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Abstract

To effectively mitigate the spread of communicable diseases, it is necessary to understand the 

interactions that enable disease transmission among individuals in a population; we refer to the set 

of these interactions as a contact network. The structure of the contact network can have profound 

effects on both the spread of infectious diseases and the effectiveness of control programs. 

Therefore, understanding the contact network permits more efficient use of resources. Measuring 

the structure of the network, however, is a challenging problem. We present a Bayesian approach 

to integrate multiple data sources associated with the transmission of infectious diseases to more 

precisely and accurately estimate important properties of the contact network. An important 

aspect of the approach is the use of the congruence class models for networks. We conduct 

simulation studies modeling pathogens resembling SARS-CoV-2 and HIV to assess the method; 

subsequently, we apply our approach to HIV data from the University of California San Diego 

Primary Infection Resource Consortium. Based on simulation studies, we demonstrate that the 

integration of epidemiological and viral genetic data with risk behavior survey data can lead to 

large decreases in mean squared error (MSE) in contact network estimates compared to estimates 

based strictly on risk behavior information. This decrease in MSE is present even in settings where 
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the risk behavior surveys contain measurement error. Through these simulations, we also highlight 

certain settings where the approach does not improve MSE.
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Bayesian inference; phylodynamics; contact network; epidemic model

1 Introduction

Effective control of the spread of communicable diseases requires knowledge about the 

interactions that enable disease transmissions among individuals in a population; we refer 

to the set of these interactions as a contact network. The structure of the contact network 

can have profound effects on both the spread of infectious disease and the effectiveness 

of control programs.[45, 49, 29, 42, 65] Therefore, understanding the contact network 

permits more efficient use of resources by improving our ability to predict potential 

impacts of interventions designed to control infectious diseases. Measuring the structure 

of the network, however, is a challenging problem, but–as we demonstrate–integration of 

multiple data sources can aid in this effort. Studies investigating complex disease dynamics 

typically collect a broad range of data, such as risk behavior information, infection and 

treatment times of infected individuals (which we refer to as epidemiological data), and viral 

genetic sequences. For example, the University of California San Diego Primary Infection 

Resource Consortium (PIRC)–an observational cohort of people living with HIV–collects 

such information.[36] Another example is the Botswana Combination Prevention Project, 

which was a cluster randomized trial to compare a combined HIV prevention intervention 

to standard of care in Botswana.[40, 67] Risk behavior, epidemiological, and viral sequence 

data sets are important and complementary in understanding disease transmission dynamics. 

Currently, there are limited methods for integrating infectious disease data into a single 

model to estimate contact network properties. To address this gap, this manuscript presents 

a Bayesian approach to integrate multiple data sources associated with transmission of 

infectious disease to estimate important properties of contact networks.

Network science research has identified a number of important properties for investigating 

disease dynamics, such as mixing patterns and clustering; among the most important 

properties is degree distribution.[48] Estimates of a population’s degree distribution provide 

information on the mean number of interactions per individual. Communities with a higher 

mean tend to have more rapid spread of the disease. Furthermore, the degree distribution 

provides information on heterogeneity of interactions across the population; the amount of 

heterogeneity is also associated with the rate of disease spread. For example, communities 

with right-skewed degree distributions–those that include a small proportion of individuals 

with a large number of interactions–tend to have higher transmission rates.[44] Fortunately, 

effective strategies to reduce spread can be tailored to the precise nature of these properties. 

For example, a potentially effective strategy for populations with right-skewed degree 

distributions would be to focus provision of services to individuals with high number of 

connections.[51]
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Integration of multiple data sources may be necessary to accurately estimate contact network 

properties. For example, surveys of risk behavior may not be sufficient due to the logistical 

and financial considerations making them challenging to administer to a large number of 

individuals. Furthermore, estimates derived from these surveys often have biases that arise 

from using non-representative samples and measurement error, in particular surveys that 

deal with sensitive or stigmatized behaviors, such as sexual relationships.[23, 35, 38, 64, 

14] Although epidemiological and viral genetic data are less likely to be impacted by 

measurement error than are self-reported risk survey data, they are only relevant for inferring 

characteristics of contacts that result in actual disease transmissions; such characteristics 

can differ from those that apply to the broader contact network. As shown in Groendyke et 

al. [20], using epidemiological data as a single source of data can result in very imprecise 

estimates of network properties with confidence bands that cover most of the range of 

plausible values. Previous efforts to infer contact network structure for a population using 

only pathogen genetic data revealed that the shape of a phylogeny is dependent on the 

contact network structure, although that study evaluated highly idealized contact networks 

that differed in very significant ways from one another.[37] Frost and Volz [10] noted that 

contact networks may influence the grouping of subpopulations in a phylogeny. However, 

other studies have indicated that some properties of the underlying contact network, 

specifically clustering, have relatively little impact on the transmission tree in particular 

settings; [66, 3] therefore, information on the transmission tree only may not provide insight 

into the contact network.

Our proposed approach to integrate multiple data sources builds on an existing 

Bayesian framework that makes inferences about contact network structure solely from 

epidemiological data. [2, 19, 20] The most recent approaches in this framework use 

exponential random graph models (ERGMs) as the statistical model for the contact network.

[20] The use of ERGMs provides a more flexible framework than did previous approaches 

by allowing the inclusion of covariate information on individuals. Furthermore, methods 

exist to estimate ERGM parameters from behavioral survey data. [32, 33] In order to 

integrate such estimates from behavioral surveys into the existing Bayesian framework, 

however, the model must use these estimates as prior information. We know of no 

available methods for doing so. Beyond the need for such methods, there are computational 

limitations of the multiple data source integration approach using ERGMs that restrict 

estimation to a limited set of network properties, specifically dyadic-independent properties.

[20] This limitation precludes exploration of dyadic-dependent network properties, which 

include such important measures as degree distribution and the number of triangles, when 

integrating multiple data sources. Therefore, to appropriately integrate data and estimate 

network properties important for infectious disease transmission dynamics, we propose an 

approach that makes use of an alternative network model.

In this paper, we make use of a flexible network model, referred to as the congruence class 

model (CCM) for networks.[13] CCMs form a broad family of models that includes, as 

special cases, several common network models, such as the Erdős-Rényi (ER) model, the 

stochastic block (SB) model, and many ERGMs. A particular CCM is defined by (1) the 

set of networks properties (such as degree distribution) included in the model and (2) a 

Goyal et al. Page 3

Stat Med. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability mass function (PMF) on the values of these network properties; additional details 

and illustrations are provided in Section 2.

Our proposed approach, using CCMs to integrate multiple data sources to estimate contact 

network properties, provides several important advantages; all but the last arise from the 

fact that there are minimal restrictions on the functional form of the PMF of network 

properties included in CCMs. First, CCMs make it possible for specification of the mean 

and uncertainty of network properties. For example, the PMF for network properties can 

reflect greater uncertainty when collecting risk behavior information from a small fraction 

of individuals in the population compared to collecting information from a larger fraction 

of the population. Second, by using the same PMF for properties estimated from the risk 

behavioral surveys in the network model, in our case a CCM, one can statistically compare 

the results that are derived from integrating the data to those based only on behavioral 

survey data. Third, we can investigate the impact of measurement error in the risk behavior 

responses on estimating network properties. Fourth, the parameterization of CCMs avoids 

the computationally expensive estimation procedure necessary for ERGMs to fit dyadic-

dependent network properties. In the proposed approach using CCMs, one can investigate 

more complex network properties, such as degree distribution, which, to our knowledge, 

is not possible using currently available approaches. The use of CCM requires addressing 

additional complexities not necessary for ERGMs. This paper demonstrates these advantages 

as well as provides approaches to address the methodological complexities associated with 

CCMs.

The organization of this paper is as follows. The next section (Section 2) provides necessary 

background information. Section 3 presents the general approach to integrate multiple data 

sources for estimating the structure of the contact network. Sections 4 and 5 present 

simulation studies that investigate the potential of our approach to increase accuracy and 

precision of network property estimates by comparing estimates that integrate multiple data 

sources to those that rely only on behavior surveys. Sections 4 and 5 simulate spread of 

SARS-CoV-2 and HIV using epidemic processes appropriate for these pathogens. These 

simulation studies focus on degree distribution for two reasons: (1) it plays an important 

role in disease dynamics, and (2) modeling degree distribution is not possible using currently 

available approaches. Section 6 demonstrates the usefulness of our approach by application 

to the PIRC HIV data set. The paper concludes with a discussion (Section 7) that highlights 

complexities in real-world data sets and areas of further development to address them. 

Software to execute our approach is available through a public GitHub repository (https://

github.com/ravigoyalgit/Bayes_Net_Inf_CCM).

2 Background

2.1 Epidemic model

The proposed approach requires specifying an epidemic process for the pathogen of interest. 

In this paper, we investigate two processes: SIAILR and SEIR. For the SIAILR epidemic 

model, we denote the stages as: Susceptible S , Acute Infectious IA , Long-term Infectious 

IL , and Recovered R . Individuals in Stage S are negative for the disease, but are 
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susceptible to acquiring it. If an individual acquires the disease, they move from Stage 

S to Stage IA. Individuals in Stage IA are acutely infected and are highly infectious. 

They transmit the infection to any of their contacts with probability βA at each time unit. 

Individuals remain in Stage IA for an exponentially distributed waiting time with scale 

κA. Then, individuals move to Stage IL. During this phase of the infection they are still 

infectious, but transmit the infection to any of their contacts with probability βL, which can 

differ from βA. Individuals remain in stage IL for an exponentially distributed waiting time 

with scale κL. Afterwards, individuals move to Stage R, which represents that the individual 

has recovered, been admitted to the hospital, been placed on treatment, or died. Epidemic 

models commonly use multiple infectiousness periods to investigate HIV,[9] including 

processes with two infectious periods.[46, 18, 65]

Another common epidemic process is an SEIR process. The Stages S and R still refer to 

Susceptible and Recovered, respectively. Stages E (Exposed) and I (Infectious) represent the 

latent phase of the infection (pre-infectious period) and the infectious period, respectively. 

During Stage E, individuals are not infectious and therefore cannot transmit the pathogen 

to any of their contacts. The SEIR process is a special case of the SIAILR where βA = 0
and is a common process for modeling influenza and SARS-CoV-2.[17] We denote the 

transmission probability during Stage I as β and the exponentially distributed waiting 

times in Stages E and I as κE and κI, respectively. For both the SIAILR and SEIR 

processes, we assume a fixed βA and βL across all contacts. Previous modeling studies 

have developed epidemic processes that varied the transmission probability for different 

partnership types (e.g., steady and casual).[21, 68, 5, 28] Similarly, COVID transmission 

models have different probabilities based on type of contact.[17] Including dyadic covariates 

that modify transmission probabilities would be a straight-forward extension to the current 

framework; for clarity of presentation we do not include dyadic covariates.

2.2 Terminology and notation

We denote a contact network as gc = vgc, egc , where vgc and egc are the set of individuals 

(vertices) and contacts (edges) within a population, respectively. Let n denote the number of 

individuals in vgc and let m denote the number of individuals infected during the epidemic. 

The transmission network induced by an epidemic, denoted as gp = vgp, egp , is a directed 

network consisting of the m infected individuals. An edge from individual i to j, denoted as 

i, j , is in gp (denoted as i, j ∈ gp) if and only if i infected j. As we assume transmission can 

only occur between two individuals with contact, so gp is a subgraph of gc. When discussing 

properties or methods that are applicable to networks in general, we use the notation g, 

without a superscript, to denote a network.

Let the degree of vertex i, denoted as di g , be the number of edges between that vertex 

and others. Let d g = d1 g , …, dn g  represent the vector of degrees of vertices in set vg, 

commonly referred to as a degree sequence. The degree distribution, denoted D g , is a 

vector such that the jth entry represents the number of vertices having degree j − 1, e.g., 

Dj gc = ∑i = 1
n I di gc = j .
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Let Gn denote the space of all networks with n vertices. Let ϕ denote an algebraic map from 

Gn to network summary statistics of interest (e.g., degree distribution or mixing patterns) 

and let cϕ x = g:ϕ g = x, g ∈ Gn  denote the inverse image associated with ϕ. We refer to 

these inverse images as congruence classes;[13] they also have been referred to as fibers in 

algebraic statistics literature.[53] Let cϕ x  denote the number of graphs for which network 

property ϕ equals x; this quantity has been referred to as a volume factor.[59]

In this paper, epidemiological data consist of transition times for the m individuals ultimately 

infected. For the SIAILR epidemic process, we denote the start times of the infection, 

i.e., the times that individuals transition from Stage S to Stage IA, as T A = T1
A, T2

A, …, Tm
A , 

where T i
A represents the transition time for individual i. We denote the end time of the acute 

period, i.e., transitioning from Stage IA to Stage IL, as T L = T1
L, T2

L, …, Tm
L  and the time of 

recovery, treatment, hospitalization, or death, i.e., the times that individuals transition from 

Stage IL to Stage R, as T R = T1
R, T2

R, …, Tm
R . For the SEIR epidemic process, we use the 

notation of T E and T I for the start times of the exposed and infectious stages, respectively. 

We denote the collection of these transition times as T . For the SIAILR epidemic process 

T = T A, T L, T R , while for the SEIR process T = T E, T I, T R . Let Ht be the viral genetic 

sequences for all infected individuals at time t; ℎi
t is the genetic sequence for individual i. 

Let Dist ℎi
t, ℎj

t  be a distance between sequences ℎi
t and ℎj

t; that is, a genetic distance between 

individuals i and j at time t.

2.3 Congruence class model

As noted above, a particular CCM is defined by (1) a network property or set of properties 

(such as degree distribution) and (2) a PMF on the congruence classes defined by values of 

the network property. We denote the PMF as Pϕ x ∣ θ , which specifies the total probability of 

all networks that are elements in cϕ ϕ g  given a set of parameter values θ, i.e.,

Pϕ x ∣ θ =
g ∈ cϕ x

PGn g ∣ θ ,

(1)

where PGn g ∣ θ  is the probability of graph g. CCMs assume that all networks within a 

congruence class have the same probability of being observed; this assumption is also made 

in commonly used network models including the ER, SB, and ERGMs. Therefore, the 

probability distribution on Gn for a CCM is the following:

PGn g ∣ θ = 1
cϕ ϕ g Pϕ ϕ g ∣ θ .

(2)

The CCM does not impose any constraints on specifying the probability distribution 

associated with network properties included in a model, i.e., Pϕ x ∣ θ . To illustrate this 
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flexibility, we provide examples of CCMs in the following section. Furthermore, this 

flexibility enables investigators to integrate multiple data sources, which we describe in 

Section 3 and demonstrate in Sections 4–6.

2.4 Illustrations of Congruence Class Models

We present two sets of examples to illustrate CCMs. In the first set, the network property 

of interest is the number of edges; in the the second, it is degree distribution. For both 

illustrations, we investigate networks with n = 4 vertices. Investigating networks of small 

size allows for complete enumeration of networks G4 = 64 , stratified by values associated 

with the two network properties of interest (i.e., number of edges and degree distribution).

2.4.1 Examples of CCMs: number of edges—Let ϕ1 denote an algebraic map from 

a network g to its number of edges. Networks for size n = 4 have between 0 and 6 edges. 

Therefore, G4 contains 7 distinct congruence classes associated with the number of edges; 

each of the 64 possible networks resides in exactly one of these classes. We denote the 

congruence class that contains all of the networks with x edges as cϕ1 x . We can calculate the 

size of each congruence class defined by number of edges using the following formula:[22]

cϕ1 x =
n
2
x

;

(3)

these calculates are shown in Table 1.

Table 1 shows three different possible ways to assign probabilities to the congruence classes, 

i.e., Pϕ1 x ∣ θ . Each of these assignments results in the mean number of edges being equal 

to 3. In the first probability distribution, Pϕ1 x ∣ θ  follows the uniform distribution, i.e., 

a network has equal probability of being drawn from congruence class ci as congruence 

class cj (ci and cj are arbitrary classes). In the second, the probability distribution follows 

a binomial distribution with θ = 0.5, i.e., Pϕ1 x ∣ θ = θx ⋅ 1 − θ 6 − x. In the third, it is a 

bi-modal distribution. For each of these three distributions, we calculate the probability of 

drawing a particular network within each congruence class, i.e., PGn g ∣ θ ; this calculation 

is based on Equation 2. These different choices for specification demonstrate the flexibility 

of CCMs over other network models. For example, the probability distribution for Pϕ1 x ∣ θ
and PGn g ∣ θ  under the Erdős-Rényi (ER) model and ERGMs are identical to the binomial 

distribution shown in Table 1.

An issue that arises in some ERGM specifications is having a large amount of probability 

mass on extremal networks (e.g., the empty and complete networks) and a small amount 

of probability is on networks similar to the one observed; this issue is referred to as 

near-degeneracy. [1, 58] In the CCM framework, one specifies the probability distribution on 

congruence classes, Pϕ x ∣ θ ; therefore, degeneracy is not an issue.
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2.4.2 Examples of CCMs: degree distribution—Let ϕ2 denote the mapping from 

a network to its degree distribution, i.e., ϕ2 g = D g . The space of networks of size n = 4
contains networks with 11 distinct degree distributions; these degree distributions are listed 

in Table 2 in Column 2. We denote the congruence class containing networks with degree 

distribution x as cϕ2 x . We calculate the number of networks in each of the 11 congruence 

classes by enumerating all 64 networks in G4 and summarizing their degree distribution. 

For larger networks, graph enumeration methods exist for estimating the size of congruence 

classes. [39, 16]

Table 2 shows two different possibilities for assigning probabilities to the congruence 

classes, i.e., Pϕ2 x ∣ θ . The first probability distribution for Pϕ2 x ∣ θ  follows the uniform 

distribution. The second, follows a multinomial distribution with θ = 0.15, 0.35, 0.35, 0.15 . 

For each of these two distributions on congruence classes, we calculate the probability of a 

network within each congruence class based on Equation 2. The multinomial distribution is 

used in the simulation studies and PIRC analysis to assign probabilities to the congruence 

classes. The paper focuses on integration of multiple data sources to estimate θ for the 

multinonial distribution.

3 Methods

This section provides technical details on our approach for integrating multiple data sources 

in order to estimate θ–the parameter (or vector of parameters) that defines the probability 

distribution on network properties of interest; in this manuscript, the network property of 

interest is the degree distribution for the contact network. In order to estimate θ, we use 

the Bayesian paradigm, which provides a natural approach to update prior beliefs regarding 

a parameter based on additional data. For the analysis, we use the behavioral survey data 

to develop a prior distribution for θ, and use epidemiological and viral genetic information 

to formulate the likelihood function. The specification of the Bayesian model is presented 

below.

3.1 Model

Below we present the proposed likelihood function as well as the prior and posterior 

distributions. In addition, the section discusses the connections among the data, network 

model (CCM), and epidemic process. The analysis assumes that transition times T  and 

genetic sequences H  are available for the population of interest; hence, the likelihood is 

L θ; T , H . The prior distribution for θ is defined using the risk behavior survey data.

3.1.1 Likelihood function—Though interest lies in the estimation of θ, we treat gc

and gp as extra parameters to simplify the likelihood function.[2] The likelihood function 

L gc, gp, θ; T , H  can be factored into five components; the first four follow the work by 

Groendyke et al. [20] but are expanded for the more general SIAILR epidemic process, 

while the fifth formalizes the inclusion of genetic sequence data. The likelihood is based on 

the SIAILR epidemic process and parameters described in the previous section. The first 
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component is the contribution of contacts over which infections were transmitted as shown 

below:

L1 =
j, k ∈ gp

βA ⋅ exp −βA Tk
A − T j

A ⋅ I TjA < Tk
A < TjL +

βL ⋅ exp −βA T j
L − T j

A − βL Tk
A − T j

L ⋅ I TjL < Tk
A < TjR .

(4)

The first two components are separated into two parts corresponding to the two disease 

stages (acute and long-term). We assume that the time to infection over an edge is 

exponentially distributed with rate βA during the acute phase and βL during the long-term 

phase. This yields the following likelihood for the second component:

L2 =  
1 ≤ j ≤ m, j, k ∈ gc ∖ gp

exp −βA ⋅ min T j
L, Tk

A − T j
A ×

exp −βL ⋅ max min T j
R, Tk

A , T j
L − T j

L × I Tk
A > TjA + I Tk

A < TjA .

(5)

The third component is the contribution associated with the transitions from the acute to 

the long-term phase of the disease, while the fourth component is the transition from the 

long-term phase to recovery. We assume that the waiting time in each phase follows an 

exponential distribution with rate κ. Components 3 and 4 are shown below:

L3 =
i = 1

m
κA exp −κA T i

L − T i
A ,

(6)

and:

L4 =
i = 1

m
κLexp −κL T i

R − T i
L .

(7)

The fifth component is the contribution of the genetic sequence data:

L5 =
j, k ∈ gp

ps ℎk
tk ∣ gp, ℎj

tj, T j
A, Tk

A ,

(8)

where tj and tk are the times that sequences are collected for individuals j and k, respectively, 

and ps ℎk
tk ∣ gp, ℎj

tj, T j
A, Tk

A  is the probability that the sequence for individual k at time of 

collection would be ℎk
tk, given that k was infected by individual j and the sequence for j

is ℎj
tj. This probability distribution could be determined by a model of genetic evolution, 

Goyal et al. Page 9

Stat Med. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[69, 70, 31] or as a function of the distance between sequences.[62] These five components 

combined give the following likelihood function for the model:

L gc, gp, θ; T , H = L1L2L3L4L5 .

(9)

3.1.2 Prior distribution

The prior distribution for the parameter θ and expanded parameters gc and gp, denoted as 

π0 gc, gp, θ , can be written as the following:

π0 gc, gp, θ = π0 gc, gp ∣ θ π0 θ

(10)

= π0 gp ∣ gc, θ π0 gc ∣ θ π0 θ .

(11)

Because π0 gp ∣ gc, θ = π0 gp ∣ gc ,

π0 gc, gp, θ = π0 gp ∣ gc π0 gc ∣ θ π0 θ .

(12)

We model π0 gc ∣ θ  as a CCM; therefore, the functional form of π0 gc ∣ θ  is shown in 

Equation 2.

As discussed above, the ability to integrate behavioral survey data with the other available 

data for estimating contact network properties arises from the flexibility afforded by CCMs 

in specifying π0 gc ∣ θ . The prior distribution for θ,  π0 θ , is specified based on the risk 

behavior survey data. As in Britton and O’Neill [2] and Groendyke et al. [20], we use the 

uniform distribution for π0 gp ∣ gc , which makes all gp that are possible given a particular 

contact network gc equally likely.

3.1.3 Posterior distribution—Together, the priors and likelihood yield the following 

posterior distribution for the parameters, θ, gc and gp:

π θ, gc, gp ∣ T , H ∝ L gc, gp, θ; T , H π0 gp ∣ gc π0 gc ∣ θ π0 θ .

(13)

3.2 Estimation procedure

Sampling directly from the posterior of this model (Equation 13) is computationally 

intractable. We instead sample from the posterior using a Markov Chain Monte Carlo 

(MCMC) approach. Specifically, we use a Gibbs sampler to sample from the posterior. At 

Goyal et al. Page 10

Stat Med. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each iteration, the parameters gc, gp, and θ are sequentially updated resulting in a collection 

of contact networks, transmission trees, and parameter values that are consistent with the 

data; details are provided below.

3.2.1 Update contact network—To update gc, the approach uses a nested MCMC 

procedure–within the Gibbs sampler–to construct a sequence of graphs, g1, …, gM; the nested 

MCMC procedure is a Metropolis-Hastings (MH) algorithm. At each iteration, the MCMC 

algorithm selects an edge or potential edge between two vertices at random, denoted as eij, to 

toggle, i.e., the edge is removed if it is currently in the network and vice versa. This graph is 

referred to as a proposal network; the proposal at iteration t is denoted as gpt − 1. At the end of 

the iteration, either gt = gpt − 1 or gt = gt − 1. This selection is based on the following acceptance 

probability for the MH algorithm:

aij =

1  if  i, j ∈ gp or  j, i ∈ gp
rij  if both i and j remain susceptible 

μijrij
1 − rij + μijrij

 otherwise, 

(14)

where:

rij = min 1,
PGn gpt − 1 ∣ θ
PGn gt − 1 ∣ θ ,

(15)

and:

μij =
1 − FA min T j

L, T i
A − T j

A × 1 − FL max min T j
R, T i

A , T j
L − T j

L  if I IjA < IiA

1 − FA min T i
L, T j

A − T i
A × 1 − FL max min T i

R, T j
A , T i

L − T i
L  if I IjA > IiA ;

(16)

FA and FL are the cumulative probability functions for the exponential distribution with 

parameters βA and βL, respectively. Methods to calculate the ratio in rij are presented in Goyal 

et al. [13].

3.2.2 Update transmission network—To update gp, we select an infector for each 

infected individual j sequentially. The candidate vertices for the individual that infected j, 
referred to as the parent of j, are vertices that are infectious when individual j became 

infected and have a contact with j; that is, vertex i is a candidate parent if T i
A < T j

A < T i
R and 

i, j ∈ gc. Denote these candidate vertices by i1, …, ik. To specify the probability that iq is the 

parent of j, we define the following:
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x iq, j =
βAexp −βA T j

A − T iq
A  if T iq

A < T j
A < T iq

L

βLexp −βL T j
A − T iq

L 1 − FA T iq
L − T iq

A  if T iq
L < T j

A < T iq
R,

(17)

and:

y ia, j =
1 − FA T j

A − T ia
A  if T ia

A < T j
A < T ia

L

1 − FA T ia
L − T ia

A 1 − FL T j
A − T ia

L  if T ia
L < T j

A < T ia
R .

(18)

The probability that iq is the parent of j, given that one of the candidates is known to have 

infected j, is:

x iq, j ps ℎj
tj ∣ gp, ℎiq

tiq, T iq
A, T j

A
a ≠ q y ia, j

z ∈ 1, …, k x iz, j ps ℎj
tj ∣ gp, ℎiz

tiz, T iz
A, T j

A
a ≠ z y ia, j

=
x iq, j

* ps ℎj
tj ∣ gp, ℎiq

tiq, T iq
A, T j

A

z ∈ 1, …, k x iz, j
* ps ℎj

tj ∣ gp, ℎiz
tiz, T iz

A, T j
A

,

(19)

where:

x iq, j
* =

βA  if T iq
A < T j

A < T iq
L

βL  if T iq
L < T j

A < T iq
R .

(20)

3.2.3 Update parameters for CCM—Based on the posterior distribution shown in 

Equation 13, the full conditional distribution for θ, P θ ∣ gc, gp, T , H , is proportional to 

π0 gc, θ , which can be further simplified as presented below:

P θ ∣ gc, gp, T , H ∝ PGn gc ∣ θ * π0 θ

(21)

= 1
cϕ ϕ gc Pϕ ϕ gc ∣ θ * π0 θ

(22)

∝ Pϕ ϕ gc ∣ θ * π0 θ .

(23)
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In general, having π0 θ  and Pϕ ϕ gc ∣ θ  be conjugate distributions will ease computational 

burden. Sections 4–6 provide examples on specifying these distributions.

4 Simulation study: SEIR epidemic process

This section describes simulation studies for assessing the method’s performance at 

estimating the degree distribution of the contact network. For clarity of presentation, the 

analysis focuses on only one network property; but CCMs can be defined based on several 

properties. For example, Goyal et al. [13] and Goyal and De Gruttola [14] specified a CCM 

with both degree distribution and mixing patterns. As the focus is on investigating the value 

of integrating multiple data sets, the simulation studies assume that the epidemiological data 

and genetic data are completely and perfectly observed. Groendyke et al. [20] describes an 

approach to adjust for missing epidemiological data.

To generate the necessary data for the simulation study (behavior survey, epidemiological, 

and viral sequence data), we simulate a contact network, an epidemic that propagates over 

the contact network, a simple viral evolution process, and a behavioral survey sampling 

process. The epidemic process is parameterized to resemble the spread of SARS-CoV-2. The 

subsection below provide details of these components for the simulation studies; subsequent 

subsections provide details on the specification of the prior distribution, viral sequence 

evolution process, and results of the simulation studies.

4.1 Overview of data generating procedure

The following provides details for the four components that are necessary to generate data 

needed to illustrate our presented approach:

1. Contact network model: The study simulates a population of n = 1000
individuals and generates a contact network based on a CCM, where the degree 

distribution follows a Poisson distribution with parameter λ, representing mean 

degree. The simulations use λ values from the following set: {10, 20, 30, 40, 50}.

2. Epidemic process: The epidemic begins with a single infected individual and 

proceeds via the stochastic SEIR model detailed earlier. The parameters for the 

epidemiological model are based on estimates for SARS-CoV-2. Specifically, the 

parameters for the exponential distribution that governs the lengths of the latent 

and infectious periods are set such that the duration has a mean of 4 days kE = 4
and 14 days kI = 14 , respectively.[34] Based on existing literature, β = 0.0097.

[17] In this simulation study, we assume that the epidemic parameters (kE and 

kI) are known and constant throughout the simulation; however, there are recent 

methods using Bayesian inference to estimate epidemic parameters as well as 

changes in these parameters over time due to either external (e.g., government 

interventions) or internal (e.g., evolution of pathogen) causes.[57]

3. Simple viral evolution process: The genetic data for the pathogen consist 

of sequences of 1048 base pairs. The sequences change over time at a rate 

of 1 substitution per day. In addition, each transmission is associated with 

Goyal et al. Page 13

Stat Med. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10 substitutions. These viral evolution parameters are selected to illustrate the 

approach; HIV specific parameters are used in the next section.

4. Simulate data: Behavior survey data consist of k sampled individuals, where k
can be 25, 50, 100 or 200 individuals (i.e., ranging from 2.5% to 20% of the 

population). For each sampled individual, the simulation records the number of 

contacts. We denote the degree for a sampled individual i as di gc .

4.2 Prior Distribution

To specify π0 gc ∣ θ , we postulate a CCM where the network property of interest is degree 

distribution; the PMF is shown below:

PGn gc ∣ θ = 1
cϕ ϕ gc Pϕ ϕ gc ∣ θ .

(24)

The investigator selects the probability distribution for Pϕ ϕ gc ∣ θ . Here, we assume 

Pϕ ϕ gc ∣ θ  follows a multinomial distribution with parameter θ; entry θi is the probability 

that an individual has degree i. Note that our choice of a multinomial distribution for the 

degree distribution differs from the distribution used to generate the simulation data, which 

is based on a Poisson distribution. We selected the multinomial distribution because it can 

represent a wide range of degree distributions for populations due to its large number of 

parameters allows. For example, it can represent populations with minimal heterogeneity 

in degree to populations with right-skewed degree distributions. In addition, specifying 

different distributions for the data generating process and inferential approach helps ensure 

the conclusions from the approach are not over-optimistic. Furthermore, the ability to 

specify different distributions illustrates the flexibility of CCMs.

As with Pϕ ϕ gc ∣ θ , the investigator selects the specification of π0 θ . In these simulations, 

to specify the prior distribution π0 θ , we assume that θ is drawn from a Dirichlet distribution 

with parameter vector α0. Therefore,

θ Diricℎlet α0 ,

(25)

where the parameter vector α0 is based on the sampled risk behavior survey data. To set α0, 

we conduct a separate Bayesian inference analysis. Specifically, Diricℎlet α0  is the posterior 

distribution where the behavior survey data is modeled using a multinomial distribution 

and the prior distribution is a Dirichlet with parameter α0
ℎyper . We set α0

ℎyper  to result in a non-

informative prior; specifically, α0
ℎyper  is equal to all 1

n , where n is the number of individuals in 

the population. Therefore,
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α0 j = 1
n +

i = 1

k
I di gc = j .

(26)

The assumption that P ϕ g ∣ θ  follows a multinomial distribution and π0 θ  is a Dirichlet 

distribution eases the computational burden of updating CCMs parameters as these two 

distributions are conjugate distributions.

4.3 Viral sequence evolution process

For the viral genetic model, we assume that all sequences are collected simultaneously at the 

end of the simulation, denoted as time t. We assume that:

ps ℎj
tj ∣ gp, ℎiq

tiq, T iq
E, T j

E ∝ Dist ℎiq
t , ℎj

t −1 .

(27)

4.4 Results

For each potential pair of mean degree λ and number of behavior survey respondents 

(ranging from 2.5% to 20% of the population), we perform the Bayesian estimation 

procedure 250 times; therefore, there are a total of 5,000 simulations. We remove 

simulations with fewer than m = 50 infected individuals (5% of the population) at the end of 

the simulation, which we designate as too few to constitute an epidemic. As expected, the 

simulations with smaller λs are more likely to have fewer than 50 infected individuals, as 

the contact networks had fewer edges to transmit the virus; Table 3 shows the number of 

simulations (out of 250) with sufficient number of infected individuals, stratified by λ and 

the number of behavior survey respondents.

For each simulation, we construct a Markov chain of length 2, 000. For each of the 2, 000 

iterations, gc, gp, and θ need to be updated based on the Gibbs sampler described in Section 

3. While each of these updates are computationally intensive, the update to gc results in the 

most computational burden. The process to update gc requires a separate MCMC algorithm 

that is nested within the larger Gibbs sampler. The MCMC to update gc is similar to 

sampling from a CCM or ERGM.[13, 27] For the analysis in the paper, we set the number of 

iterations for the nested MCMC as 10, 000. Therefore, for each of the 5, 000 simulations, 20 

million networks were generated–resulting in 100 billion networks for the entire simulation 

study. During the MCMC procedure, some of the chains enter into a region of the network 

space with low probability mass (extremely high network density). Given the large size of 

the space of networks with n vertices Gn , we remove these chains as it will take a long time 

to find (or re-find) a network with non-negligible probability mass. The phenomenon where 

chains enter low probability regions has been observed in the literature.[43] Addressing this 

phenomenon may require advanced MCMC algorithms such as Hamilton Monte Carlo to 

address.[25] Table 3 shows the number of simulations contained in the analysis.
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To assess when the MCMC chain reaches an approximately steady state, we review trace 

plots and calculate Geweke’s convergence diagnostic.[11] In these simulations, we are 

estimating a vector of parameters for a multinomial distribution associated with the degree 

distribution for networks of size n = 1,000, i.e., there are separate parameters for degrees 

from 0 to 999. Therefore, we have potentially 5, 000, 000 chains to assess for this 

simulation study as we conduct 5, 000 simulations in this study. Based on visual review 

of a subset of trace plots, it appears that the MCMC procedure reaches convergence around 

the 1000th iteration. Figure 1 shows trace plots from simulations with varying values for 

λ 10, 20, 30, 40, 50  (columns) and sample size for the behavior surveys (25, 50, 100, 200) 

(rows). Each plot shows the number of nodes with degree equal to λ (y-axis) for 1000 

MCMC iterations (x-axis). Each trace plot presented is from the simulation with the median 

mean squared error (MSE) value for the specific combination of λ and behavior survey 

sample size; we discuss the calculation for the MSE below. Hence for the results, the 

analysis uses the chain only between iterations 1001 – 2000; the first 1000 iterations are 

MCMC burn-in values. To investigate whether iterations 1001 – 2000 are samples from the 

stationary distribution, we use the Geweke z-score diagnostic to assess whether iterations 

1001–2000 differ from iterations 2001–5000 for a subset of 50 simulations using the CODA 

library in R.[54, 55] Approximately 76.6% of chains show no or minimal variability (for 

example, no networks–across all simulations-contain a node with a degree of 999); for these 

chains it is not possible to calculate a Geweke z-score. The median absolute z-score is 

1.50 (25% and 75% quantiles are 1.00 and 2.24) for the remaining chains. Therefore, the 

majority of chains were assessed to be in a stationary state for iterations 1001–2000; this 

estimate is conservative as we only include chains with sufficient variability to calculate a 

Geweke z-score. Based on the Geweke z-score, several chains are not in a stationary state 

for all iterations between 1001–2000. However, running these chains for longer should only 

increase the performance of our approach; therefore, we consider our estimates conservative. 

For the chains with variability, we have a median effective sample size of 257 (25% and 

75% quantiles are 107 and 310) using the CODA library in R.[54, 55]

For each simulation included in the analysis, we calculate two MSEs–one based on the 

posterior distribution that integrates multiple data (referred to as MSEposterior) and one 

based on the prior distribution developed from the behavior survey samples (referred to as 

MSEprior ). For each simulation, MSEposterior  is evaluated by first calculating the bias squared 

b2  for each degree, i.e., for a given degree, we calculate the mean number of nodes in 

gc, across MCMC iterations from 1001 to 2000, minus the true number of nodes, and then 

square this difference. Next, we calculate the variance σ2  for each degree across these 

MCMC iterations. Third, we calculate the MSE for each degree as b2 + σ2. Finally, we 

sum the MSE for each degree, across all degrees (0 to 999), to evaluate the MSEposterior  for 

a simulation. To evaluate MSEprior  for each simulation, we draw 1000 samples from the 

prior Dirichlet distribution estimate and multiply the distribution by the population size; the 

1000 samples correspond to the number of MCMC iterations used to estimate MSEposterior . 

This procedure to calculate the MSEs provides a conservative estimate of the improvement 

of our approach, as the procedure to calculate MSEposterior  include more variation than the 

calculation for MSEprior .
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Figure 2 provides boxplots for MSEposterior  and MSEprior  for degree distribution estimates 

with (posterior) and without (prior) epidemiological and viral genetic data, respectively. The 

MSEs are stratified by λ and the number of individuals sampled for the behavior survey. For 

both MSEposterior  and MSEprior , we observe a decrease on average, as the number of sexual 

behavior survey samples increases from 25 to 200 individuals. For λ = 20 to 50, we observe 

that MSEposterior  is smaller than MSEprior  on average. For λ = 10, only when the number of 

individuals sampled is small (25 individuals) does using data integration outperform using 

solely behavior survey data, on average; see the Discussion for thoughts regarding this 

result.

We calculate the mean percent improvement in MSE (referred to as MSEimprove ) by 

comparing MSEposterior  and MSEprior  :

MSEimprove = MSEprior − MSEposterior
MSEprior

× 100 .

(28)

Values for MSEimprove  are shown in Figure 3. For example, in simulations where λ = 50, 

the inclusion of genetic sequences and epidemiological information resulted in MSEimprove

estimates of 5.6% percent to 62.1% for the number of sexual behavior survey samples 

ranging from 200 down to 25 individuals, respectively. In general, we observe that, for a 

given λ, MSEimprove  decreases as the number of individuals sampled increases.

5 Simulation Study: SIAILR epidemic process

In this section, we describe a simulation study based on an SIAILR epidemic process to 

assess the method’s performance at estimating the contact network degree distribution in 

the presence of measurement error. The simulation study is similar for the SEIR process 

(including the formulation of the posterior and prior distributions and likelihood function), 

except for the data generating procedure, which we describe below.

5.1 Overview of data generating procedure

The following provides details for the four components of the data generating procedure for 

the SIAILR process:

1. Contact network model: A contact network consisting of 1000 individuals is 

generated based on a CCM where the degree distribution follows a negative 

binomial distribution fitted to the PIRC HIV data.

2. Epidemic process: The simulated epidemic begins with a single infected 

individual and proceeds via the stochastic SIAILR model detailed earlier. The 

parameters for the epidemiological model are based on estimates for HIV. 

Specifically, we set the parameters for the exponential distributions that govern 

the lengths of the infectious acute and long-term periods such that the durations 
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have a mean of 3 months κA = 3  and 42 months κL = 42 , respectively.[18] 

Based on existing literature, βA = 0.01505 and βL = 0.008911817.[18]

3. Simple viral evolution process: Genetic data for the pathogen consists of 

sequences of 1048 base pairs. These sequences change based on an annual per 

site mutation rate of 0.0012 substitutions.[46] In addition, each transmission is 

associated with 1 substitution to ensure unique sequences for each individual.

4. Simulate data: The simulation studies generate behavior survey data by 

sampling k individuals, where k can be 25, 50, 100 or 200 individuals (i.e., 

ranging from 2.5% to 20% of the population). For each sampled individual, we 

introduce measurement error by inflating or deflating their number of contacts 

by a given percentage, representing over- or under- reporting, respectively. Each 

simulation selects a measurement error percentage from the set: {−50%, −40%, 

…, +50%}, where negative percentages indicate individuals reported fewer 

numbers of partners than they actually had, and positive percentages indicate 

they reported greater numbers of partners.

5.2 Results

For each measurement error percentage and number of behavior survey respondents (ranging 

from 2.5% to 20% of the population), we perform the procedure 250 times, resulting in a 

total of 11, 000 simulations. We remove simulations in which fewer than 50 individuals (5% 

of the population) were infected at the end of the simulation. We apply an approach similar 

to that in the previous section to identify chains that were never able to find (or re-find) 

a network with non-negligible probability mass. Table 4 shows the number of simulations 

of the sets of 250 that had a sufficient amount of infected individuals and the number of 

simulations that are included in the analysis.

Figure 4 provides boxplots for MSEposterior  and MSEprior  for degree distribution estimates 

with (posterior) and without (prior) the epidemiological and viral genetic data, respectively. 

The MSEs are stratified by the measurement error percentage and the number of behavior 

survey respondents. In the absence of measurement error (misreporting = 0%), we observe, 

on average, a decrease in MSE (from 70.1% to 32.9%) when integrating multiple data 

compared to using only risk behavior data. The number of sexual behavior survey samples 

ranged from 25 to 200. When the number of reported partners is higher than the actual 

number of sexual partners, we observe a consistent large decrease in MSE. Even when fewer 

partners are reported than the actual number, we nonetheless observe a decrease in MSE, on 

average, but to a smaller extent. Figure 5 shows values for the median MSEimprove  across the 

settings.

6 Investigation of PIRC Cohort

In this section, we apply our approach to the PIRC cohort to demonstrate using the approach 

on HIV real-world HIV data. PIRC is an observational cohort of antiretroviral naive people 

newly diagnosed with acute, early and established HIV, which started enrolling participants 

on July 1, 1996. As mentioned above, PIRC participants are asked to provide behavior 
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risk information, viral genetic sequences, and epidemiological data during longitudinal 

follow-up. Regarding risk behavior data, PIRC participants provide information on the 

number of sexual partners they had in the last 3 months. Napper et al. [47] found that 

a recall period of 3 months produced the most reliable data. In terms of epidemiological 

data, it is uncommon to know the exact date of infection (DoI) for individuals due to the 

delay in diagnosing HIV. In the United States, there is approximately a 3-year gap between 

infection and diagnosis.[6] The use of a CD4 depletion model is a common approach to 

estimate DoI, which uses an individual’s date of diagnosis and first cell count after diagnosis 

(prior to treatment).[61] Using data from PIRC, Tang et al. found that the sensitivity and 

specificity of the CD4 depletion model can be low for recent infections.[63] At time of 

their enrollment, participants of the PIRC study are newly diagnosed with HIV infection 

and an estimated DoI (eDoI) is calculated for those with recent infection using virologic 

and serologic data. Data on PIRC participants also include dates of treatment initiation and 

achieving viral suppression.

In this analysis, we focus on estimating the degree distribution for the contact network 

among the PIRC participants. That is, we aim to estimate the total number of sexual partners 

per PIRC participant restricted to PIRC participants over the entire duration of follow-up. 

Therefore, our available risk behavior data of the reported number of sexual partners in 

the previous 3 months (which includes partners both enrolled and not enrolled in the PIRC 

cohort) can be viewed as providing noisy information (i.e., having measurement error) 

regarding the total number.

We limit the analysis to the 535 PIRC participants who had behavioral risk information, 

epidemiological data, and a viral sequence. For the analysis, T A is set to the eDoI; the 

length of the acute phase was assumed to be 3 months, i.e., T L = T A + 3. We set T R as 

the date of treatment initiation. For participants without a recorded ART initiation date, the 

treatment time is set as the date of achieving viral suppression. We use the responses from 

all 535 participants in the analysis to construct a prior distribution for parameters associated 

with degree distribution. For each pair of individuals with a sequence, we calculated the 

genetic distance. Pairwise distance was measured using the Tamura-Nei 93 algorithm.[62] 

In accordance with previous analyses, for pairwise distances less than 1.5%, we assume this 

indicates evidence of possible linkage.[50] For distances greater than 1.5%, we assumed that 

the distance is not informative of transmission, but does not preclude this possibility. The 

formulation of the posterior and prior distributions and likelihood function are the same as 

the simulation studies.

As the true number of sexual partners among PIRC participants is not available, the analysis 

investigates changes in the degree distribution between estimates derived from the survey 

data and those using the presented approach. Figure 6 shows density plots for the number of 

individuals with each degree from 0 to 20 for estimates from the survey solely (blue area) 

and estimates from our approach (red area). The estimated mean number of partners from 

the survey, 9.09 partners, decreases to 2.18 partners, on average, with the application of our 

Bayesian approach. Given the difference between the survey question and the quantity being 

estimated (that is, degree distribution only among PIRC participants), we would expect 
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to see this decrease. The magnitude of decrease provides insight into the potential size 

of the number of individuals missing from the contact network that includes both PIRC 

participants and their partners (irrespective of whether the partners are enrolled in PIRC); an 

important limitation is that the reported number of partners is limited to 3 months.

7 Discussion

In a world where diverse data sources are increasingly easy to obtain, there is a great 

need for principled methods to combine those data sources. In the infectious disease realm, 

we now have an array of data types that inform different aspects of the complex system 

underlying disease transmission. This creates an opportunity to learn about properties of that 

system that are otherwise difficult or impossible to measure accurately. In this manuscript, 

we present such a principled approach to integrate multiple data sources associated with 

infectious disease dynamics in order to estimate properties of the underlying contact 

network. An understanding of the structure of contacts makes it possible to develop more 

efficient disease prevention programs that use information about network structure. The core 

of the approach is the use of CCMs for analyses of networks. The ability of CCMs to 

represent a broad family of different models provides the flexibility necessary to integrate 

multiple data sources. Beyond CCMs, other network models also might potentially be 

used to integrate multiple data; these include SIENA,[60] latent space models,[24, 30] 

and hierarchical longitudinal models.[52] There exists promising research in developing 

data integration methods using these flexible models to investigate dyad-dependent network 

properties.

Our simulation results show that integration of routinely-collected data can lead to large 

increases in precision and accuracy of contact network estimates. The simulations using an 

SEIR model parameterized to resemble SARS-CoV-2 spread show that, in most settings, 

the MSE of our network property (degree distribution) estimates is lower when based on 

data integrated across multiple sources. Exceptions to this finding arose in settings where 

the contact network is sparse (small mean degree) and the percentage of the population 

with risk behavior data exceeds 5%. As we simulated the degree distribution based on a 

Poisson distribution, a small mean degree corresponds to small variance in the degrees of 

individuals. Therefore, in the settings where MSE did not improve under our approach, 

we have more survey data (prior information) and fewer entries of the degree distribution 

with non-zero values. In such settings, it seems that a straightforward estimation procedure 

may have benefits compared to our Bayesian framework. The benefits of data integration 

for estimating properties of the contact network are further demonstrated in the simulations 

using the SIAILR model and epidemic process that resembles HIV. These simulations 

suggest a potentially substantial reduction in MSE in settings reporting bias is present. 

In general, the improvement from data integration appears to greater in setting with over-

reporting compared to under-reporting of the number of partners.

We apply our approach to data from PIRC, a longstanding cohort of persons newly 

diagnosed with HIV. The demonstration of our approach that uses the PIRC cohort 

highlights several directions of further research. First, for the simulation studies and the 

analysis of PIRC data, we consider the possibility of measurement error, but not of biases 
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in the sampling of individuals who respond to the risk behavior survey. Second, we assume 

that the transmission probability is the same per sexual partner; previous research has shown 

the importance of considering differences in transmission probabilities among various types 

of partners (e.g., those in stable relationships, sex workers, etc.).[12] Third, our approach 

assumes that the contact network is static. Given the duration of HIV studies, including 

PIRC, this assumption will probably be violated. In fact, temporal patterns in contacts have 

been shown to impact the spread of disease [26], implying a need to extend the approach 

to dynamic networks. We note that our approach has sufficient flexibility to accommodate 

these improvements. For example, one advantage of the CCM framework is that known 

biases in selection can be incorporated directly in the formulation of π0 θ . Furthermore, the 

CCM framework has already been expanded to dynamic networks.[15]

In addition to addressing the complexities in the PIRC data, there is a need to develop 

statistical methods in several areas. The first is assessing MCMC algorithms when 

modeling a large number of network model parameters, which is possible for CCMs and 

demonstrated in our simulation studies. There are challenges in using MCMC algorithms in 

high-dimensions as well as assessing their convergence. [7, 56] Furthermore, parameters for 

network models are highly correlated.[8] Another area of further research is on statistical 

approaches for addressing the range of missing data common in infectious disease data. 

For example, it is common for HIV sequences and epidemiological data to be missing for 

individuals.[4, 41] Within the presented framework, it possible to impute epidemiological 

times for a particular event (e.g., infection) based on an observed time for another event 

(e.g., diagnosis) within the Gibbs sampler.[20] Such imputation requires the ability to 

develop a probability distribution for the missing event time based on observed times for 

other events. For example, if diagnosis times are only available (along with biomedical 

information), one can develop a distribution for the diagnosis delay to estimate date of 

infection.[61] Finally, methodological research is necessary for integrating novel network 

data. For example, responses to the COVID-19 pandemic are making use of a range of 

new technologies and devices for collecting network data, such as those that arise from 

Bluetooth proximity data and geo-location information available from smart devices. This 

information can be used to inform contact structure. Integrating data from these sources 

with surveillance and other epidemiological data will be necessary to best inform design and 

evaluate interventions intended to mitigate the spread of infectious diseases. The presented 

approach provides a rigorous framework for developing such statistical methods.
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Figure 1: 
Trace plots from simulations with varying values for λ 10,20,30,40,50  (columns) and sample 

size for the behavior surveys (25, 50, 100, 200) (rows) are presented. Each plot shows the 

number of nodes with degree equal to λ (y-axis) for 1000 MCMC iterations (x-axis). Each 

trace plot presented is from the simulation with the median MSE value for the specific 

combination of λ and behavior survey sample size. A smooth (blue) line is included across 

the points.
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Figure 2: 
SEIR epidemic process simulation study boxplots of the MSE values for degree distribution 

estimates with (posterior) and without (prior) epidemiological and viral genetic data across 

values for the mean degree of the network λ .
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Figure 3: 
Improvement in MSE (MSEimprove) for the SEIR epidemic process simulation study. The plots 

show the median percent improvement in MSE for degree distribution estimates with the 

inclusion of the epidemiological and viral genetic data compared to without such data across 

values for the mean degree of the network λ .
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Figure 4: 

SIAILR epidemic process simulation study boxplots of the MSE values for degree 

distribution estimates with (posterior) and without (prior) epidemiological and viral genetic 

data across values for the misreporting factor.
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Figure 5: 

Improvement in MSE (MSEimprove ) for the SIAILR epidemic process simulation study. The 

plots show the median percent improvement in MSE for degree distribution estimates with 

the inclusion of the epidemiological and viral genetic data compared to without such data 

across values for the measurement error percentage.
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Figure 6: 
Density plots for the number of individuals of each degree. Values from the survey are 

shown in blue, while estimates from the Bayesian approach are shown in red. Only degrees 0 

to 20 are shown, as few or no individuals have degrees higher than 20.
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Table 1:

Illustration of CCMs modeling the number of edges. Columns 1 and 2 list the possible values for the number 

of edges and the number of networks with each value (i.e., congruence class size). Columns 3 and 4 show 

Pϕ1 x ∣ θ  and PGn g ∣ θ  for a CCM defined by a uniform distribution on congruence classes. Columns 5 and 6 

show the information for a binomial CCM; Columns 7 and 8 for a bi-modal CCM.

Number of edges x cϕ1 x Uniform CCM Binomial CCM Bi-modal CCM

Pϕ1 x ∣ θ PGn g ∣ θ Pϕ1 x ∣ θ PGn g ∣ θ Pϕ1 x ∣ θ PGn g ∣ θ

0 1
1
7

1
7 ⋅ 1 0.0156

0.0156
1 0.1

0.1
1

1 6
1
7

1
7 ⋅ 6 0.0938

0.0938
6 0.25

0.25
6

2 15
1
7

1
7 ⋅ 15 0.2344

0.2344
15 0.1

0.1
15

3 20
1
7

1
7 ⋅ 20 0.3125

0.3125
20 0.1

0.1
20

4 15
1
7

1
7 ⋅ 15 0.2344

0.2344
15 0.1

0.1
15

5 6
1
7

1
7 ⋅ 6 0.0938

0.0938
6 0.25

0.25
6

6 1
1
7

1
7 ⋅ 1 0.0156

0.0156
1 0.1

0.1
1
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Table 2:

Illustrations of CCMs modeling degree distribution. The first column provides an index for the congruence 

classes defined by degree distribution. Columns 2 and 3 list the distinct values for degree distributions and 

the number of networks with each degree distribution (i.e., congruence class size). Columns 4 and 5 show 

Pϕ2 x ∣ θ  and PGn g ∣ θ  for a CCM defined by a uniform distribution on congruence classes. Columns 6 and 7 

show these values for a multinomial CCM.

Index Degree distribution x * cϕ2 x Uniform CCM Multinomial CCM

Pϕ2 x ∣ θ PGn g ∣ θ Pϕ2 x ∣ θ PGn g ∣ θ

1 [4, 0, 0, 0] 1
1
11

1
11 ⋅ 1 0.0014

0.0014
1

2 [2, 2, 0, 0] 6
1
11

1
11 ⋅ 6 0.0459

0.0459
6

3 [1, 2, 1, 0] 12
1
11

1
11 ⋅ 12 0.2144

0.2144
12

4 [0, 4, 0, 0] 3
1
11

1
11 ⋅ 3 0.0417

0.0417
3

5 [1, 0, 3, 0] 4
1
11

1
11 ⋅ 4 0.0715

0.0715
4

6 [0, 2, 2, 0] 12
1
11

1
11 ⋅ 12 0.2501

0.2501
12

7 [0, 3, 0, 1] 4
1
11

1
11 ⋅ 4 0.0715

0.0715
4

8 [0, 1, 2, 1] 12
1
11

1
11 ⋅ 12 0.2144

0.2144
12

9 [0, 0, 4, 0] 3
1
11

1
11 ⋅ 3 0.0417

0.0417
3

10 [0, 0, 2, 2] 6
1
11

1
11 ⋅ 6 0.0459

0.0459
6

11 [0, 0, 0, 4] 1
1
11

1
11 ⋅ 1 0.0014

0.0014
1

*
The degree distribution is denoted as x for consistency of notation across CCM examples. The distribution has the same interpretation as describe 

in Section 2.2, i.e., it is a vector such that the jth entry represents the number of vertices having degree j − 1
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Table 3:

The number of simulations stratified by λ and the number of individuals sampled for the behavior survey. The 

third column shows the total number of simulations for each value of λ and sample size. The next two columns 

present the number of simulations that we classify with an epidemic (i.e., infected individuals ≥ 50) and the 

number of simulations in the analysis.

Mean Degree 
λ

Survey Samples Number of Simulations Number of Simulations with 
Epidemic

Number of Simulations in 
Analysis

10 25 250 123 41

50 250 124 72

100 250 112 71

200 250 105 76

20 25 250 230 35

50 250 239 59

100 250 230 85

200 250 237 119

30 25 250 245 12

50 250 245 34

100 250 250 58

200 250 246 83

40 25 250 247 10

50 250 248 29

100 250 248 60

200 250 249 107

50 25 250 249 4

50 250 249 40

100 250 250 66

200 250 250 128
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Table 4:

The number of simulations stratified by the measurement error percentage and the number of behavior survey 

respondents. The third column shows the total number of simulations. The next two columns present the 

number of simulations that we classify with an epidemic (i.e., infected individuals ≥ 50) and the number of 

simulations included in the analysis.

Measurement 
Error Percentage

Survey Samples Number of Simulations Number of Simulations with 
Epidemic

Number of Simulations in 
Analysis

−50% 25 250 37 6

50 250 39 7

100 250 40 13

200 250 43 25

−40% 25 250 42 9

50 250 38 18

100 250 37 19

200 250 38 27

−30% 25 250 40 11

50 250 41 16

100 250 41 27

200 250 40 32

−20% 25 250 39 10

50 250 42 20

100 250 40 26

200 250 40 32

−10% 25 250 39 12

50 250 38 30

100 250 37 24

200 250 41 33

0% 25 250 40 12

50 250 46 20

100 250 39 23

200 250 39 34

+10% 25 250 35 9

50 250 38 24

100 250 39 29

200 250 41 32

+20% 25 250 44 14

50 250 40 23

100 250 41 29

200 250 42 33

+30% 25 250 41 12

50 250 39 21

100 250 43 32
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Measurement 
Error Percentage

Survey Samples Number of Simulations Number of Simulations with 
Epidemic

Number of Simulations in 
Analysis

200 250 42 34

+40% 25 250 44 13

50 250 36 23

100 250 43 35

200 250 41 33

+50% 25 250 34 11

50 250 40 21

100 250 43 30

200 250 42 38
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