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RESEARCH Open Access

Ubiquity of synonymity: almost all large binary
trees are not uniquely identified by their spectra
or their immanantal polynomials
Frederick A Matsen 1* and Steven N Evans2

Abstract

Background: There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the
Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise
distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and
so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under
relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial).

Results: We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes
to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to
zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more
informative immanantal polynomials have no greater power to distinguish between trees.

Conclusion: Our results show that a generic large binary tree is highly unlikely to be identified uniquely by
common spectral invariants.

Background
Tree shape theory furnishes numerical statistics about
the structure of a tree [1,2]. (Because we are interested
in applications of tree statistics to trees that describe the
structure of branching events in evolutionary histories,
we will, for convenience, always take the term tree with-
out any qualifiers to mean a rooted, binary tree with-
out any branch length information or labeling of the
vertices.) Such statistics have two related uses. Firstly,
they can be used in an attempt to tell whether two trees
are actually the same and, secondly, they can be used to
indicate the degree of similarity between two trees with
respect to some criterion.
Examples of the latter use are the testing of hypoth-

eses about macroevolutionary processes and the detec-
tion of bias in phylogenetic reconstruction. Historically,
numerical statistics for such purposes have attempted to
capture the notion of the balance of a tree, which is the
degree to which daughter subtrees are the same size.

The balance is typically measured by ad-hoc formulae
that are often selected for statistical power to distinguish
between two different distributions on trees [3,4]. In
previous work we investigated the possibility of describ-
ing the shape of the tree using a list of numbers rather
than just a single number [5,6].
A mathematically “canonical” approach to finding a list

of such numbers is to use information derived from
matrix representations of the trees. We first describe the
matrix representations of a tree that we will consider.
In algebraic graph theory [7], the basic matrix associated

to a graph is the adjacency matrix A(G), whose ijth entry is
one if i and j are connected by an edge, and zero other-
wise. From a probabilistic point of view, the more natural
matrix to associate with a graph is the Laplacian matrix L
(G), which is the infinitesimal generator of the natural ran-
dom walk on the graph and is given by A(G) - D(G), where
D(G) is the diagonal matrix of vertex degrees. It is clear
that a graph can be recovered from either its adjacency of
Laplacian matrix. Some authors, such as [8], define the
Laplacian to be D(G)-1/2L(G)D(G)1/2. Note that this differ-
ence is not relevant if one is only considering
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characteristics of the matrix L such as eigenvalues that are
invariant under similarity transformations.
Readers in the phylogenetics community may be more

familiar with the pairwise distance matrix [1,9]. The dis-
tance matrix P given a leaf-labeling 1, . . ., n has as its
ijth entry the length of the path between leaf i and leaf j.
Any leaf-labeled tree is uniquely determined by its dis-
tance matrix. These matrices have also been extensively
studied as discrete metric spaces [10,11].
The definition of the adjacency and Laplacian matrices

requires a numbering of the vertices, while the definition
of the distance matrix requires a numbering of the leaves.
Because we are considering unlabeled trees (that is, we
identify trees that are equivalent in the usual sense of
graph-theoretic isomorphism), we are only interested in
tree statistics that are invariant under renumbering. Algeb-
raically, this means that we are only interested in features
of the associated matrix that are unaffected by similarity
transformations via a permutation matrix. The most
obvious such statistics are the eigenvalues.
The adjacency and Laplacian matrices and their eigen-

values are familiar objects in the area of spectral graph
theory [7,8,12]. The eigenvalues of the adjacency matrix
tend to contain combinatorial information about the
graph, such as bounds on the chromatic number. The
eigenvalues of the Laplacian give information of a more
geometric flavor, such as the equivalent of the surface
area to volume ratio of subgraphs of a graph. As well as
having connections to the theory of random walks on
graphs, the Laplacian eigenvalues can be used to define
the expander graphs, an important class of graphs that
have applications in coding theory. Therefore, it would
not be too surprising if the these eigenvalues were a con-
venient way to summarize information about a tree, thus
giving a nice collection of tree statistics.
Similarly, it seems plausible that the eigenvalues of the

pairwise distance matrix could contain quite a lot of infor-
mation about the tree that could be used to compare
trees. Moreover, although the distance matrix formally
contains the same information as the adjacency or Lapla-
cian matrices, the transformation that takes the distance
matrix to one of the other two is distinctly non-linear, and
hence there is no reason to believe that there is any simple
connection between the corresponding eigenvalues.
We demonstrate below that not only do there exist pairs

of trees that have the same spectrum as another tree for
the adjacency, Laplacian, and distance matrices, but that
this is the rule rather than the exception as the trees
become large, in the sense that the fraction of trees with a
given number of leaves that have a unique adjacency,
Laplacian, or distance spectrum goes to zero as the num-
ber of leaves goes to infinity.
The basic methodology that we use to prove this

result was first established in [13] and developed in [14]

for general (that is, not necessarily bifurcating) graph-
theoretic trees in the case of the adjacency and Lapla-
cian matrices. The present paper provides the first
results of this type concerning rooted bifurcating trees,
as well as the first examination of such results for the
pairwise distance matrix. The key idea is to establish
that certain pairs of trees T1 and T2 have the following
exchange property for a given matrix representation: that
exchanging T1 for T2 as subtrees of a given tree does
not change the spectrum for that matrix representation.
This is a stricter requirement than simply having the
same spectrum (Figure 1). It then becomes a matter of
showing that the number of trees with a given number
of leaves is asymptotically of larger order than the num-
ber of trees with the same number of leaves that don’t
have a particular subtree. For this we build on the gen-
erating function argument used in [15] for asymptotic
estimates of the number of unlabeled rooted bifurcating
trees (see the section Asymptotic numbers of trees).
One possible explanation for this phenomenon is that

two diagonalizable matrices have the same spectrum if
they are similar via an arbitrary similarity transformation
rather than just via a permutation transformation, and
this suggests considering features of a matrix that are
invariant under permutation similarities but not more
general ones. We will now describe a feature of a
matrix, its immanantal polynomial, that has this
property.
The immanant is a generalization of the determinant.

Recall that the determinant of a matrix A = (aij) is given
by

det(A) :=
∑
σ∈Sn

sgn (σ )
∏

i

aiσ (i),

Figure 1 Pairs of trees with similar algebraic properties. Figure
(a) shows the smallest pair of rooted binary trees with the same
adjacency and Laplacian spectrum; these trees do not have the
corresponding exchange property. Figure (b) shows two trees with
the exchange property for the adjacency, Laplacian, and pairwise
distance matrices.
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where the sum is over the symmetric group of permu-
tations of {1, 2,..., n} and sgn(s) is the sign of the per-
mutation s.
The function sgn is a particular example of a charac-

ter of an irreducible representation of the symmetric
group. It would take us too far afield to define these
notions here, but excellent treatments may be found in
[16-19]. We note, however, that the irreducible charac-
ters are constant on the conjugacy classes of the sym-
metric group (recall that two permutations belong to
the same conjugacy class if and only if they have the
same cycle structure) and they form a basis for the vec-
tor space of functions with this property (the class
functions).
Our use of characters is simply to define the immanant

Iχ (A) :=
∑
σ∈Sn

χ(σ )
∏

i

aiσ (i)

of a matrix A for the irreducible character c. A discus-
sion of immanants may be found in [20,21]. The imma-
nantal polynomial for a character c of a matrix is the
corresponding generalization of the characteristic poly-
nomial; that is, it is the polynomial x �→ Iχ(xI − A).
Because the characters are class functions, an immanan-
tal polynomial is invariant under similarity by permuta-
tion matrices, but it will not typically be invariant under
more general similarities.
Unfortunately, as we show in Lemma 2, for either the

adjacency or Laplacian matrix the following two condi-
tions on a pair of trees are equivalent:

• the spectra are equal,
• the immanantal polynomials are equal for all irre-
ducible characters.

Consequently, the immanantal polynomials for the
adjacency and Laplacian matrices provide no more dis-
tinguishing power than the spectra and, in particular, a
vanishing fraction of large trees have a unique set of
immanantal polynomials for these matrices. We do not
know if the same fact is true for the immanantal poly-
nomials of the distance matrix.
Our main result is thus the following.
Theorem 1. Let tn be the number of trees with n

leaves. For either the adjacency, Laplacian, or pairwise
distance matrix, let ln be the number of trees with n
leaves that do not share their spectrum with another
tree. Then, the fraction ln/tn goes to zero as n goes to infi-
nity. For the adjacency and Laplacian matrices, the
same result holds if we replace the spectrum by the com-
plete set of immanantal polynomials.
The rate of convergence of the fraction in Theorem 1

is also of interest. If it is extremely slow then the

existence of trees with shared spectra may not be practi-
cally relevant for the construction of informative tree
shape statistics. We investigate this matter numerically
towards the end of the paper.
Several other research groups have investigated pro-

blems that are related to, but different from, those
investigated here. Steyaert and Flajolet [22] investigate
the occurrences of subtrees in the case of “planar” trees,
i.e. trees that are equipped with an order of subtrees at
every internal node. These planar trees are substantially
easier to analyze: for example, there is a nice closed
form generating function for the numbers of such trees
(the Catalan numbers). In contrast, the generating func-
tion for the number of trees considered here is only
given as the solution of a functional equation and there
is no closed form expression for the numbers of such
trees. Graham and Lovasz [23] investigate the spectra of
distance matrices of trees, but their distance matrices
are defined in terms of vertex-to-vertex distances, rather
than the leaf-to-leaf definition. The leaf-to-leaf distance
matrix is a principal sub-matrix of the vertex-to-vertex
one, and there are interlacing relations between the
spectrum of a matrix and one of its principal subma-
trices (2). However it is not a priori the case that if two
matrices have the same spectrum, then the principal
submatrices with the same rows and columns will also
have the same spectrum. In a similar vein, the vertex-to-
vertex distance matrix can be constructed from the leaf-
to-leaf distance, but the construction involves consider-
ing whether certain linear inequalities hold and so it
isn’t a procedure that will, a priori, transform spectra in
a simple way.
More recently, Bhamidi, Evans, and Sen [24] have pro-

ven that, subject to weak general conditions, many
ensembles of random trees have the property that, with
probability converging to one as the number of leaves
goes to infinity, a realization shares its spectrum with
another tree. Their conditions are easiest to check when
the ensemble can be embedded in a general continuous-
time branching process where individuals give birth to a
possibly random number of offspring at the arrival times
of a point process up to a possibly infinite death time,
and those offspring go on to behave as independent
copies of their parent. This particular framework covers
examples such as random recursive trees, linear preferen-
tial attachment trees, uniform rooted unordered labeled
trees, and Yule trees. However, we have been unable to
embed the ensemble considered here in a suitable contin-
uous-time branching process or otherwise check the gen-
eral conditions of [24].
The computer code used in this paper was written in

OCaml [25] and has been made available at http://github.
com/matsen/ubiquity_synonymity, along with the results
produced by this code.
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Algebraic preliminaries concerning spectra and
immanantal polynomials
Equality of adjacency and Laplacian spectra implies
equality of immanantal polynomials
In order to prove results for the adjacency and Laplacian
matrices simultaneously, we define for a tree T and arbi-
trary real numbers y and z the generalized Laplacian

L̃(T) := yD(T) + zA(T) (recall that A(T) is the adjacency
matrix and D(T) is the diagonal matrix of vertex
degrees). We define the corresponding generalized
Laplacian immanantal polynomial of the tree T with r
vertices to be

x �→ Iχ

(
xI − L̃(T)

)
for an irreducible character c of the symmetric group

Sr.
The generalized Laplacian immanantal polynomial can

be computed in a simple combinatorial fashion as fol-
lows. Define a k-matching to be a set of k pairwise dis-
joint edges of the tree (that is, a set of edges such that
no two share a common vertex). Let Mk(T) denote the
set of k-matchings on the tree T. We think of an edge
as a pair of vertices, so when we use the notation i �∈ p
for a vertex i and a matching p, we mean that i is not
one of the ends of any edge in p. Let Ck denote the con-
jugacy class of the symmetric group Sr consisting of per-
mutations that are the product of k disjoint
transpositions, and write c(Ck) for the common value of
the character c on such permutations. The following
lemma appears in [14] and is included for completeness.
Lemma 1. The generalized Laplacian immanantal

polynomial of the tree T for the character c is given by∑
k≥0

χ(Ck)z2k
∑

p∈Mk(T)

∏
i�∈p

(x − ydi(T))

where di(T) is the degree of vertex i in the tree T.

Proof. Set M := xI − L̃(T) = (mij) so that the general-

ized Laplacian immanantal polynomial is∑
σ∈Sn

χ(σ )
∏

i

miσ (i). (1)

The matrix entries mij are zero unless i = j or there is
an edge between i and j. If the permutation s has a
cycle of length 3 or greater, then corresponding term in
(1) must be zero because otherwise the tree would have
a loop. Therefore we need only consider permutations
that are products of disjoint transpositions where, more-
over, each transposition exchanges the two vertices of
an edge. Such a permutation is equivalent in an obvious
way to a k-matching for some k, and the lemma follows.

Lemma 2. Two trees have the same spectrum for their
generalized Laplacian if and only if they have the same
generalized Laplacian immanantal polynomial for all
characters.
Proof. One direction is trivial: if two trees have the

same generalized Laplacian immanantal polynomial for
all characters, then their generalized Laplacians have the
same characteristic polynomial and hence the same
spectrum.
Conversely, if the generalized Laplacians of two trees

have the same spectrum, then the characteristic polyno-
mials of the generalized Laplacians are the same.
Lemma 1 in the case c = sgn, the fact that sgn(Ck) = ±1
≠ 0 for all k, and the fact that two equal polynomials
have the same coefficients imply that the quantity∑

p∈Mk(T)

∏
i�∈p

(x − ydi(T))

is the same for both trees for all k. Another applica-
tion of Lemma 1 completes the proof.
A sufficient condition for two trees to have the same
adjacency or Laplacian spectrum
We use the phylogenetic rather than graph-theoretic
definition of a subtree as follows. Define the distal ver-
tex of an edge to be the vertex farthest from the root
that touches that edge. Then, a subtree of a given rooted
tree is what results from separating an edge from its dis-
tal vertex, which then becomes the root of the subtree.
Recall that Mk(T) is the set of k-matchings of the tree

T. Let Nk(T) be the set of k-matchings where the chosen
edges do not contact the root.
Define

Pk(T) :=
∑

p∈Mk(T)

∏
i�∈p

(x − ydi(T))

Qk(T) :=
∑

p∈Nk(T)

∏
i�∈p

(x − ydi(T)).

The following lemma is implicit in [14], but again we
include a proof for completeness.
Lemma 3. Let S1 and S2 be trees with the same num-

ber of leaves. If Pk(S1) = Pk(S2) and Qk(S1) = Qk(S2) for
all k, then any tree with S1 as a subtree has the same
generalized Laplacian spectrum as the tree obtained by
substituting S2 for S1.
Proof. Let T1 be a tree with S1 as a subtree, and write

T2 for the tree obtained by substituting S2 for S1.
Denote by e0 the edge that connects the rest of T1 (resp.
T2) to the root of S1 (resp. S2).
We differentiate between two types of k-matchings of

Ti: those that contain e0 and those that do not. Note
that a k-matching of Ti that does not contain e0
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restricts to an ℓ-matching of Si for some ℓ, and all
matchings of Si arise via such a restriction. Similarly, a
k-matching of Ti that does contain e0 restricts to an ℓ-
matching of Si with the property that the root of Si does
not belong to any edge in the matching, and all match-
ings of Si with this property arise via such a restriction.
Consider the formula for the characteristic polynomial

of the generalized Laplacian matrix that comes from
Lemma 1 with c = sgn. Apply this formula to T1 and
T2. The assumption Pk(S1) = Pk(S2) (resp. Qk(S1) = Qk

(S2)) ensures that the matchings that do not include
(resp. do include) e0 make the same contribution to the
respective characteristic polynomials.
The trees depicted in Figure 1 (b) are the smallest pair

of rooted bifurcating trees satisfying the criteria of this
lemma. The verification of this fact was done by compu-
ter, and the corresponding Pk and Qk polynomials are
available in the code repository.
A sufficient condition for two trees to have the same
distance matrix spectrum
We first recall an identity for determinants of parti-
tioned matrices. If

C =
(

C11 C12

C21 C22

)
,

then

detC = det
((

I −C12C−1
22

0 I

)
C

(
I 0

−C−1
22 C21 I

))

= det
(

C11 − C12C−1
22 C21 0

0 C22

)
= det(C22) det(C11 − C12C−1

22 C21)

= det(C11) det(C22 − C21C−1
11 C21).

(2)

Lemma 4. Form two trees T1 and T2 by gluing the
roots of trees S1 and S2 with distance matrices A1 and
A2 onto the same leaf of a common tree R. Write ai for
the column vector of distances from the leaves of Si to
the root of Si. Suppose that the following pairs of
matrices have the same spectra (where ‘ denotes trans-
pose):

Ai, i = 1, 2,(
Ai ai

a′
i 0

)
, i = 1, 2,(

Ai ai

1′ 0

)
, i = 1, 2,

and(
Ai 1
1′ 0

)
, i = 1, 2,

where 1 is a column vector with each entry 1. Then,
the distance matrices of T1 and T2 have the same
spectrum.
Proof. Write B for the distance matrix of R. Then, B

has the partitioned form(
�

B b
b′ 0

)
,

where �

B is the distance matrix of the tree obtained
from R by deleting the last leaf, b is the column vector
of distances from the other leaves of R to the last leaf.
Assume without loss of generality that this last leaf is
the attachment point of the Si.
Denote by Di the distance matrix of Ti. Observe that

Di =

(
�

B b1′ + 1a′
i

ai1′ + 1b′ Ai

)
.

Hence, by (2), Di has the characteristic polynomial

det(xI − Di) = det(xI − Ai) det[(xI − �

B) − (−b1′ − 1a′
i)(xI − Ai)−1(−ai1′ − 1b′)]

= det(xI − Ai) det
[

(xI − �

B)

− (1′(xI − Ai)−1ai)b1′

− (1′(xI − Ai)−11)bb′

− (a′
i(xI − Ai)−1ai)11′

−(a′
i(xI − Ai)

−11)1b′
]

.

Using (2) again, we see that a partitioned matrix of the
form(

A g
h′ 0

)
,

where g and h are column vectors, has characteristic
polynomial

det(xI − A)
[
x − h′(xI − A)−1g

]
,

and the result follows.
It was verified by computer that the trees in Figure 1

(b) are the smallest such that have distance matrices Ai

and vectors ai satisfying the criteria of this lemma. The
corresponding characteristic polynomials are available in
the code repository. We note with surprise that the
smallest pair of trees with the exchange property for the
distance matrix are the same as the smallest pair with
the exchange property for the generalized Laplacian; this
is a curiosity for which we do not have an explanation.

Asymptotic numbers of trees
As outlined in the Introduction, the proof of Theorem 1
follows immediately from Lemma 2, Lemma 3, Lemma
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4, the existence of the trees in Figure 1 (b), and the fol-
lowing result.
Proposition 1. Let T be a rooted tree. Let tn be the

number of trees with n leaves. Let sn be the number of
such trees that do not contain T as a rooted subtree.
Then, the fraction sn/tn goes to zero as n goes to infinity.
Proof. Suppose that T has a leaves. Let

f (x) :=
∑∞

i=1 tixi and fa(x) :=
∑∞

i=1 sixi denote the gen-
erating functions for tn and sn, respectively. Write r for
the radius of convergence of the power series f and ra
for the radius of convergence of the power series fa.
Note that r ≤ ra < 1.
It is shown in [26] that r = 0.402698 ... and

lim
n→∞ n3/2ρntn = η,

where h = 0.7916032 ... (see [27] for an asymptotic
expansion of tn that extends this result and [28-31] for
reviews of general methods for determining asymptotic
numbers of trees of various sorts from a knowledge of
the functional equations that their generating functions
solve). Since sn is o(a-n) for any 0 <a <ra, it follows that
sn/tn is o(bn) for any b > r/ra, and the proposition will
hold if we can show that r <ra.
For the sake of completeness and because it serves as

a good introduction to the derivation of the functional
equation satisfied by the generating function of sn, we
first derive the well-known functional equation satisfied
by the generating function of the tn. See the comments
after the proof of the lemma for some remarks about
the history of the latter generating function.
By decomposing a tree into the two subtrees rooted at

the daughters of the root, it is clear that

tn = t1tn−1 + t2tn−2 + · · · + tm−1tm+1, for n = 2m + 1,

tn = t1tn−1 + t2tn−2 + · · · + tm−1tm+1 +
(

tm
2

)
+ tm, for n = 2m.

These expressions are equivalent to the statement

n−1∑
i=1

titn−i = 2tn − tn/2 (3)

where tn/2 is set to zero if n is odd.
From (3) the generating function f satisfies the func-

tional equation

f 2(x) =
∞∑

n=2

xn
n−1∑
i=1

titn−i

=
∞∑

n=2

xn(2tn − tn/2)

= 2f (x) − f (x2) − 2x.

It will be convenient to consider the function g: = 1 -
f, which satisfies the functional equation

g(x2) = 2x + g2(x). (4)

It is shown in [15] that:

• The radius of convergence r is strictly positive.
• The functional equation (4) has a unique solution
in the whole complex plane, and this solution agrees
with our power series in {x Î ℂ: |x| <r}.
• If, with a slight abuse of notation, we also denote
this solution by g, then g(r) = 0.
• The point r is the only zero of g within {x Î ℂ : |
x| < 1}.

It is clear from the power series that g is continuous
and decreasing on [0, r) and g(0) = 1. Hence g is strictly
positive on [0, r).
As observed in [15], these observations suggest a

method for computing r. Put h(x) = g(x)/
√

x , so that h
satisfies h(x2) = 2 + h2(x). Set

wk(η) :=
(

2 + η2k
)2−k

, η ∈ R,

and

qn := wn−1 ◦ wn−2 · · · ◦ w0,

so that each function qn is strictly increasing on [-2,
+∞) and q1 ≤ q2 ≤ .... In particular, limn®∞ qn(y) exists
in ℝ ∪ {+∞} for each y Î [-2, +∞). Moreover,

lim
n→∞ qn(h2(x)) = lim

n→∞ (h(x2n
))21−n

= lim
n→∞

(g(x2n
))

21−n

x
=

1
x

for 0 <x < 1. Therefore

1
ρ

= lim
n→∞ qn(0).

Conveniently, (3) holds with sn in place of tn for all n
except for n = a; in this case one simply adds two to
the right hand side of the equation to make up for the
fact that sa = ta - 1. Hence fa satisfies the functional
equation.

f 2
a (x) = 2fa(x) − fa(x2) − 2x + 2xa. (5)

Set ga: = 1 - fa, so that

ga(x2) = 2x − 2xa + g2
a (x). (6)

It is clear that ga is continuous and decreasing on [0,
ra) and ga(0) = 1. Following the arguments in [15], the
functional equation (6) has a unique solution in the
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whole complex plane, and this solution agrees with our
power series in {x Î ℂ: |x| <ra}. Moreover, analogues of
the other properties of g obtained in [15] hold for ga.
Set ha(x) = ga(x)/

√
x , so that

ha(x2) = 2 − 2xa−1 + h2
a(x).

Put

wk,a,ξ (η) :=
(

2 − 2ξ2k
+ η2k

)2−k

, η ∈ R,

and

qn,a,ξ := wn−1,a,ξ ◦ wn−2,a,ξ · · · ◦ w0,a,ξ .

Then

lim
n→∞ qn,a,xa−1 (h2

a(x)) = lim
n→∞ (ha(x2n

))21−n
= lim

n→∞
(ga(x2n

))
21−n

x
=

1
x

for 0 <x < 1, and, in particular,

1
ρa

= lim
n→∞ qn,a,ρa−1

a
(0).

Now

qn,a,ρa−1
a

(0) = wn−1,a,ρa−1
a

◦ wn−2,a,ρa−1
a

· · · ◦ w0,a,ρa−1
a

(0)

≤ wn−1 ◦ wn−2 · · · ◦ w1 ◦ w0,a,ρa−1
a

(0)

= qn
(−2ρa−1

a

)
,

and so

1
ρa

≤ lim
n→∞ qn(−2ρa−1

a ) ≤ lim
n→∞ qn(0) =

1
ρ

.

It therefore suffices to show that the function y ↦
limn®∞ qn(y) is strictly increasing on (-ε, +∞) for some 0
<ε < 2.
Observe that the derivative of qn satisfies

q′
n =

n−1∏
k=1

w′
k ◦ qk.

For k ≥ 1,

w′
k(x) = x2k−1

(
2 + x2k

)2−k−1

=
(

2x−2k
+ 1

)2−k−1
,

so that x �→ w′
k(x) is non-decreasing for x > 0. For y

Î (-ε, +∞),

w′
k ◦ qk(y) ≥ w′

k ◦ q1(y) ≥ w′
k ◦ q1(−ε) = w′

k(2 − ε)

and hence

lim inf
n→∞ inf

y>−ε
q′

n(y) ≥
∞∏
k=1

w′
k(2 − ε).

Taking 0 <ε < 1, the proof will be completed by
demonstrating for any x > 1 that

∞∏
k=1

w′
k(x) > 0.

Taking the logarithm gives

∞∑
k=1

(2−k − 1) log
(

2x−2k
+ 1

)
> −

∞∑
k=1

log
(

2x−2k
+ 1

)
,

> −
∞∑
k=1

2x−2k
,

and this series clearly converges by the ratio test.
In relation to Proposition 1, we note from [13] that

the number of rooted strictly bifurcating trees without a
given subtree is asymptotically smaller than the number
of all graph-theoretic trees (see also [32] for more about
the enumeration of general trees without a given sub-
tree), but this is not enough for our purposes. We
needed to show that it is asymptotically smaller than the
space of all rooted strictly bifurcating trees. The gener-
ating function for tn seems first to have been investi-
gated in [15] in connection with enumerating “types of
arrangements” in a commutative but non-associative
algebra, such as a1(a2(a3a4)) or (a1a2)(a3a4); these are
identical to rooted bifurcating trees in the “Newick” for-
mat [1]. The recursion behind the generating function
has been re-discovered independently several times such
as in [33] - see [34] for a discussion and several further
references. We remark that numerically iterating the
quantity qn of the proof converges quickly to the value
of r-1 calculable by other means [26,35]. We also
observe that the methods of [27-31] can be used to
show, in the notation of the proof, that

limn→∞n3/2ρn
a sn = ηa for some positive constant ha and

hence limn®∞(ra/r)n(sn/tn) = ha/h, but we don’t pursue
this matter here.

Numerical experiments
Proposition 1 says nothing about the rate of conver-
gence of the fraction. Here we investigate this rate using
computation. The characteristic polynomials for the
generalized Laplacian were calculated via a doubly-
recursive algorithm to enumerate matchings. The char-
acteristic polynomials for the distance matrices were cal-
culated via the Leverrier-Faddeev algorithm [36].
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Table 1 shows that the fraction of trees with unique
spectra does not go to zero very quickly. We can’t com-
pute this fraction for large numbers of leaves, but we
can get some idea of the convergence by using the
recursion relation corresponding to the generating func-
tion (5). Figure 2 shows the number of trees that do not
have one of two subtrees of size seventeen as a subtree.
This is an actual fraction that can be used with Proposi-
tion 1 in order to prove Theorem 1 for the generalized
Laplacian matrix.
Figure 2 shows that this fraction converges extremely

slowly, despite the fact that as shown above it is asymp-
totically equivalent to bn for some 0 <b < 1. It is impor-
tant to note, however, that this fraction is probably a
very crude upper bound on the fraction of trees that
share a spectrum with another tree. As can be seen in
Table 1, the actual number not sharing a spectrum goes
down considerably more quickly, though it is probably
still the case that the vast majority of trees of intermedi-
ate size should have their own spectra.

Conclusions
Spectral invariants of matrix formulations of trees are a
natural way to quantify the shape of phylogenetic trees.
However, in this paper we show that a complete classifi-
cation of tree shapes using common spectral invariants
of generalized Laplacian and distance matrices is not
possible. For either of these choices of matrix we show
that the fraction of binary trees with a unique spectrum
goes to zero as the number of leaves goes to infinity,

but the rate of convergence of the above fraction to
zero appears to be slow. For the adjacency and Lapla-
cian matrices, we show that the a priori more informa-
tive immanantal polynomials have no greater power to
distinguish between trees.
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