UC Santa Cruz UC Santa Cruz Previously Published Works

Title

Exotic eucalypts: From demonized trees to allies of tropical forest restoration?

Permalink https://escholarship.org/uc/item/54m7v2jh

Journal Journal of Applied Ecology, 57(1)

ISSN 0021-8901

Authors

Brancalion, Pedro HS Amazonas, Nino T Chazdon, Robin L <u>et al.</u>

Publication Date 2020

DOI

10.1111/1365-2664.13513

Peer reviewed

Journal of Applied Ecology

Exotic eucalypts: from demonized trees to allies of tropical forest restoration?

Journal:	Journal of Applied Ecology
Manuscript ID	Draft
Manuscript Type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Brancalion, Pedro; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, Department of Forest Sciences Amazonas, Nino; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz Chazdon, Robin; University of Connecticut, Ecology and Evolutionary Biology; van Melis, Juliano; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz Mendes, Alex; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz Rodrigues, Ricardo; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz Silva, Carina; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz Sorrini, Taísi; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz Sorrini, Taísi; Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz
Key-words:	Atlantic Forest, ecological restoration, forest and landscape restoration, large-scale restoration, natural regeneration, restoration costs, restoration economy, selective harvesting, tropical forestry, Eucalyptus
	•

1	Exotic eucalypts: from demonized trees to allies of tropical forest
2	restoration?
3	
4	Authors: Pedro H. S. Brancalion ^{1*} , Nino T. Amazonas ¹ , Robin L. Chazdon ^{2,3} , Juliano
5	van Melis ¹ , Alex F. Mendes ¹ , Ricardo R. Rodrigues ⁴ , Carina C. Silva ¹ , Taísi B. Sorrini ¹ ,
6	Karen D. Holl ⁵
7	
8	Affiliations:
9	¹ Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University
10	of São Paulo, Piracicaba, SP, 13418-900, Brazil.
11	² Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs,
12	CT, 06269-3043, USA.
13	³ International Institute for Sustainability, Rio de Janeiro, RJ, 22460-320, Brazil.
14	⁴ Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture,
15	University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
16	⁵ Department of Environmental Studies, University of California, Santa Cruz, CA
17	95064, USA.
18	*Correspondence to: E:mail: pedrob@usp.br
19	
20	

21 Abstract:

22	1.	Despite ambitious, international forest landscape restoration targets, few forest
23		restoration approaches provide both ecologically sound and financially-viable
24		solutions for achieving the spatial scale proposed. One potential revenue source for
25		restoration is selective harvesting of timber, a product for which there is a clear
26		global market and increasing demand. Although the use of commercially valuable
27		exotic trees may attract farmers to restoration, it can be a major concern for
28		ecologists.
29	2.	Here, we present results collected over 7 years from experimental studies at three

sites across the Brazilian Atlantic Forest to assess the impacts of incorporating
 exotic eucalypts as a transitional stage in tropical forest restoration on aboveground
 biomass accumulation, native woody species regeneration, and financial viability.

33 3. Biomass accumulation was nine times greater in mixed eucalypt-native species
 34 plantations than native only plantings due to fast eucalypt growth. Nonetheless, the
 35 growth of native non-pioneer trees was not affected or only slightly reduced by
 36 eucalypts prior to logging.

4. Eucalypts did not negatively affect the natural regeneration of native woody species
before or after eucalypt logging. Canopy cover regrew quickly but was slightly
lower a year following logging in mixed eucalypt-native species plantations.
Natural regeneration richness and planted non-pioneer growth were similar across
treatments in the post-logging period. We found higher variation of biomass
accumulation and native species regeneration among sites than between plantation
types within sites.

Page 3 of 40

44	5. The income obtained from eucalypt wood production offset 44-75% of restoration
45	implementation costs.
46	6. <i>Synthesis and applications</i> . Many of the negative effects attributed to eucalypts on
47	the growth and natural regeneration of native trees depend on features of the
48	production system, landscape structure, soil, and climate in which they are grown,
49	rather than the effects of eucalypts per se. In Brazil's Atlantic Forest region, exotic
50	eucalypts can become important allies of tropical forest restoration, and their use
51	and investment opportunities should be considered within the portfolio of options
52	supported by public and private funding and policies.
53	
54	Keywords: Atlantic Forest; ecological restoration; Eucalyptus; forest and landscape
55	restoration; large-scale restoration; natural regeneration; restoration costs; restoration
56	economy; selective harvesting; tropical forestry
57	
58	Introduction
59	Tropical forest restoration has emerged as a promising intervention to mitigate climate
60	change, biodiversity loss, and improve human wellbeing in regions of the planet where
61	high endemic species richness coincides with widespread deforestation and forest

62 fragmentation (Holl 2017). Ambitious restoration targets have been set for tens to

hundreds of millions of hectares in tropical forest regions at the national, regional, and

64 international scales (e.g. Bonn Challenge, Initiative 20 × 20 in Latin America, Atlantic

- 65 Forest Restoration Pact in Brazil; Chazdon *et al.* 2017). But the high costs of forest
- 66 landscape restoration present a major obstacle for widescale adoption. For example, the
- 67 implementation phase alone can cost upwards of US\$3,700 per hectare in Brazil (Molin

et al. 2018), and international financing for such efforts is limited compared to the large 68 area proposed for restoration (12 M ha in Brazil alone). Restoring tropical forests 69 requires more than just compensating landowners for the use of the land. It demands 70 substantial investments in the implementation, maintenance, and long-term protection 71 and monitoring of recovering forests (Brancalion et al. 2017; Reid et al. 2018). Hence, 72 tropical countries need to develop innovative, financially-viable approaches to forest 73 restoration that are not heavily dependent on external aid that can stimulate large-scale 74 application to reach scale (Ding et al. 2017). 75

76

One potential revenue source for restoration is selective harvesting of timber, a product 77 78 for which there is a clear global market and increasing demand (Putz et al. 2012). From an ecological perspective, forest restoration projects should prioritize planting native 79 tree species. However, fast-growing, exotic species comprise a potential alternative, if 80 they can help offset planting costs, do not inhibit the recolonization and growth of 81 native species, and speed up the recovery of forest functions (Ashton et al. 1997; Lamb, 82 Erskine & Parrotta 2005; Catterall 2016). Extensive production knowledge and 83 established timber markets for certain exotic tree species may transform restoration 84 plantings into a profitable activity and create investment opportunities (Brancalion et al. 85 2012; Grossman 2015; Payn et al. 2015). Several studies have found abundant and 86 diverse regeneration of native woody species in the understory of commercial tree 87 plantations across the global tropics (e.g. Brockerhoff et al. 2013; Pryde et al. 2015; Wu 88 et al. 2015), and highlight the potential of timber plantations to promote large-scale 89 forest restoration (Lugo 1997; Parrotta, Turnbull & Jones 1997). However, we are not 90 aware of any controlled or replicated experiments that rigorously assess the ecological 91 and economic outcomes of interplanting commercial exotic species with a diverse suite 92

Journal of Applied Ecology

93	of native species to facilitate regeneration of a diversity of tropical forest species and
94	offset restoration implementation costs by harvesting exotic planted trees.

95

Exotic eucalypts, planted for wood pulp and timber, are ubiquitous in tropical regions, 96 and currently cover over 20 million hectares globally. Only nine out of >700 Eucalyptus 97 and Corymbia species (hereafter referred to as "eucalypts") comprise >90% of the 98 global planted area (Stanturf et al. 2013). The prominent environmental concerns 99 100 associated with the large plantation area and ecological characteristics of exotic eucalypts have motivated several studies to assess their biodiversity value, allelopathic 101 102 effects, water consumption, and potential for invading unplanted areas (Bremer & 103 Farley 2010; Stanturf et al. 2013; Becerra et al. 2017). The effects of eucalypts vary, however, with regional climate, previous land use, and plantation management practices 104 105 (Brockerhoff et al. 2013). 106

Eucalypts are grown in Brazil mostly for pulp, but also for round logs, sawn lumber, 107 firewood, fencing poles, and oil (IBA 2018). Such flexible uses and high productivity 108 (Brazil's average: 35 m³ ha⁻¹ yr⁻¹, but reaching >60 m³ ha⁻¹ yr⁻¹ in some regions) make 109 110 eucalypts popular commercial trees for farmers (Goncalves et al. 2013); hence, eucalypts comprise 71% of tree plantation area in Brazil (5.7 Mha, IBA 2018) and are 111 widely used in plantations throughout Latin America (Geary 2001; Salas et al. 2016). 112 113 Most of these plantations have been intensively managed in short rotations (~5 yr) and as extensive monoculture areas, which have prevented the natural regeneration of native 114 115 woody species and resulted in so-called "green deserts" (Bremer & Farley 2010). However, less intensively managed and abandoned eucalypt plantations in many regions 116

117 host a high diversity of plants and birds (Silva-Junior, Scarano & Cardel 1995;

118 Marsden, Whiffin & Galetti 2001; Lopes et al. 2015; César et al. 2017).

119

120	Forest restoration projects in Atlantic forest region of Brazil mostly plant a high
121	diversity of native tree species (Rodrigues et al. 2011; Brancalion et al. 2018), but the
122	Native Vegetation Protection Law of 2012, allows for intercropping exotic,
123	commercially-valuable tree species with native species in restoration projects to meet
124	restoration requirements . The justification for this legislative change from the earlier
125	1965 Forest Code was the need to transform restoration into a financially-viable land
126	use (Brancalion et al. 2012), which compensates farmers for the opportunity costs of
127	foregone agricultural land use. Here, we draw on results from experimental studies at
128	three sites across the Brazilian Atlantic Forest to rigorously assess the impacts of
129	incorporating exotic eucalypts as a transitional stage in tropical forest restoration on
130	aboveground biomass accumulation, native woody species regeneration, and costs. This
131	information is important to evaluate the ecological and financial viability of this novel
132	legal norm and its potential for dissemination to other global regions to leverage tropical
133	forest restoration.

134

135 Materials and Methods

136 Experimental sites

We established experimental plantings in three municipalities distributed across the
eastern portion of the Atlantic Forest (Site 1: Aracruz-Espírito Santo, Site 2: MucuriBahia, and Site 3: Igrapiúna-Bahia; Table S1, Fig. 1) as a joint effort of the Atlantic
Forest Restoration Pact, two eucalypt pulp companies, and one conservation NGO to
develop new forest restoration models with the objective of offsetting implementation

Journal of Applied Ecology

142	costs and providing income to farmers. We established and compared two experimental
143	treatments at each site: i) diverse plantations of native species: 23-30 species of native
144	non-pioneer trees intercropped with 9-10 species of native pioneer trees (hereafter
145	"native" treatment); ii) mixed plantations of native species and eucalypts: the same 23-
146	30 species of native non-pioneer trees intercropped with eucalypts in equal proportions
147	of eucalypt and native non-pioneer species ("mixed" treatment; Table S1). Native non-
148	pioneer trees were mostly composed of valuable timber species, which could potentially
149	be harvested by farmers in long rotation cycles to further contribute to the financial
150	viability of restoration. We employed a random block design with five (site 1), four (site
151	2) and six (site 3) blocks (Table S1). Sites 1 and 2 were planted at 3×3 m spacing
152	(1,111 trees ha ⁻¹ ; plot size 2,160 m ²) and site 3 at 3×2 m spacing (1,666 trees ha ⁻¹ ; plot
153	size 1,080 m ²); in all sites, we intercropped two consecutive lines of each group of
154	species (<i>i.e.</i> , eucalypts, native pioneers, and native non-pioneers).

156

Figure 1. Study sites within the Atlantic Forest of Brazil. Black lines in Atlantic Forest
map indicate state boundaries. See Table S1 for biophysical and experimental site
details. Other treatments were tested in these sites and can be seen in the images (e.g.
eucalypt monocultures, intercropping eucalypts and native species in single lines), but
these treatments are not discussed in this paper.

We logged eucalypt trees in all mixed plantation plots at site 1 with a harvester and forwarder after 57 months, and logged all eucalypt trees in half of these plots (six harvested and six unharvested) in site 3 with chainsaw and animal traction after 45 months; mixed plantations have not yet been harvested at site 2 because it is being

167	managed for a longer rotation cycle. We left unharvested plots at site 3 to compare the
168	longer-term impacts of maintaining versus logging eucalypts on the further
169	development of planted native trees and natural regeneration. We employed a reduced
170	impact logging approach in order to minimize logging impacts on planted native trees
171	and natural regeneration.
172	
173	Data collection
174	Aboveground biomass accumulation and growth of planted non-pioneer trees
175	We measured the DBH and height of all planted native trees and eucalypts in the
176	effective area of experimental plots in site 1 (pre-logging: 38, 51 and 57 months; post-
177	logging: 83 months), site 2 (pre-logging: 48 months) and site 3 (pre-logging: 31 and 43
178	months; post-logging: 53, 60, and 84 months; Fig. S1). We estimated native tree
179	aboveground biomass (AGB) 4-5 yr after planting using an equation developed for 5-yr
180	old restoration plantings in the Atlantic Forest (Ferez et al. 2015), and calculated
181	eucalypt AGB with an equation developed specifically for eucalypt stands in the study
182	region (Rocha 2014). In the native plantations, we calculated the AGB of pioneer and
183	non-pioneer trees separately in order to assess the differential impact of eucalypts and
184	native pioneers on the growth of native non-pioneer trees.
185	
186	Regeneration environment and woody species regeneration

We assessed the light environment and invasive grass cover in the plantation understory right before (Site 1: 57 months; Site 3: 43 months) eucalypt logging, and the light environment immediately following and 7 (Site 1) to 12 (Site 3) months after eucalypt logging (**Fig. S1**). We did not take natural regeneration measurements in site 2 because the company in charge of maintaining the site inadvertently sprayed glyphosate in the

plantation understory to control grasses, a standard practice in eucalypt plantations,

Page 10 of 40

193 which also killed native regenerating trees; moreover, since the site is being managed on 194 a longer-term rotation, we could not take post-harvest natural regeneration data. 195 We estimated light availability using two methods due to different weather conditions at 196 the sites. In site 1, where open sky days predominated during the data collection period, 197 we measured photosynthetically active radiation from 11 to 13h in the plantation 198 understory and outside the plantation with a ceptometer AccuPAR LP-80 (Decagon 199 Devices Inc., 1999) and calculated the leaf area index (LAI). In site 3, where cloudy 200 201 days predominated during the data collection period, we measured the red:far red ratio 202 in plantation understory with a Skye SKR 110 sensor (Skye Instruments), which captures radiation between 660 and 730 nm wavelengths and does not require 203 measurements in open areas; lower red:far red ratio indicates reduced diffuse 204 transmittance through a more closed canopy (Capers & Chazdon 2004). We regularly 205 distributed ten (Site 1) and six (Site 3) 2×2 m quadrat subplots in each experimental 206 plot and visually estimated invasive grass cover (mostly Urochloa decumbens (Stapf) 207 208 R.D. Webster) according to five classes (0, 25, 50, 75, and 100% approximate cover). 209 We then identified and quantified all spontaneously regenerating tree species 210 individuals (height \geq 50 cm) growing within the subplots used for grass cover measurements, prior to logging (Site 1: 57 months; Site 3: 43 months) and 3-4 years 211 212 after post logging.

213

192

214 Logging impacts on planted non-pioneer trees

215 We evaluated the damages of eucalypt logging on planted non-pioneer species in Sites 1

and 3 right after logging based on a methodology adapted from Sist and Nguyen-Thé

(2002), through which trees were classified as with or without the trunk broken, and
with or without damages (damages on tree crown, trunk/bark, and/or bole inclination).
We assessed if broken or damaged trees survived seven months after logging, based on
the presence of living leaves of new sprouts.

221

222 Data analysis

223 Aboveground biomass accumulation and growth of planted non-pioneer trees

We compared the total AGB and the AGB of non-pioneer species between mixed and 224 native plantations at the pre-harvesting stage 4-5 yr after planting at all three sites. AGB 225 226 stocks were compared by independent t-tests as data showed normality and homoscedasticity. To compare the growth of planted non-pioneer trees with and without 227 eucalypts, and before and after eucalypt logging, we used linear mixed-models 228 following a model-building approach in order to detect and prevent heteroscedasticity 229 and dependency (Zuur et al. 2009). Models were fitted in R using lme function in the 230 nlme package (Pinheiro et al. 2018), using varPower and corAR1 model options when 231 necessary. We used basal area of non-pioneer trees as the response variable, time and 232 233 treatment as fixed factors and time factor and individual identity as random variables in 234 our mixed models (for more details, see Annex 1). Then, we analyzed how non-pioneer trees responded after eucalypt logging at two sites by comparing plots where eucalypts 235 were logged and areas where non-pioneer trees were growing with native pioneer trees. 236 237 We compared the basal area increment (difference between the basal area of the preand post-logging inventories) between treatments with Welch t-test, since data showed 238 normal distribution but unequal variances. 239 240

241 *Regeneration environment and woody species regeneration*

242	The leaf area index (Site 1) and red:far red ratio (Site 3) data were compared between
243	treatments and along time by mixed model approach and paired t-tests. As consequence
244	of the frequent number of subplots with zero values of grass cover, we employed a
245	Zero-Inflated Mixed Model approach (Zuur et al. 2009) with the function zeroinfl
246	(Zeileis et al., 2008) of pscl package (Jackman 2010), using the treatments and the light
247	environment variable as fixed factors in the models. We compared the rarefied species
248	richness and species composition similarity of saplings regenerating in the understories
249	of native and mixed plantations, prior to and after eucalypt logging (Fig. S1). In site 3,
250	we also included unlogged plots of mixed plantations, which allowed us to infer the
251	persistence impacts of eucalypts on native species regeneration.
252	
253	We compared native species richness through rarefaction curves based on sample-sizes
254	with 95% confidence intervals using the R package <i>iNEXT</i> (Hsieh, Ma & Chao 2016),
255	and composition similarity according to the Chao-Jaccard similarity index. We
256	compared the abundance of regenerating native species through Poisson Generalized
257	Linear Mixed Model (GLMM), following a model construction approach (Zuur et al.
258	2009), using glmer function from lme4 package (Bates et al. 2015) and post hoc test
259	with <i>lsmeans</i> package (Lenth 2016), where time and treatment were fixed factors and
260	plot ID as random factor (for more details, see Annex 1).
261	
262	Financial calculations
263	We quantified plantation implementation (site preparation, seedling acquisition,

264 fencing, tree planting) and maintenance (weeding, control of leaf-cutter ants, and

- sequential fertilization) costs based on the prices of services and materials supplied by
- 266 professional restoration companies near Site 1. We assumed the costs of Site 1 Aracruz

Journal of Applied Ecology

267	region to be the same as for the other sites, an assumption justified by a large-scale
268	study showing similar costs of restoration management practices across in Brazil. We
269	quantified the differential seedling costs of the two treatments; but we did not quantify
270	the labor and inputs costs of mixed and native plantations separately, although mixed
271	plantings should have lower weeding costs due to faster canopy cover.
272	
273	We applied a timber price of harvested trees (US\$ 28.41 m ⁻³) and discounted logging
274	and transport costs (US\$ 6.35 m ⁻³), for the Site 1 region (Silva 2012; Brazilian-Tree-
275	Industry 2015), to calculate total revenue. Timber production was evaluated based on
276	direct harvesting of eucalypts in two sites (Site 1: 100.38 m ³ ha ⁻¹ , Site 3: 174.08 m ³ ha ⁻¹)
277	and estimated in Site 2 based on the relationship between basal area and wood harvested
278	obtained in Site 1 and applied to the forest inventory of Site 2 (93.72 m ³ ha ⁻¹). The
279	revenue obtained from eucalypt logging in experimental plantings was calculated based
280	on the Net Present Value, assuming the financial parameters of: i) R\$1.00=US\$0.3131;
281	ii) inflation of 1.06 (2011-2014) and 1.11 (2015), based on the Broad National
282	Consumer Price Index - IPCA (www.bcb.gov.br/pec/Indeco/Ingl/indecoi.asp); and iii)
283	basic interest rate of 11% for 2014 (www.bcb.gov.br/Pec/Copom/Port/taxaSelic.asp).
284	
285	Results
286	Aboveground biomass accumulation and growth of planted trees
287	Aboveground biomass of mixed plantations was approximately nine times greater than
288	native plantations, mostly as consequence of the rapid growth of eucalypts (Fig. 2).
289	These results were accompanied by a slight, but significant, reduction in the AGB of

290 non-native pioneer trees in two experimental sites (**Fig. 2**).

Figure 2. Aboveground biomass (AGB) accumulation in experimental restoration native and mixed plantings. Total AGB was higher in mixed plantations with eucalypts in all sites, and asterisks indicate that AGB of non-pioneer trees was significantly higher without eucalypts (t-tests, p < 0.05) in two sites. Error bars represent 95% confidence intervals.

298

In Site 1, the basal area of non-pioneer species showed similar increases across

treatments over time ($F_{1,58}$ =3.33 , p = 0.07; treatment × time interaction $F_{1,58}$ = 5.31, p =

301 0.02) so basal area in both native and mixed plantations was similar at the last inventory

302 $(t_{11} = 0.672, p = 0.98; Fig. 3A; Table S2)$. In Site 3, the basal area of non-pioneer

303 species increased faster in native plantations during the experiment (slope estimate \pm

304 SE: native = 0.102 ± 0.03 ; mixed logged = 0.042 ± 0.02 , and mixed unlogged = $0.044 \pm$

- 305 0.02; treatment × time interaction $F_{1,46}$ =8.94, p <0.005; **Fig. 3B**), which resulted in a
- 306 94% higher basal area seven years after planting in the native compared to mixed

307 plantation ($t_6 = 4.318$, p<0.005). Eucalypt logging did not affect basal area increment in

308 mixed plantations (
$$t_{10} = 0.868$$
, $p = 0.406$).

309

311 Figure 3. Temporal variation in basal area of species groups in experimental restoration

312 mixed (left) and native plantings (right), submitted or not to logging. Shading represents

- 313 1 SE.
- 314

- 315 Logging impacts on planted non-pioneer trees
- Logging impacts were higher in site 3 (45.4% of non-pioneer trees), where eucalypt was
- logged with chainsaw, than in site 1 (13.2%), where logging was done using a harvester
- machine (Table 1). Nonetheless, mortality was very low in both sites after seven
- 319 months (**Table 1**), since most broken and damaged trees resprouted following logging
- damage.
- 321

322 Table 1. Impacts of eucalypt logging on planted non-pioneer trees in mixed plantations,

and mortality of impacted trees seven months after harvesting

Study	Broken	Broken trees	Damaged	Damaged trees
Area	trees (%)	mortality $(\%)^1$	trees (%)	mortality (%) ¹
1	0.0 ± 0.0	0.0 ± 0.0	13.2 ± 1.8	0.0 ± 0.0
3	16.9 ± 3.4	2.6 ± 0.5	45.4 ± 4.8	0.7 ± 0.5
1 .	0 1 1	1	1 0 1	1 0 1 .

¹percentage of dead trees in relation to the total number of alive trees before logging

325

326 *Regeneration environment*

327 The leaf area index of native and mixed plantations was similar in site 1 prior to logging $(t_{7,1} = 1.03; p = 0.38; Fig. 4A)$. Eucalypt logging reduced LAI by nearly a third in mixed 328 plantations ($t_9 = 11.95$; p < 0.001; Fig. 4A), but the growth of the remaining planted and 329 regenerating native trees more than tripled the LAI of logged plots and reached 84% of 330 331 pre-logging values 7 months after logging (Fig. 4A). In site 3, red:far red ratio was lower (i.e. canopy cover was higher) in native plantations prior to logging ($F_{2,429}$ = 332 132.88; p <0.001; Fig. 4B, S2). Eucalypt logging showed a similar trend in site 3 (~30%) 333 increase in red:far red ratio values; $t_{143} = 25.97$; p <0.001; Fig. 4B). A year post logging, 334 the remaining native trees had reached 85% of red: far red ratio values of unlogged 335 mixed plots and 68% of native plantations values, yet logged mixed plots had the 336 highest red: far red ratio values at this time ($F_{2,429} = 426.5$; p <0.0001; Fig. 4B). Invasive 337

grass cover was low in both sites (Site 1: $\sim 10\%$; Site 3: $\sim 7\%$) and did not differ between

treatments prior to logging (Site 1: |Z| < 1.44; Site 3: |Z| < 0.53; p > 0.05).

340

Figure 4. Temporal variation of light environment in the understory of experimental
restoration plantings of native and mixed plantations, submitted or not to logging.
Shading represents 1 SE.

345

341

346 *Regeneration of native woody species*

Rarefied species richness and composition of native woody species that colonized the
understory of native and mixed plantations were similar in the pre-logging period (Site
1: Chao-Jaccard similarity: 0.75; Fig. 5A; Site 3: Chao-Jaccard similarity: 0.95; Fig.
5B) with twice as many species at site 3 compared to site 1. Rarefied species richness
doubled and tripled in sites 1 and 3, respectively, in the post-logging period, but did not
differ among plantation types within each site (Fig. 5). We did not observe a single

353	regenerating eucalypt seedling in either site pre- or post-logging. In site 1, the
354	abundance of regenerating native species was higher in native plantations in the pre-
355	logging period, but was similar at the post-logging period (Table S3), as consequence of
356	a slight abundance decrease in native plantations and increase in mixed plantations
357	between periods (slope estimate \pm SE: Site 1: native = -0.28 \pm 0.25; mixed = 1.55
358	± 0.24 ; treatment × time interaction Z =5.33, p <0.001; Table S3). In site 3, the
359	abundance of regenerating native species was similar in treatments in the pre-logging
360	period, but was higher in native plantations in the post-logging period, when logged and
361	unlogged plots did not differ (Table S3). We observed a slight increase in the abundance
362	of regenerating species in native plantations and a decrease in mixed plantations (native
363	= 0.06 ±0.09; mixed logged = -0.35 ± 0.11, and mixed unlogged = -0.29 ±0.11;
364	treatment × time interaction $ Z _{logged} = 2.79$, p = 0.005, and $ Z _{unlogged} = 2.42$, p = 0.02;
365	Table S3).
366	
367	

369

Figure 5. Rarefied species richness of naturally regenerating native woody species in
native and mixed restoration plantings with or without eucalypt logging. Shading
represents 95% confidence intervals.

373

374 Financial assessment of eucalypt logging

Wood production in mixed plantations with eucalypts helped to offset the high

implementation and maintenance costs (\$3,360 ha⁻¹). Eucalypt harvesting in 4-5 yr old

- experimental plantings yielded 100 (Site 1), 94 (Site 2), and 174 m³ ha⁻¹ (Site 3) of
- roundwood for pulp, firewood or fencing poles (DBH 15-25 cm), compensating for 46.6
- (Site 1), 44.00 (Site 2), and 75.3% (site 3) of total restoration implementation costs 4-5
- 380 years after planting (Table S4).

381	
382	Discussion
383	Our results show that mixing plantations of eucalypts and native trees is a promising
384	restoration strategy to help offset restoration implementation costs without undermining
385	the ecological outcomes. The growth of native non-pioneer trees was not affected (1
386	site) or slightly reduced (2 sites) by eucalypts prior to logging despite the greatly
387	enhanced biomass production of mixed plantations. Moreover, the richness of
388	regenerating native woody species was not reduced by eucalypts either before or after
389	eucalypt logging, yet the abundance of regenerating native species was higher in native
390	plantations in sites 1 (pre-logging) and 3 (post-logging).
391	
392	The most evident difference between native and mixed plantations was the short-term
393	difference in AGB accumulation. With nearly nine times higher AGB stocks prior to
394	logging, mixed plantations clearly demonstrated the value of integrating eucalypts as a
395	transitional phase in restoration if wood production is one of the expected outcomes
396	(Amazonas et al. 2017; Lamb 2018). The fact that the impressive biomass accumulation
397	of eucalypts did not strongly reduce the growth of planted native non-pioneer trees may
398	be due to the naturally slow growth of this group of species (Chazdon 2014) and their
399	adaptation to tolerate low to medium light conditions (Loik & Holl 1999). We lack
400	plantations of exclusively non-pioneer trees to disentangle competition in these systems.
401	
402	We had anticipated that the fast growth of eucalypts would result in higher canopy
403	cover and consequently less grass cover than native plantations. In contrast, we found
404	the opposite result for canopy cover in one site and no difference in another, and no
405	impact on grass cover in either site. These unexpected results can be explained by the

Journal of Applied Ecology

contrasting architecture of the tree crowns of eucalypts and native species. The eucalypt 406 407 species used in the experimental plantations have monopodial branching, which concentrate leaves at the top of plantation canopy and result in a leafless midstory 408 (Almeida et al. 2019). On the other hand, native plantations usually have branches and 409 leaves throughout all the forest vertical strata to maximize light absorption by species 410 with different ecophysiological behaviors and niche requirements (Sapijanskas et al. 411 412 2014). The shade levels in both plantations types appeared to be sufficiently high to prevent grass regrowth in the understory, a major barrier for restoration success in the 413 Atlantic Forest region. 414

415

A valid concern about interplanting eucalypts with native species is that the impacts of 416 falling trees and dragging logs could largely destroy the native non-pioneer trees 417 418 interplanted with eucalypts and the abundant natural regeneration of the understory. In fact, the visual impression right after logging was that all regenerating individuals were 419 destroyed in eucalypt planting lines, where logging impacts were concentrated (Fig. 420 S3). In site 3, nearly half of planted non-pioneer trees were damaged by logging; but 421 422 most broken trees resprouted and damaged trees survived seven months after logging, 423 resulting in negligible mortality levels. The species richness of regenerating woody plants was similar between logged mixed plantations and native plantations a few years 424 after logging, but the abundance of regenerating individuals was reduced in both logged 425 426 and unlogged mixed plantations in site 3 compared to native plantations. We had expected planted native non-pioneer trees would grow faster in the post-logging period, 427 given that seedling growth is commonly light limited in plantations (Paquette, Bouchard 428 & Cogliastro 2006) and tropical secondary forest (Chazdon et al. 1996), but growth 429 post-logging growth rates were similar in logged and unlogged treaments. In site 3, the 430

431 potential benefits of greater light availability may have been counterbalanced by the432 higher levels of physical damage of logging to planted native non-pioneer trees.

433

434	The lack of differentiation of regenerating communities both in terms of species
435	richness and composition, may reflect the spatial proximity of the plots. Although we
436	used large experimental plots (2,160 and 1,080 m ²), compared to those traditionally
437	used in restoration experiments (Shoo & Catterall 2013), seed dispersers may have been
438	attracted to the heterogeneous forest structure and abundant animal-dispersed trees of
439	the experimental site in general (Reid, Harris & Zahawi 2012). This local enhancement
440	of seed dispersal could mask the differential potential of native trees, especially of
441	pioneers, to attract seed dispersers, yet some studies have reported diverse bird
442	communities in the understory of abandoned eucalypt plantations in the Atlantic Forest
443	region (Marsden, Whiffin & Galetti 2001; Lopes et al. 2015).
444	

445 Differences in both aboveground biomass accumulation and natural regeneration were much more strongly affected by site factors than by planting treatment. The nearly 446 three-fold higher tree growth rates at site 3 likely reflect more favorable soil and climate 447 conditions (site 3 vs. site 1: soil sum of bases: 23.81 vs. 1.93 mmol_c.dm⁻³; clay content: 448 71.4 vs. 20.9%; annual rainfall: 2,191 vs. 1,412 mm; Table S1) and less intensive prior 449 land use (extensive pasture vs. intensive eucalypt plantation). The greater species 450 richness of recruits in site 3 may be explained by those factors, as well as higher 451 landscape forest cover (20.8% vs. 6.3%) than site 1. All three factors have been 452 demonstrated to affect the rate of tropical forest recovery in prior studies (reviewed in 453 Holl 2007; Chazdon 2014). 454

Journal of Applied Ecology

Eucalypt allelopathic effects (Becerra et al. 2017), cases of invasion (Tererai et al. 456 457 2013), reduction in soil moisture (Robinson, Harper & Smettem 2006) and problems with wildfires (Moreira & Pe'er 2018), have been reported predominantly in drier 458 climates. These do not seem to be similarly problematic issues in wetter tropical 459 regions, as suggested by our results and several previous studies in tropical regions that 460 found diverse and abundant regeneration of native species in the understory of eucalypt 461 plantations (e.g. Silva-Junior, Scarano & Cardel 1995; Bremer & Farley 2010; Pryde et 462 al. 2015). We did not find any evidence of natural recruitment of eucalypts in our plots. 463 Data from a related study at our sites (Amazonas et al. 2017) showed minimal 464 465 differences in soil volumetric water content in shallow soil layers (up to 1.3 m depth) of ~4.5-yr native, mixed, and eucalypt monoculture plantations. This lack of difference in 466 soil water availability may be due to the fact that most native pioneer species also 467 require large amounts of water to sustain their fast growth (Filoso et al. 2017). 468 469

As expected, eucalypt logging resulted in a valuable contribution to offset ~45-75% of 470 restoration implementation and maintenance costs. Harvesting eucalypts or other 471 472 commercially valuable native or exotic trees in restoration could partially overcome the 473 financial barrier for adopting active restoration approaches, which can cost up to ten times more than natural regeneration (Shoo et al. 2017), but are needed in many cases 474 due to low site resilience (Rodrigues et al. 2011; Shoo et al. 2016). Exotic eucalypts can 475 476 thus become important allies of tropical forest restoration, and their use should be considered within the portfolio of options supported by public and private funding and 477 policies (Catterall 2016). Together, our results suggest eucalypt use as a transitional 478 stage in restoration has a neutral effect on natural regeneration and can help offset 479 restoration costs along with complementary strategies that aim to transform restoration 480

481	into a competitive land use, like payments for ecosystem services and harvesting
482	valuable native timber species in long rotations (Brancalion et al. 2017). Like any novel
483	restoration strategy, this approach must be considered in the context of the ecosystem
484	type and evaluated for localized positive and negative effects prior to large-scale
485	implementation.
486	
487	Data archive statement: Our data is archived at GitHub
488	(https://doi.org/10.5281/zenodo.2583906).
489	
490	Author contributions: P.H.S.B. conceived the idea, designed the study, and led the
491	writing. K.D.H. co-led the writing. P.H.S.B. and K.D.H decided on statistical analysis
492	and J.M. conducted them. N.T.A., C.C.S., T.B.S., A.F.M., P.H.S.B., and R.R.R. planned
493	the experiment and collected data. R.L.C. helped to structure and review the manuscript.
494	
495	Acknowledgments
496	We thank Fibria, Suzano, and Organização de Conservação de Terras for field work
497	support, and to the Atlantic Forest Restoration Pact for supporting the experiments. We
498	thank the São Paulo Research Foundation (FAPESP: grants #2013/50718-5,
499	#2014/02070-9, and #2016/07498-2), the National Council for Scientific and
500	Technological Development (CNPq: grant #304817/2015-5), and the Coordination for
501	the Improvement of Higher Education Personnel of Brazil (CAPES: grant
502	#88881.064976/2014-01).
503	
504	

506	References
507	Almeida, D.R.A., Stark, S.C., Chazdon, R., Nelson, B.W., Cesar, R.G., Meli, P.,
508	Gorgens, E.B., Duarte, M.M., Valbuena, R., Moreno, V.S., Mendes, A.F.,
509	Amazonas, N., Gonçalves, N.B., Silva, C.A., Schietti, J. & Brancalion, P.H.S.
510	(2019) The effectiveness of lidar remote sensing for monitoring forest cover
511	attributes and landscape restoration. Forest Ecology and Management, 438, 34-
512	43.
513	Amazonas, N.T., Forrester, D.I., Oliveira, R.S. & Brancalion, P.H.S. (2017) Combining
514	Eucalyptus wood production with the recovery of native tree diversity in mixed
515	plantings: Implications for water use and availability. Forest Ecology and
516	Management.
517	Ashton, P.M.S., Gamage, S., Gunatilleke, I.A.U.N. & Gunatilleke, C.V.S. (1997)
518	Restoration of Sri Lankan rainforest: using Caribbean pine Pinus caribaea as a
519	nurse for establishing late-sucessional tree species. Journal of Applied Ecology,
520	34, 915-925.
521	Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects
522	models using lme4. Journal of Statistical Software, 67, 1-48.
523	Becerra, P.I., Catford, J.A., Inderjit;, McLeod, M.L., Andonian, K., Aschehoug, E.T.,
524	Montesinos, D. & Callaway, R.M. (2017) Inhibitory effects of Eucalyptus
525	globulus on understorey plant growth and species richness are greater in non-
526	native regions. Global Ecology and Biogeography, 1-7.
527	Brancalion, P.H.S., Bello, C., Chazdon, R.L., Galetti, M., Jordano, P., Lima, R.A.F.,
528	Medina, A., Pizo, M.A. & Reid, J.L. (2018) Maximizing biodiversity
529	conservation and carbon stocking in restored tropical forests. Conservation
530	Letters, 0, e12454.

531	Brancalion, P.H.S., Lamb, D., Ceccon, E., Boucher, D., Herbohn, J., Strassburg, B. &				
532	Edwards, D.P. (2017) Using markets to leverage investment in forest and				
533	landscape restoration in the tropics. Forest Policy and Economics, 85, 103-113.				
534	Brancalion, P.H.S., Viani, R.A.G., Strassburg, B.B.N. & Rodrigues, R.R. (2012)				
535	Finding the money for tropical forest restoration. Unasylva, 63, 25-34.				
536	Brazilian-Tree-Industry (2015) Relatório Ibá 2015. pp. 77. IBÁ, Brasília.				
537	Bremer, L.L. & Farley, K.A. (2010) Does plantation forestry restore biodiversity or				
538	create green deserts? A synthesis of the effects of land-use transitions on plant				
539	species richness. Biodiversity and Conservation, 19, 3893-3915.				
540	Brockerhoff, E.G., Jactel, H., Parrotta, J.A. & Ferraz, S.F.B. (2013) Role of eucalypt				
541	and other planted forests in biodiversity conservation and the provision of				
542	biodiversity-related ecosystem services. Forest Ecology and Management, 301,				
543	43-50.				
544	Capers, R.S. & Chazdon, R.L. (2004) Rapid assessment of understory light availability				
545	in a wet tropical forest. Agricultural and Forest Meteorology, 123, 177-185.				
546	Catterall, C.P. (2016) Roles of non-native species in large-scale regeneration of moist				
547	tropical forests on anthropogenic grassland. Biotropica, 48, 809-824.				
548	César, R.G., Moreno, V.S., Coletta, G.D., Chazdon, R.L., Ferraz, S.F.B., Almeida,				
549	D.R.A. & Brancalion, P.H.S. (2017) Early ecological outcomes of natural				
550	regeneration and tree plantations for restoring agricultural landscapes.				
551	Ecological Applications.				
552	Chazdon, R.L. (2014) Second-growth: The promise of tropical forest regeneration in an				
553	age of deforestation. Chicago University Press, Chicago.				

554	Chazdon, R.L., Brancalion, P.H.S., Lamb, D., Laestadius, L., Calmon, M. & Kumar, C.					
555	(2017) A policy-driven knowledge agenda for global forest and landscape					
556	restoration. Conservation Letters, 10, 125-132.					
557	Chazdon, R.L., Pearcy, R.W., Lee, D.W. & Fetcher, N. (1996) Photosynthetic responses					
558	of tropical forest plants to contrasting light environments. Tropical forest plant					
559	ecophysiology (eds S.S. Mulkey, R.L. Chazdon & A.P. Smith), pp. 5-55.					
560	Chapman and Hall, New York.					
561	Ding, H., Altamirano, J.C., Anchondo, A., Faruqi, S., Verdone, M., Wu, A., Zamora, R.,					
562	Chazdon, R. & Vergara, W. (2017) Roots of prosperity: The economics and					
563	finance of restoring land. pp. 80. World Resources Institute, Washington, D. C.					
564	Ferez, A.P.C., Campoe, O.C., Mendes, J.C.T. & Stape, J.L. (2015) Silvicultural					
565	opportunities for increasing carbon stock in restoration of Atlantic forests in					
566	Brazil. Forest Ecology and Management, 350 , 40-45.					
567	Filoso, S., Bezerra, M.O., Weiss, K.C.B. & Palmer, M.A. (2017) Impacts of forest					
568	restoration on water yield: A systematic review. Plos One, 12.					
569	Geary, T.F. (2001) Afforestation in Uruguay: Study of a Changing Landscape. Journal					
570	of Forestry, 99, 35-39.					
571	Goncalves, J.L.M., Alvares, C.A., Higa, A.R., Silva, L.D., Alfenas, A.C., Stahl, J., de					
572	Barros Ferraz, S.F., Lima, W.d.P., Santin Brancalion, P.H., Hubner, A., Daniel					
573	Bouillet, JP., Laclau, JP., Nouvellon, Y. & Epron, D. (2013) Integrating					
574	genetic and silvicultural strategies to minimize abiotic and biotic constraints in					
575	Brazilian eucalypt plantations. Forest Ecology and Management, 301, 6-27.					
576	Grossman, J.J. (2015) Eucalypts in agroforestry, reforestation, and smallholders'					
577	conceptions of "nativeness": A multiple case study of plantation owners in					
578	eastern Paraguay. Small-Scale Forestry, 14, 39-57.					

- 579 Holl, K.D. (2007) Oldfield vegetation succession in the Neotropics. *Old Fields* (eds R.J.
- 580 Hobbs & V.A. Cramer), pp. 93-117. Island Press, Washington, DC.
- Holl, K.D. (2017) Restoring tropical forests from the bottom up. *Science*, **355**, 455-456.
- 582 Hsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: an R package for rarefaction and
- extrapolation of species diversity (Hill numbers). *Methods in Ecology and*
- *Evolution*, **7**, 1451-1456.
- 585 IBA, B.T.I. (2018) Report 2017. pp. 77.
- Jackman, S. (2010) pscl : Classes and methods for R. Developed in the Political Science
- 587 Computational Laboratory, Stanford University. Department of Political
- 588 Science, Stanford University, Stanford, CA. R package version 1.03.5.
- 589 <u>http://www.pscl.stanford.edu/</u>.
- Lamb, D. (2018) Undertaking large-scale forest restoration to generate ecosystem
 services. *Restoration Ecology*, 26, 657-666.
- Lamb, D., Erskine, P.D. & Parrotta, J.D. (2005) Restoration of degraded tropical forest
 landscapes. *Science*, **310**, 1628-1632.
- Lenth, R.V. (2016) Least-squares seans: The R package lsmeans. *Journal of Statistical Software*, **69**, 1-33.
- Loik, M.E. & Holl, K.D. (1999) Photosynthetic Responses to Light for Rainforest
- 597 Seedlings Planted in Abandoned Pasture, Costa Rica. *Restoration Ecology*, 7,
 598 382-391.
- 599 Lopes, I.T., Gussoni, C.O.A., Demarchi, L.O., De Almeida, A. & Pizo, M.A. (2015)
- Diversity of understory birds in old stands of native and Eucalyptus plantations. *Restoration Ecology*, 23, 662-669.
- Lugo, A.E. (1997) The apparent paradox of reestablishing species richness on degraded
- 603 lands with tree monocultures. *Forest Ecology and Management*, **99**, 9-19.

604	Marsden, S.J., Whiffin, M. & Galetti, M. (2001) Bird diversity and abundance in forest
605	fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil.
606	Biodiversity & Conservation, 10, 737-751.
607	Molin, P.G., Chazdon, R., Ferraz, S.F.B. & Brancalion, P.H.S. (2018) A landscape
608	approach for cost-effective large-scale forest restoration. Journal of Applied
609	Ecology.
610	Moreira, F. & Pe'er, G. (2018) Agricultural policy can reduce wildfires. <i>Science</i> , 359 ,
611	1001-1001.
612	Paquette, A., Bouchard, A. & Cogliastro, A. (2006) Survival and growth of under-
613	planted trees: A meta-analysis across four biomes. Ecological Applications, 16,
614	1575-1589.
615	Parrotta, J.A., Turnbull, J.W. & Jones, N. (1997) Catalyzing native forest regeneration
616	on degraded tropical lands. Forest Ecology and Management, 99, 1-7.
617	Payn, T., Carnus, J.M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S.R., Orazio,
618	C., Rodriguez, L., Silva, L.N. & Wingfield, M.J. (2015) Changes in planted
619	forests and future global implications. Forest Ecology and Management, 352,
620	57-67.
621	Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. (2018) nlme: linear and nonlinear
622	mixed effects models. R package version 3.1-137.
623	Pryde, E.C., Holland, G.J., Watson, S.J., Turton, S.M. & Nimmo, D.G. (2015)
624	Conservation of tropical forest tree species in a native timber plantation
625	landscape. Forest Ecology and Management, 339, 96-104.
626	Putz, F.E., Zuidema, P.A., Synnott, T., Pena-Claros, M., Pinard, M.A., Sheil, D.,
627	Vanclay, J.K., Sist, P., Gourlet-Fleury, S., Griscom, B., Palmer, J. & Zagt, R.

628	(2012) Sustaining conservation values in selectively logged tropical forests: the				
629	attained and the attainable. Conservation Letters, 5, 296-303.				
630	Reid, J.L., Fagan, M.E., Lucas, J., Slaughter, J. & Zahawi, R.A. (2018) The				
631	ephemerality of secondary forests in southern Costa Rica. Conservation Letters,				
632	0 , e12607.				
633	Reid, J.L., Harris, J.B.C. & Zahawi, R.A. (2012) Avian habitat preference in tropical				
634	forest restoration in southern Costa Rica. Biotropica, 44, 350-359.				
635	Robinson, N., Harper, R.J. & Smettem, K.R.J. (2006) Soil water depletion by				
636	Eucalyptus spp. integrated into dryland agricultural systems. Plant and Soil,				
637	286, 141-151.				
638	Rocha, J.H.T. (2014) Reflexos do manejo de resíduos florestais na produtividade,				
639	nutrição e fertilidade do solo em plantações de Eucalyptus grandis. MSc,				
640	University of São Paulo.				
641	Rodrigues, R.R., Gandolfi, S., Nave, A.G., Aronson, J., Barreto, T.E., Vidal, C.Y. &				
642	Brancalion, P.H.S. (2011) Large-scale ecological restoration of high-diversity				
643	tropical forests in SE Brazil. Forest Ecology and Management, 261, 1605-1613.				
644	Salas, C., Donoso, P.J., Vargas, R., Arriagada, C.A., Pedraza, R. & Soto, D.P. (2016)				
645	The Forest Sector in Chile: An Overview and Current Challenges. Journal of				
646	Forestry, 114 , 562-571.				
647	Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. (2014) Tropical tree				
648	diversity enhances light capture through crown plasticity and spatial and				
649	temporal niche differences. Ecology, 95, 2479-2492.				
650	Shoo, L.P. & Catterall, C.P. (2013) Stimulating natural regeneration of tropical forest				
651	on degraded land: Approaches, outcomes, and information gaps. Restoration				
652	<i>Ecology</i> , 21 , 670-677.				

653	Shoo, L.P., Catterall, C.P., Nicol, S., Christian, R., Rhodes, J., Atkinson, P., Butler, D.,				
654	Zhu, R. & Wilson, K.A. (2017) Navigating Complex Decisions in Restoration				
655	Investment. Conservation Letters, 10, 748-756.				
656	Shoo, L.P., Freebody, K., Kanowski, J. & Catterall, C.P. (2016) Slow recovery of				
657	tropical old-field rainforest regrowth and the value and limitations of active				
658	restoration. Conservation Biology, 30 , 121-132.				
659	Silva-Junior, M.C., Scarano, F.R. & Cardel, F.S. (1995) Regeneration of an Atlantic				
660	Forest formation in the understorey of a Eucalyptus grandis plantation in South-				
661	Eastern Brazil. Journal of Tropical Ecology, 11, 147-152.				
662	Silva, A.L.P. (2012) Custo de produção, colheita e transporte de madeira de eucalipto				
663	proveniente do programa produtor florestal no sul do Espírito Santo. PhD,				
664	Universidade Federal do Espírito Santo.				
665	Sist, P. & Nguyen-Thé, N. (2002) Logging damage and the subsequent dynamics of a				
666	dipterocarp forest in East Kalimantan (1990–1996). Forest Ecology and				
667	Management, 165, 85-103.				
668	Stanturf, J.A., Vance, E.D., Fox, T.R. & Kirst, M. (2013) Eucalyptus beyond its native				
669	range: Environmental issues in exotic bioenergy plantations. International				
670	Journal of Forestry Research, 2013, 5.				
671	Tererai, F., Gaertner, M., Jacobs, S.M. & Richardson, D.M. (2013) Eucalyptus				
672	invasions in riparian forests: Effects on native vegetation community diversity,				
673	stand structure and composition. Forest Ecology and Management, 297, 84–93.				
674	Wu, J.P., Fan, H.B., Liu, W.F., Huang, G.M., Tang, J.F., Zeng, R.J., Huang, J. & Liu,				
675	Z.F. (2015) Should Exotic Eucalyptus be Planted in Subtropical China: Insights				
676	from Understory Plant Diversity in Two Contrasting Eucalyptus				
677	Chronosequences. Environmental Management, 56, 1244-1251.				

- 678 Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. (2009) Mixed effects models
- 679 *and extensions in ecology with R.*

Figure S1. Timeline of interventions and data collection in the three experimental sites.

Fig. S2. Hemispheric photographs of the canopy of native (left) and mixed (right) plantations.

Fig. S3. Overview of the mixed plantation in Site 3 right after eucalypt logging.

Characteristics	Experimental plantings			
	Aracruz Espírito Santo state	Mucuri Bahia state	Igrapiúna Bahia state	
Coordinates	19°49'12"S, 40°16'22"W	18°05′09″S, 39°33′03″W	13°49′0″S, 39°9′0″W	
Land tenure	Private	Private	Private	
Altitude	41 m	78 m	121 m	
Mean rainfall	1,412 mm	1,531 mm	2,191 mm	
Mean temperature	23.4°C	23.9°C	25°C	
Climate (Köppen classification)	Aw; dry cold winter and a hot wet summer	Af; no dry season	Af; no dry season	
Drier period	Feb-Sep	Jan-Apr	Nov-Mar	
Soils	Yellow Argisol (Ultisol); sandy/ clayey texture	Argisol; clayvey (40%)	Dystrophic Yellow-Red Oxisol; clayey	
Cation Exchange Capacity (mmol _c .dm ⁻³)	2.16	1.83	58.64	
Sum of Bases (mmol _c .dm ⁻³)	1.93	1.43	23.81	
Clay (%)	20.9	17.2	71.4	
Relief	Flat	Flat	Rounded hills with soft slopes	
Native forest cover within a 5-km radius	6.3%	28.3%	20.8%	
Experimental design	Random block design; 5 blocks	Random block design; 4 blocks	Random block design; 6 blocks	
Treatments*	NE; NN; EE	NE; NN; EE	NE; NN	
Date of plantation	July 2011	May 2012	June 2011	
Plot size	2,160 m ²	2,160 m ²	1,080 m ²	
Plot design	10 lines of 24 trees; two outer rows as border	10 lines of 24 trees; two outer lines as border	15 lines of 12 trees; one outer line as border	
Plantation spacing	3×3 m	3×3 m	3×2 m	
Number of seedlings within effective plot	120	120	130	

Table S1: Biophysical and experimental characteristics of the study sites.

Seedlings per hectare	1,111	1,111	1,667
Eucalypt planted	E. grandis \times E. urophylla	E. urophylla	E. grandis × E. urophylla
Native pioneers	10 species	10 species	9 species
Native non-pioneer	30 species	28 species	23 species

* NE= native species + *Eucalyptus*; NN= native species + native pioneers; EE= *Eucalyptus* monoculture

confidence mints obtailed by a nonparametric bootstrap.				
Site	Treatment	Mean basal area (m ² ha ⁻¹)	Minimum limit	Maximum limit
Site 1	Native	0.0221	0.0179	0.0265
	Mixed logged	0.0281	0.0187	0.0384
Site 3	Native	0.0120	0.00926	0.0153
	Mixed logged	0.00785	0.00624	0.00968
	Mixed unlogged	0.00781	0.00634	0.00959

Table S2 –Basal area mean of native non-pioneer species in the last inventory, with confidence limits obtained by a nonparametric bootstrap.

minimum – maximum confidence limits by nonparametric bootstrap, 95% confidence						
interval and 1000 bootstrap resamples).						
Site	Treatment	Before logging (50 months)	After logging (83 months)			
Site 1	Native	9.25 (7.0 - 11.8)	7 (4.8 - 9.8)			

2.3 (1.6 - 3.1)

7.3 (4.6 - 10.6)

5.7 (4.1 - 7.4) 6.3 (4.5 - 8.2)

Mixed logged

Mixed logged

Mixed unlogged

Native

Site 3

Table S3. Abundance of regenerating native wood species per plot (mean and
minimum - maximum confidence limits by nonparametric bootstrap, 95% confidence
interval and 1000 bootstrap resamples).

11 (5.3 - 17.7)

8.2 (6.1 - 10.4)

3.9 (3.0 - 4.9)

4.7 (3.9 - 5.6)

Table S4: Economic analysis of the potential of harvesting eucalypt timber (4-5 yr rotations) in mixed plantings with native trees to offset per hectare restoration implementation and maintenance costs in the Atlantic Forest of Brazil.

Site	Year	Activity	Costs	Revenue	Present Value	Net Present Value	restoration costs offset
all	0	Site preparation	\$ -775	\$ -	\$ -775		
all	0	Planting	\$-1,034	\$ -	\$-1,034		
all	0	Maintenance	\$ -232	\$ -	\$ -232		
all	1	Maintenance	\$-1,023	\$ -	\$ -922		
all	2	Maintenance	\$ -310	\$ -	\$ -251		
all	3	Maintenance	\$ -122	\$ -	\$-89		
all	4	Maintenance	\$ -50	\$ -	\$ -33		
all	5	Maintenance	\$ -40	\$ -	\$ -24		
all	5				\$ -	\$-3,360	0%

A. Traditiona	l restoration	nlantings.	without	eucalynts
A. ITauluona	ii i cotoi ation	planungs,	without	cucarypts

B. Mixed plantings of eucalypts and native trees

Aracruz	Year	Activity	Costs	Revenue	Present Value	Net Present Value	restoration costs offset
Aracruz	0	Site preparation	\$ -775	\$ -	\$ -775		
Aracruz	0	Planting	\$ -928	\$ -	\$ -928		
Aracruz	0	Maintenance	\$ -232	\$ -	\$ -232		
Aracruz	1	Maintenance	\$-1,023	\$ -	\$ -922		
Aracruz	2	Maintenance	\$ -310	\$ -	\$ -251		
Aracruz	5	Logging and transport	\$ -638	\$ 2,852	\$ 1,314	\$-1,795	46.6%
Mucuri	0	Site preparation	\$ -775	\$ -	\$ -775		
Mucuri	0	Plantation	\$ -928	\$ -	\$ -928		
Mucuri	0	Maintenance	\$ -232	\$ -	\$ -232		
Mucuri	1	Maintenance	\$-1,023	\$ -	\$ -922		
Mucuri	2	Maintenance	\$ -310	\$ -	\$ -251		
Mucuri	5	Logging and transport	\$ -596	\$ 2,662	\$ 1,227	\$-1,882	44.0%
Igrapiúna	0	Site preparation	\$ -775	\$ -	\$ -775		
Igrapiúna	0	Plantation	\$ -928	\$ -	\$ -928		
Igrapiúna	0	Maintenance	\$ -232	\$ -	\$ -232		
Igrapiúna	1	Maintenance	\$-1.023	\$ -	\$ -922		
Igrapiúna	2	Maintenance	\$ -310	\$ -	\$ -251		
Igrapiúna	5	Logging and transport	\$-1,106	\$ 4,945	\$ 2,278	\$ -830	75.3%