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ARTICLE

MethylResolver—a method for deconvoluting bulk
DNA methylation profiles into known and unknown
cell contents
Douglas Arneson 1,2✉, Xia Yang 1,2,3,4 & Kai Wang 5✉

Bulk tissue DNA methylation profiling has been used to examine epigenetic mechanisms and

biomarkers of complex diseases such as cancer. However, heterogeneity of cellular content in

tissues complicates result interpretation and utility. In silico deconvolution of cellular frac-

tions from bulk tissue data offers a fast and inexpensive alternative to experimentally mea-

suring such fractions. In this study, we report the design, implementation, and benchmarking

of MethylResolver, a Least Trimmed Squares regression-based method for inferring leukocyte

subset fractions from methylation profiles of tumor admixtures. Compared to previous

approaches MethylResolver is more accurate as unknown cellular content in the mixture

increases and is able to resolve tumor purity-scaled immune cell-type fractions without a

cancer-specific signature. We also present a pan-cancer deconvolution of TCGA, recapitu-

lating that high eosinophil fraction predicts improved cervical carcinoma survival and iden-

tifying elevated B cell fraction as a previously unreported predictor of poor survival for

papillary renal cell carcinoma.
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Complex diseases are the result of pathogenic perturbations
in heterogeneous cell populations. For example, infiltrat-
ing leukocytes present in the tumor microenvironment

(TME) play an important role in cancer progression and patient’s
survival and response to treatment1,2. However, canonical
methods for cell composition determination of tissue admixtures,
such as flow cytometry and cutting edge single cell technologies
like Drop-seq3, 10X Genomics, and sci-RNA-seq4, are expensive,
labor intensive, require fresh tissues and are sensitive to technical
variabilities in cell dissociation procedures. As an alternative,
computational methods have emerged to bypass the limitations
imposed by experimental approaches and allow for the secondary
analysis of troves of publicly available bulk tissue omics data in
public data repositories such as GEO and TCGA to derive cellular
information.

The seminal method CIBERSORT5, which is based on a sup-
port vector regression method, enables transcriptome-based
deconvolution of complex mixtures with unknown content,
including solid tumors, using microarrays. However, RNA
molecules measured by transcriptome profiling methods are more
prone to degradation in realistic clinical applications due to
chemical fixation of tissue samples6, hence present quality issues
that likely affect deconvolution results. In contrast, DNA
methylation is more stable molecularly7 and also highly cell-type
specific8, making it an attractive alternative for cellular decon-
volution especially in a clinical setting. As such, DNA methyla-
tion has been used as a modality for the deconvolution of human
whole blood9–11, and applications of DNA methylation-based
deconvolution in the emerging field of immunomethylomics12

have associated methylation-derived neutrophil-to-lymphocyte
ratio (mdNLR) in the peripheral blood as a prognostic factor for
survival in cancer13. These previous forays into immunomethy-
lomics have primarily been applied to whole blood for which it is
easy to obtain a methylation profile for each cell type, but
extending this approach into the TME is more difficult as the
naïve methods used for deconvoluting whole blood based on well-
characterized leukocyte types are not robust to unknown cellular
content presented in tumor admixtures.

It is not until recently that methodologies like CIBERSORT
were extended as a new method, MethylCIBERSORT14, to
deconvolute the TME using methylation data. MethylCI-
BERSORT included fibroblasts and relevant cancer cell line
profiles in the tumor reference signature matrix, in order to
estimate tumor purity (i.e., the percentage of tumor cells in a
given sample) and to provide infiltrating leukocyte subset frac-
tions as absolute fractions, rather than relative fractions of each
cell type within the leukocyte portion as done by the original
CIBERSORT algorithm. Similarly, HEpiDISH15 included fibro-
blasts, epithelial cells, and adipocytes into the signature matrix to
model additional cell types which might be present in a tumor
sample. One of the major limitations of this type of approach is
the need to define a signature for every cancer type to infer tumor
purity. Further, combining cell-type signatures from different
sources without a bridging cell type across datasets may propa-
gate batch effects into the resulting signature. An alternative
approach to modeling all possible cell types in a mixture is to
generate a clean signature matrix for common cell types of
interests (e.g. leukocyte subsets) and use deconvolution approa-
ches that are robust to unknown content which is not modeled in
the signature matrix.

One of the motivating factors for developing a deconvolution
approach which is agnostic to unknown content is that it can be
difficult to identify an appropriate signature for all cancers as
each tumor’s methylation profile is unique. However, ignoring the
tumor contribution to the methylation signature matrix also
means that the deconvolution results can at best be presented as

relative fractions within leukocyte content rather than absolute
fractions in the entire admixture. It has previously been debated
that absolute leukocyte subset fractions may have improved
prognostic and diagnostic capabilities compared to relative leu-
kocyte subset fractions16,17. Estimating absolute leukocyte frac-
tions would require accurate detection of all cell types existing in
a tumor admixture, which can be a daunting task due to our
limited knowledge of cell composition in the TME of all cancers.
Instead, we aimed to provide tumor purity-scaled leukocyte
fractions and considered it a step-forward toward estimating
absolute leukocyte subset fractions while maintaining a flexible
framework.

In a recent publication, the method FARDEEP demonstrated
that LTS regression is more robust to outliers and unknown
content in the deconvolution of microarray and RNA-seq data
compared to other commonly used methods18; however, to date
no study, to the best of our knowledge, has applied LTS regres-
sion for the deconvolution of methylation data. Building upon
these findings, we implemented LTS regression for use in
deconvolution of DNA methylation data in the form of Methyl-
Resolver, a framework for robust deconvolution of the TME using
methylation data. In addition to resolving cell-type fractions from
bulk methylation data, MethylResolver is able to predict tumor
purity without the need of a tumor reference signature. As such,
our method can be applied directly to any cancer methylation
profile without the need of generating a new reference signature
matrix for each different cancer type. We also establish a formal
metric to denote the reliability of a deconvolution. Such a metric
is often missing or too lenient in other deconvolution approaches
leading to spurious deconvolutions in samples without significant
presence of known immune content. Here we assemble the most
comprehensive reference leukocyte methylation signature to date,
consisting of markers of 11 leukocyte cell types, and demonstrate
that our method has superior performance in accurately identi-
fying tumor purity from methylation profiles and in deconvo-
luting tumor-infiltrating leukocyte subset fractions as both
relative and tumor purity-scaled fractions without the need for a
tumor reference signature. We apply MethylResolver to conduct a
pan-cancer deconvolution of TCGA 450k methylation arrays to
identify cancer-specific tumor-infiltrating leukocytes most asso-
ciated with disease prognosis and patient survival, which can be
leveraged in the design of targeted immunotherapies.

Results
MethylResolver outperformed existing algorithms. We imple-
mented LTS regression in MethylResolver to conduct deconvo-
lution of tumor admixtures based on DNA methylation profiles
to resolve both relative factions and tumor purity-scaled fractions
of leukocyte subsets without requiring an input tumor signature.
We chose LTS regression due to its ability to learn an optimal
subset of CpGs for deconvolution that minimize contaminating
signals from unknown content.

We benchmarked the performance of MethylResolver against
existing algorithms including LLSR19, QP20,21, RLR22, and
nuSVR5 using both in silico spike-in experiments and in vitro
spike-in experiments. These experiments revealed that the LTS
algorithm employed in MethylResolver achieved the most robust
performance among all methods tested, especially at higher
fractions of unknown content (Fig. 1a and Supplementary Fig. 1).
The in silico spike-in experiments allow for a head-to-head
comparison of all methods with regard to different levels of
detection and in the presence of various amounts of unknown
content (Methods and Supplementary Fig. 2a). Briefly, in silico
mixtures were generated by numerically combining the profiles of
six purified immune cell subsets and an epithelial cancer cell line
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which was absent from the signature matrix and added to
comprise 0–90% of the total mixture. As the amount of unknown
tumor content added into the mixture increased, the estimated
spike-in fractions for the methods that considered all CpGs (LLSR
and QP) quickly began to deviate from the ground truth,
especially when the spike-in cell type represented less than 5% of
the total leukocyte content. RLR and nuSVR were more robust
than LLSR and QP, but also began to deviate from the ground
truth with higher added tumor content. Across all scenarios, LTS
had the highest R-square with the ground truth and performed
statistically better than all other methods based on an ANOVA
post hoc analysis.

To extend the benchmarking to more realistic scenarios, we
conducted an in vitro spike-in experiment using publicly available
methylation data on in vitro leukocyte mixtures of known cell-type
fractions (Methods and Supplementary Fig. 2b). Briefly, methyla-
tion profiling data from experimentally generated in vitro mixtures

were obtained from GSE77797 (Supplementary Data 1), to which a
cancer cell line was spiked in at 0–90% to the total mixture, and
varying amounts of log-normal noise were also added. Based on the
Pearson correlation between the known and estimated cell-type
proportions, the LTS regression again outperformed all other
deconvolution methods in the in vitro spike-in experiments and
was more accurate at high fractions of unknown content (Fig. 1b).
Similar results were also obtained when using the absolute Pearson
correlation coefficients and root-mean-square error (RMSE) for all
benchmarked methods (Supplementary Fig. 3a, b).

LTS regression has a tunable parameter, alpha, that specifies the
fraction of variables used in the least-squares regression. We
observed similar performance of LTS regression in MethylResolver
for a range of alpha values when compared to the other
deconvolution methods (Supplementary Fig. 4) and that alpha
values between 0.5 and 0.7 had similar performance (Supplemen-
tary Fig. 5). LTS regression is essentially a LLSR as alpha approaches

Fig. 1 Benchmarking MethylResolver. a Benchmarking five different deconvolution methods using in silico spike-in experiment. Line color corresponds to
the deconvolution method, y-axis is the square of the Pearson correlation coefficient (R2) between the inferred cell-type fractions and the ground truth, x-
axis is the amount of unknown/tumor content in the mixture, error bars represent SEM. Each panel corresponds to estimates for a specific cell type or the
aggregate across all cell types. Statistical significance of the performance of MethylResolver (LTS) over other models was determined using post hoc
pairwise comparisons of two-way ANOVA. Adjusted p-values from the ANOVA test are indicated with the color of the text matching the respective model
(n= 90 per point). b Benchmarking four different deconvolution methods versus MethylResolver using the in vitro spike-in experiment. The color in the
heatmap corresponds to the difference in the Pearson correlation between MethylResolver and the ground truth and the correlation between the other
methods and the ground truth. The y-axis corresponds to the amount of noise that is added, and the x-axis corresponds to the amount of unknown/tumor
content in the mixture (n= 10,800). c MethylResolver predicted relative leukocyte subset fractions (y-axis) of 12 samples from reconstructed mixtures of
purified human leukocytes and 6 samples from adult human whole blood with corresponding FACS fractions (x-axis). Cell type is denoted by the color of
each point and Pearson Correlation is indicated.
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one. To help optimize alpha selection, our MethylResolver
implementation empirically tests nine values for alpha from 0.5
to 0.9 in increments of 0.05 and selects the value with the lowest
RMSE between the reconstructed immune cell signature profile
based on inferred cell fractions and the observed profile, unless
users supply their own choice.

Building a comprehensive immune cell methylation signature.
The IDOL deconvolution reference signature of 6 leukocyte cell
types used in benchmarking MethylResolver was designed for
deconvolving whole blood. However, this signature misses addi-
tional leukocytes which are important in the TME and infor-
mative from the standpoint of immunomethylomics and cancer
prognosis. To address this need, we built a comprehensive tumor-
infiltrating leukocyte methylation signature of 419 CpGs (Sup-
plementary Fig. 6, Supplementary Data 2) containing 11 leuko-
cyte cell types from three separate publicly available studies, after
carefully removing the batch effects (see Methods, Supplementary
Data 3 and Supplementary Fig. 7).

We first evaluated the performance of this new leukocyte
signature matrix on whole blood samples using a set of 18
methylation profiles (GSE77797) with 12 samples from engi-
neered mixtures of purified human leukocytes and six samples
from adult human whole blood with corresponding cell-type
fractions by FACS (Supplementary Data 4). This evaluation could
only be done on six cell types in our extended immune cell
signature as there are currently no ground truth fractions with
matching methylation profiling data available for the remaining
cell types. MethylResolver with our newly defined methylation
signature matrix achieved highly accurate cell-type fraction
estimates when compared to the ground truth cell-type
composition (Fig. 1c and Supplementary Fig. 8a), and similar
performance to the original IDOL signature matrix (Supplemen-
tary Fig. 8b and Supplementary Fig. 9). We did not expect
improvements over previous methods in the deconvolution of
whole blood as this is a well-solved problem9–11; however, we
wanted to ensure the accuracy of our new signature matrix in a
task devoid of unknown content. Therefore, our comprehensive
leukocyte methylation signature matrix retained the ability to
accurately deconvolute leukocyte subset fractions in such
mixtures while providing estimates for additional cell types.

Statistical assessment for the significance of deconvolution.
Not all numerical solutions to a deconvolution problem are
reliable given the often-buried immune cell signals in bulk tissue
admixtures and the noisy nature of the measurement data. Pre-
vious approaches to this problem often lack an assessment of
deconvolution result reliability for interpretation. We therefore
devised a strategy to assess the statistical significance of a
deconvolution by collecting a cohort of true-positive samples
from human blood which were expected to have high leukocyte
content (Supplementary Data 5) and true negative samples from
solid tumor and normal tissue cell lines which were not expected
to have significant amounts of leukocytes (Supplementary
Data 6). We then explored various goodness-of-fit metrics: R1,
R2, RMSE1, and RMSE2, regarding their ability to discriminate
between the two sets of samples (details in Methods) as plotted in
Fig. 2a and summarized by the receiver operating characteristic
(ROC) curves in Fig. 2b. Although all four goodness-of-fit metrics
could distinguish true-positive samples from true negative sam-
ples with high sensitivity and specificity, the correlation-based
metric, R2, which used 210 out of 419 CpGs in our signature
matrix determined from LTS regression, performed the best.

To further evaluate the performance of R2 in more realistic
complex mixtures, we constructed 200,200 synthetic mixtures by

randomly combining pairs of true-positive and true negative
samples in various proportions with the true negative percentage
ranging from 0 to 100% in increments of 0.1% with 200 samples per
increment (Supplementary Fig. 10a, details in Methods). We then
applied MethylResolver to calculate the percentage of significant
deconvolutions at various R2 thresholds ranging from 0.2 to 0.9
(Fig. 2c, d). This analysis revealed different sensitivity and specificity
tradeoffs at different R2 thresholds. At an R2 threshold of 0.5, a
true-positive rate of 93.5% at 60% tumor content (which is about
the lower bound for typical clinical cancer genomics studies such as
those by TCGA) and 0.5% false-positive rate at 100% tumor content
were achieved, reflecting high specificity and the ability to avoid low
confidence deconvolutions. A more lenient R2 threshold of 0.35 had
a false-positive rate of 24.5% at 100% tumor content (Fig. 2c). Users
can define an R2 threshold for significant deconvolutions based on
acceptable false-positive rates (Fig. 2c).

Estimating tumor purity-scaled leukocyte fractions. To gen-
erate tumor purity-scaled leukocyte fractions, we hypothesized
that the goodness-of-fit metrics from our deconvolution
method contain information about the amount of non-
leukocyte content in the admixture and could thus be utilized
to estimate tumor purity. Indeed, using 7001 samples from
TCGA with available tumor purity estimates by CPE (con-
sensus measure of purity estimates) from Aran et al.23, we
observed strong correlations between CPE and each of the four
goodness-of-fit metrics (Fig. 2e), as well as relative fractions of
certain immune cell types (e.g. Eosinophils, Memory T Cells,
and Natural Killer Cells) inferred from our MethylResolver
deconvolution (Supplementary Fig. 11). The correlation
between CPE and the goodness-of-fit metrics is intuitive as the
latter measures how well the reconstructed immune cell sig-
nature profile using inferred immune cell fractions recapitulates
the observed profile. As tumor purity increases, the inference of
non-tumor immune cell fractions becomes more difficult and
the reconstructed profile will deviate further from the observed
profile.

Motivated by these observations, we trained a random forest
(RF) model using TCGA samples that predicts CPE-based
tumor purity using features from our LTS deconvolution
(Supplementary Fig. 10b, details in Methods). Briefly, the RF
model was trained and tested on half of the samples from each
cancer type in TCGA, and then evaluated on the other half of
the samples which were completely held out from the model
training. The variable importance of each feature highlighted
the importance of the goodness-of-fit metrics RMSE2, R2,
RMSE1, and the relative fractions of Eosinophils and Memory
T Cells for estimating tumor purity (Supplementary Fig. 12).
When evaluated on the held-out samples using Pearson
correlation between predicted tumor purity values by our
approach and those from CPE (Fig. 3), our RF model achieved a
high correlation (0.72 < r < 0.95) across all cancer types. To
attain performance estimates for tumor purity inference for
cancer types not seen in the training, we sequentially held each
cancer type out entirely from the training of the model and
evaluated the performance on the held-out cancer types
(Supplementary Fig. 13). Most cancer types achieved a
correlation r > 0.75 in the leave-one-out analysis indicating a
lower bound on tumor purity estimates for cancer types not
used in RF model training. Furthermore, our RF regression
model was able to predict the tumor content within 10% of the
CPE purity estimate for 89% of the samples (Supplementary
Fig. 14), demonstrating its accuracy.
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Pan-cancer analysis of TCGA. We applied MethylResolver to the
methylation profiling data of 9,756 TCGA tumor samples across 33
different cancer types in 11 broad categories. Different R2 thresh-
olds for significant deconvolutions can be chosen based on accep-
table false-positive and false-negative rates in our simulation study
(Fig. 2c). A more lenient R2 threshold of 0.35 had a false-positive
rate of 24.5% (Fig. 2c) and resulted in significant deconvolutions for

a majority (75.8%) of the TCGA tumor mixtures (Fig. 4a). A more
stringent R2 threshold of 0.5 had a false-positive rate of 0.5%
(Fig. 2c) and resulted in fewer (35.2%) significant deconvolutions of
TCGA tumor mixtures (Fig. 4b). We used the latter R2 threshold
for all downstream analyses for its better balance between false
positives and false negatives predictions. For samples with sig-
nificant deconvolutions within each cancer type, sample-level

Fig. 2 Determining a threshold for significant deconvolutions and identifying tumor purity to resolve tumor purity-scaled leukocyte subset fractions. a
Four goodness-of-fit metrics considered for determining significant deconvolutions (rows) are benchmarked for their abilities to stratify samples with
putative high and low leukocyte content. The score for each metric is given on the y-axis and different sample types are indicated by color. The R2
threshold used to determine significance of deconvolution in this work (blue line) is indicated. b ROC curves demonstrating the of the ability of the four
goodness-of-fit metrics to stratify positive and negative cohorts. The sensitivity and specificity of these metrics at the point which gives the highest
Youden’s J statistic is indicated along with the location of the R2 significance threshold. c A range of R2 thresholds from 0.2 to 0.9 (colored numbers) are
tested for their ability to call significant deconvolutions (y-axis) of synthetic mixtures of varying fractions of unknown content from 0 to 100% in
increments of 0.1% with 200 random synthetic mixtures at each increment (x-axis). The performance of CIBERSORT (nuSVR) on the same mixtures using
p-values obtained from 2500 permutations is also indicated (black line). d ROC curves demonstrating the performance of the R2 threshold to significantly
deconvolve mixtures at different percentages of unknown content. Sensitivity and specificity shown for R2 = 0.5 (n= 200,200). e Correlations between
CPE tumor purity estimates and the four goodness-of-fit metrics for 7001 samples from TCGA.
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(Supplementary Data 7 and Supplementary Data 8), as well as the
average relative (Fig. 4c) and tumor purity-scaled (Fig. 4d) fractions
of the 11 different cell types in our reference signature were cal-
culated. Tumor purity-scaled leukocyte subset fractions were not
inferred for hematologic cancers. For these cancers, our results
recapitulated the immune cell lineages from which they originate,
e.g., high fractions of naïve T cells in Thymomas (THYM)24, B cells
in diffuse large B-cell lymphoma (DLBCL)25, and monocytes in
Acute Myeloid Leukemia (LAML) (Fig. 4c), lending support to the
validity of our approach.

For each cancer type, we also correlated both the relative
(Supplementary Data 9) and tumor purity-scaled (Supplementary
Data 10) cell fractions at the sample level with known metrics
representative of cytotoxic T cells and natural killer cells, such as the
10-gene IFN-γ score (IFNG, STAT1, CCR5, CXCL9, CXCL10,
CXCL11, IDO1, PRF1, GZMA, and MHCII HLA-DRA)26 and a
cytolytic activity score (average expression of PRF1 and GZMA)27.
We observed strong Spearman correlations between cytolytic score
and IFN-γ score, and the combined tumor purity-scaled fractions of
CD8 T cells and NK cells in many cancer types (Fig. 5a). Given that
these scores are based on gene expression values determined by
RNA sequencing whereas the deconvolution results from

MethylResolver are based on methylation arrays, these strong
correlations between the MethylResolver-derived tumor purity-
scaled fractions of cytotoxic T cells and multiple metrics known to
be associated with these cell types from real biological samples
further supports the accuracy of our method.

Identification of prognostic leukocyte subsets in TME. We
leveraged both the tumor purity-scaled leukocyte subset fractions
(Fig. 5b–e) and the relative fractions (Supplementary Fig. 15)
derived from MethylResolver to screen for leukocyte subsets that
are prognostic of patient survival. We employed rigorous statis-
tical practices for identifying prognostic leukocyte subsets
including using a stringent threshold for significant deconvolu-
tions, a regression framework which accounted for important
confounders, and multiple testing correction. While this rigor
resulted in fewer significant associations compared to other
similar works, we were confident in their validity.

Through this analysis, we were able to identify known and
previously unreported leukocyte populations with significant
impact on prognosis for many of the cancer types in TCGA
(Fig. 5b). For example, we confirmed that higher tumor purity-
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scaled eosinophil fraction in the TME is predictive of better
survival outcomes for Cervical Squamous Cell Carcinoma (CESC)
(Fig. 5b, c)28,29. Among the new findings we predicted that higher
B cell fraction in the TME was predictive of worse survival
outcome for kidney renal papillary cell carcinoma (KIRP) (Fig. 5b,
d). We also found a higher tumor purity-scaled B cell fraction in
the TME to be predictive of improved survival outcome for
Pancreatic Adenocarcinoma (PAAD) (Fig. 5b, e).

In general, we observed broadly consistent patterns between
the prognostic associations generated from the tumor purity-
scaled and relative leukocyte subset fractions (agreeing on
21 significant associations out of 25 and 27). However, some of
the unique cases found only when using tumor purity-scale
leukocyte subsets are supported by literature including improved
prognosis due to tissue associate eosinophilia (TATE) in cervical
cancers (CESC)28 and better survival outcome in pancreatic
cancer (PAAD) treated with chemoradiation with high
eosinophil-to-lymphocyte ratio (ELR)30.

Discussion
To facilitate DNA methylation-based leukocyte deconvolution for
diagnostic and therapeutic applications, we present a new LTS-
based robust deconvolution method, MethylResolver, which uses
reference leukocyte cell methylation signatures to provide both
relative and tumor purity-scaled leukocyte subset fractions from
bulk tumor methylation profiles. Compared to previous methods,
MethylResolver has the following advantages: (1) it introduces a
robust method for the deconvolution of bulk tissue methylation
profiles and has superior performance compared to previous
methods; (2) beyond relative leukocyte subset fractions, it is also
capable of inferring overall tumor purity and tumor purity-scaled

leukocyte subset fractions; (3) it provides the most comprehensive
leukocyte subset methylation signatures to date; (4) it offers a way
to assess the significance of a deconvolution.

The unique feature of MethylResolver to accurately infer
immune cell subset fractions in the tumor tissue admixture
without requiring a signature for the unknown content or having
to generate the reference signature matrix for each cancer is a key
advantage of MethylResolver over previous reference-based
deconvolution methods like MethylCIBERSORT14. MethylRe-
solver’s ability to infer tumor purity measure also allowed us to
produce not only relative leukocyte subset fractions from tumor
admixtures, but also tumor purity-scaled fractions. Tumor purity-
scaled fractions represent a step towards absolute fractions which
may offer improved prognostic and diagnostic capabilities com-
pared to relative leukocyte subset fractions16,17. Indeed, we
identified unique prognostic biomarkers using tumor purity-
scaled fractions that are supported by literature. We note that
tumor purity-scaled fractions are not absolute fractions as we do
not currently estimate the contributions of other cell types
existing in the TME (e.g. fibroblasts and endothelial cells).
Nevertheless, the purity-scaled fractions are closer to the absolute
fractions than relative fractions.

The introduction of deconvolution significance is another major
contribution of MethylResolver. All reference-based deconvolution
methods will mathematically decompose a mixture into some set of
coefficients under the assumption that they represent the fractions
of cell types presumably present in the reference signature matrix.
However, in situations where a cell-type is truly not present, or the
amount of unknown content is so overwhelming that an accurate
deconvolution becomes infeasible, a statistical assessment is
required to discriminate these unreliable deconvolutions from
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Fig. 4 Pan-cancer deconvolution of TCGA. a–d MethylResolver was applied to 9,756 samples from 33 cancer types from TCGA group into 11 broad
categories. The total number of samples profiled per cancer and the fraction of samples which had a significant deconvolution (red) with a loose (a) and
stringent (b) statistical threshold. c Relative and (d) tumor purity-scaled leukocyte subset fractions for the significantly deconvoluted TCGA samples with
cell type indicated by color. Tumor purity-scaled leukocyte subset fractions are not inferred for hematologic cancers.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01146-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:422 | https://doi.org/10.1038/s42003-020-01146-2 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


trustworthy deconvolutions. The significance threshold provides
users with a confidence level that avoids overinterpretation of the
results, however, it does not limit the use of the deconvolution
results. The threshold can be thought of as analogous to an FDR
assessment which provides a metric to quantify the trustworthiness
of results but also allows for investigation of said results if they do
not meet a pre-defined cutoff.

Using a stringent deconvolution significance threshold, 3430
(35.2%) of the TCGA tumors analyzed yielded a significant
deconvolution. This is not surprising given that the TCGA
selection of tumor samples favors samples with high tumor
purity, resulting in a smaller fraction of leukocytes and other cell
types in a majority of the samples. Our findings that DLBC,
LAML, HNSC, PAAD, and MESO (Fig. 4b) have the highest
percentage of significant deconvolutions largely agree with the
ranking of cancers with highest leukocyte factions generated by
Thorsson et al. as well the fact that these cancers are most
responsive to immune-checkpoint inhibitors31. In contrast, tumor
types such as PRAD had the lowest percentage of significant
deconvolutions (Fig. 4b), which is consistent with the general
belief that prostate cancer is often considered as an “immune
desert” with a low leukocyte fraction relative to stromal content,
and responding poorly to immune-checkpoint-pathway inhibi-
tors31–34. In such cases, the immune cell subset fraction estimates
by deconvolution would not be trustworthy and looking at the
prognostic value of such estimates could be misleading.

Therefore, our deconvolution significance measure is biological
meaningful and relevant. However, if a higher false-positive rate
is acceptable the significance threshold can be tuned to allow for
the deconvolution of tumor samples with higher fractions of
unknown content (Fig. 4a).

Application of MethylResolver to a pan-cancer deconvolution
of the TCGA dataset also demonstrated its ability to capture
known biology. For instance, high B cell content was found in B
cell lymphoma25 (Fig. 4c, d), tumor purity-scaled fractions of
CD8 T cells + NK cells were correlated with cytolytic score27 and
IFN-γ score26 (Fig. 5a), and high eosinophil content was pre-
dictive of better survival in cervical squamous cell carcinoma
(CESC)29 (Fig. 5b, c). This latter finding is supported by prior
evidence that moderate and intense tumor-associated tissue
eosinophilia (TATE) (>30 eosinophils/mm2) was associated with
significantly improved 5-year survival prognosis28. Additionally,
it has been reported that radiotherapy of CESC patients leads to
increased blood absolute eosinophil count (AEC) and that indi-
viduals who responded well to the radiotherapy had a larger
increase in AEC and TATE than the poor responders, thus
indicating that eosinophils are predictive of radiation response in
CESC patients29. These results give us the confidence to extend
the method to glean potentially novel insights in the prognostic
impact of various leukocyte populations on different cancer types.

Among the previously unreported findings, we found that higher
B cell fraction in the TME was most predictive of worse survival

Fig. 5 Prognostic potential of tumor purity-scaled leukocyte subset fractions. a Spearman correlation of the MethylResolver-derived tumor purity-scaled
fraction of CD8 T cells + NK cells with genes and scores known to correlate with these cell types profiled across eight cancer types. The y-axis is the score
or gene expression (in FPKM) and the x-axis is the tumor purity-scaled fraction of the CD8 T cells + NK cells. The red line is the linear regression fit of the
points. b Cox regression was applied to the MethylResolver pan-cancer deconvolution of TCGA to infer prognostic leukocyte subsets using tumor purity-
scaled fractions from significant deconvolutions. Heatmap colors correspond to the hazard ratio values and shapes correspond to the significance, rows
correspond to cancer type and columns correspond to cell-type, tumor purity, CD8-to-Treg ratio (CD8/Treg) or CD8-to-CD4 ratio (CD8/CD4). Only
samples with significant deconvolutions were used in the Cox regression. c–e Kaplan–Meier plots showing patients’ overall survival stratified by median
tumor purity-scaled fraction of eosinophils in CESC (c), median tumor purity-scaled fraction of B cells in KIRP (d), median tumor purity-scaled fraction of B
cells in PAAD (e). Red lines show survival of the top 50% tumor purity-scaled fractions of the indicated cell-type/feature from significant deconvolutions,
blue lines show the survival from the bottom 50% from significant deconvolutions, and gray lines show the survival from non-significant deconvolutions.
*q < 0.05 and **q < 0.01.
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outcome for kidney renal papillary cell carcinoma (KIRP) (Fig. 5b,
d). Although there were no prior prognostic studies of B cells for
KIRP, high infiltration of B cells in renal cell cancer (RCC) and
kidney clear cell carcinoma (KIRC) has been associated with poor
prognosis for these cancers35. Mechanistically, it has been proposed
that IL-10-producing B cells can lead to T cell immunosuppression
in renal cell carcinoma36 which can potentially explain the prog-
nostic effect seen using our MethylResolver deconvolution of KIRP.
We also predicted a higher tumor purity-scaled B cell fraction in the
TME to be predictive of improved survival outcome for Pancreatic
Adenocarcinoma (PAAD) (Fig. 5b, e). This is contrary to a previous
study that indicates tumor-infiltrating B lymphocytes showed a non-
significant trend for worse prognosis, however, the same study also
demonstrated that B cell tertiary lymphoid tissue (TLT) were
associated with significantly longer survival37. We hypothesized that
MethylResolver may have detected the high density of B cells in
these peri- and intratumoral TLT structures, known to be associated
with improved prognosis in many cancer types including pancreatic
cancer38, which is driving the underlying association of higher
tumor purity-scaled B cell fractions with improved prognosis.
Although we identify fewer leukocyte prognostic associations than
previous works, our rigorous statistics and multiple testing correc-
tion give us confidence in these findings, however, future validation
is required.

While MethylResolver has made a number of improvements
over existing methodologies, we acknowledge that MethylResolver
has the following limitations. First, the TME includes not only
leukocytes but also other cell types such as stromal cells, endo-
thelial cells, and other tissue specific components which have been
modeled in methods like HEpiDISH15 and MethylCIBERSORT14

to attain absolute leukocyte subset fractions. However, to model
every cell type which differs between tissues can be difficult. To
avoid this need, we employed a methodology that is more gen-
erally applicable, where we built a single signature matrix of the
common cell types of interest in TME (i.e. immune cells) and
devised an algorithm that is robust to the unknown content (i.e.
cell types in TME that are not modeled). In future extensions of
this work we would be very interested in including additional cell
types such as endothelial cells when appropriate data with over-
lapping cell types to facilitate batch correction become available.
Second, although we have constructed the most comprehensive
leukocyte subset methylation signature matrix to date, it is far
from exhaustive and does not include subpopulations of cells like
CD4+T cell subsets (e.g. Th1, Th2, Th17) which have been pre-
viously reported to have different associations with patient
prognosis39. Future efforts in purifying and profiling specific
immune cell subpopulations, or single cell sequencing would
greatly improve the ability to generate a higher resolution sig-
nature matrix. Moreover, although we are able to demonstrate
that our tumor purity estimates are comparable to CPE tumor
purity estimates, the accuracy of this metric needs to be further
benchmarked against a true gold standard (e.g. known tumor
purities measures), which is currently challenging to obtain.
Lastly, the new observations reported in this study require further
testing and validation.

In summary, we developed MethylResolver, a robust reference-
based deconvolution method which can provide tumor purity-
scaled fractions of tumor-infiltrating leukocyte subsets in the
TME using DNA methylation profiles of bulk tumor samples. For
immediate applications, we expect MethylResolver can facilitate
the efforts in understanding cancer biology and in identifying
biomarkers for cancer immunotherapy. In addition, as cell-type
composition is a known confounder in both epigenome-wide
association studies and in differential methylation studies9,40–42,
MethylResolver is an intuitive application that can be used to
provide cell-type fraction estimates to correct for cell composition

in such studies. When high-throughput single cell methylation
data becomes readily available, we also envision that MethylRe-
solver could be extended to generate de novo cell-type specific
methylation signature matrices similar to recent single cell RNA-
Seq based approaches such as MuSiC43, Bisque44, and CIBER-
SORTx45. Even at its current stage, we believe MethylResolver is a
valuable resource and addition to the field of immunomethy-
lomics and in silico deconvolution.

Methods
Measurement of methylation levels. Methylation data are typically reported as
Beta values bounded between 0 (unmethylated) and 1 (fully methylated). We select
methylation features with low levels of DNA methylation, which likely translate to
high cell-type-specific gene expression46,47.

Statistical methods for deconvolution. There are a number of different reference-
based methods which have previously been employed to deconvolve methylation
mixture profiles, both with5,14 and without10,11 unknown content, and a number of
reference-free deconvolution methods42,48. Due to limitations in accuracy and
biological interpretability of underlying cell types of reference-free deconvolution
methods, here we focused on the reference-based methods. Most of the reference-
based methods utilize a similar framework where a methylation mixture, m, is
represented as a system of equations. Given a pre-defined cell-type signature
matrix, B, with each column representing a cell type and each row a different CpG,
we solve the fractions of each cell type, f, using the equation m= B × f. The main
differences among the methods are the underlying statistics. Previously Linear
Least Squares Regression or LLSR19, Quadratic Programming or QP20,21, Robust
Linear Regression or RLR5, and nu Support Vector Machine Regression or
nuSVR5, have been used. Here we leveraged a new statistical approach, Least
Trimmed Squares Regression or LTS49,50, for robust reference-based deconvolution
of methylation data, and compared it with the previously used statistical methods.

For LLSR, the least-squares fit for the system of linear equations specifying m=
B × f was derived with the ‘lsfit’ function in R. The constraint of non-negative
numbers was met by removing the lowest negative coefficient from the fit equation
and iterating until all coefficients were non-negative. Cell type fractions were scaled
to sum to one.

For QP, the “lsqlin” function from the R package “pracma v1.9.9” was used to
solve a linearly constrained linear least-squares problem by finding the global
optimal solution which minimized the residuals of the least squares given a non-
negative constraint51. Cell type fractions were scaled to sum to one.

For RLR, the “rlm” function in the R package “MASS” with M-estimation and
Huber weighting was used. In M-estimation, the weight function defines a co-
dependence between the residuals and the weights, which is solved using Iteratively
Reweighted Least Squares (IRLS). Huber weighting results in observations with
small residuals having a weight of 1 and larger residuals with weights that decrease
as the residual increases. This effectively puts more weight on the CpGs which best
explain the system of equations and less weight on those that cannot.

The CIBERSORT framework was based on nuSVR52 and the R source code
(v1.04) was obtained from https://cibersort.stanford.edu. nuSVR was implemented
with the “svm” function in the R package “e1071 v1.7-0”. nuSVR performs a
regression by discovering the hyperplane which fits as many of the data points as
possible within a given distance ε from the hyperplane. Points which are farther
from the hyperplane than ε are evaluated with the loss function. In addition to
minimizing the loss function, nuSVR also seeks to minimize the penalty function
which penalizes model complexity. The nu parameter serves as an upper bound on
the training errors and a lower bound on the fraction of support vectors, in this
case CpGs. The CIBERSORT implementation used three different values for nu:
0.25, 0.5 and 0.75, corresponding to fitting an nuSVR to 25%, 50%, and 75%,
respectively, of the CpGs in the signature matrix and chose the model which had
the smallest residual error. Negative coefficients were set to zero and then all
coefficients were normalized to sum to 1.

For MethylResover, LTS regression was designed to fit data while minimizing
the effect of outliers. These outliers may come from CpGs in the signature matrix
that also bear signal in the unknown content present in the mixture to be
deconvoluted. LTS regression was implemented with the “ltsReg” function in the R
package “robustbase v0.93-2”. LTS regression is similar to LLSR where it seeks to
minimize the sum of squared residuals; however, LLSR computes this quantity
across all CpGs, whereas LTS finds and uses the optimal CpG subset of specified
length. Our implementation considered nine values for alpha: from 0.5–0.9 in
increments of 0.05 corresponding to fitting a regression to 50–90%, of the CpGs in
the signature matrix and chose the model with the smallest RMSE of the
reconstructed signature profile based on inferred cell-type fractions compared to
the observed profile.

Model formulation. Deconvolution can be represented as a linear model,

m ¼ B ´ f ;
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where m 2 Rn is the Beta value for n CpGs in the methylation mixture, B 2 Rn ´m

is the signature matrix which has the mean Beta values for m cell types, and
f 2 Rm are the unknown cell-type fractions. The cell fractions can be estimated
with ordinary least squares (OLS),

f̂ols ¼ BTB
� ��1

BTm;

where f̂ols are the estimated parameter values. The residuals r= (r1, …, rn) can be
obtained from the OLS estimate,

r ¼ m� Bf̂ ols:

In standard least squares the parameter estimates are obtained by minimizing
the sum of squared residuals,

S f̂ols
� �

¼
Xn

j¼1

r jð Þ f̂ols
� �2

;

where the sum of squared residuals is computed across n CpGs. LTS iterates
through subset CpGs of size k from the full set of n signature matrix CpGs to
attempt to find the k subset that yields the lowest sum of squared residuals,

Sk f̂ols
� �

¼
Xk

j¼1

r jð Þ f̂ols
� �2

;

where the n-k CpGs do not influence the fit. The size of k is specified by the α-
parameter, where 1 ≤ α ≥ 0.5 and k= n × α. The k subset CpGs are obtained using
the Fast LTS algorithm53. By subsetting to the k set of CpGs which minimize the
sum of squared residuals, LTS can remove CpGs that bear signals from unknown
content in the mixture not modeled in the signature matrix, thereby improving the
cell fraction estimation of the modeled cell types.

Benchmarking with in silico spike-in experiments. As a baseline benchmark to
assess the detection limit of each method for rare cell types in bulk tissues, we first
performed an in silico spike-in experiment using the pre-established IDOL
(Identifying Optimal Libraries) whole blood reference DNA methylation sig-
nature11, as this signature has been previously used to benchmark other methods.
Here, six purified immune cell profiles, which corresponded to the cell types in the
IDOL signature, were taken from a publicly available dataset (GSE88824) and were
mixed in varying proportions with tumor content (in the form of HCT-116, 451-
LU, or MCF-7 epithelial cancer cell lines) to generate an in silico methylation
profile of immune cell and tumor cell mixtures. For each in silico mixture, we
spiked in tumor content ranging from 0 to 90% with the remaining mixture
fraction of the methylation sample comprised of the six immune cell types. Of this
remaining fraction, one of the six immune cell types from the signature matrix was
spiked in at a certain percentage of the total immune cell content (from 0.5 to 50%)
with the rest of the amount randomly distributed across the five other immune cell
types. Statistical significance of the performance between the five deconvolution
models was determined using post hoc pairwise comparisons of two-way ANOVA.
An ANOVA model was fit with the ‘aov’ function in R treating different decon-
volution methods and the tumor content composition as categorical independent
variables, and the predicted fraction as the dependent variable. This was done for
each cell type separately and the adjusted p-values were computed using Tukey’s
“Honest Significant Difference” method with the “TukeyHSD” function in R. The
purpose of this in silico spike-in experiment was to create a fair comparison to all
methods with regard to different levels of detection and in the presence of various
amount of unknown content, rather than evaluating their real-world performance.
The latter was assessed in the subsequent experiments.

Benchmarking with in vitro spike-in experiments. To benchmark and evaluate
the performance of each deconvolution method in a more realistic context, we
performed further benchmarking experiments using 12 experimentally generated
in vitro mixtures obtained from GSE77797. Specifically, these mixtures were cre-
ated by experimentally mixing six immune cell types in known proportions to
obtain DNA mixtures, followed by methylation profiling on an Illumina
HumanMethylation450 BeadChip. Similar to the above in silico mixture bench-
marking, an unknown tumor content (in the form of HCT-116, 451-LU, or MCF-7
epithelial cancer cell lines) was added to the in vitro mixtures (from 0 to 90% in
10% increments) as well as a log-normal noise in the form of 2N(0,λσ) (λ = 0-1 in
0.1 increments). Each method was applied to the in vitro spike-in mixtures to test
its performance in recovering the known proportions.

Building a more comprehensive methylation signature matrix. The IDOL sig-
nature used in the benchmarking analyses only contained 6 leukocyte cell types. To
build a more comprehensive leukocyte methylation signature, we gathered
methylation data for 11 cell types from three separate publicly available studies
(GSE35069, GSE59250, GSE71837). Visualization of the 269 samples from these
datasets by embedding of the top 20 principal components in a UMAP (Uniform
Manifold Approximation and Projection)54 plot using the R package “umap”
revealed segregation by dataset (Supplementary Fig. 7). To correct for this batch

effect, we used monocytes which were included in all three studies as a bridging cell
type. This was done by finding the average Beta values across all monocytes in each
study separately to create an average monocyte profile for each study. These three
average monocyte profiles were further averaged to generate a cross-study aggre-
gate monocyte profile and the difference between the average monocyte profiles
from each study and the cross-study aggregate monocyte profile was defined as the
correction factor for each study. The correction factor derived from the monocyte
signals for each study was then applied to all cell types in that study. After cor-
rection, resulting Beta values less than 0 were set to 0 and greater than 1 were set to
1. This batch correction effectively removed sample clustering by study and
resulted in a much clearer cell-type clustering (Supplementary Fig. 7).

In generation of the signature matrix, we first excluded purified leukocyte
samples that had >10% CpGs missing, and CpGs which were missing in >10% of
the samples. As a second filtration step, 235 sex-associated CpGs on autosomal
chromosomes55 and 11,648 CpGs on the X and Y chromosomes were removed to
avoid any sex-associated signals. We further filtered CpGs to avoid contaminating
signals from nonhematopoietic cell types which was inspired by the construction of
the LM22 signature matrix in CIBERSORT5. In our case, as we aimed to select for
immune cell-type-specific CpGs with low methylation, we removed CpGs with an
average Beta <0.8 across a panel of ~800 solid cancer cell lines56 (GSE68379) in
order to mitigate potential contaminating signals from entering the signature
matrix (Supplementary Data 11). Additionally, we also excluded 360,000 potential
CpGs with low methylation (average Beta <0.8) in any nonhematopoietic tissue
based on a set of cell lines derived from many different primary human tissues57

(GSE31848, GSE59091, GSE68134, Supplementary Data 12).
From the remaining 60,557 candidate CpGs, we conducted t-tests between all

pairwise combinations of the 11 immune cell types and an additional pairwise test
to distinguish cell types that stem from the same myeloid lineage (monocytes,
dendritic cells, and macrophages versus neutrophils and eosinophils). We compiled
a list of CpGs for each cell type or groups of cell types which had significant
Bonferroni-corrected p-values between that cell type and each of the remaining cell
types. To determine the number of CpGs to include in the signature for each cell
type, we tested 20–200 CpGs per cell type or groups of cell types from the sorted
lists of candidate CpGs. We selected the top 35 CpGs from each cell type and 34
CpGs distinguishing cell types from the same myeloid lineage, that minimized the
condition number of the resulting signature matrix, in a manner similar to the
construction of LM22 signature matrix in CIBERSORT5. The final signature matrix
consists of a total of 419 CpGs.

Determining deconvolution significance threshold. Although deconvolution
methods, regardless of algorithm applied, could produce estimates of cell-type frac-
tions for any given sample, whether a deconvolution is successful or meaningful can
be questionable. We consider a successful deconvolution to be one that is conducted
on a mixture which contains sufficient quantities of the cell types present in the
signature matrix. To define the threshold of a successful deconvolution, we collected
689 true-positive samples from human blood (GSE42861) where a majority of the
immune cell types in our reference signature matrix were believed to be present, and
413 true negative samples from normal lung cell lines, non-small cell lung cancer cell
lines, breast cancer cell lines, colon cancer cell lines, and ovarian cancer cell lines
(GSE36216 and GSE57342), which we did not expect to have significant leukocyte
components. We explored four goodness-of-fit metrics, R1, R2, RMSE1 and RMSE2,
as detailed below, to evaluate the validity of a deconvolution of these samples.

For each mixture, m, we calculated the estimated relative cellular fractions, ~f ,
using our newly defined robust signature matrix, B, and LTS in MethylResolver to
solve the equation m= B × f. We then calculated a reconstituted mixture, ~m, by
computing B ´~f . R1 was obtained by calculating the Pearson correlation between
our original mixture, m, and our reconstituted mixture, ~m, and RMSE1 was
calculated similarly by obtaining the root-mean-square error between m and ~m. R2
and RMSE2 were calculated using the best subset of CpGs from the signature
matrix as determined by minimizing the residuals in LTS regression, using this
subset of CpGs gave the subset signature matrix B and subset mixture m. We then
calculated the reconstituted mixture using the best CpG subset, ~m, by computing
B ´ef . R2 was computed by the Pearson correlation between ~m and ~m and RMSE2
was obtained from the root-mean-square error between ~m and ~m.

The best goodness-of fit metric and threshold was determined based on how
well the true-positive and true negative samples were separated. We decided to use
the R2 goodness-of-fit metric as the significant deconvolution threshold metric as it
had the highest discriminatory power in our benchmarking. A significant
deconvolution is defined as deconvolution of mixtures achieving a R2 goodness-of-
fit value above a pre-defined threshold. To evaluate the performance of this metric
on more realistic scenarios, we constructed synthetic mixtures from random
pairwise combinations of true-positive and true negative samples. The fraction of
unknown content in the mixture was derived from the true negative samples and
scaled from 0 to 100% of the total synthetic mixture in increments of 0.1% with 200
random synthetic mixtures at each increment for a total of 200,200 random
synthetic mixtures. The synthetic mixtures were deconvolved using MethylResolver
and the fraction of significant deconvolutions, which was defined as the percentage
of deconvolved mixtures with an R2 value above a given R2 threshold, of the 200
mixtures in each 0.1% unknown content increment, was calculated using a range of
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thresholds. A regression line was fit to the percent of significant deconvolutions
generated by each threshold using Local Polynomial Regression Fitting with the R
function “loess” with a smoothing span of 0.25. This fit line was used to determine
the percent of significant deconvolutions at 100% unknown content for different
thresholds to obtain an estimate of the false-positive rate.

To benchmark the sensitivity and specificity of our deconvolution threshold, we
used the same 200,200 random synthetic mixtures derived from true-positive and true
negative samples as described above. Using windows of 5% centered around specific
values of unknown content spike-ins (e.g. 27.5–32.5% for 30% unknown content), a
total of 10,000 mixtures per window were used as true-positive samples, and 10,000
true negative samples derived from random pairwise mixtures of 519 negative
samples (from GSE64511, GSE59091, GSE74877) were used. To generate the ROC
curves for each unknown content value, we slid the threshold from 0 to 1 in
increments of 0.001.

TCGA data acquisition. Level 3 Illumina 450k methylation array Beta values were
downloaded from TCGA on March 28th, 2018. We obtained data from
9,756 samples across 33 cancer types in 11 broad categories as defined by TCGA.

Estimating tumor purity and leukocyte fractions for TCGA. Various methods
have been developed to infer tumor purity, which is known to be an important
prognostic indicator. To leverage the strengths of different methods and help
reduce noise from any single method, Aran et al. applied four established tumor
purity methods to 9364 tumor samples from TCGA. Combining these four
methods into a single metric called CPE23 (consensus measurement of purity
estimates) helped improve the accuracy of tumor purity estimates. Here we used
the CPE metric as the ground truth tumor purity estimates and trained a random
forest (RF) regression model (using R package “randomForest”) to predict tumor
purity using the four goodness-of-fit metrics: R1, R2, RMSE1, RMSE2, and relative
fractions of the 11 leukocyte subsets inferred by MethylResolver. It is important to
note that our method is supervised as it was trained on CPE tumor purity mea-
sures, whereas previous methods for estimating tumor purity are unsupervised. We
first ran MethylResolver on 7001 TCGA samples across 21 cancer types which had
both 450k methylation data and CPE tumor purity measures. The RF regression
model was built using 500 trees, five features randomly sampled with replacement
as candidates at each split, and a minimum of five samples at each terminal node.
We trained and tested the model with 5-fold cross validation on half of the
available samples from each cancer type (3501 total), selected at random, and
evaluated the model on the other half of the samples (3500) which were not seen
during training. Additionally, we completely held out all samples from each cancer
type in a leave-one-out process during training to get an estimate on the perfor-
mance of tumor purity estimate in a cancer type that had not been seen at all. To
evaluate the performance of the RF model on the held-out testing samples, we
compared the tumor purity estimates from our RF model to the ground truth CPE
purity estimates. Once the RF model was established, it was applied to estimate
tumor purity using MethylResolver deconvolution results from 9442 TCGA sam-
ples across 30 different solid tumor types with available level 3 methylation data.
These 9442 samples included 3501 samples which were used during the training/
testing of the RF model and 3500 samples (7001 total) that were used in the
evaluation of the model. The remaining 2441 samples were not used in either
training/testing or evaluation due to missing CPE estimates.

The inferred tumor purity was then used to scale relative leukocyte subset
fractions to generate tumor purity-scaled leukocyte subset fractions with the
following equation:

~f ¼ 1� qð Þ*~f ;

where q was the estimated tumor purity, ~f was the relative leukocyte subset
fractions, and ~f , was the tumor purity-scaled leukocyte subset fractions.

Determining significant immune populations in the TME. To quantify the effect
of different immune cell populations on patient outcomes, we applied Cox
regressions using the “coxph” function from the ‘survival’ package in R. Sample-
level meta data, including survival times, were obtained from the Cancer Genomics
Data Server (CGDS) (http://www.cbioportal.org) using the “cgdsr” package in R.
For significant deconvolutions of each cancer type, we constructed a Cox regression
model to associate overall survival with tumor purity-scaled or relative cell-type
fractions, CD8-to-Treg ratio (CD8/Treg), CD8-to-CD4 ratio (CD8/CD4), or
inferred tumor purity, while adjusting for covariates including sex, age, and grade
or histology. Whenever available, sex and grade were included in the model as
nominal factors, and age as a continuous variable. For the Cox regressions, only
tumor samples with significant deconvolutions were used, as we did not want to
include lower-confidence results into the regression. Benjamini-Hochberg correc-
tion to the resulting p-values was applied to correct for multiple testing. The test
used here is more stringent than most other pan-cancer deconvolutions of TCGA
tumors which often employed univariate analyses without adjusting for covariates.
Only tumor samples with significant deconvolutions (using a deconvolution sig-
nificance cutoff of R2 = 0.5) were included in our Cox regression. FDR ≤ 0.15 was
used as the cutoff for statistical significance similar to a previous study16. For the

Kaplan-Meier survival curves, pairwise post hoc analysis for the Logrank-test was
used to find significant differences between groups.

Statistics and reproducibility. Data in the graphs are expressed as mean ± standard
error of mean (SEM). ANOVA post hoc analysis was used to compare the perfor-
mance of the different deconvolution methods on in silico mixtures. Pearson
correlations are primarily used throughout the manuscript, unless Spearman corre-
lations are explicitly specified. Regression lines are fit using loess smoothing. TCGA
survival data was compared using post hoc analysis for the Logrank-test and multiple
comparisons were performed with a Cox regression. All hypothesis testing was
two-sided with a significance level of 0.05. Statistical analyses were done using R,
version 3.5.1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used to generate the in silico mixtures used in Fig. 1a and Supplementary Fig. 1 and
2a were obtained from GSE88824. The data used to generate the in vitro mixtures used in
Fig. 1b and Supplementary Fig. 3a, b and the mixtures used to benchmark the new
signature in Fig. 1c and Supplementary Figs. 8a, b and 9 were obtained from GSE77797.
Data for the construction of our reference signature was obtained from GSE35069,
GSE59250, and GSE71837. Data used to filter the reference signature included a panel of
solid cancer cell lines (GSE68379) and cell lines derived from nonhematopoietic human
primary tissues (GSE31848, GSE59091, GSE68134). Data used as a true positive in
evaluating the detection threshold of MethylResolver was obtained from GSE42861. Data
used as true negatives in Fig. 2a, b were obtained from GSE36216 and GSE57342. Data
used as true negatives in the mixtures in Fig. 2c, d were obtained from GSE64511,
GSE59091, and GSE74877. Data behind Figs. 1, 2, 3, and 5b are available at https://doi.
org/10.6084/m9.figshare.1254347358. Data behind Fig. 4 are available in Supplementary
Data 7 and Supplementary Data 8. Data behind Fig. 5a are available in Supplementary
Data 10 and data behind Fig. 5c–e are available in Supplementary Data 8. The data that
support the findings of this study are available from TCGA but restrictions apply to the
availability of these data, which were used under license for the current study, and so are
not publicly available. Data are however available from the authors upon reasonable
request and with permission of TCGA. Any data not present in the manuscript or
supplementary materials are available from the authors upon reasonable request.

Code availability
MethylResolver is open source software available on GitHub under the GPLv3 license:
(https://github.com/darneson/MethylResolver).
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