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We apply multivariate singular spectrum analysis to the study of US business cycle 
dynamics. This method provides a robust way to identify and reconstruct 
oscillations, whether intermittent or modulated. We show such oscillations to be 
associated with comovements across the entire economy. The problem of spurious 
cycles generated by the use of detrending filters is addressed and we present a 
Monte Carlo test to extract significant oscillations. The behavior of the US economy 
is shown to change significantly from one phase of the business cycle to another: the 
recession phase is dominated by a five-year mode, while the expansion phase exhibits
more complex dynamics, with higher-frequency modes coming into play. We show 
that the variations so identified cannot be generated by random shocks alone, as 
assumed in “real” business-cycle models, and that endogenous, deterministically 
generated variability has to be involved.

Keywords: Advanced spectral methods, comovements, frequency domain, Monte 
Carlo testing, time domain.
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1. Introduction
Dominated over many decades by a long-term upward drift (Solow, 1956), macroeconomic

time series also exhibit smaller but still important shorter-term fluctuations often 

associated with business cycles. The causes and characteristics of these cycles have been 

extensively studied in modern economic theory (Burns and Mitchell, 1946; Kydland and 

Prescott, 1998, and references therein).

A number of approaches have been proposed to separate the shorter-term fluctuations 

from the long-term trend (Canova, 1998; Baxter and King, 1999). Morley and Piger (2012) 

recently attempted a classification of business cycle analyses into i) those that consider a 

cyclic sequence of expansions and contractions; and ii) an output-gap view, in which 

business cycles merely correspond to transitory fluctuations superimposed on a permanent

trend level.

The definition of business cycles depends, however, on the knowledge of a trend 

component that cannot be observed directly. Several filters have been developed (Graff, 

2011) to extract such a trend component, of which the Hodrick-Prescott (HP) filter is the 

most commonly used one (Hodrick and Prescott, 1997). Since there is no fundamental 

theory – and hence no generally accepted definition – of the trend, the resulting residuals 

have to be analyzed very critically, to avoid spurious results due merely to the detrending 

procedure itself (Nelson and Kang, 1981; Harvey and Jaeger, 1993; Cogley and Nason, 1995). 

Business cycles can also be understood as comovements of transitory fluctuations in 

several distinct macroeconomic variables (Burns and Mitchell, 1946; Lucas, 1977). It is 

imperative, therefore, to analyze business cycle properties as a multivariate process.

The purpose of this paper is to apply multivariate singular spectrum analysis (M-SSA) – the 

extension of singular spectrum analysis (SSA) to multivariate time series – to the analysis of 

business cycles. Both SSA and M-SSA rely on the classical Karhunen-Loève spectral 

decomposition of random processes (Karhunen, 1946; Loève, 1945, 1978). Broomhead and 

King (1986a, b) proposed to use both in the context of nonlinear dynamics as a more robust 

application of the Mañé-Takens idea of reconstructing dynamics from measured time 

series (Mañé, 1981; Takens, 1981; Sauer et al., 1991). Ghil, Vautard and associates (Vautard and 

Ghil, 1989; Ghil and Vautard, 1991; Vautard et al., 1992) noticed that SSA can be used as a time-

and-frequency domain method for the analysis of time series, whether they are generated by 

a linear stochastic process, a nonlinear deterministic one or a superposition of the two. 

We propose to use M-SSA for the analysis of business cycles in a completely 

multivariate fashion. This method combines two useful approaches of statistical analysis: 

1) it determines – with the help of principal component analysis (PCA) – major directions in 

the system’s phase space that are populated by the multivariate time series; and 2) it 

extracts major spectral components by using data-adaptive filters. To get reliable 

information about significant oscillatory modes, we perform exhaustive statistical tests by 

means of Monte Carlo SSA (Allen and Smith, 1996), which allow us to deal with the problem 

of spurious oscillations (Nelson and Kang, 1981; Cogley and Nason, 1995).
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SSA and M-SSA have already proven their advantages in a variety of applications, such 

as climate dynamics, meteorology and oceanography, as well as the biomedical sciences. 

Ghil et al. (2002) provide an overview and a comprehensive set of references to their theory 

and applications. In economics, this approach has received little attention so far. Recent 

applications to the univariate SSA analysis of business cycles include de Carvalho et al. 

(2012), Sella and Marchionatti (2012), and Dumas et al. (2013). The present paper introduces

the M-SSA methodology into the economic literature and demonstrates its advantages for 

the multivariate analysis of economic activity. 

The paper is organized as follows. In Section 2, we introduce the methodology and 

summarize its properties in terms of spectral decomposition, as well as of time-domain 

reconstruction. In Section 3, we apply SSA to the US gross domestic product (GDP) and 

M-SSA to the full data set. The reliability of the results is then discussed via Monte Carlo 

testing. Section 4 analyzes the cycle-to-cycle variability of the US business cycles, and we 

draw conclusions about the underlying dynamics in Section 5.

2. Decomposition and reconstruction

2.1. Data and pre-processing

We study here US macroeconomic data from the Bureau of Economic Analysis (BEA; 

see www.bea.gov). The nine variables analyzed are GDP, investment, employment rate, 

consumption, total wage, change in private inventories, price, exports, and imports; all 

monetary variables are in constant 2005 dollars, while the employment rate is in 

percentage points. The quarterly time series cover 52 years, from the first quarter of 1954 

to the third quarter of 2005. 

Aligning ourselves with the output-gap view of business cycle analysis, we first 

remove the trend of each time series separately, by using the HP filter with the common 

parameter value λ = 1600. Employment is the only one of the nine variables that does not 

exhibit an upward trend; still, we do detrend it to consistently remove periods longer than 

10 years, as done for the other variables. 

The restriction to the interval 1954-2005 reduces end-to-end mismatches of the 

remaining transitory fluctuations and minimizes spectral leakage effects, i.e. the presence 

of spurious oscillations in the spectral analysis. On the macroeconomic side, the years 

2007-08 correspond to a well-known crisis, whose origin was financial, rather than 

economical. The time interval since that crisis exhibited several new characteristics, for 

which we do not yet have sufficiently long data sets to distinguish this interval from the 

previous half-a-century of data.

In contrast to our two-step approach – see also Dumas et al. (2013) – de Carvalho et al. 

(2012) have chosen to apply a single SSA analysis for the decomposition of the GDP into 

trend and fluctuations. Such an approach is indeed desirable as it appears to provide a 

more consistent separation into a permanent trend component and transitory fluctuations 

that are orthogonal to it (see Vautard et al., 1992; Ghil et al., 2002). In the present 

macroeconomic context, however, the trend dominates the SSA’s variance-based phase-

space decomposition and small fluctuations could be masked in such a single-sweep 

analysis (Granger, 1966; Sella and Marchionatti, 2012). We will return to this issue in the 

estimation of the covariance matrix in Section 2.2.

In line with our two-step decomposition, we next obtain trend residuals that we divide by 

the trend – i.e., we concentrate on relative values – and then transform to unit standard deviation.
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This normalization brings all the indicators to the same scale and gives equal weight to 

each of them in the M-SSA analysis. One could choose to give different weights to each time 

series to reflect a priori ideas on their relative importance. Our choice here is one of 

simplicity, and the covariance matrix is transformed into a correlation matrix. Finally, we 

divide the normalized time series by (DM)1/2 – with D = 9 is the number of variables and M = 24

is the window width – so that the sum of the partial variances equals one.

Figure 1a shows the results of this pre-processing. The US recessions, as defined by the 

NBER, are indicated by shaded vertical bars. 

2.2. Singular spectrum analysis (SSA)

In this section we discuss the univariate version of SSA and present its main 

properties, in particular, its ability to reconstruct cyclical dynamics.

Following Mañé (1981) and Takens (1981), the starting point of SSA is to embed the time

series {x(t) : t = 1 … N} into an M-dimensional phase space X, by using M lagged copies.

Figure 1.  Pre-processed macroeconomic indicators and their reconstruction

Note: The nine time series of US macroeconomic data used in this paper; raw data from the US Bureau of Economic 
Analysis (BEA), 1954-2005. The figure illustrates the results of pre-processing and of applying either multivariate 
singular spectrum analysis (M-SSA) or principal component analysis (PCA); the shaded vertical bars in the three 
panels indicate NBER-defined recessions. (a) Detrended and standardized time series. (b,c) Reconstruction of the 
entire data set: (b) with the first 10 M-SSA components, using a window width of M = 24 quarters; and (c) with the 
first two PCA components. Both reconstructions capture 75% of the total variance, while the M-SSA reconstruction is 
smoother.
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(1)

with t = 1… N – M + 1. The SSA procedure starts by calculating the principal directions of 

the embedded data set x(t). 

Reconstructing the entire attractor of a nonlinear dynamical system from x(t), as 

originally proposed by Broomhead and King (1986a), may fail, however, even in relatively 

simple cases (Mees et al., 1987; Vautard and Ghil, 1989). Ghil, Vautard and several associates 

first proposed, instead, to apply the SSA methodology to describe cyclical behavior in short 

and noisy time series, for which standard methods derived from Fourier analysis do not 

work well (Vautard and Ghil, 1989; Ghil and Vautard, 1991; Vautard et al., 1992). The key idea 

in their approach was to reconstruct the “skeleton of the attractor”, i.e. the most robust, 

albeit unstable limit cycles embedded in it.

The next step in SSA is to compute the auto-covariance matrix C of x. Vautard and Ghil 

(1989) proposed to estimate it by 

(2)

imposing a Toeplitz structure with constant diagonals: the entries ci,j of the matrix depend 

only on the lag |i – j|.

The eigenvalues λk and eigenvectors rk of C, k = 1…M, are obtained by solving 

(3)

The eigenvectors, which are pairwise orthonormal, span a new coordinate system in the 

M-dimensional embedding space X, and each eigenvalue λk indicates the variance in the 

corresponding direction rk. This computation helps us find, therefore, the major 

components of the system’s dynamical behavior.

The eigenvectors of such a Toeplitz matrix are necessarily either symmetric or anti-

symmetric, and the method’s reliability in extracting oscillations is enhanced therewith by 

using this form of C (Allen and Robertson, 1996). In the presence of strong non-stationarity, 

the Toeplitz approach yields a slightly larger bias in the reconstruction of low-frequency 

activity than the original trajectory approach of Broomhead and King (1986a). 

The latter approach relies on a singular-value decomposition of the trajectory matrix 

x and is more appropriate for the analysis of trends (Ghil et al., 2002). Our focus here is on 

the transitory fluctuations and we rely therefore on the Toeplitz approach for our analysis. 

de Carvalho et al. (2012) have found the trajectory approach to be also adequate in their 

one-step identification of the permanent trend and superimposed fluctuations in the US 

business cycles.

By convention, the eigenvalues  are arranged in descending order, from 

the largest to the smallest variance, yielding a so-called “scree diagram” of eigenvalues λk vs. 

order k. In this diagram, one often looks for a clear break in the slope to distinguish “signal” 

from “noise”. Such a break, however, occurs mostly when the noise is actually white, with no 

temporal correlations at all. The signal-to-noise separation test has, therefore, to be modified 

in the presence of non-vanishing correlations, as done in Section 3 below.

Projecting the embedded time series x onto eigenvectors rk yields the corresponding

principal components (PCs), 

(4)

x t x t x t x t M( ) ( ( ), ( ), , ( )),= + + −1 1
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N i j

, ( ) ( ),=
− −

+ −
=

− −

∑1

1
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Note that the sum above is not defined close to the end of the time series, where 

N – M ≤  t ≤  N. It is customary, therefore, to consider the PCs as defined for only N – M + 1 

indices, which could start at t = M and end at N, or start at t = 1 but end at N – M + 1; most 

commonly they are plotted centered for M/2 ≤  t ≤  N – M/2, with M even (Ghil et al., 2002).

Finally, we can reconstruct parts of the time series that are associated with a particular 

eigenvector by:

(5)

cf. Ghil and Vautard (1991) and Vautard et al. (1992). The values of the triplet of integers 

(Mt, Lt, Ut) for the central part of the time series, M ≤  t ≤  N – M + 1, are simply (M, 1, M); for either

end they are given in Ghil et al. (2002). Each reconstructed component (RC) rk(t) associated 

with the variance λk has a complete set of N indices, but with a reduced confidence in its 

values at either end of the time series.

Given any subset k ∈ K of eigenelements, we obtain the corresponding reconstruction 

rk(t) by summing the RCs, 

(6)

Typical choices of K are i) K = {k : 1 ≤  k ≤  S}, where S is the statistical dimension of the time 

series, cf. Vautard and Ghil (1989), i.e. the number of statistically significant components; 

or ii) a pair of components (k0, k1) for which  and which may capture a cyclic mode

(see Section 3). The whole set of RCs, K = {k : 1 ≤  k ≤  M}, gives the complete reconstruction of 

the time series.

In the following we refer to the common notation for the reconstructed component rk

as RC k, and for a sum of several, consecutive RCs in Eq. (6) from index k to index  as 

RCs k– .

From the viewpoint of signal processing, the RCs can be considered as filtered time 

series, with the eigenvectors being a set of data adaptive filters. Both Eqs. (4) and (5) can be 

interpreted as a finite-impulse response (FIR) filter (Oppenheim and Schafer, 1989), with rk

being an FIR filter of length M. The PCs obtained in Eq. (4) are time-reversed in Eq. (5), and 

the FIR filter is run again through them. After this second filter pass, the correct 

chronological order is restored by reversing the filtered result rk(t) once more. This 

procedure is called forward-backward filtering, and it is known to preserve the phase 

relations. Hence, each RC k and the original time series x(t) are in phase and the filtering acts 

only on the amplitude.

In designing an appropriate band-pass filter, Baxter and King (1999) require, in 

particular, that this “filter should not introduce phase shifts”. Unlike their band-pass filter, 

with its data-independent weights chosen a priori, SSA is data adaptive. The M filters are 

the eigenvectors of the auto-covariance matrix and provide an optimal spectral 

decomposition of the time series, i.e. a maximum of the variance is captured by a minimal 

number of spectral components.

Following Vautard et al. (1992), we assign to each pair (λk, rk) a frequency, given by the 

maximum of the Fourier transform of rk. Plotting each eigenvalue vs. its dominant 

frequency provides a complementary perspective on SSA in terms of an analogy with 

classical spectral analysis.

r t
M
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This analogy becomes more obvious when analyzing the trend residuals of GDP 

(Figure 2). In the SSA analysis of panel (a), we observe a maximum in the spectrum of 

eigenvalues at the usually reported mean business cycle length of 5-6 years, which agrees 

with the classical estimation of the power spectral density (PSD) in panel (b). For various 

PSD estimation algorithms that we have tested, we observe a maximum around the same 

period; at this point, though, the trend residuals are still subject to the Nelson and Kang 

(1981) criticism of spurious cycles. Therefore, we have to perform additional significance 

tests before relying on the results, cf. Section 3.1.

2.3. Multivariate SSA (M-SSA)

M-SSA provides an extension of SSA to multivariate time series (Broomhead, 1986b; 

Kimoto et al., 1991; Keppenne and Ghil, 1993; Plaut and Vautard, 1994). Let x(t) = {xd(t): d = 

1… D, t = 1…N} be a vector time series of length N, with D channels. In generalizing (2), we 

use the D auto-covariances Cd,d, as well as the D × (D – 1) cross-covariances  to form a 

grand covariance matrix : 

(7)

Here  is a DM × DM matrix and the entries of the individual matrices  can be 

estimated as 

(8)

The denominator  depends on the range of summation, namely 

.

Figure 2.  Spectral analysis of the US GDP

Note: Univariate spectral analysis of US gross domestic product (GDP). (a) Eigenvalue spectrum of λk (filled circles) vs. 
dominant frequency of the associated eigenvector rk, with window width M = 24 quarters; the error bars indicate the 
significance levels (cf. Sec. 3.1). (b) Power spectral density (PSD) estimate (solid line) using Welch’s averaged 
periodogram method, with a Hamming window of length 128 quarters and 75% overlap (Priestley, 1991); the dashed 
lines indicate the significance levels. Inset: Covariance estimates (solid line) and their significance levels (dashed 
lines). The upper and lower significance levels in both panels and in the inset are derived from the 2.5% and 97.5% 
percentiles of 1 000 surrogate time series from an AR(1) null hypothesis; see Section 3.1.
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As before we diagonalize the grand matrix  to yield its eigenvalues λk and 

eigenvectors ,

(9)

In contrast to SSA, the M-SSA eigenvectors  have now length DM, and are composed of D

consecutive segments , d = 1… D of length M. These segments can be likewise interpreted 

as frequency-selective FIR filters, combined here into one multivariate filter .

The associated PCs are single-channel time series that are computed by projecting the 

multivariate time series x(t) onto , 

(10)

In addition to the summation j over time, as in Eq. (4), we get a second summation d over 

the channels. This summation involves a classical PCA. In particular, setting M = 1 reduces 

M-SSA to PCA in D variables.

Finally, one can reconstruct parts of each time series xd(t) associated with its corresponding

eigenvector segment  by (Plaut and Vautard, 1994):

(11)

This formula provides a set of DM RCs for each of the D time series and – depending on the 

information contained in the cross-covariances  – the RCs of different time series may 

or may not be correlated. In this way, M-SSA helps extract common spectral components 

from the multivariate data set, along with comovements of the time series. 

In Figure 1, we compare the pre-processed time series in panel (a) with the M-SSA 

reconstruction in panel (b), using the ten leading RCs, and with PCA reconstruction in panel 

(c), using the two leading RCs of the data set; the latter results from Eq. (11) with M = 1. Both 

the M-SSA and PCA reconstructions capture 75% of the total variance and extract coherent 

behavior manifest in the nine economic variables. In contrast to PCA, the M-SSA results are 

much smoother, having removed irregular temporal fluctuations. It is especially the 

inclusion of temporal correlations that makes M-SSA superior to PCA in the extraction of 

dynamical behavior. 

3. Oscillatory behavior and its statistical significance
The trend residuals in Figure 1 exhibit obviously more structure than pure white noise; 

we need, therefore, a stringent test to decide whether the visually apparent cyclical 

behavior can be attributed to random fluctuations or to a more regular oscillatory behavior, 

of possibly intrinsic origin. Cogley and Nason (1995), among others, have discussed in 

detail the effects of detrending, in particular the possibility that it might give rise to 

spurious cycles; their discussion was placed in the context of the detrending effect on a 

standard real business cycle (RBC) model, with no oscillatory dynamics.

We follow Cogley and Nason (1995) and test against a first-order autoregressive 

process, AR(1), to verify the statistical significance of oscillations; this test is already 

well-established in the geosciences (Allen and Smith, 1996; Ghil et al., 2002). Since AR(1) 

processes exhibit maximum variance at zero frequency, detrending with the HP filter may 

C
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yield a possibly spurious maximum in the PSD at other frequencies, e.g. around the 

commonly reported business cycle length of 5-6 years.

3.1. Univariate time series: the GDP

We first focus on GDP alone, the most widely studied macroeconomic indicator. A 

Monte Carlo–type test consists in first fitting an AR(1) process X(t) to the scalar time series 

x(t) of interest, 

(12)

with ε(t) being Gaussian white noise of variance σ   = 1, and then comparing the spectral 

properties of many realizations of X(t) with that of x(t).

We estimate the regression coefficient in Eq. (12) to be a = 0.82, and the variance σ   0 = 0.04,

with the influence of the HP filter taken into account. That is, we choose the parameter a

to minimize the mean-square distance between the GDP covariance function (solid line in 

the inset of Figure 2b) and the HP-filtered AR(1) covariance function (dotted line), while to 

estimate  we use the unbiased estimator proposed by Allen and Smith (1996) for short 

time series. Given the model parameters, we create a set of 1 000 surrogate realizations of 

length N from the AR(1) model, lowpass filter each with the HP filter, and normalize it to 

the same variance as x(t). An additional division by the trend is not necessary, since the 

innovations in the AR(1) process have constant variance.

In Figure 2b, we compare the PSD estimate of the GDP residuals (solid line) with that of 

the surrogate time series. Frequency-dependent significance levels at the 2.5% and 97.5% 

quantiles (dashed lines) also show high power around five years, and the PSD estimate of 

the GDP falls entirely between them.

Other PSD estimates, such as the maximum entropy or the multi-taper method (see 

Ghil et al., 2002, and references therein), confirm this finding and yield the conclusion that 

GDP residuals alone cannot be distinguished from the null hypothesis of an HP-filtered 

AR(1) process. The high PSD values around five years could be due to the detrending of an 

otherwise stable model with exogenous excitation, in complete agreement with the 

findings of Cogley and Nason (1995) and Nelson and Kang (1981).

The same lack of statistical significance holds for the lag-covariance function, as 

expected from the Wiener-Khinchin theorem, according to which the PSD and the 

lag-covariance function of a time series are related by the Fourier transform (Blackman 

and Tukey, 1958). The swing below zero for the surrogate time series is thus likewise due 

to the HP filter’s effect; see the inset in Figure 2b. The preliminary conclusion is that we 

cannot falsify the null hypothesis of an AR(1) process for the GDP residuals, as analyzed 

separately here.

This conclusion can also be confirmed by Monte Carlo SSA, which tests whether an 

eigenvalue λk captures more partial variance in the direction of the corresponding 

eigenvector rk than present in the null hypothesis. To derive significance levels, the 

covariance matrix CS for each surrogate time series xS(t) is projected onto the set of 

eigenvectors E of the original time series via 

(13)

here the eigenvectors rk are the columns of E, and (·)T denotes the transpose of a matrix.

Equation (13) is not the eigendecomposition of CS, and ΛS is not necessarily diagonal, 

as it would be for C. Instead, ΛS provides a measure of the discrepancy between CS and C, 

X t X t t( ) ( ) ( ),= − +a s e1 0

σ0

ΛS
T

SE C E,=
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and by computing quantiles of the diagonal elements’ distribution from a set of ΛS, we 

derive significance levels for each eigenvalue λk (Allen and Smith, 1996).

The resulting significance levels for the SSA analysis of GDP in Figure 2a are indicated 

as vertical bars and we see that all eigenvalues fall within these error bars. Hence, the 

observed spectrum of eigenvalues cannot falsify the null hypothesis either. In the following 

subsection, we show that additional information from other macroeconomic indicators 

helps reject the null hypothesis. 

3.2. Multivariate time series

To test significance in M-SSA results, comovements should be taken into account in 

formulating the null hypothesis. Vector AR models, however, may support oscillations even 

for order one; when present, these are referred to as principal oscillation patterns (von 

Storch et al., 1995; Penland and Matrosova, 2001). We keep, therefore, the idea of fitting 

univariate AR(1) processes 

(14)

but build characteristics of the cross-correlations into the null hypothesis. The estimated 

parameters for each indicator are listed in Table 1.

The cross-correlation information is included by coupling the noise residuals εd(t) at a 

certain temporal lag Δd. Relative to GDP, denoted by x1(t), we chose Δd so as to maximize the 

correlations between x1(t) and xd(t + Δd). Doing so is especially necessary for the price, for 

which we observe a correlation maximum at seven quarters (cf. Figure 3g).

The covariance matrix R for innovation processes εd(t) has elements 

(15)

the denominator  depends on the range of summation, namely 

. Cholesky decomposition yields R = LTL and we derive correlated 

innovation processes from 

(16)

with the ξ d being independent white-noise processes. Finally, we pass the realizations 

through the HP filter and normalize it to the same standard deviation as the data set.

Figure 3 compares the covariance of the data with that of the null hypothesis. Lead-lag 

relations among economic indicators are reproduced by the null-hypothesis model, and 

Table 1.  Null-hypothesis parameters

Variable
AR(1) 

ad

Parameters 
sd

Time lag behind GDP 
Δd (quarters)

GDP 0.82 0.040 0

Investment 0.92 0.028 1

Employment 0.96 0.021 0

Consumption 0.88 0.034 0

Total wage 0.95 0.024 0

Δ (Inventories) 0.61 0.055 0

Price 0.99 0.012 7

Exports 0.95 0.023 1

Imports 0.83 0.039 1

X t a X t td d d d d( ) ( ) ( ).= − +1 s e

R ,d d
d

′
′

′ ′
= + −

+
= + −

′
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d
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∑
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the data covariance function lies almost, but not quite, within the variability of the null 

hypothesis. As in the univariate case, the HP filter introduces a swing below zero and which 

would lead once again to spurious cycles.

Projecting the grand covariance matrix  for each of the surrogate realizations onto 

the data eigenvectors, , yields again a measure of the discrepancy between  

and C, which allows us to derive significance levels for λk from the distribution of the 

diagonal elements of  (Figure 4).

As in the case of GDP alone, we observe higher significance levels near a five-year 

period, but this time the data eigenvalues clearly exceed the upper significance level. 

Hence the high variance associated with the leading pairs of eigenvalues can no longer be 

explained by spurious cycles induced by inappropriate detrending.

We have further tested the consistency of the present results by using different values 

of the window width, namely M = 20, 30, 40 and 50. It turns out that the leading pair describes 

a significant oscillation of five-year period. The three-year oscillation in the second pair is 

somewhat less robust, but probably still deserves further examination in future work. 

Figure 3.  Comovements of US economic indicators

Note: Auto- and cross-covariance functions of the nine US economic indicators with respect to GDP (solid lines). Dashed lines indicate 
the significance levels 2.5% and 97.5%, as well as the median from the realization of 1 000 surrogate time series. Panels (a)-(i) are labeled 
directly in the figure; Δ(Inventories) in the legend of panel (f) indicates changes in inventories.
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We have performed additional, exhaustive tests – as proposed by Allen and Smith 

(1996) – to cope with the problem of overestimating large eigenvalues in SSA and have 

found further evidence that the five-year oscillatory pair is indeed statistically significant 

at the 95% level. We focus, therefore, in the next section on this oscillatory mode and 

investigate its role in business cycle dynamics.

4. Business cycle dynamics: Phase dependence and evolution
The presence of oscillatory pairs indicates recurrent behavior in the system’s 

dynamics. Such more-or-less regular recurrences are typically produced by the presence of 

an attracting or only weakly unstable limit cycle in the dynamics (Vautard and Ghil, 1989; 

Vautard et al., 1992; Ghil et al., 2002). On the other hand, vector AR(1) processes can possess 

oscillatory solutions as well, as mentioned at the beginning of Section 3.2. In practice, 

however, it might be hard to distinguish between purely deterministic, but chaotic 

oscillators and stochastically driven ones. 

From the point of view of economic theory, the distinction is not that important: in fact, 

deterministic mechanisms – whether linear or nonlinear – are the only ones that give rise to 

cyclic behavior in a vector AR(1) process or in a vector random process generated by a system 

of linear (Arnold, 1974) or nonlinear (Arnold, 1998) stochastic differential equations as well 

(Schuss, 1980); for illustration purposes, we discuss the case of a vector AR(1) process in the 

Appendix. The stochastic forcing, if present, only contributes truly irregular fluctuations. It 

is, therefore, only the deterministic part of the dynamics that is of genuine interest in 

discussing cyclicity in macroeconomics, whether stochastic forcing is present or not.

The first two eigenvalues capture 40% of the total variance, and RCs 1-2 give already a 

good approximation of the GDP, cf. Figure 5a.

To better understand the role of this five-year oscillatory mode in the processes of 

expansion and recession, we study the temporal evolution of its variance. 

Plaut and Vautard (1994) introduced the concept of local variance fraction Vk(t),

(17)

Figure 4.  Collective spectral properties of the nine US aggregate indicators

Note: Spectrum of M-SSA eigenvalues (non-dimensional, filled circles) using all nine US indicators, with M = 24. The 
error bars indicate the significance levels, derived from the 2.5% and 97.5% percentiles of 1 000 multivariate surrogate 
time series.
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which quantifies the fraction of the total variance that is described by a subset K of PCs in 

a window of length M. We consider the PCs as centered, i.e. starting at M/2, cf. Section 2.2.

Figure 5 shows this index, along with the NBER-defined recessions, for the leading 

PCs 1-2 in panel (b) and for PCs 3-150 in panel (c). The sum of PCs 1-150 capture 99% of the 

total variance; see dash-dotted line in panel (b). Starting after 1980, it is quite remarkable 

that the fraction of the five-year oscillatory mode in PCs 1-2 is high during recessions and 

low during expansions. It shows that during the recessions, the trajectory of the data set 

stays closer to a suspected five-year limit cycle – like the one in the Non-Equilibrium 

Dynamic Model (NEDyM) of Hallegatte and Ghil (2008) or in other endogenous business 

Figure 5.  Time dependence of the variance in leading and residual modes

Note: Dependence of the (a) pre-processed GDP data set (light solid line) and its reconstruction with RCs 1-2 of our 
M-SSA analysis (heavy solid line). (b, c, d) Local variance fraction V(t): (b) for M-SSA PCs 1-2 (solid line) and PCs 1-150 
(near-total variance, dash-dotted line); (c) for M-SSA PCs 3-150 (solid line); and (d) for PCs 1-2 of a PCA analysis (light 
solid line), as well as after smoothing with a two-year moving average (heavy solid line). The dashed lines in panels 
(b) and (c) give the 2.5%, 25%, 50%, 75%, and 97.5% percentiles based on 1 000 surrogate time series. The shaded 
vertical bars indicate NBER-defined recessions.
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cycle models (Chiarella et al., 2005) – while this trajectory reveals more complex behavior 

during expansions. 

During the 1970s, PCs 1-2 capture roughly 50% of the variance or more over the full 

decade, while from 1980 on, PCs 1-2 play a significant role only during recessions. This 

result of our analysis suggests a change in the system’s dynamics in the 1980s, a change 

that agrees in timing with the “great moderation”, during which volatility in GDP growth 

diminished markedly (Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000; Stock and 

Watson, 2002; Kim et al., 2004).

There has been considerable debate on the cause of this shift, as well as on the 

expected duration of the US economy’s new mode of functioning; in particular it has been 

proposed that this moderate behavior terminated in 2007, i.e. before and during the “great 

recession” of 2008-09. In any case, our results are at least consistent with the hypothesis of 

structural changes in the 1980s, and our M-SSA methodology can help provide 

sophisticated analysis tools to determine whether and when the great moderation ended, 

once additional BEA data become available.

To assess the significance of the local variance results, we compare their variability 

with that of the null hypothesis in Eq. (14). To wit, we project each surrogate realization 

onto the data eigenvectors  to obtain surrogate PCs in the same way as for the data set in 

Eq. (10). As in the significance test of the eigenvalues, the resulting surrogate PCs are not 

orthogonal, since their covariance matrix  is not diagonal. 

For each surrogate PC we calculate the local variance fraction in the same way as for 

the data set in Eq. (17), and derive time-dependent significance levels from the distribution 

of Vk(t) (Figs. 5b, c, dashed lines). Since the AR(1) processes are stationary, these levels are 

supposed to be constant; this stationarity is seen in fact in Figure 5, except near the end of 

the time series, i.e. starting at . 

In contrast to the approximate constancy of Vk(t) in the null hypothesis, the five-year 

oscillatory mode in the data set exhibits much greater variance during the recessions, 

when it does exceed the 97.5% significance level. The variance in PCs 3-150 is also larger 

than can be explained by the null hypothesis, with Vk(t) values that are significantly larger 

than the 97.5% percentile during expansions and smaller than the 2.5% percentile during 

recessions, respectively. 

We have further examined the variability of Vk(t) during the whole 1954-2005 interval 

by using other quantities, such as standard deviation and interquartile range (not shown 

here). All these estimates confirm that the US macroeconomic indicators exhibit larger 

variability than can be explained by the random fluctuations of the null hypothesis.

It is interesting to note that a similar phenomenon can also be identified by applying 

PCA to the data (Figure 5d). Although, at first glance, the local variance fraction of the 

leading two PCs of PCA (light solid line) is rather irregular, with no apparent link to the 

business cycle, smoothing with a two-year moving-average filter (heavy solid line) does 

indeed produce a behavior comparable to that in Figure 5b. It would, however, be difficult to 

guess that from the raw PCA results: the moving-average filtering was only inspired by the 

M-SSA results in panels (b) and (c), which did not require any additional post-processing.

5. Concluding remarks
In this article, we applied multivariate singular spectrum analysis (M-SSA) to study 

business cycles dynamics in a consistent and multivariate way. Our M-SSA results allowed 

r

ΛS
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us to reconcile and combine the NBER definition of recessions with quantitative analysis. 

This methodology extends, in particular, the recently proposed SSA business cycle analysis 

of a single macroeconomic indicator (de Carvalho et al., 2012; Sella and Marchionatti, 

2012; Dumas et al., 2013). The present M-SSA analysis uses information on nine US 

macroeconomic indicators from the BEA for 52 years (1954-2005).

This extended business cycle analysis leads to three major conclusions: i) the 

presence of genuine periodicity in macroeconomic behavior and its deterministic causes; 

ii) the essential role of comovements of economic aggregates in the proper definition of 

business cycles; and iii) the dependence of economic “volatility” on the phase of the 

business cycle. We describe these conclusions in greater detail below.

Genuine periodicity and its deterministic causes

In their work about the “real facts” and monetary myths of business cycles, Kydland 

and Prescott (1998) discussed the origin of business cycles in terms of the Slutzky (1937) 

theory of random shocks. In the simplest RBC models, cyclicity originates exclusively from 

productivity shocks that can be modeled by a simple random walk. Cogley and Nason 

(1995) have, moreover, argued that the spurious appearance of business cycle dynamics 

can be generated by the HP filter even if none is present, even in a random walk.

In agreement with the findings of Cogley and Nason (1995), a simple univariate 

analysis of GDP does not reveal any significant oscillatory modes (see Figure 2). Our 

multivariate analysis, however, uses a larger amount of information about macroeconomic 

behavior, and allows us to identify a five-year oscillatory mode with high statistical 

confidence (see Figure 4). This mode cannot be explained by artificial effects due to 

detrending by the HP filter, and a random-walk-driven model of business cycles has to be 

questioned in the light of the results obtained in our paper.

A major result of our study thus points to the presence of deterministic, endogenous 

effects in the business cycles of the US economy and leads to the conclusion that business 

cycles cannot be explained by exogenous shocks alone. This conclusion does not exclude 

the importance of random effects in the economy, as discussed at the beginning of 

Section 4 and in the Appendix: it only emphasizes the role of the deterministic ones in 

giving rise to cyclic behavior.

Comovements of macroeconomic aggregates

The role of the additional information provided by the M-SSA analysis emphasizes the 

need to understand business cycles as a phenomenon that is not limited to GDP variations, 

but involves all aspects of the economy; it is reflected, therefore, in the comovements of 

several macroeconomic aggregates. In the present study, we have performed a quantitative 

analysis of the BEA data set that is consistent with the NBER definition of the business 

cycle, inasmuch as it is entirely multivariate and takes into account the lead-and-lag 

relationships between the various indicators present in the data (see Table 1 and Figure 3). 

These lead-and-lag relationships, in turn, reflect certain widely acknowledged “stylized 

facts” of economic cycles (Kydland and Prescott, 1998; Zarnowitz, 1985).

State-dependent fluctuations

M-SSA also allowed us to provide further insight into the underlying macroeconomic 

dynamics, and especially into the crucial question of the complex interplay between 

endogenous dynamics and exogenous shocks. We showed that the US economy changes 
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its behavior from one phase of the business cycle to another: the recession phase is 

dominated by the five-year mode, while the expansion phase exhibits more complex 

dynamics, with higher-frequency modes coming into play (see Figure 5). This type of 

behavior cannot be explained by the random fluctuations that drive a simple stationary 

RBC model, in the absence of endogenous oscillatory dynamics.

It thus appears that the dynamics of the US economy can indeed be decomposed into 

a five-year cycle and more complex, higher-frequency behavior superimposed on this 

cycle. The amplitude of the latter, irregular component is higher during expansions, i.e. the 

business cycle is more volatile during expansions than during recessions.

This phase-dependent volatility is consistent with the response to natural disasters 

predicted by Hallegatte and Ghil (2008) in an endogenous business cycle (EnBC) model. 

These authors have shown that exogenous shocks, whether positive or negative, are likely 

to have a bigger impact in the presence of EnBCs.

Their modeling framework (Hallegatte et al., 2008), while highly simplified, has 

Keynesian features and their EnBC model’s predictions can be interpreted in terms of 

production being closer to capacity during expansions. On the other hand, the lower 

volatility during recessions in our analysis here is consistent with the predicted reduction 

in sensitivity to exogenous shocks, due to underutilized production capacity in the low 

phases of an EnBC. This so-called “vulnerability paradox” was also highlighted by Ghil 

et al. (2011) and by Dumas et al. (2013).

Such a variable-volatility pattern may seem at odds with the findings of French and 

Sichel (1993). But this apparent discrepancy can be explained by the fact that our analysis 

and theirs are not defining the fluctuations in the same manner. French and Sichel (1993) 

modeled the variance of the residuals on a long-term trend, without decomposing these 

residuals into cyclical and non-cyclical behavior, as we do here, and found higher variance 

during epochs of recession. In the present paper, we study the fluctuations superimposed 

on the sum of the long-term trend, plus a possible cyclical component. It is the variance of 

the fluctuations so defined that is largest during expansions.

The next step in our research program is to investigate whether the change in the 

economy’s dynamical behavior between boom and bust also leads to different types of 

response to exogenous shocks. This question is fundamental in attempting to evaluate the 

efficiency of economic policy in different phases of the business cycle.
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Appendix

Cyclicity in deterministic and stochastic models
It is well known, as already mentioned at the beginning of Section 3.2, that vector AR(1) 

processes can posses oscillatory solutions, due to the presence of pairs of complex 

conjugate eigenvalues  in the spectrum of the matrix A = (aij) that 

characterizes such a process, 

(1)

here Σ is a covariance matrix multiplying the noise vector ε. For a stationary AR(1) process, 

all the real parts  of the eigenvalues of A must be negative, and the damped oscillations 

are maintained at a statistically constant amplitude by the noise ε.

In practice, such a stochastically driven oscillator might be hard to distinguish from a 

purely deterministic, possibly chaotic one. But the term AX(t – 1) in the former case, on the 

right-hand side of Eq. (A.1), still captures the manifestation of a coupled pair of 

deterministic feedbacks, one positive, the other negative, whether linear or nonlinear, 

noise-driven or not, as the ultimate cause of any complex conjugate pair of eigenvalues 

.
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