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Application of Species Distribution 
Modeling for Avian Influenza 
surveillance in the United States 
considering the North America 
Migratory Flyways
Jaber Belkhiria1, Moh A. Alkhamis2,3 & Beatriz Martínez-López1

Highly Pathogenic Avian Influenza (HPAI) has recently (2014–2015) re-emerged in the United States 
(US) causing the largest outbreak in US history with 232 outbreaks and an estimated economic impact 
of $950 million. This study proposes to use suitability maps for Low Pathogenic Avian Influenza 
(LPAI) to identify areas at high risk for HPAI outbreaks. LPAI suitability maps were based on wild bird 
demographics, LPAI surveillance, and poultry density in combination with environmental, climatic, 
and socio-economic risk factors. Species distribution modeling was used to produce high-resolution 
(cell size: 500m x 500m) maps for Avian Influenza (AI) suitability in each of the four North American 
migratory flyways (NAMF). Results reveal that AI suitability is heterogeneously distributed throughout 
the US with higher suitability in specific zones of the Midwest and coastal areas. The resultant suitability 
maps adequately predicted most of the HPAI outbreak areas during the 2014–2015 epidemic in the 
US (i.e. 89% of HPAI outbreaks were located in areas identified as highly suitable for LPAI). Results are 
potentially useful for poultry producers and stakeholders in designing risk-based surveillance, outreach 
and intervention strategies to better prevent and control future HPAI outbreaks in the US.

Avian Influenza (AI) is an infectious viral disease of domestic and wild birds. Depending on the strain and sever-
ity of the clinical symptoms on naïve chickens, AI is pathotyped into low pathogenic avian influenza (LPAI) or 
highly pathogenic avian influenza (HPAI)1. Mild symptoms are observed in poultry infected with LPAI and wild 
birds usually are asymptomatic. HPAI however, is a re-emerging, highly contagious and economically devastating 
viral infection with severe socio-economic consequences that strongly impact the poultry industry2. HPAI is also 
considered an important public health concern due to the potential contribution of AI virus (AIV) to the emer-
gence of human influenza pandemics3. So far, subtypes H5 and H7 of the virus are recognized to cause HPAI, 
but not all H5 and H7 serotypes are virulent4. It has been proven that AI viruses (AIV) undergo frequent genetic 
re-assortment and LPAI may mutate to HPAI5. Little is known about the origin of LPAI to HPAI mutation, but 
it has been linked to the introduction of the LPAI virus from wild birds into poultry farms6. The more the LPAI 
viruses circulate and replicate in poultry dense areas, the higher the risk of mutation to HPAI viruses6. LPAI 
viruses circulate in wild bird populations, primarily in waterfowl and migratory water birds belonging to the 
Anseriform and Charadriiform orders, which are believed to be the major natural LPAI virus reservoirs7. In con-
trast, the main source of HPAI transmission, particularly in Asia and Europe, has been associated with the trade 
of live poultry, poultry products and smuggling birds8. There have been rare reports on the circulation of HPAI in 
wild birds and the associated prevalence and pathogenicity in those HPAI wild bird cases has been shown to vary 
widely depending on the infected species9.
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Historically, the US was affected by several HPAI epidemics; the most important ones occurred in 1924, 1983, 
2004 and recently in 2014–201510,11. There were no reports of significant human illness resulting from any of 
these outbreaks12. The 1924 H7 outbreak involved East Coast live bird markets13,14 but was successfully controlled 
and eradicated at an estimated cost of $13 million15. The 1983–84 H5N2 outbreak resulted in the destruction of 
approximately 17 million chickens, turkeys and guinea fowl in the northeastern US to contain and eradicate the 
disease16. In 2004, the USDA confirmed an H5N2 outbreak in chickens in the southern US17,18. The outbreak was 
quickly controlled due to close coordination and cooperation between the USDA and state and industry leaders. 
The recent 2014–2015 HPAI epidemic affected over 21 states, where 242 poultry farms (221 commercial, 21 
backyard) and around 100 wild birds were confirmed to be HPAI positive19,20. The estimated costs to control the 
outbreak exceed $950 million19. Although the main sources of disease introduction and spread of this 2014–2015 
epidemic are still under investigation, genetic analysis revealed the presence of different HPAI subtypes, includ-
ing H5N8, H5N2 and a novel H5N1, which has been attributed as the likely cause of the recent epidemic19. This 
new H5N1 strain is distinct from those found in other parts of the world. USDA investigations suggest that 
this new H5N1 is the consequence of a re-assortment between Asian H5N8 HPAI strains with North American 
LPAI viruses and probably occurred during summer arctic migration, where Asian and Alaskan migratory birds 
intermingle.

The first confirmed case of the U.S. 2014–2015 epidemic occurred on December 2014 at a small-scale back-
yard operation in Oregon consisting of approximately 130 poultry birds21. The first wild bird cases were detected 
in Washington state in December 201422. Several outbreaks were subsequently reported in wild bird populations 
in addition to multiple backyard and commercial poultry flocks in the West Coast. In April 2015, cases were 
observed in the American Midwest in Wisconsin where a State of Emergency was declared as a response to the 
rapid spread of the AI viruses23. The states of Iowa, Minnesota and Wisconsin were most affected representing 
90% of the total number of birds infected across the U.S. Overall, over 232 outbreaks occurred during 2014–2015 
affecting almost 50 million birds24. Preliminary studies show that the recent HPAI outbreaks are linked to the 
North American Migratory Flyways [NAMF]25,26. These flyways are migratory paths used by bird species moving 
between Canada, Latin America or Asia in search of water and food. Interestingly, some AIV strains are found 
only in specific flyways27. Flyways have specific climatic and environmental characteristics that may impact the AI 
epidemiological cycle in these areas. A better understanding of the factors contributing to the LPAI presence and 
occurrence of HPAI outbreaks in the different flyway sub-regions as well as the identification of areas at highest 
risk of AIV transmission, especially at the wild-domestic interface, are needed. This knowledge could be used to 
develop and implement solutions for improved prevention and rapid control of future HPAI epidemics in the US.

Species Distribution Modeling (SDM) has proven to be effective for identifying the most important predictors 
contributing to HPAI outbreaks and for determining likely areas of HPAI occurrence in previous studies in Japan 
and the Middle East28,29. Moreover, areas combining high poultry density with suitable areas for LPAI may be 
at higher risk of mutation from LPAI to HPAI. In this study we aim to prove the value of using LPAI suitability 
maps based on wild birds LPAI surveillance in addition to climatic, environmental and, poultry demographic 
factors to identify areas at high risk of HPAI outbreak occurrence. A “presence-only” SDM30 was used to gener-
ate four suitability maps for LPAI considering the four NAMF: Atlantic, Mississippi, Central, and Pacific. These 
four sub-regions were chosen because (1) they capture the natural migratory bird flyways (i.e., routes the birds 
follow to migrate between nesting and wintering areas), (2) they correspond to established, non-overlapping, 
administrative areas31, with independent Councils (i.e., representatives from each state and territorial agency and 
technical committees within each flyway) used to facilitate management of migratory birds and their habitats and, 
therefore, (3) we believe is the best regionalization for both capturing the distinct eco-epidemiological character-
istics of AI and facilitating the decision making and the implementation of potential risk-reduction activities or 
policies. Results of this study will provide further insights into the epidemiology of AIV in the US and will inform 
the design of more cost-effective, risk-based surveillance programs specific to each NAMF sub-region for better 
prevention and control of future HPAI epidemics in the US.

Results
The LPAI dataset used in this study consisted of 7,714 positive samples. Those positive samples are spread on the 
four flyway sub-regions as following: Pacific (37.9%), Central (9.47%), Mississippi (38.96%) and Atlantic (13.67%) 
(Fig. 1).

Spatial distribution of poultry demographics is shown in Fig. 2. Backyard chicken farms were well spread 
across the country with a higher density in the East Coast region; the Midwest and the Rocky Mountain area have 
the highest density (Fig. 2E). Poultry farms are abundant in the Atlantic and the Mississippi flyway, Texas and 
Oklahoma in the Central flyway and the coastal region of the Pacific flyway (Fig. 2D). Poultry density is high in 
the Atlantic and the Mississippi flyway (Fig. 2B). Broiler farms are located in the South Atlantic in the Atlantic 
flyway and East South Central in the Mississippi flyway (Fig. 2C).

Important predictors and high suitable areas for LPAI. Five environmental variables were neces-
sary to determine suitability for LPAI outbreaks in the Pacific flyway with an AUCc of 0.98: altitude, NDVI, 
mean temperature of the warmest quarter, land cover and backyard chicken farm density (Table 1). Areas of 
high suitability in the Pacific flyway were the coastal areas in the Pacific North West, the Sacramento Valley and 
Southern California, the central region in Alaska and the Mid-Atlantic (Fig. 3A). For the Central model, four 
environmental variables provided a model with an AUCc of 0.94: merged migratory bird abundance, altitude, 
backyard chicken density and land cover (Table 1). Areas with highest suitability are the eastern part of the coastal 
plain in Texas and the east areas of South and North Dakota (Fig. 3A). NDVI, land cover, distance to water sur-
faces and altitude were the variables contributing the most for the Mississippi flyway resulting in a model with 
an AUCc of 0.88 (Table 1). This model estimated that the North Central States of the Midwest (i.e. Minnesota, 
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Iowa, Michigan, Illinois, Indiana and Ohio) are highly suitable for LPAI (Fig. 3A). For the Atlantic flyway, mean 
temperature of the warmest quarter, distance to water surfaces, merged migratory bird abundance, backyard 
chicken farm density and land cover were the most important predictors resulting in a model with an AUCc of 
0.96 (Table 1). LPAI suitable areas in the East coast were mostly around the Delaware Bay (Fig. 3A). Overall, very 
low correlation was observed between variables in each reduced model as shown in the Spearman correlation 
plots (see Supplementary Figure 1). Response curves also suggested important differences in the ranges in which 
those variables are important (see Supplementary Figure 2). For example, in the Pacific Flyway, highest relative 
probability of LPAI occurrence lies between 0 and 1500 meters above sea level, but above 1500 m the relative 
probability of LPAI occurrence is negligible. Those response curves also reflect a contrast in the range of values 
that are important when comparing different flyways. For example, type of land cover with the highest relative 
probability of LPAI presence differs between the four flyways.

Models’ diagnostics, validation and HPAI prediction ability. Model performance was considered 
good based on the ROC curves. Jackknives tests on training data, used for model selection, and response curves, 
used to characterize the areas of highest/lowest relative probability of presence are shown in Supplementary 
Figure 2 and Supplementary Figure 3. Up to 89% (n =  278/312) of the 2014–2015 HPAI cases were located in 
counties classified as “highly suitable” in the merged map of the four flyway models.

Discussion
Results suggest that LPAI surveillance data, together with wild and domestic bird demographics as well as cli-
matic and environmental factors can be used to accurately detect suitable areas for LPAI presence (AUCc from 
0.88 to 0.98). Moreover, a total of 89% of the counties reporting HPAI outbreaks during 2014–2015 were in highly 
suitable areas for LPAI. These results reinforce the hypothesis that the 2014–2015 HPAI outbreaks may have been 
associated to a LPAI-to-HPAI mutation and transmission at the wild-domestic interface in high bird density areas 
where high loads of AI viral circulation and replication was occurring. Suitable areas for LPAI presence were 
concentrated primarily in the North Central region (Minnesota, Iowa, Michigan, Illinois, Indiana and Ohio). 
Although a previous study in the US reported these states to be at high risk32, this study highlights several suitable 
areas that have not been previously identified (e.g., Coastal Plains of Texas, The Sacramento Valley in California) 
and that may be under-sampled and under-represented in the current surveillance programs. Moreover, the SDM 
models provide higher resolution and granularity than previous studies, which were conducted at the county 
level. Splitting the US into four distinct ecologic and geographic areas following the NAMF is a good method 
to produce models that capture the particularities of AI epidemiology in those specific regions. Moreover, the 
characterization of different risk factors in each flyway may facilitate the implementation of specific preventive 
and risk-mitigation strategies by each of the individual flyway Councils. Bird density rasters generated for this 
study, particularly backyard poultry farms’ density, provide a novel way to estimate bird populations. Estimates 
of backyard chicken farms density in California in this study are consistent with surveys conducted by extension 
specialists to estimate the census of California backyard poultry33. The authors believe the backyard bird density 
raster will benefit future poultry production studies.

Figure 1. Distribution of the LPAI cases in the United States. The different colors represent the geographic 
areas covered by the four NAMF according to The U.S. Fish & Wildlife Service 31. The black dots represent the 
spatial distribution LPAI cases reported by the Influenza Research Database from Jan 2005 to Feb 2015. Maps 
were created using ArcMap version 10.3 (Environmental Systems Resource Institute, www.esri.com).
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Overall, ecological and topographic variables were the main predictors in all of the models presented. More 
specifically, land cover, altitude, distance to water surface and NDVI were the factors with higher contribution to 
the LPAI suitability. Consequently, results indicate a higher LPAI suitability in low altitude, cultivated croplands 
and woody wetlands with a mean temperature of the warmest quarter between 10 and 25 °C. This supports find-
ings of similar studies that considered locations having these conditions as optimal habitats for aggregation of 
migratory waterfowl and thus at higher risk for AIV transmission between different bird species28,34. Moreover, 
humid areas and colder temperatures have been described as favorable for viral persistence in the environment35. 
Land cover was an important contributing factor in all models. Presence of cultivated croplands and woody wet-
lands seem to offer the most suitable environment for LPAI. In Alaska, areas with Dwarf scrub and Shrub seems 
to be correlated with LPAI presence36. Low altitude was consistently associated with AI outbreaks in three of the 
four models (Pacific, Central and Mississippi). This reinforces results from previous studies performed in differ-
ent countries that showed an inverse relationship between altitude and AIV outbreaks34,35,37. Distance to water 
contributed to the Mississippi and the Atlantic model. Areas close to inland water in the Mississippi region tend 
to be more suitable for LPAI presence. The Mississippi River basin and associated wetlands have previously been 
identified as major hotspots for HPAI outbreaks32,38. These areas contain many shallow bodies of water which 
have been proven to play an important role in rapid transmission of AIV39. The North East of the US, specifically 

Figure 2. Spatial distribution of the LPAI outbreaks in wild birds from Jan 2005 to Feb 2015 and HPAI 
2014–2015 outbreaks in the US. (A) Poultry density (B), Broiler farm density (C), Poultry farm density (D), 
Backyard farm density (E). The thick black boundaries represent the limits of each of the four North American 
Migratory flyways. In map (A) green points represent the LPAI samples and the red points represent the HPAI 
2014–2015 outbreak centroids. Color gradient of each pixel in map (B–E) represents density gradient from clear 
blue shading (low density) to bright blue shading (high density). Maps were created using ArcMap version 10.3 
(ESRI, Environmental Systems Resource Institute, www.esri.com).
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areas around the Delaware Bay and the Delaware River, seems to be highly suitable for LPAI. The Delaware Bay is 
classified on the Ramsar list of Wetland of International Importance40 as it is highly frequented by shorebirds and 
waterfowls. Those areas were also described as “hotspots” for AI41. Areas with moderate NDVI are suitable for 
LPAI presence in the Mississippi region and areas with low to moderate NDVI seem suitable for LPAI presence 
in The Pacific region. Low to Moderate NDVI values are often associated with areas where herbaceous plants and 
grasses are abundant. This type of vegetation represents an optimal food source for some waterfowl. Higher NDVI 
values are often associated with larger plant and trees34. Another predictor associated with the suitability of LPAI 
was the density of backyard chicken farms in the US42, particularly in the Pacific, the Central and Atlantic models 
(4.7%, 17.1% and 13.1% contribution, respectively). This agrees with previous studies in Asia, the Middle East 
and Africa that indicate a direct association between high density of backyard chicken and the occurrence of AI 
outbreaks43–45. A better characterization of the spatial distribution and biosecurity of backyard poultry farms will 
certainly allow refinement of current suitability maps and better identify the specific areas and time periods where 
AI outbreaks are more likely to occur.

The major challenge faced during this study was obtaining good quality data for the hypothesized important 
predictors. Namely, the incorporation of more accurate poultry farm location data instead of poultry farm density 
estimations would improve the ability of the models to identify areas where LPAI transmission from wild birds 
to poultry or from poultry to wild birds is most likely to occur. Suitability map precision could also be improved 
with better LPAI and HPAI presence data. Even though certified laboratories collect LPAI data, sampling bias is 
likely to be present as surveillance efforts are not uniform across all US states (i.e., regions with higher wildlife 
services stations and poultry production may tend to have more intensive surveillance programs and collect 

Variable

Pacific Central Mississippi Atlantic

% Contribution % Contribution % Contribution % Contribution

Altitude 39.4 17.4 12.5

Mean Temperature of Warmest Quarter (bio10) 18.7 42.5

Backyard chicken density 4.7 17.1 13.1

Land cover 18.4 10.4 27.2 12.3

Distance to water surfaces 21.5 17.4

NDVI 18.8 38.8

Merged Migratory birds abundance 55.2 14.6

AUC 0.98 0.94 0.88 0.96

AUCc 0.98 0.90 0.90 0.97

Table 1.  Percent relative contributions of the selected environmental variables to the MaxEnt models.

Figure 3. Validation of merged migratory flyways suitability map using the HPAI 2014–2015 outbreak 
data. The green points represent the centroids of the 2014–2015 HPAI outbreaks. The color gradient of 
each pixel represents the LPAI presence probability at the county level from clear red shading (low presence 
probability) to bright red shading (high presence probability). Map was created using both RStudio (RStudio 
Team, 2015) and ArcMap version 10.3 (ESRI, Environmental Systems Resource Institute, www.esri.com).
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higher numbers of wild bird samples). Furthermore, presence-only models relying on pseudo-absence data were 
used to correct for the fact that negative samples tend to be under reported by diagnostic laboratories. Positive 
cases were readily available and are likely to be more complete than negative results. However, adding unbiased 
negative results to the models could potentially improve the models’ predictions (i.e. using presence-absence 
MaxEnt). Model validation is restricted by the spatial scale of the HPAI outbreak data available (i.e. data were 
only available at a county level). Exact HPAI outbreak locations will not only allow a more accurate validation 
of the LPAI suitability maps but also will be useful for directly generating models using HPAI instead of LPAI 
data. Similarly, the lack of census data on backyard poultry in the US leads us to generate an estimate based on 
population census and socio-economic characteristics. Authors believe that using more accurate data on poultry 
demographics, particularly backyard poultry farms, will increase the predictive ability of our models as well as 
serve to identify priority areas where outreach and communication strategies should be conducted for backyard 
producers. Also, the reduced set of wild bird species selected in this study was based on the LPAI prevalence 
from the Influenza Research Database, which is likely biased and thus may lead to underestimation of the LPAI 
suitability in some areas. Furthermore, future studies should consider the incorporation of other sources of infor-
mation on migratory birds’ abundance. The North American Breeding Bird Survey is likely to underrepresent 
species such as breeding waterfowl that require a different type of sampling. While this dataset might be useful 
in investigating trends of a proportion of the population over time, it may not be a good indicator of abundance 
for specific water birds. This could potentially explain why migratory bird density factors were not an important 
contributing factor as expected by the authors. Future studies should aim to include specific wild bird species 
density from sources other than the Breeding Bird Survey and to evaluate the relative contribution of each species 
for each of the migratory flyways models and for different seasons and time periods.

To our knowledge, this is the first study applying SDM to generate high resolution AI suitability maps for the 
US. These results can be used to better prevent and control future HPAI outbreaks in the US and could be easily 
extended to other regions in North America. The identification of the main predictors and high suitable areas 
can be used to implement risk-based and more cost-effective surveillance strategies and to increase awareness 
of poultry producers located in high suitable zones. The results of this study have been included into a public 
database within the Disease BioPortal46 to allow the visualization of area-specific predictions, the integration 
of periodic updates and facilitate decision making to minimize the impact of future HPAI epidemics in the US.

Material and Methods
Wild bird LPAI presence-only data. Wild bird LPAI positive data was retrieved from the Influenza 
Research Database (FluDB)47. Briefly, FluDB is an influenza database consisting of georeferenced collection coor-
dinates, species names, AI-positive results, viral subtypes and many other collection specifics regarding each bird 
tested. Samples collected between January 2005 and February 2015 were considered for our study. Samples from 
domestic species and samples from unknown species or without latitude or longitude coordinates were disre-
garded (0.2%). A case was defined as a unique animal collected from a specific geographic location that is con-
firmed to be LPAI positive by necropsy and laboratory testing in one of the NIAID-funded Centers of Excellence 
for Influenza Research and Surveillance (CEIRS). The CEIRS is a multidisciplinary, collaborative network that 
aims to control AI nationally and internationally via global surveillance, pathogenesis research and training48.

Environmental data. In total, 14 variables were considered as potential predictors for the models (Table 2). 
The variables fell into three different categories: (1) climatic, (2) environmental/topographic and (3) domestic 
and wild bird demographics. All the selected variables were selected based on literature review as they have been 
described to play an important role for AIV dynamics and distribution in other countries49–51.

Spatial data was collected for each of the predictors and 500 m ×  500 m cell size rasters were created 
for each one of them. This resolution was chosen as it offers a good balance between adequate resolution for 
decision-making and a reasonable processing calculation speed (40 minutes to run one flyway model on average). 
All the predictor rasters were standardized to have the same map extent and a common projection (NAD_1983_
Albers) using ARCGIS 10.352 and RStudio Version 0.98.110253.

Climate data layers were selected from the standard19 Bioclim variables from the WorldClim organization54,55. 
Bioclim, a set of interpolated climate data, is the result of 50 years of ground-based weather measurements. It 
contains means of monthly minimum and maximum temperatures and precipitation in a grid format at several 
different resolutions. As described in previous studies, all the Bioclim variables were included in a preliminary 
maximum entropy model in order to select the most important predictors as described in previous studies43. 
Based on the result of this preliminary model, the mean diurnal range (Bio2) and mean temperature of warmest 
quarter (Bio 10) were the sole predictors selected to be included in the final model.

Environmental/topographic variables consisted of altitude, distance to water points, the Normalized 
Difference Vegetation Index (NDVI) and land cover. Specifically, distance to water consisted of the Euclidean 
distance to open water (oceans) and to inland water points (rivers, wetlands and lakes). Inland water layers were 
obtained from US. Geological Survey56: the US Lakes and the US Rivers and open water layer was obtained from 
Natural Earth database48. NDVI represent an estimate of vegetation activity measured by the Moderate Resolution 
Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite. NDVI raster incorporated in the models 
consisted of an average of the vegetation activity estimated over the study period. Land cover at a 5 arc-minutes 
resolution was obtained from the United States Geological Survey (USGS) database56. More details about the 
different land cover classes and their pixel values in the raster are presented in the Supplementary Table 1.  
Domestic and wild bird densities were included in the analysis to account for the potential transmission of AIV 
from wild birds to poultry and vice versa. Bird farm density variables included poultry and poultry farm densi-
ties in total and by type of production system, the backyard chicken farm density and the migratory bird den-
sity. Commercial poultry farm density per km2 was generated by the Model of Infectious Disease Agent Study 
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(MIDAS)57 using 2002 Census of Agriculture poultry farm counts. This layer contains locations of poultry farms 
by production system and species (broiler, duck, layer, pullet, turkey). This data was integrated in a Kernel density 
function with a search radius of 3 km to generate a global density raster for all poultry farms, a raster for the global 
poultry density and a raster specific to the poultry density in each commercial poultry farming system (broiler, 
duck, layer, pullet, turkey). Backyard chicken farm density per km2 was estimated based on two sources: the per-
centage of households that owned chickens by race/ethnicity determined using the USDA Agriculture Ownership 
in Four Inspection U.S. Cities survey conducted during 2010–2012 in four different cities: Denver, Miami, New 
York city and Los Angeles58 and the 2010 human demographic census per census track59. Equation (1) used to 
estimate the number of backyard chicken by census track is:

Equation (1): Backyard chicken estimation by census track

∑λ β= −

=
E H( )j j

i
i ij

1

1

5

where, Ej is the total estimate of the number of backyard chicken farms per census track per km2; λj is the area 
of the census tract in km2; βi is the percentage of race/ethnicity-specific households that owned chickens with 
values of 0.7 for Asian households (i =  1), 0.1 for African-American (i =  2), 1.4 for Hispanic/Latino (i =  3), 0.7 
for White (i =  4) and 1.1 for Multiracial (i =  5); and Hij is the number of households by race/ethnicity i per census 
track j. Since the census track does not directly provide the number of households by race/ethnicity, only the total 
number of households and the total population by race/ethnicity were used. Hi was estimated by multiplying the 
total number of households by the proportion of the population belonging to a particular race/ethnicity for each 
census track.

Regarding the migratory bird density, only the most relevant wild bird species in terms of AIV risk were con-
sidered for this study (i.e., wild bird species with at least 10% LPAI apparent prevalence –number of birds testing 
positive/total number of birds sampled–) during the study period as observed from the FluDB data). As a result, 
eight bird species were selected: Podiceps grisegena (LPAI prevalence =  0.316); Bucephala islandica (LPAI prev-
alence =  0.182); Aechmophorus occidentalis (LPAI prevalence =  0.167); Bubulcus ibis (LPAI prevalence =  0.154); 
Anas platyrhynchos (LPAI prevalence =  0.131); Anas rubripes (LPAI prevalence =  0.120); Anas acuta (LPAI prev-
alence =  0.102); Anas discors (LPAI prevalence =  0.101). Abundance rasters for each of the selected bird species 
were created from abundance shapefiles extracted from the USGS website60. The shapefiles were based on the 
North American Breeding Bird Survey (1966–2003). Abundance rasters were created for each of the eight migra-
tory birds selected using RStudio (RStudio Team, 2015). Finally, for simplicity, all the individual migratory bird 
raster’s created were merged into a global unique migratory bird density raster map using the sum of abundance 
from each individual raster.

Analysis: Species Distribution Model (SDM). Presence-only maximum entropy SDM was used to detect 
areas with high relative probability of LPAI presence and model the top contributing predictors to LPAI suita-
bility. MaxEnt, a maximum entropy approach to presence-only distribution modeling was used for the analysis 
via the “dismo” package in R software61. MaxEnt uses occurrence data (i.e., LPAI confirmed cases) and a set of 
environmental predictors (climatic, topographic, economic) to determine the geographic distribution of a specific 
group of individuals in a specific area (here, the LPAI confirmed birds in each of the NAMF). A total of 10,000 
background points were randomly chosen for each model. The algorithm behind MaxEnt is described else-
where62,63. A default convergence threshold of 0.00001, a regularization of 1 and number of iterations of 500 were 
chosen for this study. In addition, a logistic model was used so that predictions’ estimates are between 0 and 1 for 
the spatial suitability per map cell. In this study, four models were generated to predict suitable areas for LPAI in 
four distinct geographic areas in the US following the NAMF: Atlantic, Central, Mississippi and Pacific flyway31. 

Variable Category Source

Mean Diurnal Range Climate http://www.worldclim.org

Mean Temperature of Warmest Quarter Climate http://www.worldclim.org

Altitude Topographic http://www.worldclim.org

Land cover Topographic http://nationalmap.gov

Distance to water point Topographic http://nationalmap.gov; http://www.naturalearthdata.com

Normalized Difference Vegetation Index (NDVI) Topographic http://neo.sci.gsfc.nasa.gov

Backyard chicken Poultry density http://usdasearch.usda.gov; https://www.nhgis.org

Poultry density Poultry density http://www.epimodels.org 

Poultry farm density Poultry density http://www.epimodels.org 

Broiler density Poultry density http://www.epimodels.org 

Ducks density Poultry density http://www.epimodels.org 

Layers density Poultry density http://www.epimodels.org 

Pullets density Poultry density http://www.epimodels.org 

Turkey density Poultry density http://www.epimodels.org

Merged Migratory birds density Wild Bird density http://www.mbr-pwrc.usgs.gov

Table 2.  Variables considered in the model.

http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://


www.nature.com/scientificreports/

8Scientific RepoRts | 6:33161 | DOI: 10.1038/srep33161

The NAMF correspond to the administrative flyway areas that were established in 1948 based on the migration 
routes of North American waterfowl and are defined by Councils and Technical Committees that facilitate water-
fowl management and conservation across the continent (e.g., hunting regulations, research and habitat manage-
ment). The goal behind having a model specific to each of these regions is to detect contributing risk factors that 
may differ or be specific to each sub-region and thus facilitate the implementation of customized interventions 
for each of them. The administrative flyways of the US are defined as follows: The Atlantic flyway includes the 
states of Connecticut, Delaware, Florida, Georgia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, 
New York, North Carolina, Pennsylvania, Rhode Island, South Carolina, Vermont, Virginia, and West Virginia. 
The Central flyway which includes the states of Montana, Wyoming, Colorado, New Mexico, Texas, Oklahoma, 
Kansas, Nebraska, South Dakota, and North Dakota; The Mississippi flyway which includes the states of Alabama, 
Arkansas, Indiana, Illinois, Iowa, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Ohio, 
Tennessee, and Wisconsin. The Pacific flyway includes the states of Alaska, Arizona, California, Idaho, Nevada, 
Oregon, Utah and Washington. These flyways are associated with the major topographic characteristics in North 
America (Fig. 1). For each of the four flyway models all the 14 variables were included at first in four full-models. 
Subsequently, variables that contributed to 5% or more for each of the respective “full” models were retained and 
ran again in so-called “reduced” models. The risk factors selected for each of the “reduced” models were then 
used to generate the corresponding four suitability maps (Pacific, Central, Mississippi and Atlantic), which were 
merged together using the Mosaic to New Raster function in ArcMap version 10.3 (ESRI, Environmental Systems 
Resource Institute) to evaluate the overall AI suitability for US. Spearman’s rank correlation was used to evaluate 
correlation between predictors and to avoid collinearity problems. Variables with a correlation of 0.5 or higher 
were considered as highly correlated. In the case that two variables are highly correlated, the variable less related 
to the outcome is removed.

Model performance, validation and HPAI prediction ability. Jackknife training gain tests were used 
to determine which variables have a higher contribution to each model. The jackknife tests were run multiple 
times in different ways: (i) using all variables, (ii) dropping one variable at a time, and (iii) running the model 
using only one variable. Variables with the highest training gains or those that reduced the training gain the most 
when left out of the model are considered to be the most valuable variables to the model. Using k-fold method 
from the “dismo” package61, 80% of the records were used in the construction of the MaxEnt niche models. The 
remaining 20% of the records were set aside for external validation. The maximum number of iterations for each 
model was set to 1,000. Both the Area Under the Curve (AUC) of Receiver Operating Characteristics Curve 
(ROC) and the Calibrated AUC (AUCc) were generated using the “dismo” package61 in RStudio53 and used to 
assess the models. The AUCc. previously described64 is used to check for spatial sorting bias (i.e., an AUCc close 
to one shows the absence of spatial sorting bias).

USDA official notifications data of the US HPAI 2014–2015 epidemic were used to evaluate the HPAI outbreak 
detection rate of the map generated with LPAI data (i.e., the merged flyways). As the HPAI outbreak locations 
are only available at the county level (county centroids), the first step was to adapt the merged LPAI suitability 
map considering the maximum suitability present in a county (i.e., assumption of worst case scenario). Counties 
were then classified as LPAI “high suitable” or “low suitable” based on the median value of the whole dataset. The 
median for the merged flyways map was 0.3. Therefore, a county was considered as “highly suitable” for LPAI out-
breaks if the LPAI suitability probability was above 0.3. In a second step, HPAI outbreak centroids were overlaid 
over the county level LPAI suitability map. The number of HPAI outbreaks occurring in “high suitable” counties 
was then calculated.

References
1. World Health Organization & World Health Organization. Avian Influenza: assessing the pandemic threat.Technical Report. 

Available at: http://www.who.int/influenza/resources/documents/h5n1_assessing_pandemic_threat. (Accessed: 02 March 2016) 
(2005).

2. Elçi, C. The impact of HPAI of the H5N1 strain on economies of affected countries. International Conference on Human and 
Economic Resources, 102–115 (2006).

3. Avian Influenza Virus (H5N1): a Threat to Human Health. Clinical Microbiology Reviews 20, 243 (2007).
4. Alexander, D. J. An overview of the epidemiology of avian influenza. Vaccine 25, 5637–5644 (2007).
5. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proceedings of the National 

Academy of Sciences 109, 2579 (2012).
6. Capua, I. & Alexander, D. J. Avian influenza infections in birds–a moving target. Influenza and other respiratory viruses 32(4), 

275–286 (2007).
7. Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–8–388 (2006).
8. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol 

Rev 56, 152–79–179 (1992).
9. Hénaux, V. Model-Based Evaluation of Highly and Low Pathogenic Avian Influenza Dynamics in Wild Birds. PLoS ONE 5, e10997 

(2010).
10. Highly pathogenic avian influenza spreads in the USA. Veterinary Record 176, 505 (2015).
11. Clement, T., Nezworski, J., Scaria, J., Nelson, E. & Christopher-Hennings, J. Complete Genome Sequence of a Highly Pathogenic 

Avian Influenza Virus (H5N2) Associated with an Outbreak in Commercial Chickens, Iowa, USA, 2015. Genome Announcements 3, 
e00613–15 (2015).

12. HarlessA & Usda. United states prepares for highly pathogenic H5N1 avian influenza in wild birds. Archived USDA Fact Sheet No. 
0092.06. Available at: http://www.usda.gov/wps/portal/usda/usdamediafb?contentid= 2006/03/0092.xml&printable= true 
(Accessed: 02 March 2016).

13. Lupiani, B. & Reddy, S. M. The history of avian influenza. Comparative immunology, doi: 10.1016/j.cimid.2008.01.004 (2009).
14. Wood, J. M., Webster, R. G. & Nettles, V. F. Host range of A/Chicken/Pennsylvania/83 (H5N2) influenza virus. Avian Diseases 29, 

198–207 (1985).
15. Swayne, D. E. Diseases of Poultry13th edn. Section II, Ch.6, Table 6.1, page 183 (2013).

http://www.who.int/influenza/resources/documents/h5n1_assessing_pandemic_threat
http://www.usda.gov/wps/portal/usda/usdamediafb?contentid=2006/03/0092.xml&printable=true


www.nature.com/scientificreports/

9Scientific RepoRts | 6:33161 | DOI: 10.1038/srep33161

16. Hinshaw, V. S., Nettles, V. F., Schorr, L. F., Wood, J. M. & Webster, R. G. Influenza Virus Surveillance in Waterfowl in Pennsylvania 
after the H5N2 Avian Outbreak. Avian Diseases 30, 207 (1986).

17. Lee, C.-W., Swayne, D. E., Linares, J. A., Senne, D. A. & Suarez, D. L. H5N2 Avian Influenza Outbreak in Texas in 2004: the First 
Highly Pathogenic Strain in the United States in 20 Years? Journal of Virology 79, 11412–11421 (2005).

18. Pelzel, A. M., McCluskey, B. J. & Scott, A. E. Review of the highly pathogenic avian influenza outbreak in Texas, 2004. J Am Vet Med 
Assoc 228, 1869–75 (2006).

19. Services, V. & USDA. 2016 HPAI Preparedness and Response Plan. Technical report. (2016) Available at: https://www.aphis.usda.
gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-response-plan-2015.pdf. (Accessed: 02 March 2016).

20. United States Department of Agriculture. Wild Bird Highly Pathogenic Avian Influenza Cases In The United States. Technical 
report. (2015) Available at: https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-
response-plan-2015.pdf. (Accessed: 02 March 2016).

21. Pokarney, B. News release: Oregon activates avian influenza response plan. Report. (2014). Technical report. (2014) Available at: 
http://odanews.wpengine.com/news-release-oregon-activates-avian-influenza-response-plan/. (Accessed: 02 March 2016).

22. Aphis & USDA. Wild Birds Highly Pathogenic Avian Influenza cases in the United States. Technical Report (2015). Available at : 
https://www.aphis.usda.gov/wildlife_damage/downloads/WILD%20BIRD%20POSITIVE%20HIGHLY%20PATHOGENIC%20
AVIAN%20INFLUENZA%20CASES%20IN%20THE%20UNITED%20STATES.pdf. (Accessed: 02 March 2016).

23. Mace, M., USDA Situation Report. Technical report. (2015) Available at: https://jeffersoncountyapps.jeffersoncountywi.gov/jc/
public/customPrograms/weekly_meeting.php?file= /UserFiles/County%20Board/files/Handout/2015/06152015/LWCC%20
Handout.pdf (Accessed: 02 March 2016).

24. United States Department of Agriculture. USDA-Confirmed Avian Influenza detections. Update on Avian Influenza Findings 
Poultry Findings Confirmed by USDA’s National Veterinary Services Laboratories. (2016) Available at: https://www.aphis.usda.gov/
aphis/ourfocus/animalhealth/animal-disease-information/avian-influenza-disease/sa_detections_by_states/ai-2016-map 
(Accessed: 02 March 2016).

25. United States Department of Agriculture. Surveillance Plan for Highly Pathogenic Avian Influenza in Waterfowl in the United States. 
national flyway council report (2015). Available at: https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/
ai/2015-hpai-surveillance-plan.pdf (Accessed: 02 March 2016).

26. Greene, J. L., Update on the Highly-Pathogenic Avian Influenza Outbreak of 2014-2015. Congressional service report (2015). 
Available at: (https://www.fas.org/sgp/crs/misc/R44114.pdf (Accessed: 02 March 2016).

27. Spackman, E. et al. Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic 
variation. Virus Res 114, 89–100 (2005).

28. Moriguchi, S., Onuma, M. & Goka, K. Potential risk map for avian influenza A virus invading Japan. Diversity and Distributions 19, 
78–85 (2013).

29. Adhikari, D. & Barik, K. Modelling the ecology and distribution of highly pathogenic avian influenza (H5N1) in the Indian 
subcontinent. Current Science 97, 1, 10 (2009).

30. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecological modelling 
190, 231–259 (2006).

31. U.S. Fish and Wildlife Service. Administrative Flyways. Available at: https://www.fws.gov/birds/management/flyways.php. 
(Accessed: 02 March 2016).

32. Fuller, T. L. et al. Mapping the risk of avian influenza in wild birds in the US. BMC Infect Dis 10, 187 (2010).
33. University of California Cooperative Extension. California Backyard Poultry Census. Available at: http://ucanr.edu/sites/poultry/

California_Poultry_Census/ (Accessed: 02 March 2016).
34. Si, Y., Wang, T., Skidmore, A. K., de Boer, W. F. & Li, L. Environmental factors influencing the spread of the highly pathogenic avian 

influenza H5N1 virus in wild birds in Europe. Ecol Soc 15, 26 (2010).
35. Brown, J. D., Goekjian, G., Poulson, R. & Valeika, S. Avian influenza virus in water: infectivity is dependent on pH, salinity and 

temperature. Veterinary Microbiology, 136, 20–26 (2009).
36. Herrick, K. A., Huettmann, F. & Lindgren, M. A. A global model of avian influenza prediction in wild birds: the importance of 

northern regions. Vet Res 44, 42 (2013).
37. Loth, L., Gilbert, M., Osmani, M. G. & Kalam, A. M. Risk factors and clusters of highly pathogenic avian influenza H5N1 outbreaks 

in Bangladesh. Preventive veterinary Medicine 96, 104–113 (2010).
38. Khaliq, Z., Leijon, M., Belák, S. & Komorowski, J. A complete map of potential pathogenicity markers of avian influenza virus 

subtype H5 predicted from 11 expressed proteins. BMC Microbiology 15, 128 (2015).
39. Hanson, B. A., Luttrell, M. P., Goekjian, V. H. & Niles, L. Is the occurrence of avian influenza virus in Charadriiformes species and 

location dependent? Journal of Wildlife Diseases 44, 351–361 (2008).
40. Wetland International, Ramsar site database. Ramsar Sites Criteria. URL http://www.ramsar.org/ (Accessed: 02 March 2016).
41. Stallknecht, D. E. et al. Detection of avian influenza viruses from shorebirds: Evaluation of surveillance and testing approaches. 

Journal of Wildlife Diseases 48, 382 (2012).
42. Beam, A., Garber, L., Sakugawa, J. & Kopral, C. Salmonella awareness and related management practices in US urban backyard 

chicken flocks. Prev Vet Med 110, 481–488 (2013).
43. AlKhamis, M. A., Hijmans, R. J. & Al, A. The use of spatial and spatio-temporal modeling for surveillance of H5N1 highly 

pathogenic avian influenza in poultry in the Middle East. Avian Diseases 60, 146–155 (2016).
44. Paul, M., Wongnarkpet, S., Gasqui, P. & Poolkhet, C. Risk factors for highly pathogenic avian influenza (HPAI) H5N1 infection in 

backyard chicken farms, Thailand. Acta tropica 118, 209–216 (2011).
45. Chotpitayasunondh, T. & Ungchusak, K. Human disease from influenza A (H5N1), Thailand, 2004. Emerg Infect Dis 11, 201–209 

(2005).
46. Center for Animal Disease Modeling and Surveillance., Disase BioPortal. Public Database. (2016) Available at: http://bioportal.

ucdavis.edu/about (Accessed: 02 March 2016).
47. Influenza Research Database. Public Database. (2016) Available at: http://www.fludb.org/brc/home.spg?decorator= influenza 

(Accessed: 02 March 2016).
48. Natural Earth raster (2016). Available at: http://www.naturalearthdata.com. (Accessed: 02 March 2016).
49. Fang, L.-Q. et al. Environmental Factors Contributing to the Spread of H5N1 Avian Influenza in Mainland China. PLoS ONE 3, 

e2268 (2008).
50. Maftei, D., Apostu, C. & Suru, A. Environmental and anthropogenic risk factors for highly pathogenic avian influenza subtype H5N1 

outbreaks in Romania, 2005–2006. Veterinary Research Communications 32, 627 (2008).
51. Mapping H. 5. N. 1. highly pathogenic avian influenza risk in Southeast Asia. Proceedings of the National Academy of Sciences 105, 

4769 (2008).
52. Esri Inc. ArcGIS Desktop: Release 10.3 Redlands, CA: Environmental Systems Research Institute. Available at: http://www.esri.com/ 

(Accessed: 02 March 2016).
53. WorldClim. Global Climate Data (2016). Available at: http://worldclim.com/ (Accessed: 02 March 2016).
54. Hijmans, R. J., Cameron, S. E. & Parra, J. L. Very high resolution interpolated climate surfaces for global land areas. International 

journal of Climatology 25, 1965–1978 (2005).

https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-response-plan-2015.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-response-plan-2015.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-response-plan-2015.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-response-plan-2015.pdf
http://odanews.wpengine.com/news-release-oregon-activates-avian-influenza-response-plan/
https://www.aphis.usda.gov/wildlife_damage/downloads/WILD%20BIRD%20POSITIVE%20HIGHLY%20PATHOGENIC%20AVIAN%20INFLUENZA%20CASES%20IN%20THE%20UNITED%20STATES.pdf
https://www.aphis.usda.gov/wildlife_damage/downloads/WILD%20BIRD%20POSITIVE%20HIGHLY%20PATHOGENIC%20AVIAN%20INFLUENZA%20CASES%20IN%20THE%20UNITED%20STATES.pdf
https://jeffersoncountyapps.jeffersoncountywi.gov/jc/public/customPrograms/weekly_meeting.php?file=/UserFiles/County%20Board/files/Handout/2015/06152015/LWCC%20Handout.pdf
https://jeffersoncountyapps.jeffersoncountywi.gov/jc/public/customPrograms/weekly_meeting.php?file=/UserFiles/County%20Board/files/Handout/2015/06152015/LWCC%20Handout.pdf
https://jeffersoncountyapps.jeffersoncountywi.gov/jc/public/customPrograms/weekly_meeting.php?file=/UserFiles/County%20Board/files/Handout/2015/06152015/LWCC%20Handout.pdf
https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian-influenza-disease/sa_detections_by_states/ai-2016-map
https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian-influenza-disease/sa_detections_by_states/ai-2016-map
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/2015-hpai-surveillance-plan.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/2015-hpai-surveillance-plan.pdf
https://www.fas.org/sgp/crs/misc/R44114.pdf
https://www.fws.gov/birds/management/flyways.php
http://ucanr.edu/sites/poultry/California_Poultry_Census/
http://ucanr.edu/sites/poultry/California_Poultry_Census/
http://www.ramsar.org/
http://bioportal.ucdavis.edu/about
http://bioportal.ucdavis.edu/about
http://www.fludb.org/brc/home.spg?decorator=influenza
http://www.naturalearthdata.com
http://www.esri.com/
http://worldclim.com/


www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:33161 | DOI: 10.1038/srep33161

55. United States Geological survey. The National Map Small Scale. USGS database. (2016) Available at: http://nationalmap.gov/small_
scale/atlasftp.html (Accessed: 02 March 2016).

56. Models of Infectious Disease Agent Study. Midas Synthetic Ecosystems database. (2008) Available at: http://www.epimodels.org/
drupal/?q= node/32 (Accessed: 02 March 2016).

57. United States Department of Agriculture. USDA-Agriculture Ownership in Four Inspection U.S. Cities. Technical report. (April 
2013). Available at : https://www.aphis.usda.gov/animal_health/nahms/poultry/downloads/poultry10/Poultry10_dr_Urban_
Chicken_Four.pdf (Accessed: 02 March 2016).

58. National Historical Geographic Information System. NHGIS US population demographic database. (2016) Available at: https://
www.nhgis.org/ (Accessed: 02 March 2016).

59. United States Geological survey. Geographic Information Products from the North American Breeding Bird Survey Version 
2004.1.(2006) Available at : http://www.mbr-pwrc.usgs.gov/bbs/geographic_information/geographic_information_products_.htm 
(Accessed: 02March 2016).

60. Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Dismo: Species Distribution Modeling. R package Version 1.0-15. (2016) Available 
at: https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (Accessed: 02 March 2016).

61. Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. Proceedings of the 
Twenty-First international conference on Machine Learning 655–662 (2004).

62. Olden, J. D., Lawler, J. J. & Poff, N. L. Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83, 171–193 
(2008).

63. R Foundation for Statistical Computing. R Core Team (2013) Vienna, Austria. Available at: http://www.R-project.org. (Accessed: 02 
March 2016).

64. Hijmans, R. J. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. 
Ecology 93, 679–688 (2012).

Acknowledgements
This project was supported by the Academic Senate Faculty Research Grant and for the Agriculture and 
Food Research Initiative Competitive Grant no. 2015–09118 from the USDA National Institute of Food and 
Agriculture. The authors are also grateful to Dr. Tricia Andrade and Mike Villanueva for assistance with revising 
this manuscript and the two anonymous reviewers for their constructive comments and suggestions.

Author Contributions
All authors contributed in the conception and design of the study. Dr. J.B. ran the statistical analyses, wrote 
the draft of the manuscript and prepared all the figures presented. Dr. M.A.A. help in the design of the 
Maximum entropy code in R using the “dismo” package. Dr. B.M.-L. supervised the analyses, contributed to the 
interpretation of the results and coordinated the communication and efforts among the co-authors. All authors 
contributed to the editing and comprehensive revision of the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Belkhiria, J. et al. Application of Species Distribution Modeling for Avian Influenza 
surveillance in the United States considering the North America Migratory Flyways. Sci. Rep. 6, 33161;  
doi: 10.1038/srep33161 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://nationalmap.gov/small_scale/atlasftp.html
http://nationalmap.gov/small_scale/atlasftp.html
http://www.epimodels.org/drupal/?q=node/32
http://www.epimodels.org/drupal/?q=node/32
https://www.aphis.usda.gov/animal_health/nahms/poultry/downloads/poultry10/Poultry10_dr_Urban_Chicken_Four.pdf
https://www.aphis.usda.gov/animal_health/nahms/poultry/downloads/poultry10/Poultry10_dr_Urban_Chicken_Four.pdf
https://www.nhgis.org/
https://www.nhgis.org/
http://www.mbr-pwrc.usgs.gov/bbs/geographic_information/geographic_information_products_.htm
https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf
http://www.R-project.org
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North Am ...
	Results
	Important predictors and high suitable areas for LPAI. 
	Models’ diagnostics, validation and HPAI prediction ability. 

	Discussion
	Material and Methods
	Wild bird LPAI presence-only data. 
	Environmental data. 
	Analysis: Species Distribution Model (SDM). 
	Model performance, validation and HPAI prediction ability. 

	Acknowledgements
	Author Contributions
	Figure 1.  Distribution of the LPAI cases in the United States.
	Figure 2.  Spatial distribution of the LPAI outbreaks in wild birds from Jan 2005 to Feb 2015 and HPAI 2014–2015 outbreaks in the US.
	Figure 3.  Validation of merged migratory flyways suitability map using the HPAI 2014–2015 outbreak data.
	Table 1.   Percent relative contributions of the selected environmental variables to the MaxEnt models.
	Table 2.   Variables considered in the model.



 
    
       
          application/pdf
          
             
                Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways
            
         
          
             
                srep ,  (2016). doi:10.1038/srep33161
            
         
          
             
                Jaber Belkhiria
                Moh A. Alkhamis
                Beatriz Martínez-López
            
         
          doi:10.1038/srep33161
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep33161
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep33161
            
         
      
       
          
          
          
             
                doi:10.1038/srep33161
            
         
          
             
                srep ,  (2016). doi:10.1038/srep33161
            
         
          
          
      
       
       
          True
      
   




