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SUMMARY

Human primordial germ cells (hPGCs) are the first embryonic progenitors in the germ cell lineage, 

yet the molecular mechanisms required for hPGC formation are not well characterized. To identify 

regulatory regions in hPGC development, we used the assay for transposase-accessible chromatin 
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using sequencing (ATAC-seq) to systematically characterize regions of open chromatin in hPGCs 

and hPGC-like cells (hPGCLCs) differentiated from human embryonic stem cells (hESCs). We 

discovered regions of open chromatin unique to hPGCs and hPGCLCs that significantly overlap 

with TFAP2C-bound enhancers identified in the naive ground state of pluripotency. Using 

CRISPR/Cas9, we show that deleting the TFAP2C-bound naive enhancer at the OCT4 locus (also 

called POU5F1) results in impaired OCT4 expression and a negative effect on hPGCLC identity.

In Brief

Combining genomics and functional studies, Chen et al. identify the open chromatin state of 

human primordial germ cells (hPGCs), leading to the discovery that TFAP2C regulates hPGC 

development through the opening of naive enhancers.

Graphical Abstract

INTRODUCTION

Germ cells transmit genetic and epigenetic information from one generation to the next and 

are critical for fertility. Germ cell specification begins in the embryo with the formation of 

primordial germ cells (PGCs), and this remarkable event has been studied in a range of 

animal models, including insects, crickets, spiders, worms, fish, frogs, rodents, and non-

human primates (Clark et al., 2017; Extavour and Akam, 2003; Leitch et al., 2013b; 

Magnúsdóttir and Surani, 2014; Nakamura and Extavour, 2016; Raz, 2003; Sasaki et al., 

2016; Schwager et al., 2015; Williamson and Lehmann, 1996). The challenge with studying 

mechanisms involved in early human PGC (hPGC) development is that these cells are 

specified at the time of embryo implantation, a time that is inaccessible for research. Given 

this, the mouse model has traditionally been used to extrapolate mechanistic information on 

PGC formation across all mammals, including humans.
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Recent work suggests that humans have evolved a new transcription factor network for 

inducing hPGC formation centering on the transcription factor SRY Box 17 (SOX17) (Irie et 

al., 2015). The discovery of SOX17’s role in hPGC development began with 4 inhibitor (4i) 

cultured human pluripotent stem cells (hPSCs) and the differentiation of hPGC-like cells 

(hPGCLCs) in vitro. It is now appreciated that almost all hESC and human induced 

pluripotent stem cell (hiPSC) lines tested to date are capable of hPGCLC formation. 

Therefore, hPSCs have emerged as an important model for uncovering new mechanistic 

insight into hPGC development. Indeed, using CRISPR/Cas9 gene editing approaches, 

critical roles for PRDM1, EOMESODERMIN (EOMES), and TFAP2C have also been 

identified in hPGC development (Chen et al., 2017; Irie et al., 2015; Kojima et al., 2017; 

Sasaki et al., 2015).

hPSCs can be cultured in either the naive or primed states of pluripotency. Ground-state 

naive pluripotent stem cells are different from 4i and primed pluripotent stem cells in that 

they are more similar to the pre-implantation epiblast (Gu et al., 2016; Pastor et al., 2016; 

Theunissen et al., 2014, 2016; Weinberger et al., 2016), whereas primed pluripotent stem 

cells represent a post-implantation epiblast state (Nakamura et al., 2016). Mammalian 

PGCLCs can be differentiated from naive ground-state mouse or hPSCs by first re-priming 

through epiblast-like cells (EpiLCs) followed by aggregate differentiation (Hayashi et al., 

2011, 2012; von Meyenn et al., 2016). When starting from primed hESCs or hESCs cultured 

in 4i, hPGCLCs are consistently generated from a partially differentiated gastrulation-like 

intermediate called either incipient mesoderm-like cells (iMeLCs) (Sasaki et al., 2015) or 

mesendoderm precursors (pre-ME) (Kobayashi et al., 2017). In all cases, hPGCLC 

formation from these early progenitors is induced in three-dimensional aggregates in the 

presence of growth factors, including bone morphogenetic protein 4 (BMP4). Therefore, exit 

from naive pluripotency into a primed state followed by short exposure to activin A and 

WNT are required for inducing hPGCLC differentiation with BMP4. Interestingly, some 

transcription factors diagnostic of the ground state naive pluripotency are expressed by 

hPGCs and hPGCLCs (e.g., KLF4, KLF5, and DPPA3), and similar to the naive ground 

state, hPGCs are also globally demethylated (Gkountela et al., 2015; Tang et al., 2015). 

Despite this, any additional requirements for hPGC development are not well understood.

In order to identify molecular mechanisms in hPGC formation, we utilized an unbiased 

approach by identifying motifs in open chromatin unique to hPGCs and hPGCLCs. From 

this screen, we used CRISPR/Cas9 approaches to determine that re-opening of a large 

fraction of TFAP2C-bound ground-state naive enhancers (NEs) combined with a shift in the 

global transcriptional program toward ground-state naive pluripotency is a major milestone 

in the regeneration of human germline cells from primed pluripotent stem cells.

RESULTS

Application of ATAC-Seq to the Induction of Human Germline Cells

In order to identify unique transcription factors and regulatory elements that may function in 

hPGC development, we performed the assay for transposase-accessible chromatin using 

sequencing (ATAC-seq) (Buenrostro et al., 2013) on chromatin isolated from hPGCLCs 

(ITGA6/EPCAM) and hPGCs (TNAP/cKIT) collected by fluorescence-activated cell sorting 
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(FACS), as well as primed hESCs and iMeLCs (Figures 1A and 1B). Controls for ITGA6/

EPCAM staining involved analysis of undifferentiated hESCs that were positive (Figure 

S1A) as shown previously (Sasaki et al., 2015). In order to confirm hPGCLC identity of the 

FACS-isolated cells from female (UCLA1) and male (UCLA2) hESC lines (Chen et al., 

2017), we compared RNA sequencing (RNA-seq) of these cells with hPGCLCs 

differentiated from hESCs cultured in 4i (Irie et al., 2015) and hPGCLCs differentiated from 

hiPSCs cultured in StemFit followed by 48 hr in iMeLC media (Sasaki et al., 2015) (Figure 

S1B). This comparison shows that the hPGCLCs differentiated from UCLA1 and UCLA2 

using a 1-day iMeLC differentiation step prior to aggregate formation in BMP4 are 

transcriptionally comparable to hPGCLCs differentiated from 4i and StemFit pluripotent 

cells. Similarly, the hPGCs isolated using TNAP/cKIT in the current study also cluster 

together with hPGCs isolated by Irie et al. (2015).

Given that the number of hPGCs isolated from a pair of embryonic gonads is limited (1,000–

10,000 TNAP/cKIT hPGCs per embryo), we first tested ATAC-seq on different numbers of 

hESCs ranging from 1,000 to 50,000 cells (Figure S1C). We found concordance of ATAC-

seq peaks even down to as few as 1,000 cells (Figure S1C), indicating that our ATAC-seq 

approach could be used on sorted hPGCs/hPGCLCs where cell number is more limiting.

Next, wecollected hESCs, iMeLCs,and ITGA6/EPCAM-sorted hPGCLCs using UCLA1 

and UCLA2 hESC lines. We also collected TNAP/cKIT hPGCs isolated by FACS from a 

pair of 82 days post-fertilization (82d) fetal testes and a pair of 89d fetal ovaries (Figures 1A 

and 1B). We constructed ATAC-seq libraries from all samples to characterize chromatin 

accessibility in the different cell types. In order to identify regions of open chromatin unique 

to germline cells, but not somatic cells, we also made ATAC-seq libraries from embryonic 

somatic tissues (76d female embryo), including embryonic heart, liver, lung, and skin. 

ATAC-seq reads from the different somatic libraries were merged together to create a 

composite “somatic” sample (called soma.). Analysis of ATAC-seq peaks across different 

cell types at the promoter region of the housekeeping genes, for example TUBB and RHOB 
(Figures S1D and S1E), indicated that the quality of the libraries were the same between 

samples, and this was further confirmed by equivalent expected size distributions across all 

samples (Figure S1F) (Buenrostro et al., 2013).

Clustering of all samples revealed overlaps between the ATAC-seq peaks of different 

biological replicates rather than sample sex (Figure S1G). Given the high concordance 

between replicates independent of sex, we combined reads from male and female hPGCs 

and male and female hPGCLCs to create composite “hPGC” and “hPGCLC” data sets 

respectively for further analysis. Similarly, reads from male and female hESCs and male and 

female iMeLCs were merged to create the “hESC” and “iMeLC” sets. Analysis of ATAC-

seq signal occupancy at the early hPGC genes PRDM1 and SOX17 loci revealed regions of 

open chromatin distal to the transcription start site (TSS) in hPGCLCs and hPGCs, but not 

other samples (Figures 1C and 1D). Similarly, at the NANOG gene locus, a differentially 

open germline cell-specific region was identified in hPGCLCs and hPGCs, but not primed 

pluripotent stem cells (Figure S1H). Moreover, differentially open ATAC-seq peaks for late 

PGC genes DDX4 and DAZL are detected in hPGCs, but not hPGCLCs or other samples 

(Figures 1E and 1F). These dynamic observations at known germ cell-expressed genes 
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indicate that the ATAC-seq libraries generated in this study could be used to systematically 

uncover insights into human germline cell-specific open chromatin.

Characterization of Candidate Transcription Factors for Human Germline Cell Formation

In order to identify the regions of open chromatin unique to hPGCs and hPGCLCs, we first 

identified open chromatin regions that were specific to primed hESCs, iMeLCs, hPGCLCs, 

and hPGCs relative to embryonic somatic cells (Figures 2A and S2A). Next, we identified 

transcription factor motifs enriched in the open chromatin at each developmental stage. In 

primed hESCs, we discovered enrichment for transcription factor motifs corresponding to 

OCT4, SOX, TEAD, and NANOG (Figure S2A). In iMeLCs we discovered motifs for 

GATA, TCF, TEAD and SOX corresponding to transcription factor families known to be 

involved in gastrulation (Figure S2A).

In order to identify germline cell-specific open chromatin (hPGCLCs and hPGCs), we 

focused on peaks that were hPGCLC specific, hPGC specific, or hPGCLC/PGC intersect 

(enriched in both). We found that AP2 motifs were strongly enriched in all three types of 

germline cell-specific open chromatin (Figure 2A). Notably, these germline cell-specific 

peaks were not open in somatic tissues, including embryonic heart, liver, lung, or skin, and 

were not open in hESCs or iMeLCs (Figures 2A and S2B). In order to confirm that the 

germline cell-specific open chromatin was also open in additional hPGC samples, we made 

four new ATAC-seq libraries from TNAP/cKIT hPGCs isolated by FACS (67d testes and 

59d, 91d, and 101d ovaries). The germline cell-specific open chromatin is also present in all 

these different stages of hPGC development (Figure S2C). Taken together, we identified a 

signature of germline cell-specific open chromatin in six independently sorted hPGC 

samples from 59 to 101d of human development. Critically, motifs corresponding to the AP2 

family of transcription factors were among the most highly enriched within these regions, as 

well as motifs corresponding to OCT4, SOX, KLF, NANOG, and GATA families.

In order to identify transcription factor candidates for the motifs identified by ATAC-seq, we 

used previously published RNA-seq data of hESCs, iMeLCs, hPGCLCs, and hPGCs (Chen 

et al., 2017) (Figure 2B). Members of the SOX family, specifically SOX17, are known to be 

required for hPGCLC formation (Irie et al., 2015; Kojima et al., 2017), and motifs for this 

family were significantly enriched in the open chromatin of hPGCLCs/hPGCs. Cluster 

analysis suggests that in addition to SOX17, other SOX family members, including SOX15, 

SOX13, and SOX4, may also be involved in hPGCLC/hPGC formation. The KLF family 

consists of 17 members, with KLF4, KLF16, KLF11, and KLF13 exhibiting increased 

expression in hPGCs and hPGCLCs relative to hESCs and/or iMeLCs. In contrast, KLF3, 

KLF5, KLF6, KLF7, KLF8, KLF10, and KLF12 are expressed in all samples. The GATA 

family has six members, with GATA2, GATA4, and GATA6 being the only family members 

expressed in hPGCLCs and/or hPGCs. Finally, there are five AP2 family members with 

TFAP2C and TFAP2A both expressed in hPGCLCs and hPGCs; however, TFAP2C is more 

highly expressed. Additional motifs that emerged in this analysis include NANOG and 

OCT4 (also called POU5F1), which are expressed in all germline cells as well as hESCs and 

iMeLCs; TFCP2L1, which is upregulated in hPGCLCs and hPGCs; and EOMES, which is 
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not expressed in hPGCLCs or hPGCs but is expressed in hESCs and iMeLCs, where it 

regulates hPGCLC competency (Chen et al., 2017; Kojima et al., 2017).

Human Germline Cells Exhibit Transcriptome and Open Chromatin Profiles that Resemble 
Ground-State Naive Pluripotent Stem Cells

The transcription factors TFAP2C, KLF4, and TFCP2L1 are all known markers of human 

ground-state naive pluripotency, a state that is achieved by culturing cells in 5i/L/FA or 

t2iLGo media (Pastor et al., 2018; Takashima et al., 2014; Theunissen et al., 2014). The term 

latent pluripotency is used to describe “hidden” pluripotency in mouse PGCs (mPGCs) 

because mPGC-expressed genes are also expressed by mESCs and because mPGCs have the 

capacity to undergo culture-induced reversion to pluripotent stem cells called mouse 

embryonic germ cells (mEGCs) in vitro without the need for exogenous reprogramming 

factors (Leitch and Smith, 2013). To identify the similarities and differences between human 

germline cells and the primed- and ground-state naive pluripotency where KLF4, TFCP2L1 

and TFAP2C are all highly upregulated, we performed principal component analysis (PCA) 

comparing all variable genes across the RNA-seq datasets of ground-state naive UCLA1 

hESCs (5i/L/FA) (Pastor et al., 2018), primed UCLA1 and UCLA2 hESCs and iMeLCs, 

hPGCLCs (made from UCLA1 and UCLA2), and hPGCs (Chen et al., 2017) (Figure 3A). 

This analysis shows that hPGCLCs and hPGCs cluster in principal component 1 (PC1) 

together with ground-state naive pluripotent stem cells (Figure 3A). Consistently, additional 

ground-state-naive- rather than primed-state-expressed genes are also expressed in 

hPGCLCs and hPGCs, including KLF5, DPPA3, and TBX3 (Figure 3B). Together, these 

observations suggest that some components of the ground-state naive pluripotency are re-

established in newly specified human germline cells. However, it is important to highlight 

that not all components of the naive pluripotent ground-state transcriptional program are 

reacquired by hPGCLCs or hPGCs (Figure 3B). For example, the naive ground-state 

transcription factor KLF17 (Guo et al., 2016) is not expressed in either hPGCLCs or hPGCs, 

and the common pluripotent transcription factor SOX2 is extinguished in human germline 

cells but is highly expressed in the naive state (Figure 3B). These observations indicate that 

when differentiated from primed pluripotent stem cells in vitro and also during 

differentiation in vivo, hPGCLCs and hPGCs acquire a transcriptome profile that shifts 

toward ground-state naive pluripotency.

TFAP2C functions in naive hPSCs to regulate the opening of naive-specific enhancers, and 

this opening is required for the establishment and maintenance of ground-state naive 

pluripotent stem cells in 5i/L/FA and t2iLGo (Pastor et al., 2018). To determine which of the 

naive-specific enhancers are open in hPGCLCs and hPGCs, we compared the 30,751 total 

unique peaks in hPGCLCs/hPGCs to the ATAC-seq peaks previously defined (Pastor et al., 

2018) as specific to the ground state naive (5,032) or the primed state (2,561) of 

pluripotency (Figure 3C). This analysis first shows that naive-specific ATAC-seq peaks 

exhibit more overlap with the open chromatin of hPGCs and hPGCLCs than primed-specific 

peaks (Figure 3C). Specifically, 38% (1,892 out of 5,032; p < 0.05, hypergeometric test) of 

ground-state naive specific peaks overlapped with germline cell-specific open chromatin 

whereas only 5 out of 2,561 primed-specific peaks overlapped (Figures 3C, S3A, and S3B). 

Using chromatin immunoprecipitation sequencing (ChIP-seq) for TFAP2C in 5i/L/FA 
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cultured naive hPSCs (Pastor et al., 2018), we found that the 1,892 hPGC and hPGCLC 

overlapping peaks are also bound by TFAP2C in 5i/L/FA cultured cells (Figure 3C). 

Repeating this analysis with a subset of naive-specific enhancers (1,560) that are directly 

bound by TFAP2C and whose opening in primed to naive reversion functionally depends 

upon TFAP2C (Pastor et al., 2018), we discovered that the overlap now increases to 51% of 

naive specific peaks (800 out of 1,560; p < 0.05, hypergeometric test) (Figure S3C). Thus, 

we conclude that a significant fraction of naive-specific peaks previously defined as being 

enriched in enhancer epigenetic marks reopen in hPGCLCs differentiated from primed 

hESCs and are also maintained in hPGCs isolated from the embryo.

Analysis of the 1,892 peaks enriched in the naive-specific and germline cell-specific 

intersect group revealed a significant enrichment of AP2 motifs, as expected (Figure S3B). 

However, we also noted an even greater statistical enrichment of AP2 motifs in the germline 

cell-specific open chromatin outside of the ground-state naive-specific enhancers (Figure 

S3B), suggesting that AP2 transcription factors play additional roles outside of regulating 

naive-specific enhancers. To address this, we compared all ATAC-seq peaks identified in 

5i/L/FA ground-state naive UCLA1 hESCs to the 30,751 total peaks identified in hPGCLCs 

and hPGCs. This analysis revealed that the regions of open chromatin unique to hPGCs and 

hPGCLCs are also open in 5i/L/FA cultured ground-state naive pluripotent stem cells 

(Figure 3D). Collectively, these data suggest that AP2 sites and most likely TFAP2C are 

significantly enriched in the open chromatin of hPGCLCs and hPGCs, and that a large 

fraction of previously defined naive-specific enhancers that are bound by TFAP2C in the 

ground-state naive pluripotency are also open in the chromatin of hPGCLCs and hPGCs.

TFAP2C Is Required for hPGCLC Induction and Expression of the Ground-State Naive 
Pluripotency Marker KLF4

Previous studies established that TFAP2C is required for hPGCLC differentiation from 

hiPSCs (Kojima et al., 2017). To confirm this result in hESCs, we used two independent 

mutant clones of TFAP2C–/– UCLA1 hESCs generated by CRISPR/Cas9 (Pastor et al., 

2018) that do not generate TFAP2C protein (Figure S4A). Using these null mutant hESC 

lines, we found that hPGCLC formation is completely ablated relative to controls (Figures 

4A and 4B). To determine if TFAP2C is required for somatic cell differentiation, we injected 

control and TFAP2C–/– hESCs lines into immune-deficient mice to create teratomas and 

discovered that TFAP2C–/– hESCs from both null mutant hESC subclones are capable of 

teratoma formation similar to controls (Figure S4B). This suggests that TFAP2C is not 

necessary for exit from primed pluripotency and somatic cell differentiation per se, instead 

having a specific effect on the specification of hPGCLCs.

Given the discovery that the transcriptome and open chromatin of hPGCLCs and hPGCs 

resembles ground-state naive pluripotent stem cells, we next tracked the expression of the 

ground-state naive pluripotent transcription factor KLF4 together with OCT4 as a marker of 

putative hPGCLCs (Figures 4C and S4C). In control aggregates, most cells are OCT4 

positive at day 1 of differentiation, whereas KLF4 protein was not expressed by any cells 

within the aggregates. By day 2, KLF4 expression is detected in a subset of OCT4-positive 

cells, whereas at days 3 and 4 of aggregate differentiation, OCT4 and KLF4 protein 
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expression almost completely overlap. In contrast in the TFAP2C–/– aggregates, KLF4 

protein was never expressed, and OCT4 protein diminished to near background levels 

between days 2 and 3 (Figures 4C and S4C). Taken together, our data suggest that in the 

absence of TFAP2C, the ground-state naive pluripotent transcription factor KLF4 is not 

expressed during aggregate differentiation, and therefore, we were next interested in whether 

KLF4 could be a target of TFAP2C.

To address this, we analyzed the ATAC-seq signals around the KLF4 locus in hPGCLCs and 

hPGCs to identify differentially open peaks that also contain AP2 sites. We identified a new 

peak of open chromatin ~50 kb distal to the KLF4 locus, which is open in hPGCLCs and 

hPGCs, but not hESCs, iMeLCs, or somatic cells (Figures 4D and 4E). We termed this 

region the KLF4 element (KE). To determine whether TFAP2C binds to the KE, we carried 

out ChIP-qPCR with anti-TFAP2C antibodies using day 4 aggregates generated from the H1 

hESC line and discovered that TFAP2C binds to the KE (Figure 4F), thus suggesting that 

TFAP2C may act in part to regulate the expression of KLF4 during aggregate differentiation.

TFAP2C Regulates Germline Cell Formation Partially through the OCT4 NE

Given the unique extinction of OCT4 protein expression between days 2 and 3 of aggregate 

differentiation in TFAP2C–/– cells (Figures 4C and S4C), we were next interested in 

evaluating OCT4 expression during aggregate differentiation and how OCT4 correlates with 

the specification of hPGCLCs. To achieve this, we utilized the H1 hESC line in which an 

IRES-GFP reporter is knocked into the coding region of OCT4 before the stop codon using 

homologous recombination (Gkountela et al., 2013). We call this hESC line OCT4-GFP. 

Using this tool, we show that GFPbright cells are localized exclusively to the ITGA6/EPCAM 

double-positive hPGCLC population at day 4 of aggregate differentiation, whereas ITGA6/

EPCAMdim/– cells are GFP negative (Figure 5A). Using this gate as a reference, we tracked 

the emergence of GFPbright hPGCLCs over the first 4 days of aggregate differentiation and 

show that GFPbright hPGCLCs emerge between days 2.5 and 3.0 (Figures S5A and 5B). The 

GFPbright hPGCLCs can subsequently be maintained for at least 8 days of aggregate 

differentiation (Figure S5A). The switch from dim to bright between days 2 and 3 of 

aggregate differentiation and the loss of OCT4 protein in TFAP2C–/– aggregates within the 

same time frame (Figures 4C and S4C) may suggest that the regulation of OCT4 gene 

expression changes as germline cells are specified in the aggregates.

Previous studies using the mouse as a model discovered that the Oct4 locus (also called 

Pou5f1) is regulated by alternate enhancers. Specifically, the Oct4 distal enhancer (DE) 

regulates Oct4 expression in the mouse inner cell mass (ICM) and mouse PGCs (mPGCs), 

whereas the Oct4 proximal enhancer (PE) regulates Oct4 expression in the post-implantation 

epiblast (Choi et al., 2016; Ovitt and Scho¨ ler, 1998; Yeom et al., 1996). In hESCs, deleting 

the PE while simultaneously targeting the OCT4 locus with a GFP reporter is a successful 

strategy for identifying ground-state naive pluripotent stem cells cultured in 5i/L/FA 

(Theunissen et al., 2014). Recently the NE was identified at the OCT4 locus, which is bound 

by TFAP2C. This enhancer is not found in mouse naive ESCs cultured in 2i + LIF (Pastor et 

al., 2018). Critically, this NE is required to establish the ground state naive pluripotency 

from primed pluripotent stem cells (Pastor et al., 2018). Based on this result, we hypothesize 
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that the TFAP2C-bound NE may also be involved in regulating OCT4 expression during 

human germline cell development.

First, to determine whether the NE is also open in human germline cells, we compared 

ATAC-seq peaks for the NE in hPGCLCs and hPGCs to this region in naive and primed 

hESCs (Figure 5C). These data show that the PE, DE, and NE are all open in hPGCLCs at 

day 4 of aggregate differentiation, with the NE being more open in hPGCs than the DE and 

PE (Figure 5C). This observation raises the possibility that restriction of OCT4 expression 

between days 2 and 3 of aggregate differentiation may be due to NE and/or the DE enhancer 

activation at the OCT4 locus. Given that the NE is bound by TFAP2C in ground-state naive 

pluripotent stem cells, whereas the DE is not (Figure 5C), we next confirmed that the OCT4 
NE is also a target of TFAP2C during hPGCLC differentiation. To do this, we performed 

ChIP-qPCR on day 4 aggregates containing hPGCLCs and discovered that TFAP2C is 

bound to the NE, whereas it is not bound to a genomic region that does not contain AP2 sites 

(Figure 5D). Taken together, these experiments suggest that OCT4 regulation during 

hPGCLC differentiation may involve enhancer activation at the DE as well as TFAP2C-

bound enhancer activation at the NE.

In order to evaluate the role of the DE in hPGCLC formation, we generated an OCT4 DE 

deletion in the UCLA1 hESC line and discovered that deleting the DE had no effect on 

hPGCLC differentiation (Figures S5B and S5C). To examine hPGCLC identity in the 

ITGA6/EPCAM double-positive hPGCLC population, we examined germline cell gene 

expression by real-time PCR and found comparable expression between mutant and control 

hPGCLCs isolated by FACS (Figure S5D). This result suggests that the DE is not a major 

regulatory feature involved in the specification of hPGCLCs.

In order to evaluate the role of the NE in hPGCLC specification, we first used the NE-

deletion mutant generated in the UCLA1 hESC line using CRISPR/Cas9 (Figure 5C) (Pastor 

et al., 2018). Using the NE-deletion and control hESCs, we discovered that the percentage of 

hPGCLCs at day 2 of aggregate differentiation was comparable in both groups (Figure S5E), 

whereas the percentage of hPGCLCs was significantly decreased relative to controls at day 4 

(Figures 5E and 5F). To confirm the mutant phenotype in another hESC line, we made NE-

deletion mutants in the H1 hESC line. Consistently, we discovered that the percentage of 

hPGCLCs was also decreased at day 4 of aggregate differentiation in the NE deletion 

relative to control (Figures S5F and S5G). To evaluate germline identity, we collected 

control and NE-deletion hPGCLCs using FACS for ITGA6/EPCAM and examined germline 

cell gene expression by real-time PCR at day 4. The result shows that OCT4 RNA 

expression is decreased by approximately half in the NE-deletion hPGCLCs at day 4, and 

this was accompanied by a decrease in the expression of diagnostic germ cell genes 

NANOS3, DND1, TFAP2C, SOX17, and PRDM1 (Figure 5G). We also performed 

immunofluorescence and found that OCT4-positive cells were reduced in the NE-deletion 

aggregates at day 4 of differentiation, whereas TFAP2C single-positive cells were still 

detected in the aggregates (Figure 5H). Collectively, these data suggest that one of the 

mechanisms by which TFAP2C regulates human germline cell formation is opening naive-

specific enhancers, with one of these enhancers corresponding to the NE at the OCT4 locus.
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DISCUSSION

Human germline cell specification is a critical biological event during early embryogenesis 

and is absolutely required for generating functional gametes at reproductive age. Although 

several transcription factors have been identified in the induction of germline cell fate in 

humans, systematic identification of transcription factors governing the precise stepwise 

sequence of events in human germline cell formation is lacking. In the current study, we 

identified and analyzed open chromatin specific to prenatal human germline cells using 

ATAC-seq and RNA-seq. Notably, SOX family transcription-factor-binding motifs were 

identified consistent with critical function of SOX17 for human germline cell specification 

(Irie et al., 2015). In this study, we focused on the function of TFAP2C, which is a member 

of the AP2 family. The function of other transcription factor families, such as KLF and 

GATA, requires further analysis.

TFAP2C is required for hPGCLC formation, but the mechanism by which TFAP2C 

regulates hPGCLC development remains largely unknown (Kojima et al., 2017). In the 

mouse, Tfap2c functions downstream of Prdm1 to reinforce germline cell identity after PGC 

specification (Magnúsdóttir et al., 2013; Magnúsdóttir and Surani, 2014; Nakaki et al., 

2013). Using the mPGCLC differentiation model, Tfap2c–/– mESCs are able to generate 

mPGCLCs; however, the resulting transcriptional program of the Tfap2c–/– mPGCLCs is 

abnormal, including reduced expression of germline cell genes and upregulation of somatic 

cell genes (Weber et al., 2010). The role of TFAP2C in human germline cell formation was 

recently addressed by Kojima et al. (2017), and TFAP2C was shown to be required for 

germline cell formation. However, overexpression of TFAP2C was not sufficient to induce 

PGC formation in the absence of growth factors (Kobayashi et al., 2017). Although many 

genes are abnormally expressed in PRDM1-reporter-positive aggregate cells in the absence 

of TFAP2C, the mechanism by which TFAP2C regulates hPGC formation remains to be 

elucidated.

In a recent study, we showed that TFAP2C is required to open and maintain naive-specific 

enhancers during reversion from primed- to ground-state naive pluripotency (Pastor et al., 

2018). In the current study, we discovered that 38% of enhancers identified as being naive 

specific and 51% of the TFAP2C-dependent naive-specific enhancers are open in human 

germline cells, suggesting that one of the roles for TFAP2C in the germline may be to 

promote the expression of genes traditionally associated with naive ground-state 

pluripotency. Outside of the naive-specific enhancers, we also show that AP2 motifs are 

enriched in thousands of additional regions of germline-specific open chromatin in the 

genome, suggesting that AP2 family members and TFAP2C play a complex and critical role 

in human germline cell development.

The overlap of TFAP2C-bound naive-specific enhancers with the earliest stages of human 

germline cell development as modeled with hPGCLCs raises the question of why human 

germline cells acquire a transcriptome and open chromatic state resembling ground-state 

naive pluripotency when differentiated from the primed state of pluripotency. Ground-state 

naive pluripotency in vitro in mouse and humans is also associated with a globally 

demethylated genome (Leitch et al., 2013a; Pastor et al., 2016; Takashima et al., 2014), and 
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hPGCs in vivo are globally demethylated (Gkountela et al., 2015; Tang et al., 2015). During 

early embryogenesis in mammals, there are two waves of DNA methylation reprogramming: 

one soon after fertilization and the other in PGCs (Monk, 2015). Epigenetic reprogramming 

is hypothesized to remove epialleles acquired in the preceding developmental events (e.g., 

epialleles that are generated during gametogenesis prior to fertilization and epialleles that 

are formed with primed epiblast differentiation prior to gastrulation). The acquisition of 

ground-state naive pluripotency during both stages of global DNA methylation 

reprogramming may be a checkpoint that enables germline development to progress. It is 

interesting that in the hPGCLC model, complete DNA methylation reprogramming has not 

been established by day 4 of aggregate differentiation (Irie et al., 2015; Sasaki et al., 2015; 

von Meyenn et al., 2016), yet the ground-state naive pluripotency marker KLF4 is expressed 

in hPGCLCs. This suggests that the switch from a primed pluripotency state toward one that 

resembles the naive ground state in human germline cells precedes DNA methylation 

reprogramming. Another possibility is that once germline cells acquire transcriptome and 

chromatin state resembling ground-state naive pluripotency, they are protected from 

differentiation cues so as to maintain germline cell identity. This finding is supported by the 

observation that human ground-state naive pluripotent stem cells do not easily respond to 

differentiation cues in order to generate teratomas in immunocompromised mice and require 

re-priming to differentiate effectively into embryoid bodies (Liu et al., 2017).

A major question for the function of TFAP2C during human germline cell formation is how 

TFAP2C mediates the switch of primed pluripotency to a state resembling ground-state 

naive. One mechanism reported here is to regulate the NE activation at the OCT4 locus 

between days 2 and 3 of hPGCLC differentiation. In the mouse, the Oct4 locus has two well-

characterized enhancers referred to as the DE and PE. Using transgenic mice, it was revealed 

that the DE was utilized for Oct4 expression in the ICM and PGCs, whereas the PE was 

utilized for Oct4 expression in the mouse post-implantation epiblast (Choi et al., 2016; Ovitt 

and Schöler, 1998; Yeom et al., 1996). There is no TFAP2C-bound NE enhancer in rodents, 

and the genomic sequence in this region is less conserved (Pastor et al., 2018). In the current 

study, we show that the NE functions to regulate OCT4 expression between days 2 and 3 of 

aggregate differentiation and that deletion of the NE affects the maintenance of human 

germline cell identity. Given that the NE at the human OCT4 locus contains three AP2 sites 

and a KLF site, it is possible that the regulation of the NE involves the combinatorial 

binding of both TFAP2C and possibly a KLF family member, although this remains to be 

determined.

Taken together, our data suggest a model for hPGC formation where TFAP2C functions to 

regulate the transition from primed-state pluripotency to a pluripotent state resembling 

ground-state naive by regulating the opening of naive-specific enhancers, with one 

functional example being the NE at the OCT4 locus (Figure S6). Given that the naive-

specific enhancers make up only a small fraction of human germline cell open chromatin 

enriched in AP2 motifs, our data indicate that a large number of other transcriptional units 

will also be regulated by TFAP2C and that these may also have critical roles in human 

germline cell development. Future studies will be critical to determine these other roles for 

TFAP2C.
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STAR⋆METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Amander Clark (clarka@ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human fetal samples—Human prenatal testes and ovaries were acquired following 

elected termination and pathological evaluation after UCLA-IRB review which deemed the 

project exempt under 45 CRF 46.102(f). All prenatal gonads were obtained from the 

University of Washington Birth Defects Research Laboratory (BDRL), under the regulatory 

oversight of the University of Washington IRB approved Human Subjects protocol 

combined with a Certificate of Confidentiality from the Federal Government. BDRL 

collected the fetal testes and ovaries and shipped them overnight in HBSS with ice pack for 

immediate processing in Los Angeles. All consented material was donated anonymously and 

carried no personal identifiers. Developmental age was documented by BDRL as days post 

fertilization using a combination of prenatal intakes, foot length, Streeter’s Stages and 

crown-rump length. All prenatal gonads documented with birth defect or chromosomal 

abnormality were excluded from this study.

Human ESC culture—Human ESC lines used in this study include UCLA1 (46, XX) 

(Diaz Perez et al., 2012), UCLA2 (46, XY) (Diaz Perez et al., 2012), and H1 OCT4-GFP 
(46, XY) (Gkountela et al., 2013). hESCs were cultured on mitomycin C-inactivated mouse 

embryonic fibroblasts (MEFs) in hESC media, which is composed of 20% knockout serum 

replacement (KSR) (GIBCO, 10828–028), 100μM L-Glutamine (GIBCO, 25030–081), 1x 

MEM Non-Essential Amino Acids (NEAA) (GIBCO, 11140–050), 55μM 2-

Mercaptoethanol (GIBCO, 21985–023), 10ng/mL recombinant human FGF basic (R&D 

systems, 233-FB), 1x Penicillin-Streptomycin (GIBCO, 15140–122), and 50ng/mL primocin 

(InvivoGen, ant-pm-2) in DMEM/F12 media (GIBCO, 11330–032). The hESCs were split 

every 7 days using Collagenase type IV (GIBCO, 17104–019). All hESC lines used in this 

study are registered with the National Institute of Health Human Embryonic Stem Cell 

Registry and are available for research use with NIH funds. The hESC lines used in this 

study are listed in Table S1. Mycoplasma test (Lonza, LT07–418) was performed every 

month to all cell lines used in this study. All experiments were approved by the UCLA 

Embryonic Stem Cell Research Oversight Committee.

METHODS DETAILS

hPGCLC induction—hPGCLCs were induced from primed hESCs as described before 

(Chen et al., 2017). hESCs were dissociated into single cells with 0.05% Trypsin-EDTA 

(GIBCO, 25300–054) and plated onto Human Plasma Fibronectin (Invitrogen, 33016–015)-

coated 12-well-plates at the density of 200,000 cells/well in 2mL/well of iMeLC media, 

which is composed of 15% KSR (GIBCO, 10828–028), 1x NEAA (GIBCO, 11140–050), 

0.1mM 2-Mercaptoethanol (GIBCO, 21985–023), 1x Penicillin-Streptomycin-Glutamine 

(GIBCO, 10378–016), 1mM sodium pyruvate (GIBCO, 11360–070), 50ng/mL Activin A 

(Peprotech, AF-120–14E), 3μM CHIR99021 (Stemgent, 04–0004), 10μM of ROCKi 
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(Y27632, Stemgent, 04–0012-10), and 50ng/mL primocin in Glasgow’s MEM (GMEM) 

(GIBCO, 11710–035). After 24 hr, iMeLCs were dissociated into single cells with 0.05% 

Trypsin-EDTA and plated into ultra-low cell attachment U-bottom 96-well plates (Corning, 

7007) at the density of 3,000 cells/well in 200μl/well of hPGCLC media, which is composed 

of 15% KSR (GIBCO, 10828–028), 1x NEAA (GIBCO, 11140–050), 0.1mM 2-

Mercaptoethanol (GIBCO, 21985–023), 1x Penicillin-Streptomycin-Glutamine (GIBCO, 

10378–016), 1mM sodium pyruvate (GIBCO, 11360–070), 10ng/mL human LIF (Millipore, 

LIF1005), 200ng/mL human BMP4 (R&D systems, 314-BP), 50ng/mL human EGF (R&D 

systems, 236-EG), 10μM of ROCKi (Y27632, Stemgent, 04–0012-10), and 50ng/mL 

primocin in Glasgow’s MEM (GMEM) (GIBCO, 11710–035).

Flow cytometry and fluorescence activated cell sorting—Human prenatal gonads 

or aggregates were dissociated with 0.25% trypsin (GIBCO, 25200–056) for 5 min or 0.05% 

Trypsin-EDTA (GIBCO, 25300–054) for 10 min at 37°C. The dissociated cells were stained 

with conjugated antibodies, washed with FACS buffer (1% BSA in PBS) and resuspended in 

FACS buffer with 7-AAD (BD PharMingen, 559925) as viability dye. The single cell 

suspension was analyzed or sorted for further experiments. The conjugated antibodies used 

in this study include: ITGA6 conjugated with BV421 (BioLegend, 313624, 1:60), ITGA6 

conjugated with 488 (BioLegend, 313608, 1:60), EPCAM conjugated with 488 (BioLegend, 

324210, 1:60), EPCAM conjugated with APC (BioLegend, 324208, 1:60), tissue nonspecific 

alkaline phosphatase (TNAP) conjugated with PE (BD PharMingen, 561433, 1:60), and 

cKIT conjugated with APC (BD PharMingen, 550412, 1:60).

ATAC-seq—ATAC-seq was performed using Nextera DNA library prep kit (Illumina, 

15028212) as previously described (Pastor et al., 2018). Cells were collected in lysis buffer 

(10mM Tris pH7.4, 10mM NaCl, 3mM MgCl2, 1% NP40) and spun at 500 g at 4°C for 10 

min. The pellet was resuspended in the transposase reaction mix (25 μL 2 × Tagmentation 

buffer, 2.5 μL transposase and 22.5 μL nuclease-free water) and incubated at 37°C for 30 

min. The samples were purified using MinElute PCR Purification Kit (QIAGEN, 28006) and 

amplified using 1 × NEBnext PCR master mix (NEB, M0541S) and 1.25 μM of custom 

Nextera PCR primers 1 and 2 with the following PCR conditions: 72°C for 5 min; 98°C for 

30 s; and thermocycling at 98°C for 10 s, 63°C for 30 s and 72°C for 1 min. Samples were 

amplified for five cycles and 5 μL of the PCR reaction was used to determine the required 

cycles of amplification by real-time PCR. The remaining 45 μL reaction was amplified with 

the determined cycles and purified with MinElute PCR Purification Kit (QIAGEN, 28006) 

yielding a final library concentration of about 30 nM in 20 μL. Libraries were subjected to 

pair-end 50bp sequencing on HiSeq 2000 or HiSeq 2500 sequencer with 4–6 indexed 

libraries per lane.

Real-time quantitative PCR—Sorted cells or cell pellets were lysed in 350 μL of RLT 

buffer (QIAGEN) and RNA was extracted using RNeasy micro kit (QIAGEN, 74004). 

cDNA was synthesized using SuperScript® II Reverse Transcriptase (Invitrogen, 18064–

014). Real-time quantitative PCR was performed using TaqMan Universal PCR Master Mix 

(Applied Biosystems, 4304437) and the expression level of genes-of-interest was normalized 

to the expression of housekeeping gene GAPDH. The Taqman probes used in this study are 
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listed in Table S2. Two biological replicates were performed for each experiment and two 

technical replicates were conducted for each biological replicate.

hESC mutants made by CRISPR/Cas9—To delete the OCT4 distal enhancer, a pair of 

guide RNA (gRNA) was designed using http://zlab.bio/guide-design-resources and cloned 

into PX459 vector (Ran et al., 2013). The OCT4 naive enhancer deletion was described 

previously (Pastor et al., 2018). 4ug of gRNA pair or 2ug of pMax-GFP was electroporated 

into 800,000 UCLA1 hES cells using P3 Primary Cell 4D-Nucleofector® X Kit according to 

the manufacturer’s instructions (Lonza, V4XP-3024). 24 hr after nucleofection, cells were 

dissociated with Accutase (ThermoFisher Scientific, A1110501) and seeded on a 6-well-

plate for 4 days before passaging into 10-cm2-dish in low density for screening. 96 

individual colonies were picked after 9 days and expanded. Distal enhancer deletion 

candidate lines were screened for the presence of shorter bands due to deletion. To 

determine the precise mutations, genomic DNA was extracted from about 1 million cells 

using Quick-DNA Microprep Kit (ZYMO RESEARCH, D3021). 1uL of the genomic DNA 

was used as PCR template for genotyping using Phusion High-Fidelity DNA Polymerase 

(NEW ENGLAND BioLabs, M0530L). Genotyping primers were listed in Table S2. In 

order to characterize the mutant alleles, mutant bands were cloned into Blunt-PCR-Cloning 

vector using Zero Blunt PCR Cloning Kit (ThermoFisher, K270020). Ten white colonies 

were picked and sequenced to determine the precise deletion sites. The sequence of the pair 

of gRNA for deleting OCT4 distal enhancer are listed in Table S2.

Generation of teratomas—Surgery was performed following Institutional Approval for 

Appropriate Care and Use of Laboratory Animals by the UCLA Institutional Animal Care 

and Use Committee [Chancellor’s Animal Research Committee (ARC)] (Animal Welfare 

Assurance number A3196–01). hESCs of control UCLA1, and OCT4 NE deletion mutant 1 

and mutant 2 UCLA1 lines in matrigel (BD) were transplanted into the testis of adult SCID 

mice. Six to eight weeks after surgery, mice were euthanized and the tumors were removed 

and fixed in 4% formaldehyde overnight at room temperature. Tumor tissues were embedded 

in paraffin and cut as 5 μm sections for hematoxylin and eosin staining.

Immunofluorescence—Slides of paraffin-embedded sections were deparaffinized by 

successive treatment with xylene and 100%, 95%, 70% and 50% ethanol. Antigen retrieval 

was performed by incubation with 10mM Tris pH 9.0, 1mM EDTA, 0.05% Tween at 95C for 

40 min. The slides were cooled and washed with 1xPBS (phosphate buffered saline) and 

1xTBS (PBS + 0.2% Tween). The samples were permeabilized with 0.5% Triton X-100 in 

1xPBS, then washed with 1xTBS and blocked with 10% donkey serum in 1xTBS. Primary 

antibody incubation was conducted overnight in 10% donkey serum. Samples were again 

washed with 1xTBS-tween and incubated with fluorescent secondary antibodies at 1:200 for 

45 min, then washed and mounted using with ProLong Gold Antifade Mountant with DAPI 

(ThermoFisher). Images were taken using LSM 780 Confocal Instrument (Zeiss). The 

primary antibodies used for immunofluorescence in this study include: goat-anti-OCT4 

(Santa Cruz Biotechnology, sc-8628x, 1:100), rabbit-anti-PRDM1 (Cell Signaling 

Technology, 9115, 1:100), mouse-anti-PRDM1 (R&D Systems, MAB36081, 1:100), rabbit-

anti-TFAP2C (Santa Cruz Biotechnology, sc-8977, 1:100), mouse-anti-TFAP2C (Santa Cruz 
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Biotechnology, sc12762, 1:100), goat-anti-SOX17 (Neuromics, GT15094, 1:100), KLF4 

(R&D Systems, AF3640, 1:100). The secondary antibodies used in this study were all from 

Jackson ImmunoResearch Laboratories and DAPI was counterstained to indicate nuclei.

Western blot—Protein lysate of hESCs was prepared in RIPA buffer and NuPAGE® LDS 

sample loading buffer and denatured for 10 min at 98°C. Samples were run on an SDS- 

PAGE 10% Bis-Tris gel (ThermoFisher) 60–80 min at 100V, transferred at 100V for 60–70 

min, and blocked with 5% non-fat dried milk in 0.1%TBST (0.1% Tween in Tris Buffer 

Saline solution) for 1 hr. Primary antibody was added to blocking buffer and incubated at 

room temperature for 1 hr. Secondary antibodies were added after washing with TBST. The 

PierceTM ECL Western Blotting Substrate (ThermoScientific, 32109) was used on the 

membrane before film exposure. The primary antibodies used in this study include: rabbit-

anti-TFAP2C (Abcam, 76007, 1:1000), mouse-anti-Histone 3 (Abcam, 10799, 1:8000). The 

secondary antibodies used include: Donkey-anti-goat HRP (Invitrogen, A15999, 1:2000), 

Sheep-anti-mouse HRP (GE Healthcare Life Sciences, NA931VS, 1:2000).

ChIP-qPCR—ChIP was performed as previously described (Pastor et al., 2018). Two 

biological replicates were performed using H1 OCT4-GFP hESC line and 4 plates of 

PGCLC aggregates were collected for each ChIP-qPCR. Aggregates were dissociated with 

0.05% Trypsin-EDTA (GIBCO, 25300–054) for 10 min at 37°C, washed twice with PBS, 

fixed in 1% formaldehyde and flash frozen. After thawing, the cells were resuspended in 1 

mL of Buffer 1 (10mM Tris-HCl pH8.0, 0.25% Triton X-100, 10mM EDTA, 0.5mM EGTA, 

1x Protease Inhibitors (Roche), 1mM PMSF) and incubated at room temperature for 15 min 

on a rotator. Samples were spun at 4000 rpm for 5 min and the pellets were washed with 1 

mL of Buffer 2 (10mM Tris-HCl pH8.0, 200mM NaCl, 10mM EDTA, 0.5mM EGTA, 1x 

Protease Inhibitors (Roche), 1mM PMSF) and resuspended in 650 uL Buffer 3 (10mM Tris-

HCl pH8.0, 10mM EDTA, 0.5mM EGTA, 1x Protease Inhibitors (Roche), 1mM PMSF) and 

sonicated with Covaris S2 with the following program: Intensity = 5; Cycles/burst = 200; 

Duty Cycle = 5%; 4 x (30” on/30” off/30” on/30” off). Sonicated lysate was centrifuged at 

14,000rpm for 10 min at 4°C and the supernatant was collected into a new tube. 65 μL of the 

supernatant was saved as input. 30 μL Protein A Dynabeads (Invitrogen, 10001D) was 

washed with Dilution Buffer (16.7 mM Tris-HCl pH8.0, 0.01% SDS, 1.1% Triton X-100, 

1.2mM EDTA, 167mM NaCl) three times and resuspended in 650 μL Dilution Buffer and 

added to the samples. The samples with beads were rotated for 2 hr at 4°C and the beads 

were removed by magnetic rack. Each sample was split into two parts: one half for Rabbit-

anti-TFAP2C (Santa Cruz Biotechnology, sc-8977), and the other half for Rabbit-IgG as 

control. Samples were incubated at 4°C overnight. On the second day, 60uL of pre-washed 

Protein A Dynabeads was added to each sample and incubated at 4°C for 2 hr. Samples were 

placed on magnetic rack to remove supernatant and the beads were washed twice with 

Buffer A (50mM HEPES pH7.9, 1% Triton X-100, 0.1% Deoxycholate, 1mM EDTA, 

140mM NaCl), Buffer B (50mM HEPES pH7.9, 0.1% SDS, 1% Triton X-100, 0.1% 

Deoxycholate, 1mM EDTA, 500mM NaCl), TE and eluted with 150 μL of Elution Buffer 

(50mM Tris-Cl pH8, 1mM EDTA, 1% SDS) and incubated at 65°C for 10 min. Samples 

were placed on magnetic rack and ChIP-samples were collected. Both ChIP-samples and 

input samples were heated overnight at 65°C. On the third day, samples were treated with 
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1.5uL of 10mg/mL RNaseA (PureLink RNase A, Invitrogen 12091–021) for 30 min at 65°C 

and then with 10ul of 10mg/mL Proteinase K for 2 hr at 56°C. Samples were purified with 

MinElute PCR Purification Kit (QIAGEN, 28006). qPCR was performed using TaqMan 

Universal PCR master mix (Applied Biosystems, 4304437). The primers for ChIP-qPCR are 

listed in Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental design—ATAC-seq libraries were made from six biological replicates of 

human embryonic gonads and two biological replicates of male and female hESCs, iMeLCs, 

and hPGCLCs (except one for male hPGCLC). The assessment of the effect of gene 

knockout on hPGCLC induction was determined by using two independent knockout lines 

for each gene/enhancer (except for one line for OCT4 DE deletion) and parental control 

lines (UCLA1 or H1 OCT4-GFP). The hPGCLC induction from the knockout and control 

lines was performed in parallel, and was replicated three to six times (except one for day 2 

aggregates induced from OCT4 NE deletion of UCLA1 hESC line). No statistical 

calculation was used to estimate the sample size. Randomization/stratification/blinding were 

not applicable to these experiments. For realtime PCR, western blot and 

immunofluorescence, at least two biological replicates were performed.

Replicates and data pooling—To call ATAC-seq peaks or display of ATAC-seq data in 

figures, all reads from same condition were merged to increase coverage. RPKM from 

biological RNA-seq sample were merged for a given condition when comparing RPKM 

across different conditions (Figure 2B). For Principal component analysis (PCA), biological 

replicates for RNA-seq were considered separately (Figure 2B).

RNA-seq data analysis—For RNA-seq data in 5i/L/FA hESCs, previously published 

RNA-seq data (Pastor et al., 2016) were used in this study. For RNA-seq data of primed 

hESCs, hPGCLC and hPGC, previously published RNA-seq data (Chen et al., 2017) were 

used in this study. All raw RNA-seq reads were converted to gene expression level as 

described before (Pastor et al., 2016). Briefly, raw RNA-seq reads were then aligned to hg19 

using Tophat (Trapnell et al., 2009) with ‘-g 1’ and ‘—no-coverage-search’ parameter. After 

alignment, read counts per gene were calculated using HTseq (Anders et al., 2015). Gene 

expression levels were determined by RPKM (reads per kilobase of exons per million 

aligned reads) with a customized R script. For heatmap of gene expression, log2(RPKM+1) 

value were used as described in figure legends. The RNA-seq data used in this study is listed 

in Table S3.

ATAC-seq data analysis—ATAC-seq data were processed as previously described 

(Pastor et al., 2018). Briefly, after converting qseq file from sequencer to fastq format with 

customized script, paired-end 50bp ATAC-seq reads were mapped to hg19 genome using 

Bowtie with the parameters ‘-m 1’ and ‘-X 2000’. PCR duplicates were removed with 

Samtools (rmdup function) (Li et al., 2009). As described before, all reads aligned to the 

positive strands were offset by 4 bp and all reads aligned to the negative strands were offset 

by 5 bp due to Tn5 insertion (Adey et al., 2010). Since ATAC-seq is also able to capture long 

reads derived from nucleosome signals, we only focus on open chromatin reads pair with 
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length less than 100bp. MACS2 callpeaks tools were used to identify ATAC-seq peaks in 

somatic tissue, hESC, iMeLC, hPGCLC and hPGC datasets (Zhang et al., 2008). In order to 

identify peaks specific to one condition among different conditions, bedtools multiinter 

option was used with Ryan Layers’s clustering algorithm applied (Quinlan and Hall, 2010). 

To calculate the overlap of ATAC-seq peaks in hESC, iMeLC, hPGCLC, hPGC, jaccard 

statistics were calculated using bedtools jaccard function (Favorov et al., 2012). ATAC-seq 

signals, heatmap and metaplot were visualized with ngs.plot (Shen et al., 2014). The ATAC-

seq data used in this study is listed in Table S3.

ChIP-seq data analysis—Processed TFAP2C ChIP-seq data in Naive hESC from 

previously published (Pastor et al., 2018) were used in this paper (Table S3).

Motif Analysis—To identify enriched motifs in different peak sets, the 200bp region 

flanking peak summit were used. HOMER (findMotifGenome tool) (Heinz et al., 2010) 

were utilized with appropriate genome and default settings.

Principal component analysis (Figure 3A)—For principal component analysis (PCA) 

for RNA-seq data, RPKM for each sample were used as input. Variance of each gene’s 

RPKM in different samples were then calculated (rowVars function in R). PCA analysis 

(prcomp function in R) was performed on all genes across samples. PCA plots were then 

plotted with ggplot2 package in R (http://ggplot2.tidyverse.org/).

Code Availability—Custom scripts used for demultiplexing NGS reads, calculating 

RPKM, generating DNA methylation metaplots and comparing distribution of peaks to 

expression of nearby genes will be made available upon request.

DATA AND SOFTWARE AVAILABILITY

The accession number for the ATAC-seq data and RNA-seq data of key cell types including 

hESCs, iMeLCs, hPGCLCs, hPGCs, and embryonic somatic tissues reported in this paper 

are GEO: GSE120648 and GEO: GSE93126.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The chromatin and transcriptome of hPGCs resembles ground-state naive 

hESCs

• TFAP2C is required for hPGC formation and expression of KLF4

• The TFAP2C-regulated OCT4 naive enhancer is involved in hPGC formation
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Figure 1. Identifying Unique Regions of Open Chromatin in Human Germline Cells
(A) Morphology of male (UCLA2) and female (UCLA1) primed hESCs, and iMeLCs used 

for ATAC-seq. Scale bars, 100 μm.

(B) Male (UCLA2) and female (UCLA1) hPGCLCs were isolated as ITGA6/EPCAM 

double-positive cells at day 4 of aggregate differentiation. 82d and 89d hPGCs were isolated 

as TNAP/cKIT double-positive cells from a pair of embryonic testes and ovaries, 

respectively.

(C–F) Screenshot of the ATAC-seq signal over PRDM1 (C), SOX17 (D), DDX4 (E), and 

DAZL (F) for male and female primed hESCs, iMeLCs, hPGCLCs, hPGCs, and embryonic 

somatic cells (soma.). Red dotted boxes highlight ATAC-seq peaks in hPGCLCs and/or 

hPGCs, but not in primed hESCs, iMeLCs, or embryonic somatic tissues.

F, female; M, male. See also Figure S1.
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Figure 2. Transcription Factor Motifs Enriched in Open Chromatin of Human Germline Cells
(A) Heatmap of ATAC-seq signals in embryonic somatic tissues, hESCs, iMeLCs, 

hPGCLCs, and hPGCs over germline cell-specific open chromatin regions (defined as 

enriched in hPGCLCs, hPGCs, or both) and corresponding transcription factor motifs 

enriched for those regions.

(B) Heatmap of gene expression levels in hESCs, iMeLCs, hPGCLCs, and hPGCs for 

transcription factor family members with motifs identified as being enriched in germline 

cell-specific open chromatin. F, female; M, male.

See also Figure S2.
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Figure 3. Reacquisition of Ground-State Naive Pluripotency in Human Germline Cells
(A) Principal component analysis (PCA) of transcriptomes of ground state naive hESCs 

cultured in 5i/L/FA media, primed hESCs, iMeLCs, hPGCLCs, and hPGCs. Gene 

expression analysis was based on the RNA-seq data from Pastor et al. (2016) (5i/L/FA 

ground-state naive hESCs) and Chen et al. (2017) (primed hESCs, iMeLCs, hPGCLCs, and 

hPGCs).

(B) Heatmap showing the expression of pluripotency genes in 5i/L/FA ground-state naive 

hESCs, primed hESCs, hPGCLCs, and hPGCs. The five hPGCs samples are 89d female, 

103d female, 89d female, 89d female, and 59d male from left to right. F, female; M, male.

(C) Venn diagram showing the overlap of germline cell-specific ATAC-seq regions with 

naive-specific and primed-specific regions identified by Pastor et al. (2018). Metaplot of the 

ATAC-seq signals in 5i/L/FA ground-state naive hESCs, hPGCLCs, and hPGCs and 

TFAP2C ChIP-seq signals in naive hESCs over regions defined from the Venn diagram.

(D) Heatmap showing the ground-state naive hESCs ATAC-seq signals (Pastor et al., 2018) 

over hPGC-specific, hPGCLC-specific, and hPGC/hPGCLC-shared peaks.

See also Figure S3.
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Figure 4. TFAP2C Is Required for hPGCLC Specification and Expression of the Naive 
Transcription Factor KLF4
(A) Flow cytometry showing the induction of hPGCLCs at days 2 and 4 of aggregation 

differentiation using control and TFAP2C mutant hESCs.

(B) Two independent TFAP2C mutant lines made from UCLA1 hESCs were used. 

hPGCLCs correspond to ITGA6/EPCAM double-positive cells. Three biological replicates 

were examined. Error bars represent SEM.

(C) Expression of KLF4 in OCT4-positive hPGCLCs from day 1 through day 4 of aggregate 

differentiation in control and TFAP2C mutant UCLA1 hESC lines. The percentages of 

OCT4 and KLF4 double-positive cells are quantified at each stage and are represented by 

the orange color in the pie chart. Green, OCT4 single-positive cells; red, KLF4 single-

positive cells; blue, DAPI-positive cells but negative for OCT4 and KLF4. Scale bars, 15 

μm. The counting of all cell types is shown in Figure S4C.
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(D and E) Screenshot of the ATAC-seq signal near KLF4 (D). Red dashed box indicates a 

putative DNA regulatory element, which is closed in primed hESCs and iMeLCs but open in 

hPGCLCs and hPGCs. This DNA region is termed as the KLF4 element (KE). The germline 

cell-specific KE region with two AP2-binding sites (indicated by black arrows) is 

highlighted in (E).

(F) ChIP-qPCR of KE using anti-TFAP2C antibodies in day 4 aggregates from UCLA1. 

Immunoglobulin G (IgG) was used as ChIP control. Two biological replicates for ChIP and 

two technical replicates for qPCR were performed. Control is a genomic region at the OCT4 
locus without AP2-binding site. Error bars represent SEM.

See also Figure S4.
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Figure 5. The OCT4 NE Is Involved in hPGCLC Formation
(A) Flow cytometry of aggregates at day 4 of differentiation from H1 hESC line genetically 

modified to express GFP from the OCT4 locus (OCT4-GFP). hPGCLCs (ITGA6/EPCAM 

double-positive cells) are also positive for GFP. In contrast, non-hPGCLCs are GFP 

negative. Most OCT4-GFP-positive cells are positive for ITGA6/EPCAM. Three biological 

replicates were performed.
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(B) Summary of OCT4-GFP-positive cells during aggregate differentiation from days 1 to 4. 

The GFP-positive gate was set according to the GFP gate from (A). Two biological 

replicates were performed.

(C) Screenshot of ATAC-seq and TFAP2C ChIP-seq signals showing three enhancers at the 

POU5F1 locus (encoding OCT4). Shaded boxes highlight the naive enhancer (NE), proximal 

enhancer (PE), and distal enhancer (DE) at the POU5F1 locus. DE deletion and NE deletion 

indicate genomic regions that were deleted by CRISPR/Cas9-mediated genome editing. 

Primers for ChIP-qPCR (P1–2, P3–4, P5–6) of NE and control regions are shown.

(D) ChIP-qPCR using anti-TFAP2C antibodies in day 4 aggregates from the UCLA1 line. 

IgG was used as a ChIP control. Two biological replicates for ChIP and two technical 

replicates for qPCR were performed. Primer (P) locations at the POU5F1 locus are shown in 

(C). Error bars represent SEM.

(E) Flow cytometry of control and OCT4 NE deletion day 4 aggregates from the UCLA1 

hESCs. hPGCLCs correspond to the ITGA6/EPCAM double-positive cells (n = 3 biological 

replicates).

(F) Quantification of hPGCLC percentages from (E). t test was applied. Error bars represent 

SEM.

(G) Expression of germ cell genes in ITGA6/EPCAM double-positive hPGCLCs from 

control and OCT4 NE deletion samples at day 4 of aggregate differentiation from UCLA1 

hESCs (n = 2 biological replicates). Error bars represent SEM.

(H) Immunofluorescence of OCT4 (green) and TFAP2C (red) in control and OCT4 NE 

deletion aggregates at day 4 of differentiation from UCLA1 hESCs (n = 2 biological 

replicates). hPGCLCs correspond to OCT4/TFAP2C double-positive cells. Scale bars, 15 

μm.

See also Figure S5.

Chen et al. Page 28

Cell Rep. Author manuscript; available in PMC 2019 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 29

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal anti-human OCT3/4 Santa Cruz Biotechnology Cat#sc-8628; RRID: AB_653551

Rabbit monoclonal anti-human PRDM1 Cell Signaling Technology Cat#9115S; RRID: AB_2169699

Mouse monoclonal anti-human PRDM1 R&D Systems Cat#MAB36081; RRID: AB_10718104

Rabbit polyclonal anti-human TFAP2C Santa Cruz Biotechnology Cat#sc-8977; RRID: AB_2286995

Mouse monoclonal anti-TFAP2C Santa Cruz Biotechnology Cat#sc-12762; RRID: AB_667770

Goat anti-human SOX17 Neuromics Cat#GT15094; RRID: AB_2195648

Goat polyclonal anti-human KLF4 R&D Systems Cat#AF3640; RRID: AB_2130224

BV421 conjugated anti-human/mouse CD49f (ITGA6) BioLegend Cat#313624; RRID: AB_2562244

488 conjugated anti-human/mouse CD49f (ITGA6) BioLegend Cat#313608; RRID: AB_493635

Alexa Fluor 488-conjugated anti-human CD326 (EPCAM) BioLegend Cat#324210; RRID: AB_756084

APC-conjugated anti-human CD326 (EPCAM) BioLegend 324208; RRID: AB_756082

PE-conjugated mouse monoclonal anti-human TNAP BD PharMingen Cat#561433; RRID: AB_10645791

APC-conjugated mouse monoclonal anti-human cKIT BD PharMingen Cat#550412; RRID: AB_398461

Rabbit monoclonal anti-human TFAP2C Abcam Cat#Ab76007; RRID: AB_1309954

Mouse monoclonal anti-Histone H3 Abcam Cat#Ab10799; RRID: AB_470239

Bacterial and Virus Strains

Stbl3 Chemically Competent E. coli ThermoFisher Cat#C737303

Chemicals, Peptides, and Recombinant Proteins

CHIR99021 Stemgent Cat# 04–0004

Y27632 Stemgent Cat# 04–0012-10

Recombinant Human FGF basic Protein R&D systems Cat#233-FB

Recombinant Activin A Peprotech Cat# AF-120–14E

Recombinant human LIF Millipore Cat# LIF1005

Recombinant human BMP4 R&D systems Cat#314-BP

Recombinant human EGF R&D systems Cat#236-EG

Critical Commercial Assays

P3 Primary Cell 4D-Nucleofector® X Kit Lonza Cat#V4XP-3024

TaqMan Universal PCR Master Mix Applied Biosystems Cat#4304437

Quick-DNA Microprep Kit ZYMO RESEARCH Cat#D3021

One Shot Stbl3 Chemically Competent E. coli ThermoFisher Cat#C737303

Deposited Data

ATAC-seq data This paper GEO: GSE120648

Experimental Models: Cell Lines

UCLA1 Diaz Perez et al., 2012 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

UCLA2 Diaz Perez et al., 2012 N/A

H1 [OCT4-IRES-GFP] Gkountela et al., 2013 N/A

UCLA1 TFAP2C−/− line 1 Pastor et al., 2018 N/A

UCLA1 TFAP2C−/− line 2 Pastor et al., 2018 N/A

UCLA1 OCT4 NE deletion Pastor et al., 2018 N/A

UCLA1 OCT4 DE deletion This paper N/A

H1 OCT4-GFP OCT4 NE deletion This paper N/A

Oligonucleotides

See Table S2 for the TaqMan probes used in this study This paper N/A

See Table S2 for the gRNAs used in this study This paper N/A

See Table S2 for the primers used in this study This paper N/A

Recombinant DNA

pSpCas9(BB)-2A-Puro (PX459) V2.0 Ran et al., 2013 Addgene, Cat#62988

BD FACSDIVA software BD Biosciences N/A

FLOWJO software FLOWJO N/A

GraphPad Prism software GraphPad N/A

Photoshop software Adobe N/A

Illustrator software Adobe N/A

R https://www.R-project.org N/A

HOMER Motif Analysis http://homer.ucsd.edu/homer/motif/ N/A
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