergenic variants were more fre-
quently associated with climatic variables than expected randomly
while synonymous variants were significantly depleted (Fig. S13b). We
found 187 genes that were in proximity or directly affected by variants
associated with bioclimatic variables and with a MAF> = 5%, including
65 containing non-synonymous variants (Supplementary Data 5). For
each GEA, we retrieved significantly associated loci by clustering sig-
nificant variants within a distance of 10 kb. The significant variants
clustered into 5–27 distinct loci per GEA consistent with a polygenic
basis formost climate adaptation (Fig. S14–19; Supplementary Data 4).
A polygenic architecture of thermotolerance was previously found in
other fungi such as Saccharomyces cerevisiae40,41. A large number of
associated loci were shared between GEA of different climatic vari-
ables. Highly correlated climatic variables including BIO5 and BIO10,
the maximum temperature of the warmest month and the mean
temperature of the warmest quarter, respectively, shared also higher
numbers of significantly associated SNPs (Fig. 5d, Fig, S13a). However,
we also identified hotspots of climatic adaptation loci for largely
independent climatic variables (Fig. 5f). We identified a large segment
of chromosome 7 and a telomeric region of chromosome 13 to be
hotspots for climate associations. The chromosome 7 locus overlaps
with the Cyp51 gene involved in azole fungicide resistance. Hence, the
association could be due to correlations in the application of fungi-
cides and climatic factors. Temperate regions such as Europe show
higher azole resistance (see above) than the Middle East, thus leading
to an indirect association between fungicide resistance genes and cli-
matic variables. However, at the same location on chromosome 7 is a
quantitative trait locus (QTL) for growth at suboptimal temperature42,
so that locus could well underpin climatic adaptation independent of
Cyp51. Further analyses of temperature sensitivity QTLs showed that
three out of the four previously described loci are overlapping with
loci associated with climatic variables (Supplementary Data 6). For
example, the temperature-sensitivity QTL on chromosome 1 overlaps
with loci associated with multiple temperature-related climatic vari-
ables such as themean temperature of thewarmest quarter (Fig. 6a–c).
A variant associated with the mean temperature of the warmest
quarter and overlapping with a QTL previously discovered in a central
European cross (chr 1 at 2,090,068 bp) shows a global distribution of
both alleles. By contrast, a second variant (chr 10 at 452,864 bp)
associated with the mean temperature of the warmest quarter but not
overlapping the previously discovered QTL (Fig. 6b, d), shows no
allelic variationwithin central Europeanpopulations.Alleles associated
withwarmer climates were also found in theUSMidwest characterized
by cold winters and high temperatures in summer. Our association
analyses capture most likely only a subset of all loci contributing to
climatic adaptation across the global distribution range. Hence,
some degree of climate-genotype mismatches is expected across
geographic regions if climatic adaptation is polygenic. Our analyses
highlight the power of covering global genetic diversity to
gain insights into the genetic architecture of recent adaptation in
species.

To identify whether adaptive mutations tend to arise locally or
occur across large geographic areas,weclustered significant loci based
on the presence or absence of adaptive variants per country. We
identified eight clusters characterized by shared adaptive variants with
a similar geographic distribution (Fig. 6e, Fig. S19). Some clusters of
adaptive variants are highly geographically localized (i.e., clusters 3, 5,
and 6) while other clusters are widespread (i.e., cluster 4). Most
adaptive alleles for extreme cold conditions were found in the popu-
lations subjected to the harsh winters of continental North America

(see cluster 3; Fig. 6e–g). Clusters of adaptive alleles were geo-
graphically widespread such as the distributions along the Mediterra-
nean coast (see cluster 1). Taken together, the global genome
panel revealed substantial standing variation for environmental
adaptation with complex geographic patterns of local adaptation
evolution.

Discussion
Analysis of a thousand-genome panel recapitulated the spread of a
major fungal crop pathogen revealing tight links to the history of
globalwheat cultivation. The early divergence betweenMiddle Eastern
and African genotypes from those collected in the rest of the world is
consistent with a single expansion event from the center of origin
dating back millennia. The extant genetic variation was strongly
shapedby successive colonizationbottlenecks during the introduction
of the pathogen to the Americas and Oceania. The distinct loss of
genetic diversity and increased linkage disequilibrium likely caused
the loss of adaptive genetic variation and reduced evolutionary
potential in the most recently colonized regions. TE activity has
underpinned the rise of major adaptive mutations in the species20,30,43.
Remarkably, the TE activity is underpinned by a marked relaxation or
even loss of genomic defenses following population bottlenecks dur-
ing global colonization. The higher activity of TEs is likely a direct
consequence of reduced control and may have long-term con-
sequences for the pathogen. The relaxation of genomic defenses in
populations from the American, Oceanian, and European continents
could have been selected as an evolvability trait, thus increasing var-
iance in fitness in populations. The relaxation of genomic defenses
likely underpins incipient genome expansion within the species while
increasing the risk ofmutationalmeltdown. The resilience of crops and
agricultural ecosystems is threatened by the changing climate. The
ability of pathogens to adapt and expand their range under altered
humidity and temperature regimes as well as changes in seasonal
patterns is amajor concern. The identified genomic regions associated
with adaptation to environmental conditions highlight how a global
pathogen carries extensive variation to cope with climate change.
Integrating population genetic information of pathogen adaptation to
climatic gradients is a powerful asset for risk models of future patho-
gen spread. As climate change impacts crop production and most
likely resistance to pathogens, future research explicitly addressing
joint host and pathogen responses to warmer and drier climates is
necessary to mitigate future crop losses.

Methods
Sample collection, culturing, and sequencing
Fungal isolates were grown on V8, yeast sucrose broth (YSB) or yeast
malt agar (YMA) plates, or liquid culture prior to DNA extraction.
Complete information about the geographic origin, date of collection,
available sequencing datasets, and references are given in Supple-
mentary Data 1. Lyophilized or frozen fungal tissue was used for DNA
extraction with QIAGEN kits (DNeasy Plant Mini Kit, QIAcube HT).
Sequencing libraries were prepared from sheared DNA on an Illumina
sequencing platform following TruSeq library preparations. For the
collection from the Joint Genome Institute (see SupplementaryData 1),
DNA was extracted from single-spore isolates, the fragments were
treated with end-repair, A-tailing, and ligation of Illumina-compatible
adapters (IDT, Inc) using the KAPA-Illumina library creation kit (KAPA
biosystems). Plate-based DNA library preparation for Illumina
sequencing was performed on the PerkinElmer Sciclone NGS robotic
liquid handling system using Kapa Biosystems library preparation kit.
200ng of sample DNA was sheared to 600bp using a Covaris LE220
focused-ultrasonicator. The shearedDNA fragmentswere size selected
by double-SPRI and then the selected fragments were end-repaired, A-
tailed, and ligatedwith Illumina-compatible sequencing adaptors from
IDT containing a unique molecular index barcode for each sample
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library. The prepared libraries were quantified using KAPA Biosystems’
next-generation sequencing library qPCR kit and run on a Roche
LightCycler 480 real-time PCR instrument. The quantified libraries
were then prepared for sequencing on the Illumina HiSeq sequencing
platform utilizing a TruSeq paired-end cluster kit, v4. Sequencing of
the flow cell was performed on the Illumina HiSeq2500 sequencer
using HiSeq TruSeq SBS sequencing kits, v4, following a 2 × 150
indexed run recipe. Overall, we obtained 1368 Illumina resequencing
datasets for quality evaluation.

Draft de novo assembly and variant calling procedures
Weused twodifferentmethods to investigate genetic variation. Firstly,
we assembled the short-read sequencing datasets de novo using the
software SPADES v.3.14.144 with the “careful” method (details of the
assemblies in Supplementary Data 7). We used only the assemblies
with fewer than 1600 contigs and a total assembly length between
30–40Mb (filtered to remove any contigs shorter than 1 kb). Secondly,
we called sequence variants using short-read mapping on the IPO323
reference genome. We trimmed and filtered the reads with
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Trimmomatic v.0.39, thereby removing adapter sequences, trimming
leading and trailing bases with a quality lower than 15 for the rese-
quencing of 2020 and 10 for all previous resequencing, and removing
sequences shorter than 50 bp45. The trimmed reads were mapped to
the reference genome of IPO32324 using bowtie2 v.2.4.146. GATK
v4.1.4.1 was used for short-variant calling with the commands Haplo-
typeCaller, CombineGVCFs, and GenotypeGVCFs, setting the ploidy to
1 and the maximum number of alternative alleles to 247. To filter out
erroneously called short indels and SNPs, we started with a standard
set of hard filters using the GATK quality metrics, for which the
thresholds were set based on visualization of the metrics across the
called variants. The per-site filters included: FS > 10, MQ< 20, QD < 20,
ReadPosRankSum between −2 and 2, MQRankSum between −2 and 2,
and BaseQRankSum between −2 and 2. We also included a per-
genotype filter, removing any genotype with a depth lower than 3.

We further assessed the quality of our SNP calling using 8 isolates
that were sequenced two times (including in some cases in different
sequencing datasets). We assumed that the real variation between
these pairs should be close to 0, although we cannot completely
exclude the possibility of a small number of mutations happening
during culturing ormaintaining of these isolates in collection.We used
the differences, i.e., erroneously called variants, between the rese-
quencing pairs as an estimation of genotyping errors and to identify
the causes of genotyping errors. Most of the erroneously called var-
iants remaining after the hard filtering were related to genotypes with
near-equal numbers of reads supporting the reference allele and an
alternative allele, i.e., “heterozygous” alleles. Such genotypes were
called with high confidence even though such a heterozygous-like
pattern should be recognized as errors in a haploid organism and
could be due to misalignment or repeated sequences in the genomes.
We consequently implemented an allelic balance custom script to
recognize such positions and to filter out any genotype that had fewer
than 90% of reads supporting the called allele. This filter removed 75%
of the erroneous variants left between the resequenced pairs after the
hard filtering. As the rest of the erroneous variants were related to low
sequencing depth, we further implemented a per-sample missing data
and low-depth filtering, removing any sample with more than 20% of
missing data and a mean depth of coverage lower than 6 on the core
chromosomes (based on vcftools –missing-indv and–depth options)48.
In the next filtering step, we removed the samples that were clones or
near-clones. To identify these isolates,we created a network of isolates
with an identity-by-state value superior to 0.99 (as measured by plink
v1.949) and extracted the subgraphs designating groups of clones (with
the R packages tidygraph and ggraphs for visualization). In each group
of clones, we filtered out all isolates except for the isolate with the
lowest amount of missing data. These per-sample filters resulted in a
final isolate count of 1109.

The final filtering step was a per-site filter based on the number of
missing genotypes. Considering that Z. tritici contains accessory

chromosomes that are expected to be present in some isolates and
absent in others, the relevant threshold of missing data had to be
adapted per chromosome. To identify the presence-absence of
accessory chromosomes, we assessed the depth of coverage in win-
dows across all chromosomes with bedtools v.2.29.2 (option coverage
followedby the option groupby to calculate themedianperwindow)50.
We normalized the depth estimates using the median depth over all
windows of the core chromosomes for the per-window depth. The
normalized depth was then used to infer presence-absence variants or
copy-number variation of chromosomes, in which we considered that
any chromosome with a normalized depth lower than 0.2 was absent.
Based on the estimated number of chromosomes present in the
dataset, we calculated missing data thresholds at 80% of genotyped
isolates with the–max-missing-count option of vcftools (NAmax = 222
for the core chromosomes and between 328 and 1048 for the acces-
sory chromosomes)48.

Population structure and population-level statistics
We used a subset of the filtered biallelic SNPs (one SNP every 1 kb, no
missing data, and a minor allele frequency of 0.05) to estimate the
population structure of our worldwide Z. tritici collection. This was
done separately with a principal component analysis (R package
SNPRelate51) and with a snmf clustering method from the LEA
package52. The clustering analysis ran for a value of K (i.e., the number
of clusters) ranging from 1 to 15 and with 10 repetitions per K. To
identify the best K, we used the entropymethod implemented in snmf
which evaluates the quality of fit of themodel to the data, as well as the
smallest cluster size and the number of isolates assigned to any cluster
with a coefficient higher than 0.75 (considered as non-admixed). We
created a phylogenetic network with a subset of the isolates (7 ran-
domly drawn isolates per country/state for all countries with at least 7
isolates), with the software SplitsTree553. As an outgroup, we also
included resequenced Z. ardabiliae isolates (“SRR6671804”-
“SRR6671820”)54, forwhich the variant callingwasperformedusing the
same parameters and filters as above but only hard filters were applied
(retained 11 isolates after filtering). For the network construction, SNPs
were filtered to include only variants with no missing data in either Z.
ardabiliae or Z. tritici, a MAF of 20%, and no variants closer than
1000bp to reduce biases. We retained 9556 SNPs to compute the
SplitsTree network.

For the analyses relying on the comparison of distinct groups, we
discretized the populations by using only isolates belonging to one of
the populations with a proportion higher than 0.75 at K = 11, the
inferred best number of clusters. These genotypes were then used as
input for treemixwhich infers splits betweenpopulations and creates a
population tree55. We ensured that the tree shape was consistent
regardless of possible migration events by running treemix with sev-
eral possible migration events ranging from 0-6. We used the assem-
bled genomes ofZ. ardabiliae and Z. passerinii as outgroups to root the

Fig. 6 | Pathogen adaptation along global climatic gradients. aManhattan plot
for genotype-climate associations for two bioclimatic variables related to high and
low temperatures, respectively. Values obtained from the software GEMMA with
the default linear model (Wald test). The horizontal line indicates the Bonferroni
threshold. b Density plots for two examples of significantly associated variants
from panel A. The lightest-colored curve represents the climatic values of the
sampling site for the isolates carrying the reference allele and the darkest color for
the isolates carrying the alternative allele. The variant shown in yellow is locatedon
chromosome 10 at position 452,864 bp. The variant in teal is located on chromo-
some 6 at position 1,686,518 bp. c Map showing allele frequencies of a variant
significantly associated with the mean temperature of the warmest quarter
(chromosome 1, 2,090,068 bp, GEA based on 1103 isolates). The associated box
plots represent the distribution of themean temperature of the warmest cluster at
the sampling location of isolate carrying the two alleles. The lower and upper
hinges correspond to the first and third quartiles, the whiskers to the largest value

are within 1.5 times the inter-quartile range and the central horizontal line defines
the median. d Identical to panel C for the variant at position 452864 bp on chro-
mosome 10. e Heat map representing the proportion of minor alleles for all the
variants in each k-means cluster which are present in each country (or state). Dark
colored cells indicate that the minor allele is found at least once in the corre-
sponding country (or state) for all the variants grouped in the corresponding
k-means cluster. A white colored cell indicates that theminor allele is absent for all
the variants classified in the k-mean cluster. f Minor allele frequency classified in
each k-mean cluster. The framed numbers indicate the number of distinct variants
included ineach cluster. The lower andupper hingesof theboxplots correspond to
the first and third quartiles, thewhiskers to the largest value arewithin 1.5 times the
inter-quartile range and the central horizontal line defines the median.
g Bioclimatic variables associated with the variants classified in each k-mean
cluster.
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tree56. We used the scikit-allel python package to measure genetic
diversity (pi), taking into account only the non-admixed isolates from
each cluster, in non-overlapping windows of 1 kb57. To remove win-
dows with too much missing data (i.e., those that would artifactually
lower the diversity), we selected only windows in which less than 20%
of the variants were filtered out. We controlled for the variation in
isolate numbers between clusters by subsampling each cluster 10
times to the smallest cluster size (N = 16) and averaging the obtained
diversity estimates per window over the 10 subsamples.

Transposable elements and repeat-induced point mutations
We called the TE insertions with the software ngs-te-mapper258. In this
process, the sequencing reads are first queried against a library of TE
sequences, for which we used the TE consensus sequences obtained
from 20 fully assembled genomes of 19 global isolates59. The “junction
reads” that align both on a TE consensus sequence and on the flanking
genome are used to determine the site of insertion of reference and
non-reference TEs. To take any inaccuracies in the detection of the
insertion sites into account, the positions of the insertions were
rounded to 100bp, so that insertions of the same element in a short
windowwere considered to be the same insertion for further analyses.
The insertions found in more than 10 samples were used to create a
PCA (prcomp function from the stats R package), clustering the iso-
lates based on their shared TE insertions.

We investigated the genomic distribution of variants, in relation
to genomics, transcriptomics and epigenomics estimates. We gath-
ered information from several sources and aggregated the data in 10-
kb windows. We used transcriptomic data produced previously60 and
analyzed to calculate TPM56, representing the gene expression during
the necrotrophic and the asymptomatic phases of infection for the
reference isolate. To include epigenomics data, we used previously
published histone mark ChIP-seq data26 and identified the peaks for
several histone marks: H3K4me2, H3K27me3, and H3K9me2 (NCBI
BioProject “PRJNA286790”) assessed in two biological replicates. We
trimmed and mapped the reads using Trimmomatic as above and
bowtie, and filtered themapped reads to keep only reads aligning with
a quality higher than 30 using samtools. The histone mark peaks were
called using macs2 (option —no-model)61. Only peak regions con-
sistently identified in both replicates were kept (bedtools intersect).
The coverage of histone mark peaks along chromosomes was com-
puted by assessing the number of bases belonging to a histone mark
peakperwindow. To removewindowswith low variant counts due to a
low mappability, we used genmap to estimate mappability and
removed windows with a value lower than 0.85 (threshold estimated
visually based on a density plot of windows across the genome)62.

To analyze the repeat-inducedpointmutations in the collectionof
genomes, we used the same consensus TE sequences59 as a reference
genome for mapping of reads (as single reads) with bowtie2. Using a
custom python script based on the biopython library63, we also esti-
mated the GC content and the RIP composite index64, an estimate
created to detect ratios of dimers indicative ofmutations typical of the
repeat-induced point mutation process (RIP). This was done on the
reads aligning to the TE consensus sequences, thus providing an esti-
mation of RIP in all transposable elements as well as per TE consensus.
We also used previously computed values of the RIP composite index
for 20 chromosome-level assemblies29.

One of the most important enzymes for RIP is dim2. Based on
previous knowledge that the strain Zt10 contains a functional copy of
dim233, we extracted the sequence of the gene (Zt10_unitig_006_0417)
as well as its two flanking genes (Zt10_unitig_006_0416, and Zt10_uni-
tig_006_0418). These were then used as query sequences for the
software blast to detect the presence and location of the 3 genes in de
novo draft assemblies based on the Illumina resequencing. In many
isolates dim2 is found inmultiple copies. We thus identified the native
copy as the copy found between the two flanking genes or, when the

assemblies did not include all three genes on one contig, the copy
found within less than 10 kb of one of the flanking genes. We then
considered the percentage of identity between the native copies and
the functional copy of Zt10.

Statistical differences between geographical groups were asses-
sed using a one-way ANOVA with blocks, with the sequencing batch
considered as the confounding block. The sequencing batch effectwas
especially strong for the genomes fromHartmann et al.65 probably due
to a strong GC bias in the sequencing. As a post-hoc analysis, we used
mean separation tests (least-square means) and displayed the results
as letters on the corresponding plots.

Adaptation and selection
We obtained geographical coordinates from the metadata attached to
the isolates or inferred them based on the most precise sampling
location available. Coordinates inferred can be found in Supplemen-
tary Data 1. We downloaded gridded weather and climate data at the
10’ resolution from the WorldClim database version 2 (https://
worldclim.org). The geographical coordinates were used to approx-
imate the environmental conditions of origin for each isolate from all
bioclimatic variables, which include for example the mean diurnal
range and the annual precipitation as an average between 1970 and
2000. Based on these environmental estimates and the genomic var-
iants, we identified genotype-to-environment associations with the
softwareGEMMA0.98.366. We used a LOCO (Leave-One-Chromosome-
Out) approach to estimate the kinship matrix on the genome exclud-
ing the chromosome on which we were estimating the associations.
Significance threshold was set using the Bonferroni correction
method, i.e., by dividing the traditional threshold of significance of
0.05 by the numbers of variants that were tested. Nearby significant
SNPs were grouped together in “significant loci” if they were closer
than 10 kb. To identify the genes which are potentially causal for
adaptation to climatic conditions, we predicted the effect of the sig-
nificant variants on the genes andproteins using SnpEff67.We created a
custom SnpEff database so that the predictions would match the gene
annotation we are using68 and setting the upstream/downstream
interval length to 1 kb.We also used the SnpEff predictions to compare
the distribution of effects (synonymous, non-synonymous, and
modifier) in the significantly associated variants and in all the variants
using 200 random draws.

We investigated the geographic distribution of the potentially
adaptive alleles we found through k-means clustering of each allele’s
presence-absence per country. Per significant locus and per biocli-
matic variable, we selected the variant with the lowest p-value (i.e., the
top variant in each “peak”), and identifiedwhether theminor allelewas
present or absent per country/state includingmore than5 isolates. The
matrix of presence/absence was then used for the clustering. This
analysis did not reveal a clear-cut pattern of adaptation sharing a set
number of geographic distributions. Although there was no clear-cut
best number of clusters even when testing up to 30 clusters, we chose
eight clusters for graphical representation, using the elbow method.
To investigate fungicide resistance, we identified the presence/
absence of known resistance alleles in the isolates of the dataset, fol-
lowing themethod in ref. 15. We then compared the frequency of these
alleles in the different geographic locations, and through time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data is available from the NCBI Sequence Read Archive.
Individual accession numbers can be retrieved from Supplementary
Data 1 and from theMethods section. Climatic data was obtained from
the publicly available WorldClim database version 2.
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Code availability
To ensure reproducibility of the analyses presented in thismanuscript,
all custom scripts are available from https://github.com/afeurtey/WW_
PopGen (https://doi.org/10.5281/zenodo.7572234)69. Post-processing
and visualization of the data were done in R, bash, and python, avail-
able as R markdown reports in the github repository.
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