
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Transcription factor binding site modeling in higher organisms

Permalink
https://escholarship.org/uc/item/54r0x034

Author
Hon, Lawrence Sean

Publication Date
2005

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/54r0x034
https://escholarship.org
http://www.cdlib.org/

Transcription Factor Binding Site Modeling
in Higher Organisms

by

Lawrence Sean Hon

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biological and Medical Informatics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Approved:

Ajay N. Jain

-- -v- -

Patricia C. Babbitt

-–
Mark R. Segal

Committee in Charge

Deposited in the Library, University of California, San Francisco

i
:

(C) 2005
Lawrence Sean Hon

ii

Acknowledgements
This thesis is the embodiment of the many things I have learned while being a

Ph.D. student. These include not only the obvious, such as learning about transcriptional

regulation and human biology, but also the more subtle but perhaps more important, such

as an enthusiasm about basic research, how to do good research, and presenting logical

thoughts in writing and in presentations. Beyond that, I realized that the successful Ph.D.

student depends heavily on friends and family for moral support. For such a valuable

experience I have many people to thank.

My advisor Ajay Jain has been instrumental to my growth. He has been a great

teacher and mentor. As we meandered through the various projects, he helped me learn

how to think like a scientist. His structured thinking style has really helped me improve

how I think about, how I write about, and how I present research. In the moments when

we apparently hit dead ends, his continued enthusiasm about new ideas kept us moving

forward.

Several other professors have also played an important part in my growth. Patsy

Babbitt has been a great advisor. Since I was a first year studen with Patsy as my first

year advisor, she has always been willing to take the time when I had questions about

classes and research. My rotation projects with Ida Sim, Patsy Babbitt, and Ajay Jain

were great experiences that opened my eyes to various project areas. Mark Segal, who

:
H

#

iii

was on my orals and thesis committees, has been helpful in giving me feedback about my

research. Last, I need to thank Russ Altman for first introducing me to bioinformatics

research as an undergraduate and encouraging me through the years.

Besides one's growth as a scientist, the other thing you learn as a Ph.D. student is

how to manage studying one thing for five years. For that I depended on the support of

many friends and family. First of all are my labmates. Chris Kingsley was my lunch

buddy, and we had many great conversations about biology, life, and computer games.

Barbara Novak shared the office with me, in our spacious fourth floor room with plentiful

but often covered windows that presented a view up mid-town San Francisco, and it was

always fun to procrastinate and converse about the latest Web oddity. Tuan Pham was a

fellow Stanford C.S. hacker, and a great tennis partner, though I apologize for messing up

his back. And finally, Jane Fridlyand and Taku Tokuyasu were the wise post-docs who

were experienced in the ways of Research.

My family has provided important support over the years. My grandma gave me

cheap room and board, and also companionship even though I could never quite explain

scientific research to her in Cantonese, much less bioinformatics or transcriptional

regulation. My parents have been supportive in my getting more education, even though

they did not understand my explanations of bioinformatics or transcriptional regulation

either, even in English. And I thank my brother Andrew for being my brother, since life

would have been lonely growing up without one.

Last of all, I want to thank Yi-An, my fiancé, for being patient and supportive

over the years, for listening to my latest research ideas and for putting up with the Ph.D.

life style.

iv

Abstract

Transcriptional regulation is the control of gene expression, involving interactions

between protein transcription factors (TFs), transcription factor binding sites, DNA

packing material, and associated genes. Many of the key insights in understanding

transcriptional regulation have resulted from wet lab experimentation, but these efforts

are often laborious and time consuming. The biological complexity of higher organisms,

in terms of larger upstream regions and a larger number of TFs, TF binding sites, and

interactions between them, complicates research in this field. Computational modeling,

therefore, serves as an important complement to experimental efforts.

This thesis furthers the state of the art in transcription factor binding site

modeling, particularly within higher organisms, making use of large-scale computing,

machine learning/optimization methods, and high throughput experimental data. The

work contributes three important biological results: 1) upstream regions of coexpressed

human genes are quantitatively related to the repetitive element structures embedded

within these upstream regions; 2) a fast, deterministic motif finder applied to human not

only finds annotated binding motifs but also finds biologically relevant co-occurring

motifs; and 3) a quantitative model of the TF binding site using a neural network

recognizes binding sites better than its position weight matrix counterpart by its ability to

V

model positional interdependencies in the binding site. The work was supported by the

development of a platform of tools that are well-suited to index-based whole-genome

characterizations, which form the basis for very fast algorithms that support direct

computation of essentially exact expectation frequencies for large n-mers.

It is hoped that these efforts using large-scale datasets and efficient algorithms

will allow further advances in understanding mammalian transcriptional regulation at the

sequence level.

vi

Table of Contents

Chapter 1 Introduction.. 1
1.1. Transcriptional Regulation Biology.. 3
12. Higher Organisms... 4
1.3. Repetitive Elements.. 8
1.4. Modeling in Transcriptional Regulation... 10

1.4.1. Definition of Modeling... 10
1.4.2. Models of the Transcription Factor Binding Site.................................. 12

1.5. Indexing… 14
1.6. Enabling Technologies.. 19

1.6.1. Experimental TF Binding Site Identification.. 19
1.6.2. Expression Microarrays.. 20
1.6.3. Genome Sequencing ... 22
1.6.4. Chromatin Immunoprecipitation Arrays... 23

1.7. Conclusion ….......…................. 23

Chapter 2 Review of Transcription Factor Binding Site Modeling Literature..... 25
2.1. Introduction.…...….. 25
2.2. Motif Finding.......................….. 26

2.2.1. Orthogonal Data.. 27
2.2.2. Comparative Genomics... 28

2.3. Binding Site Recognition.. 31
24. Conclusion….. 32

Chapter 3 HGS: Genomic Mapping.. 34
3.1. Introduction....…... 34
3.2. HGS Implementation.. 35
3.3. Sensitivity and Specificity... 38
34. Conclusion …...........…... 38

Chapter 4 Quantitative Relationship of Repetitive Element Structure to Gene Co
expression 39

4.1. Abstract.…............... 39
4.2. Introduction.............….. 40
4.3. Results and Discussion.. 40
4.4. Materials and Methods.. 51

4.4.1. Expression Data and Upstream Sequence... 51

:
º º

#

vii

4.4.2. Similarity Metrics... 53
4.4.3. Repeat Masked Sequences.. 54

4.5. Conclusion..….. 54

Chapter 5 MaMF: A Deterministic Motif Finding Algorithm with Application to
the Human Genome 56

5.1. Abstract......................................…. 56
5.2. Introduction..…. 57

5.3. MaMF Algorithm Summary... 60
5.3.1. Scoring Function... 63

54. Results...................….....….…. 64

5.4.1. Lower Organisms: MaMF Performance... 64
5.4.2. Human Data: MaMF Performance.. 65

5.4.3. Biological Significance of High Scoring Incorrect Motifs................... 74
5.4.4. Co-occurring Transcription Factor Motifs.. 78

5.5. Discussion... 82
5.6. Materials and Methods.. 87

5.6.1. Background Model.. 87
5.6.2. Data... 88
5.6.3. Motif Similarity... 90
5.64. Algorithm Comparison... 91
5.6.5. Enrichment Ratio .. 92
5.6.6. TRANSFACTF Motifs .. 93

5.7. Conclusion ...….…. 94

Chapter 6 ANNFoRM: Nonlinear Transcription Factor Binding Site Recognition
Using Neural Networks...

•e ---eeeeeeeeeeeeeeeee 95
6.1. Abstract.............…..…................ 95
6.2. Introduction... 96

6.3. Algorithm and Implementation... 97
6.3.1. Overview.…... 97
6.3.2. Network structure.. 97

6.3.3. Negative Training data.. 98
6.3.4. Training the Network.. 100
6.3.5. Implementation... 100

6.4. Materials and Methods.. 101
6.4.1. Data..…............................... 101
6.4.2. General protocol.. 102

6.5. Results... 103
6.6. Conclusion.. 109

Chapter 7 Conclusion 111

Bibliography 115

Appendix: Documentation of Code and Data 121

viii

Table of Figures
Figure 1. Illustration of the Actors in Transcriptional Regulation....................................... 4

Figure 2. Types of Transposable Elements in Mammals (Lander, Linton et al. 2001)....... 9

Figure 3. Sequence Comparison Using Indexes.. 16

Figure 4. Growth of Genbank.. 18

Figure 5. Overview of cDNA Microarrays.. 21

Figure 6. Sample output from HGS of the mapping of a sequence................................... 35

Figure 7. Binning Step of HGS Algorithm.. 37

Figure 8. HGS Performance on Randomly Mutated Sequences.. 38

Figure 9. Illustration of sequence comparison functions... 44

Figure 10. Separation using function F on the Staunton and Golub data sets................... 45

Figure 11. Expression Correlation in Gene Pairs with Equivalent Alu Count.................. 47

Figure 12. Annotated comparison of p21 and TGFA.. 49

Figure 13. MaMF algorithm walkthrough of the CREB/ATF data set.............................. 62

Figure 14. Performance of MaMF using various parameter settings................................. 70

Figure 15. Comparison of motif finding performance between algorithms...................... 72

Figure 16. Scatterplot of enrichment ratio to motif similarity for the E2F gene set.......... 76

Figure 17. Neural network structure.. 98

Figure 18. Average ROC areas of ANNFoRM across SCPD data sets........................... 103

Figure 19. Comparison of ANNFoRM and PWM using Rap1 Lieb data set.................. 105

Figure 20. ROC plot comparison of a position weight matrix versus ANNFoRM of a
representative split from the Rap1 Lieb data set.. 106

Figure 21. Representation of the core six nucleotides of Rap! RPG set of binding sites
found by Bioprospector (w-11)... 107

º
ix

List of Tables

Table 1. IUPAC recommendations for incomplete specification of bases in nucleic acid
SCQuenCCS ... 13

Table 2. A Position Weight Matrix (PWM) of the CACCCA motif................................. 14

Table 3. Performance of F (ROC area) under various conditions..................................... 46

Table 4. MaMF run on benchmark yeast and e. coli data sets... 65

Table 5. MaMF run on eight TRANSFAC gene sets... 67

Table 6. Selected motifs found by MaMF that are highly similar to the annotated motif.68
Table 7. Comparison between MaMF, Bioprospector, and Consensus on the Tompa data

Set. .. 73

Table 8. Enrichment ratio (ER) skew of MaMF motifs and elevated enrichment ratio of
correct motifs on the eight TRANSFAC gene sets.. 77

Table 9. Transcription factor motifs predicted to co-occur with annotated TRANSFAC
gene Sets... 79

Table 10. AHR/HIF target genes that are also responsive to MYC.................................... 81

Table 11. Transcription factors predicted to bind onto the MYC promoter....................... 82

Table 12. Background models used in the comparison algorithms................................... 84

Table 13. Average ROC areas compared between ANNFoRM (ANN) and the PWM, for
Mcml, Rap!, and Urs1, ... 104

Table 14. Four sequences that differ in positions 3 and 6... 108

Chapter 1
Introduction

s of this writing, a confluence of biological and technological innovations

continues to sweep the bioinformatics landscape. The three billion

nucleotide human genome has been fully sequenced (Consortium 2004) and

available to the public. More than 266 other genomes, from Acinetobacter calcoaceticus

to Zymomonas mobilis mobilis have also been sequenced'. Gene annotation continues at

its exponential rate, with Genbank containing over 50 billion bp". Various high

throughput biological technologies, including the expression microarray and ChIP arrays,

have become increasingly prominent, allowing whole genome analysis of experimental

conditions across thousands of genes. Microprocessors have maintained their exponential

transistor growth rates, following Moore's law, with recently announced consumer game

machines predicted to reach a teraflop in computing capacity.

Progress in each of these areas has enabled bioinformatics to play a greater role in

helping to understand biology. Some of this work involves basic computational

'http://www.genomesonline.org/index.cgi?want=Published FComplete-Genomes

*http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

infrastructure to enable further work, such as building databases of drug interactions that

may adversely affect patients, databases of 3D protein structures that precisely pinpoint

the atomic positions of each amino acid constituent, and databases of microarray

expression experiments that create tens of thousands of data points per experiment. Once

the data have been organized, they allow additional projects, such as modeling the

physical interactions of small molecules against larger proteins, modeling the metabolic

states of enzymes and proteins within a cell, or even simulating entire bodily organs in

silico.

In each of these cases, two trends are fueling the need for bioinformatics. First,

with the advent of high throughput technologies, the availability of biological data is

increasing exponentially. Without computers biologists are limited in their ability to

process and understand these data. Second, despite these high throughput technologies,

some experiments remain difficult and costly to run, limiting the amount of biological

experimentation in some areas. These two phenomena have motivated my work in

transcriptional regulation.

Transcriptional regulation is the control of the expression of genes using protein

transcription factors (TFs) that bind onto specific DNA sequences near the genes, called

transcription factor binding sites. These DNA sequences are short (5-15 bp) and can be

highly variable. While many subtly different copies of a DNA motif may appear by

chance in the genome, transcription factors selectively bind to a specific subset of these

sequences. Understanding the determinants of site-specific binding to genomic DNA is

critical to elucidating the logic and mechanisms of transcriptional regulation.

The drivers for this work, specifically, are the availability of technologies and

data that allow the modeling of aspects of transcriptional regulation, with an emphasis on

whole genome computation and higher organisms, particularly human. These include the

sequencing of the human genome (and other genomes), availability of large numbers of

genes and their annotations, and large-scale experiments such as expression microarrays

and ChIP arrays. In this work, I discuss efforts in building transcription factor (TF)

binding motifs using neural networks, quantitatively correlating human gene promoter

sequences to expression microarray data, and furthering the state of the art in motif

finding, specifically by addressing motif finding in human.

To introduce these topics, I discuss the biology of transcriptional regulation in

Section 1.1, the motivation to delve into higher organisms in Section 1.2, repetitive

elements in Section 1.3, the philosophy and application of modeling in Section 1.4, nmer

indexing as the unifying computational strategy for this work in Section 1.5, and finally

biological advances that enable this work in Section 1.6.

1.1. Transcriptional Regulation Biology

The genome of an organism has been often described as the ‘blueprint’ of that

organism, because it theoretically contains all the information necessary to build a live

organism, just as the blueprint of a house contains all the information necessary to build

that house. The genome blueprint contains DNA sequence, consisting of a four-letter

alphabet. Embedded within the genome are short stretches of DNA called genes. Each

gene codifies the information necessary to generate a protein, a fundamental unit in the

cell that carries out a specific function to grow and maintain the cell. Because every gene

has a specific set of functions, only a subset of genes needs to be expressed as proteins at

:
º-

#

3

any given point in time. There is specific cellular machinery to control which genes get

expressed, and this system is called transcriptional regulation.

The two primary actors in transcriptional regulation are transcription factors (TFs)

and TF binding sites (illustration shown below). TFs are proteins that bind onto specific

TF binding sites near the genes, often in the promoter. A given TF will bind to a small set

of related binding sites, which are short sequences (5-15 bp long) that differ by several

bases. For a gene to be expressed, a set of TFs will bind onto their respective binding

sites on the promoter. The correct set of TFs will trigger transcription initiation, which in

turn causes a cascade of events leading to RNA polymerase II to produce the relevant

Transcription Translation

start site wº start site

5' Gene H 3.

\ Binding site L/
~~

Promoter

Figure 1. Illustration of the Actors in Transcriptional Regulation

1.2. Higher Organisms

Thus far, computational studies of transcriptional regulation have been limited

primarily to lower organisms. Ultimately, we would like these efforts to scale to humans,

for multiple reasons. One reason to study humans is that it is a unique genome in many

respects, and many complex diseases are governed in part by transcriptional processes

(notably many aspects of human cancer). So, deeper understanding of transcriptional

regulation may have important implications in development of new therapeutics. From a

theoretical perspective, higher organisms are interesting precisely because they have

correspondingly richer and more complicated regulatory regions. With respect to the

binding site itself, human TF binding sites are much more degenerate than yeast sites, are

more likely to have gaps in between, and can be found not only in the 5’ of the ATG but

also in the introns and even the 3’ region (for instance, the P53 target gene P2XM

(Urano, Nishimori et al. 1997)). While the regulatory region has increased in size

substantially, the binding site remains small and degenerate. With the number of genes

not substantially more in human compared with other species, human organism

complexity is likely due to more sophisticated regulatory regions, in part by having more

complicated transcription factor complex interactions and more elaboration of cis

regulatory DNA sequences (Levine and Tjian 2003).

To compare the scope of differences between yeast and human, some numbers are

informative. The yeast genome is 12 megabases (Goffeau, Barrell et al. 1996), while

human is 2.916 gigabases bases (Lander, Linton et al. 2001), 250 times larger. Despite

the dramatically larger size, there are only roughly five times as many genes in human as

in yeast (30,000 vs. 6,000). While the average gene length between the two species is

approximately the same (1,074 kb for yeast ORFS' vs. 1,340 bp in human (Goffeau,

Barrell et al. 1996)), human genes have a large number of introns, with a mean of 8.8

introns per gene, with 3,365 bp per intron. By contrast, yeast has a total of 220 introns. If

the entire genomic extent of the human gene is included, this yields an area of 27 kb per

gene. The increase in complexity of the human gene of 25-fold does not account for the

'http://www.dna-res,kazusa.or.jp/10/3/01/HTMLS/node3.html

250-fold genome expansion of human over yeast. The remainder therefore lies in the

intergenic regions, where in yeast only approximately 30% of the genome is intergenic.

In human, the intergenic regions contain 3 Gb – 1 kb x 30,000 genes = 2.97 Gb or over

99% intergenic. Alternately stated, one expects to see one gene every 2 kb in yeast (12

Mb # 6,000 genes), and one gene every 100 kb in human (3 Gb + 30,000 genes). A large

portion (44%) of this extra sequence consists of repetitive elements, which include simple

sequence repeats such as (AC)" and (AT)" and more complicated transposable elements

such as the Alu element, a short interspersed element (SINE). Factoring out repeats for

every gene, one still has to consider 35 times as much intergenic sequence (100 kb – 27

kb/gene = 73 kb in human vs 2 kb – 1 kb/gene = 1 kb) in human than in yeast when

mining for TF binding sites, assuming binding sites normally do not reside in repetitive

elements (not always true (Hon and Jain 2003)).

Using existing algorithms tailored for lower organisms will yield minimal success

in human because the binding site signal (which is about the same size as that of yeast) is

hidden within 35 times more noise, even after ignoring intronic and downstream

sequence. In the yeast Rap1 binding site, the conserved core is six bases long

(CACCCA), which contains 12 bits of information (where a base contains 2 bits of

information). In a uniform distribution of upstream sequence, the oligomer is expected to

appear once every 4096 bases. This is sufficiently unique in yeast, which has an average

upstream of 1000 bases (from above), but in human with 30000 bases of non-repetitive

upstream region, the same sequence is expected to appear six times. A relatively

complicated binding site in human is the p53 binding site (representing a relatively high

information content), which has two pairs of the consensus 5'-

:
º *

i.

#

PuPuPuC(A/T)(T/A)GPyPyPy-3' separated by up to 13 bp (el-Deiry, Kern et al. 1992),

encoding 12 bits per half. If the typical deviation from the consensus is three bits, and the

two halves can be arranged in 14-choose-2 ways to account for the variable gaps, the

sequence is expected to appear one in 2”/91 = 23000 bp (though probably even more

common if considering highly degenerate sites). Thus a random upstream region is

expected to contain more than one sequence that matches well with the p53 binding site.

Therefore in the human case, finding a true binding site even with high information

content is particularly difficult, and since the regulatory mechanism is presumed to be

more complicated than yeast, the difficulty only increases.

Several other higher organisms' genomes have been published, serving as

potential organisms to study in case human proved to be intractable. One of these is the

mouse, which has a genome that is remarkably similar to that of human. Both mouse and

human genomes contain about 30,000 genes, where the proportion of mouse genes with a

single human orthologue lying in a similar conserved syntenic interval in the human

genome is about 80% (Waterston, Lindblad-Toh et al. 2002), but about 99% of human

genes have a mouse orthologue. The large number of shared genes makes it possible to

look at upstream regions in a systematic manner. Since about 40% the mouse genome can

be aligned with the human genome, TF binding sites are potentially enriched by 250%

with respect to signal-to-noise ratio, though not all binding sites are expected to be

conserved between the two species (if their function recently evolved in one organism or

has lost its function). This represents a good intermediary level of evolutionary distance.

As the neutral substitution rate has been about half a nucleotide substitution per site since

the divergence of the two species, a random 15-mer should be mutated in 7.5 places,

grºssrº

implying that nonfunctional sites should be sufficiently diverged compared to functional

conserved sites.

1.3. Repetitive Elements

A distinguishing feature of higher organisms, particularly human, is the large

amount of repetitive sequence embedded in the genome. Repetitive elements are

sequences that repeat themselves identically or almost identically throughout the genome.

In general, repetitive sequence often has been described as “junk” DNA because no

obvious function has been assigned to much of this sequence. However, due to the large

presence of this sequence, particular in human (over 50% of the genome (Lander, Linton

et al. 2001)), it is hard to imagine all of it is actually junk. Because this thesis deals with

whole-genome computation, repetitive elements can be seen as a source of noise that

masks other DNA features such as TF binding sites. This section first introduces the

different types of repetitive elements found in human, and then discusses some of the

computational issues encountered in the context of repetitive elements in the course of

this work.

Repetitive elements are separated into various classes (Lander, Linton et al.

2001). They include 1) transposon-derived repeats, or interspersed repeats, 2)

pseudogenes, which are partially retroposed copies of cellular genes, 3) simple sequence

repeats, consisting of repeats of short nmer sequences of 1 to 3 bp, 4) segmental

duplications, larger chunks of the genome copied around, and 5) blocks of tandem repeats

at the centromeres and telomeres. The most common type of repeat is the transposon

derived repeats, which comprise of 45% of human DNA. These repeats generally require

a DNA or RNA intermediate that causes transposition in new regions of the genome.

:
º

#

8

There are four types of interspersed repeats (Lander, Linton et al. 2001). Long

INterspersed Elements (LINEs) are the most ancient within eukaryotic genomes. They

are 6-8 kb long, embedding an entire reverse transcriptase gene to allow autonomous

transcription. Short INterspered Elements (SINEs) are shorter repeats, 100-300 bp long,

embedding an internal polymerase III promoter. As such, they require reverse

transcriptase from other sources to cause transposition. Long Terminal Repeats (LTR) are

transposon-derived repeats, containing repeats on the same orientation on both sides of a

span of transcriptional regulatory elements. Finally, DNA transposons look like bacterial

transposons, encoding a transposase. These transposable elements are summarized in

Figure 2.

Classes of Interspersed repeat in the human genome
Length Copy Fraction of

- ---
number genome

LINEs Autofortious *—“t-“tººl—awa 6–8 kb 850,000 21%

A B
SINEs Non-autonomous +H HAAA 100–300 bp 1,500,000 1.3%

Retrovirus-like Autonomous m-ºil–H–tº–m 6–11 kb

elements
}

450,000 8%NOn-autonomous m—ººl—m. 1.5–3 kb

DNA Auto■)0■ nous *—ººt- 2–3 kb

transposon 300,000 3%
fossils

Non-autonomous D—■ H¢ 80–3,000 bp

Figure 2. Types of Transposable Elements in Mammals (Lander, Linton et al. 2001)

The highly repetitive nature of repetitive elements affected results in multiple

chapters. In Chapter 3, the genomic mapping algorithm requires additional heuristics to

address the situation where a short sequence repeat (SSR) may appear many times in a

small region of DNA because of SSRs' highly repetitive nature. Another problem of

repetitive elements is that they are even more common than many DNA features such as

TF binding sites. With their relatively low variability, a set of repetitive elements in a set

of promoters looks highly conserved and can be mistaken for TF binding sites. This is a

9

problem in Chapter 5, which was addressed using repeat masking and genomic

background probabilities. Repetitive elements do not always cause problems, fortunately.

In Chapter 4, a similarity metric found that there is a relationship between coexpressed

genes and the repetitive elements contained within them. Specifically, the Alu element, a

SINE that comprises 10% of the genome, was a major contributor of this signal.

1.4. Modeling in Transcriptional Regulation

A lot of scientific research involves modeling, but when one stops to think of

what modeling means, it is often difficult to explain what that actually entails. What does

it mean to “model” transcriptional regulation? What is the point of modeling something if

one can experimentally look at it and prod it? At the same time, the tools of modeling,

such as neural networks and ontologies, are concrete methods and concepts that allow

interesting things to be done, but how do modeling and these computational tools relate

to each other? This section introduces what modeling is and the various tools we have

used to build our models.

1.4.1. Definition of Modeling

In a research rotation, I was introduced to a paper entitled “What is Knowledge

Representation?”(Davis, Shrobe et al. 1993). While this paper addresses computer

methods in organizing and representing concepts and knowledge, in the broader sense it

is modeling knowledge. As such, their definition of knowledge representation is

applicable to modeling in any field. The authors break down knowledge representation

into five roles, quoted below:

First, a knowledge representation is most fundamentally a surrogate, a substitute
for the thing itself, that is used to enable an entity to determine consequences by

10

thinking rather than acting, that is, by reasoning about the world rather than taking
action in it.

Second, it is a set of ontological commitments, that is, an answer to the question,
In what terms should I think about the world?

Third, it is a fragmentary theory of intelligent reasoning expressed in terms of
three components: (1) the representation’s fundamental conception of intelligent
reasoning, (2) the set of inferences that the representation sanctions, and (3) the set of
inferences that it recommends.

Fourth, it is a medium for pragmatically efficient computation, that is, the
computational environment in which thinking is accomplished. One contribution to
this pragmatic efficiency is supplied by the guidance that a representation provides
for organizing information to facilitate making the recommended inferences.

Fifth, it is a medium of human expression, that is, a language in which we say
things about the world.

Given this definition, we can apply this to the fundamental model used in understanding

transcriptional regulation—the representation of DNA. DNA is an elongated three

dimensional structure that twists slightly. Human DNA, if laid side by side and stretched

apart, would span two meters, but in vivo is packed together using histones and

chromatin. DNA in its native state is difficult to manipulate, necessitating representations

of DNA sequence to facilitate understanding it. Representing DNA as a series of

nucleotide letters is a model with the roles mentioned above.

First of all, what people have done is create a surrogate for the physical entity.

The building blocks of DNA are simply four nucleotides that can be covalently bound

together, adenine, cytosine, guanine, and tyrosine. A convenient representation, therefore,

is a sequence of letters representing these nucleotides, using A, C, G, and T respectively.

Such a decision in representing DNA in this way has defined the question “In what way

should I think about the world?”, the second role of modeling. By using nucleotide

letters, we specify the ordering of the nucleotides, but ignore the physical structure of

DNA and the biochemical interactions between DNA and its packing material. The third

role deals with the implications of such a decision: that we believe that the DNA

11

sequence is the most important element in the physical structure of DNA, and that we

wish to learn more about how this sequence fits with the biology of an organism. With

respect to the fourth role, modeling DNA using letters has been an efficient way to

analyze and compute on DNA, allowing the entire human genome to fit in a small portion

of a typical hard drive. Finally, taken from an anthropological perspective, the fifth role

suggests that modeling DNA as letters is a form of human expression because as humans

we think in terms of language and understanding. If DNA is an alphabet for a biological

language where our genome contains the evolutionary history of humans and our ancestor

species, by understanding the genome we understand our past and ourselves.

1.4.2. Models of the Transcription Factor Binding Site

This thesis is entitled “Transcription Factor Binding Site Modeling in Higher

Organisms” because we have taken the TF binding site and represented it using various

models to facilitate computation on it. We refer to the space of different binding sites to

which a TF binds as a TF binding motif, and the following descriptions are models of this

concept. In its simplest form, the TF motif can be represented as the average DNA

sequence to which the TF binds, for instance CACCCA for the Rap1 motif in yeast

(Moretti, Freeman et al. 1994). This consensus sequence is often used in papers to

describe a TF motif because it is easy to understand and print in a paper. Because a TF

binds onto a set of different binding sites, a simple extension to the consensus sequence is

to allow mismatches at a given position, using IUPAC symbols shown below in Table 1.

In Chapter 4 we develop a similarity metric that is based on the idea that biologically

relevant features in two promoter regions of coexpressed genes, such as TF binding sites,

might be detected if they shared the exact same sequence. Because coexpression is likely

**. -

12

to result from similar transcriptional machinery being activated, we hypothesize that this

similarity metric would be sensitive enough to identify shared TF consensus sequences.

The assumption is that one can find TF binding motifs using a consensus model where an

exact nmer match is equivalent of finding a shared consensus. While this does not turn

out to be true, we find that the presence of repetitive elements was very related to

coexpression.

Table 1. IUPAC recommendations for incomplete specification of bases in nucleic acid sequences'
Symbol Meaning Origin of designation
G G Guanine
A A Adenine

T T Thymine
C C Cytosine
R G or A purine
Y T Or C pyrimidine
M A or C aMino
K G or T Keto

S G or C Strong interaction (3 H bonds)
W A or T Weak interaction (2 H bonds)
H A or C or T not-G, H follows G in the alphabet
B G or T or C not-A, B follows A
V G or C or A not-T (not-U), V follows U
D G or A or T not-C, D follows C
N G or A or T or C any

Since an important quality of TF binding motifs is that there are often nucleotide

mismatches, a more convenient representation that makes it possible to specify how

common nucleotide mismatches are is the Position Weight Matrix (PWM). Each position

in the binding motif now contains a probability for each of the four nucleotides, creating

a 4×n matrix for a motif of width n. An example of the CACCCA motif is shown in

'http://www.chem.4mul.ac.uk/iubmb/misc/naseq.html

*. **

£
C:
**

13

Table 2, with the relevant positions in boldface. Thus one can specify the likelihood of

seeing a C at position 5 for the Rap1 motif from above. In Chapter 5, we describe a motif

finder that uses a PWM as the model of a binding motif.

Table 2. A Position Weight Matrix (PWM) of the CACCCA motif
1 2 3 4 5 6

A 0.01 0.8 0.03 0.04 0.1 0.8
C 0.9 0.05 0.95 0.8 0.85 0.03
G 0.04 0.1 0.01 0.07 0.04 0.06
T 0.05 0.05 0.01 0.09 0.01 0.11

One important limitation of the PWM is that it cannot represent interdependencies

between positions in the binding motif (discussed in detail in Section 2.3). For instance, a

PWM cannot model the condition that if position 1 is a C then position 2 is a G. Our

work in this area (Chapter 6) uses a neural network to model the TF binding motif for the

purpose of TF binding site recognition. In general the tradeoff between these models is

that the more sophisticated models require more computational resources to use them

effectively and more data to define them adequately, but make fewer assumptions about

the underlying physical reality. As such, understanding the philosophical issues of

modeling prepares the researcher for understanding given the model what type of

questions can be asked and what the computational limitations are.

1.5. Indexing

Bioinformatics has a long tradition of adopting algorithms from computer science

and related fields, and adapting them for biological analyses. Some of these include

dynamic programming, neural networks, Gibbs sampling, and Hidden Markov Models.

While there is a large body of work devoted to these methods, simpler algorithms that are

just as important tend to get less attention. One such algorithm is the index (or hashing),

**. **

fºr:
***"

sº- ºº:
■ -C

2.

14

which are commonly used within computer science and critical to many programs. For

instance, the Perl programming language has a hash variable type built-in. Additionally, a

fundamental performance enhancement for databases is the use of indices, which allow

quick access to specific rows within a table.

The general formulation of a hash table is the following: Given a set of key/value

pairs of arbitrary size, a hash allows the constant time insertion and lookup of the value

of any key. The way the constant time lookup is achieved is to have a hash function that

condenses a key into a numerical value of limited range 0...h. For example, the MD5

hash function' converts data of arbitrary size into a 16 byte integer and is used to quickly

compare the identity of two blocks of data. Using an array also of size h, we can put the

key and value into the array at the corresponding position of the hash output. When the

value for the key is asked for again, we can use the hash function to convert the key into a

number, and retrieve the data from the corresponding cell in the array. Since the possible

values for a key tends to be substantially larger than the size of h, many keys may map to

the same value using the hash function. Using a carefully chosen hash function minimizes

such key collisions, but in the event they do occur there are ways to keep track of the data

and efficiently retrieve the correct key/value pair.

In this work, indexing is an important yet simple strategy for computing exact

sequence alignments. The goal is, for a pair of sequences of length x and y, to calculate

all alignments of nmers of size n (typically 4-6 bp). To do this, the first step is to create

an index of nmers for each sequence. Our hash function is a one-to-one conversion of an

'http://www.ietforg/rfc/rfc1321.txt

**. *-

15

nmer to a number: the nucleotide sequence can be thought of as a base-4 number with

A=0, C=1, G=2, and T=3 and then converted to a decimal. As such, we do not have to

worry about key collisions. The index consists of an array of size 4", where each cell in

the array contains the positions (0 or more) in the sequence that represent the nmer

equivalent of the cell. The index is populated by scanning through a sequence, converting

each nmer to an index offset, and recording the position of the nmer into the index. At

this point one can ask, in constant time, at what positions can a particular nmer be found

in a sequence?

Sequence A
ACGT (251) ACGT (624)

Sequence B

ACGT (347) ACGT (478) AAAA (892)

Two sequences, A and B, are
shown. Each has two
occurrences of the 4-mer
ACGT, which is entered in
the index along with other 4

Seq A Index Seq B Index ACGT Matches mers (the rest not shown).
AAAA AAAA = 892 Seq A, 251 and Seq B, 347 ACGT matches can easily be
- - - - - -

Seq A, 251 and Seq B, 478 computed by enumerating
ACGT = 251, 624 ACGT = 347, 478 Seq A, 624 and Seq B, 347 the combination pairs
ACTA ACTA Seq A, 624 and Seq B, 478 possible, in this case 2*2=4.

Figure 3. Sequence Comparison Using Indexes

Given indices of two sequences, the corollary question is, where do the two

sequences align and have a given nmer shared between the two sequences? This question

is similarly easy to answer using the indices. If the nmer in question is ACGT (for n=4),

we can quickly obtain the positions x1,...,xa in sequence 1 that have ACGT and also

quickly obtain the positions yi...yº in sequence 2 that have ACGT. The alignments

between sequence 1 and sequence 2 that have ACGT is simply the combination of both

sets of positions, (x1,91),(x1,92),...(xayb) giving a-b combinations. By enumerating all

nmers of size n and computing the alignments for each nmer, we can calculate all exact

16

nmer matches between sequence 1 and sequence 2. An example of this process is shown

above in Figure 3.

The time complexity of this operation is as follows. For two sequences of length

s, the creation of the indices takes time sx2, since we traverse both sequences in linear

time to create the index. To generate all exact nmer matches of nmer size n, we iterate

through all 4"nmers. The expected number of positions present for a given nmer for a

given sequence is s/4", and the expected number of exact nmer matches for a given nmer

is therefore (s/4"). To do this for all nmers, we expect 4" (s/4") operations. Putting this

2

all together, the rough time complexity is 2s +4" (S/4") = d■ . From this it is

apparent that computing exact nmer matches using this method is fundamentally

quadratic time relative to the size of the input sequences (like many sequence comparison

methods), but larger nmer sizes strongly mitigate this cost, at exponential rates. In

practice, nmer sizes of 4 and up show significant performance benefits. In Chapter 4 we

show that we can compute all exact nmer matches for n=6 for two sequences of size

s=10000 in several seconds.

17

Growth of GenBank
(1982-2004)

4. 6

40 - 44

38 - 42

36 - 40

34 - 38
36

32 - 34 ºtv)

30 - 32 5
º 28 - -
* 30 =
g 26 : 28 E.
E 24
5 2. 2s 3:
wº - 24 2
3 20 + 22 o
º: 18 20 ºng . . is *
Cr 16 : ■ h.

16§ 14 Qº
14 vì

12 - co

10 12 Cºl
- 10

8 - 8.- Base Pairs
6 - --Sequences 6
4 - 4

2 - 2

0 O

1982 1986 1990 1994 1998 2002

Figure 4. Growth of Genbank'

This indexing technique is most amenable to problems that require high speed

with a tradeoff in sensitivity. Within bioinformatics, the BLAST algorithm (Altschul,

Madden et al. 1997) may be the most well known algorithm to use indexing. The problem

BLAST addresses is, given an input sequence, to find other similar sequences within a

large database of sequences. As of 2004, there are 40 million sequences in Genbank, and

this number is growing at an exponential rate shown in Figure 4. The straightforward

method of calculating sequence identity between the input sequence and every entry in

the database, one by one, is clearly infeasible. Therefore, BLAST instead looks for

“hints” of similarity inside the database by searching for exact matches (typically of size

'http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

-.
-

*S-
**

t
-gºgº

18

15) between the input sequence and sequences inside the database, using a similar

indexing strategy above. If there is a hit, it measures the sequence identity by extending

the alignment outwards from the exact nmer match. BLAST manages a tradeoff between

sensitivity and speed by quickly finding potentially interesting sequences and weeding

out sequences without any exact nmer matches, but increases sensitivity by doing further

analysis on a matching sequence.

Multiple algorithms in this work used indexing as an important computational

tool to increase speed. Chapter 3 describes HGS, a genomic mapping algorithm that uses

9-mers of the target genome to quickly pinpoint likely locations of the input sequence.

Chapter 4 uses indexing as a basis for creating several high-speed sequence similarity

metrics. Finally, Chapter 5 presents MaMF, a motif finding algorithm that uses indexing

to quickly generate sequence alignments to be used to build motifs.

1.6. Enabling Technologies

This section discusses the primary experimental technologies used to generate the

biological data used in this work. Experimentalists have used the techniques described in

Section 1.6.1 to generate the datasets for genes regulated by the same TF used in Chapter

5 and Chapter 6. Microarray data were used extensively in Chapter 4 and Chapter 5. The

human and yeast genomes play an important part in every project pursued. ChIP arrays

were used in Chapter 6.

1.6.1. Experimental TF Binding Site Identification

The general strategy for determining the binding site of a particular TF on a

particular gene is to perform a series of experiments that isolate the region of the

19

promoter to which the TF binds. The promoter region in question is attached to a reporter

gene. By using various restriction enzymes to cleave portions of the promoter region, one

can examine if the TF binding site lies within the remaining sequence by checking for

remaining transcriptional activity. Once reduced to the minimal promoter, DNase

footprinting provides a closer view of which region the TF binds. DNase I cuts DNA at

random locations, so that by applying DNase I on promoter sequence with and without

the bound TF, it is possible to isolate the region of DNA that is protected by the bound

TF. Finally mutation studies can be performed to analyze which specific nucleotides

confer transcriptional activity. From this description, it is apparent that in order to obtain

accurate TF binding site locations a large amount of detailed experimental work needs to

be done, preventing large scale analysis of TF binding sites using these methods.

1.6.2. Expression Microarrays

Expression microarrays are a powerful method of measuring the expression of a

large number of genes for a given cell samples under specific conditions. The basic

principle is that once the sequence of the gene is known, one can create short probes that

bind to this gene using the reverse complement of the gene sequence. Given probes for all

the genes of interest, these probes can be printed onto an array using robotics. Cell

samples containing mRNA are fluorescently labeled and then introduced to the array.

mRNA from highly expressed genes will bind to their appropriate spot in large quantities

and fluoresce brightly. The output is an image recording the amount of fluorescence at

each spot on the array.

There are two implementations of microarrays that are currently used, the cDNA

microarray, and the oligo microarray (Affymetrix). The cDNA microarray have several

*- -

re-"

#
**

.

20

properties different from the oligo microarrays. The cDNA microarray uses longer

stretches of cDNA (60-70 bp long) as its probes, so that in general a probe uniquely

identifies the gene. The microarray is also printed on glass slides. Additionally,

expression is measured as a ratio because two cell populations are considered: the control

population (normal cells) and the treated population (the cells of interest). After isolating

the RNA for each population, different colored dyes (Cy3 and Cy5) are attached to the

RNA. The two sets of RNA are mixed and then applied to the microarray. The resulting

image measures the ratio of the two dye colors, typically in red and green.

Control Treated
Population Population

E F
| RNA isolation i

vº S^^f,
Cy3 ºt: Reverse tº Cy5T nº. T

+--- sºr"*::::- -Sºº

■ º
cDNAs and

| Apply to Array
-4-4-4 ºv.

DNA Chip Coverslip Scan

Figure 5. Overview of cDNA Microarrays'

In contrast, Affymetrix oligo microarrays use a slightly different strategy. Instead

of a single longer probe, shorter 25 bp probes are used. The shorter probes have two

important consequences: 1) short sequences do not bind onto their complement as well as

'http://bioinformatics.mdanderson.org/MicroarrayCourse/Lectures/, Lecture 1, 31 August 2004,

Introduction to Microarrays, slide 27

21

longer sequences, and 2) they may cross-hybridize with unintended targets. Affymetrix

addresses this in two ways. First, they use a perfect match probe along with a mismatch

probe that differs from the perfect match probe by one nucleotide; the mismatch probe

serves as a control to measure the background amount of cross-hybridation. Second, since

a given probe may bind onto multiple genes, multiple probes are used. Since

oligonucleotide probes are short and small, they can be printed onto silicon using

photolithography, borrowing a technique from the microprocessor world. Because oligo

microarrays do not use a two-spot technique, the images contain a single fluorescent dye

that results in a single absolute number. In addition, since multiple probes are used,

Affymetrix has an algorithm to merge the values of multiple probes into a composite

expression value.

1.6.3. Genome Sequencing

The general strategy of sequencing a genome is to break apart the genome into

reasonably sized fragments, sequence each of these fragments, and then piece the

sequenced fragments back together. The basic technologies for large scale genome

sequencing have been around since the 1970s. Soon after DNA sequencing methods were

invented (Sanger and Coulson 1975; Maxam and Gilbert 1977), the shotgun sequencing

strategy was introduced (Anderson 1981). Since then a series of various improvements

have eventually allowed the sequencing of longer DNA, with the milestone of the human

genome sequenced in 2001 (Lander, Linton et al. 2001). These advancements include

improvements in protocols for fragmenting and cloning DNA, the ability to apply

sequencing to larger DNA molecules, automation in collecting raw DNA sequences,

º
22

strategies to deal with repetitive sequence in higher organisms, and software to analyze

and assemble sequences (Odom, Zizlsperger et al. 2004).

1.6.4. Chromatin Immunoprecipitation Arrays

A promising high throughput method to identify genes responsive to a particular

TF is the chromatin immunoprecipitation array, or ChIP array. The general procedure is

to use chromatin immunoprecipitation to enrich DNA that has the protein of interest

bound to it, and then identify what the DNA is using a microarray. Specifically, starting

with cells in vivo, the TF is bound to the DNA using a crosslinking procedure (with

formaldehyde). Afterwards, the cells are broken open and DNA sheared into smaller

pieces using sonication. The DNA is enriched using immunoprecipitation to a specific

antibody, and then the bound TF is removed using reverse-crosslinking. Finally, using a

microarray containing the promoter regions of genes, the locations of the enriched DNA

are identified. In yeast, the entire intergenic regions can be used since they are relatively

short, but in human current efforts have focused on the 1000 bases around the

transcription start site of genes (Odom, Zizlsperger et al. 2004).

1.7. Conclusion

Chapter 1 introduced the topic of transcriptional regulation and some of the

biological and computational issues discussed in this work. In terms of the biology,

Sections 1.2 and 1.3 discussed the challenges of higher organisms and repetitive

elements, respectively. On the computational side, Sections 1.4 and 1.5 discussed

modeling transcriptional regulation and the use of indexing make certain problems

º
23

computationally tractable. Finally, Section 1.6 gives a brief overview of the various

enabling technologies that provide the data used in the thesis.

The next chapter goes into more depth about existing efforts in modeling

transcription factor binding sites.

24

Chapter 2

Review of Transcription Factor

Binding Site Modeling Literature

2.1. Introduction

Computational approaches to understanding TFs and their binding sites hinge on

building the best model for the job. There are two primary strategies to developing better

models. One strategy is to create more sophisticated models that better represent the

physical interaction of TF to binding site. Another strategy is use additional data sources

to enable a more detailed model to be created.

The two central problems that comprise TF binding site modeling have generally

used different strategies. Motif finding aims to predict binding motifs shared by a set of

coregulated genes assumed to be governed by the same TF. In general, because the search

space is large, simpler models such as the PWM are preferred to reduce the

computational requirements, and so emphasis has been put on utilizing new sources of

data, the most promising of which is comparative genomics. These approaches are

discussed in Section 2.2. The second problem, binding site recognition, aims to identify

new biologically relevant binding sites given known binding sites responsive to a TF.

º
º º
º ****-

25

Because of the physical complexity of the TF binding interface, many efforts in this area

focus on building better models that more accurately reflect the interactions of binding

sites and TFs. These efforts are discussed in Section 2.3, which was introduced in Section

1.4 (Modeling in Transcriptional Regulation).

2.2. Motif Finding

Traditional experimental methods to derive binding sites for a given transcription

factor are labor intensive (as shown in Section 1.6.1); consequently many computational

techniques have arisen to identify binding sites within promoter regions. The general

form of the problem is, given a set of promoters corresponding to genes either postulated

or known to be responsive to a particular TF, to find a sequence motif that represents the

true biological target of the TF. The general solution is to find conserved sequences

within the collection of promoter regions that are under-represented relative to the

genome. There are a large variety of published techniques resulting from the maturity of

this field.

Motif finding algorithms can be classified into two broad groups. Since

computational capacity has only recently been plentiful, local search algorithms utilizing

clever ways to reduce the search space have traditionally been the most studied. The

forefathers of many of these approaches are CONSENSUS (Stormo and Hartzell 1989),

which uses a greedy strategy to derive a position weight matrices of TF binding sites;

MEME (Bailey and Elkan 1994), which uses a expectation maximization technique to fit

a model to sequences; and Gibbs sampler (Lawrence, Altschul et al. 1993), which uses

Gibbs sampling statistical technique. Gibbs sampling has perhaps created the most

interest, yielding variant algorithms including Align/ACE (Roth, Hughes et al. 1998) and

*--

º
26

Bioprospector (Liu, Brutlag et al. 2001). Down and Hubbard (Down and Hubbard 2005)

have contributed improvements to expectation maximization in their NestedMICA

algorithm. MaMF, described in Chapter 5 uses the greedy search method. Since

computing power has been increasing exponentially, enumerative approaches, which

generate all possible motifs up to a certain length to find the best motif, have recently

become possible (van Helden, Andre et al. 1998; Jensen and Knudsen 2000; Birnbaum,

Benfey et al. 2001; Sinha and Tompa 2003).

2.2.1. Orthogonal Data

There is often not enough information embedded in the sequence alone to make

reliable computational binding site predictions. Furthermore, algorithms that work in

lower organisms like yeast become less effective in more complicated organisms like

human. To address these issues, researchers have employed additional information to

help algorithms focus on more interesting sequences:

• The availability of full genome sequences allows researchers to calculate

background frequencies of the genome, which algorithms like Bioprospector (Liu,

Brutlag et al. 2001) and ANN-Spec (Workman and Stormo 2000) employ. The

background frequency helps filter out common sequences like repetitive elements

so that algorithms can focus on overrepresented, uncommon sequences.

• Expression microarrays have allowed the clustering of coexpressed genes.

Assuming that a cluster of genes with similar expression profiles are governed by

the same transcription factors, algorithms can search for binding sites shared by

all the genes (Keles, van der Laan et al. 2002; Zhu, Pilpel et al. 2002; Conlon, Liu

et al. 2003). A limitation with this approach is that a given gene may be regulated

º
27

by multiple transcription factors, but can only belong to one cluster, which

motivated a fuzzy clustering technique (Gasch and Eisen 2002).

• ChIP arrays generate exhaustive data about which genes a particular transcription

factor targets. MDScan (Liu, Brutlag et al. 2002) exploits the fact that some genes

bind more tightly to the transcription factor and are therefore more likely to be

true targets, by first considering the top genes first and then expanding the search.

• Bacterial genomes often have binding sites that have two parts separated by a gap.

By using this domain knowledge, one approach has focused on finding

overrepresented dimers solely using genome sequence (Li, Rhodius et al. 2002).

2.2.2. Comparative Genomics

One of the most promising sources of information is the availability of genomes

of multiple species. A possible approach to finding TF binding sites is to use

phylogenetic footprinting (or comparative genomics), which is the comparison of shared

sequences between multiple closely related species. As genome sequencing technology

has matured, full genomic sequences of multiple genomes are becoming available more

rapidly. Since evolution predicts that functionally active sequences in the genome (genes,

transcription factor binding sites, etc.) will be conserved, one expects that the intersection

of upstream regions of gene orthologues will contain conserved sequences.

Deciding which species to use for comparative genomics can be complicated.

McCue et al. (2002) observe that three species related to E. coli were required for 74% of

motif predictions to match with the experimentally reported binding sites. Similarly,

Cliften et al. (2001) note that within S. cerevisiae at least three related species are

required to be able to align orthologous sequence and extract statistically significant

**. -

º
-

28

conserved sequences. Furthermore, the evolutionary distance of the genomes can affect

the utility of the approach. Unrelated species will have highly divergent sequences that

are not amenable to alignment, and similar species will have nearly identical sequence

that make it difficult to differentiate functionally conserved sequence and nonfunctional

unconserved sequence. A pair of genomes with intermediate evolutionary distance would

maximize the conserved functional signal while minimizing the noise from unconserved

nonfunctional sequence. Because of this complexity, several approaches have used

multiple genomes on which to perform comparative genomics:

• McCue et al. (2001) have applied a Gibbs sampling technique to find conserved

binding sites from gene orthologues in as many as nine gamma proteobacteria

species. The predictions were made without knowledge of transcription factors

governing a set of genes, but incorporate knowledge of palindromic patterns

common in E. coli, the probability of seeing a given motif (i.e. a position-specific

background model), and expectations of positional spacing of binding sites.

• Cliften et al. (2003) fully sequenced six genomes related to S. cerevisiae in order

to perform comparative genomics. Utilizing multiple sequence alignments using

CLUSTALW, exact matches between the four sensu stricto species or between all

six species found about 8000 conserved 6- to 30- oligomers in both cases, with

the confidence level increasing with nmer size. Thus with multiple genomes it is

possible to find conserved sequences using a relatively simple procedure.

• Traditional motif finders have also been extended to support multiple species,

such as CompareProspector (Liu, Liu et al. 2004), which was based on

-*º
º -k
-

i-i-
& º

29

Bioprospector, and PhyloCon (Wang and Stormo 2003), which was based on

Consensus.

Phylogenetic shadowing, the comparison of sequences of closely related species,

was coined by Boffelli et al. (2003) in their comparison of Old World and New

World monkeys and hominoids. They analyzed apolipoprotein, a protein specific

to primates, by sequencing a 1.6 kb region in 18 Old World monkeys and

hominoids, and were able to verify that several conserved regions were

functionally active, using electrophoretic mobility-shift assays and transfection

analysis.

Footprinter is an algorithm that explicitly incorporates the phylogenetic tree in its

computation of conserved sites within a set of upstream regions of orthologous

genes (Blanchette and Tompa 2002). It uses a dynamic programming approach to

calculate alignments. It was successful in extracting binding sites from datasets

containing multiple species.

Comparative genomics has been used successfully human to systematically find

regulatory elements in promoters and 3’ UTRs (Xie, Lu et al. 2005). As in the

case of yeast, they required several organisms (human, mouse, rat, and dog) to do

a meaningful alignment to find conserved binding sites.

*

are " 2

º
With the recent availability of several fully sequenced organisms evolutionarily close to

human, comparative genomics in the near future will likely play a large role in human

transcription factor binding site prediction.

30

2.3. Binding Site Recognition

A motivation to build a TF binding site model is so that ultimately the model can

be used to identify new binding sites that are biologically relevant. To identify a potential

binding site, the binding site model needs to have an associated scoring function that

determines the similarity of the binding site to the model. A binding site that scores

highly therefore shares many characteristics with the model. For example, using a

consensus model of the binding site, the number of matches between the putative binding

site and the consensus sequence indicates the amount of similarity shared. Likewise,

using a position weight matrix (PWM), using the instantiation of the putative binding site

from the PWM yields gives the score similarity.

The consensus model and PWM have been used extensively for database searches

of binding sites within promoter regions. TFSEARCH uses weight matrices derived from

TRANSFAC to search for binding sites in input sequences'. TESS is a web tool that uses

consensus sequences and PWMs to search for binding sites (Schug and Overton 1997).

A major limitation of the consensus sequence and PWM is that they assume that

the nucleotides within a binding site have independent effects. For instance, a PWM

cannot represent the conditional case “if position 2 in the binding site is an A, then

position 5 should be a G.” It has been shown that in vivo the independence assumption

does not hold (Benos, Bulyket al. 2002). However, because current algorithms work with

limited data, others argue that independence is not a bad assumption to make, as it

'http://www.cbre.jppapia■ howtouse/howtouse t■ search.html, TFSEARCH. DNA Transcription Factor

Binding Site Prediction

31

reduces the parametric complexity of the induced models (Benos, Bulyket al. 2002).

With the availability of increasing amounts of data (see Section 1.6), limited data is

becoming less of a problem.

Several algorithms have attempted to address the dependency issue within binding

sites. Zhou et al. (2004) have extended the PWM to include pairs of correlated positions

and then use a Markov chain Monte Carlo algorithm to generate a model that fits the

model space. Elrott et al. (2002) used a Markov chain optimization method to build

models of the HNF4A binding site and find new binding sites that were later

experimentally verified.

Other algorithms have integrated external data into novel models of the binding

site. One method used a boosting approach by integrating ChIP array data (see Section

1.6.4) into their motif finding method and then created a nonlinear classifier of true

binding sites by using several weight matrices (Hong, Liu et al. 2005). Another strategy

aims to consider diverse characteristic binding site properties, such as the binding site

position relative to the transcription start site and structural properties, in developing a

Bayesian network (Pudimat, Schukat-Talamazzini et al. 2005). A support vector machine

approach was used in estimating the sequence-specific binding site energy of a particular

TF in Djordjevic et al. (Djordjevic, Sengupta et al. 2003).

2.4. Conclusion

In summary, TF binding site modeling has had an increasingly rich history as new

technologies have arisen. Motif finding and binding site recognition algorithms have used

these new data to build more sophisticated models, both in terms of novel representations

of the TF binding site and more detailed models integrating the larger amounts of data. I

º
32

discuss efforts in motif finding in Chapter 5, which describes a motif finder that uses a

greedy approach similar to Consensus. Chapter 6 discusses TF binding site recognition

using neural networks, providing another way to model interdependencies in the binding

site.

The next chapter presents a real world application of indexing, introduced in

Section 1.5, by applying it to genomic mapping. Indexing is a major theme of this thesis,

and variants of the approach are further explored in Chapter 4 and Chapter 5.

33

Chapter 3

HGS: Genomic Mapping

3.1. Introduction

This chapter gives an example of indexing in use in a real world program.

Genomic mapping is the problem of locating specific genomic sequence, like a gene,

within a target genome, given only the sequence. It is useful for identifying the genomic

locations of a collection of genes or for obtaining contextual sequence around a gene, for

instance. In the first case, the genomic locations of a collection of genes have been used

to link chromosomal genomic hybridization (CGH) arrays with microarray expression

data. Specifically, one can map the genomic locations of genes used in the expression

microarray to the BAC clone locations in the CGH array to measure the relationship

between expression of genes and chromosomal aberrations in the same genomic loci. In

the second case, obtaining contextual sequence has been important for my work since

promoter sequence has not always been readily available. However, given the relative

abundance of gene sequences and fully sequenced genomes, one can calculate the

upstream sequence of genes using genomic mapping. This technique was used

extensively in Chapter 4 to obtain 10,000 bp of sequence upstream of human genes.

*:-
-

,--"

º
34

Because techniques to perform genomic mapping were not readily available till

recently, we implemented a genomic mapping algorithm, called HGS (short for Human

Genome Search), to facilitate my work and others’ in the Cancer Center. Because the

algorithm relies on the assumption that a near exact copy of the genomic sequence can be

found within the target genome, the indexing techniques described above complement

that algorithm extremely well. HGS employs a disk-based index of the genome and

additional heuristics to pinpoint the location of a query sequence. For each FASTA

sequence entered, HGS returns the chromosome number and base positions the sequence

spans, which strand the sequence appears, and supporting information that indicates the

confidence of the result (shown below). Furthermore, the program supports a batch

operation that allows multiple sequences to be processed at a time. Additionally,

compared with BLAT (Kent 2002), a program with similar function but which uses a

very large memory-resident index for human, HGS can run on Windows using a typical

desktop computer, making it more user-friendly. Typical query sequences against the full

3 Gb human genome take 10 seconds on standard hardware, enabling practical batch

mapping of thousands of sequences.

! > D2001.5 gi 500912 | dbj| D20015. 1 | D20015 HUMGS00986 Human promyelocyte Homo sapiens cDNA
clone pm2347 3'
Iter Score Coverage Start-End Qsize Identity Strand Chr. Start-End

! 10 342 99.8% 1-4.99 500 68.5% – chr17 : 451 77621 – 451 79.185
10 99 52.8% 236-4.99 500 37.5% + chr1: 897 13697–897 13955
10 81 52.2% 23 6–496 500 31.0% - chr1: 88,854 026–88.85 4281

Figure 6. Sample output from HGS of the mapping of a sequence

3.2. HGS Implementation

To illustrate how the indexing techniques can be used, the implementation of

HGS is outlined below. HGS is broken into two parts. The first is a one-time indexing

procedure that indexes the target genome to provide quick lookup in the actual search

35

procedure. This corresponds exactly to the indexing of a sequence described in Section

1.5, except in this case each sequence is a chromosome. As suggested earlier, the choice

of nmer size affects the speed and sensitivity of the algorithm. Since speed is the more

important consideration in this algorithm, an nmer size of 9 was used. Given the human

genome has 3 billion bp and there are 4° slots in the index, a given nmer on average

appears 1000 times in the genome. Information about a set of nmers, obtained from the

input sequence, could then pinpoint that sequence on the genome.

The second part of the algorithm is the main search procedure, which can be run

repeatedly given the pre-computed index. This procedure has two steps, a binning step

followed by a chaining step. The binning step isolates the regions that the input sequence

maps to, by creating bins for every 2000 bp of genomic sequence. The input sequence is

broken into 9 bp segments, and the locations of each of these segments are retrieved from

the index. For each location, a tally for the corresponding bin is incremented, so that after

all segments are processed bins with high scores likely correspond to matches to the input

sequence. This is shown below in Figure 7.

36

9-mer

AAAAAGGGC ACCGGCTCTAGGATCCCA search sequenceHAGAACTGGCºAGGGTAT

genome

2- Because this bin got the most hits, the
sequence is mostly likely in this area
of the genome:

Bin corresponding to region in genome
Figure 7. Binning Step of HGS Algorithm

There are two complications that require the second chaining step. First, repetitive

sequence may skew the bin scores such that false positives could arise. Second, the input

may map to multiple regions on the genome since the primary input for this algorithm is

gene sequence, which generally is stored with introns removed. Thus a 1000 bp gene

sequence might map to tens of thousands of bp.

HGS uses several strategies to handle these complications. To minimize the

effects of repetitive sequence, a second binning is performed on the high scoring primary

bins, where these secondary bins are 9 bases and allow at most one hit. Highly repetitive

sequences, such as a poly-A tail, therefore would register only one hit every 9 bases,

instead of 9 hits every 9 bases in the primary binning step. To account for sequence

spanning over large distances, HGS analyzes the nmer matches within each high scoring

bin to make sure the nmer matches corresponding to the input sequence occur in order

and address the full extent of the input sequence. For each high scoring bin not processed,

HGS first verifies that the nmer matches occur in order, and then considers nearby bins

==
º:
-º-º-º-º:

E=
=

37

that contain ordered nmer matches that can be chained to the previous bins. After one set

of bins has been processed, HGS continues with the other high scoring bins. The results

are presented with accurate identity and coverage information calculated by performing a

Smith-Waterman (Smith and Waterman 1981) alignment over the matching sequence.

3.3. Sensitivity and Specificity

While HGS was designed primarily for speed, it was also designed to tolerate a

reasonable amount of sequence deviation. This tolerance is an important feature because

the sequence of the same gene obtained from different sources will often have

mismatches, due to various experimental and technology issues. As such we measured

HGS's ability to tolerate these bases mismatches in genomic mapping using the following

procedure. Taking random sequences of varying lengths from the genome, we mutated

these sequences various amounts before running them through HGS. Figure 8 shows

these results, where sequences that are greater than 250 bp long and have less than 15%

mutation compared with the genome can be found quite reliably.
Mutation Percentage

O 1 1 O 20
1000 96 96 9 8 8 7

500 96 95 9 6 62

250 9 3 95 8 7 42

50 7 9 7 3 20 5

Figure 8. HGS Performance on Randomly Mutated Sequences

:j
3.4. Conclusion,

This chapter introduced a real world application of indexing in the form of HGS,

a genome mapping algorithm. It was used extensively in Chapter 4, and provides the code

base for additional work using indexing in the following chapters.

*:-
--***-

º
C-->

38

Chapter 4

Quantitative Relationship of

Repetitive Element Structure to Gene

Co-expression

4.1. Abstract

A sequence similarity metric operating on 10 kilobase upstream regions of gene

pairs quantitatively predicts a portion of co-variation of expression of gene pairs in large

scale gene expression studies in human tumors and tumor-derived cell lines. The signal

on which the metric depends most strongly originates in the compositional structure of

repetitive genomic sequences (particularly Alu elements) present in these upstream

regions. This effect is completely separable from effects of isochore composition on gene

expression. The results implicate repetitive elements with some functional role in

transcriptional regulation of the specific genes in whose promoter regions they reside and

lend credence to suggestions that the general phenomenon of repetitive element insertions

may be a fundamental evolutionary mechanism for modulating gene transcription.

39

4.2. Introduction

The previous chapter discussed a method for genomic mapping using a simple

indexing technique introduced in Section 1.5. This chapter elaborates on this method by

applying indexing to sequence comparison of co-expressed genes, in the hopes of

identifying DNA features such as TF binding sites shared between co-expressed genes.

Many methods have been reported exploring the potential for identifying features in

DNA that are responsible for co-expression of gene pairs or gene families (Stormo 2000).

However, even in the context of lower organisms such as yeast, there is a significant

problem of specificity in the computational models of transcription factor binding

(Stormo 2000). The potential requirement of cooperation among multiple transcription

factors is being studied computationally by many researchers, again primarily in lower

organisms (Wagner 1999; Guha'■ hakurta and Stormo 2001; Liu, Brutlag et al. 2001).

Here, we take a different approach in two respects. First, we consider human gene

transcription quantified by expression arrays. Second, rather than looking for specific

transcription factor binding sites, we develop a sequence similarity metric for any pair of

genes to predict the likelihood that the gene pair will be co-expressed. A similarity metric

that depends most strongly on the compositional structure of repetitive genomic

sequences (particularly Alu elements) is able to partially separate gene pairs that are co

expressed from gene pairs that are not.

4.3. Results and Discussion

We considered three microarray data sets: cDNA-based expression data from

human cancer derived cell lines, the Ross set (Ross, Scherf et al. 2000); oligo-based

*. *** --

º
40

expression data on the same cell lines, the Staunton set (Staunton, Slonim et al. 2001);

and oligo-based expression data from acute leukemias, the Golub set (Golub, Slonim et

al. 1999). The first was used for the development of gene sequence similarity functions,

and the remaining two were used as confirmatory sets. The data sets contained expression

levels for 6200, 6817, and 7129 genes, respectively. The first two sets quantified gene

expression across 60 tumor-derived cell lines and the third across 72 primary leukemias.

We determined the upstream regions of the genes as follows: 1) We obtained high quality

curated transcripts by finding the equivalent RefSeq NM accession via Unigene and

verified the accuracy of the result by a Blast sequence comparison between the two

accessions (Altschul, Madden et al. 1997; Pruitt and Maglott 2001). For the Ross data set,

we kept a gene only when both 5’ and 3’ accessions agreed. 2) We mapped the transcript

sequences of curated genes onto the August 2001 freeze of the human genome (Haussler

2001) using custom software and kept only those sequences that included the start codon

(transcriptional starts were variably annotated, so we chose to use translational starts to

provide a uniform coordinate system). 3) We retrieved the upstream regions that

contained at least 80% valid sequence. After these quality control filters and elimination

of duplicates, this yielded a set of 2592 genes for the Ross data set, 3.192 genes for the

Staunton set, and 3196 genes for the Golub data set. Using Pearson’s correlation, we then

constructed two gene pair sets for each data set, one containing gene pairs whose

expression was positively correlated, and the other containing gene pairs whose

expression was uncorrelated. For the Ross set, we used a cutoff of 0.4 to define a set of

approximately 12,000 positively correlated gene pairs. For the Staunton and Golub sets,

which had a much larger number of correlated gene pairs, we used a cutoff of 0.5 to

> -

º
41

define sets of 44,000 and 34,000 gene pairs, respectively. (Cutoffs were chosen to yield

between 10,000 and 50,000 gene pairs. Precise choice of cutoffs did not affect the results

presented.) In each case, we created a control set of uncorrelated gene pairs by randomly

selecting gene pairs with absolute Pearson’s correlation less than 0.2, to make an

equivalently sized set to the respective positive pairs set. In what follows, we consider the

ability of functions of gene pair promoter sequence similarity to yield higher scores on

the positively correlated pair sets than the corresponding control sets. Separation of the

distributions of scores on positive and negative pair sets was done using ROC area, with

p values computed by permutation analysis. In the permutation analysis, the computed

scores for a given function were fixed, with the set memberships of the gene pairs being

permuted 1,000 times to produce the null distribution of ROC areas.

With respect to the correlated and uncorrelated gene pair sets, understanding the

calculation of expression correlation is important. We are not considering absolute gene

expression. We are considering variation in gene expression from sample to sample. Two

genes whose expression is high, but is constant (modulo some noise) across a data set,

will have low correlation. For high correlation to be computed, two things must be true.

First, the genes’ expression must vary enough that differences from sample to sample

exceed the noise of measurement. Second, the variation of both genes’ expression must

coincide. That is, if gene A has high expression in a number of cell lines, but low in

others, gene B's expression must quantitatively match in order for the AB pair to be part

of the positive pairs set. If either the variation is too low or the variation is not coincident,

the gene pair will not be in the positive pairs set. The drivers behind gene expression

variation between the cell lines and between the leukemia samples include: genomic

-

º
42

rearrangements, promoter methylation, mutations, LOH, and a host of other changes.

These result in reproducible differences in gene expression that are substantial from

sample to sample. Our results were not sensitive to either the precise threshold on

correlation or to the correlation statistic (e.g. Kendall’s Tau, a non-parametric rank

statistic, yields similar results to those reported below).

We explored a variety of scoring functions of pairwise promoter sequence

similarity, beginning with straightforward counting of matching n-mers (a sequence of n

bases) in sequence pairs and ending with a function that focuses on long stretches of

concordant n-mer matches. Figure 9 illustrates two functions (denoted N and F). Function

N is essentially a straight count of dots in a dotplot. Function F eliminates matches from

N that occur in isolation, thus concentrating on concordant regions of n-mer similarity.

These functions are efficiently computed based on explicit indexing (see

http://jainlab.ucsf.edu for additional details, code, and data). On the Ross data set,

counting matching n-mers (function N) yielded a significant degree of separation

between the distribution of scores computed on positively correlated gene pairs and the

distribution of scores computed on uncorrelated gene pairs, with a maximum separation

using 1000 upstream bases with an n-mer size of 7 (ROC AUC 0.54, p < 0.01, by

permutation analysis). To a degree, this paralleled results seen in yeast, where the first

1000 bp upstream of the ATG were shown to contain several n-mers implicated in cell

cycle regulation (Wolfsberg, Gabrielian et al. 1999). However, additional upstream

context diluted the signal (the number of expected randomly matching n-mers increases

quadratically with upstream window size).

i#
ºs

43

co

;
to

t y ATG (1)5 P21 3
Figure 9. Illustration of sequence comparison functions.
TGFA is plotted on the Y axis, from 10,000 bp upstream to the ATG, and p21 is plotted on the X axis, from 10,000 bp upstream to the
ATG. The inset represents approximately 500 bp. Exact 6-mer matches are indicated with small black dots. Function N is simply the
count of all such dots, yielding an integer given the sequences of two promoter regions. Function F counts concordant matches. That
is, within a particular window size (default 200), if a threshold of 6-mer matches (default 4) is met, where the 6-mers have the same
relative offset between sequences, a match is counted for F. These matches are indicated by gray plus signs. The non-concordant
matches, which are the majority, do not contribute to F. F will find arbitrarily ordered local regions of high sequence similarity in two
promoter sequences. The inset shows a stretch of over 200 bp where a large number of concordant matches exist. Note: for both
functions, matches for the reverse complement of the second sequence against the first sequence are included in the score. In the plots,
the reverse complement matches are plotted by their position on the sense strand.

Several transcription factors in humans have been shown to act specifically on

DNA much further upstream (White 2001). Inspection of dot plots between large

upstream regions of gene pairs known to be transcriptionally governed by the same

transcription factor revealed significant regions of sequence similarity. Function F

> -

• *
-

º, sº
--

-
--

º sº
º º
º -

*** *

44

(Figure 9 above) was designed to focus on these regions while reducing the effects of

random singleton n-mer matches. Specifically, function F counts a set of n-mer matches

if there are more than a threshold of t matches that fall within a specified window w along

each diagonal. So, given a number of regions of local sequence similarity, possibly

ordered differently in two promoter regions, function F will score the local matching

sequences. This function yielded a significant separation in the Ross data set of positive

and uncorrelated pairs with upstream regions as large as 10,000 bases. The optimal

parameter choices were n-mer size of 6, w of 200, and t of 4, but the separation was

robust to many parameter choices. With function F, we were able to see a better

separation than with N using a much larger upstream window, and the number of match

elements contributing to the score was much smaller and more focused. However, despite

being statistically significant, the effects were small (ROC area of 0.52).

Cumulative Histograms of F, Correlated and Uncorrelated Gene Pairs

Staunton Data Set Golub Data Set

pairs

º ºccº tº tºº ºdo ºne ºxº d ºcco tºdco tºuco ºtodd zºcco accoc
F r

Figure 10. Separation using function F on the Staunton and Golub data sets.
The thick black curves are the cumulative proportion (ordinate) of gene pairs with correlated gene expression (Pearson correlation >
0.5) with F less than the value on the abscissa. The thin black curves are the respective plot for uncorrelated gene pairs (Pearson
correlation between –0.2 and 0.2). The difference between these distributions is highly statistically significant (p<< 0.01). The dotted
lines indicate F = 9000 in both plots (see text).

45

Given the subtlety of the effects on the Ross data set, we applied F to the Staunton

and Golub sets, which had much larger numbers of correlated gene pairs. For both the

Staunton and Golub sets, the ROC area was substantially higher (0.596 and 0.579,

respectively) and was highly statistically significant (p<< 0.01, by permutation analysis).

The much stronger results on the Staunton set over the Ross set, which used expression

data from the same cell lines, were likely due to more robust expression quantification

using the more mature oligo-based platform in the former case. Figure 10 shows the

cumulative histograms of F for the correlated and non-correlated gene pairs for the

Staunton and Golub sets. For the Golub set, 30% more gene pairs had F higher than 9000

in the correlated versus uncorrelated pair sets. For the Staunton set, the increase was

50%. The converse experiment (pair sets defined by F and separation assessed using

Pearson’s correlation) exhibits nearly as strong a signal in both cases (data not shown).

Thus gene pairs with high measured correlation had high F and gene pairs with high F

had high measured correlation.

Table 3. Performance of F (ROC area) under various conditions.
Parameters are Upstream 10,000, Nmer = 6, window = 200, Threshold = 4

- - -
Staunton Golub data

Condition
data set Set

Unmasked sequence 0.596 0.579
Repeat-masked 0.451 0.500
Repeats only 0.594 0.563
Alu-masked 0.579 0.511
Alu elements only 0.555 0.556

Given the significant relationship between F of two genes' upstream sequences

and the correlation of expression of the two genes, we explored sources for the signal.

We established that some of the highly concordant regions we observed were due to the

presence of Alu repetitive elements (Schmid 1996). We re-ran F on upstream sequences

from the Staunton and Golub sets modified by masking repetitive sequence elements or

*- ree

º
46

masking everything but repetitive sequence elements (see Table 3). Masking all repeat

sequences eliminated all separation. Masking the inverse (i.e. considering only repetitive

sequences) retained nearly all separation. We further considered only Alu elements.

Considering only Alu repetitive elements decreased the score from considering all repeats

slightly in the Golub case and markedly in the Staunton case. Masking all Alu elements

eliminated nearly all separation in the Golub case and did so slightly in the Staunton case.

It is not clear why the full unmasked upstream sequence performed better than just the

repetitive elements, given that masking them eliminated all signal. Assuming

independence between repetitive and non-repetitive sequences, the effects of masking

should be additive. We have not quantified dependence between the content of repetitive

and non-repetitive sequences.

5
- :

;
9 : i
0.2 -i-…--

- -----------
--

q) . : :
‘5

-
: : :

º . : : :
o : : :
-- : -
º : : -

tº : |
§ O I I |

- - - -

|
Cl : :
º : :
co
Q)
>

-0.1 H
-

-0.2 i I I i l —1
O 5 10 15 20 25

Number of Alus
Figure 11. Expression Correlation in Gene Pairs with Equivalent Alu Count

*- -

º
47

To quantify the relationship of the number of Alu elements to expression

correlation, we plotted the mean Pearson's correlation of gene pairs with identical

numbers of Alu elements in Figure 11. Since the presence of Alu elements was a

predictor of expression correlation, we expected that gene pairs with more Alu elements

might have higher expression correlation. This trend seemed to hold generally, but since

the sample size of the gene pairs with more Alu elements tended to be smaller, it was not

possible to make a strong statistical statement.

We considered whether the effects of GC composition were related to F, since

both gene content and gene expression variation have been shown to be related to

isochore content (Bernardi 1995; Pesole, Bernardi et al. 1999). We confirmed the

previous studies in that gene pairs with correlated expression were partially separable

from uncorrelated gene pairs based on the GC content of the 10Kb upstream regions

(ROC area 0.56 on the Golub set, using GC content proportion difference as a similarity

score). However, GC content difference is not significantly correlated with F. Also,

masking Alu elements or all repetitive elements had no effect on the separation of

correlated from uncorrelated gene pairs based on GC content differences. Interestingly,

Oliver et al. have shown that the insertion density of younger Alu elements within the

human genome is not correlated with isochore GC content nor is the GC content of

younger Alu elements themselves related to the GC content of the isochores in which they

reside (Oliver, Carpena et al. 2002). The signal driving the separation of correlated versus

uncorrelated gene pairs using function F was independent of GC content differences in

the promoter regions considered.

*: *-

#
—l

=

48

AT

º: b Jº- º
Sp *::
p53aº

*
T###º

■ º

p53?

p53c **p21b/c ty p21 ATGp21 tº:

p53 consensus: RRRCww.GYYY RRRCww.GYYY
p21 p53a: GAACATGTCC cAACATGTTg
p21 p53b : GAAgAAGaCT GGGCATGTCT
p21 p53c: cAGCTAGTTg.cccacco TAGTct

tgfa p53a: GAAgAAGaCT GGGCATGTCT
tgfa p53b: ggGGGCAgQCCC tºccTAGTCTgc
tgfa p53?: tAccATGTTgcc.caggcTgGTCT

Figure 12. Annotated comparison of p21 and TGFA.
TGFA and p21 are plotted along the same axes and over the same extent as in Figure 9. The contribution of function N is indicated
with black dots, and function F is indicated with orange plus signs. Along the top and right of the graph are smoothed histograms
indicating the position-specific count of F (peaks indicated sequence regions that contribute disproportionately to F). The positions of
Alu elements are marked with red rectangles (5 in TGFA and 4 in p21). The transcriptional start sites for TGFA, p21, and p21B/C are
annotated with a “tz”. The first exon of p21 is indicated with a green rectangle. The established TP53 (p53a & p53b) and SP1
response elements are indicated by lines. A recently established TP53 RE (p53c) falls within an Alu inside the first intron of p21,
which corresponds to the promoter region for p21B and p21C. The position of a putative TP53 RE within an Alu of TGFA is marked
“p53?”. It has two perfect 11-mer matches to the sequence of the corresponding TP53 RE in p21 (sequences are shown for all TP53
REs at bottom). The positions of the Alu elements contribute substantially to F. There are additional significant peaks in the
contribution to F corresponding to the position between p53a and p53b within p21 and directly in the cluster of SP1 sites of p21 and
TGFA. The area just 3’ to the first exon of p21 may contain additional SP1 binding sites.

Figure 12 illustrates F on the upstream regions of two TP53-responsive genes,

p21 (official gene name CDKN1A, also known as WAF1 and CIP1) and TGFA

(transforming growth factor alpha) (Shin, Paterson et al. 1995; Nozell and Chen 2002),

*: -

49

which have high F (6789) given their moderately low Alu counts (four and five,

respectively). There are two established TP53 response elements (REs) in TGFA, with

two in the promoter of p21 and an additional one in the p21B/C promoter (which lies in

the first intron of p21). In this case, F was clearly deriving signal from Alu elements, but

it also seemed to derive signal from known SP1 response elements. Further, the recently

characterized TP53 RE in the promoter of p21B/C actually falls within an Alu element.

We speculate that there is an additional TP53 RE within the Alu most proximal to the

ATG of TGFA. In this example, we see high F with a clear contribution from repetitive

element structure, but where F also depends on specific transcription factor response

elements.

Alu repeats account for roughly 10% of the human genome (Schmid 1998).

Schmid and colleagues have implicated Alu elements in heat shock response, genomic

imprinting, and direct interaction with PKR, among other cellular processes (Schmid and

Jelinek 1982; Hellmann-Blumberg, Hintz et al. 1993; Schmid 1996; Chu, Ballard et al.

1998; Schmid 1998; Kim, Rubin et al. 2001). Indeed, they have even demonstrated a

direct role of TP53 in repressing Pol III-directed Alu expression (Chesnokov, Chu et al.

1996). Our realization that the recently described TP53 RE in p21B/C is in fact within an

Alu element supports the proposition that TP53 and Alu elements functionally interact.

Others have shown specific effects of Alu elements on transcription of genes such as

ZNF177 (Deininger and Batzer 1999) and BRCA1 (Sobczak and Krzyzosiak 2002), and

have proposed that expression of many genes may be influenced by Alu elements. Our

results with F on very large sequence set pairs support a broad role for Alu elements in

particular, and repetitive elements in general, in influencing transcriptional regulation.

•.

50

There are several potential explanations for this phenomenon. A statistical artifact

is unlikely, due to the very low p values obtained coupled to the fact that F was

developed on a different data set than the ones on which it was extensively tested.

Another possibility is that this is an evolutionary artifact: somehow genes that tend to be

co-expressed happen to contain similar repetitive element compositions, although a

plausible mechanism for this is not immediately evident. The most interesting

possibilities involve some functional role for the composition of these regions in the

transcriptional regulation of the specific genes in whose promoter regions they reside.

Since it appears that many gene pairs appear to have a component of their transcriptional

regulation tied to the presence of Alu and other repetitive elements, influence on the

structure of DNA, its packaging, or modification by methylation may offer potential

mechanisms. Given that Alu repeats are known to make frequent jumps (approximately

once every two-hundred live births) in the human genome (Deininger and Batzer 1999),

our results indicating that these jumps may have effects on gene transcription support the

suggestion that the general phenomenon may be a fundamental evolutionary mechanism

(Hamdi, Nishio et al. 2000). At minimum, computational methods designed to predict

gene transcription based on sequence in humans should begin to consider the possible

influence of these repetitive regions, rather than explicitly ignoring them.

4.4. Materials and Methods

4.4.1. Expression Data and Upstream Sequence

The Ross, Staunton, and Golub data sets contained expression levels for 6200,

6817, and 7129 genes, across 60 tumor-derived cell lines (first two) and 72 primary

*-> -
*-

#
2.

º

º

51

leukemias (third). We determined the upstream regions of the genes as follows: 1) We

obtained high quality curated transcripts by finding the equivalent RefSeq NM accession

via Unigene and verifying the accuracy of the result by a Blast sequence comparison

between the two accessions (Altschul, Madden et al. 1997; Pruitt and Maglott 2001). For

the Ross data set, we kept the NM accession only when both 5’ and 3’ accessions agreed.

2) We mapped the transcript sequences of curated genes onto the August 2001 freeze of

the human genome (Haussler 2001) using custom software and kept only those sequences

that included the start codon. 3) We retrieved the upstream regions that contained at least

80% valid sequence. After these quality control filters and elimination of duplicates, this

yielded a set of 2592 genes for the Ross data set, 3196 genes for the Golub data set, and

3.192 genes for the Staunton set. Pearson's correlation was used to define correlated and

uncorrelated gene pairs. After these quality control filters and elimination of duplicates,

this yielded a set of 2592 genes for the Ross data set, 3.192 genes for the Staunton set, and

3.196 genes for the Golub data set. Using Pearson’s correlation, we then constructed two

gene pair sets for each data set, one containing gene pairs whose expression was

positively correlated, and the other containing gene pairs whose expression was

uncorrelated. For the Ross set, we used a cutoff of 0.4 to define a set of approximately

12,000 positively correlated gene pairs. For the Staunton and Golub sets, which had a

much larger number of correlated gene pairs, we used a cutoff of 0.5 to define sets of

44,000 and 34,000 gene pairs, respectively. (Cutoffs were chosen to yield between

10,000 and 50,000 gene pairs. Precise choice of cutoffs did not affect the results

presented.) In each case, we created a control set of uncorrelated gene pairs by randomly

-

rº

º
s

52

selecting gene pairs with absolute Pearson's correlation less than 0.2, to make an

equivalently sized set to the respective positive pairs set.

4.4.2. Similarity Metrics

The algorithms share the use of a sequence index to speed execution, introduced

in Section 1.5. This index returns all the locations of a particular n-mer in a sequence in

constant time. To create this index, we start with an empty table that contains every

combination of n-mers for size n. The sequence is broken up into overlapping n-mers,

and the position of each particular n-mer is recorded in the table. The advantage of this

approach is that while the index-generating step takes linear time, all subsequent accesses

to this index are constant time lookups. The two classes of algorithms we pursue follow

below. Note: for comparison of two sequences, matches for the reverse complement of

the second sequence against the first sequence are included in the score.

Our straightforward approach to determine the similarity of two sequences is to

count the number of different n-mers (for a set length n) that are shared between two

sequences (i.e. upstream regions of specified length for two genes). By employing the

indexing scheme described above, we can compute this in linear time. By iterating

through all combinations of n-mers, we multiply the number of appearances of the n-mer

in each sequence against each other; this is equivalent to counting the number of dots in a

dot plot (Function N).

An alternate approach depends on the observation that a dot plot of the upstream

regions of two co-expressed genes tends to have series of n-mer matches along diagonals.

If we count only these concordant matches, we may reduce the noise resulting from

spurious matches. Function F counts a set of n-mer matches if there are more than a

* * * *

53

threshold of t matches that fall within a specified window w along each diagonal. To

improve speed and space efficiency we convert the dot plot (a sparse matrix) into a data

structure that records only the n-mer matches for each diagonal in sorted lists. The

optimal parameter choices (derived on the Ross data set) were n-mer size of 6,

concordance window size of 200, and match threshold of 4.

4.4.3. Repeat Masked Sequences

For repeat masked sequences, we used a repeat masked genome downloaded from

UCSC's web site, which uses RepeatMasker to erase repeats (Smit, A.F.A. and Green, P.

RepeatMasker, http://ftp.genome.washington.edu/RM/Repeatmasker.html). To derive Alu

masked and Alu only sequences, we Blast searched for Alu sequences using the consensus

Alu sequences from the major sub-families in Repbase to calculate the start and end

points of the Alu sequences, and then masked or extracted the corresponding Alu

sequences accordingly (Jurka 2000).

4.5. Conclusion

This chapter showed that we could use a simple and fast similarity metric utilizing

the indexing techniques introduced in Section 1.5 and Chapter 3 and make interesting

biological observations even in a higher organism like human (see Section 1.2). In

particular, we showed that there is a quantitative relationship between coexpressed pairs

of genes and the amount of repetitive element structure found within theses genes.

Specifically, Alu elements, which comprise 10% of the human genome, was contributing

a majority of this signal, and as such repetitive elements may play an important part in

human transcriptional regulation.

--> --

Cº
*** -**

º
tº

54

The next chapter looks deeper into transcriptional regulation by focusing on

specific binding sites found in promoters. We present MaMF, a motif finder targeted at

mammalian organisms that uses indexing extensively. Y

--> --

º
55

Chapter 5

MaMF: A Deterministic Motif Finding

Algorithm with Application to the
Human Genome

5.1. Abstract

We present a novel algorithm, MaMF, for identifying transcription factor (TF)

binding site motifs. The method is deterministic and depends on an indexing technique to

optimize the search process. On common yeast data sets, MaMF performs competitively

with other methods. We also present results on a challenging group of eight sets of

human genes known to be responsive to a diverse group of TFs. In every case, MaMF

finds the annotated motif among the top scoring putative motifs, performing better than

other motif finders. We analyzed the remaining high scoring motifs and show that many

correspond to other TFs that are known to co-occur with the annotated TF motifs. The

significant and frequent presence of co-occurring transcription factor binding sites

explains in part the difficulty of human motif finding MaMF is a very fast algorithm,

suitable for application to large numbers of interesting gene sets.

º -

º
56

5.2. Introduction

Motif finding is one of the core challenges in using bioinformatics to understand

transcriptional regulation. By creating a model of the binding site to which a TF is

predicted to bind, several questions can be addressed: 1) What is different about the

binding site compared with the contextual sequence of the promoter region? 2) What is

the nature of the physical interaction between the binding site and its TF? 3) What is the

relationship between coexpressed genes that are regulated by the same TF? Because of

the centrality of this problem, we use motif finding to address the themes of this thesis,

including understanding transcriptional regulation in the context of higher organisms

(Sections 1.2 and 1.3), building models of the TF binding site (Section 1.4), and using

indexing as a programming paradigm (Section 1.5).

With respect to the first theme, understanding transcriptional regulation in the

context of higher organisms, a recent survey by Tompa et al. (2005) comparing currently

available motif finding tools has demonstrated the difficulty of addressing the human

case and developing methodologies for motif prediction assessment in light of the

complexities of mammalian transcriptional machinery. In this survey, the authors

presented a methodology in which an algorithm predicts a single motif and is measured

by its ability to identify the positions of the annotated binding sites. They found that all

13 algorithms were shown to perform significantly worse on human gene sets than on

yeast gene sets. From this assessment, two of their key observations helped motivate this

paper: 1) The results suggest that efforts in modeling binding sites in yeast have been

more successful than in metazoans, which further suggest that there is opportunity in

developing a motif finder that is targeted at higher organisms; and 2) The assessment

º:

º

-

º

57

methodology should consider the top N predicted motifs to increase sensitivity and

account for binding sites for multiple transcription factors that may work in concert with

the annotated one. To that end, we present a motif finder targeted at higher organisms,

and then assess this algorithm using methodologies that address motif assessment

challenges in the Tompa et al paper that are inherent in motif finding in higher organisms.

It turns out that the motif prediction problem has a parallel to the problem of

predicting the relative conformation and alignment of small-molecule ligands to a protein

binding site of unknown structure. The analogy lies in the equivalence between a set of

promoters and a set of small molecules: both are ligands of a particular protein (the

former are just quite a lot larger). In the former case, we do know neither the relative

alignment of the promoters nor the width of the specific footprint of binding. In the latter

case, we know neither the relative alignment of bound ligands nor their specific

conformations. Our early work in the small-molecule case established a viable approach

(Dietterich, Jain et al. 1994; Jain, Dietterich et al. 1994), and our more recent work has

yielded practically useful methods for solving the ligand superposition problem in a

manner that yields models capable of predicting new ligands (Jain 2000; Jain 2004). The

key difference between the two domains, of course, is that we can model the small

molecule ligands at atomic scale but must model promotes based on DNA sequence. In

both cases, we have a problem of hidden variables (conformation and 3D alignment

versus binding footprint and 1D alignment). In neither case is there an ab initio solution,

since we lack structural information on the binding site of the proteins in question.

Hence, heuristic approaches are required. In both cases, our approach is to couple a

2:
** *

-

º
58

scoring function of empirical design to a fast, deterministic search strategy in order to

yield a ranked list of likely solutions.

We present MaMF (Mammalian Motif Finder), whose development was premised

on the hypothesis that effective search of the space of possible motifs, coupled with a

scoring function that combines local similarity effectively with genomic background

information, would yield practically useful results in the metazoan case of motif

discovery. The search process is accelerated through the use of an index of the input

sequences, which allows MaMF to generate large numbers of aligned motifs quickly,

maximizing its search depth without significantly increasing its running time. The fast

search procedure is coupled to a very simple scoring function that combines a preference

for conservation among input sequences with a preference for under-represented

sequences relative to the genome.

We assessed MaMF by answering two questions. The first is a comparative one

about algorithm performance relative to other widely used methods, and the second is

about the biological significance of high-scoring motifs that are unannotated and may

represent false positives. The comparison question addressed both lower and higher

organisms. Our baseline results using standard motif assessment techniques demonstrated

that MaMF performance on data from yeast and e, coli was comparable to other widely

used algorithms. To allow systematic analysis of the harder human case, we developed an

algorithm assessment method that uses a motif similarity metric to assess the top N

motifs predicted by a motif finder (30 in the data presented), in contrast to the method

presented by Tompa et al. (but in accordance with their suggestion). We present results

on an unbiased set of human promoters, whose TF interactions have been annotated in

2:

Dr.

º º

59

TRANSFAC, and demonstrate that MaMF is able to identify the correct annotated human

motifs and is not very sensitive to specific parameter choices. We then use a larger

independent benchmark data set obtained from Tompa et al. and show that MaMF

performs better than other motif finders.

The second question seeks to determine the biological significance of the high

scoring but unannotated motifs. While these motifs are nominal false positives, the

transcriptional complexity of mammalian systems suggests that they may in fact be

motifs that bind onto other TFs that work in concert with the annotated TF. To test this,

we introduce an assessment technique that employs expression microarray data to

determine the degree to which a putative motif is found to be enriched among

coexpressed genes relative to non-coexpressed genes (the enrichment ratio), which can

then be used to develop biological support for high scoring but putative false positive

motifs. Using this technique on the TRANSFAC data sets, we show that microarray

expression data can be used to support and rank hypothesized motifs, and that many

putative false positive motifs predicted by MaMF are probably due to the presence of

frequently co-occurring bona fide TF motifs with the annotated motifs. The result is

interesting in that it underscores the ubiquity of multiple-TF regulation of gene

expression in human biology, but it also offers a way to make use of easily obtained high

throughput biological data to help triage the results of motif-finding exercises.

5.3. MaMF Algorithm Summary

Given a set of N promoters and an input motif width w, MaMF seeks to maximize

the value of a scoring function that prefers motifs that are conserved across the different

promoters and are under-represented in the target genome (see Figure 1). MaMF yields a

š*

º

* --
**

*

* * *

60

ranked list of motifs, where each motif contains exactly N sequences of length w (zero or

more sites for each input promoter). We will first describe the search algorithm, then the

scoring function.

MaMF’s search algorithm is deterministic, and it depends on a simple yet

effective indexing strategy to optimize performance. Indexing techniques to speed

searches have been used widely, most notably in the BLAST algorithm (Altschul,

Madden et al. 1997). In the case of MaMF, we can create an index of all nmers (defined

as a short sequence of length n, typically 4-6 bp long) found per input sequence, which

makes identifying locations within a sequence that have a given nmer a constant time

operation. Given indices of two sequences and an nmer, we can identify all alignments

between the two sequences that share that particular nmer in constant time. Using this

strategy, therefore, we can efficiently generate a lookup table for all sequence pair

alignments of width w that share an nmer and meet an identity cutoff t (see Figure 13b).

Larger nmer sizes increase speed at the expense of search depth.

Enumerating all sequence pairs from the lookup table and scoring them using the

scoring function described below, we keep the top 1000 high scoring sequence pairs to be

used as seeds in the motif generation step (see Figure 13c). The motif generation step

employs a greedy search strategy that builds motifs from the high scoring sequence

alignment seeds, iteratively adding sequences to the growing motif that maximize the

motif score (see Figure 13d). At each iteration, we obtain potential sequences that align

with any of the sequences already part of the motif via the lookup table, caching those

sequences that do not maximize the motif score for reconsideration in subsequent

iterations. The motif is complete when it reaches a size threshold equal to N, the number

> -e-

tº

61

of input sequences. The 1000 motifs generated are resorted according to their motif score.

To make the results easily viewed, the 1000 motifs are filtered to remove highly similar

motifs at the 75% similarity level (see Motif Similarity below), and the top 30 remaining

motifs are presented.

(a) Input Sequences

promoter sequences for POLB, FOS, VIP, ATF2, ADRB2, TGFB2, CCNA2, RPL10, CCND1

(b) Create Lookup Tables Using Indexing Techiques

TAGGACACGCG GACGTCACAAC

TCGGACACGCG GACGTCATGAC

GACGTCACGCG GACGTCACAGT

GTGGACACGGC GAGCTCACCAC
TAGTACACCTG TACGTCACGGC

TACAAAACGCG GAAGTCACCTC
CAGGACGCGTG GACGTCAAGGC

(c) Generate High Scoring Seeds
W

score=125 score=104

TAGGACACGCG GACGTCACAAC

TCGGACACGCG GACGTCATGAC ---

(d) Build Motifs Greedily
.--

motif size=2 motif size=3 motif size=9
score=104 score=295 score=3523

1 GACGTCACAAc –P 1 GACGTCACAAC |->... → 1 GACGTCACAAC
2 GACGTCATGAC 2 GACGTCATGAC 2 GACGTCATGAC

3 GACGTCAAGGC 3 GACGTCAAGGC

cache size=21 4 TACGTCACGGC

1 GACGTCAAGGC cache size=36 5 GACGTCACGCG

2 TACGTCACGGC 1 TACGTCACGGC 6 AACGTCACGGG

3 GACGTCACAGT 2 GACGTCACAGT 7 GACGTCACAGT

4 GACGGAATCAC 3 GACCTCAAGCC 8 AACGTCACACG

5 GACGTCACGCG 4 GACGTCACGCG 9 AACGCCACGAG
5 GACGGGAAGAC

| | | | | | | |
tgACGTCAC

Reverse complement of
annotated CREB/ATF
Consensus

Figure 13. MaMF algorithm walkthrough of the CREB/ATF data set.
The construction of one motif is traced via the arrows from beginning to end, with other examples of
intermediate steps shown alongside for comparison.

a) MaMF starts with a set of input sequences, in this case promoters of N=9 genes from -1000 to
+200 of the transcription start site that are responsive to CREB/ATF.

b) After using the indexing techniques described in the text to index the input sequences, MaMF
can quickly create a lookup table for a given sequence of width w that is present in the input

> -

º

º,

62

sequences (boldfaced text in header, w=11 in this example), containing all other sequences of
width w that share at least one nmer (n=4 in this example) and pass an identity cutoff (t=8 in
this example). Two examples are shown, with matching nmers underlined, and potentially
more than one nmer appearing for a given matching sequence.

c) The seeds are high scoring pairs of sequences used to grow the motifs, generated by
enumerating all sequence pairs using the lookup tables, of which two are shown. Of note, the
seed with lower score produces one of the highest scoring motifs that corresponds very
closely to the annotated CREB/ATF consensus, emphasizing the importance of generating
many seeds.

d) MaMF uses the seeds and the lookup tables to build motifs. In this example, we start with the
lower scoring seed in the previous step and retrieve all 21 similar looking sequences from the
relevant lookup tables, placing them in the cache. The score of each sequence is the score of
the hypothetical motif generated by adding that sequence to the motif. Sorting by this score,
the highest scoring sequence (in cache position 1) is added to the motif at position 3. After
adding sequences to the cache that are similar to the newly added sequence, this cycle is
repeated until the motif size equals the number of input sequence. This approach is greedy
because it attempts to maximize the score of the growing motif at every step. The motif
shown closely matches the CREB/ATF consensus.

5.3.1. Scoring Function

We define our scoring function to be the following:

w R. R. 1 R-(3££ºsso■ -Éºs) (1)i-1 j=l k=1

where w is the motif width, R is the number of sequences in motif S, Sr...SR are the

individual sequences, m(Si,Sr) is a matching function that returns 1 if sequences S, and S.

match at position i and 0 otherwise, and po(S) returns the probability of seeing sequence

S; using a background model. The first term measures motif conservation and is

equivalent to the ungapped sum-of-pairs function (Altschul 1989; Gupta, Kececioglu et

al. 1995). The second term measures the uniqueness of the motif relative to the relevant

genome, obtained by calculating the average background probability of seeing the various

sequences in the motif (see Methods for details). The product of the sequence similarity

term and the motif frequency term form the scoring function. Motifs that have sequences

that are similar to each other and unique relative to the background maximize the score.

-

(*

63

5.4. Results

We tested MaMF on data from lower organisms as a necessary condition of

performance prior to proceeding to the more complicated human case. For both sets of

data, we compared performance directly to Weeder (Pavesi, Mauri et al. 2001),

Bioprospector (Liu, Brutlag et al. 2001), Consensus (Hertz and Stormo 1999), and

Align/Ace (Roth, Hughes et al. 1998), all of which are well-established motif finding

algorithms. Weeder was shown to perform the most competitively in multiple organisms

in the Tompa et al. survey (Tompa, Li et al. 2005). Details of data set preparation,

parameter settings for the different algorithms, and methods for evaluation of

performance are given in the Materials and Methods section.

5.4, 1. Lower Organisms: MaMF Performance

We verified that the MaMF algorithm worked by testing it on common test cases

in lower organisms, including RAP1, MCM1, and URS1 in yeast, and CRP in e, coli.

These test cases form a common benchmark for motif finding algorithms (Hertz and

Stormo 1999; McGuire, Hughes et al. 2000; Guha Thakurta and Stormo 2001; Lieb, Liu et

al. 2001; Liu, Brutlag et al. 2001; Liu, Brutlag et al. 2002). The yeast examples contained

about 10 genes each, and 1000 bp upstream of each gene was considered. CRP contained

33 genes, with 200 bp upstream. MaMF output was defined to be correct if the highest

scoring motif matched the reported consensus sequence. In all four cases, the top motif

was correct. Table 4 shows the motifs found, the consensus, and gives details of each

motif. Performance of the other approaches was comparable, with Bioprospector and

Weeder finding the correct motif for all four data sets, and Consensus and Align/Ace both

-

1. *

64

finding correct motifs in 3/4 data sets (both failing on RAP1), reflecting the fact that these

commonly tested cases now form a low bar for evaluation of motif finding algorithms.

Table 4. MaMF run on benchmark yeast and e, coli data sets.
For each of the four data sets, the highest scoring motif from MaMF's results (drawn as a sequence logo
(Crooks, Hon et al. 2004) sº matches the annotated consensus.

TF Organism # of Motif Annotated Consensus Highest Scoring Motif Found
Genes Width

RAP1 yeast 11 11 CACCCAGACAT #14
ACCCA AC Tg

- -º- - - -
Ar.

URS1 yeast 11 | | CGGCGGCTA
Taç(CGGCTA

† = - *
A.

MCM1 yeast 17 11 CCTAAT(A/T)GGG
‘CC AATIAGGA

- - -

#
CRP e. coli 33 16 TGTGA(N)TCACA I G

-_ _* * A
:- ++** = ... -- - - -r-■ -5 * x

5.4.2. Human Data: MaMF Performance

While synthetic data have been used to build larger, more challenging datasets

and allow systematic comparisons between algorithms (Guha.Thakurta and Stormo 2001;

Liu, Brutlag et al. 2002), we favor the use of real biological datasets to measure an

algorithm's efficacy. We therefore considered motif finding performance on a set of

human example cases. In what follows, we describe two sets of experiments. The first set

employs MaMF with unfiltered output, which yields a highly redundant ranked motiflist.

The second employs a compaction procedure that eliminates redundant motifs, which

eases inspection of MaMF output and makes comparison to other algorithms

straightforward.

>

º
K

65

5.4.2.1. Raw MaMF Output

To minimize the bias of choosing gene sets favorable to motif finding, we

exhaustively searched TRANSFAC using strict criteria for human gene sets with

sufficient size and verified binding sites, resulting in eight gene sets (see Materials and

Methods). Binding site widths for different transcription factors vary, but we chose to

search for motifs of width 11 in order to standardize the results. The nmer size was set at

4 and an identity cutoff at 8 (8/11 = 73% identity). Recall from above that the top scoring

motifs matched the correct consensus in the yeast and e, coli sets, but of the eight human

gene sets, only E2F yielded the correct consensus as the top ranked motif. Tompa et al.

(2005) noted this issue in their paper, suggesting the use of the top N motifs in algorithm

aSSessment.

To validate whether MaMF was finding the correct motif at all in the remaining

gene sets, we assessed the algorithm by counting the number of motifs that matched the

correct motif within the top 1000 motifs. We used a motif similarity metric similar to

Yona and Levitt (2002), where we define a correct motif to be a putative motif that shares

75% identity with the true consensus motif, considering the best alignment between the

two motifs (see Methods). Using this metric, we found that in all eight cases MaMF

found at least one motif among the top 1000 motifs that matched the consensus motif,

shown in Table 5. In most cases, we found several dozen matching motifs, representing

motifs that were very similar to each other, but had a shuffled order of binding sites or a

shift in where the core binding site was identified. Generating 1000 motifs of width 11

using ten 1200 bp long sequences took about a minute on a 1.3 GHz computer.

66

To assess the probability that the presence of these correct motifs was by chance

(given that we considered so many output motifs), we computed the null distribution of

correct motifs found by MaMF using 1000 random gene sets. For a given annotated gene

set that resulted in some number of correct motifs, the p-value of the result is the

percentage of MaMF runs on random gene sets that resulted in more correct motifs than

the true gene set. Using this statistical measure, we found that most gene sets returned a

number of correct motifs that was statistically significant, shown in Table 5. The

remaining gene sets correlated well with the strength of the motif in terms of information

content and genome frequency. The SP1 gene set did poorly because SP1’s binding

consensus is a GC rich sequence (GGGGCGGGGC) that occurs frequently in the

genome. The ETS binding motif has a small conserved region with large variability

outside of that region, perhaps explaining the weak result in that case.

Table 5. MaMF run on eight TRANSFAC gene sets.
Using a width of 11, a frequency-based background model derived from Refseq gene promoters, nmer size of 4, we generated 1000
motifs. A motif is correct if it shares 75% identity with the TRANSFAC motif using the best possible alignment. The p-value of the
result is the percentage of MaMF runs on random gene sets that resulted in more correct motifs than the true gene set. MaMF finds at
least one correct motif in all cases, most of which are statistically significant.

Transcription Factor # Correct Motifs p value

HNF4A 6 p = 0.002
API 15 p = 0.004
CREB/ATF 60 p = 0.002
E2F 144 p = 0.001
SPI l p = 0.78
ETS 70 p = 0.26
CEBP 17 p = 0.001
AHR/HIF 115 p = 0.01

5.4.2.2. Filtered MaMF Output

Since we established that MaMF was finding correct motifs among the 1000 top

ranking motifs, we were interested if MaMF could find the correct motifs in the top 30

results, a more useful metric of measuring success that not only allows direct comparison

to other methods but also provides a way for biologists to assess the results by eye.

>

67

Having observed that MaMF finds many duplicate motifs, we performed an additional

step to remove highly similar motifs (using the motif similarity metric at the 0.75 cutoff),

which pruned up to 80% of the motifs. Table 6 shows that MaMF is able to find the

correct motif in all eight TFs, in most cases within the top 10, using this compaction

procedure. In several cases, the top-ranked correct motif only approximately matched the

annotated consensus, but in general a slightly lower ranking motif could be found that

more closely matched the annotated consensus.

Table 6. Selected motifs found by MaMF that are highly similar to the annotated motif.
In every gene set, MaMF is able to find motifs that look highly similar to the annotated consensus. Underlined sequence is the 11 bp
motif reported by MaMF; additional sequence reported is obtained from the surrounding sequence. Capitalized nucleotides are highly
conserved (>50% of nucleotides in the motif at that position have that nucleotide).

Motif similarity to Annotated Consensus/
TF Motif rank annotated motif Motif Result

AHR/HIF taCGTGcgg
4 0.808 GtcACGTCCGg
6 0.875 GCataCGTGCGC

API s'TGAcTCA

8 0.716 gåCGGTGGCtCc
25 0.809 nnGACTCAgCCtG

CEBP ATTgcacaktat
2 0.701 tt'TGCAAAgnCT
6 0.756 atTGCACAAacTT

CREB/ATF GTGACGTca
3 0.941 scCGTGACGT ca

E2F ttcgCGCCAAac
1 0.873 tº TGGCGCCAAat

ETS act'TCCtg
6 0.692 CGCtCCGGtGs
30 0.826 kCC to CTaCTTC

HNF4A aGntCAAAGrtcg
l 0.652 CaGGGCTCAaGsgtgc
155 0.830 AGGTCAa AGGTnG

SPI gCGGCGGGgc
5 0.697 cAcCCGGGcCGgggg
22 0.742 mCtgCGGGGcGcggg

We then tested a variety of parameter settings to evaluate the stability of results.

To summarize the results for a given parameter setting, we counted the number of gene

sets for which MaMF found a correct motif among the top 30 results, using several motif

similarity thresholds to define correctness. Figure 2 shows a series of MaMF runs, varied

by the nmer size, motif width, number of seeds, number of bases upstream, and choice of

68

background models. The baseline experiment was based, as above, on an nmer size of 4,

a motif width of 11, 1000 seeds, 1000 bases upstream, and the use of the frequency-based

background model. Within any given parameter setting, the number of correct gene sets

necessarily stays the same or decreases as the motif similarity threshold is increased,

reflecting the increasing stringency of categorizing a motif to be correct.

Changing parameters had varying effects on MaMF’s performance. MaMF was

not very sensitive to the choice of nmer size (Figure 14a) or number of seeds (Figure

14b). With a nmer size of six and 100 seeds, the running time of MaMF can be reduced to

less than 10 seconds, suggesting that MaMF can be used in high throughput motif finding

studies in human with reasonable sensitivity. A motif width of 11 maximized MaMF's

performance (Figure 14c), probably reflecting the average size of the annotated motifs,

though other motif widths were also fairly effective. The number of bases upstream used

in motif finding greatly affected MaMF's results (Figure 14d). Until about 2000 bases

upstream, MaMF was fairly effective in finding motifs, but larger upstream regions made

the problem progressively noisier, reducing the number of correct motifs at higher motif

similarities. An important determinant of motif finding performance was the choice of

genome background models (Figure 14e). The GC weighting scheme performed the

worst, and the higher order Markov background models did better than the lower order

ones. Interestingly, the equal weighting model (equivalent to having no model)

performed better than the GC weighted model. The most sophisticated models utilizing

the greatest amount of genomic information, specifically the 7" order Markov

background model and the frequency-based background, did the best.

;

69

[1065 Do? mo/5 no.8

500

Number of Seeds Nmer Size

-

7 9 11 13

Motif Width

-

-

--- In
-

500 1000 1500 2000 5000 10000

Number of Bases Upstream

38%. GC 1st Order
Markov model

3rd Order 5th Order 7th order Frequency
Markov model Markov model Markov model based

distribution

Background Model

Figure 14. Performance of MaMF using various parameter settings.
Unless perturbing that particular parameter, the default parameters are motif width 11, nmer size 4, 1000 seeds, -1000 to +200 bp of
the transcription start site, and the count with mutations frequency-based background. a) The number of seeds used did not affect
performance. b) Smaller nmer sizes increased sensitivity, c) A motif width of 11 gave the best results, with other motifs giving
competitive results. d) MaMF was able to find motifs given up to 2000 bp upstream, and gradually did worse as the amount of
upstream was increased. e) The complexity of the background model influenced the MaMF's sensitivity, with the frequency based
distribution and higher order Markov models doing the best and the equal weighting (not having a background model at all) doing the
Worst.

>

º
70

5.4.2.3. Algorithm Comparison: TRANSFAC Data Set

We used Weeder, Bioprospector, Consensus, and Align/ACE to search for motifs

and compare their predicted motifs with those from MaMF (filtered output), using the

same assessment methodology as above. Using the eight TRANSFAC gene sets, we

chose parameters for the different algorithms that were similar to those used for MaMF

but optimized their performance if an identical parameter could not be used (see

Methods). Bioprospector performed best when an explicit background model was not

provided (background estimated from the input sequences), and we provided results for

Bioprospector with and without an explicit background model. In these experiments at

the 0.75 motif similarity threshold, MaMF found 6/8 motifs; Bioprospector with and

without background found 3/8 and 6/8 motifs, respectively; Weeder found 5/8 motifs;

Consensus found 1/8 motifs; and Align/ACE found no motifs. Since the performance of

MaMF on this set of eight TFs is within its plateau across the parameter sensitivity

analysis, and since the set size is small, we made a second test with fixed parameters on a

larger set of human TFs.

5.4.2.4. Algorithm Comparison: Tompa Data Set

We constructed a non-overlapping data set of 21 human gene sets obtained from

the benchmark data in the Tompa et al. paper (see Methods). Using the same metric for

success and identical parameters for the algorithms as before, we ran the algorithms on

this new data set. Table 7 shows the performance of the different algorithms at the 75%

motif similarity threshold, with MaMF finding 12/21 motifs, Weeder finding 8/21 motifs,

Bioprospector finding 7/21 (without background) and 4/21 (with background), Consensus

finding 1/21, and Align/ACE finding 0/21. Under various motif similarity thresholds,

:

71

!\!\!\!\!\']](\\[\

MaMF did consistently best, shown in Figure 15. The rank order of the performance of

algorithms generally remained the same compared with the same experiment using the

TRANSFAC data set, with Weeder doing better than Bioprospector, but worse than

MaMF. The single exception was that Bioprospector used without an explicit background

did worse than Weeder in the Tompa data set. Note that we did not evaluate multiple

parameter settings for any algorithm on the Tompa data set.

16

14

;
12

- -10
- -

D 0.65
8 D 0.7
§ 3 8* @ - 0.75
§ 6 + - 0.8

go

§ 4
$5 º

2 +-
-

"
-

-: O [T] º T º~

AlignaCE Consensus Bioprospector Bioprospector Weeder
w/o genomic
background

Motif Finding Algorithm

Figure 15. Comparison of motif finding performance between algorithms.
Using 21 human gene sets from the Tompa et al. benchmark, MaMF is the most successful in finding the correct motif for the various
motif similarity thresholds shown. A motif is correctly found if the algorithm returns among its top 30 results a motif that matches the
annotated motif at the specified motif similarity threshold.

The success rates were dramatically higher than levels of correctness reported in

the Tompa paper, emphasizing the importance of looking at the top N motifs where N is

significantly greater than 1. The results we report in Table 2 can be related to the

approach presented in Tompa et al. (2005). At each level of motif similarity, we are

defining a different threshold of correctness of a predicted motif. Tompa’s approach is to

consider correctness of predicted sites and defines them as correct when a predicted set of

nucleotides overlap a true TF binding site by at least one-quarter in length. In our case,

t

:
72

there are exactly 21 true positives to consider, and each algorithm yielded 30 motifs, most

of which constituted nominal false positives. Tompa’s results showed strong correlation

among positive predictive value, sensitivity, and the “average site performance.” In our

analysis, sensitivity (TP/(TP+FN)) is monotonically related to the motif similarity

threshold, ranging from a sensitivity of 0.71 down to 0.43 for MaMF. Issues involving

quantification of specificity in real data sets are complicated by the likely presence of true

functional motifs distinct from the annotated ones, as also noted by the Tompa group,

which we discuss below. Nominal sensitivities (TP/(TP+FP) for all methods in our

analysis are low, by construction of the assessment, since we considered 30 top-scoring

motifs for each promoter set, most of which are false positives by definition if not in

reality.

Table 7. Comparison between MaMF, Bioprospector, and Consensus on the Tompa data set.
The rank of the first motif, if any, that matches the annotated TF motif at the 0.75 motif similarity threshold is reported, looking at the
*E*****E*isitºriesiºiºshihiels ºutliºisºn.

MaMF Weeder Bioprospector Bioprospector Consensus
(without (with
specified background)
background)

hm■)2

hm■)3 9
hm■)4 14

hm■).5 7

hm()6 l 1 3 4

hm■)7 4

hm■).9 1 1 1 8
hml 1
him 12 13
hm 13
hm 14
hm 15 16
hm 16
hm 17 l 2 2 |

hm 18 23 22

hm2] 4 6 8
hm22 30 1

hm23 15 26
hm24 1 6

hm25 13 15
hm26 8

a sº

73

We believe that MaMF’s performance advantage on the larger set of human test

cases was not artifactual for three reasons. First, in the case of the motifs for the lower

organisms we observed excellent performance for all of the algorithms, reflecting that the

algorithms were run properly. Second, the comparison approaches had similar or longer

running times (all were similar, with Weeder being approximately 100x slower), so there

was no bias toward MaMF with respect to computational burden. Third, the parameters

used in the Tompa data set evaluation were fixed without knowledge of that data set. So,

with respect to the first question posed in the introduction, we believe that MaMF offers

performance advantages over other widely used methods on non-synthetic human data.

5.4.3. Biological Significance of High Scoring Incorrect Motifs

Given that only a fraction of the top motifs returned by MaMF were true positives

(either for the full 1000 motifs or redundancy-filtered 30), we considered the second

question posed in the introduction: what the other motifs might be (referred to below as

“incorrect” motifs). There are several possibilities. First, the remaining motifs could

really be incorrect and without biological significance, a reflection of a difficult and

noise-ridden problem, where the signal from human binding motifs may be too weak to

strongly distinguish true positives from false positives. Second, genome-wide effects

such as repetitive element distribution or GC composition may encourage composition

based motifs to appear. Indeed we have previously shown a relationship between

coregulated genes and the quantity of repetitive elements (Hon and Jain 2003), but in the

above experiments, we removed repetitive elements. As for GC composition, it has been

previously shown that gene expression variation is related to isochore content (Bernardi

1995; Pesole, Bernardi et al. 1999) which may also yield composition-based motifs. The

74

third possibility is that many of the remaining motifs are biologically active, either as

targets of cooperatively acting transcription factors, targets of basal transcriptional

machinery, or structural elements involved in DNA packaging and access. This third

possibility is the most interesting, and our data supported this interpretation in many

CaSCS.

Given a target gene set known to be responsive to some specific TF, MaMF

yielded a list of motifs, which included the TF in question, but also included a large

number of incorrect motifs. We hypothesized that if an incorrect motif were biologically

active, the motif would more likely be found in promoters of genes coexpressed with the

target gene set versus the promoters of genes not coexpressed with the target gene set.

We defined the enrichment ratio of a motif to be the following: If the score for the best

alignment of a motif against a gene promoter is called the alignment score, the

enrichment ratio of a motif is the average alignment score of coexpressed genes divided

by the average alignment score of non-coexpressed genes. We segregated coexpressed

and non-coexpressed gene sets using expression microarray data reported in Stuart et al.

(2003) (see Methods for details). Motifs with an enrichment ratio greater than one are

considered interesting, since the expectation value is exactly 1.0 in the case where no

enrichment exists. Note, however, that interesting motifs will not have enrichment ratios

significantly above 1.0 because it is common to find sequences in non-coexpressed genes

by chance that match the motif fairly well (since we are considering large promoter

sizes), thus increasing the denominator of the ratio.

75

1.1

1.08 O

1.06

1.04 -

1.02 -|
0.98

0.96

0.94 T

0.3 0.5 0.7 0.9

Motif Similarity to E2F

Figure 16. Scatterplot of enrichment ratio to motif similarity for the E2F gene set.
1000 motifs generated by MaMF on the E2F gene set are shown. There are two distinct clusters of motifs, one with black diamonds
corresponding to motifs that look highly similar to E2F, and another with clear diamonds corresponding to incorrect motifs. The
incorrect motifs are skewed to have an enrichment ratio greater than 1.0. The E2F motifs have an average enrichment ratio greater
than the median enrichment ratio for all motifs.

Figure 16 shows a scatterplot of enrichment ratios versus similarity to the correct

motif (using the motif similarity metric) for the MaMF generated motifs for E2F. There

is a separation into two clusters, one representing correct E2F motifs (dark diamonds),

the other incorrect motifs (hollow diamonds). The E2F cluster has enrichment ratios

mostly above 1.0, reflecting the expected enrichment of E2F motifs within genes that are

observed to co-vary their expression with known E2F responsive genes. Analyzing the

eight TRANSFAC gene sets, we found that correct motifs from every gene set had an

average enrichment ratio greater than one; they were also greater than the median

enrichment ratio of all motifs (see Table 8). More surprising was the large number of

incorrect motifs that nevertheless had enrichment ratios greater than 1.0. This skew

toward ratios greater than 1.0 was statistically significant in 6/8 cases (p << 0.0001 for

:
76

those six cases), and suggests that that many of those motifs may have real biological

function.

Table 8. Enrichment ratio (ER) skew of MaMF motifs and elevated enrichment ratio of correct
motifs on the eight TRANSFAC gene sets.
Using scrambled expression data, one would expect enrichment ratios to cluster around 1.0, giving approximately 500 motifs slightly
above 1.0. We instead see significant skew of p << 0.0001 in 6/8 gene sets (those for which the skew is statistically significant have
asterisks next to the numbers). We also see the average enrichment ratio of correct motifs to be higher than the median enrichment
ratio of all motifs, where a correct motif is one with motif similarity to the annotated motif of at least 0.75.

Average ER
motif with of correct Median ER of

ER × 1.0 motifs all motifs

AHR/HIF 856* 1.032 1.015
API 580° 1.019 1.003
CEBP 502 1.026 0.999

CREB/ATF 920* 1.029 1,005

E2F 804* 1,021 1.013
ETS 587° 1.01 | 1,004

HNF4A 390 1.010 0.996
SP1 755* 1.011 1.010

We also made the enrichment ratio analysis on the 21 Tompa gene sets (with TFs

of unknown identity). The results largely paralleled the analysis for the eight motifs

presented in Table 8, with 20/21 showing mean enrichment ratios greater than 1.0 for the

top 1000 motifs (p << 0.01 by exact binomial with respect to proportion of the 21 with

ratios P 1.0). Of the 21, 18/21 had statistically significant skew to high enrichment ratios

(p<< 0.01 by exact binomial with respect to proportion of the 1000 motifs in a gene set

with ratios - 1.0).

Somewhat surprisingly, in 7/21 cases, the annotated motifs of the Tompa data set

had enrichment ratios less than 1.0. This stands in some contrast to the results for the

TRANSFAC data set. We suspected that this resulted from the greater difficulty of the

Tompa data set, in terms of uncertainty of what exactly the annotated motif was (since

this was inferred) and lower conservation of the annotated motif. We observed a

relationship between enrichment ratios of the annotated motifs and the relative difficulty

of identifying the annotated motifs from the promoter sets. We found that for annotated

--

.*
**

77

motifs with enrichment ratio greater than one, 13/14 gene sets had at least one motif

finder find the correct motif. Of the gene sets with annotated motifs having an enrichment

ratio less than one, only 3/7 gene sets had at least one motif finder find the correct motif.

We suspect that in a number of these cases, the nominally incorrect motifs would prove

to be biologically meaningful; however, since we could not say with confidence which

TFs corresponded to the Tompa gene sets, we did not pursue this issue further.

5.4.4. Co-occurring Transcription Factor Motifs

In light of the enrichment ratio analysis, we hypothesized that the incorrect motifs

with high enrichment ratios could belong to transcription factors that co-occur with the

annotated one in a biologically meaningful manner. To test this, we looked for sets of

motifs predicted by MaMF that matched (using the motif similarity metric at the 0.75

threshold) a motif in the TRANSFAC database. For a given set of motifs that matched a

TRANSFAC motif, we computed the average enrichment ratio of these motifs. Ordering

these sets of motifs by number of matches, we kept the top ten TFs that had an average

enrichment ratio greater than the mean enrichment ratio of all motifs from the MaMF

output, and had at least four matching motifs. For each case, this resulted in a list of well

studied motifs that were suggested to co-occur with the target TF based on a combination

of sequence-based analysis and expression microarray data. We limited our analysis to

the TRANSFAC data set since the annotated TFs were known.

78

Table 9. Transcription factor motifs predicted to co-occur with annotated TRANSFAC gene sets.
Over 70% have literature evidence of such co-occurrence. Predicted co-occurring TFs were obtained by finding TFs from
TRANSFAC that have many matching motifs in MaMF output, have an average enrichment ratio (ER) greater than the median
enrichment ratio of all motifs, and have at least four matching motifs. A matching motif is defined to be a motif with similarity greater
than 0.75 to a TRANSFAC motif.

Annotated Predicted Co- average ER of # Matching PubMed ID of
TF occuring TF Matching Motifs Motifs Reference

HNF4A GR 1.000 122

CEBP 1.008 88 7744832, 15388792
E2A 0.997 38 1 1994.285
ER 1.002 37

CREB 1.002 32 15388792

GATA 1.012 24 11585914
PU. I 1.011 24

ETS 1.006 23 14678994
API 1.005 23 1870969

HMG-IY 1.027 17

E2F AHR 1.020 94 10644764
NF-1 1.022 84 12527763

EGR 1.020 73

SMAD 1.013 24 1 1689553

CREB 1.012 22 151236.36
TBP 1.016 17 8255752
AP-2 1.016 17 12513689

SP1 1.022 13 11433027, 12513689
MYC 1.020 11 12004 135

ETS 1.011 8 8290253

SPI AHR 1.014 51 8647831
EGR 1.014 48 9698605

E2F 1.026 4 11433027, 12513689
ETS CEBP 1.008 165 12594283

GR 1,006 52 11279 | 15

AR 1.007 41 8798622

GATA 1.013 37 84.17360, 15537384
PU. I 1.012 37 129076.68

DBP 1.009 30

CREB 1.004 27 9528793
API 1.020 26 15537384

SMAD 1.006 23 11590 145

HMG-IY 1,005 21 129076.68

CREB/ATF CEBP 1.008 54 15213229
ER 1.027 37 11457657

AP1 1.031 35 12200429,9822653
MYC 1.018 33 1288.301 |
T3R 1.007 24

E2A 1.009 21
AR 1.006 17 9822653

DBP 1.015 13
SPI 1.007 11 12200429

YY1 1,015 7 7769693

CEBP GR 1.002 46 9442383

HMG-IY 1.010 37
GATA 1.011 32 1563.2071
T3R 1,000 31

ETS 1.003 30 12594283
TBP 1.009 28 7556073

>

79

API 1.017 24 109.425.17

PU. I 1.000 18 8756629
PEA3 1.004 17

AP1 CEBP 1.004 63 109.425.17

T3R 1.005 59

AHR 1.005 35
E2A 1.004 29

TCF-4 1.012 25 14552705

EGR 1.007 25 12457461

SMAD 1.013 23 10022869,12457461
GATA 1.006 22 7623817
ETS 1.008 16 15537384

LF-A1 1,006 15

AHR/HIF MYC 1.033 87 15071503
ER 1.018 35 15695373

CREB 1.032 24 15213229
USF 1.050 22 11313255

EGR 1.017 21 150471.56
ETS 1.024 19 1246.4608

PEA3 1.038 13
E2A 1.018 13
SPI 1.013 13 8647831
AP-2 1.012 12

We validated the predicted co-occurring TFs by looking for literature evidence

that both the annotated TF and the predicted co-occurring TF were observed to bind to

the same gene promoter. Table 9 shows that 70% of the predicted TFs across all eight

gene sets indeed had been shown in the literature to co-occur with the annotated TF.

Additionally, the top ten predicted co-occurring TF motifs for a given gene set account

for up to 40% of the “incorrect” high scoring motifs generated by MaMF, explaining a

large portion of the results. These results suggest that multiple TF regulation of human

genes is very common and that databases of TF interactions are probably only scratching

the surface at the present time.

Given the MaMF predicted a number of TFs to co-occur with the annotated ones,

we present two detailed examples where sufficient literature data exist to show that these

predictions held. The first uses the AHR/HIF data set, shown in Table 10. Because MYC

is predicted by MaMF to co-occur in AHR/HIF target genes (see Table 9), we checked to

see if the 11 AHR/HIF target genes taken from TRANSFAC were also responsive to

80

MYC. We used the MYC Target Gene Database (Zeller, Jegga et al. 2003) and found that

7/11 were indeed annotated as MYC targets. Since roughly 10% of all human genes are

expected to be MYC targets (Fernandez, Frank et al. 2003), the likelihood that this is by

chance is very low (p < 2.3×10° by exact binomial). So it appears that MYC and

AHR/HIF indeed do commonly co-occur, which supports the idea that the nominal MYC

motifs found by MaMF in the AHR/HIF genes are biologically relevant.

Table 10. AHR/HIF target genes that are also responsive to MYC.
Since we predicted that MYC co-occurs with AHR/HIF, we would expect MYC to bind to some AHR/HIF target genes. Out of 11
AHR/HIF target genes obtained from TRANSFAC, seven are found to be MYC responsive, according to the MYC Target Gene
Database (Zeller, Jegga et al. 2003) (p< 2.3×10” by exact binomial if 10% of all human genes are MYC responsive (Fernandez, Frank
et al. 2003)).

Gene Target Description References (pubmed ID)

EDNI endothelin l 12384.550

14522256, 12529326,
11139609, 10737792,

TFRC transferrin receptor (p90, CD71) 12695333
VEGF vascular endothelial Growth Factor 10646866, 12368264

12695333, 11353853,
10823814, 11983920,

ENOI enolase 1, (alpha) 1 1085504
FOSLI FOS-like antigen 1 12695333, 11139609
HSPBA heat shock 27kDa protein 1 1 1085504

PGK1 Phosphoglycerate kinase l 10823.814

The previous example took a single predicted co-occurring TF (MYC) derived

from the targets of AHR/HIF and established that many of the targets of AHR/HIF are

also targets of MYC. The second example uses the annotated targets of E2F and asks

whether the 10 different predicted co-occurring TFs from MaMF bind to MYC's

promoter, which is an annotated target of E2F. Results are shown in Table 11. In 8/10

cases, we were able to find literature evidence that there was direct binding of the

predicted TF to the MYC promoter. While it is difficult to make a strong statistical

statement about this result, it seems improbable that such a high proportion of TFs would

be identified in the literature to specifically target MYC.

* -
* * *

81

Table 11. Transcription factors predicted to bind onto the MYC promoter.
MYC is an E2F responsive gene, according to TRANSFAC. Given our predictions for 10 TFs that co-occur with E2F, we would
expect that some of these TFs would therefore bind to MYC. Nine out of eleven have literature evidence of such binding.

MYC promoter
Average ER references

TF of Correct Number Correct (Pubmed ID)

E2F 1.020644 153 8437848
AhR 1.01951 1 94 | 1 || 14727

NF-1 1.021563 84 1945411
EGR 1.020287 73
SMAD 1.012889 24 1 1689553

CREB 1.01.2461 22
TBP 1.016252 17 11593411

AP-2 1.015884 17 2822255

SP! 1.02 1808 13 8437848
MYC 1.020263 11 897.2190
ETS 1.01 1082 8 8290253

5.5. Discussion

We have presented a new search algorithm and scoring function for motif finding

and have shown competitive performance on a small data set from lower organisms but

improved performance on a human TF data set. While the problem is clearly more

challenging in the human case, MaMF is able to find correct motifs, measured by

quantitative similarity to the annotated motifs. However, the top scoring motif is seldom

the correct one, based on annotation, and it is in a large sea of diverse motifs. By

employing microarray expression data, we established that a large proportion of the

nominally incorrect motifs exhibited enrichment in genes co-expressed with our TF target

Set.

Further, we have shown that many of these remaining high scoring motifs belong

to TFs that co-occur with the annotated TF. Despite this evidence, the relationships and

mechanisms between the co-occurring motifs and the annotated TFs remain unclear. It is

possible that these co-occurring motifs have no functional relationship with the annotated

TF and simply belong to other transcriptional programs that use similar genes. However,

82

given the importance of interactions between transcription factors to modulate

transcription particularly in humans, we find it more likely that many of these co

occurring TFs interact with the annotated TF in some manner, either in cooperative or

inhibitory roles. Some of the difficulty of human motif finding can be attributed to these

co-occurring motifs that comprise a large portion of MaMF output. In lower organisms

where the transcriptional programs are simpler, the likelihood of finding co-occurring

motifs that score higher than the annotated motif is smaller. The successful human motif

finder, therefore, needs to be able to search deeper and faster to enumerate both the

annotated TF motif as well as co-occurring motifs.

MaMF’s performance is largely dependent on two features: the use of a genomic

background model and the use of indexing to accelerate sequence comparisons. With

respect to the background model, higher order background models have been shown to

improve motif detection (Thijs, Lescot et al. 2001), preventing spurious common

sequences such as short simple repeats (that remain despite repeat masking) from being

the dominant signal. In Figure 2e we validated this by showing that as the complexity of

the background model increased, MaMF was increasingly able to find the correct motifs.

Furthermore, when comparing algorithms in Figure 3, we observed that algorithm

performance corresponds closely with the choice of the background model used, shown

in Table 12. The worst performing algorithm, Align/ACE, uses no background model,

whereas MaMF and Weeder both use frequency-based backgrounds. Interestingly,

Bioprospector does best when the background is estimated from the input sequence,

suggesting that a local background may be more effective in general than a background

83

estimated from the entire genome. We did not examine if such a strategy would also

improve MaMF’s performance.

Table 12. Background models used in the comparison algorithms.
Algorithms that used more complicated genome backgrounds containing more information about the genome generally did better than
those that had simpler genome backgrounds.

Performance
Rank Algorithm Background Model

l MaMF Frequency-based
2 Weeder Frequency-based
3 Bioprospector 3" order Markov
4 Consensus GC weighted
5 AlignaCE Equal weighting

The second major feature that MaMF employs is the indexing of sequences to

speed searches. The benefit of indexing is most evident when comparing MaMF with

Weeder. While both algorithms use frequency-based backgrounds, and Weeder is

competitive in performance with MaMF, MaMF runs about 100 times faster than

Weeder. A large portion of this speed differential results from the exponential time

penalty that Weeder incurs when searching for longer motifs, with running times of

greater than one hour for motif widths of 10 and up. MaMF is able to search for longer

motifs with no such performance penalty, which makes this algorithm amenable to high

throughput experiments as well as longer and more complicated binding motifs.

MaMF builds upon previous algorithms by its use of indexing to optimize

performance. The generation of the lookup table is similar to the enumerative approaches

used by van Helden (2003) and Sinha and Tompa (2003). Whereas they enumerate all

possible motifs, we enumerate all possible nmers to generate sequence pairs that share an

exact nmer. Since the nmer size is significantly shorter than the motif width, our

approach minimizes the polynomial time penalty that enumeration incurs. The motif

generation step uses a greedy approach similar to Consensus (Hertz and Stormo 1999),

except that our approach uses the indexed lookup table both to generate sequence pair

2
-º-º: -

r
*

É
º---

3

*

*

84

seeds and to build motifs. In Consensus, each motif is generated from a seed containing a

single sequence and additional sequences to be added to the motif are exhaustively

searched from the input sequences. The indexed lookup table in MaMF minimizes the

redundancy of generating motifs from similar or identical seeds.

To determine if MaMF’s performance stems from its scoring function or the

search algorithm, we compared the average scores of both MaMF's and Bioprospector's

top 30 motifs for all eight gene sets using scoring functions from both algorithms. We

rescored the motifs generated by MaMF and Bioprospector using the scoring function

from each algorithm. If the scoring functions were not substantially correlated, we would

see in all cases that the motifs produced by algorithm A would score higher using A's

scoring function than motifs produced by Algorithm B but rescored by A's scoring

function. However, we saw a mixed result. Using MaMF's scoring function to score

motifs, we saw that in 7/8 cases MaMF's motifs yielded a MaMF score better than the

motifs produced by Bioprospector. In contrast, using Bioprospector's scoring function to

score motifs, in just 3/8 cases the motifs produced by Bioprospector scored better than

the motifs produced by MaMF. Since MaMF seeks to maximize its own scoring function,

the fact that it did a better job of optimizing Bioprospector's scoring function in 5/8 cases

suggests that the scoring functions themselves are closely related and that much of the

advantage of MaMF comes from its search strategy. In the single case where MaMF

found a motif that scored more poorly using its scoring function than the motif found by

Bioprospector (SP1), we believe that this represented a search failure for MaMF.

Potential reasons include a bias against GC rich seeds since they are relatively common

85

in the genome, and a difficulty in aligning the middle C in the consensus sequence due to

the greedy nature of the search strategy.

We chose an assessment strategy that differed from that used in Tompa et al. in

order to better measure performance in the human case. The strategy differed in two

ways. Instead of looking at the top motif, we looked at the top 30 motifs predicted by a

motif finder. It is important to increase sensitivity in this way because, as we later

showed, many of the highest scoring but unannotated motifs are also likely to be

biologically relevant. If multiple TFs are involved in a given gene set, the annotated TF

motif might not be expected to score the highest.

The second way our strategy differed from Tompa et al was that whereas Tompa

measured a motif finder’s ability to identify the annotated binding sites (i.e. at the

nucleotide and binding site levels), we measured the degree of similarity of the predicted

motif to the annotated motif using a quantitative similarity metric (i.e. at the motif level).

While measuring nucleotide and site level accuracy is an important metric in identifying

biologically active binding sites, we feel that it is more important to analyze motif level

accuracy of the motifs predicted by a motif finder. Given confidence of a particular motif,

individual binding sites can be predicted from this motif. Furthermore, measuring motif

similarity is a natural extension of the traditional metric of comparing a predicted motif to

the annotated consensus sequence, only that we are comparing the predicted motif to the

annotated consensus motif, a richer representational form of the consensus sequence. As a

result, our assessment methodology may be more straightforward to understand.

Note that MaMF’s use of an empirical scoring function limits our ability to

compute and analytical estimate of a p-value given a motif with a score of a certain

86

magnitude. We are exploring ways to use empirically computed distributions of scores to

provide such estimates. Our use of microarray expression data suggests further inquiry,

and may have application in addressing the problem of motif evaluation/validation. We

have shown that the enrichment ratio is elevated for the annotated binding motifs in all

eight TRANSFAC gene sets, so there may be ways to use the enrichment ratio in motif

finding. For instance, one could potentially use the enrichment ratio in a post-processing

step to score motifs generated by MaMF and thus yield a biologically motivated ranking,

which might ameliorate the need for a statistical model of motif score likelihood. This is

attractive because with the proliferation of publicly available expression microarray data

(Ball, Awad et al. 2005) it is easy to calculate enrichment ratios for motifs from any gene

set. More ambitiously, a motif finding algorithm could be designed around the

enrichment ratio, for example by finding motifs that maximize the enrichment ratio. An

advantage of this approach is that the genomic background distribution is not required

since such information is embedded within the enrichment ratio.

5.6. Materials and Methods

5.6. I. Background Model

For the yeast and e, coli gene sets, the scoring function used a 3" order Markov

chain background model (similar to Liu et al. (2001)) derived from the relevant organism

to assess sequence uniqueness. In human we used a non-probabilistic background

distribution that counts actual sequence occurrences for a width w. To account for

infrequent sequences that may skew probabilities, for each sequence we defined an

exhaustive set of all related sequences that differ from the original sequence by one base

87

pair. Because the number of occurrences of these related sequences should be much

greater than that of the lone sequence, we created a composite background frequency

score for a sequence equal to the total number of occurrences of related sequences

divided by the total number of sequences of width w in the data set. Additionally, in the

comparison of different background models, we also used an equal weighting model

where each nucleotide is equally likely to occur (equivalent to having no model at all), a

GC-weighted model where Gs and Cs are less likely to occur (38%), and four Markov

chain background models of the 1", 3", 5", and 7" orders. The human backgrounds were

based on the promoters of all Refseq genes.

5.6.2. Data

For the TRANSFAC data set, we gathered 8793 gene promoters consisting of

sequence -1000 to +200 bp around the transcription start site from the Database of

Transcription Start Sites (DBTSS) (Ota, Suzuki et al. 2004), removing repetitive

sequence using RepeatMasker (Smit, Hubley et al. 1996-2004). We exhaustively

searched the TRANSFAC motif database (Wingender, Chen et al. 2001) (v. 8.1), looking

for human transcription factor binding sites that contained the exact sequence at the

annotated position in DBTSS. By keeping gene sets of transcription factor motifs that

contained at least five genes, we ended up with seven gene sets: E2F, ETS, SP1, AP1,

AHR/HIF, CREB/ATF, and CEBP. Additionally we curated a set of human HNF4A

responsive genes that contained an annotated binding site, using genes and binding sites

from http://www.sladeklab.ucr.edu/info.html. Upstream regions of 10,000 bp before the

transcription start site were obtained from Ensembl (Hubbard, Andrews et al. 2005) to

analyze MaMF’s performance with larger sequences. This group of well-annotated gene

2
-f**--

É
3

88

sets was used to illustrate parameter sensitivity of MaMF and also for preliminary

algorithm comparison (referred to in what follows as the TRANSFAC data set).

To create a data set for the purposes of rigorously comparing algorithm

performance, we processed benchmark data from Tompa et al (2005) by using the

following procedure:

1. We first downloaded from the Tompa et al website the real human

upstream sequences, which contain gene promoters from 1000-3000 bp in

length. While the Tompa paper does not make the transcription factors and

their annotated motifs associated with each data set directly downloadable,

the website displays the true positive binding sites for viewing. We were

able to manually extract these and verify that our extracted data matched

that which was displayed.

Our scoring methodology relied on generation of a position weight

matrix from an aligned motif, which was directly available for the

TRANSFAC data set. However, the binding sites for many of the Tompa

gene sets were highly variable in content and in length (i.e. in many cases

not easily condensable into a canonical binding motif), so we used

Consensus (using parameters below) to identify a set of 11-mer binding sites

to be used as the true binding motifs. We chose Consensus because it is a

deterministic algorithm that can find motifs using short input sequences. It

might be argued that identification of “true” motifs in this manner might

bias results toward Consensus, but it should not bias results toward MaMF

or other algorithms.

3

tº

89

3. To remove overlapping gene sets, we identified the transcription factor

each gene set was most likely responsive to, by comparing the binding sites

with TRANSFAC data. The Tompa paper contained 26 human gene sets, of

which five overlapped with the gene sets described above. We eliminated

those five, and this resulted in 21 human gene sets. The sequences were then

repeat masked using the same procedure as above.

In what follows, this set of 21 human gene sets is referred to as the Tompa data set.

5.6.3. MotifSimilarity

We define a motif similarity function that compares two motifs A and B of lengths

n and m, respectively, finding the best possible alignment between the two. A motif is an

ungapped alignment of a set of sequences, which can be represented as a position weight

matrix (PWM). For the purposes of finding the best alignment, we require the second

motif B to contain sequences for which surrounding sequence is known, such that we can

create an extended motif B' containing this surrounding sequence, of width m' = 2m. We

calculate the raw similarity score by taking the motif A and aligning it against the

extended motif B', finding the best alignment that maximizes the score, defined to be the

following:

*{###A.
-

B.) for x = {0, m'— n} (2)

where motif A and extended motif B' are the PWMs of the two motifs, i and j are the

positions within the respective weight matrices, k is the nucleotide, n and m' are the

widths of the weight matrices (with the requirement that m 'P= n), x is the offset used to

align motif A to motif B, and the notation Aik denotes the number of occurrences of

nucleotide k at position i. The similarity score is the raw score scaled to between 0 and 1

2
r
.-

B
3

90

by dividing by the maximum possible raw score, obtained by calculating the score of the

consensus sequence of motif A multiplied by the number of sequences in motif B.

5.6.4. Algorithm Comparison

We used defaults for Align/ACE, Bioprospector, Weeder, and Consensus unless

otherwise specified. To make the comparison as similar as possible, we specified a motif

width of 11 (if there was the option of choosing a motif width), used the most complex

background model available, and used the same repeat masked human sequence as the

input. Weeder was parameterized to use the launcher method in the large setting, which

tries finding motifs of width 6-12 containing 1-4 mismatches, removes duplicates, and

returns the best scoring motifs. We set it to use the provided human background, to

search both strands of the input sequences, and to return 30 motifs. Bioprospector was set

to use a width of 11, a 3" order Markov model based on the same Refseq promoters

MaMF used, and to report the top 30 motifs; it finds zero or more sites per sequence and

the number of sites in a motif is determined internally by the algorithm. Consensus was

parameterized to operate in a way similar to MaMF: a width of 11, a background model

containing 40% GC, n sites per motif for n genes (depending on the gene set), zero or

more sites per sequence, and the top 30 motifs to be returned. Align/ACE used default

parameters, and it automatically chooses varying motif lengths and sizes to maximize its

motif score. The scoring function in our copy of Bioprospector uses an updated version

of the scoring function found in Liu et al. (2002) (X. Liu, pers. comm.).

—
*** º

5
3

*

*

* .

91

5.6.5. Enrichment Ratio

We developed a method to employ expression microarray data in order to provide

biological validation for computationally discovered motifs (see Results). The method

defines an enrichment ratio, which is the degree to which a motif discovered from a

target gene set preferentially occurs in the promoters of genes that are co-expressed with

the target gene set relative to the presence of the motif in genes that are not co-expressed

with the target gene set. Formally, the occurrence of a motif A in a single gene promoter

is measured by the alignment score z, defined to be the following:

wmº *…) for x = 1 to n-wi-l

where Q is the gene promoter sequence of length n, with the notation Q(x+i) denoting the

x+i"position in Q; and motif A is a position weight matrix of width w, with the notation

Aloxºp denoting the number of occurrences of nucleotide Q(x+i) at position i. That is, if

Aloxi) is the score of the motif compared to a specific region of the sequence, the

alignment score z is the maximum such score over the entire sequence. Given the

alignment score z(Q) for sequence Q, the enrichment ratio can be defined as:

4XCz(C.) #XCz(U)
i=l i-l

where C contains the c co-expressed genes and U contains the u non-coexpressed genes.

In other words, the enrichment ratio is the quotient of the mean alignment score for co

expressed genes C divided by the mean alignment score for non-coexpressed genes U.

For the calculation of the enrichment ratio, we measured coexpression based on a

collection of human expression microarray data reported in Stuart et al. (2003). This

combined data set contains over 1200 samples, with strong overlap with genes in

s
3

*

92

DBTSS. The coexpression of a gene against the annotated gene set is calculated if two

conditions are met: 1) pairwise Pearson’s correlations can be computed between that gene

and at least six genes in the annotated gene set, and 2) for each of these six gene pairs,

expression values are available for both genes in at least ten samples. Coexpressed genes

have a high average Pearson’s correlation when compared with the annotated gene set,

while non-coexpressed genes have a near zero average Pearson’s correlation. For the

MaMF output of a given gene set, we computed enrichment ratios for all motifs using the

top 20 coexpressed genes and 100 non-coexpressed genes (those with correlations closest

to zero).

We computed the null distribution of enrichment factors by generating 10,000

random PWMs of width 11 and computing their enrichment ratios against 10,000 random

orderings of the expression data above (to yield different numerator and denominator

gene sets). The probability of observing an enrichment ratio greater or equal to 1,035 was

0.05, 1.05 was 0.01, and 1.07 was 0.001. Note, however, that the composition of a motif

also affects the distribution of ER given permuted data, so this distribution serves as a

guideline for the scale of the observation of ER as opposed to a formal p value. Rather

than focusing on absolute enrichment ratios, we have focused on the probability of

observing skew in populations of enrichment ratios. Since the populations are large,

population skew is a reliable measure and yields p-values by exact binomial computation.

5.6.6. TRANSFAC TF Motifs

To find TF motifs that might co-occur with our annotated motifs, we generated a

large list of TF motifs curated from TRANSFAC. These motifs were required to have at

s
3

93

least two annotated binding sites obtained from either human, mouse, or rat. This yielded

146 well-described TF motifs that belonged to higher organisms.

5.7. Conclusion

In this chapter, we presented MaMF, a human targeted motif finder, and showed it

performs better than other algorithms in human. We also analyzed predicted (but

unannotated) high scoring motifs and found that a large percentage belonged to

transcription factors that are known to co-occur with the annotated transcription factors,

using a combination of sequence analysis and expression microarray data.

The next chapter focuses on the TF binding site exclusively in the binding site

recognition problem. Whereas MaMF uses a PWM as its model, ANNFoRM in Chapter 6

uses a neural network to build a more sophisticated binding site model.

3

94

Chapter 6

ANNFoRM: Nonlinear Transcription

Factor Binding Site Recognition Using
Neural Networks

6.1. Abstract

Motivation: The most common techniques used to model a transcription factor

binding site are consensus sequences and position weight matrices. While often effective,

they cannot represent more subtle features of a binding site, such as interdependencies

between nucleotides. Here we present an algorithm, ANNFoRM, which recognizes new

binding sites given a corpus of known binding sites. Given a training set comprised of

negatives extracted from the genome and positive examples from the corpus, the method

employs an artificial neural network that creates a nonlinear model of the binding site

using a nonprobabilistic background model.

Results: We have tested ANNFoRM on several sets of yeast binding sites and

compared the neural network using test data against a linear model employing a position

weight matrix. ANNFoRM’s binding site model is better able to differentiate true

3

95

■
!!■■ !!■
)■■

■

º

positives from false positives, particularly in larger data sets. It benefits from the ability

to model interdependencies in nucleotide positions as well as the option to embed

multiple types of information as input.

6.2. Introduction

In the review of the literature in Section 2.3, the problem of binding site

recognition has typically been addressed in two ways: First, some approaches have tried

to increase the specificity of existing models by utilizing orthogonal data. Second, other

approaches have attempted to build entirely new models that overcome the independence

assumption. This chapter approaches binding site recognition using the second method,

specifically by using neural networks (Mitchell 1997).

Here we present a novel algorithm, ANNFoRM (Artificial Neural Network For

Recognizing Motifs), for recognizing binding sites in a test set given a separate training

set of binding sites. The approach directly addresses the independence assumption by

employing a non-linear function for the binding site model. Further, rather than

embedding a constraint on the background of the target genome by ad hoc means, the

method learns the background through use of negative training data. The method models

the binding site by using an artificial neural network to learn the differences between the

positive training sites and negative sequences drawn from the genome. We have tested

ANNFoRM on several smaller yeast data sets drawn from the SCPD (Zhu and Zhang

1999), as well as a larger data set of Rap1 responding genes from results in Lieb et al.

(2001). With a small number of training examples, ANNFoRM can outperform the

equivalent PWM generated by Bioprospector, though larger data sets are required to

maximize its performance.

s
º

|
-*.

5

96

t

6.3. Algorithm and Implementation

6.3.1. Overview

We use a fully connected multilayer neural network to derive a model of the

binding site. To train the neural network, two sets of data are required. The first is the

positive training set of binding sites responsive to a transcription factor, obtained either

experimentally or via another prediction algorithm. The second is a negative training set

of background sequences from the genome, assumed not to contain positive binding sites.

Each training example contains sequence information, contextual information if

applicable, and whether it is a binding site. The goal is to fit the network to the data such

that it can differentiate positive binding sites from negative non-binding sites. The fitting

method uses the backpropagation algorithm to minimize the error between the network

output value and the target value.

6.3.2. Network structure

The neural network has three layers with weight connections between all input

nodes and hidden nodes, and hidden nodes and output nodes. The binding site is

represented as 4n binary input nodes, where n is the size of the binding site. Described as

a matrix, its four rows correspond to the four possible nucleotides, the n columns

correspond to each position in the binding site, and each cell refers to one input node (see

Figure 17). For each binding site position, one cell in each column is set to one, with the

other cells in the column set to zero. If other types of information are to be included,

additional input nodes are added (described in methods). There is a customizable number

of hidden units, where more units increase the representational power but the likelihood

s
3

97

of overfitting as well. There is a single output node that returns a value between 0 and 1

(one representing a true binding site).

m
-

- (0, 1 0,0 1 0 0,
(a) c 1, 0:0 1, 0, 0, 0,

G|0|0|0 0, 0, 0, 1)
T 0 || 0 || 1

OO Input units

(b)

Hidden layer

Output unit

Figure 17. Neural network structure.
(a) Binding site represented as input nodes in a neural network. In this example, the sequence CAT can be formulated as a matrix of
values, with the possible nucleotides in rows and the binding site in the columns. For a given nucleotide, a value one is entered in the
row to which it corresponds; other cells contain a zero. The resulting values can be converted into a list to be used as the input node
values for the neural network. (b) A fully connected three layer neural network. The weights are represented by the edges connecting
the nodes. The input units contain binding site values and/or contextual information about the sequence. The hidden layer enables the
network to model nonlinear functions. The output unit shows whether the network believes the binding site fits the model.

6.3.3. Negative Training data

The network is trained by standard iterative backpropagation on known binding

sites and putative non-binding sites (background sequences). The set of background

sequences contain many negative examples, vastly more than the number of binding sites

in the positive set. To prevent the negative examples from overwhelming the positive

ones, we follow a procedure that selects only non-binding sites that will contribute to the

training of the network, using the following rules:

i
3

98

Only high scoring negative binding sites (presumed to be false positives) are

chosen for training. Low scoring sites have already been learned as negative

sites, and do not provide much additional value.

Because the search space is large, we choose only several sequences at a time

from which to draw negative examples. This is a tradeoff between algorithm

running time and completeness of the algorithm. Optimally, every possible

negative example is considered every time a new negative sequence is

required, but this would not be practical. In practice, a sampling technique

allows successful convergence.

To choose a new sequence to train against, we choose a threshold equal to the

lowest output of the top negative sequences used in the previous iteration of

training. If the highest scoring sequence in the set of potential examples

retrieved from sampling is greater than the threshold, then that sequence is

added to the negative list. Otherwise, the sequence is discarded and nothing is

added. This is repeated a fixed number of times per iteration.

All chosen negative examples are cached so that difficult sequences that

continue to have a high score can be reintroduced for additional training.

Sequences that are already present in the positive set of binding sites, as well

as negative examples that already are stored in the cache, are ignored. This

prevents the network from seeing the same training example in both classes,

and prevents common sequences from being over-represented in the network

model.

=
º --

É
3

99

This complex regime for background sequence selection obviates the need for any

explicit modeling of the likelihood of observing different sequences.

6.3.4. Training the Network

The weights in the network are initially set to random values between –0.01 and

0.01. The negative examples cache is loaded with high scoring sequences. The following

steps are then taken to train the network:

1) Take a high scoring negative sequence (that has not been trained on during

this iteration) from the cache and modify weights by backpropagation.

2) Take a random positive sequence and modify weights. Repeat this up to

five times while the average output of all the positive binding sites is less

than 0.5.

3) Repeat steps 1 and 2 as many times as twice the number of positive

Sequences.

4) Load the cache with additional negative sequences, considering up to

50,000 binding sites.

5) Repeat the training regime (steps 1-4) until all the possible negative

examples have been considered (about 100 iterations).

6.3.5. Implementation

ANNFoRM is implemented in C and compiled using GCC under the Cygwin

environment on Windows. The code can therefore be compiled on other operating

systems like Linux and Mac OS X. On a typical run of 100 iterations, 10 positive training

i
3

100

sequences, a Pentium III-1.4 GHz class PC takes about 10 minutes to execute, using

about 35 megabytes of RAM. Times increase when considering contextual information.

6.4. Materials and Methods

6.4.1. Data

Three sets of data were obtained from the SCPD (Zhu and Zhang 1999) to test

ANNFoRM: 11 genes responsive to Urs1, 11 genes responsive to Rap1, and 17 genes

responsive to Mcml. Urs1 has a wide variety of targets throughout the yeast genome that

are induced under stress conditions. Rap1 is best known to bind to [CO-3)A]n repeats at

chromosome ends to regulate telomere length, but has a diverse set of functions. Mcml is

involved in the regulation of cell-type specific and cell-cycle genes.

Lieb et. al (2001) conducted an exhaustive chromatin immunoprecipation

experiment on Rap1, from which we culled a large set of data. They extracted 1 kb

chromatin fragments from wildtype yeast and performed immunoprecipation reactions

against polyclonal antibodies derived from Rap1. By affixing enriched DNA fragments

from each IP onto a whole-gnome yeast microarray, it was determined which portions of

the genome were enriched and thereby which genes are targets of Rap1. They determined

that 362 genes are responsive to Rap1, of which 122 are ribosomal protein genes (RPG).

From this, we generated three sets of data—the 362 total set, 122 RPG set, and 240 non

RPG Set.

The negative data set consisted of the 1000 bases upstream of every yeast ORF.

This was obtained from SGD (http://genome-www.stanford.edu/Saccharomyces■)

i
3

101

(Cherry, Ball et al. 1997). For convenience, only sequences with the full 1000 bases

were considered.

6.4.2. General protocol

With the list of genes responsive to a particular transcription factor, Bioprospector

was used to identify the binding sites, using the same parameters used in the Lieb paper

(yeast intergenic regions as background model, zero or more binding sites per sequence).

We tried a variety of different window sizes, ranging from 7 to 17 base pairs. We decided

against manually defining the core binding site at each window size and extracting

various training sets from a single Bioprospector run because it was not always obvious

what the core binding site might be. The binding sites from the top set of results were

extracted and verified against experimentally derived consensus sequences. The

discovered binding sites were evenly split by ORFs into training and test sets, using 10

different random splits to support cross-validation estimation of performance of the

various methods. We computed PWMs from the alignment of the training set of binding

sites. ANNFoRM was trained against the same set of training binding sites plus negative

data, using three hidden units. To avoid subtle contamination effects in training, the

negative data set was also split into a training and a test set. Each contained 1000 bases of

3.165 upstream regions, or approximately 6 million negative examples including the

reverse complement of each sequence.

To measure performance, both the PWM and ANNFoRM’s trained network were

applied to the test positive and negative data sets. The output of each method for a given

upstream region was defined to be the highest scoring binding site in the sequence. ROC

areas were computed for the sorted output of each method. Comparisons between

i
3

102

methods were accomplished by considering the fraction of training/testing splits where

one method outperformed the other method based on ROC area. Statistical significance

was assessed by computing the probability of getting m wins out of n trials.

Performance of Various Transcription Factors

* - - -
* - - - * - - - *\

^ ^• L
... • * ^

0.95 - *

0.9 - -

47 .
;

- *47 *

3 s' *

Cz 0.85 H-
- -

* ,
- - -

3. *

: -
> -
< *

0.8
--

Yº - - - - - - -n

0.75 +--
- --

——Mcm1 ANNFoRM
- * - Rap1 ANNFoRM
-A - Urs1 ANNFORM

0.7 r—

7 9 11 13 15 17

Window Size

Figure 18. Average ROC areas of ANNFoRM across SCPD data sets.
Each data point is an average of 10 train/test data splits. In general, averages are greater than 0.8, with decreasing performance at
larger window sizes. Ursl has on average higher ROC areas probably because of a more strongly conserved binding site.

6.5. Results

Initial development of ANNFoRM used data from the SCPD for testing. ROC

areas greater than 0.8 were observed over a broad variety of parameter variations, which

suggested robust convergence of the training method. Given successful convergence, we

proceeded to observe ANNFoRM’s performance over different window sizes for Urs1,

Mcm1, and Rap1 (see Figure 18). ANNFoRM performed best at window sizes 11 and 13,

approximately the average size of the binding motifs used. At smaller window sizes, the

i
3

103

performance fluctuated significantly, depending on the transcription factor. This

fluctuation seemed to be dependent on the binding site subset chosen to be in the positive

data set (the particular split of the data). The Rap1 binding site has a strongly conserved

C several bases away from the core sequence CACCCA, resulting in a 9 base pair full

consensus sequence. Thus it is not surprising that Rap1 at window size 7 performs

poorly. Similarly, the fluctuation of Mcml can be explained by the symmetrical nature of

the binding site. DNA binding assays have suggested that the second half of the

consensus CCTAATTAGG site needs to be conserved, whereas mutations in the first half

are tolerated (Passmore, Elble et al. 1989). Window sizes 7 and 11 used binding sites that

overlapped the second half of the consensus but window size 9 did not, so window size 9

performed the worst of the three. A shift in binding site locations would likely improve

the performance at window size 9.

Table 13. Average ROC areas compared between ANNFoRM (ANN) and the PWM, for Mcm1,
Rap1, and Urs1.
Window sizes range between 7 and 17.

mcml rapl ursl
W-Size ANN PWM ANN PWM ANN PWM
7 0.936 0.952 0.857 0.866 0.992 1.000

9 0.870 0.863 0.947 0.950 0.985 0.990
11 0.932 0.956 0.963 0.955 0.985 0.988
13 0.945 0.983 0.901 0.927 0.983 0.990
15 0.870 0.977 0.805 0.821 0.946 0.990
17 0.936 0.962 0.803 0.892 0.904 0.984

Table 13 compares the performance of ANNFoRM against the PWM approach. In

general, ANNFoRM compared favorably with the PWM, often within 0.01 average ROC

area. However, as the window size increased, the performance gap between the two

increased, favoring the PWM. We speculated that this resulted from overfitting of the

neural network. We adjusted the stopping criteria as well as the number of hidden units to

i
3

104

assess the effects of various network parameters, but did not observe major changes.

Because larger window sizes required additional input nodes, increasing the window size

while keeping the positive training set constant appeared to cause the neural network to

overfit by focusing on artifacts of the training data that were not representative of the

binding site as a whole.

Comparison of Binding Site Models

0.9

0.85

0.8

tg

... º
O • *

& 0.75 • *-*
º
sº
º
5
>
<

0.7 -
- --- - ---

0.65 +– —
--- -- -

--Rap1 Lieb ANNFoRM
- e - Rap1 Lieb PWM

0.6 T T —T T

7 9 11 13 15 17

Window Size

Figure 19. Comparison of ANNFoRM and PWM using Rap1 Lieb data set.
Each data point is an average of 10 splits. At the middle window sizes, ANNFoRM separates true positives from false positives better
than a position weight matrix.

To test this, we used the collection of Rap1 responsive genes from Lieb et al.

(2001) that contained 362 genes (greater than 30 times more positive training data than

each of the SCPD derived data sets). Figure 19 shows a comparison of average ROC area

between ANNFoRM and the PWM approach across various window sizes. The shape of

the curve for ANNFoRM remains similar to the Rap1 data from the SCPD, with peak

performance at middle window sizes. However, the drop-off in performance is

significantly less at larger window sizes, which is attributable to the increased size of the

i
3

105

Lieb data set. In this case, a sufficiently large number of training examples reduces

overfitting at larger window sizes. More significantly, at window sizes approximating the

actual binding site size, ANNFoRM separates true positives from false positives with

greater accuracy than the PWM. At a window size of 13, in all ten train/test splits,

ANNFoRM had higher ROC areas than the PWM (p<0.001 by t-test comparing ROC

areas). A representative comparison of the ROC curve of ANNFoRM versus the PWM

using this data set is shown in Figure 20. Over the entire range of true positive rates,

ANNFoRM performed better than the PWM. Given a sufficient number of training

examples, the neural network can generate a model that more accurately reflects the

composition of the binding site than does a position weight matrix.

ROC Plot Comparing ANNFoRM and PWM
– — ---

;
Rap! Lieb ANNFoRM - ||
Rap! Lieb PWM - - -

l t

False Positive

Figure 20, ROC plot comparison of a position weight matrix versus ANNFoRM of a representative
split from the Rap1 Lieb data set.
ANNFoRM has an ROC area of 0.876, and the PWM has an ROC area of 0.851.

i
:

106

13 AATCCG CATGTG 6º 49º
ºº, tºº

º jº
ºº

º Aft

CATCCG 35
_ _2^

19 CATCCA. occo 10*

ºº
*

*~ **… … º.
tº- h FA(CACCCA 32

º

AACCCA 18
Figure 21. Representation of the core six nucleotides of Rap1 RPG set of binding sites found by
Bioprospector (w-11).
The seven most common instantiations of the site are shown with the number of appearances of each 6-mer shown to the side.
Sequences that are connected via a gray line differ by one base, shown by the endpoints of the line. The consensus sequence reported
in the literature is CACCCA (Pina et al., 2003), but the most common sequence in this data set is CATCCG. The transformation
between the two requires two mutations, and the two possible intermediate sequences CATCCA and CACCCG are significantly less
common. This suggests that position 3 is interdependent on position 6. Specifically, if position 3 is a C then it is likely that position 6
is an A (and vice versa), and if position 3 is a T then position 6 is a G (and vice versa).

Because a nonlinear model such as the neural network can model sequence

interdependencies, we analyzed a subset of the Rap1 target genes that were identified as

ribosomal protein genes (RPG), which contains a more conserved set of binding sites.

Figure 21 shows the Rap! core binding site's common sequence variations in the Rap1

RPG data set. The two most common sequences differed by two bases, which suggests a

preference that involves a base/base interdependence. With a T in position 3, a G is

preferred in position 6, but with a C in position 3, an A is preferred in position 6. We

considered whether the ANN approach could effectively model this interdependence and

whether there would be a difference between the preferences of the ANN and PWM

approaches that hinged on this apparent linkage. To do this, we chose the four most

frequently observed Rap1 RPG 11-mers that differed only in positions 3 and 6, and

i
:

107

obtained their output values from both a PWM and a trained ANN based on this data. The

ANN approach learned a preference for T-G or C-A in positions 3 and 6 over T-A or C

G. The linear PWM approach cannot learn this preference, instead reaching a maximum

with T-A, which mixes the most popular bases for positions 3 and 6, but ignores context.

The sequences and ranks are shown in Table 14.

Table 14. Four sequences that differ in positions 3 and 6.
The boldfaced sequences are preferred by Rap1, having either a T-G or C-A in positions 3 and 6 respectively, which are the more
common combinations in the Rap! RPG data set. ANNFoRM correctly yields the highest scores for the preferred sequences. The
PWM, however, is unable to score the boldfaced sequences the highest because it cannot reconcile the interdependence between the
nucleotides using its additive model, instead favoring T-A and T-G in positions 3 and 6.
Position

11 Rank of ANN output Rank of PWM output
12345678 901

CATCCGTACAT 1 2
CACCCATACAT 2 3
CATCCATACAT 3 1
CACCCGTACAT 4 4

Interestingly, this particular preference (T-G and C-A over T-A and C-G, where

the popular preference is T in the first position and A in the second) is precisely the

exclusive OR (XOR) problem (constructing a model that separates 1-0 and 0-1 from 0-0

and 1-1). This is the classic problem that Minsky and Papert cited as the limiting case of

linear models (Minsky & Papert 1969). This effect is ubiquitous in molecular systems,

where, for example, making a molecular modification that adds a substituent in either of

two places increases activity, but adding the substituent in both places decreases activity.

This can arise from a simple volumetric constraint on binding.

We also investigated what advantages additional types of information could

provide. We defined a local sequence frequency metric to be a measure of the binding

site frequency relative to the local vicinity of the binding site. To generate this value a

first-order Markov background model similar to Liu et al. (2001) was used. The Markov

background model of a binding site used the 100 bases surrounding the binding site. The

i
;

108

computed metric was used in an additional input node. With this metric, one should

expect that a true binding site should be relatively unique in the context of the

surrounding sequence. For instance, if the Rap1 binding sequence CACCCA occurred in

a long stretch of CA repeats, there would be a higher chance that the sequence occurred

randomly and would be potentially less preferred. This is in fact the case for one of our

test negatives, YDR545W, which has a high density of CA repeats. When testing against

the Lieb Rap1 RPG set (data not shown), the original experiment without the local

sequence frequency metric yielded the false positive binding site CACCCACACAC with

an average rank of 156 across both positive and negative sequences. On the other hand,

the experiment using the local sequence frequency metric penalized the same YDR545W

binding site to an average rank of 603, increasing the rank in 9 out of 10 experiments.

The local sequence frequency metric reported a -7.3 (log of the probability, larger

negative numbers mean greater uniqueness) for the YDR545W site, compared with a

typical -13 to -15 in test positives. Indeed, Rap! is a multifunction transcription factor

that not only is a transcriptional activator for Rap! RPG genes, but also modulates

telomeric function via telomeric DNA repeats (C-3A)n (Lieb, Liu et al. 2001), both via a

similar looking binding site motif. Therefore, the neural network incorporating the local

frequency metric and trained on Rap! RPG data was correctly distinguishing Rap1 RPG

sites from telomeric repeats. However, this result should be viewed as preliminary,

pending additional validation experiments.

6.6. Conclusion

We have presented a method for constructing nonlinear binding site models of

TFs using a neural network, called ANNFoRM, that can separate true binding sites from

i
:

109

false positives. By using sequences drawn from the genome as the negative training

examples, the approach does not require any probabilistic genomic background model.

ANNFoRM performs competitively with the position weight matrix approach, with

improved performance when larger data sets are available for parameter estimation.

Larger data sets appear to support extraction of information about interdependencies

within a TF binding site. As larger sets of human data become more available, this

method should readily extend to human.

.
:

110

>[.º
v.
º

/º-

2
--

-

º

º

**
* * *-

*º'-

)
y

> > -º

Chapter 7
Conclusion

This work presents several approaches to addressing transcription factor binding

site modeling in higher organisms. The contribution of this work includes both

methodological and algorithmic ideas and biological insight into transcriptional

regulation. The results were predicated on two strategies: 1) that fast and efficient

computational methods such as indexing are critical to analyzing the complexity of

higher organisms, and 2) that the integration of different types of data, specifically

sequence and expression data, enables observations about biology that were not otherwise

possible. After recapitulating the results of this thesis, I will assess the success and future

of these two strategies.

There were several important biological results presented in this thesis. In Chapter

4 we showed a relationship between coexpressed genes and repetitive element structure.

Such a relationship points to the possibility that repetitive elements are not “junk” DNA

but may play an important part in regulating transcription and DNA packaging and

access. In Chapter 5, we presented a novel motif finder that was shown to work in

human. Of particular note, among the high scoring but unannotated motifs were a large

number of motifs that matched other TF motifs known to co-occur with the annotated

.
;

111

º
s

sº

* * *
* - -

* * *
º

º
º

* -
are--" "
* * *

motifs. This points to the complexity not only of human transcription, but also of motif

finding in human. In Chapter 6, we affirmed the nonlinearity of TF binding sites.

At the same time, we contributed a number of novel algorithmic methods to

facilitate TF modeling in higher organisms. Many of these methods incorporated

indexing for optimization. In Chapter 3, we introduced HGS, a disk-based genomic

mapping utility that identifies the location of specific sequences. In Chapter 4, we

devised an efficient similarity metric for comparing large sequences such as human

upstream regions. In Chapter 5, we designed and implemented an index-based greedy

search algorithm called MaMF for performing motif finding in mammalian gene sets.

MaMF did better in finding motifs on human gene sets than several other motif finders.

In Chapter 6, we used neural networks to model TF binding sites in an algorithm called

ANNFoRM so that the resulting models could be used to recognize new binding sites.

We found that ANNFoRM could recognize binding sites better than its position weight

matrix equivalent due to the neural network’s ability to model nonlinearity.

All together this thesis offers a view into human transcriptional regulation,

showing that computational methods in modeling transcription factor binding sites are

not limited to lower organisms but can be used to elucidate the complexities of

mammalian systems. As additional experimental and genomic data become available,

further work incorporating comparative genomics, ChIP arrays, and other high

throughput data will likely continue to advance our understanding of transcriptional

regulation.

These results affirm the utility of data integration and fast and efficient

computational algorithms as strategies to uncover the complexities of higher organisms.

■
;

112

Without indexing, large scale approaches to sequence comparison, genomic mapping,

and motif finding would have been essentially impossible. The developed methods that

now take seconds to run would instead take hours, preventing meaningful analysis of

large datasets. Without the integration of sequence and expression data, sequence-level

features such as repetitive elements and transcription factor binding sites could not be

linked with patterns of gene expression, preventing the observations about biological

phenomena made in this thesis. These two pillars of research strategy, data integration

and fast and deep computational analysis, made the results possible.

In many ways, these two strategies are common to a lot of bioinformatics research

and probably represent a direction bioinformatics needs to focus on in order to 1) produce

biological discoveries, not just methodological advances, and 2) differentiate itself from

other related disciplines such as biophysics and biostatistics. In a small sampling of

recent high impact bioinformatics literature, several examples utilize these strategies

heavily, particularly with respect to data integration. With respect to motif finding,

MDScan (Liu, Brutlag et al. 2002) was unique for its use of ChIP-chip data for its

algorithm in order to find sequence motifs. More broadly, high impact papers elucidating

regulatory networks regularly utilize combinations of sequence, comparative genomics,

expression, gene annotation, and outcomes data (Segal, Shapira et al. 2003; Stuart, Segal

et al. 2003; Segal, Friedman et al. 2004). Clearly, bioinformatics has the potential for

yielding important insights in biology.

Bioinformatics has been widely heralded as the next age of biology for the last

several years, but its promise has yet been fulfilled. Science watchers have eagerly

anticipated each major technology advance—first with expression microarrays and then

■
:

113

a

**
sººr- º*-x.

A-

*

with the completion of the human genome project—believing that the data from these

tools would translate into biological discoveries. As it turned out, and perhaps not

surprisingly, the data by themselves could not solve biology. However, given the success

of data integration in this thesis and other research, it is likely that the intersection of

present and future data sources will yield novel insights and lead to deeper biological

insights into biology.

Complementing our current microarray technology and the sequenced human

genome will be a slew of new technologies that are already in the pipeline: microfluidics,

SNP chips, nanotechnology-based biosensors, etc. As it is, currently available

technologies are rapidly improving. DNA sequencing speeds are accelerating at an

exponential rate similar to Moore's Law in the semiconductor world, and will soon make

sequencing an individual’s genome commonplace. Microarrays are approaching 100

thousand measurements per chip. We will come to depend on computationally intensive

algorithms that incorporate a great deal of domain-specific knowledge in organizing and

interpreting all of it.

Whether we call these efforts bioinformatics, functional genomics, or systems

biology, it is clear that such methods will be at the center of the discovery of new drugs

and a deeper understanding of human biology and health.

■
:

114

Bibliography

Altschul, S. F. (1989). "Gap costs for multiple sequence alignment." J Theor Biol 138(3):
297-309.

Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs." Nucleic Acids Res 25(17):
3389-402.

Anderson, S. (1981). "Shotgun DNA sequencing using cloned DNase I-generated
fragments." Nucleic Acids Res 9(13): 3015-27.

Bailey, T. L. and C. Elkan (1994). "Fitting a mixture model by expectation maximization
to discover motifs in biopolymers." Proc Int Conf Intell Syst Mol Biol 2: 28-36.

Ball, C. A., I. A. Awad, et al. (2005). "The Stanford Microarray Database accommodates
additional microarray platforms and data formats." Nucleic Acids Res 33
Database Issue: D580-2.

Benos, P. V., M. L. Bulyk, et al. (2002). "Additivity in protein-DNA interactions: how
good an approximation is it?" Nucleic Acids Res 30(20): 4442-51.

Bernardi, G. (1995). "The human genome: organization and evolutionary history." Annu
Rev Genet 29:445-76.

Birnbaum, K., P. N. Benfey, et al. (2001). "cis element/transcription factor analysis
(cis/TF): a method for discovering transcription factor/cis element relationships."
Genome Res 11(9): 1567-73.

Blanchette, M. and M. Tompa (2002). "Discovery of regulatory elements by a
computational method for phylogenetic footprinting." Genome Res 12(5): 739-48.

Boffelli, D., J. McAuliffe, et al. (2003). "Phylogenetic shadowing of primate sequences to
find functional regions of the human genome." Science 299(5611): 1391-4.

Cherry, J. M., C. Ball, et al. (1997). "Genetic and physical maps of Saccharomyces
cerevisiae." Nature 387(6632 Supply: 67-73.

Chesnokov, I., W. M. Chu, et al. (1996). "p53 inhibits RNA polymerase III-directed
transcription in a promoter-dependent manner." Mol Cell Biol 16(12): 7084-8.

Chu, W. M., R. Ballard, et al. (1998). "Potential Alu function: regulation of the activity of
double-stranded RNA-activated kinase PKR." Mol Cell Biol 18(1): 58–68.

Cliften, P., P. Sudarsanam, et al. (2003). "Finding functional features in Saccharomyces
genomes by phylogenetic footprinting." Science 301(5629): 71-6.

■
:

115

- +are”

Cliften, P. F., L. W. Hillier, et al. (2001). "Surveying Saccharomyces genomes to identify
functional elements by comparative DNA sequence analysis." Genome Res 11(7):
1175-86.

Conlon, E. M., X. S. Liu, et al. (2003). "Integrating regulatory motif discovery and
genome-wide expression analysis." Proc Natl Acad Sci U S A 100(6): 3339-44.

Consortium, I. H. G. S. (2004). "Finishing the euchromatic sequence of the human
genome." Nature 431(7011): 931-45.

Crooks, G. E., G. Hon, et al. (2004). "WebLogo: a sequence logo generator." Genome
Res 14(6): 1188–90.

Davis, R., H. Shrobe, et al. (1993). What is Knowledge Representation. AI Magazine.
Spring 1993: 17-33.

Deininger, P. L. and M. A. Batzer (1999). "Alu repeats and human disease." Mol Genet
Metab 67(3): 183-93.

Dietterich, T. G., A. N. Jain, et al. (1994). A Comparison of Dynamic Reposing and
Tangent Distance for Drug Activity Prediction. Advances in Neural Information
Processing Systems 6. J. Alspector. San Mateo, CA, Morgan Kaufmann.

Djordjevic, M., A. M. Sengupta, et al. (2003). "A biophysical approach to transcription
factor binding site discovery." Genome Res 13(11): 2381-90.

Down, T. A. and T. J. Hubbard (2005). "NestedMICA: sensitive inference of over
represented motifs in nucleic acid sequence." Nucleic Acids Res 33(5): 1445-53.

el-Deiry, W. S., S. E. Kern, et al. (1992). "Definition of a consensus binding site for p53."
Nat Genet 1(1): 45-9.

Ellrott, K., C. Yang, et al. (2002). "Identifying transcription factor binding sites through
Markov chain optimization." Bioinformatics 18 Suppl 2: S100-S109.

Fernandez, P. C., S. R. Frank, et al. (2003). "Genomic targets of the human c-Myc
protein." Genes Dev 17(9): 1115-29.

Gasch, A. P. and M. B. Eisen (2002). "Exploring the conditional coregulation of yeast
gene expression through fuzzy k-means clustering." Genome Biol 3(11):
RESEARCH0059.

Goffeau, A., B. G. Barrell, et al. (1996). "Life with 6000 genes." Science 274(5287): 546,
563-7.

Golub, T. R., D. K. Slonim, et al. (1999). "Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring." Science
286(5439): 531-7.

Guha.Thakurta, D. and G. D. Stormo (2001). "Identifying target sites for cooperatively
binding factors." Bioinformatics 17(7): 608-21.

Gupta, S. K., J. D. Kececioglu, et al. (1995). "Improving the practical space and time
efficiency of the shortest-paths approach to sum-of-pairs multiple sequence
alignment." J Comput Biol 2(3): 459-72.

Hamdi, H. K., H. Nishio, et al. (2000). "Alu-mediated phylogenetic novelties in gene
regulation and development." J Mol Biol 299(4): 931-9.

Haussler, D. (2001). UCSC Human Genome Project Working Draft, August 2001
Assembly.

Hellmann-Blumberg, U., M. F. Hintz, et al. (1993). "Developmental differences in
methylation of human Alu repeats." Mol Cell Biol 13(8): 4523-30.

;

116

sºº■ .
Il
?'''■̂■

Hertz, G. Z. and G. D. Stormo (1999). "Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences." Bioinformatics 15(7-
8): 563-77.

Hon, L. S. and A. N. Jain (2003). "Compositional structure of repetitive elements is
quantitatively related to co-expression of gene pairs." J Mol Biol 332(2): 305-10.

Hong, P., X. S. Liu, et al. (2005). "A boosting approach for motif modeling using ChIP
chip data." Bioinformatics 21(11): 2636-43.

Hubbard, T., D. Andrews, et al. (2005). "Ensembl 2005." Nucleic Acids Res 33(Database
issue): D447-53.

Jain, A. N. (2000). "Morphological similarity: a 3D molecular similarity method
correlated with protein-ligand recognition." J. Comput Aided Mol Des 14(2): 199
213.

Jain, A. N. (2004). "Ligand-Based Structural Hypotheses for Virtual Screening." J Med
Chem 47(4): 947-961.

Jain, A. N., T. G. Dietterich, et al. (1994). "A shape-based machine learning tool for drug
design." J. Comput Aided Mol Des 8(6): 635-52.

Jensen, L. J. and S. Knudsen (2000). "Automatic discovery of regulatory patterns in
promoter regions based on whole cell expression data and functional annotation."
Bioinformatics 16(4): 326-33.

Jurka, J. (2000). "Repbase update: a database and an electronic journal of repetitive
elements." Trends Genet 16(9): 418-20.

Keles, S., M. van der Laan, et al. (2002). "Identification of regulatory elements using a
feature selection method." Bioinformatics 18(9): 1167–75.

Kent, W. J. (2002). "BLAT--the BLAST-like alignment tool." Genome Res 12(4): 656
64.

Kim, C., C. M. Rubin, et al. (2001). "Genome-wide chromatin remodeling modulates the
Alu heat shock response." Gene 276(1-2): 127-33.

Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human
genome." Nature 409(6822): 860-921.

Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human
genome." Nature 409(6822): 860-921.

Lawrence, C. E., S. F. Altschul, et al. (1993). "Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment." Science 262(5131): 208-14.

Levine, M. and R. Tjian (2003). "Transcription regulation and animal diversity." Nature
424(6945): 147-51.

Li, H., V. Rhodius, et al. (2002). "Identification of the binding sites of regulatory proteins
in bacterial genomes." Proc Natl Acad Sci U S A 99(18): 11772-7.

Lieb, J. D., X. Liu, et al. (2001). "Promoter-specific binding of Rap1 revealed by
genome-wide maps of protein-DNA association." Nat Genet 28(4): 327–34.

Liu, X., D. L. Brutlag, et al. (2001). "BioProspector: discovering conserved DNA motifs
in upstream regulatory regions of co-expressed genes." Pac Symp Biocomput:
127-38.

Liu, X. S., D. L. Brutlag, et al. (2002). "An algorithm for finding protein-DNA binding
sites with applications to chromatin-immunoprecipitation microarray
experiments." Nat Biotechnol 20(8): 835–9.

:

117

º

º*-

º 1.º
vº

Liu, Y., X. S. Liu, et al. (2004). "Eukaryotic regulatory element conservation analysis and
identification using comparative genomics." Genome Res 14(3): 451-8.

Maxam, A. M. and W. Gilbert (1977). "A new method for sequencing DNA." Proc Natl
Acad Sci U S A 74(2): 560-4.

McCue, L., W. Thompson, et al. (2001). "Phylogenetic footprinting of transcription
factor binding sites in proteobacterial genomes." Nucleic Acids Res 29(3): 774
82.

McCue, L.A., W. Thompson, et al. (2002). "Factors influencing the identification of
transcription factor binding sites by cross-species comparison." Genome Res
12(10): 1523-32.

McGuire, A. M., J. D. Hughes, et al. (2000). "Conservation of DNA regulatory motifs
and discovery of new motifs in microbial genomes." Genome Res 10(6): 744-57.

Mitchell, T. M. (1997). Artificial Neural Networks. Machine Learning. C. L. Liu,
McGraw Hill: 81-101.

Moretti, P., K. Freeman, et al. (1994). "Evidence that a complex of SIR proteins interacts
with the silencer and telomere-binding protein RAP1." Genes Dev 8(19): 2257
69.

Nozell, S. and X. Chen (2002). "p21B, a variant of p21(Wafl/Cip1), is induced by the
p53 family." Oncogene 21(8): 1285-94.

Odom, D. T., N. Zizlsperger, et al. (2004). "Control of pancreas and liver gene expression
by HNF transcription factors." Science 303(5662): 1378-81.

Oliver, J. L., P. Carpena, et al. (2002). "Isochore chromosome maps of the human
genome." Gene 300(1-2): 117-27.

Ota, T., Y. Suzuki, et al. (2004). "Complete sequencing and characterization of 21,243
full-length human cDNAs." Nat Genet 36(1): 40-5.

Passmore, S., R. Elble, et al. (1989). "A protein involved in minichromosome
maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes."
Genes Dev 3(7): 921-35.

Pavesi, G., G. Mauri, et al. (2001). "An algorithm for finding signals of unknown length
in DNA sequences." Bioinformatics 17 Suppl 1: S207-14.

Pesole, G., G. Bernardi, et al. (1999). "Isochore specificity of AUG initiator context of
human genes." FEBS Lett 464(1-2): 60-2.

Pruitt, K. D. and D. R. Maglott (2001). "RefSeq and LocusLink: NCBI gene-centered
resources." Nucleic Acids Res 29(1): 137-40.

Pudimat, R., E. G. Schukat-Talamazzini, et al. (2005). "A multiple-feature framework for
modelling and predicting transcription factor binding sites." Bioinformatics.

Ross, D. T., U. Scherf, et al. (2000). "Systematic variation in gene expression patterns in
human cancer cell lines." Nat Genet 24(3): 227-35.

Roth, F. P., J. D. Hughes, et al. (1998). "Finding DNA regulatory motifs within unaligned
noncoding sequences clustered by whole-genome mRNA quantitation." Nat
Biotechnol 16(10): 939-45.

Sanger, F. and A. R. Coulson (1975). "A rapid method for determining sequences in
DNA by primed synthesis with DNA polymerase." J Mol Biol 94(3): 441-8.

Schmid, C. W. (1996). "Alu: structure, origin, evolution, significance and function of
one-tenth of human DNA." Prog Nucleic Acid Res Mol Biol 53: 283-319.

:

i
:

118

º■,■=−·····,,■■■,,■,,■■■,■■■;■■·

...*

|-■ å…

Schmid, C. W. (1998). "Does SINE evolution preclude Alu function?"Nucleic Acids Res
26(20): 4541-50.

Schmid, C. W. and W. R. Jelinek (1982). "The Alu family of dispersed repetitive
sequences." Science 216(4550): 1065-70.

Schug, J. and G. C. Overton (1997). TESS: Transcription Element Search Software on
the WWW", Computational Biology and Informatics Laboratory

School of Medicine
University of Pennsylvania.
Segal, E., N. Friedman, et al. (2004). "A module map showing conditional activity of

expression modules in cancer." Nat Genet 36(10): 1090-8.
Segal, E., M. Shapira, et al. (2003). "Module networks: identifying regulatory modules

and their condition-specific regulators from gene expression data." Nat Genet
34(2): 166-76.

Shin, T. H., A. J. Paterson, et al. (1995). "p53 stimulates transcription from the human
transforming growth factor alpha promoter: a potential growth-stimulatory role
for p53." Mol Cell Biol 15(9): 4694-701.

Sinha, S. and M. Tompa (2003). "YMF: A program for discovery of novel transcription
factor binding sites by statistical overrepresentation." Nucleic Acids Res 31(13):
3586–8.

Smit, A. F. A., R. Hubley, et al. (1996-2004). RepeatMasker Open-3.0.
Smith, T. F. and M. S. Waterman (1981). "Identification of common molecular

subsequences." J Mol Biol 147(1): 195-7.
Sobczak, K. and W. J. Krzyzosiak (2002). "Structural determinants of BRCA1

translational regulation." J Biol Chem 277(19): 17349-58.
Staunton, J. E., D. K. Slonim, et al. (2001). "Chemosensitivity prediction by

transcriptional profiling." Proc Natl Acad Sci U S A 98(19): 10787-92.
Stormo, G. D. (2000). "DNA binding sites: representation and discovery." Bioinformatics

16(1): 16-23.
Stormo, G. D. and G. W. Hartzell, 3rd (1989). "Identifying protein-binding sites from

unaligned DNA fragments." Proc Natl Acad Sci U S A 86(4): 1183–7.
Stuart, J. M., E. Segal, et al. (2003). "A gene-coexpression network for global discovery

of conserved genetic modules." Science 302(5643):249-55.
Thijs, G., M. Lescot, et al. (2001). "A higher-order background model improves the

detection of promoter regulatory elements by Gibbs sampling." Bioinformatics
17(12): 1113-22.

Tompa, M., N. Li, et al. (2005). "Assessing computational tools for the discovery of
transcription factor binding sites." Nat Biotechnol 23(1): 137–44.

Urano, T., H. Nishimori, et al. (1997). "Cloning of P2XM, a novel human P2X receptor
gene regulated by p53." Cancer Res 57(15): 3281-7.

van Helden, J. (2003). "Regulatory sequence analysis tools." Nucleic Acids Res 31(13):
3593-6.

van Helden, J., B. Andre, et al. (1998). "Extracting regulatory sites from the upstream
region of yeast genes by computational analysis of oligonucleotide frequencies." J
Mol Biol 281(5): 827-42.

:

;*
;

119

ººv,|-f>
-**

*
}

~

i\!/\{|

}}|}|}|}|}|
~|}_«
»!*…
•^-
;
ºº
4

ºg-?\■■4lºº,

* * *
- -

* *

Wagner, A. (1999). "Genes regulated cooperatively by one or more transcription factors
and their identification in whole eukaryotic genomes." Bioinformatics 15(10):
776-84.

Wang, T. and G. D. Stormo (2003). "Combining phylogenetic data with co-regulated
genes to identify regulatory motifs." Bioinformatics 19(18): 2369-80.

Waterston, R. H., K. Lindblad-Toh, et al. (2002). "Initial sequencing and comparative
analysis of the mouse genome." Nature 420(6915): 520-62.

White, R. J. (2001). Gene Transcription: Mechanisms and Control. Oxford, Blackwell
Science Ltd.

Wingender, E., X. Chen, et al. (2001). "The TRANSFAC system on gene expression
regulation." Nucleic Acids Res 29(1): 281-3.

Wolfsberg, T. G., A. E. Gabrielian, et al. (1999). "Candidate regulatory sequence
elements for cell cycle-dependent transcription in Saccharomyces cerevisiae."
Genome Res 9(8): 775-92.

Workman, C. T. and G. D. Stormo (2000). "ANN-Spec: a method for discovering
transcription factor binding sites with improved specificity." Pac Symp
Biocomput: 467-78.

Xie, X., J. Lu, et al. (2005). "Systematic discovery of regulatory motifs in human
promoters and 3' UTRs by comparison of several mammals." Nature 434(7031):
338-45.

Yona, G. and M. Levitt (2002). "Within the twilight zone: a sensitive profile-profile
comparison tool based on information theory." J Mol Biol 315(5): 1257-75.

Zeller, K.I., A. G. Jegga, et al. (2003). "An integrated database of genes responsive to the
Myc oncogenic transcription factor: identification of direct genomic targets."
Genome Biol 4(10): R69.

Zhou, Q. and J. S. Liu (2004). "Modeling within-motif dependence for transcription
factor binding site predictions." Bioinformatics 2006): 909-16.

Zhu, J. and M. Q. Zhang (1999). "SCPD: a promoter database of the yeast
Saccharomyces cerevisiae." Bioinformatics 15(7-8): 607-11.

Zhu, Z., Y. Pilpel, et al. (2002). "Computational identification of transcription factor
binding sites via a transcription-factor-centric clustering (TFCC) algorithm." J
Mol Biol 318(1): 71-81.

i
:

120

**
*º-

sº,L≈≠≤1}<■ --==
~~~■■■

* -



Appendix: Documentation of Code
and Data

This section describes how the results were generated in Chapter 4 and Chapter 5,

which contain the published theoretical contributions of this work. The appendix should

allow the reader to rerun the primary experiments and in the case of MaMF understand

the software architecture. For specifics such as data files, the reader should consult the

accompanying DVD to view files and code.

.

■
:

121



|||}}}||
+{/*,\\x_º**■■,■



Appendix A Command Summary for Analysis of Functions F and N.................... 123

Appendix B MaMF Usage and Documentation 129
B. l. Sample MaMF Usage...................................................................................... 129

B.1.1. Sample Experiments........................................................................... 129
B.1.2. MaMF Mode Documentation.............................................................. 134
B.1.3. Perl Script Documentation.................................................................. 140

B.2. Documentation of C Files............................................................................... 142
B2.l. analysis.c......…....….. 143
B.2.2, ba2d.c..…....................................................... 161
B.2.3, background.c....................................................................................... 162
B.24, dadble.…................................... 171
B2.5 daint.c.…. 174
B2.6 dartv.c.…. 176
B2.7 dasl.c..…................................. 177
B.2.8, dastric.…............................................................................ 183
B.29 inthash.c.…. 187
B.2.10 matchlist.c........................................................................................... 187
B2.11 microarray.c........................................................................................ 191
B.2.12 motif-finder.c...................................................................................... 198

B2.13. Oldhash.c............................................................................................. 199
B.2.14.pwm.c.................................................................................................. 203
B.2.15 score.c...............…....................................................................... 211
B2.16 search.c........….............................................................................. 215
B.2.17 sequence.c.…......…........................................ 226
B2.18 sitelistic ............................................................................................... 230
B2.19 utils.c............…......................................................... 236

■
:

122



Appendix A Command Summary for

Analysis of Functions F and N
This appendix summarizes the commands used to generate the results in Chapter

3. The original set of commands is stored in a Makefile, from which one can recreate the

results given the correct input data.

# requires golub-expr.tab, Hs.data
# extract the accessions from the expression array table
perl get-col. pl. golub-expr. tab --col=0 golub-accs. list

#parse the big unigene file so we can get NMs out of it
perl parse-unigene. pl. Hs. data Hs-data. tab

# use parsed unigene file to get the acc->nm mapping
perl get-nm-from-unigene. pl. golub-accs. list Hs-data. tab golub-nms. tab

# extract all relevant seqs from table (2 accs and NM)
perl get-col. pl. golub-nms. tab -- nodups -- col=0, 1 golub-seq. list

# requires golub-seq.fa

# extract the accessions from the expression array table
perl get-col. pl. golub-expr. tab --col=0 golub-accs. list

#parse the big unigene file so we can get NMs out of it
perl parse-unigene. pl. Hs. data Hs-data. tab

# use parsed unigene file to get the acc->nm mapping
perl get-nm-from-unigene. pl. golub-accs. list Hs-data. tab golub-nms. tab
formatdb -i golub-seq. fa –p F -o T
perl verify—similarity. pl. --nm=1 --acc=0 -e=1e–5 golub-nms. tab golub

seq. fa golub-nms—blasted. tab

# extract the NMs from the table

|
:

123



perl get-col. pl. golub-nms-blasted. tab --nodups —-col=1 golub-nms. list
echo ++ Step 2 done. Now manually get genbank entries
echo ++ from golub-nms. list and name as golub-nms. genbank.
echo ++ Then proceed to step 3.
perl get-nm-cos. pl. golub-nms. genbank golub-cas. fa
echo ++ Step 3 done. Now run h9s on golub-cds. fa and save
echo ++ as golub-cas-h9s. out. Then continue with step 3.

# generated golub-cos-hgs. out from step 3

echo P × golub-summary. txt
echo Summary of the golub data set on Mon Jun 6 20:05:59 PST 2005 ××

golub-summary. txt
echo ------------------------------- >> golub-summary. txt
make step 4 DATA=golub --warn-undefined-variables --just-print | perl –

ne 'print $ unless /summary/' >> golub-summary. txt
make compare -C . . /hgs/code
perl parse-hgs-hd.pl golub-cos-hgs. out golub-cos-hgs. tab
perl get-nm-cos. pl. golub-nms. genbank golub-cos. fa
formatdb -i golub-cos. fa –p F – o T
perl blast-compare-aba. pl. golub-cas. fa 0.002 golub-dups. tab golub

dups. list
perl remove-hgs-dups. pl. golub-cas-hgs. tab golub-dups. list golub-cas

hgs-nr. tab
gcc -o calc-corr calc-corr. c

# extract the accessions from the expression array table
perl get-col. pl. golub-expr. tab -- col=0 golub-accs. list

#parse the big unigene file so we can get NMs out of it
perl parse-unigene. pl. Hs. data Hs-data. tab

# use parsed unigene file to get the acc->nm mapping
perl get-nm-from-unigene. pl. golub-accs. list Hs-data. tab golub-nms. tab
perl get-nm-expr-array. pl. golub-cos-hgs-nr. tab golub-nms. tab golub

expr. tab golub-nm-expr. tab
./calc-corr golub-nm-expr. tab golub-expreorr. tab

# Get the positive data set (depends on what experiment)
perl get-corr-in-range. pl. golub-expreorr. tab 0.5 1.0 golub-expreorr

pos. tab

# Do the standard positive concordant comparison
compare. exe -index.dir f:/lhon/hgs/index/ -hgs golub-cos-hgs-nr. tab –

pairs golub-expreorr-pos. tab -start -10000 -end -1 -nmer 6 -window
200 – threshold 4 -o golub-f-pos. tab

# Get the control data set (defined as values with -0.2-corr-0.2
perl get-corr-in-range. pl. golub-expreorr. tab -0.2 0.2 golub-zero-ec

all. tab

# Get subset of the lines in file, in this case for the large zero corr file
perl get-approx-n-lines. pl. golub-zero-ec-all. tab 34000 golub-expreorr

zero. tab

# Do the standard control concordant comparison
compare. exe -index.dir f:/lhon/hgs/index/ -hgs golub-cqs-h9s-nr. tab -

pairs golub-expreorr-zero. tab -start -10000 -end -1 -nmer 6 -window
200 -threshold 4 -n 34000 -o golub-f-ctrl. tab

124



echo Function F ~~ golub-summary.txt
./rocd golub-f-pos. tab golub-f-ctrl. tab -a >> golub-summary. txt

# Do the standard positive naive comparison (only 1000 bases upstream)
compare. exe - index.dir f :/lhon/hgs/index/ -method 1 -hgs golub-cas-h9 s–

nr. tab -pairs golub-expreorr-pos. tab -start -1000 -end -1 -nmer 6 -
window 200 -threshold 4 -o golub-n-pos. tab

# Do the standard control naive comparison (only 1000 bases upstream)
compare. exe -indexdir f:/lhon/hgs/index/ -method 1 -hgs golub-cas—hgs

nr. tab -pairs golub-expreorr-zero. tab -start -1000 -end -1 -nmer 6 -
window 200 -threshold 4 -n 34000 -o golub-n-ctrl. tab

echo Function N \(1000 bases upstream) >> golub-summary.txt
./rocd golub-n-pos. tab golub-n-ctrl. tab -a -> golub-summary. txt

# Do the standard positive dotplot comparison
compare. exe -index.dir f:/lhon/hgs/index/ -method 2 -hgs golub-cas—hgs

nr. tab -pairs golub-expreorr-pos. tab -start -10000 -end -1 -nmer 6 -
window 200 -threshold 4 -o golub-np-pos. tab

# Do the standard control dotplot comparison
compare. exe -indexdir f:/lhon/hgs/index/ -method 2 -hgs golub-cas–hgs

nr. tab -pairs golub-expreorr-zero. tab -start -10000 -end -1 -nmer 6
—window 200 -threshold 4 -n 34000 -o golub-np-ctrl. tab

echo Function NW' (10,000 bases upstream) >> golub-summary.txt
./rocd golub-np-pos. tab golub-np-ctrl. tab -a >> golub-summary. txt

# Do positive comparison on transcripts using N
compare. exe -index.dir f:/lhon/hgs/index/ -method 1 -fa golub-cas. fa –

hgs golub-cas-hgs-nr. tab -pairs golub-expreorr-pos. tab -start -10000
-end -1 -nmer 6 -window 200 -threshold 4 -o golub-transcripts-n-
pos. tab

# Do control comparison on transcripts using N
compare. exe -indexdir f:/lhon/hgs/index/ -method 1 -fa golub-cos. fa –

hgs golub-cas-hgs-nr. tab -pairs golub-expreorr-zero. tab -n 34000 –
start -10000 -end -1 -nmer 6 -window 200 -threshold 4 -o golub
transcripts-n-ctrl. tab

echo Function N on transcripts -> golub-summary.txt
./rocd golub-transcripts-n-pos. tab golub-transcripts-n-ctrl. tab -a ->

golub-summary. txt

# Do many random comparisons using F
compare. exe -index.dir f :/lhon/hgs/index/ -hgs golub-cos-hgs-nr. tab -n

100000 — start – 10 000 – end -1 -nmer 6 —window 200 — threshold 4 -o
golub-f-rand. tab

# Extract high and low scores from random comparisons
perl process-converse-results. pl. golub-nm-expr. tab golub-f-rand. tab

4500 golub-conv-f-pos. tab golub-conv-f-ctrl. tab

echo Converse on Function F ~~ golub-summary.txt
./rocd golub-conv-f-pos. tab golub-conv-f-ctrl. tab —a >> golub

summary. txt

# Get repeat masked upstream regions

125



R
º ==º

º
w º,

º * s

º
(■
■ º

L.

º s

I.
º
s sº; :-

**
ser-"

******

2.



compare. exe - index.dir f :/lhon/hgs/rmindex/ -hgs golub-cos-hgs-nr. tab -
start -10000 -end -1 -checkcomp 0 -getall seq – saveseq file golub
rm. fa

# Calculating repeat masked separation on positive pairs
compare. exe - index.dir f :/lhon/hgs/index/ -fa golub-rm. fa -hgs golub

cqs-hgs-nr. tab -pairs golub-expreorr-pos. tab -start -10000 -end -1 -
nmer 6 -window 200 -threshold 4 -o golub-rm-pos. tab –rc

# Calculating repeat masked separation on non-correlated pairs
compare. exe - index.dir f :/lhon/hgs/index/ -f a golub-rm. fa -hgs golub

cqs-hgs-nr. tab -pairs golub-expreorr-zero. tab -n 34000 -start -10000
-end -1 -nmer 6 -window 200 -threshold 4 –o golub-rm—ctrl. tab –rc

echo Repeat masked using Function F -> golub-summary.txt
./rocd golub-rm-pos. tab golub-rm—ctrl. tab – a >> golub-summary. txt

# Calculating repeat masked separation on positive pairs
compare. exe -method 2 -index.dir f:/lhon/hgs/index/ -fa golub-rm. fa -hgs

golub-cas-hgs-nr. tab -pairs golub-expreorr-pos. tab -start -10000 –
end -1 -nmer 6 -o golub-rm-np-pos. tab

# Calculating repeat masked separation on non-correlated pairs
compare. exe -method 2 –index.dir f:/lhon/hgs/index/ -fa golub-rm. fa -hgs

golub-cas-hgs-nr. tab -pairs golub-expreorr-zero. tab -n 34000 -start
-10000 -end -1 -nmer 6 -o golub-rm-np—ctrl. tab

echo Repeat masked using Function NW' -> golub-summary.txt
... /rocd golub-rm-np-pos. tab golub-rm-np-ctrl. tab -a >> golub

summary. txt

# Get normal upstream regions
compare. exe - index.dir f:/lhon/hgs/index/ -hgs golub-cos-hgs-nr. tab -

start -10000 -end -1 -checkcomp 0 -getallseq -saveseq file golub
up. fa

# create blast db of the upstream regions of the NMs
formatdb -i golub-up. fa –p F -o T

# create script to run blast on each of the Alu consensus sequences
perl generate-alu-blastall. pl. golub-up. fa golub-alus-blastall. bsh
bash -c "source golub-alus-blastall. bsh"

# Look at the blast output and extract the alu hits
perl gen-grab-seq- from-blast. pl. golub-up. fa-Alu \* . out golub-alus

analyze. bsh
bash – c "source golub-alus-analyze. bsh"

# Consolidate hits that point to the same Alu
perl merge-alu-blast. pl. golub-up. fa-Alu \*. tab golub-alus-all. tab

# Generate a masked upstream region with the Alus removed
perl generate-fa-bynm-file. pl. golub-up. fa golub-alus-all. tab golub

alu. fa

compare. exe - index.dir f:/lhon/hgs/index/ -hgs golub-cos-hgs-nr. tab – fa
golub-alu. fa -pairs golub-expreorr-pos. tab -start -10000 -end –1 –
nmer 6 -window 200 - threshold 4 -o golub-alus-pos. tab -rc

compare. exe -indexdir f:/lhon/hgs/index/ -hgs golub-cas-hgs-nr. tab – fa
golub-alu. fa -pairs golub-expreorr-zero. tab -n 34000 -start -10000 –
end -1 -nmer 6 -window 200 -threshold 4 -o golub-alus—ctrl. tab —rc

|
.

126



f º ".

5
-

-

*-

aer-" -*

f ~, ***

strº-gº"
º

******

******

—

º
<-->
º -**
*-*



echo Alus only using Function F ~~ golub-summary.txt
./rocd golub-alus-pos. tab golub-alus—ctrl. tab -a >> golub-summary. txt
compare. exe -index.dir f:/lhon/hgs/index/ -method 2 -hgs golub-cds–hgs

nr. tab - fa golub-alu. fa -pairs golub-expreorr-pos. tab – start -10000
-end -1 -nmer 6 -o golub-alus-np-pos. tab

compare. exe - index.dir f:/lhon/hgs/index/ -method 2 -hgs golub-cas-hgs
nr. tab -fa golub-alu. fa -pairs golub-expreorr-zero. tab -n 34 000 –
start -10000 -end -1 -nmer 6 -o golub-alus-np-ctrl. tab

echo Alus only using Function NW' >> golub-summary.txt
./rocd golub-alus-np-pos. tab golub-alus-np-ctrl. tab -a -> golub

summary. txt

# Count number of Alus per NM
perl count-freq. pl. golub-alus-all. tab golub-up. fa 0 golub-alus-nms

count. tab

perl compare. pl. golub-cos-hgs-nr. tab golub-alus-nms-count. tab golub
exproor r-pos. tab golub-alu-product-pos. tab

perl compare. pl. golub-cas-hos-nr. tab golub-alus-nms-count. tab golub
expreorr-zero. tab golub-alu-product-ctrl. tab

echo Alus product P - golub-summary.txt
./rocd golub-alu-product-pos. tab golub-alu-product-ctrl. tab -a >>

golub-summary. txt

# Get non alus
perl inverse-mask. pl. golub-up. fa golub-alu. fa > golub-notalus. fa
compare. exe -index.dir f:/lhon/hgs/index/ -fa golub-notalus. fa -hgs

golub-cas-hgs-nr. tab -pairs golub-expreorr-pos. tab -start -10000 –
end -1 -nmer 6 -window 200 – threshold 4 -o golub-notalus-f-pos. tab –
rC

compare. exe - index.dir f :/lhon/hgs/index/ -fa golub-notalus. fa -hgs
golub-cas-h9s-nr. tab -pairs golub-expreorr-zero. tab -n 34000 -start
-10000 -end -1 -nmer 6 -window 200 -threshold 4 -o golub-notalus-f-
ctrl. tab - ro

echo Not Alus using Function F ~~ golub-summary.txt
./rocd golub-notalus-f-pos. tab golub-notalus-f-ctrl. tab -a >> golub

summary. txt

# Get repeats only
perl inverse-mask. pl. golub-up. fa golub-rm. fa > golub-ronly . fa
compare. exe -index.dir f:/lhon/hgs/index/ -fa golub-ronly. fa -hgs golub

cqs-hgs-nr. tab -pairs golub-expreorr-pos. tab -start -10000 -end –1 –
nmer 6 -window 200 -threshold 4 -o golub-ronly—f-pos. tab –rc

compare. exe - index.dir f :/lhon/hgs/index/ -fa golub-ronly . fa -hgs golub
cds-hgs-nr. tab -pairs golub-expreorr-zero. tab -n 34000 -start -10000
-end -1 -nmer 6 -window 200 -threshold 4 -o golub-ronly-f-ctrl. tab –
rC

echo repeats only using Function F ~~ golub-summary.txt
./rocd golub-ronly—f-pos. tab golub-ronly-f-ctrl. tab -a >> golub

summary. txt

# Do the standard positive concordant comparison
compare. exe -indexdir f:/lhon/hgs/index/ -hgs golub-cas-hgs-nr. tab -

pairs golub-expreorr-pos. tab -start -10000 -end -1 -nmer 6 -window
200 -threshold 4 –o golub-rc-f-pos. tab —rc

:

}

127



# Do the standard control concordant comparison
compare. exe - index.dir f :/lhon/hgs/index/ -hgs golub-cas-h9s-nr. tab -

pairs golub-expreorr-zero. tab -start -10000 -end -1 -nmer 6 -window
200 -threshold 4 -n 34000 -o golub-rc-f-ctrl. tab –rc

echo Function F w/reverse complement >> golub-summary.txt
./rocd golub-rc-f-pos. tab golub-rc-f-ctrl. tab -a >> golub-summary. txt

128





Appendix B MaMF Usage and
Documentation

This appendix shows how to use MaMF (Appendix B.1) and documents the

functions that make up MaMF (Appendix B.2). The pdf version of this document

contains hyperlinks of important modes, scripts, and functions that jump to the relevant

section detailing their use. They are marked by a dotted underline.

B.1. Sample MaMF Usage

B.I. 1. Sample Experiments

###############
# MaMF permutation analysis
#

# Get a random set of seuqences

masked. fa -o crebatf-permtest.0. list

# Run MaMF

order 11. bgd -distr2 all hom-human-up10k-order 11-mutl. bgd -seeds2 1000 -i
crebatf-permtest0. list -fa hspromoter-masked. fa -o crebatf
permtest0. out -log crebat f-permtest0. log

#Searches input sequences to identify which binding sites are similar to annotated motif,
to be used in the next step

permtest0. list -fa hspromoter-masked. fa -o crebat f-pwmbest-permtest0. sl

|

129



º
e

º
/ . '.

5
-

---

- -

**
• *- : ****

***



#Analyze output

crebatf-permtest.0.html crebatf-permtest0. txt

#... do all permutations ...
# takes all analyzed output and generates summary statistics of permutation analysis
summarize-permtest. pl

###############

# MaMF background models
# MaMF can accept a variety of different background models, simply by using different
parameters
#

#-gcprob 0.3 uses a simple weighted scheme (a la Consensus) with GCs accounting for
30% of the genome

fa hspromoter-masked. fa -gcprob 0.38 -i crebatf. list -o crebatf
width 11-gcw. out

#-bg../background/allhom-order7.mbm -> 7th order Markov background model (a la
Bioprospector, but higher order)

fa hspromoter-masked. fa -bg allhom-order 7.mbm -i crebatf. list -o
crebatf-width:11-bgallhom-order 7-markov. out

# used to generate the Markov background model

order 3. mbm

#-mt 2-> combination method using the count method at higher probabilities, and
Markov at lower frequencies
m f e X e - d e m f S e g l i S t - w i dth 1 1 - r s i 2 e 4 - s e e d s 1 O O O - s e e d s 2 1 O O O -

fa hspromoter-masked. fa -bg dbtss-order5. mbm -distr dbtss-width:11. bgd
mt 2 -i crebatf. list -o crebatf-width 11-bg.dbtss-order 5-mt2–mc. out

#-distr -> the count method
m f e x e -mo d e m f S e g l i S t - w i dt h 1 1 - r s i 2 e 4 - s e e d s 1 O O O - s e e d s 2 1 O O O -

fa hspromoter-masked. fa -distr dbtss-width:11. bgd -i crebatf. list -o
crebatf-width 11-bg.dbtss-count. out

#-distr2 -> the count w/ mutations method used in the paper
m f e X e - d e m f s e g l i S t - w i dth 1 1 - r s i 2 e 4 - s e e d s 1 O O 0 - s e e d s 2 1 O O 0 -

fa hspromoter-masked. fa -distr2 dbtss-width 11-mut 1. bgd -i crebatf. list
–o crebatf-width 11-bg.dbtss-cmut. out

#-psb -> position specific background, using multiple Markov backgrounds, one for
each region relative to the transcription start site

fa hspromoter-masked. fa -psb dbtss-background-order 3-bucket 100. p.sb -i
crebatf. list -o crebat f-width:11-order 3-psb. out

130



}}||}||}||}||||sº,L≈≠≈~|¡
~~~~
~~~~|¡¿



##############################

# Algorithm Comparison
##############################
#

################
# MaMF
#
# Create distribution based on counts of 11mers

width.1.1.bgd -log all hom-width:11. log

# Create distribution based on counts of 11mers and their mutations

-o all hom-width 11-mutl. bgd -log all hom-width:11-mut 1. log

# Run MaMF

all hom-width 11-mut 1. bgc -i crebatf. list -fa hspromoter-masked. fa -o mf
crebatf-bgallhom—w 11. out

# Remove duplicate and highly similar motifs

w11. out -sl trans fac-sites-all-mod. tab -fa hspromoter-masked. fa -o mf
crebatf-bgallhom-wl1-csm.out

# Get summary data on output

mf-crebatf-bgallhom—w 11-csm.out -o mf-crebatf-bgallhom-wl 1. sum

# Get consensus alignments of motifs that look similar to annotated motif
mf. exe -mode linktotruth -sl crebat f. sl -fa hspromoter-masked. fa -i mf
crebatf-bgallhom—w 11-cism. out -o mf-crebatf-bgallhom—w 11. align

# Use both BP and MaMF's scoring functions to score output motifs

order 3. mbm -distr2 all hom-width 11-mut 1. bgd -fa hs promoter-masked. fa -i
mf-crebatf-bgallhom—w 11-csm.out -o mf-crebatf-bgallhom-wl 1-compare. out

################

#Bioprospector
#

# get rid of Ns in allhom data
fa2bp. pl. all hom-masked. fa all hom-masked-nons. bp N

# create Bioprospector background model from allhom data
genomebg. exe -i all hom-masked-nons. bp -o bp-allhom. bpb

# get crebatfsequence

131



#Run Bioprospector
BioProspector. exe -o bp-crebatf-bgallhom—w 11-all. out -W 11 -i bp
crebatf. bp -f bp-all hom.bp.b -T 30

#Process Bioprospector output

bp-crebatf. bp

# Get summary data on output

bp-crebat f-bgallhom—w 11. sl -o bp-crebatf-bgallhom—w 11. sum

# Use both BP and MaMF's scoring functions to score output motifs

order 3. mbm -distr2 all hom-width:11-mutl. bgd -fa hspromoter-masked. fa -i
bp-crebat f-bgallhom—w 11. sl -o bp-crebatf-bgallhom—w 11-compare. out

################
# Consensus
#

crebatf. con

# Run Consensus
consensus-v6c. exe -f crebatf. con –L 11 -A "a : t 3 c : g 2 n : n 10000" -c1 –
pf 1000 -n 10 -m 11 > con-crebatf-wl1. out

#Process Consensus output

con-crebat f-w11. Sl -o con-crebat f-w11. sum

################

#AlignaCE experiment
#

#Run AlignaCE
Align/ACE. exe -i bp-crebatf. bp > aa-crebatf-bgallhom-width 11. out

#Process AlignaCE output

aa-crebatf-bgall hom-width:11. sl -o aa-crebat f-bgallhom—w 11. sum

################
# Enrichment MF
#

132



}}||}||}||}||||
ºº,L≈≠≈~|¡
~~~~
~
|¡
¿
†‡←→•■,,■,■■■ .
!

■■■■■*
*~ae→
·

#Run MaMF using enrichmentmf method
mf. exe -mode enrichmentmf -width 11 -nmersize 4 -seeds 1000 -fa
hspromoter-masked. fa -distr2 all hom-width 11-mut 1. bgd -i crebatf. list -
i2 crebatf. sl -sl transfac-sites—all-mod. tab -array stuart-dbtss-human
subset 10. tab -o mfer-crebatf-bgallhom-width 11-cmut-enrich. out

width:11-cmut-enrich. out -sl transfac-sites-all-mod. tab -fa hspromoter
masked. fa -o mfer-crebatf-bgallhom-width 1 1-cmut-enrich-csm.out

Get summary data on output

mfer-crebatf-bgall hom-width 11-cmut-enrich-csm.out -o mfer-crebatf
bgallhom-wl 1. sum

################
ERMF
#

Run MaMF using ERMF method

ordered. tab -fa hs fr–promoter-masked. fa -distr2 all hom-width:11-mutl. bgd
-i crebatf. list -iz correlation_table. txt -sl trans fac-sites-all
mod. tab -o mferc.g-crebatf-bgallhom-width 11-cmut-enrich-fugu. out

Rerank motifs based on composite enrichment ratio and remove duplicates

width:11-cmut-enrich-fugu. out - sl trans fac-sites-all-mod. tab -fa
hspromoter-masked. fa -o mferc.g-crebatf-bgallhom-width:11-cmut-enrich
fugu-csm.out

Get summary data on output

mferc.g-crebatf-bgallhom-width:11-cmut-enrich-fugu-csm.out -o mferc.g-
crebat f-bgallhom—w 11. sum

################

PerturbrandomMotifs experiment
#

hspromoter-masked. fa -sl transfac-sites-all-mod. tab -o prim-crebatf
width:11. out

Rerank motifs based on composite enrichment ratio and remove duplicates

sl transfac-sites—all-mod. tab -fa hspromoter-masked. fa -o prm-crebatf
width:11-cluster. out

Get summary data on output

prim-crebatf-width:11-cluster. out -o prim-crebatf-w11. sum

133

Get consensus alignments of motifs that look similar to annotated motif

prim-crebatf-width 11-cluster. out -o prim-crebatf-w11. align

B. 1.2. MaMF Mode Documentation

– ºil..…. * .. ~~~~

mf.exe -mode clusterscoremotifs [-width) [-i) [-sl] [-fa] [-o]
not used in paper, but essentially grouping common motifs and getting a composite

enrichment ratio (due to noise) and using that as the score
mf. exe -mode clustersimilarmotifs [-width j [-i) [-sl] [-fa) [-o]

mf.exe -mode comparemotifscores [-width) [-sl] [-bg] [-distr2] [-fa) [-
i) [-o]

Compare motif scores using MaMF's scoring function and Bioprospector's scoring
function
mf.exe -mode compare truth [-sl] [-fa] [-i) [-o]

Summarizes comparison of true motif against output motifs
mf.exe -mode enrichmentimf [-width) [-nmersize) [-seeds) [-fa] [-distr2]
[-i) [-i 2) [-sl] [-array) [-o]

MaMF followed by a post processing step that uses Enrichment Ratios to rescore motifs
mf.exe -mode ermf [-width) [-nmersize] [-seeds) [-ranking] [-fa] [-
distr2] [-i) [-i 2) [-sl] [-o]

similar to enrichmentmf but combines ChIP array data and expression microarray, and
throws in Some comparative genomics as well
mf.exe -mode findhighscoringPwm [-i) [-seqs) [-fa] [-o]

finds binding sites in input Sequence similar to annotated motif
mf.exe -mode gendistr [-fa] [-order) [-o] [-log]

mf.exe -mode getcon (-i) [-fa] [-o]
Gets Consensus-style sequence

mf. exe -mode linktotruth [-sl] [-fa) [-i) [-o]
- -

mf.exe -mode mfseq list [-width) [-nmersize) [-seeds) [-distr2] [-i) [-
fa) [-o]

Runs MaMF using a series of accessions as input
mf.exe -mode perturbrandommotifs [-width) [-i) [-fa] [-sl] [-o]

New motif finding method, starting with a random motif and optimizing based on
enrichment ratio
mf.exe -mode randseqlist [-width) [-i) [-fa] [-o]

Get a random set of sequences

134

clusterscoremotifs

mf. exe -mode clusterscoremotifs [-width) [-i) [-sl] [-fa) [-o]

not used in paper, but essentially grouping common motifs and getting a composite
enrichment ratio (due to noise) and using that as the score

Parameters:

—width - width of motif to be found
-i - input motifs
-sl- transfac motifs
—fa - fasta sequence to get surrounding sequence
-o- output

clustersimilarmotifs

mf. exe -mode clustersimilarmotifs [-width j [-i) [-sl] [-fa) [-o]

Removes highly similar motifs

See Methods in MaMF paper for details

Parameters:

—width - width of motifs in input
-i - input motifs
—sl - transfac motifs to allow annotation of resulting motifs
—fa - fasta sequence to allow execution of similarity metric for similar motifs
–o - reduced set of motifs

comparenotifscores

mf.exe -mode comparemotifscores [-width) [-sl] [-bg] [-distr2] [-

fa) [-i) [-o]

Compare motif scores using MaMF's scoring function and Bioprospector's scoring
function

Parameters:

135

■ ºº,
[]
[×

-:v~|
}

!\!A■
***||||||||||$]]■ |-~■ .A+■■ •

¶*
--~~+-,■
■

—width - width of motif to be found
-sl- annotated motif used as the "truth"

-bg - a Markov model based background distribution
—distr2 - background distribution
—fa - fasta sequence to get surrounding sequence
-i - input motifs
- O - SCOICS

comparetruth

mf.exe -mode compare truth [-sl] [-fa) [-i) [-o]

Summarizes comparison of true motif against output motifs

Parameters:

-sl- true motif
—fa - fasta sequence to get surrounding sequence
-i - motifs obtained from a motif finder
–o - Summary output

enrichmentmf

mf. exe -mode enrichmentmf [-width J [-nmersize)

distr2] [-i) [-i 2) [-sl] [-array) [-o]

MaMF followed by a post processing step that uses Enrichment Ratios to rescore motifs

Parameters:

—width - width of motif to be found
—nmersize - nmer size for indexing
—seeds - number of seeds to use for greedy search
—fa - fasta file containing actual sequence
—distr2 - background distribution
-i - accession numbers, one per line
—iz - annotated motif shared in input
—sl - transfac motifs to diagnosis each motif
—array - microarray to calculate enrichment ratios
-o- output

136

ºº,L≈≠≈~|¡
=−==

ermf

mf.exe -mode ermf [-width) [-nmersize) [-seeds) [-ranking] [-fa]

[-distr2] [-i) [-i 2) [-sl] [-o]

similar to enrichmentmf but combines ChIP array data and expression microarray, and
throws in some comparative genomics as well

for ChIP data, uses a ranking of related genes, equivalent to coexpression, but instead it's
strength of binding

Parameters:

-width - width of motif to be found

—nmersize - nmer size for indexing
–seeds - number of seeds to be used in the greedy search
—ranking - ranking of genes as obtained from ChIP data (though possibly expression
data too?)
—fa - fasta sequence to get surrounding sequence
—distr2 - background distribution
-i - input accession numbers
—i.2 - correlation table of genes from one organism to another
—sl - transfac motifs
–o - output motifs, scored using above data

findhighscoringpwm

mf.exe -mode findhighscoringpwm [-i) [-seqs) [-fa) [-o]

finds binding sites in input sequence similar to annotated motif

Parameters:

—i - annotated motif
—seqs - input sequence ids
—fa - fasta sequences
–o - output of similar binding sites

gendistr

mf.exe -mode gendistr [-fa] [-order) [-o] [-log)

137

ºº,L_1■ ºº■■ º
|}

*7-

Creates a count background model for use with MaMF

Parameters:

—fa - input sequence
-order - actually the width of the sequence to calculate a probability for
-o- output background model
-log - statistics

genmarkov

mf. exe -mode genmarkov [-fa] [-order) [-o]

Creates a Markov background model for use with MaMF

Parameters:

—fa - input sequence
-order - nth order background model
-o- output background model

genmutdistr

mf.exe -mode genmutdistr [-order] [-width) [-distr] [-o] [-log]

Creates a count with mutations background model for use with MaMF

Parameters:

-order - actually the width of the sequence to calculate a probability for
-width - needs to be same as order
—distr - output from a gendistr run
-o- output background model
-log - statistics

getcon

mf.exe -mode getcon [-i) [-fa] [-o]

Gets Consensus-style sequence

Parameters:

138

7

5

.
º

,”- /

-i - input accessions, one per line
—fa - fasta file containing sequence
-o- output Consensus-style sequence

linktotruth

mf. exe -mode linktotruth [-sl] [-fa] [-i) [-o]

Displays and aligns consensus sequences of motifs similar to truth

Parameters:

-sl- annotated motif (truth)
—fa - fasta sequence to get surrounding sequence
-i - input motifs
–o - alignment of the various similar motifs

mfseqlist

mf.exe -mode m■ seqlist [-width) [-nmersize) [-seeds) [-distr2] [-

i] [-fa) [-o]

Runs MaMF using a series of accessions as input

Parameters:

—width - width of motif to be found
—nmersize - nmer size for indexing, typically 4
–seeds - number of seeds to use for greedy search
—distr2 - background distribution
-i - accession numbers, one per line
—fa - fasta file containing actual sequence
-o- output motifs

perturbrandommotifs

mf.exe -mode perturbrandommotifs [-width} [-i) [-fa) [-sl] [-o]

New motif finding method, starting with a random motif and optimizing based on
enrichment ratio

139

enrichment ratio is too noisy by itself

Parameters:

-width - width of motif to be found

-i - input accession numbers
—fa - fasta sequence to get surrounding sequence
-sl- transfac motifs
-o- output motifs

randseqlist

mf.exe -mode randseqlist [-width} [-i) [-fa] [-o]

Get a random set of sequences

Parameters:

-width - not used

-i - Number of ids to get
—fa - fasta sequences

B. 1.3. Perl Script Documentation

ScriptSummary º – –
TTTTTTTTTTTTTTTTTTTTTTTTTTTTT º

aa2sl., Pl [$fin) IS fout)
convert Align/ACE output to SiteList formatted output

analyze:9 utput...pl [$fin] [$fpwmbest] [$fout) [$f sl]

Sºnºut 25l...Pl [$fin] [$fout)
converts Consensus output into SiteList format

subset-fa.pl ($fin] ($list] [$col) [$fout)
given a fasta file, outputs a new fasta file with a subset of the sequences

aa2sl.pl

aa2sl. pl. [$ fin) [$fout)

convert Align/ACE output to SiteList formatted output

140

||||||||||||
*'+■■■{--~~~3■…

Parameters:

$fin - AliceACE output
$fout - SiteList formatted output

analyze-output.pl

analyze-output.pl [$fin] [$fpwmbest) [$fout) [$fsl]

visualize MaMF output

Parameters:

$fin - input motifs from MaMF
$fpwmbest - Sequences in output considered to be highly similar to annotated motif
$fout - process html output
$f sl- annotated binding sites

bpout2sl.pl

bpout 2sl.pl [$fin] [$fout) [$ffa)

converts Bioprospector output into the SiteList format

fasta file is required to calculate sequence lengths

Parameters:

$fin - bioprospector output
$fout - SiteList formatted output
$ffa - genomic fasta file

conout2sl.pl

conout2sl. pl. [$fin) [$fout)

converts Consensus output into SiteList format

Parameters:

$fin - Consensus output
$fout - Sitelist formatted output

141

subset-fa.pl

subset-fa.pl [$fin] [$list) [$col) [$fout)

given a fasta file, outputs a new fasta file with a subset of the sequences

Parameters:

$fin - input fasta file
$list - list of desired sequences
$col - column that gene ids are found in the list (if in a tab delimited file)
$fout - output fasta file

B.2. Documentation of C Files

respectively. Most of the experiments I performed to analyze the results of MaMF,

explore the enrichment ratio concept, and other miscellaneous experiments are found in

analysis.g.

analysis: this is the dumpyard of all my experiments.
bazd.g. binary 2d array
background:g utility functions to calculate background probabilities
dadblºg seudo-class of a dynamic array of doubles
daintº seudo-class of a dynamic array of ints
darry: dynamic array of void*
daslº. pseudo-class of a dynamic array of SiteLists
dastrº pseudo-class of dynamic array of strings
inthash;£ hash table using int as the key
matchlist.c pseudo-class to handle pairs of sequence locations in a space
- - - - - - - - - - - - - - - - - - -

efficient manner

pseudo-class to handle microarray data
mainly to coordinate what is to be done in this run via arguments
from command line

142

> *º-

Qldhash.; hash table library
Pym.g pseudo-class for a position weight matrix (PWM) object
$90■ º functions to calculate scores of motifs
search." greedy motif finding using indexing to accelerate the search

process

Sºllº.º. utility functions to handle the Sequence object
sitelist.g seudo-class of a list of binding sites
utils.g. library of utility functions

B.2.1. analysis.c

this is the dumpyard of all my experiments.

The Enrichment Ratio code, optimizing motif using ER, and other experiments are all
here

unction Summary --------T-I-T-

— ºn º ºrº ºr ºl

void AllSingleGeneßR (HashTable" ma, dasl” transfac)

Compute enrichment ratios for all genes in gSeqList using the different
|transfac motifs

void

calculates the background probability of each SiteWin using
Calculatefrequency

double CalcGCContent (dastr" list)

void CalcGCEnrichMotif Ratio (daslº result, dastr" gene List,
HashTable * ma)

plot GC content of geneList, proxylist, nullList, and average of results
double CalcMotifSCContent (SiteList” sl)

void

Uses PlotRatio to calculate ER of all subseqs of genes in geneList, using
chip data (an ordered list of genes)

double

failed idea, optimizes a given motif by maximizing the enrichment ratio?
void ClusterScoreMotifs (daslº result, int width, daslº transfac)

Removes highly similar motifs from results and prints them
das lº ClusterSimilarmotifs (daslº result, int width)

This merges motifs that are highly similar to each other
void ClusterWithTransfac (daslº result, int width, daslº trans fac)

a method of judging significance of motifs similar to transfac motifs found
in results

— TTTTTTTTT

143

void lusterWithTransfac2 (daslº result, daslº transfac,
--

dastr" gene List, char” microarray)
a method of judging significance of motifs similar to transfac motifs found

in results

int width,

void ÇlusterWithTransfaç3 (dasl” result, int width, dasl” transfac,
dastr" gene List, dastr" orderedGene List)

a method of judging significance of motifs similar to transfac motifs found
in results

int

int

int

int

PWM*

void
width, das l’ (* searchfm)
(* ScoringMetric) (SiteList”,
(SiteList” list, int width),

don't think it worked

int width, double
(* score fm)

(dastr" seqList,
int)), double
char” array)

double * * Generategºnrichmentº actor (dastrº orderedGene List, int width)
calculates the relationship between GC content and enrichment ratio?

void GenerateNotifs ER (dastr" orderedGene List, int width)

void

generated enrichment ratios of random motifs with a specific range of GC
COntent

void

using random geneLists, get the average rank of gene in resulting
genesByCorrelation

Site List” GetBestSiteWins (daslº sll)

PWM*

PWM*

double
motif)

looks like the predecessor to the enrichment ratio?
int

das lº

void

144

daslº sllb, int subset1, int subset2)
randomly jiggles motif but only keeps change if new motif is better

void Link Results.ToTransfac (das lº all, daslº trans fac)

plots results with similarity to motifs in the transfac list
void Link ResultsToTransfac3 (daslº all, daslº trans fac, double

threshold)

plots similarity of results to motifs in the transfac list
void Link Results'ToTruth (daslº all, SiteList” truth, double

threshold)

Prints consensuses of motifs that are highly similar to the true SiteList
SiteList”

void PerturbRandomMotifs (dastr" orderedGene List, int numMotifs, int
width, daslº trans fac)

algorithm that starts with random motif and optimizes based on maximizing
enrichment ratio

void PlotMotif Ratio (dastr" gene List, int width, HashTable * ma)
Uses PlotRatio to calculate ER of all subseqs of genes in geneList, using

microarray data
void PlotMotif Ratio'Trend (dasl” result, dastr" orderedGene List, int

plots the scores the best alignments of genes against some of the results,
ordered by gene coexpression

void PlotMumberNs (dastr" gene List, HashTable * ma)

Prints the number of Ns for each sequence in the microarray, ordered by
coexpression

void PlotRatio (dastr" gene List, dastrº proxy List, dastrº nullList,
int width)

plots ER of all subseqs of genes in geneList
void

ma)

plot the relative positions of the best alignments of two genes for a given
motif, and its enrichment ratio

void RankGenes■ WithClustered Motifs (daslº result, int width, das lº
transfac, char * t■ , Site List” ordered)

Reuse clustering from above, and see if top 50 motifs can be used to more
accurately predict

SiteList” ReadTransfacData (char” f)
reads transfac data for one TF

das l? ReadTransfacMatrixData (char * f.)

void

void

computes frequency of all nmers of width for all genes in proxylist and
nullList

int

counts the number of times s occurs in all promoters of seqList

i.

145

}}||||||||||||||||

void Shift|PerturbNotifs (dasl” input, dastr" orderedGene List, int
numMotifs, int width, das l’ transfac)

takes input motifs, calculates shifted motifs, and optimizes those motifs
void

void

Take a single gene and compute enrichment ratios for all transfac motifs
against that gene

void SingleGenemR (char” id, int width, dasl” (*searchfn) (dastr"
seqList, int width, double (* Scoring Metric) (Site List”, int)),
double (* score fm) (SiteList” list, int width), HashTable * ma,
daslº trans fac)

experimental method to run MaMF on one gene
void

cluster motifs together, ranking by highest average ER
void TransfaçclusterScoreMotifs (dasl” result, int width, dasl”

trans fac)

Computes a score for each transfac motif based on how common that motif
is found in the results

AllSingleGeneBR

void AllSingleGeneBR (HashTable” ma, dasl” transfac)

Compute enrichment ratios for all genes in gSeqList using the different transfac motifs

Parameters:

ma - microarray expression data
trans fac - transfac motifs

ApplyBackgroundProb

void ApplyBackgroundProb (Site List” sl, int width)

calculates the background probability of each SiteWin using Calculatefrequency

Parameters:

sl - input SiteList
width - motif width

CalcGCContent

double CalcGCContent (dastr" list)

146

returns average GC content of a set of genes

Parameters:

list - list of gene names

CalcGCEnrich MotifFatio

void CalcGCEnrichMotifRatio (dasl” result, dastr" genelist,
ma)

plot GC content of geneList, proxylist, nullList, and average of results

Parameters:

result - motifs output from motif finder
genelist - genes of interest
ma - microarray data

HashTable *

CalcMotifCCContent

double CalcMotifGCContent (SiteList” sl)

returns the GC content percentage of the motif passed in

Parameters:

sl - SiteList of interest

ChipPlotMotifRatio

void ChipPlotMotifRatio (dastr" orderedGene List, int width)

Uses PlotRatio to calculate ER of all subseqs of genes in geneList, using chip data (an
ordered list of genes)

Parameters:

ordered Genelist - ordered list of genes calculated from coexpression using microarray
data
width - motif width

147

ClusterOptimizeMotif

double ClusterOptimizeMotif (PWM** motif, daslº result)

failed idea, optimizes a given motif by maximizing the enrichment ratio?

Parameters:

result - motifs output from motif finder

ClusterScoreMotifs

void ClusterScoreMotifs (daslº result, int width, daslº transfac)

Removes highly similar motifs from results and prints them

This function does the scoring and sorting, but then the merging happens in
ClusterSimilarMotifs.

Parameters:

result - motifs output from motif finder
width - motif width
transfac - transfac motifs

ClusterSimilar Motifs

daslº ClusterSimilar Motifs (daslº result, int width)

This merges motifs that are highly similar to each other

the order of result matters, because the clustering starts from the top of the list. Once it's
been processed, it's not looked at again

Parameters:

result - motifs output from motif finder
width - motif width

148

■

{
****||||||||||||||||

!■■/\

■ º

ClusterWithTransfac

void ClusterWithTransfac (daslº result, int width, daslº transfac)

a method of judging significance of motifs similar to transfac motifs found in results

Parameters:

result - motifs output from motif finder
width - motif width
transfac - transfac motifs

ClusterWithTransfac2

void ClusterWithTransfac2 (daslº result, int width, daslº trans fac,
dastr" gene List, char * microarray)

a method of judging significance of motifs similar to transfac motifs found in results

Parameters:

result - motifs output from motif finder
width - motif width
trans fac - transfac motifs
genelist - genes used in motif finding (not explicitly reported in result)
microarray - filename of microarray

ClusterWithTransfac3

void ClusterWithTransfac3 (daslº result, int width, daslº trans fac,
dastr" gene List, dastr" orderedGene List)

a method of judging significance of motifs similar to transfac motifs found in results

this version will randomize the gene rankings instead of the motifs

Parameters:

result - motifs output from motif finder
width - motif width
trans fac - transfac motifs
genelist - genes used in motif finding (not explicitly reported in result)
orderedGenelist - genes ordered by coexpression

149

Comparedbllist

int Comparedbllist (const void* a, const void* b)

compares list of doubles

CompareDblisthigh First

int Comparedbllisthigh First (const void* a, const void* b)

compares doubles in first positions of array

Parameters:

a - first array
b - second array

Comparedouble1

int Comparedouble1 (const void* a, const void* b)

compare doubles, lower first

Parameters:

a - first double
b - second double

Comparedouble1R

int Comparedouble1R (const void* a, const void* b)

compare doubles, higher first

Parameters:

a - first double
b - Ssecond double

ComputeExtendedPWM

PWM* ComputeExtendedPWM (SiteList” sl, int len)

extends a PWM both directions using real sequence data

150

> >

=2
■ º$E-** -

CT,
**-az ---

*

Parameters:

sl - SiteList

len - amount to extend by each direction

Experiment050310

void Experiment.050310 (dastr" gene List, SiteList” rankingsl, int width,
dasl” (*searchfm) (dastrº seqList, int width, double
(* Scoring Metric) (Site List”, int)), double (* score fri) (Site List” list,
int width), char * array)

don't think it worked

Ajay's experiment

Parameters:

genelist - genes of interest
width - motif width
width - motif width

Generate(GCEnrichmentFactor

double ** GenerateCCEnrichmentFactor (dastr" orderedGene List, int width)

calculates the relationship between GC content and enrichment ratio?

Parameters:

orderedGenelist - ordered list of genes calculated from coexpression using microarray
data
width - motif width

Generate Motifs ºr

void GenerateNotifs ER (dastr" orderedGene List, int width)

generate enrichment ratios from purely randomly generated motifs

Parameters:

151

orderedGenelist - ordered list of genes calculated from coexpression using microarray
data
width - motif width

Generate Motifs H.RDistribution

void Generatemotifs ERDistribution (dastr" orderedGene List, int width)

generated enrichment ratios of random motifs with a specific range of GC content

Parameters:

orderedgenelist - ordered list of genes calculated from coexpression using microarray
data
width - motif width

GetAverageOeneRank

void GetAverageceneRank (HashTable” ma)

using random geneLists, get the average rank of gene in resulting genesByCorrelation

Parameters:

ma - microarray data

GetBestSiteWins

SiteList" GetBestSiteWins (daslº sll)

keep the best scoring SiteWin from each SiteList

Parameters:

sll - a list of SiteLists of interesting as input

GetGCRandomMotif

PWM* GetGCRandomMotif (int i, int numlter, int width)

generates a motif with specific GC content

GC9% = i■ num■ ter

152

}}||||||||||$]]

Parameters:

i - amount of GC
num Iter - out of total
width - motif width

GetGCRandomMotif.”

PWM* GetGCRandomMotif.3 (int num, int width)

this version guarantees a level of gcs

Parameters:

width - motif width

GetMotifStrengthratio

double GetMotifStrength Ratio (dastrº goodList, dastr" badlist, PWM*
motif)

looks like the predecessor to the enrichment ratio?

GetNumSubseqAlignment

int GetNumsubseqAlignment (char” subseq, Sequence” seq., int width)

Gets the number of alignments of subseq within seq

Parameters:

subseq - short sequence
seq - sequence analyzed
width - subseq width

GetTransfacMotifs

daslº GetTransfacMotifs (daslº trans fac, char * s)

Gets the SiteList of a particular Transfac motif

Parameters:

153

º
|

■ ·

■ ºº
|-“■ .-■
■

■ ^^
•

rø++ae.}|~■ .·
*

*•
■ ,
■■
■
,

■ z--|■
■■ ,
■
■ *

{

■ =
'…,
■■■■■

trans fac - transfac motifs

s - string name of the transfac motif of interest

JiggleMotif

void JiggleMotif (PWM* motif, int width, double" score, dasl” slla,
dasl” sllb, int subset1, int subset2)

randomly jiggles motif but only keeps change if new motif is better

where better is a higher resulting enrichment ratio, the data of which is kept in slla and
Sllb

Parameters:

motif - input motif
width - motif width
score - current score of motif

slla - Short sequences from the coexpressed genes
sllb - Short sequences from the noncoexpresse genes
subset1 - number of top sequences to consider in slla
subset2 - number of top sequences to consider in sllb

Link ResultsToTransfac

void Link ResultsToTransfac (daslº all, daslº trans fac)

plots results with similarity to motifs in the transfac list

Parameters:

all - all results
trans fac - transfac motifs

LinkResultsToTransfac3

void LinkResultsToTransfacs (daslº all, daslº trans fac, double
threshold)

plots similarity of results to motifs in the transfac list

154

r|||||||||||||||||gº

fºr
!/\

Parameters:

all - all the results

transfac- transfac motifsmotifs to be compared against
threshold - similarity threhold to be considered similar

LinkResultsToTruth

void Link ResultsToTruth (daslº all, SiteList" truth, double threshold)

Prints consensuses of motifs that are highly similar to the true SiteList

Variation of the LinkResults” functions

Parameters:

all - all the results (from the motif finder)
truth - to be compared against
threshold - the similarity threshold of calling a motif a hit

OptimizeMotif

SiteList”. OptimizeMotif (PWM* motif, int width, dastrº a, dastrº b)

randomly perturbs motif to maximize enrichment ratio

first all the short sequences are generated from a and b, so that they are cached for use
with enrichment ratio, and ranked by similarity to the motif

yields a higher ER than the original motif, then that new motif is kept

Occasionally, we rescore all the sequences so that the rank more closely matches the
similarity to the motif, but I do it only sometimes for a performance enhancement

Parameters:

width - motif width
a - positive sequences for computation of enrichment ratio
b - negative sequences for computation of enrichment ratio

PerturbrandomMotifs

void PerturbRandomMotifs (dastrº orderedGene List, int numMotifs, int
width, daslº transfac)

155

algorithm that starts with random motif and optimizes based on maximizing enrichment
ratio

Parameters:

orderedgenelist - ordered list of genes calculated from coexpression using microarray
data

numMotifs - number of motifs to generate
width - motif width
trans fac - transfac motifs

PlotMotifFatio

void PlotMotif Ratio (dastr" gene List, int width, HashTable * ma)

Uses PlotRatio to calculate ER of all subseqs of genes in geneList, using microarray data

Parameters:

genelist - genes of interest
width - motif width
ma - microarray data

PlotMotif RatioTrend

void PlotMotif RatioTrend (daslº result, dastr" orderedGene List, int
width)

plots the scores the best alignments of genes against some of the results, ordered by gene
coexpression

probably to examine the behavior of the components of ER

Parameters:

result - motifs output from motif finder
orderedGenelist - ordered list of genes calculated from coexpression using microarray
data
width - motif width

PlotNumberNS

void PlotNumberNs (dastr" gene List, HashTable * ma)

156

_^■ ,
,,
■■
■

Prints the number of Ns for each sequence in the microarray, ordered by coexpression

Parameters:

genelist - list of genes of interest
ma - microarray data

Plotratio

void PlotRatio (dastr" gene List, dastr" proxy List, dastrº nullList, int
width)

plots ER of all subseqs of genes in geneList

Parameters:

genelist - gene of interest
proxy List - genes with high correlation
nullList - genes with zero correlation
width - motif width

PlotSecondaryMotifs

void PlotSecondaryMotifs (das l’ result, dastr" gene List, HashTable" ma)

plot the relative positions of the best alignments of two genes for a given motif, and its
enrichment ratio

Parameters:

result - motifs output from motif finder
genelist - genes of interest
ma - microarray data

RankGenes WithClustered Motifs

void RankGenes WithClustered Motifs (daslº result, int width, das l?
transfac, char * t■ , SiteList” ordered)

Reuse clustering from above, and see if top 50 motifs can be used to more accurately
predict

Parameters:

157

■
■,,,■■■■,)

ae→-
„■!

**

→rº!|
º

-7,■■ (■ ••~ ·

--"

■
~■

result - motifs output from motif finder
width - motif width
transfac - transfac motifs
tf - TF to be tested

ReadTransfacData

SiteList” ReadTransfacData (char * f.)

reads transfac data for one TF

Parameters:

f - filename

ReadTransfacMatrixData

daslº ReadTransfacMatrixData (char * f.)

creates an array of SiteLists from transfac data

Parameters:

f - filename

SeqPreq

void Seqfreq (char” s)

frequency of s within all sequence in gSeqs

Parameters:

s - short sequence in question

Seq Freq ER

void SeqfreqeR (dastrº orderedGenelist, int width)

computes frequency of all nmers of width for all genes in proxylist and nullList

Parameters:

158

ordered Genelist - ordered list of genes calculated from coexpression using microarray
data
width - motif width

Seqr’reqSubset

int SeqfreqSubset (char * s, dastrº seqList)

counts the number of times s occurs in all promoters of seqList

Parameters:

s - short sequence in question
seqList - list of genes to do computation

Shift|PerturbMotifs

void Shift|PerturbMotifs (dasl” input, dastrº orderedGenelist, int
numMotifs, int width, daslº trans fac)

takes input motifs, calculates shifted motifs, and optimizes those motifs

Parameters:

input - a set of different motifs
orderedGenelist - ordered list of genes calculated from coexpression using microarray
data
numMotifs - not used
width - motif width
trans fac - transfac motifs

Simple.JiggleMotif

void Simple.JiggleMotif (PWM* motif)

randomly jiggles motif without optimization in mind, unlike JiggleMotif

Parameters:

motif - input motif

159

^̂,

i1

■ º■ •••
•
■
■■■

!\;A■

|||||||||||||||
|r..a+~~~\\■\■ \■■
!

~~~¡¿

~~~■

■

';';■ -,~•

SingleGeneBR

void SingleGeneBR (char” id, HashTable" ma, dasl” transfac)

Take a single gene and compute enrichment ratios for all transfac motifs against that gene

Parameters:

id - gene id
ma - microarray expression data
transfac- transfac motifstransfac data

SingleGeneMF

void SingleGenemF (char * id, int width, dasl” (*searchfn) (dastr"
seqList, int width, double (* Scoring Metric) (SiteList”, int)), double
(* scorefri) (SiteList” list, int width), HashTable * ma, das l’ transfac)

experimental method to run MaMF on one gene

Parameters:

id - gene id
width - width of motifs to be found
searchfm - search function pointer
scorefn - scoring function pointer
ma - microarray data
trans fac - transfac motifstransfac data

SuperClusterMotifs

void SuperClusterMotifs (das l’ result, int width, daslº transfac)

cluster motifs together, ranking by highest average ER

Parameters:

result - motifs output from motif finder
width - motif width
transfac - transfac motifs

160

\

||||||||||||||||||
!#\

TransfacClusterScoreMotifs

void TransfacClusterScoreMotifs (daslº result, int width, das lº
transfac)

Computes a score for each transfac motif based on how common that motif is found in
the results

Parameters:

result - resulting motifs from MaMF
width - motif width
transfac - transfac motifs

B.2.2. bazd.c

binary 24 array

space efficient implementation of a binary 2d array

Function Summal■ y º º
-
º —

- ºº: --

º
--

º
void ba2d Free (bazd” arr)

free the ba2d array
int ba2d IsbitSet (ba 2d” arr, int x, int y)

test if the bit is set
ba2d *|ba2d New (int xdim, int ydim)

creates a new bazd array
int ba?d SetBit(bazd” arr, int x, int y)

set a bit in the array

ba?d_Free

void bazd_Free (bazd” arr)

free the bazd array

Parameters:

arr - array to be operated on

ba?d_IsbitSet

int bazd_IsbitSet (bazd” arr, int x, int y)

161

º
****-

test if the bit is set

Parameters:

arr - array to be operated on
x -x dimension

y - y dimension

ba?d New

bazd” bazd New (int xdim, int ydim)

creates a new bazd array

Parameters:

xdim - maxx dimension
ydim - max y dimension

ba?d_SetBit

int bazd SetBit(bazd” arr, int x, int y)

set a bit in the array

Parameters:

arr - array to be operated on
x -x dimension
y - y dimension

B.2.3. background.c

utility functions to calculate background probabilities

also embeds the pseudo-class distr, which uses actual frequency of sequences from the
genome

--~~~~~~~~~~~~ ºn Tºº FT-- sº-Tº-Tº-Tº-Tº-TTTTTTTTTTTTTT TTTTTTTTTTTTTT

unction Summary
double gallºweragePrºbability (Distrº ++ sea, Hºr■

calculates average probability of sequences similar to seq
int CalçMostSimilar (char” s, char” id)

finds the best alignment to s and return the number of shared nucleotides
double Salculateº requency (char” seq., int len)

162

calculate probability of seq depending on background model
double

pos List, dastr" neglist)
computes enrichment ratio of a sequence (not motif)

double
len)

MDScan
calculates markov probability of sequence using method described in

double

double

double
SiteWin” sw, int len)

robability
computes expected frequency (count) from position specific markov

double
SiteWin” sw, int len)

computes position specific markov probability
double

Di Strº
FILE * fout)

creates the counting method background distribution
void

HashTable *

void
bucket.Size)

int

create markov background models for different regions of sequence
double

HashTable * markov)

calculate background probability using markov background model
double

couble

char *

HashTable * *

loads a position specific markov background
Void distr Free (Distr" d)

free object
unsigned
in t distr Get (Distrº d, int idx)

163

gets value of index
void distr Incr (Distr" d, int idx)

increments count of that particular index
Distrik distr Load (char * filename)

void distr Save (Distrº d, FILE* fout)
save distribution data to a file

void distr Set (Distr" d, int idx, unsigned int val)
sets index to a particular value

CalcAverageProbability

double CalcAverageProbability (Distrº d, char * seq., int len)

calculates average probability of sequences similar to seq

Parameters:

d - distr object
seq - input sequence
len - length of sequence

CalcMostSimilar

int CalcMostSimilar (char * s, char * id)

finds the best alignment to s and return the number of shared nucleotides

Parameters:

s - input sequence
id - gene id

Calculater requency

double Calculate Frequency (char” seq., int len)

calculate probability of seq depending on background model

Parameters:

seq - input sequence
len - length of input sequence

164

ComputeEnrichmentRatio

double ComputeEnrichmentRatio (char * s, HashTable" erHash, dastr"
pos List, dastr" neglist)

computes enrichment ratio of a sequence (not motif)

assume all sequences exist

Parameters:

s - input sequence
erHash - hash of enrichment ratios?

poslist - proxy list of sequences
neglist - null list of sequences

Compute MDScanprobability

double Compute!MDScan Probability (HashTable" markov, SiteWin" sw, int
len)

calculates markov probability of sequence using method described in MDScan

first couple of probabilities

Parameters:

markov - stored markov probabilities
sw - input sequence
len - length of sequence

ComputeNarkov Count

double Compute!Markovcount (HashTable" markov, SiteWin" sw, int len)

computes expected frequency (count) from markov probability

Parameters:

markov - markov background model
sw - input sequence
len - length of input sequence

165

y
!

! *

º

º
º

ComputeNarkov Probability

double Compute!MarkovProbability (HashTable" markov, char” seq., int len)

computes my version of the markov probability

for ACGT, P(A)*P(CA)*P(GAC)*P(TACG)

Parameters:

markov - stored markov probabilities
seq - input sequence
len - length of sequence

ComputePositionSpecificMarkovOount

double ComputePositionspecificMarkovcount (HashTable ** markov, SiteWin"
sw, int len)

computes expected frequency (count) from position specific markov probability

Parameters:

len - length of input sequence

ComputePositionSpecificMarkov Probability

double ComputePositionspecificMarkovProbability (HashTable" * markov,
SiteWin” sw, int len)

computes position specific markov probability

Parameters:

markov - a position specific markov model
sw - input sequence
len - length of input sequence

ComputeSimpleProb

double ComputeSimple Prob (double gcProb, SiteWin” sw, int len)

166

calculate a simple probability using just the GC content of the genome

Parameters:

gcProb - gc genome background
sw - input sequence
len - length of input sequence

CountBackgroundBistribution

Distrº CountBackgroundbistribution (HashTable” seqs, int nmersize, FILE”
fout)

creates the counting method background distribution

Parameters:

seqs - sequences to be considered
nmersize - nmer size of the distribution
fout - file pointer of where to save data

CountBackgroundWith Mutations

void CountBackgroundWithMutations (Distrº bg, int nmersize, FILE" fout)

creates a secondary distribution considering similar sequences

Parameters:

bg - input distribution
nmersize - size of nmers in distribution
fout - file pointer to where data will be saved

Generate Markov Dependency

HashTable * GenerateMarkovdependency (HashTable” seqs, int order)

generate markov background model

Parameters:

167

º

7

º

5

** -

arrº" ---

y
*º-

e

seqs - input sequence
order - specify nth order model

GeneratePositionSpecificMarkov Background

void Generate PositionSpecificMarkov'Background (int order, int
bucket.Size)

create markov background models for different regions of sequence

Parameters:

order - create nth order model
bucketSize - size of bucket for each mini-background

GetBackgroundProbability

double GetBackgroundProbability (Distrº d, char” seq., int len,
HashTable * markov)

calculate background probability using markov background model

Parameters:

d - distr object
seq - input sequence
len - length of input sequence
markov - markov background model

GetBackgroundProbability2

double GetBackgroundProbability2 (Distr" d, char” seq., int len)

calculate background probability using distr (count method)

Parameters:

d - distr object
seq - input sequence
len - length of input sequence

168

!\/\(]

||||||||||||||||

GetCountErequency

double GetCountErequency (Distrº d, char * seq., int len)

get frequency of Seq (in genome)

Parameters:

d - distr object
seq - input sequence
len - length of input sequence

GetSubSequence2

char”. GetSubSequence2 (char” id, int posstart, int posBnd, int strand)

same as GetSubSequence

Parameters:

id - gene id
posstart - position start
posend - position end
strand - strand

LoadPositionSpecificMarkov Background

HashTable * * LoadPositionspecificMarkovBackground (char" filename)

loads a position specific markov background

Parameters:

filename - input filename

distr Free

void distr Free (Distrº d)

free object

169

Parameters:

d - distr object

distr Get

unsigned int distr_Get (Distrº d, int idx)

gets value of index

Parameters:

d - distr object
idz - index corresponding to a sequence

distr Incr

void distr_Incr (Distrº d, int idz)

increments count of that particular index

Parameters:

d - distr object
idz - index corresponding to a sequence

distr Load

Distrº distr_Load (char" filename)

load distribution data from a file

Parameters:

filename - filename from which distribution data will be loaded

distr Save

void distr_Save (Distrº d, FILE" fout)

save distribution data to a file

Parameters:

170

!

.sº
I,
■■■,■
--~~~~

d - distr object
fout - file pointer where data will be saved

distr Set

void distr Set (Distrº d, int idz, unsigned int val)

sets index to a particular value

Parameters:

d - distr object
idz - index corresponding to a sequence
val - value to be set

B.2.4. dadbl.c

pseudo-class of a dynamic array of doubles
ºFunction Summary"

void dadbl Add (dadblº d, double val)

adds val to the end of tharray
dadblº dadbl Free (dadblº d, int deep)

frees the dadbl object
doubledadbl Get (dadbl” d, int index)

int dadbl_Keep Best (dadbl” d, int num, int (* func)
void*), int deep)

first optionally sorts, then keeps num elements

(const void*, const

dadblºkladbl New (int incrSize)

create a dynamic array of doubles

saves to printfn
void dadbl Save (dadblº d, int (* print fm) (const char” format, . . .))

void dadbl Sort (dadbl” d, int (* func) (const void*, const void*))

void dadbl Trunc (dadblº d, int num, int deep)
truncates the array by num

dadbl_Add

void dadbl_Add (dadblº d, double val)

adds val to the end of tharray

Parameters:

171

}}||||||||||||||||
sºL■■■,■
----¬−
×■■■■■■■■■■
→■■º==

-

--^■ º.|-|-■■
sº

*
º

*|-

■ -■ }
■ ~

ºn~~
■

d - the input dadbl object
val - the value to be added

dadbl_Free

dadbl” dadbl_Free (dadblº d, int deep)

frees the dadbl object

Parameters:

d - the input dadbl object
deep - not used

dadbl_Get

double dadbl_Get (dadbl” d, int index)

returns a value from the array

Parameters:

d - the input dadbl object
index - index to be obtained

dadbl_Keep Best

int dadbl_Keepbest (dadblº d, int num, int (* func) (const void*, const
void*), int deep)

first optionally sorts, then keeps num elements

similar to dadbl Trunc

Parameters:

d - the input dadbl object
num - number of elements to keep
func - sort function, optional
deep - not used

dadbl_New

dadblº dadbl_New (int incrSize)

172

º

H -º-

create a dynamic array of doubles

dynamic as in the size of the array changes as necessary

Parameters:

incrSize - increment size of internal dynamic array

dadbl_Save

void dadbl_Save (dadblº d, int ("printfn) (const char” format, . . .))

saves to printfn

Parameters:

d - the input dadbl object
printfn - print function pointer

dadbl_Sort

void dadbl_Sort (dadblº d, int (* func) (const void*,

sorts the array

Parameters:

d - the input dadbl object
func - sort function

const void*))

dadbl_Trunc

void dadbl_Trunc (dadbl” d, int num, int deep)

truncates the array by num

Parameters:

d - the input dadbl object
num - number of elements to delete from end of array
deep - not used

º
--

-

*-

173

|/\

~♥ ~

||||||||||||||||||
Cº
|¡¿„”■■■-\\■\■ \■■

~~~¡¿
•_^



B.2.5. daint.c

pseudo-class of a dynamic array of ints

Function Summary
-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º: ---------------> --~~~~~~~~~~

void daint Add (daint * d, int val)

daint *|daint Free (daint * d, int deep)

int daint Get (daint * d, int index)

int daint Keep Best (daint” d, int num, int (* func)
void*), int deep)

keeps a set number of elements in array

(const void*, const

daint"|daint New (int incrSize)

create a dynamic array of ints

saves array to file
void aint_Save (daint” d, int (* print fr) (const char” format, . . . ))

void daint Sort (daint * d, int (* func) (const void*, const void*) )

void daint Trung (daint * d, int num, int deep)
truncates array

daint_Add

void daint_Add (daint” d, int val)

adds val to array

Parameters:

d - the input daint object
val - value to add

daint_Free

daint" daint_Free (daint” d, int deep)

free array

Parameters:

d - the input daint object
deep - not used

gº
* A

174



daint Get

int daint_Get (daint” d, int index)

gets value at index

Parameters:

d - the input daint object
index - index of interest

daint_Keep Best

int daint_Keepbest (daint” d, int num, int (* func) (const void*,
void*), int deep)

keeps a set number of elements in array

Parameters:

d - the input daint object
num - number of element to keep
func - optionally sort array
deep - not used

Const

daint New

daint" daint New (int incrSize)

create a dynamic array of ints

dynamic as in the size of the array changes as necessary

Parameters:

incrSize - increment size of internal dynamic array

daint_Save

void daint_Save (daint” d, int ("print fri) (const char” format,

saves array to file

.) )

º

4)

175





Parameters:

d - the input daint object
printfn - print function pointer

daint_Sort

void daint_Sort (daint" d, int (* func) (const void*,

sorts array

Parameters:

d - the input daint object
func - sort function pointer

const void*) )

daint_Trunc

void daint_Trunc (daint” d, int num, int deep)

truncates array

Parameters:

d - the input daint object
num - number of elements to truncate
deep - not used

B.2.6. darrv.c

dynamic array of void*

unction Summary
void DArrV Add (DArrv * d, void* val)

adds value to array
DArrV*DArrV Free (DArrV* d, int deep)

frees array
DArrV*|DArrV New (int incrSize)

creates a new dynamic array

t

DArrV_Add

void DArrv_Add (DArrvº d, void* val)

4)

176



}}|||||||||||$]]



adds value to array

Parameters: º

- -
º

d - dynamic array object -

val - value to add sº

DArrV_Free

DArrv" DArrv_Free (DArrvº d, int deep)

frees array

note that the deep flag only performs a free() on each void*; it might be necessary to do a
custom free for each object

Parameters: X

td - object to free
deep - boolean to free each object

DArrV_New * *

DArrv. DArrv New (int incrSize) C. :* *

creates a new dynamic array º

Parameters:

incrSize - increment size º
B.2.7. dasl.c --

pseudo-class of a dynamic array of SiteLists I
-

ºt-tº-º-º: T-TTTTTTTTTTTTTTTTF nction Summary
void dasl Add (daslº d, SiteList” sl)

º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º:

adds SiteList to array
-

void dasl. Append (dasl” a, dasl” b) > *
appends b to a

das lº dasl. Copy (dasl” d) tº."
shallow copy of dasl

das l?" dasl. Peepºopy (dasl” d)
deep copy of dasl ".

void qa■ l. Pºlºš (dasl” d, int pos, int deep) |

177
tº





delete a specific SiteList
int dasl_Exists (dasl” d, Site List” sl)

does a shallow check to see if sl exists

das lº dasl. Free (dasl” d, int deep)
free array

SiteList"|dasl. Get (dasl” d, int index)
gets SiteList at index

das lº dasl. GetRandom (dasl” d, int count, int start, int end)
randomly choose some SiteList within a range

int dasl. Keep Best (dasl” d, int num, int (* func) (const void*,
const void*), int deep)

keep portion of dasl
int dasl_Keep Best Threshold (dasl” d, double min, int deep)

keeps only SiteLists with minimum score
dasl” das]. I.Qad (char" filename)

loads dasl from file

SiteList*|dasl. Merge (dasl” d)
flattens a dasl into a single SiteList

das lº dasl. New (int incrSize)
create a dynamic array of SiteLists

void dasl_Partial Sort (dasl” d, int num, int (* func) (const void*,
const void*) )

sorts portion of dasl
double dasl_Pearson (dasl” sllist)

calculates Pearson's coefficient for pairs of scores within a dasl
void dasl. Print (dasl” d, int num)

print to Outf
void dasl_Save (dasl” d, int ("printfn) (const char” format, . . . ))

saves to file

void dasl Sort (dasl” d, int (* func) (const void*, const void*) )
sorts dasl

void dasl. Trung (dasl” d, int num, int deep)
truncate dasl

dasl_Add

void dasl_Add (dasl” d, SiteList” sl)

adds SiteList to array

Parameters:

d - the input dasl object
sl - SiteList to add

178



}}|||||||||||$]]



dasl_Append

void dasl_Append (dasl” a, dasl” b)

appends b to a

Parameters:

a - initial dasl

b - dasl to append

dasl_Copy

dasl” dasl_Copy (dasl” d)

shallow copy of dasl

Parameters:

d - the input dasl object

dasl_Deep Copy

dasl” dasl_Deepcopy (dasl” d)

deep copy of dasl

Parameters:

d - the input dasl object

dasl_DelPos

void dasl_DelPos (dasl” d, int pos, int deep)

delete a specific SiteList

Parameters:

d - the input dasl object
pos - position to delete
deep - flag of whether to free SiteList

179



}}||||||||||$]]



dasl_Exists

int dasl_Exists (dasl” d, SiteList” sl)

does a shallow check to see if sl exists

Parameters:

d - the input dasl object
sl - SiteList of interest

dasl_Free

dasl” dasl_Free (dasl” d, int deep)

free array

Parameters:

d - the input dasl object
deep - flag to free each SiteList object

dasl_Get

SiteList* dasl_Get (daslº d, int index)

gets SiteList at index

Parameters:

d - the input dasl object
index - index of interest

dasl_GetRandom

dasl” dasl_GetRandom (dasl” d, int count, int start, int end)

randomly choose some SiteList within a range

Parameters:

d - the input dasl object
count - number to choose

180



||||||||||||||||||
!/\



start - start range
end - end range

dasl_Keepbest

int dasl_Keepbest (daslº d, int num, int (* func) (const void*, const
void*), int deep)

keep portion of dasl

Parameters:

d - the input dasl object
num - number to keep
func - sort function pointer
deep - flag to do deep freeing

dasl_Keepbest Threshold

int dasl_Keepbest Threshold (dasl” d, double min, int deep)

keeps only SiteLists with minimum score

Parameters:

d - the input dasl object
min - minimum threshold
deep - flag to do deep freeing

dasl_Load

dasl” dasl_Load (char" filename)

loads dasl from file

Parameters:

filename - file to load

dasl_Merge

SiteList” dasl_Merge (dasl” d)

181



>º:

#

2.



flattens a dasl into a single SiteList

Parameters:

d - the input dasl object

dasl_New

dasl” dasl_New (int incrSize)

create a dynamic array of SiteLists

Parameters:

incrSize - increment size of internal dynamic array

dasl_PartialSort

void dasl_Partialsort (dasl” d, int num, int (* func)
void*) )

sorts portion of dasl

Parameters:

d - the input dasl object
num - number to sort
func - sort function pointer

(const void*, COnSt

dasl_Pearson

double dasl_Pearson (dasl” sllist)

calculates Pearson's coefficient for pairs of scores within a dasl

Parameters:

sllist - array of SiteLists

dasl_Print

void dasl_Print (dasl” d, int num)

print to Outf

182



}}|||||||||||||||||



Parameters:

d - the input dasl object
num - number to print

dasl_Save

void dasl_Save (dasl” d, int ("printfn) (const char” format, . . . ))

saves to file

Parameters:

d - the input dasl object
printfn - print function pointer

dasl_Sort

void dasl_Sort (dasl” d, int (* func) (const void*,

sorts dasl

Parameters:

d - the input dasl object
func - sort function pointer

const void*) )

dasl_Trunc

void dasl_Trunc (dasl” d, int num, int deep)

truncate dasl

Parameters:

d - the input dasl object
num - number to truncate

deep - flag to do deep freeing

B.2.8. dastr.c

pseudo-class of dynamic array of strings

Fºlsº

º,

º
-

183



as . . **

***
******

st-■ º

arº”



void dastr Add (dastr" d, char” val)
adds string to array

dastr"dastr Combine (dastrº a, dastr" b)
creates a new dastr and adds two dastrs to it

char” dastr Exists (dastr" d, char” str)
Check if string already exists in array

dastrºkastr Free (dastrº d, int deep)
free object

char" |dastr Get (dastrº d, int index)
returns string at index

dastr" dastr GetFirstNS■ r (dastrº d, int num)
gets the first n strings in array

dastr" dastr GetRandom (dastrº d, int count, dastr" disallowed)
gets random strings, disallowing some of them

dastr" dastr Load (char” file)
loads a set of strings from a file

dastr" dastr New (int incrSize)
creates a new dynamic array of strings

void dastr Print (dastr" d)
prints to LogF

void dastr Randomize (dastrº list)
randomizes the order of the strings

void dastr Savestream (dastrº seqList, int ("printfn) (const char”
format, . . . ))

strings to print to stream
dastr" dastr Split (char” str)

splits string at tabs and creates a new dastr, allocating memory for the split
strings

dastr Add

void dastr Add (dastrº d, char" val)

adds string to array

Parameters:

d - dynamic array object
val - string to add

dastr Combine

dastr" dastr Combine (dastrº a, dastrº b)

creates a new dastr and adds two dastrs to it

-
º,

º

ºr

184



Parameters:

a - dastr 1
b - dastr 2

dastr Exists

char" dastr_Exists (dastr" d, char" str)

Check if string already exists in array

Parameters:

d - dynamic array object
str - String to check

dastr Free

dastr" dastr_Free (dastr" d, int deep)

free object

Parameters:

d - dynamic array object
deep - flag to free string memory too

dastr Get

char" dastr_Get (dastr" d, int index)

returns string at index

Parameters:

d - dynamic array object
index - index of string

dastr GetFirstNStr

dastrº dastr GetFirstNstr (dastrº d, int num)

gets the first n strings in array

* - /

º

º

-

~ *

185



Parameters:

d - dynamic array object
num - number of strings to get

dastr GetRandom

dastr" dastr GetRandom (dastr" d, int count, dastr" disallowed)

gets random strings, disallowing some of them

Parameters:

d - dynamic array object
count - number of strings
disallowed - disallowed strings

dastr Load

dastr" dastr Load (char” file)

loads a set of strings from a file

Parameters:

file - filename

dastr New

dastr" dastr New (int incrSize)

creates a new dynamic array of strings

Parameters:

incrSize - increment size of dynamic array

dastr Print

void dastr_Print (dastr" d)

prints to LogF

Parameters:

186



d - dynamic array object

dastr Randomize

void dastr_Randomize (dastr" list)

randomizes the order of the strings

Parameters:

list - list of strings

dastr SaveStream

void dastr_Savestream (dastrº seqList, int ("printfn) (const char"
format, . . . ))

strings to print to stream

Parameters:

seqList - list of strings
printfn - print function pointer

dastr Split

dastrº dastr_Split (char” str)

splits string at tabs and creates a new dastr, allocating memory for the split strings

Parameters:

str - input string

B.2.9. inthash.c

hash table using int as the key

please see oldhash.c for equivalent comments

B.2.10. matchlist.c

pseudo-class to handle pairs of sequence locations in a space efficient manner

187



º■ º,

■ ºs,

|

||||||||||||||||||
~■

+r■■*t~~~\■

*+
+r■

••||-ae
…

+r~¡¿

~~~■


a SiteMatch is the location of a site

SiteMatchList is an array of SiteMatches

a MatchList contains the actual array of pairs of SiteMatches

ºnsumº
void MatchList Add (MatchList ml, Sitematch sml, site Match

sm2)

Adds a pair of SiteMatches to the MatchList object
void MatchList_Free (MatchList* ml, int deep)

Frees MatchList

Char * MatchList GetSeqLP (MatchList" ml, int site)
Gets gene id of one side of the matches

Site Match * MatchList GetSitematch (MatchList" ml, int match, int
site)

gets a SiteMatch
MatchList” MatchList New (int incrSize, char” idl, char” id2)* a new MatchList
MatchList” MatchList ReorderMatches (MatchList" ml, char” id)

puts the specified gene id in the first position
void SMI. Add (SiteMatchList” sml, SiteMatch” sm)

adds SiteMatch to SiteMatchList

SiteMatchList"|SMI, Create (int incrSize, char” id)
creates a dynamic array of SiteMatches

void SMI, Free (SiteMatchList” sml)
frees object

void Sitematch_Set (SiteMatch" Sm, short start, short end, char
compl)

sets values in a SiteMatch

MatchList_Add

void MatchList_Add (MatchList" ml, SiteMatch” sm.1, SiteMatch” sm2)

Adds a pair of SiteMatches to the MatchList object

Parameters:

ml - MatchList object
sm1 - SiteMatch 1
sm2 - SiteMatch 2

MatchList_Free

void MatchList_Free (MatchList* ml, int deep)

º

º

*T

188

Frees MatchList

Parameters: º:

ml - MatchList object º

deep - whether to free the internal SiteListMatch objects s

MatchList GetSeqLD *

char” MatchList_GetSeqLD (MatchList" ml, int site)

Gets gene id of one side of the matches

Parameters:

ml - MatchList object
site - (0 or 1) KT

MatchList GetSiteMatch 1)

SiteMatch" MatchList GetSiteMatch (MatchList" ml, int match, int site) º

gets a SiteMatch

Parameters: st

ml - MatchList object
match - match index *

site - which side of the matches (0 or 1)

MatchList New *.

MatchList" MatchList New (int incrSize, char * idl, char * id2) º *

creates a new MatchList º
intenally it's two arrays of SiteMatchLists

-

Parameters: > * .

incrSize - increment size of dynamic array tº º
idl - gene id of one side of the matches
id2 - gene id of the other side of the matches

189

MatchList_ReorderMatches

MatchList" MatchList ReorderMatches (MatchList” ml, char” id)

puts the specified gene id in the first position

Parameters:

ml - MatchList object
id - gene id

SML Add

void SML Add (SiteMatchList” sml, SiteMatch” sm)

adds SiteMatch to SiteMatchList

Parameters:

sml - SML object
sm - SiteMatch to add

SML Create

SiteMatchList" SML_Create (int incrSize, char * id)

creates a dynamic array of SiteMatches

Parameters:

incrSize - increment size for dynamic array
id - designate a gene id for the SML, since all SML will refer to the same gene

SML Free

void SML Free (SiteMatchList” sml)

frees object

Parameters:

sml - SML object

190

º■ º,

|||
■

SiteMatch_Set

void SiteMatch_Set (SiteMatch” sm, short start, short end, char compl)

sets values in a SiteMatch

Parameters:

sm - input sitematch
start - start position
end - end position
compl - strand (0 for forward, 1 for reverse)

B.2.11. microarray.c

pseudo-class to handle microarray data

data is stored in a tab delimited format, with the first row containing the sample names
(optionally) and the first column containing gene ids

several functions are devoted to subsetting samples, which was not used in the MaMF
paper

double ma_CalçPearson (HashTable" ma, char" genel, char" gene2)
Calculates Pearson's correlation of expression data between two genes

dastrº ma_CalçPearsonBest Genes (HashTable" ma, dastr" gene List, int
num(Genes, int” subset, int numsubset)

calculates genes that get the best average pairwise Pearson's correlation with a
specified list of genes

SiteList” ma_CalçPears2ngeneVs All. (HashTable" ma, char” gene 1, int” subset,
int numSubset)

sorts genes by those that have the best Pearson's correlation to the specified
genel

double ma_CalçPearsonçeneVsGeneSet (HashTable" ma, char” gene ID, dastr"
gene List, int” subset, int numsubset)

calculates average Pearson's between a gene and a list of genes, with optional
subsetting

double ma galgpaarsonsgore (HashTable" ma, dastr" genelist).
returns the average pearson's correlation using all the pairwise comparisons

between genes
double ma_CalçPearsonsgore2Subset (HashTable" ma, dastr" origGenes,

dastr" foundGenes, int” subset, int numSubset)

calculates average pairwise pearson's between genes in first gene set versus
genes in second gene set, allowing subsets

º ºº,

* - - -*** *

191

double
subset, int numsubset)

calculates average pairwise pearson's using subset of samples
double ma_CalcPearson Subset (HashTable * ma, char * gene 1, char * gene2,

int” subset, int numSubset)
calculates pearson's using subset of samples

Site List” CalcPearsonVsGenes (HashTable * ma, dastr" gene List, int”
subset, int numsubset)

sorts genes by average pairwise Pearson's correlation with a specified list of
genes

void

calculates Pearson's correlation between samples (instead of genes)
void |ma Free (HashTable * ma)

HashTable *

loads microarray into memory
intº ma. Maximize Pearsonsubset (HashTable * ma, dastr" gene List, int

numsubset, int numlter, double sample Threshold)
stochastic hillclimbing to maximize average pairwise pearson's within a gene

set by choosing the optimal subset
HashTable *

creates a new microarray object
void ma_PlotRearsonscore (HashTable * ma, dastr" gene List)

calculates Pearson's correlation between genes in gene list and prints them
void lma RandomizeValues (HashTable * ma)

void

removes samples from a microarray and outputs edited microarray
void ScrambleValuesWithinGenes (HashTable * ma)

randomizes the order of expression values per gene
void ma_ViewSubset (HashTable" ma, char” filename)Fº the sample data for all genes for pairs of samples

HashlterateNext

for (iter=HashNew Iterator (seqs) ; iter->val = NULL;
HashlterateNext (iter))

returns the next value in iterator

hi->key contains the key associated with it

Parameters

hi - hash iterator object

*A

* * *

tº .

192

ma_CalcPearson

double ma_CalcPearson (HashTable" ma, char" genel, char" gene2)

Calculates Pearson's correlation of expression data between two genes

expression data is obtained for each sample between the genes; we require at least 10
sample shared between the two genes for the PC to be calculated

the PC measures the level of coexpression between two genes

Parameters:

ma - microarray object
genel - gene id 1
gene2 - gene id 2

ma_CalcPearson BestGenes

dastrº ma_CalcPearsonbestGenes (HashTable" ma, dastr" gene List, int
numGenes, int” subset, int numsubset)

calculates genes that get the best average pairwise Pearson's correlation with a specified
list of genes

see ma CalcPearsonVSGenes

Parameters:

ma - microarray object
genelist - list of genes
numgenes - number of best genes to return
subset - sample subset to use
numsubset - number of samples in subset, 0 to use all

ma_CalcPearson GeneVs.All

SiteList” ma_CalcPearsongenevsall (HashTable" ma, char" gene 1, int”
subset, int numsubset)

sorts genes by those that have the best Pearson's correlation to the specified genel

I don't handle subsets...

Parameters:

º,

-,

*

ºr’

193

}}||||||||||8||||
º

ºtº,
cº
•

•·
,■■■,,■■■

º…",|■
■
■,,,

•^2,|--*~----||…ºº■
|

1*■
'̂

-----º■ „º-"…•
•

ma - microarray object
genel - gene id 1
subset - sample subset to use
numsubset - number of samples in subset, 0 to use all

ma_CalcPearson GeneVsGeneSet

double ma_CalcPearsongenevsgeneset (HashTable" ma, char" gene ID, dastr"
gene List, int” subset, int numSubset)

calculates average Pearson's between a gene and a list of genes, with optional subsetting

Parameters:

ma - microarray object
gene ID - gene ID
genelist - list of genes
subset - sample subset to use
numsubset - number of samples in subset, 0 to use all

ma_CalcPearsonScore

double ma_CalcPearsonscore (HashTable" ma, dastr" genelist)

returns the average pearson's correlation using all the pairwise comparisons between
genes

Parameters:

ma - microarray object
genelist - list of genes

ma_CalcPearsonScore2Subset

double ma_CalcPearsonscore?Subset (HashTable" ma, dastrº origGenes,
dastr" foundGenes, int” subset, int numSubset)

calculates average pairwise pearson's between genes in first gene set versus genes in
second gene set, allowing subsets

Parameters:

ma - microarray object
origgenes - first gene set
foundGenes - second gene set

194
tº

!\{\(]

----*~
■

■

ºz++■ s-}\~■ -·
……
■■

subset - sample subset to use
numsubset - number of samples in subset, 0 to use all

ma_CalcPearsonScoreSubset

double ma_CalcPearsonscoresubset (HashTable" ma, dastr" genelist, int”
subset, int numsubset)

calculates average pairwise pearson's using subset of samples

Parameters:

ma - microarray object
gene List -
subset - sample subset to use
numsubset - number of samples in subset, 0 to use all

ma_CalcPearsonSubset

double ma_CalcPearsonsubset (HashTable" ma, char" gene 1, char" gene2,
int” subset, int numsubset)

calculates pearson's using subset of samples

Parameters:

ma - microarray object
genel - gene id 1
gene2 - gene id 2
subset - sample subset to use
numSubset - number of samples in subset, 0 to use all

ma_CalcPearsonVsGenes

SiteList* ma_CalcPearsonvsGenes (HashTable" ma, dastr" genelist, int”
subset, int numsubset)

sorts genes by average pairwise Pearson's correlation with a specified list of genes

Parameters:

ma - microarray object
genelist - specified list of genes
subset - sample subset to use
numsubset - number of samples in subset, 0 to use all

195
(tº

ma_CompareSamples
W. .

void ma_Comparesamples (HashTable" ma) t

*Y"

calculates Pearson's correlation between samples (instead of genes)
--

basically a measure of similarity between samples {
uses Pearsons Coeff

I used this to toss out some highly similar (in fact identical) samples in the Stuart data set

Parameters:

ma - microarray object

ma_Free *

void ma_Free (HashTable" ma)

frees the microarray º,

Parameters:

ma - microarray object * ,

ma_Load.Array

HashTable" ma_Loadarray (char” array File, int has Header) º

loads microarray into memory

Parameters:

array File - filename of microarray ºhas Header - flag to specify whether a header exists
-

ma_MaximizePearsonSubset

int” ma_MaximizePearsonsubset (HashTable" ma, dastrº genelist, int
numsubset, int numlter, double sample Threshold)

stochastic hillclimbing to maximize average pairwise pearson's within a gene set by f

choosing the optimal subset *

196 * *(.

also has a simulated annealing feature

Parameters:

ma - microarray object
genelist - list of genes
numsubset - number of samples in subset, 0 to use all
numIter - number of iterations to do hillclimbing
sampleThreshold - required percentage of genes that use particular sample in order to be
considered in subset

ma_New

HashTable" ma_New (int expectedNumgenes)

creates a new microarray object

stored as a hash table

Parameters:

expected Numgenes - approximate number of genes in microarray

ma_PlotpearsonScore

void ma_PlotPearsonscore (HashTable" ma, dastr" genelist)

calculates Pearson's correlation between genes in gene list and prints them

Parameters:

ma - microarray object
genelist - list of genes

ma_RandomizeValues

void ma_Randomizevalues (HashTable" ma)

randomize non null cells in microarray to [0.1]

Parameters:

ma - microarray object

197

!

||||||||||||$]]
~
|¡¿„”■■■••••~\\\~"■

*|

*|-

|■ ~
\■

•••r

s'■
)*̂'•
* *

ma_RemoveSamples

void ma_Removesamples (HashTable" ma, char” filename)

removes samples from a microarray and outputs edited microarray

Parameters:

ma - microarray object
filename - file containing a list of sample index positions

ma_ScrambleValuesWithingenes

void ma_ScrambleValuesWithingenes (HashTable" ma)

randomizes the order of expression values per gene

Parameters:

ma - microarray object

ma_ViewSubset

void ma_ViewSubset (HashTable" ma, char" filename)

retrieves the sample data for all genes for pairs of samples

Parameters:

ma - microarray object
filename - file containing pearson's correlation, samplel and sample2 per line

B.2.12 motif-finder.c

mainly to coordinate what is to be done in this run via arguments from command

—

J

* -
* * * *

198

}}|||||||||||$]]

void ProcessCommand Line (int argc, void* argv[])

int main (int argc, void* argv[])
First function called from command line, controls which functions are called as a

result of the arguments on the command line

ProcessCommand Line

void ProcessCommand Line (int argc, void* argv[])

process input from command line

two formats, either as a two valued argument, e.g. -[argument] [value

or a single valued argument, e.g. -[argument]

Parameters:

argc - number of arguments from command line
argv[] - command line arguments

main

int main (int argc, void* argv[])

First function called from command line, controls which functions are called as a result
of the arguments on the command line

Parameters:

argc - number of arguments from command line
argv[] - arguments from command line

B.2. 13. oldhash.c

hash table library
TTTTTTTTTTTTTTTTTTTTTTTºº Tºrº. Tºri

unction Summary ºn nº.
*

Hashconstructrable ()
Creates a new hash table

Hash.Del ()

Delete a key from the hash table and return
associated data

double HashDoubleMinus Minus (HashTable” ht,
char * key)

199

treats the value of a key as a double and
decrements

double HashDouble Plus Plus (HashTable” ht,
char” key)

treats the value of a key as a double and
increments

void Hash FreeTable (HashTable * table, void
(* func) (void "))

frees hash table
Hashlnsert ()

inserts a key into the hash table
for (iter=HashNew Iterator (seqs); HashlterateNext (iter))
iter->val = NULL; returns the next value in iterator

HashTable * Hashi:2adString (char” filename)
Loads a hash table of strings

Hash Iter* HashNew Iterator (HashTable” ht)
creates a hash iterator

int HashPlusPlus (HashTable” ht, char"
key)

treats the value of a key as an int and
decrements

HashTable * I.Qadhashpouble (char" filename)
Loads a hash table of doubles

static unsigned hash (const char * ptr.)
Generates a hash value for a string

Hash ConstructTable

HashConstruct'Table ()

Creates a new hash table

Parameters:

table - generally set to NULL
size - expected size of hash table

HashDel

HashDel ()

Delete a key from the hash table and return associated data

returns NULL if not present

Parameters:

200

3.

*

■

º

key - key to delete
table - hash table

HashDoubleMinus Minus

double HashDoubleMinus Minus (HashTable” ht, char” key)

treats the value of a key as a double and decrements

used for markov stuff, a little hackish

Parameters:

ht - hash table

key - key

HashDoublePlusBlus

double HashDouble Plus Plus (HashTable” ht, char” key)

treats the value of a key as a double and increments

used for markov stuff, a little hackish

Parameters:

ht - hash table
key - key

HashFreeTable

void Hash FreeTable (HashTable * table, void (* func) (void *))

frees hash table

Parameters:

table - table to be freed
func - function pointer to be applied to each element in table

Hashinsert

Hashlnsert ()

201

inserts a key into the hash table

returns NULL if it failed to be inserted, like if it already exists

Parameters:

key - key of the key-value pair
data - value of the key-value pair, can be anything
table - hash table

HashlterateNext

for (iter=HashNew Iterator (seqs); iter->val = NULL;
HashlterateNext (iter))

returns the next value in iterator

hi->key contains the key associated with it

Parameters:

hi - hash iterator object

HashLoadString

HashTable” HashLoadString (char” filename)

Loads a hash table of strings

Parameters:

filename - filename containing key-value pairs

HashNew■ terator

Hash Iter* HashNewlterator (HashTable” ht)

creates a hash iterator

needs to be freed when done

Parameters:

ht - hash table

202

tº

tº

HashPlusBlus

int Hash PlusPlus (HashTable” ht, char” key)

treats the value of a key as an int and decrements

Parameters:

ht - hash table

key - key

LoadBlashDouble

HashTable * Load HashDouble (char” filename)

Loads a hash table of doubles

used for markov stuff

key is a string, value is a double

Parameters:

filename -

filename - filename containing key-value pairs

hash

static unsigned hash (const char * ptr.)

Generates a hash value for a string

An excellent string hashing function. Adapted from glib's g_str hash(). Investigation by

Parameters:

ptr - string to be hashed

B.2.14 pºwm.c

pseudo-class for a position weight matrix (PWM) object

* *

203

■ !/\

|||||||||||
■ ae

Q

||||

each cell in the matrix contains an integer

ºw
-
— TT TTTTTTTTTTTTT -- ---. -Function Summary

-
—

double |PWM AddSite (PWM* motif, SiteWin" sw)

adds frequency values of SiteWin to the PWM
double PWM galeggcontent (PWM* motif)

Calculate GC content of motif

double PWM CalçInformationçontent (PWM* motif)
calculate information content of motif

PWM* PWM Copy (PWM* pwm)
copies PWM

PWM* PWM greateEromoffsetSiteList (SiteList” sl, int offset, int
width)

Creates a PWM from the SiteList, starting from an offset
PWM* PWM greateEromSiteList (Site List” sl, int width)

creates a PWM from the SiteList

PWM* PWM greateEromSiteWin (SiteWin” sw, int width)
Creates a PWM based on a SiteWin

PWM* PWM greateRandom (int numSites, int width)
creates a random PWM

void PWM_Determinaçonsensus (PWM* motif, char” consensus)
generates the consensus sequence from the PWM using a small number of

IUPAC symbols
void PWM_DetermineConsensus Stranded (PWM* motif, char” consensus, int

strand)

generates consensus from PWM or its reverse complement
void PWM_DetermineMaxes (PWM* motif)

determines the max score of each position in PWM
void PWM_Expandsites (PWM* motif, int multiplier)

Multiplies values in PWM by set amount
void PWM_Free (PWM" motif)

free PWM

PWM* PWM GenRandom (int width, int sum)
a more efficient way to randomly generate a motif

SiteWin"|PWM_GetBestSubseqalignment (PWM* motif, Sequence” seq., int
width)

finds best alignment of the PWM to the sequence
double PWM_GetWorstScoresiteList (PWM* motif, SiteList" sl, int num)

returns the score of the worst aligning site against the PWM
PWM* PWM Load (char” filename)

Loads a PWM from a file

PWM* PWM Load? (FILE" fin)
Loads a PWM from a file, enhanced

PWM* PWM New (int width)
creates a new PWM

void PWM Print (PWM* motif)
Prints internals of PWM

204

Prints PWM internals to stream

double PWM ScorepMA (PWM" motif, unsigned int dna)
calculates PWM score of DNA-type sequence

double |PWM_Scoresite (PWM* motif, char” s)
calculate PWM score of site

double PWM ScoresiteList (PWM* motif, Site List” sl, int num)
scores all sites against PWM and returns the sum of scores of the top num

sites

double PWM_ScoreslidingPWM (PWM* extended PWM, PWM” motif, int" offset,
int” strand)

finds the score of the best alignment of motif against the extendedPWM
void PWM Stream (PWM* motif, int (* printfn) (const char” format, .))

PWM_AddSite

double PWM_Addsite (PWM* motif, SiteWin" sw)

adds frequency values of SiteWin to the PWM

Parameters:

motif - PWM object
sw - SiteWin to add

PWM_CalcGCContent

double PWM CalcGCContent (PWM* motif)

Calculate GC content of motif

Parameters:

motif - PWM object

PWM_CalcInformationContent

double PWM CalcInformationContent (PWM* motif)

calculate information content of motif

Parameters:

motif - PWM object

205

1)

tº

PWM_Copy

PWM* PWM_copy (PWM* pwm)

copies PWM

Parameters:

pwm - input PWM

PWM_CreateEromoffsetSiteList

PWM* PWM_CreateEromoffsetsiteList (SiteList" sl, int offset, int width)

Creates a PWM from the SiteList, starting from an offset

Parameters:

sl - input SiteList
offset - offset index
width - width of PWM

PWM_CreateEromSiteList

PWM* PWM_CreateEromsiteList (SiteList" sl, int width)

creates a PWM from the SiteList

Parameters:

sl - input sitelist
width - width of sitelist

PWM_CreatefromSiteWin

PWM* PWM_CreatefromSiteWin (SiteWin" sw, int width)

Creates a PWM based on a SiteWin

Parameters:

sw - input SiteWin
width - width of SiteWin

206

||||||||||
*

……
**

→***…
*

~**……
■ -■ •
→r■■ º

PWM_CreateRandom

PWM* PWM_CreateRandom (int numsites, int width)

creates a random PWM

Parameters:

numsites - number of sites in the PWM
width - width of PWM

PWM_DetermineConsensus

void PWM_Determineconsensus (PWM" motif, char” consensus)

generates the consensus sequence from the PWM using a small number of IUPAC
symbols

Parameters:

motif - PWM object
consensus - pre-allocated string that will contain consensus

PWM_DetermineConsensusStranded

void PWM_Determineconsensusstranded (PWM* motif, char” consensus, int
strand)

generates consensus from PWM or its reverse complement

if strand==0 then same as PWM DetermineConsensus

Parameters:

motif - PWM object
consensus - pre-allocated String that will contain consensus
strand - whether to look at reverse complement of PWM

PWM_DetermineMaxes

void PWM_DetermineMaxes (PWM* motif)

determines the max score of each position in PWM

* ,

*

207

\{
*(■
|

||||||||||||
■■■■■…

aenºae

Parameters:

motif - PWM object

PWM_ExpandSites

void PWM Expandsites (PWM* motif, int multiplier)

Multiplies values in PWM by set amount

Parameters:

motif - PWM object
multiplier - multiply values in PWM by this amount

PWM_Free

void PWM_Free (PWM" motif)

free PWM

Parameters:

motif - PWM object

PWM_GenRandom

PWM* PWM GenRandom (int width, int sum)

a more efficient way to randomly generate a motif

Parameters:

width - width of motif to create
sum - sum of each column

PWM_GetBestSubseqAlignment

SiteWin" PWM_GetBestSubseqalignment (PWM* motif, Sequence” seq., int
width)

finds best alignment of the PWM to the sequence

208

■■

Parameters:

motif - PWM object
seq - input sequence
width - width of alignment, asserted to be that of motif

PWM_GetWorstScoresiteList

double PWM_GetWorstScoresiteList (PWM* motif, Site List" sl,

returns the score of the worst aligning site against the PWM

Parameters:

motif - PWM object
sl - list of binding sites
num - not used

int num)

PWM_Load

PWM* PWM Load (char" filename)

Loads a PWM from a file

Parameters:

filename - filename containing PWM

PWM_Load2

PWM* PWM Loadz (FILE" fin)

Loads a PWM from a file, enhanced

this is for loading PWMs with the #PWM format, which allows the data to be part of a
larger file

Parameters:

fin - file pointer containing PWM data

PWM_New

PWM* PWM New (int width)

().

209

creates a new PWM

Parameters:

width - width of new PWM

PWM_Print

void PWM_Print (PWM* motif)

Prints internals of PWM

Parameters:

motif - PWM object

PWM_Scored NA

double PWM_Scored NA (PWM* motif, unsigned int dna)

calculates PWM score of DNA-type sequence

Parameters:

motif - PWM object
dna - DNA number

PWM_Scoresite

double PWM_Scoresite (PWM* motif, char * s)

calculate PWM score of site

Parameters:

motif - PWM object
s - sequence that aligns to motif

PWM_ScoresiteList

double PWM_ScoresiteList (PWM" motif, SiteList" sl, int num)

scores all sites against PWM and returns the sum of scores of the top num sites

s
º

º

()

210

Parameters:

motif - PWM object
sl - list of binding sites
num - number of sites to contribute to score

PWM_ScoreSlidingPWM

double PWM_ScoreslidingPWM (PWM* extended PWM, PWM* motif, intº offset,
int” strand)

finds the score of the best alignment of motif against the extendedPWM

Parameters:

extendedPWM - a PWM that has been extended, should be larger than motif
motif - PWM object
offset - returns the offset of the best alignment of motif to the extendedPWM
strand - returns the strand of the best alignment of motif to the extendedPWM

PWM_Stream

void PWM_Stream (PWM* motif, int ("printfn) (const char” format, . . .))

Prints PWM internals to Stream

Parameters:

motif - PWM object
printfn - print function pointer

B.2.15. SCOP'e. C

functions to calculate scores of motifs

The main function is GetTurboScore

There's a lot of other scoring functions I played with that didn't pan out, which I didn't
document, but they follow a similar format as GetTurboScore

--Tº-Tº- TTTTTTFunction Summary
º

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-

double AvLogMarkºv.SeqProb (Site List” list, int

double GetBPMotifScore (SiteList” list, int width)

J.

211

calculates the Bioprospector score of a motif
double|GetInformationContent (SiteList” list, int width)

- -
int GetLinearScore (SiteList” list,

int GetLinearScoreWindow (SiteList” list, int width, int start)

double Get LinearScoreWithBackground (Site List” list, int width)

double GetTurboScore (SiteList* list,

double/GetTurboScorePlusSitewin (Site List” list, SiteWin” sw,

int Linearçompare (char * a, char” b, int len)
calculates number of matches between sequences

AvLogMarkovseqProb

double AvLogMarkovseqProb (SiteList” list, int width)

calculates average log markov probability of a set of sequences

Parameters:

list - motif
width - width of sequences

GetBPMotifScore

double GetBPMotifScore (SiteList* list,

calculates the Bioprospector score of a motif

int width)

uses recent scoring function in MDScan (also used in BP now)

Parameters:

list - motif
width - width of sequences

GetInformation Content

double GetInformationContent (SiteList” list, int width)

calculates information content of motif

212

Parameters:

list - input motif
width - width of sequences

GetLinearScore

int GetLinearScore (SiteList” list, int width)

calculates number of pairwise matches between all sequences

Parameters:

list - motif
width - width of sequences

GetLinearScoreWindow

int GetLinearScoreWindow (SiteList” list, int width, int start)

calculates number of pairwise matches within window in motif

similar to GetLinearScore

Parameters:

list - motif
width - width of window
start - index offset

GetLinearScoreWith Background

double GetLinearScoreWithBackground (SiteList* list, int width)

calculates score incorporating linear score and markov background probability

Parameters:

list - input motif
width - width of sequences

213

GetTurboScore

double GetTurboScore (SiteList” list, int width)

calculate the score used in MaMF paper

there is caching of the scores to make it faster as the motif is greedily built up, so you

particular SiteWin to the motif

assume list has sequences of equal length, length == width

Parameters:

list - motif

width - width of sequences

GetTurboScorePlusSitewin

double GetTurboScorePlusSitewin (SiteList” list, SiteWin” sw, int width)

calculates hypothetical score of adding a particular SiteWin to the motif

See also GetTurboScore

Parameters:

list - motif
sw - SiteWin to add

width - width of sequences

LinearCompare

int LinearCompare (char” a, char * b, int len)

calculates number of matches between sequences

Parameters:

a - Sequence 1
b - sequence 2
len - length of sequences

1)

214

B.2.16. search.c

greedy motif finding using indexing to accelerate the search process

start with TurboGreedyMotifSearch to understand what's going on

sadly, as I look at this code more I also found that I ended up not allowing any
mismatches in the nmers at all (see GetScoring Table) since in motif-finder.c
cNmerScoreThreshold is set to cnmerSize”2, so all this clever programming wasn't
actually used, probably because of performance reasons

there's some other ideas using different methods (like Gibbs sampling), but I didn't bother
documenting them since they don't work

Function Summary
-

– – ---------------

void |AddlindexToCache (HashTable * cache, char * nmer, int idx)
Adds an index to be associated with an nmer

void AddºverlappingSiteWin (Site List” osl, SiteList" sl, SiteWin"
sw, MatchList” “” matchesGrid, HashTable” seqHash, int
width, double (* Scoring Metric) (SiteList”, int))

uses pre-built matches to find similar sequences to that of a SiteWin and
adds them to osl

void CachellmerCombinations (HashTable * cache, int idx, char *
--

nmer, int nmerSize, int nmerScore Threshold, scoret” st)
caches nmer and IUPAC synonyms for given position idz

void Comparegaçhes (ihashTable” matches, int minScore, int width,
daint * cache 1, daint * cache 2, char * id1, char * id2, bazd”
compared Array)

does simple sequence comparison using the index caches
int CompareMucleotides (char nucl, char nuc2, int strand1, int

strand2)

checks if nucleotides are identical, considering reverse complement if
necessary

MatchList” ” “Creatematches (dastrº seqList, int width, double
(* ScoringMetric) (SiteList”, int), HashTable” seqHash)

creates matches Grid
HashTable * Create TurboCache (Sequence” seq., int width, scoret”

scoringTable)
generates a cache (index table) from a sequence

void |EnumeratematchWindows (dasl” bestmatches, MatchList" ml, int
width, double (* Scoring Metric) (Site List”, int), double *
min, double * max)

enumerate sequence alignments and keep the best to be used as seeds
Site List” |ExtendSiteList (SiteList” sl, int extendleft, int

extendright)
extends the SiteList by specified amount, filling with genomic sequence

void FreeMatches Grid (MatchList” “” matchesGrid, dastrº seqList)

2

215

frees the matches grid
das lº GenerateSeeds (dastr" seqList, int width, double

(* Scoring Metric) (SiteList”, int), MatchList” “” matches Grid)
generates seeds to be used in step 3

int GetIndex.FromPosition (int pos, int strand)
converts position and strand into an index

int GetIndex.From Sitelist (SiteList” sl)

int GetPosition From Index (int idx, int” strand)
converts index into position and strand

int GetPosition FromSiteWin (SiteWin” sw, int” strand)

void

int” strand1, int” posz, int” strand2)
gets two sets of position from an index

double
(*š■■ ingºtriº) (Ši teii stº, int), siteList” sl, siteWin:
sw, int width)

Calculates the score of the SiteList with additional SiteWin
scoret”

returns a scoring table to judge how nucleotide alignments are scored
SiteWin?" GetSiteWin (char * id, int posstart, int posend, int strand,

int get Seq)
constructs a SiteWin to annotate sequence

Char * GetSubsequence (char” id, int posstart, int posBnd, int
strand)

gets sub sequence from gene promoter
unsigned int

das lº

HashTable” seqHash, dastr" seqList, int width, double
(* ScoringMetric) (SiteList”, int))

Takes all seeds and greedily builds motifs from them
MatchList”

width)

merges matches into the space efficient MatchList structure
SiteList”

matches Grid, HashTable * seqHash, int width, double
(* Scoring Metric) (Site List”, int), SiteList* match Cache, int
maxMatches)

builds motif up greedily
void

annotate each of the SiteWins for their background probability
void ScoresiteListWindows (das lº list, int width, double

(* Scoring Metric) (SiteList”, int))
score all SiteList Windows

das lº

(* Scoring Metric) (Site List”, int))
the Papa function to do the greedy search

W.

-
*

t]

216

Add[ndexToCache

void AddlndexToCache (HashTable * cache, char * nmer, int idx)

Adds an index to be associated with an nmer

Parameters:

cache - cache object
nmer - nmer index to which to add
idz - index to add to nmer hash

AddOverlappingSiteWin

void AddOverlappingSiteWin (SiteList” osl, SiteList” sl, SiteWin” sw,
MatchList” “” matches Grid, HashTable * seqHash, int width, double
(* Scoring Metric) (SiteList”, int))

uses pre-built matches to find similar sequences to that of a SiteWin and adds them to osl

Parameters:

osl - the running SiteList of overlapping SiteWins
sl - original SiteList (current motif in greedy search to be built up)
matches Grid - all the matches
seqhash - hash of sequences to get correct index for matchesGrid
width - width
Scoring Metric - scoring function pointer

CachenmerCombinations

void CachellmerCombinations (HashTable” cache, int idx, char * nmer, int
nmer Size, int nmerScore Threshold, scoret” st)

caches nmer and IUPAC synonyms for given position idz

derivative

Parameters:

cache - cache object
idz - position index of nmer
nmer - nmer to be considered
nmerSize - length of nmer

217

nmerScoreThreshold - threshold to consider nmer
st - score table used

Comparecaches

void Comparecaches (ihashTable” matches, int minScore, int width, daint”
cachel, daint” cache 2, char * idl, char” id2, bazd” compared Array)

does simple sequence comparison using the index caches

array for two 1000 bp sequences)

Parameters:

matches - results of matches are stored in a hash table
minScore - minimum score to be counted as a match

width - width of sequences
cachel - sequence 1 stored as a cache
cache 2 - sequence 2 stored as a cache
id1 - gene id 1
id2 - gene id 2
compared Array - a log of whether a particular region in the comparison has already been
examined

CompareMucleotides

int CompareMucleotides (char nucl, char nuc2, int strand1, int strand2)

checks if nucleotides are identical, considering reverse complement if necessary

Parameters:

so 1 -

so.2 -

nucl - nucleotide 1
nuc2 - nucleotide 2
strand1 - strand of nucl
strand2 - strand of nuc2

218

Create Matches

MatchList* * * Creatematches (dastrº seqList, int width, double
(* Scoring Metric) (Site List”, int), HashTable * seqhash)

creates matches Grid

Parameters:

seqList - list of gene ids
width - width of sites

ScoringMetric - scoring function pointer
seqHash - id-to-index conversion

CreateTurboCache

HashTable * Create"TurboCache (Sequence” seq., int width, scoret”
scoringTable)

generates a cache (index table) from a sequence

similar to cache.c from previous projects

Parameters:

seq - input sequence
width - width of subsequences
scoringTable - how to deal with mismatches (not really used in MaMF paper)

Enumerate MatchWindows

void EnumeratematchWindows (das l’ bestmatches, MatchList” ml, int width,
double (* Scoring Metric) (SiteList”, int), double * min, double * max)

enumerate sequence alignments and keep the best to be used as seeds

Parameters:

bestmatches - output matches, a running total
ml - match list of a particular pair of sequences
width - width

ScoringMetric - scoring function pointer
min - min score of match to keep
max - max score of matches so far

t]

219

ExtendSiteList

SiteList” ExtendSiteList (Site List” sl, int extendleft, int extendright)

extends the SiteList by specified amount, filling with genomic sequence

Parameters:

sl - input SiteList
extendleft - extend to the left this many nucleotides
extendright - extend to the right this many nucleotides

FreeMatchesGrid

void FreeMatchesGrid (MatchList*** matchesGrid, dastr" seqList)

frees the matches grid

Parameters:

matches Grid -

seqList - sequence ids

GenerateSeeds

daslº GenerateSeeds (dastr" seqList, int width, double
(* Scoring Metric) (SiteList”, int), MatchList” “” matchesGrid)

generates seeds to be used in step 3

Enumerate MatchWindows does the real work

Parameters:

seqList - sequence ids
width - width
Scoring Metric - scoring function pointer
matches Grid - 2d array of matches

GetIndex.FromPosition

int GetIndex.FromPosition (int pos, int strand)

{}

220

converts position and strand into an index

Parameters:

pos - position
strand - strand

GetIndex.From SiteList

int GetIndex.FromSiteList (SiteList” sl)

calculates the super index from the SiteList

Parameters:

sl - input SiteList containing two SiteWins

GetPosition From Index

int GetPosition From Index (int idx, int” strand)

converts index into position and strand

Parameters:

idx - input index
strand - output strand

GetPosition From SiteWin

int GetPosition From SiteWin (SiteWin” sw, int” strand)

retrieves strand and position from SiteWWin

Parameters:

221

sw - input SiteWin
strand - strand to be returned

GetPositionsBromSuperindex

void GetPositions FromSuperLndex (unsigned int idx, int” pos 1, int”
strand1, int” pos 2, int” strand2)

gets two sets of position from an index

Parameters:

idz - input index
pos 1 - output
strand1 - output
pos2 - Output
strand2 - output

GetScoringMetricPlusSiteWin

double GetScoring MetricplusSiteWin (double (* Scoring Metric) (SiteList”,
int), SiteList” sl, SiteWin” sw, int width)

Calculates the score of the SiteList with additional SiteWin

grouping function to call the appropriate function given the scoring metric

Parameters:

Scoring Metric - scoring function pointer
sl - input sitelist
sw - input SiteWin
width - width of sw

GetScoringTable

scoret”. GetScoringTable (int type)

returns a scoring table to judge how nucleotide alignments are scored

you can theoretically define arbitrary scoring tables to allow for types of mismatches

s

º

º

*
s

(7.

222

aligned which share an R, then you would get 1 point. But a complete match A and A
would get 2 points º

Y
in the end I stuck with type 0 because the partial matches slowed down the algorithm a

-

lot, though as I write this I wonder how much "a lot" actually is.... sº

sadly, as I look at this code more I also found that I ended up not allowing any *

mismatches at all since in motif-finder, cMnmerScoreThreshold is set to cMmerSize”2 so
all this clever programming wasn't actually used, probably because of performance
TCason S

Parameters:

type - type of scoring table, 0 is mismatches allowed, l is fancy IUPAC type matching

GetSiteWin

SiteWin" GetSiteWin (char * id, int posstart, int posend, int strand, int
get Seq)

constructs a SiteWin to annotate sequence

Parameters:

id - gene id
posstart - position start
posFnd - position end
strand - Strand

get Seq - flag to conditionally get sequence

GetSubSequence

char”. GetSubSequence (char” id, int posstart, int posend, int strand)

gets subsequence from gene promoter º
>

y

Parameters: º

- (;)
id - gene id
posstart - position start
pos End - position end
strand - strand º

223 , ,

GetSuperindex

unsigned int GetSuperindex (int pos 1, int strand1, int pos2, int
strand2)

gets an index from two sets of positions

Parameters:

posl - position 1
strand1 - Strand 1

pos” - position 2
strand2 - strand 2

GreedyMerge

daslº GreedyMerge (das] * sllist, MatchList" * * matches Grid, HashTable”
seqHash, dastr" seqList, int width, double (* Scoring Metric) (SiteList”,
int))

Takes all seeds and greedily builds motifs from them

Parameters:

sllist - all seeds
matchesgrid - all the matches
seq}.ash - id-to-index conversion
width - width
Scoring Metric - scoring function pointer

MergeMatches

MatchList” MergeMatches (ihash Table * matches, char * idi, char * id2, int
width)

merges matches into the space efficient MatchList structure

not only for space efficiency, but l think it makes it easier later on to enumerate all
potential pairwise alignments

posX on negative strand is the "end" on forward strand...

224

1)

(, !

for all matches, first seq is idl, second seq is id2

Parameters:

matches - matches as a hash table

id1 - first gene id
id2 - Second gene id
width - width of sites

PartialGreedyMergeMatches

SiteList” PartialGreedyMergeMatches (SiteList" slorig, MatchList” “*
matches Grid, HashTable * seqHash, int width, double
(* Scoring Metric) (Site List”, int), SiteList” match Cache, int maxMatches)

builds motif up greedily

part of stage 3

matches only has sitelists of size 2

Parameters:

slorig - original SiteList
matches Grid - all the pre-built matches
seqhash - id-to-index conversion
width - width

Scoring Metric - scoring function pointer
matchCache - cache of matches found from sequences in slorig
maxMatches - size to build motif to

RecordNmerFrequency

void RecordNmerFrequency (dasl” d, int width)

annotate each of the SiteWins for their background probability

Parameters:

d - array of motifs
width - width of sites

225

s

ScoreSiteListWindows

void ScoresitelistWindows (daslº list, int width, double
(* ScoringMetric) (SiteList”, int))

score all SiteList Windows

Parameters:

list - list of SiteList windows (pairs of SiteWins per SiteList)
width - width of sequences
Scoring Metric - score function pointer

TurboGreedyMotifSearch

daslº TurboGreedyMotifSearch (dastr" seqList, int width, double
(* Scoring Metric) (SiteList”, int))

the Papa function to do the greedy search

stage 1: match generation from cache method

stage 2: Seed generation

Parameters:

seqList - list of sequence ids
width - width of resulting motifs
Scoring Metric - scoring function pointer

B.2.17 sequence.c

utility functions to handle the Sequence object

Site List" |GenerateNanySeqSet (dastr" s, int width)
Generates all possible SiteWin binding sites for many sequences

SiteList” (GenerategºneSegSet (Sequence” seq., int width)

dastr" Getkeys FromHash (HashTable” seqs)

SiteWin" GetRandomMmer (HashTable * seqs, dastrº seqList, int window)
get a random nmer from a random sequence

º

226

SiteWin" GetRandomMiner InSeq (Sequence” seq., int window)

SiteList" |GetRandomMmers (HashTable” seqs, dastr" seqList, int window,

dastr" GetRandomSeqList (int num)

HashTable"|LoadSequences (char” fasta File, int num)

void SaveRastasequences (dastr" seqList, char" filename)
Saves sequences to file in standard fasta format

void Sava■ equences Restricted Fasta (dastrº seqList)
Saves sequences to OutR in Restricted Fasta format, compatible with

Bioprospector
double Seq CalçGCContent (Sequence” seq)

calculates GC content of a sequence
void WhackSites (SiteList” sl)

takes binding sites and marks Ns in the original genomic sequence

Generate ManySeqSet

SiteList* GeneratemanySeqSet (dastrº s, int width)

Generates all possible SiteWin binding sites for many sequences

Parameters:

s - list of gene ids
width - width of binding site

GenerateCneSeqSet

SiteList* GeneratedneseqSet (Sequence” seq., int width)

Generates all possible binding sites for a given sequence

Parameters:

seq - input sequence
width - width of binding site

227

GetKeysFrom Hash

dastrº GetKeys FromHash (HashTable” seqs)

Gets all keys (gene ids) from a hash table

Parameters:

seqs - all sequences

GetRandomMmer

SiteWin" GetRandomMmer (HashTable * seqs, dastr" seqList, int window)

get a random nmer from a random sequence

Parameters:

seqs - all sequences
seqList - a string array of all sequences
window - width of nmer

GetRandom NmerInSeq

SiteWin" GetRandomNmerInSeq (Sequence” seq., int window)

gets a random nmer in a sequence

Parameters:

seq - input sequence
window - width of nmer

GetRandomMmers

SiteList" GetRandomNmers (HashTable” seqs, dastrº seqList, int window,
int n)

Gets a bunch of random nmers

calls GetRandomMner

228

*-

Parameters:

seqs - all sequences
seqList - a string array of all sequences
window - width of nmer
n - number of nmers to obtain

GetRandomSeqList

dastrº GetRandomSeqList (int num)

gets a random set of gene ids

Parameters:

num - number of gene ids

LoadSequences

HashTable * LoadSequences (char” fasta File, int num)

Loads a group of sequences from a fasta file

Parameters:

fasta File - filename of fasta sequences
num - number of sequences to load, 0 for all

SaveRastaSequences

void Save FastaSequences (dastrº seqList, char" filename)

Saves sequences to file in standard fasta format

Parameters:

seqList - a string array of all sequences
filename - file to save to

SavesequencesRestricted Fasta

void SavesequencesRestrictedEasta (dastr" seqList)

229

Saves sequences to OutR in Restricted Fasta format, compatible with Bioprospector

Parameters:

seqList - a string array of all sequences

Seq CalcGCContent

double Seq CalcGCContent (Sequence” seq)

calculates GC content of a sequence

Parameters:

seq - Sequence

WhackSites

void whacksites (siteList: sl)

takes binding sites and marks Ns in the original genomic sequence

Parameters:

sl - list of binding sites

B.2.18. sitelist.c

pseudo-class of a list of binding sites

embeds a dynamic array and a hash so that you can arbitrarily add sites but also look up
binding sites quickly

Uses the SiteWin to handle individual sites

ºI.T.T.T.I.T.T.T…I.T.Tººunction Summary."
ºº:: ***** ********º-ºº-ººº.

int ComparešiteListExpression (const void* a, const void* b)
Comparison of expression of SiteLists, higher first

int ComparesiteListExpressionR (const void* a, const void* b)
Comparison of expression of SiteLists, lower first

int ComparešiteList:Pval. (const void* a, const void* b)
Comparison of pval of SiteLists, higher first

int ComparešiteListScore (const void* a, const void* b)
Comparison of score of SiteLists, higher first

230

int ComparešiteListScore 2 (const void* a, const void* b)

int çomparešiteListScore?R (const void* a, const void* b)
Comparison of score2 of SiteLists, lower first

int ComparešiteListScoreR (const void* a, const void* b)
Comparison of score of SiteLists, lower first

int ComparešiteWinScore (const void* a, const void* b)
Comparison of SiteWins, higher first

int çomparesiteWinScore? (const void* a, const void* b)
Comparison of score2 of SiteWins, higher first

int çomparešiteWinScore?R (const void* a, const void* b)
Comparison of score2 of SiteWins, lower first

int ComparešiteWinScoreR (const void* a, const void* b)
Comparison of SiteWins, lower first

void SetLogation}{ey (char” key, SiteWin" sw)
ets key to represent location information of a site using a SiteWin

void Set■ :23ation.KeyValues (char” key, char * id, int start, int
compl)

sets key to represent location information of a site
int Sitelist Add (SiteList” d, SiteWin" val)

SiteList"|SiteList Copy (SiteList” d, int incrSize, int expected Size)

SiteList"|SiteList DeepcopyBest (SiteList” d, int num, int incrSize, int
expected Size)

deep copy the best (assuming SiteList is already sorted) SiteWins
SiteList"|SiteList New (int incrSize, int expected Size)

creates a new SiteList

CompareSiteListExpression

int ComparesiteListExpression (const void* a, const void* b)

Comparison of expression of SiteLists, higher first

Parameters:

a - SiteList 1
b - SiteList 2

CompareSiteListExpressionR

int ComparesiteListExpressionR (const void* a, const void* b)

Comparison of expression of SiteLists, lower first

231

Parameters:

a - SiteList l
b - SiteList 2

CompareSiteListPval

int ComparesiteListPval (const void* a, const void* b)

Comparison of pval of SiteLists, higher first

Parameters:

a - SiteList l
b - SiteList 2

CompareSiteListScore

int ComparesiteListScore (const void* a, const void* b)

Comparison of score of SiteLists, higher first

Parameters:

a - SiteList l
b - SiteList 2

CompareSiteListScore2

int ComparesiteListScore2 (const void* a, const void* b)

Comparison of score2 of SiteLists, higher first

Parameters:

a - SiteList 1
b - SiteList 2

CompareSiteListScore2R

int ComparesiteListScore2R (const void* a, const void* b)

Comparison of score2 of SiteLists, lower first

232

Parameters:

a - SiteList l
b - SiteList 2

ComparesiteListScoreR

int ComparesiteListScoreR (const void* a, const void* b)

Comparison of score of SiteLists, lower first

Parameters:

a - SiteList 1
b - SiteList 2

CompareSiteWinScore

int ComparesiteWinScore (const void* a, const void* b)

Comparison of SiteWins, higher first

Parameters:

a - SiteWin |
b - SiteWin 2

CompareSiteWinScore2

int ComparesiteWinScore? (const void* a, const void* b)

Comparison of score2 of SiteWins, higher first

Parameters:

a - SiteWin |
b - SiteWin 2

CompareSiteWinScore2R

int ComparesiteWinScore2R (const void* a, const void* b)

Comparison of score2 of SiteWins, lower first

233

Parameters:

a - SiteWin |
b - SiteWin 2

CompareSiteWinScoreR

int ComparesiteWinScoreR (const void* a, const void* b)

Comparison of SiteWins, lower first

Parameters:

a - SiteWin |
b - SiteWin 2

SetLocation Key

void SetLocation Key (char” key, SiteWin” sw)

ets key to represent location information of a site using a SiteWin

Parameters:

key - output key
sw - location contained in SiteWin

SetLocation KeyValues

void SetLocation KeyValues (char” key, char” id, int start, int compl)

sets key to represent location information of a site

Parameters:

key - output key
id - id
start - Start

compl - Strand

SiteList_Add

int SiteList_Add (Site List" d, SiteWin" val)

234

add a SiteWin to the SiteList

Parameters:

d - SiteList object
val - SiteWin to add

SiteList_Copy

SiteList" SiteList_Copy (SiteList" d, int incrSize, int expectedSize)

makes a shallow copy of a SiteList, setting parameters of new SiteList

Parameters:

d - SiteList object
incrSize - increment size of the new SiteList
expected Size - expected size of the new SiteList

SiteList_DeepCopyBest

SiteList” siteList_DeepcopyBest (SiteList* d, int num, int incrSize, int
expected Size)

deep copy the best (assuming SiteList is already sorted) SiteWins

Parameters:

d - SiteList object
num - number to copy
incrSize - increment size of the new SiteList

expectedSize - expected size of the new SiteList

SiteList New

SiteList* SiteList New (int incrSize, int expected Size)

creates a new SiteList

often incrSize==expectedSize

Parameters:

incrSize - increment size of dynamic array
expected Size - expected size of hash table

235

B.2. 19. utils.c

library of utility functions

Function Summary - - I

çhange:Tokewers agomplement (char” seq)
----------------------------…--

void

change a seq to its reverse complement in place
int çharvalid (char nuc)

check if nucleotide is valid

void DNA2Seq (char” frag, int len, unsigned int dna)
converts DNA number to sequence

unsigned DNArc (int dna, int len)
int calculates reverse complement of DNA number
int Dbl.gmp (const void* a, const void* b)

compares two doubles
Char * * DestructiveSplit (char” s)

splits string in place looking for tabs
Char * * PestructiveSplit? (char * s)

splits on '' and "t'
Char * * DestructiveSplit:2nçhar (char * s, char c)

generic split on specified char
Errºxit ()

A generic fatal error-handler
Initb2i ()

initializes b2i data structure

int Intºmp (const void* inta, const void* intb)
compares two integers

int LogF (const char” frnt,)
printf like function

int Numisines Infile (char” filename)
counts number of lines in file

int Qutº (const char" frnt, ...)
printf like function

double Pearsonsgaaff (double * x, double” y, int n)
calculates pearson's coefficient of two arrays

char * Read Rasta (FILE" f, char” desc)
reads a single fasta entry from an open file

char * Reverse■ tring (char” s)
returns a new string that is the reverse of the original

void Reverse■ tring InPlace (char * s)
reverse string in place

unsigned Seq2DNA (char” frag, int len)
int converts sequence into DNA format number
unsigned Seq2DNAFast (char” frag, int len)
int fast version of Seq2DNA
int Seqvalid (char” frag)

236

check if sequence has legit nucleotides
void SetF (FILE * f.)

void

set file pointer to be used in LogF
StandardDeviation ()

Returns the Standard Deviation of x(0]..x■ n-1]
void StreamRasta (char * seq., int line Length, int (* printf m) (const

char * format, . . .))

writes to function pointer with line breaks
int

void

void WriteRasta (char * seq., int line Length, FILE * f.)

void

generates one pseudorandom real number (double)
double k tau (double * actual, double * predicted, int n, double

delta1, double delta2)
calculate Kendall's Tau

void ls (char” str)
converts string in place to lowercase

double an (double * x, int n)

void set nuc (unsigned int” dma, int pos, int val)

seeds random number generator
double ttest (double * x, double” y, int n1, int n2)

calculates the probability for a two tailed test
void luc (char” str)

converts string in place to uppercase

ChangeToReverseGomplement

void ChangeToReversecomplement (char” seq)

change a seq to its reverse complement in place

237

Parameters:

seq - input sequence

Charvalid

int Charvalid (char nuc)

check if nucleotide is valid

Parameters:

nuc - nucleotide letter

DNA2Seq

void DNA2Seq (char” frag, int len, unsigned int dna)

converts DNA number to sequence

doesn't check for valid index

Parameters:

frag - output sequence
len - length of DNA number
dna - input DNA number

DNArc

unsigned int DNArc (int dma, int len)

calculates reverse complement of DNA number

Parameters:

dna - sequence in DNA represnetation
len - length of DNA seq

DblCmp

int DblCmp (const void* a, const void* b)

compares two doubles

238

Parameters:

a - double 1
b - double 2

DestructiveSplit

char * * DestructiveSplit (char” s)

splits string in place looking for tabs

similar to perl function

Parameters:

s - input string

DestructiveSplit2

char” “ DestructiveSplit2 (char” s)

splits on '' and "t'

Parameters:

s - input string

DestructiveSplit0nChar

char”." DestructiveSplitonChar (char” s, char c)

generic split on specified char

Parameters:

s - input string
c - split using this char

ErrBxit

Errexit ()

>

º

239 1

A generic fatal error-handler

by Dave Schaumann

Parameters:

frnt - format of output

Initb2i

Initb2i ()

initializes b2i data structure

b2i contains array for quick lookup from nucleotide to index

IntCnmp

int IntCmp (const void* inta, const void* intb)

compares two integers

Parameters:

inta - integer 1
intb - integer 2

LogF

int LogF (const char” frnt, . . .)

printflike function

Parameters:

fmt - format of output

Numlines■ nRile

int Numlines.In File (char” filename)

counts number of lines in file

º

*

2.

240

Parameters:

filename - input filename

OutR

int OutE (const char * frnt, . . .)

printf like function

This was used so there could be a globally accessible location to write output.

in retrospect, I could have defined my libraries more carefully and gotten around this
problem.

In principle, it is similar to C++ streaming of files

Parameters:

frnt - format of output

Pearsons Coeff

double Pearsons Coeff (double * x, double” y, int n)

calculates pearson's coefficient of two arrays

Parameters:

x - array of doubles
y - array of doubles
n - length of each array

ReadPasta

char * Read Fasta (FILE* f, char * desc)

reads a single fasta entry from an open file

Parameters:

f - input file pointer
desc- output description on first line

241

ReverseString

char * Reversestring (char” s)

returns a new string that is the reverse of the original

Parameters:

s - input string

ReverseString[n]’lace

void Reversestring.InPlace (char” s)

reverse string in place

Parameters:

s - input string

Seq2DNA

unsigned int Seq2DNA (char” frag, int len)

converts sequence into DNA format number

no check for valid sequence!!! so make sure beforehand

Parameters:

frag - sequence to convert
len - length of sequence

Seq2DNAFast

unsigned int Seq2DNAFast (char” frag, int len)

fast version of Seq2DNA

Parameters:

frag - sequence to convert
len - length of sequence

242

SeqValid

int Seqvalid (char” frag)

check if sequence has legit nucleotides

Parameters:

frag - input sequence

SetR

void SetR' (FILE* f.)

set file pointer to be used in Outf

See also Qutf

Parameters:

f - input file pointer

SetLog

void SetLog (FILE* f.)

set file pointer to be used in LogF

Parameters:

f - input file pointer

StandardDeviation

StandardDeviation ()

Returns the Standard Deviation of x(0]..x(n-1]

Returns '100.0' if nº=1

Parameters:

w

243

x - array of doubles
n - size of x

StreamRasta

void StreamFasta (char” seq., int line Length, int (*printfn) (const char *
format, . . .))

writes to function pointer with line breaks

Parameters:

seq - Sequence to output
line Length - length per line
print fr - output function pointer, like Outf

SubSeqValid

int SubSeqValid (char” frag, int len)

checks if sub-sequence has legit nucleotides

Parameters:

frag - input sequence
len - length of input sequence

SwitchToComplement

void SwitchToComplement (char” s)

converts string to complement in place

Parameters:

s - input string

WriteRasta

void Write Easta (char” seq., int line Length, FILE* f.)

writes sequence with line breaks

244

2

}

■

Parameters:

seq - Sequence to output
line Length - length per line
f - output file pointer

Cant

cant ()

An fopen() replacement with error trapping

public domain by Bob Stout

Parameters:

fname - filename to open
frnode - file mode, e.g. "w , "r", etc.

chomp

void chomp (char * str)

removes newline and carriage return from string

similar to perl version

Parameters:

str - input string

flength

flength ()

determines the size of a file

a simple function using all ANSI-standard functions

Public domain by Bob Jarvis.

Parameters:

fname - filename

*

!

y

■

".

245

genrand

genrand ()

generates one pseudorandom real number (double)

which is uniformly distributed on [0,1]-interval, for each call

k_tau

double k_tau (double “actual, double “predicted, int n, double delta1,
double delta2)

calculate Kendall's Tau

with modification for deltas to specify equivalence for close real values. Use 0.0 for
deltas for standard Tau definition

got this from Ajay

Parameters:

actual - first array
predicted - Second array
delta1 -

delta2

º

lc

void lo (char * str)

converts string in place to lowercase

Parameters:

str - input string

IT1C3Il

double mean (double * x, int n)

computes mean of array

see code for attribution

246

Parameters:

x - array of doubles
n - size of x

set_nuc

void set_nuc (unsigned int” dma, int pos, int val)

sets nucleotide in DNA representation

Parameters:

dna - input DNA number
pos - position to change
val - value to change to

sgenrand

sgenrand ()

seeds random number generator

set initial values to the working area of 624 words. Before genrand(), sgenrand(seed)
must be called once. (seed is any 32-bit integer except for 0).

LGPL, see code for details

Parameters:

seed - seed for random number generator

ttest

double ttest (double * x, double” y, int n1, int n2)

computes t-test

see code for attribution

Parameters:

x - array of doubles
y - array of doubles

247

n1 - size of x

n2 - size of y

ttestprobability

ttestprobability ()

calculates the probability for a two tailed test

see code for attribution

Parameters:

t - input t value
df - degrees of freedom

UIC

void uc (char * str)

converts string in place to uppercase

Parameters:

str - input string

248

-
**---º*—º,

---~*A*-2º"º,LJtºRAFYtº■k, ...i.i.A■ ºlºººcº~A-°-*. -
º...i.i.***ºQ-,*lC--—s

*-**.~º-----~-r--- **■4–|º---rº--*.º|o”º,ººcº,**,

º-----
"c.--"º~~&ATX;*-:*11ºº---º,-

******~7Tº|-ºc-//?º-->--------~~sº--
ºº

******ººº(l**ºººrºfa"..*ST*******->º
--*~,ºsº

-
(Y---ºººº:º/º*&Cyº,ºf?.***()_ºº,º

,,)-1/ººº**7.7-****º&2.-ºº
-*-º-

º“ºsº,cºyºcºcosº.*,**
----",,º■
º,

--º-
º- -Cº,L1B■&RYºr

-ºsº/$º,~\\ ºr——º,L.BRºº■&[I]ºCºleis[…]…c

----ºQºº º2–2º|º,ºs—-*-
—ºI>

-ºº
-

º,[.~*~7. *ºn
----G-

>-,*
*[Cº-ºººLlsºsº,Lºlº-º ---
|~ºººgrºº'si■ (. ºIºATºvººfT&sº!■º,sº**"…sº~y-

º.*-*-ºQ-º-->º,º-*****--****~)ºf~---

■ º■ º,S.-,■ ººfºt■ ººr
*2.scº-■ /º&2,C).74/7:17 *------------*****..”------,*--sº º~0.

-
2.!.'■ ºO&C.”)/º*4.■ ºJ_º%.AJSºº

---Sº,º-sººn7ººGRA ºNº.2**º****-º&ºO■ lºsº”,L.G.RA

ººº/gºº,L.E.ºR_Yº*3cº-1©e

tº■ ºI"ºtº■ ºtºº J->oº|ºr-|sºº■&,~...~º *---•o.[...]o”ºººcº/”***-*.S.ººginº,s
--ºC%.sºAºfºfQ11º3ºf*…*ºsº******ºº,Sº

-.2º-'',-Nºy---
Cºº’■■ º.&. ***º,S*-Y.,ºfvºº,■ º1.~~~~rºl■*-Sº-ºr

cyz--
ºººlº/■ ºOºº,”,ffº■■A■CJ-S*4.~.A-_º*

**f*,f:.■C.ºsº----ºPº*-º-OO■)$º--
******tº-41.-º-**ºº*-

[.
-

-sººO))ºº,L■3RA■ ººrsº[]*3A-2º---
:-=---

L.BRARYsº|lº,º/**ill-cº-|]º*.[...]**ATºvºx!.
---ºOºº,-N----

~.-----sº**o,rº-&~****-º,&/º—-gº
--ºº,^º

-
IT*…*_º-*--

º&Cº,--'ºAº,ºfØº,-º-,*-***Sºdº **---&º*---a~"-*-M.º.4.-:**4. º,º
-

*/**-A*...Nº*---~: -

ºsººº
-

ºSºººººcº■ ººf:{{■ CONºº,
-

ººcºncºsº*--sºº*-sºº0/2 y_S\,%.*_*_º*,z-1)ººp.L!B■ ºA■ ºYººr-*.t*-
*-zº

-sº.:*---&"º,/4–2ºº,-º
-

•|
-

9.
º*2.Lii}RARYº*o-*L.º-r-º9, º[...]º,

-
**SoF--->ºº,L.sº-/*º|j ~~C.sº…[...]sººf317ºz,sº(■"2,

-Ç,º,c-7/*º
-N.****>*--"'4

-

**Tºtººn1º.*(■sºs
-

-**-was**■T*-**,&
-

{
-

º--º,º-y-2. -**=.----*º*---***----- …tºº-.2º'C.J.'■ºf■ lºº**,cy.7/771/147,500sº *******...."--********,-*---º-”.”tº■ º.ººCºffºf'Cºcòº%.A--*-

--t******
-

ºº º'--_*:eº .**-*
gººO))s—ºLiBRARYºr- -**º**.ºº2tºA-o

■ lºsºº,L.BRARYs|“.sºT*...[T]º
ºt**º—r--º-----o,[...]Sºtºaº&-/ º---O-

&LJ&cº/”*--ºginº.sº

ºº-*,ºtQ17&§(/ºº**º--

3.ºAºv:*-ºº*****ºtº*******,5,1:(T)ºf~-º--

º,º->.ººº7----ºsºfl■ .ºcº■ ?Y.***
º,sººfºfA/,,,,º,*.**}º,f/ºtº)~*--

sºº*-
.S.~~*-*********\º&&itºfa■ º~****ºº
sº,*.&sº*.*-sººJ/2-“%,LIBRA --

…"":zººººº4.wº[...] -*ºº,º2sºº,LiCRA.R_YºLºlºsº
-

º----

º*3º||Qººr-&º,[…]º%.
-…[T]sºº,L.Jºsº-,ºsºrºgºº ~*wº---ºº

º42.--

cº/”^.sººuriº!#12%,sºº/11///?*S (■º,tº*4,sºC.T.
-2-Q_j'■ºl

º*Cº
*****12º'4",ºrºf:ººfS*},ºf■ º,■ ºsº---sºt º-----

2.3C.J.'■■ ºl■//º*"&*/**********Sº
-.-º-

º!//ºcºcosº,“if***.sººO/2:sº **º'º,^)/)&º,LtCRARYsºººT|-

:*1:ARY*--º■ º-2~*A-º---º&--- 1-13R_*.R_*S*Q.**T*.[]ºº,|ººf
--~.------:-*

~.Triºº*…[...]sºJººgºº,sºº/C*,* **.***---ºº--

;º->g■ Cº,º--ººsº-j-%Sº(?Yºlº■ , -***.º*...-a-;,;;-r-sº-:*---->---
..."...sºo'º°sdº■ º.y&cº/*Cºdsº,º
ºgººn■ ºciºcoº,,a]sº*,cºº/ **"z,Çºfº*:*->º!,***º-

&-º* -&Cº.
--º-*ocººL■[3RARY~A

-ºº-A.&º,Sº[…]ºº[...]º[− ººL!—****■ _Yº|ºcº–4–Oe
-

ºº,
º*o

…”ºsºIo”%ºf%.

>*c.|
-

º■/*%.ºAQ■ºfº17º,ºº■.*-
--Tºº,º…"-º;.--y-*2- ºvui■º.º(/C*...s."

-
"..º,sº

/*~,".ºsº.*----
ºCº.º/,ºgº.cº771/1.!!!CO&*. .ººf■ º-º&C."./jºi■ :£1.Oºº,-----º*-

--tºº,*…--

**7.---*-*:t.|*<o■ ºRAFº
-

---**Tº■ ºYºº,..)sº,■ ºRAR_YsºL– º//&º!.KºY*|*>**Q-
-

> Çº|º,
-

9.-go,[...]sºº,||sº/
[…]sºnºUL&Cº.º.I&ºvuginº-'s-/ &[I]ººvº■ º||ºS.C/C9.-**

Cº.º,sº --->º,sº../>.º,sº
- ** ~-

--

Sº
--

*/º %2.3%sº *

T &

º
ºf

* * * †

I º, J/13O

º “o c.s' […] Sº

^o [...] 29 – F Not to be taken T sº "… I
-

27 -y & *** - º
- -

12 º
º

º “…" sº ºf , from the room. -' s ºvºi gin º.

e º

y o: O º -

)/). -$ **- º º

& º *, *.. wº ty º 62.

~~ es [. ”, 1 ■ 5 RA R_Y sº [T] º, 4- .* º [. º, F. RA R_Y sº —r- 4 %,& a C … [I] ... sº L.A

* º * o” 7487112
- ~ * a■ - - - */ ^ ~,º III.iiill ºn tº º

ºpiº º 2: ... 3 1378 OO748 7112

** **, º
º **** * * * 42 sº †† º. º ~,

-
º -cºnciº cº,Sº º cytº■ ºmºro gº,

º -* tº ºf

°o x

º º * ~~º, sº

7 *
º 'S sº %, º/ ...!!!º** y

- O

4–? [T] º, L. B R & R.Y.––

º * 2 * * * * * * *** * ****

º "º. *- º/ * sº *
<-- - - - - - - C

-* º, º* ---> º, Sº*** -aº * * * * * -- * * * * = ..." **i. º º

º, tº cºlº■ / ef (2 G|E oºººº- * * * * ** ** --~~ º s- a

- ** º .*

(?
** A-2 -> *.*, *

.* * .* * * º 2- 2- **
- - - º º * & º º * -* tº º º

-
º)/ ■ *r) $º * 2.sº [...] * : *

-
- - , º, … - ■ º-º

J º > º […] º –■ *. ** ~ º ■ º –-1 º* 2-y º & .…~ : */ | * * cº-º ºr * * | & "º -- - -Tº º-ºº ºvº an º-' s (■ *...' " 'º ºvº
C■ .

-

ºf oºººººo º Aº, *s ºr* y---, -, --
-

J) i■ ■ º!! / / / / / . 2. sº-y ºr ºr ºf " .* Jy7.0//?' I ■ º .
º, C) ºf Wºo **,

º
º & 2. cº//ºncº º 4. A \

e- - *- -92
sº

* ~

* . 1.
-

& & O) * º
-

& 4. O/ A.jº 15 RARY s [...] » 0/2- sº [-, *, up RARY s L. º, * * * *-->-- –4– -> *º - S. C. C *.
O o º s o & ©e ** ~

*2. & C. | | º º -y L. * C º
T *, | º -: (C % -- sº ºvº, a 1-1 %, & cº- / º º T sº

- * º º, sº º Cl
- º

■
- º º º

/ * %, sº *... .º. 7, Sº
º

ºp º

O 2 º' S.
- -

*º dº / º º, Sº
-- -

º, º is
■ A * * ."Q/º sº º

* A- º ...Nº º, cºn, tº CO s º
-

º & *
“o º %. O sº ºso º

-
'A

*—2 º [] ”, f_i º RA R_Y sº T] º, /
º

s […] ”, L ■ ■ º RA RY sº L r º,
s cºa-º, Lºlsº a c. [...] s º, Lºl sº —ºvºian º-' s (/(' * - ºvugin º is º'

º
- -

~, º, sº *- º, º º, sº * .º■ ºvo º Aº, yº., *S ºut!/? "O 2 & Q r.
. --- SS %, C º 777/10/■ cº º º - ? /Sº sº º 7 º’cº º sº -º-

-
.3- ºf- * Sº tº *-

* 1: . º,” O - o º, º, -

| º,º, O) le sº Tº º, R. RA Rºy s -r-J º, t O) le sº -*-- º, 1. B R A ■ º
Q- 9. ---- `s * * L. Qe × [I] º

º
N.

** ■ º. { } -ºr- C > -*. * - * - *

ºf lºvian %. L. J s - C - ºn º,
*3.

4 sº *7.~
a * * º

%.
** *l■ º sº º,

-
º A.

*! -/C
º

-

jº

• *

* L J &tº ■ º º &
º &

*

■ º C■ . º, º º■ º
O

º,
,-) K."x

--> cº ■ ºº -- * –

2-y
cººl■ ■ º

■

C - * & O

--
o, | -(?

-
o, ■ º so

-

º,

42 º
* 3--~~~~ º, Sº 7A ºf º, sº z, sº soºn ■ º

t

cº■ , nº º º■ º º Sºmeº º, º/º
* , ** e ~ --- -º, Liara's sº 3.

Q

º So S º
[...] S.

- wº
* -f º * ~, O r ^

-- ~ 7*. º º L. J * C,
-

.S.
-

12 | ||
-ºvº an º' -/C º, ºvºgº º Sº

* * * A *
■ º * * *g *- + |
º

-
º wo

- - * *_
13, } • * * $ º y º, ‘’’,
º, J/ --> º […] °, Li R RARY º -ºr- ”, º le sº […] * | | Fº

–– º
L. J F-- o -- º

12.
* t

Sº-º

-
º toºut■ º "º pººl ºn , /ºr "º sº .º/º º/ºncºs º º■ º º

w N. - -
* -º- º

-- - sº

&º Q.
- * ºp D } sº •. *O)). 3. º […] º, L i B RA RY sº L. º, #

//
-

■ ---, ”,& ––– | ~.* […] *() * - , º, ■ º I sºC * * * * * *

* – J & ~ * [...] & --> C, &
-º'-' ºvugin * - U/(º," " 'º º vºl Jº *

~A

~ º; 2.
&- º > º *.2. --

º … ."

* O)le º ■ º, L■ B RA º sº °. O/ lº| | O
- * ----- ~ *

~/C * ■ ºlsºvian %. L. lºs ~/(' * [] sº*o º { }
~~ º, Sº º -º-42 Sº º, ºcºncº sºsº %, S 4.tº tº 22- - iº ■ º.

–– `',
- ---- * * *

O

- , -º

%, sº º º, sº * 2,-, * * - ■ tº º - - - -
º 7. / f * * * 2 º' º© º, cºncº " */ "■ " º º■ º

* - - *~-
12 scº t w

&

º, 4.

º4,

º *

> » o
- --

