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The purpose of this thesis is to examine and advance North American weather 

predictability from weather to subseasonal time-scales. Specifically, it focuses on 1) developing 

machine learning/deep learning methods and models to improve predictability through 

numerical weather prediction (NWP) post-processing on weather time-scales (0-7 days) and 2) 



 xx 

examining the physical mechanisms which govern the evolution of the predictable components 

and noise components of teleconnection modes on subseasonal time-scales (7 days - 1 month). 

NWP deficiencies (e.g., sub-grid parameterization approximations), nonlinear error 

growth associated with the chaotic nature of the atmosphere, and initial condition uncertainty 

lead initial small forecast errors to eventually result in weather predictions which are as skillful 

as random forecasts. A portion of these forecast errors are inherent to the NWP models alone, 

systematic biases. The first two chapters develop cutting-edge vision-based deep-learning 

algorithms to advance the current state-of-the-art NWP post-processing and correct these 

systematic biases. Using dynamic forecasts of North Pacific integrated vapor transport (IVT) 

as a test case, we develop post-processing systems which are spatially aware, readily encode 

non-linear predictor interaction, easily ingest ancillary weather variables, and have state of the 

art training methods that systematically prevent model overfitting. Further, we outline a 

framework to quantify uncertainty in single-point (deterministic) forecasts using neural 

networks. The uncertainty is shown to be probabilistically rigorous, leading to calibrated 

probabilistic forecasts which outperform or compete with calibrated dynamic NWP ensemble 

systems for IVT under atmospheric river conditions. 

The second half of this thesis shifts focus to subseasonal time scales and examines 

predictability in the Pacific North American (PNA) sector in boreal winter. Particularly, it 

investigates the physical mechanisms involved in the intraseasonal modulation of atmospheric 

Signal-to-Noise (SN), and how it is affected by slowly varying climate modes (ENSO and 

MJO). These mechanisms are further explored using a fully-coupled hindcast of the 20th century, 

showing that the increased SN leads to high model forecast skill at subseasonal timescales in 
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particular forecast windows of opportunity. Additionally, we reveal the MJO as the largest 

growing mode of tropical forecast uncertainty which directly influences PNA forecast certainty. 
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Chapter 1 
 

Introduction  
 
1.1 Motivation and History 
 
 There is a reason people curse the weatherman and the Old Farmer’s Almanac. When 

lives and livelihoods depend upon accurate prediction of atmospheric conditions, a false 

weather report rankles, or worse. Yet,  out of necessity and hope, humans have persevered in 

the quest to accurately unravel the atmosphere’s mysteries through short- and long-term 

weather prediction. The history of weather prediction is, in truth, a dramatic story of human 

observation, dire necessity, emerging technologies, and exponentially increasing complexity, 

beginning with perhaps a single data point (“red sky at night, sailor’s delight”), later thousands 

of data points (data sets of observed weather conditions shared through telegraph technology), 

eventuating in modern day numerical weather prediction and climate modeling. Each 

developmental leap in weather prediction, from the earliest folklore to modern data 

assimilation, is a stepping stone on the complex and ever-widening path to improved earth 

system modeling. This dissertation represents a small contribution on this path. 

Early efforts to observe and predict local and regional weather relied on human 

observation of natural phenomena, including the appearance of the sky, moon, and behavior of 

animals. Long before the Almanac and other predicting efforts became widespread, folklore 

often informed farmers’, sailors’, and travelers’ decisions. For example, cirrostratus clouds 

causing the appearance of a halo around the moon was said to predict a coming storm: “If the 

moon shows like a silver shield, Be not afraid to reap your field; But if she rises haloed round, 

Soon we’ll tread on deluged ground.”  Other examples include: “Birds flying low, expect rain 
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and a blow” and “Catchy drawer and sticky door, Coming rain will pour and pour.” or “When 

windows won’t open, and the salt clogs the shaker, the weather will favour the umbrella 

maker!”    

In 1885, Cleveland Abbe, the architect of the U.S. Weather Bureau wrote in the journal 

Science, “Meteorology has received enthusiastic support by our own and all other nations. We 

are now doing about all that can be done by the mere utilization of the telegraph and weather 

map and the cautious application of general average rules, but we are still powerless in the 

presence of any unusual movement of the atmosphere” (Abbe, 1895). Abbe was commenting 

on the state of weather forecasting which, at the time, was merely an interconnected series of 

telegraph machines reporting the local weather and a series of historical “look-up tables” 

(synoptic charts) developed from those observations. Forecasters would find past weather states 

which were analogous to the current observations and use them to “predict” the future state of 

the atmosphere based on how those analogous events developed. Abbe was disappointed in this 

simple system of observing, recording, and averaging. His statement in Science was an informal 

call for the development of the theoretical equations of atmospheric motion. This call was 

answered by Villhelm Bjerknes with his development of circulation theory (Bjerknes et al., 

1898) and the papers that followed. These papers set out the seven equations of motion which 

still form the basis of our understanding of atmospheric dynamics (Bjerknes, 1900, 1904). As 

an aside, Lorenz (1969a) estimated that nearly 140 years’ worth of upper-level observational 

data would be required to understand the growth of small errors through the use of analog 

matching. Van den Dool (1994), again examining analog matching, found that nearly 1030 years 

of observations would be needed in order to find analogs that could match within current 

observation error of 500-hPa heights over the whole of the Northern Hemisphere. Without the 
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development of the physics of atmospheric motion, weather prediction would have surely 

ground to a halt. 

Bjerknes’ equations were meant to eliminate the need for continued simple observation, 

as they developed a framework for fundamental accurate weather prediction based on the 

physics of the atmosphere. Despite having a fundamental understanding of atmospheric motion, 

in testing these theories, it became apparent that to support these theories, more atmospheric 

observations were required rather than fewer. Bjerknes set out collecting observations and 

developing analytical methods to improve prediction. Concurrently, Richard Lewis Fry was 

developing methods to numerically integrate Bjerknes’s tendency equations and thus forecast 

the weather. In May of 1910, Bjerknes led a detailed upper atmosphere intensive observational 

campaign utilizing over 150 weather balloons (both manned and unmanned) and 35 kites 

(Lynch, 2006). The observations were organized into a series of synoptic charts, with 10 vertical 

levels at 17 locations across Europe [Aside: The observational campaign intentionally 

coincided with the passing of Halley’s comet, which at the time, was theorized to affect the 

weather] (Bjerknes, 1910). Richardson used these observations to publish “Weather Prediction 

by Arithmetic Finite Differences” which eventually became “Weather Prediction by Numerical 

Processes” (L. F. Richardson, 2007). Computers did not exist at that time; thus, the complex 

calculations of forecast integration were done via pen and paper. It took Richardson ~2 years 

to complete one six-hour forecast. The predicted forecast failed to resemble the observed state 

of the atmosphere, but this did not deter the meteorologists of the day. 

The advent of the computers increased the speed at which the calculations were 

performed. Aided by the fundamental work of Jules Charney, John von Neumann, Norman 

Phillips, Fred Shuman, Joseph Smagorinsky, Syukoro Manabe (and many others), the age of 
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computer driven Numerical weather prediction (NWP) and climate modeling was born. Subgrid 

physics and model integration schemes grew in complexity and forecast accuracy increased. 

The modern age of atmospheric science and weather predictability is now dependent on the 

computer.    

Throughout NWP development, the importance of accurate observations cannot be 

overstated. It became increasingly obvious that the success of weather predictions hinged upon 

accurate and dense observation networks. The two fields (observational based analysis and 

numerical prediction) grew in parallel, feeding off each other. During this growth, increasingly 

complex and successful methods to combine the fields more effectively were developed. 

In the recent era, observations have been used to further improve predictability through 

statistical correction of NWP model forecast error. Model deficiencies are now discovered and 

corrected through careful comparison of forecast to observation. These techniques were first 

pioneered by Harry Glahn, and his model output statistics schemes (MOS, Glahn & Lowry, 

1972), but have dramatically grown in complexity and efficacy in recent times. At its core, 

model post-processing aims to improve the quality and utility of forecasts. Born out of the desire 

to prove forecast improvements, entire fields of study have been dedicated to deterministic and 

probabilistic model verification (see Richardson (2000) and Wilks (2011) for a review). 

The first two chapters of this dissertation develop a series of new methods that fit within 

the effort to correct NWP bias with long observational records on weather time-scales. These 

methods are developed from modern computer-vision based machine learning techniques and 

represent the state-of-the-art in linking NWP forecast error and modern observations to improve 

predictability. Chapter 2 pioneers the use of Convolutional Neural Networks (CNN) in NWP 

post-processing. These algorithms can readily and flexibly encode spatial information, enabling 
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the use of large, gridded input datasets, which post-processing methods typically are unable to 

do. Chapter 3 uses CNNs to develop and quantify forecast uncertainty. We further show that 

the probabilistic forecasts are sharp and reliable. 

During the boom of the NWP computational age, Lorenz, (1969b) described the inherent 

nonlinearities in the tendency equations that led to an upscale transfer of energy (and therefore 

error) from smaller to larger scales. His work theorized a fundamental limit on skillful NWP on 

the order of 12 days. However, fundamental research showed the existence of distinct 

dynamical structures associated with low-frequency atmospheric variability. This research 

suggested that this variability is attributable to the interaction of planetary scale-waves and is 

fed by synoptic scale weather events. Additionally, this low-frequency variability is embedded 

in and is inherently more predictable than synoptic-scale weather events. While much of this 

variability is a result of the chaotic climate system, a portion of these low frequency modes are 

associated with anomalous boundary forcing conditions in the equatorial Pacific (i.e. anomalous 

sea surface temperatures i.e. El Niño/Southern Oscillation (ENSO)) or via planetary scale 

tropical waves (i.e. the Madden-Julian Oscillation, (MJO, Madden & Julian, 1971)).  Bjerknes 

(1969); Gill (1980); Horel & Wallace (1981); Hoskins & Karoly (1981); Simmons et al. (1983)  

demonstrated both observationally and mechanistically that boundary conditions force 

preferred modes of atmospheric extratropical variability. These anomalous boundary forcings 

drive upper atmospheric divergence and act as a source for barotropic and baroclinic anomalies, 

driving a Rossby wave response which affects weather globally. The atmospheric science field 

has termed this remote forcing phenomenon, “teleconnections”. Further, it has shown that, if 

the boundary conditions can be accurately predicted, the forced midlatitude teleconnection 

variability can be predicted in tandem. 
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The final two chapters of this dissertation focus on how the coupling of observations 

with long-running NWP and climate models can inform and extend predictability by developing 

“windows of forecast opportunity” for the dominant teleconnection affecting North American 

weather, the Pacific North American (PNA) pattern (Wallace & Gutzler, 1981b). These 

chapters discuss the physical mechanisms which actively force the PNA and examine the 

intraseasonal development of predictability across a boreal winter season associated with these 

forcing mechanisms. 

1.2 Dissertation Overview  

1.2.1 Machine Learning & Statistical Methods for Numerical Weather 
Prediction Post-Processing   
 

Forecast post-processing acts to correct systematic errors in an NWP system by creating 

a linking function that relates a response variable of interest to a set of predictor variables. Each 

post processing method develops an individual linking function, but the goal of every system 

is to nudge a given forecast towards a set of ‘ground-truth’ observations. Deterministic methods 

include multiple linear regression approaches (i.e. model output statistics, e.g., Glahn and 

Lowry, 1972; Carter, Dallavalle, and Glahn, 1989; Wilks and Hamill, 2007), running mean 

techniques (e.g., Stensrud and Skindlov, 2002; Stensrud and Yussouf, 2003), and algorithms 

based on Kalman Filtering (e.g. Homleid, 1995; Roeger et al., 2003). Two prolific approaches 

for probabilistic forecasts, Bayesian model averaging (Raftery et al., 2005) and non-

homogeneous regression (EMOS, Gneiting et al., 2005), rely on parametric forecast 

distributions. A predictive distribution is specified, and the linking function estimates its 

parameters, for example the mean and the standard deviation in the case of a Gaussian 

distribution. In the EMOS framework, the distribution parameters are connected to summary 
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statistics of the ensemble predictions through suitable link functions which are estimated by 

minimizing a probabilistic loss function over a training dataset.  

NWP post-processing, essentially, a supervised machine learning (ML) task. In 

supervised learning, ML algorithms are optimized by examining input/output pairs of defined 

model training data. The goal of model training is to create an algorithm that when fed an input, 

predicts an accurate output. Here, the input data is the NWP predicted field (i.e., forecasted 

temperature), and the output is the observed field (observed temperature). The algorithms task 

is to learn the forecast model error conditioned on the predictor state and correct for this error. 

A recent explosion of successes in a subclass of supervised ML, aptly named deep learning 

(DL), motivated the work in the next two chapters. A more fundamental understanding of DL 

is provided in chapters 2 and 3, but the topic is briefly introduced here. 

In its most naive description, the term “deep learning” is simply a regression task (think,  

𝑦! 	= 	 𝑏! 	+ 	&
𝑚"
. . .
𝑚#

) ∙ &
𝑥"
. . .
𝑥#
)	) that is forced through multiple, sequential, matrix operations 

(“nodal layers”) rather than a single matrix operation (i.e., 𝑦! is used as predictor variables in 

𝑦$). The term “deep” refers only to the algorithmic architecture, in that, there are multiple layers 

of matrix operations. Each layer consists of a set of nodes which is constituted by a weighted 

sum of the nodes from previous layers (analogous to, [𝒎]) plus a bias term (analogous to, b). 

The first layer is an input of the defined predictor variables, and the last layer is the desired 

predictand. The layers in between the first and the last are termed “hidden layers”. The output 

of each hidden layer is activated by prescribed non-linear functions. The non-nonlinear 

activations allow the DL model to approximate non-linear relationships between the inputs and 
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the desired output. In the context of NWP post-processing, the input layers are the dynamic 

model forecast variables and the output layers are the corrected forecasts.  

 The model “learns” to correct a forecast by observing a myriad of forecast/observation 

pairs, determining some model gradient of a defined ‘loss’ between the pairs (examples being 

mean squared error for regression tasks or cross-entropy for categorical tasks) and stochastically 

walking down this gradient field to some local loss minimum. DL methods typically have 

thousands of parameters and rely on stable model predictor/observation pairs and long running 

datasets to be successful. In the following two chapters of this dissertation, we examine 11 years 

of one deterministic forecast and a 34 year hindcast of a stable NWP model. These data sets are 

crucial for developing the statistics necessary to accurately characterize and correct model error. 

This work sits on the forefront of DL for NWP post-processing in a few regards. To my 

knowledge, the second chapter is the first example of applying convolutional neural networks 

(CNN) to spatial model post-processing. CNNs are similar the deep learning networks 

described above, but account for spatial data rather than single point data. Most post-processing 

methods rely solely on point-based information to correct forecasts. This new method can 

develop complex relationships between spatial forecast points (see chapter 2 for more detail). 

In the third chapter we develop a framework to quantify uncertainty in single-point 

(deterministic) forecasts using CNNs and distributional regression. The uncertainty is shown to 

be probabilistically rigorous, leading to calibrated probabilistic forecasts which outperform or 

compete with calibrated dynamic NWP ensemble systems. 

 
1.2.2 Subseasonal Predictability and Forecast Windows of 
Opportunity   
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Subseasonal–to–Seasonal (S2S) predictions exist as a hybrid weather-climate scale 

interaction encompassing lead times of 2 weeks to 2 years and have been recognized by the 

academic community as a forecast period requiring additional research (Vitart et al., 2017). S2S 

forecasts with lead times between 2-weeks and 1-month sit beyond the limit of Lorenz’s 

theoretical forecast window for NWP. Therefore, S2S forecasts typically exist in a veritable 

‘no-man’s land’ where atmospheric internal variability dominates the predictable component 

of the atmosphere. However, there are small forecast S2S periods in which slowly varying 

climate modes shift the probability density functions of a desired event, influencing overall 

predictability. Chapters 4 and 5 focus on the boundary forcing derived, physical mechanisms 

which drive subseasonal forecast skill over the North American sector by examining the forced 

and internal variability of the PNA pattern and its surface variable manifestations (i.e. 

temperature and precipitation). 

The PNA has been long studied as the dominant midlatitude response to ENSO and 

MJO forcing (e.g., Horel & Wallace, 1981; Mori & Watanabe, 2008). It is one of the most 

prominent modes of winter time low-frequency Northern Hemisphere climate variability and 

has been identified as the driver of anomalous temperature and precipitation (e.g., Deser et al., 

2018; Leathers et al., 1991) patterns across the whole of North America. It has been argued that 

the skill of the seasonal forecasting NWP system in the midlatitudes is dominantly attributable 

to a model’s ability at predicting the PNA pattern (O’Reilly et al., 2017; Vitart, 2004). However, 

much less focus has been paid to the intraseasonal development of the PNA pattern and its 

downstream effects.  

Studies which focus on a model’s representation of the midlatitude jet have shown that 

the background atmospheric state is crucial for determining the pattern location expression and 
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strength of the PNA (e.g., Dawson et al. 2011; Henderson et al. 2017) during boundary forcing 

events. Additionally, the predictability of the PNA can be significantly modulated by the 

internal dynamics of the midlatitude atmosphere inherent to the interaction of the large-scale, 

mean state jet and the synoptic-scale atmospheric processes (e.g., Palmer 1988). The 

background state of the jet evolves significantly across a boreal winter. Despite this, most 

studies examine the PNA response to boundary forcing in a seasonal mean framework. The 

impact of the annual cycle on the global wind-field and thus the PNA’s Rossby wave guide 

leads to significant dynamic monthly evolution of the midlatitude response to this vorticity 

forcing (see Chapter 4). Therefore, studies that focus on a seasonal mean rather than accounting 

for the seasonal development of the background state will yield potentially misleading results 

by mixing the derived model skill across various degrees of forcing response (Newman & 

Sardeshmukh, 1998). However, likely due to the relatively short length of the observational 

record, much less focus has been paid to the intraseasonal development of PNA forecast skill 

and the tropical drivers of the PNA teleconnections when compared with seasonal forecasting. 

Chapters 4 and 5 expand the scientific field’s current understanding on the physical mechanisms 

that lead to the evolution of the forced signal and the internal variability of the PNA in boreal 

winter. 

Chapter 4 addresses the problem of a relatively short observation record by developing 

robust statistics from an atmospheric general circulation model, which are trusted to physically 

represent the examined processes. The utility of using long running ensembles is explored to 

inform statistics on forecast windows of opportunity that arise from within the seasonal 

development of ENSO. This chapter argues that the ENSO climate mode does represent a 

seasonal shift in teleconnection statistics, but it is not an equal and uniform shift across the 
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boreal winter season. Within the season there are times in which the shift is more present and 

more dominant, and therefore more predictable (see chapter 4 for details). Chapter 4 uses a 

perfect prognostic framework to assess predictability and Chapter 5 examines how applicable 

that predictable skill is to actual weather forecasts. Again, we examine the physical mechanisms 

governing this shift in teleconnection statistics. Chapter 5 tests the hypotheses laid out in 

Chapter 4 in a coupled 110-year seasonal hindcast issued by the European Center for Medium-

Range Weather Forecasts, and further explores the intraseasonal dynamics of the MJO as a 

second source PNA forcing and PNA forecast uncertainty.  

Lastly, there has been a surge of recent interest from stakeholders and weather agencies 

to leverage machine learning to aid in subseasonal forecasting efforts (Webb et al., 2017). 

Recent work has shown that ML/DL models are as skillful as NWP at S2S lead times for 

predicting North American weather (e.g., Gibson et al., 2021; Hwang et al., 2019). However, 

ML/DL, especially in the physical sciences, is reliant on domain knowledge to be successful 

and to discover more model skill. Chapter 4 and 5 expands this domain knowledge and lays out 

fundamental aspects of the drivers of statistical model skill and can be used to systematically 

separate and determine ML training regimes. It is the authors hope that the physics of these 

systems will continue to feed into the atmospheric ML community and the fields will grow in 

tandem. 

1.3 Quick Dissertation Guide  

 The work presented in this dissertation uses state-of-the-art numerical weather 

prediction models, climate models, and machine-learning/deep-learning methods combined 

with modern observational data sets to investigate sources of forecast certainty and of error 
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growth across weather and subseasonal time scales. In Chapter 2 we develop modern deep 

learning algorithms to correct systematic biases in deterministic forecasts of integrated vapor 

transport. This work serves as motivation and an initial groundwork for Chapter 3, which uses 

convolutional neural networks to not only correct forecast error, but also to forecast uncertainty. 

This new method is tested against the current state-of-the-art forecast ensemble systems and 

shown to compete with or outperform these systems in every probabilistic forecast measure. 

This not only represents a significant skill improvement, but also huge computational resource 

savings.  

Chapter 4 examines the physical mechanisms which govern the forced and chaotically 

manifested PNA from an intraseasonal perspective during El Niño/Southern Oscillation 

(ENSO) boreal winters. Chapter 4 develops robust statistics from an atmospheric general 

circulation model, which are trusted to physically represent the desired processes, but often 

come with their own set of errors and biases. It explores the utility of using long running 

ensembles to inform statistics on forecast windows of opportunity that arise from within the 

seasonal development of ENSO. It argues that the ENSO climate mode does represent a 

seasonal shift in teleconnection statistics, but it is not an equal and uniform shift across the 

whole season. Within the season there are times at which the shift is more present and more 

dominant, and therefore more predictable (see Chapter 4 for details). Chapter 5 tests the 

hypotheses laid out in Chapter 4 in a coupled 110-year seasonal hindcast issued by the European 

Center for Medium-Range Weather Forecasts. Chapter 4 used a perfect prognostic framework 

to assess predictability and Chapter 5 examines how applicable that predictable skill is to actual 

weather forecasts, while examining the tropically derived sources of predictability.
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Chapter 2 
 

Improving Atmospheric River Forecasts with 
Machine Learning  
 
Abstract  
 

This study tests the utility of convolutional neural networks (CNN) as a postprocessing 

framework for improving the National Center for Environmental Prediction’s Global Forecast 

System’s (GFS) integrated vapor transport (IVT) forecast field in the Eastern Pacific and 

Western United States. IVT is the characteristic field of atmospheric rivers, which provide over 

65% of yearly precipitation at some western U.S. locations. The method reduces full field root 

mean squared error (RMSE) at forecast leads from 3 hours to 7 days (9-17% reduction), while 

increasing correlation between observations and predictions (0.5-12% increase). This 

represents a ~1-2-day lead time improvement in RMSE. Decomposing RMSE shows that 

random error and conditional biases are predominantly reduced. Systematic error is reduced up 

to 5-days forecast lead, but accounts for a smaller portion of RMSE. This work demonstrates 

CNNs potential to improve forecast skill out to 7 days for precipitation events affecting the 

western U.S. 

2.1 Overview   
 

Numerical weather prediction (NWP) models provide the atmospheric variables 

necessary to determine projected atmospheric states, based on a numerical integration of a 

discretized version of the Navier-Stokes equations (L. F. Richardson, 1922). However, due to 

uncertainty in initial conditions, numerical approximation, and model deficiencies, error 

increases non-linearly and NWP forecast skill decreases with model time integration (Lorenz, 
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1963). Statistical forecast postprocessing techniques, which utilize historical forecasts and 

observations to correct for error in current predictions, have been found to significantly improve 

forecast skill across multiple atmospheric variables. Algorithms developed to determine and 

correct for NWP error include: model output statistics approaches (Carter et al., 1989; Glahn & 

Lowry, 1972; D. S. Wilks & Hamill, 2007), running mean techniques (e.g., Hacker & Rife, 

2008; Stensrud & Skindlov, 2002; Stensrud & Yussouf, 2003), algorithms based on Kalman 

Filtering (e.g., Delle Monache et al., 2006; Homleid, 1995; McCollor & Stull, 2008; Roeger et 

al., 2003), and analog-based methods which draw from past events to match designed features 

of the current forecast to correct it (Delle Monache et al., 2011). 

The North American West Coast (NAWC) presents a challenge in water forecasting. 

Wintertime precipitation provides almost all the annual input to the water budget, generally 

within a few large horizontal vapor transport events (Dettinger et al., 2011) termed atmospheric 

rivers (ARs).  ARs are long (>2000 km) and narrow (<1000 km) corridors of anomalous vapor 

transport, typically associated with a low level jet, ahead of the cold section of an extratropical 

cyclone (e.g., Dacre et al., 2015; Sodemann & Stohl, 2013; Warner et al., 2012), which deliver 

the majority of poleward vapor transport (>90 %) in less than 10 % of the zonal circumference 

of the extratropics  (Ralph et al., 2004; Zhu & Newell, 1998). Vertically integrated vapor 

transport (IVT) is the characteristic metric which defines the strength of an AR (Ralph et al., 

2019). IVT is a combined thermodynamic and momentum metric which integrates specific 

humidity and zonal and meridional components of the wind from 1000 to 300 hPa. 

ARs contribute 30-65% of annual precipitation on the U.S. West Coast, and ARs 

contribute 60-100% of the most extreme NAWC hydrometeorological events (Gershunov et al., 

2017; Lamjiri et al., 2017). Lavers et al. (2016) found that IVT evolution is dominated by 
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synoptic scale processes, and thus has a higher predictability than precipitation, which depends 

more on mesoscale and microphysical processes. Therefore, at long lead times, forecasting IVT, 

rather than precipitation, may be more valuable to water management and hazard mitigation. 

However, forecasting for AR events has proved difficult. A study by Wick et al. (2013) 

examined the National Centers of Environmental Prediction's Global Forecast System (GFS) 

West Coast forecast skill over the Northeast Pacific across three cold seasons and found that 

average AR landfall location errors were approximately 600 km at seven days lead time. 

We propose a novel NWP postprocessing technique, applied to the IVT field, that 

leverages a sub-class of machine learning computer vision techniques: convolutional neural 

networks (CNN). CNNs are able to encode features from an input field, at varying spatial scales 

and levels of abstraction (Bengio, 2009; Hinton, 2006), which maximize predictive skill to a 

specified output field. These networks are adept at processing large and complex datasets and 

determining meaningful relationships. CNNs have proven to be extremely successful at image 

recognition, semantic segmentation, image denoising, and image super resolution (Bojarski et 

al., 2017; Dong et al., 2014; He et al., 2016; Long et al., 2015b; K. Zhang et al., 2017). CNNs 

are well suited to atmospheric fields, where systems across multiple scales govern atmospheric 

flow.  

More recently, flexible forecast prediction and postprocessing approaches based on 

artificial neural networks, which take advantage of increased computational power to learn from 

a large database of past forecasts, have been proposed (e.g., Tao et al., 2016). Neural networks 

reduced bias and improved ensemble 2-m temperature prediction over Germany (Rasp & Lerch, 

2018). Random forests have been used for storm-based probabilistic hail forecasting (Gagne et 

al., 2017). When combined with the physical understanding of atmospheric processes, machine 
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learning has been shown to aid in high impact weather decision making (McGovern et al., 

2017). Specifically, CNNs are beginning to be used for scientific discovery and forecasting and 

have emerged as diagnostic tools for determining important atmospheric variables across scales 

(e.g., Kurth et al., 2018; Toms et al., 2019). CNNs have been utilized to provide forecast 

uncertainty estimates upon initialization (Scher & Messori, 2018). Additionally, purely CNN-

based forecast methods have arisen for prediction and nowcasting applications, relying on data 

alone to mimic atmospheric dynamics (Dueben & Bauer, 2018;  Scher, 2018; Scher & Messori, 

2019; Xingjian et al., 2015). This study aims to extend the utility of CNNs as a postprocessing 

method to improve predictions up to 7-days ahead.   

At every forecast lead time, we create a new CNN which inputs a GFS IVT magnitude 

forecast field and outputs a corrected IVT forecast field. The present study evaluates whether 

historical forecast error can be used in conjunction with CNNs as a postprocessing tool to 

improve short- and medium-range IVT forecasts.  

2.2 Data and Methodology  
 
2.2.1 Forecasts  

GFS predictions (Moorthi et al., 2001) at a 0.5-degree horizontal spatial resolution on 

64 vertical levels for daily 0000 and 1200 UTC model initializations are utilized to calculate 

forecasted IVT. Here, the forecasts from 3-168 hours are examined (3-hour increments for the 

first 12-hour period, 12-hour increment for the following day, and 24-hour increments for the 

remaining 168-hour forecast lead times) for the cold season (defined here as October-April) 

from 2006 to 2018. This includes ~5,000 data fields for every forecast lead time, or ~55,000 

forecasted fields across all lead times. This study’s region of interest (ROI) spans coastal North 

America and the Eastern Pacific from 180° W to 110° W longitude, and 10° N to 60° N latitude. 
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2.2.2 Ground-truth  
 

IVT from the National Aeronautics and Space Administration’s Modern-Era 

Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis is used 

as ground truth to diagnose forecast error and CNN model training. MERRA-2 provides a 

regularly gridded record of the global atmosphere, including assimilated satellite, surface 

station, wind profiler, radio occultation and radiosonde observations. MERRA-2 data is 

resolved on a 0.625 x 0.5-degree grid and interpolated to 21-pressure levels between 1000 and 

300 hPa for IVT calculations (Gelaro, McCarty, Suárez, Todling, Molod, Takacs, Randles, 

Darmenov, Bosilovich, Reichle, Wargan, et al., 2017; Will McCarty et al., 2016). For 

consistency, GFS IVT is regridded and upscaled to MERRA-2 resolution using a first- and 

second-order conservative remapping scheme (Schulzweida, 2019). 

2.2.3 Methodology and Experimental Design  
 

We compare four separate forecasts to examine the relative skill of the CNN 

postprocessing; 1) GFS is used as the dynamical NWP model and provides a deterministic 

forecast of future IVT states from current meteorological observations; 2) a climatological 

forecast (CF) created from a 21-day running mean, centered on the forecast day of interest, 

from MERRA-2 IVT fields spanning 1980-2018; 3) a persistence forecast (PF) created by 

repeating the GFS analysis at 0-hour lead for every lead time; 4) a forecast derived from 

postprocessing the GFS IVT forecast with a CNN (hereafter referred to as ARcnn when 

referencing the architecture and ARcnn-IVT for the forecast). 

2.2.4 Convolutional Neural Networks and the Network Used in this 
Study  
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Neural networks are known to be able to approximate nonlinear functions (Nielsen, 

2015). CNNs are a class of neural network, in which multiple layers of optimized functions 

map input data fields (GFS forecasts in this study) to an output (ARcnn-IVT). CNNs use 

convolutional kernels to propagate images from one layer to the next. Each convolutional kernel 

is trained to highlight important image features. Following each convolutional layer, 

nonlinearities are introduced, which operate on every produced feature map. ARcnn was 

inspired by a class of CNNs termed denoising autoencoders (Vincent et al., 2008). 

Denoising autoencoders are trained, with coupled pairs of noisy and clean images, 

taking a noise corrupted image and removing that noise. Here, GFS IVT forecasts are treated 

as noisy images, the noise representing the prediction error, and ARcnn corrects the forecast 

towards a clean image, MERRA-2 ground truth.  ARcnn contains no compression or pooling 

information layers which reduce dimensionality. Therefore, a consistent dimension (determined 

by the latitude and longitude points of the ROI) is retained throughout the network and in the 

prediction.  

The optimization of the kernel filter weights occurs iteratively, in which each iteration 

finds the weights of the functions to minimizes the loss between the output (ARcnn-IVT) and 

a desired field (MERRA-2). ARcnn utilizes an Adam optimizer (Kingma et al., 2014) with a 

learning rate that decreased from 0.001 to 5e-6 upon validation plateaus and batch size 20. The 

error is determined between the network forecast and the ground truth data, and the gradient of 

the error field is calculated for each kernel weight of the network. The model weights update 

each iteration by stepping in the direction opposite of this gradient. ARcnn optimized utilizing 

mean squared error loss. Once trained, ARcnn produces an estimated IVT field that has learned 

error from previous forecasts and has the ability to correct a portion of these errors. A detailed 
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description of CNNs and the ARcnn model architecture is in the supporting material. For further 

information on CNNs the reader is referred to Nielsen, (2015).  

GFS forecasts were separated by date into training (October 2008 – April 2016), 

validation (October 2016 – April 2017), and testing (October 2017 – April 2018) datasets. 

Training data is shown iteratively to the neural network to optimize CNN model weights. 

Validation data is used to compute performance metrics during training. Testing data is unseen 

by the network and utilized only for evaluating the postprocessing skill. The final year of data 

(October 2017 -April 2018) is reserved for testing and is independent from any training data. 

Each lead time in the testing period consists of ~450 forecasts. Table 2.1S shows the number 

of samples and the frequency of ARs in the training, validation, and testing datasets. Each 

forecast lead is trained, validated and tested on ~5000 forecasts. A new CNN is created and 

trained for each forecast lead time. However, across these CNNs, there is valuable similarity in 

the IVT feature detection during convolution. To exploit this similarity during training, we 

utilized a sequential training scheme in which the model network weights from previous 

forecast lead times initialized network weights at subsequent forecast leads. This decreased the 

number of model training cycles and improved total error testing results (not shown). 

Table 2.2S summarizes the model architecture and training parameters. An exhaustive 

number of training cycles, using common CNN model parameters, was performed to determine 

optimal model settings. The final parameters were selected by choosing the configuration with 

the lowest validation error.  

2.2.5 ARcnn Example  
 
  ARcnn output valid for 29 November 2017 illustrates potential forecast improvements 

(Figure 2.1). The GFS forecast IVT field at 96-hour lead time (Figure 2.1b) is input into the 96-
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hour ARcnn. Once the network has been trained, a postprocessed forecast is generated within 

milliseconds. The IVT field passes through ARcnn (Figure 2.1A), and a corrected field is 

produced (Figure 2.1c). The resultant field is compared against ground truth (Figure 2.1a). GFS 

over-predicts the magnitude of IVT, has a notable location error, and misses the primary 

orientation of the storm. After the GFS IVT field is processed with ARcnn, the network 

correctly reduces the magnitude of peak IVT, particularly at high latitudes near the Alaskan 

Coast, moving the dominant IVT signal southward and eastward (Figure 2.1d). Additionally, 

ARcnn reorients the dominant AR spatial axis to a more accurate zonal direction (Figure 2.1e 

vs. 2.1f), leading to a more accurate forecast. Figure 2.1 is a representative sample of the method 

drawn from the 95th percentile of corrected 96-hour events in the testing data set (as measured 

by RMSE). 

2.3 Verification Metrics and GFS Error Patterns  

Forecast error (e) is defined as the difference between the forecasted IVT field (f) and 

the ground truth (r) IVT field (e = f - r) at a given time and location. We have applied four 

metrics to the forecast systems: root mean squared error (RMSE), bias (Bias), centered root-

mean-square error (CRMSE), and spatial Pearson Correlation (PC) coefficient. Bias and 

CRMSE arise from a decomposition of RMSE (Taylor, 2001). Bias represents the systematic 

error, defined as the mean error over the test data set (Bias = 𝑒̅). CRMSE is the remaining 

random error and conditional biases, which contains the error not present from mean shift 

(CRMSE = 1!
#
	∑ 34𝑓 − 𝑓7̅ −	(𝑟 −	 𝑟̅);$#

"%! <
&.(
). Finally, the Pearson correlation indicates the 

linear relationship between the forecasted and observed time series (𝑃𝐶 = 	 )(+,-)
/!/"

). 
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2.3.1 GFS error patterns  
 
 

The largest sources of GFS forecast error occur predominantly in the locations with high 

climatological IVT, indicating that AR position, magnitude, and timing constitute a large 

fraction of total error. Figure 2.2 shows the 96-hour error metrics for every GFS forecast in the 

dataset. The RMSE field is dominated by random error and conditional bias over systematic 

error (as indicated by high values of CRMSE, Figure 22.b, as compared with Bias, Figure 2.2c). 

The AR corridor, defined here as the 200 kg m-1 s-1 IVT contour, for the 2006-2018 MERRA-2 

climatology (Figure 2.2 contours), coincides with the greatest magnitude of CRMSE in the 

field. The model systematically under predicts IVT magnitude at high latitudes and over 

predicts IVT at low latitudes. The highest levels of PC occur on the southern flank of the AR 

corridor, in the climatological subtropical jet region (Figure 2.2d). This may be associated with 

the lower predictability of mesoscale frontal waves associated with ARs. Conversely, the 

latitudinal band of high predictability exists within the jet region and is an area of largely 

synoptically forced IVT processes. This latitudinal band of predictability is consistent with 

findings in Lavers et al. (2016).  

2.4 Results  
 

All statistics will be presented from a seasonal perspective derived from the testing data 

set (October ‘17 - April ‘18). The Guan and Waliser (2015) AR detection algorithm identified 

an AR present in 76% of the forecast periods. The AR distribution is not spatially uniform, 

(Figure 2.2 contour), with a skewness towards high latitude, with landfalls predominantly in 

Oregon, Washington, and southern British Columbia.  
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 ARcnn-IVT performance is evaluated at 3-hourly forecast intervals out to 12 hours, a 

12-hour forecast interval out to 24 hours, and in 24-hour increments from 24 hours forecast lead 

until the 168-hour lead (7-day). Results for each forecast system are resampled 2000 times for 

error metrics using a 30% split; the variance (colorshade) of the bootstrapped sample are small 

compared to the mean (Figure 2.3). At 3-hour lead time, GFS and ARcnn-IVT outperform 

persistence and climatology, with the postprocessed ARcnn-IVT further improving on Bias and 

CRMSE over GFS. At the fifth forecast day the correction of ARcnn-IVT bias begins to 

deteriorate and the bias is statistically even between GFS and ARcnn after this point (Figure 

2.3a). CRMSE (Figure 2.3b) continues to improve as compared to GFS for the entire testing 

period. Importantly, the magnitude of CRMSE dominates Bias and therefore the RMSE is 

improved (Figure 2.3c). At the seventh day forecast lead GFS has a larger RMSE than 

climatology.  

However, ARcnn remains the most skillful forecast (by total RMSE). The magnitude of 

RMSE error at the 7th day for ARcnn is equal to that of the GFS at the 5th day. This is due to 

the reduction of CRMSE by the postprocessing technique. Similarly, ARcnn has a higher 

correlation with the ground-truth at every lead time, with statistically significant differences 

starting at hour 12. The PC of the ARcnn of the 7th day is equal to that of the 6th day for the 

GFS forecast.  

Figure 2.5S shows the spatial distribution of RMSE, CRMSE, and Bias for GFS and 

ARcnn for the full testing dataset. Figure 2.4 shows the spatial ARcnn-IVT metrics of 

performance at the 96-hour forecast lead, with cool colors indicating that ARcnn-IVT is 

improving the GFS forecast, conditioned on forecasted IVT values with over 250 kg m-1 s-1, to 

ensure that the network is correcting for high vapor transport events. After ARcnn is applied, 
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each pixel is assessed for RMSE, Bias, CRMSE, and PC, resampling 1000 times utilizing 50% 

of the available data field in order to estimate error metrics. Importantly, RMSE (Figure 2.4a) 

at almost every grid point is decreased, indicating forecast improvement. Additionally, PC 

(Figure 2.4d) is improved at most locations with very few exceptions in the spatial domain, 

indicating a more skillful forecast.  

The Bias field (Figure 2.4c) shows the least improvement, where ARcnn-IVT 

systematically under predicts the magnitude of high-valued IVT.  Overlaid on the figure are the 

±40 contours of GFS Bias. It is clear that the dominant sources of systematic error are targeted 

by ARcnn (as indicated by cool colors contained inside the ±40 contours, and figure 2.5Sc and 

2.5Sf). However, the strongest failures in the Bias field comes over the areas of coastal landfall. 

The field is almost uniformly improved for CRMSE (Figure 2.4b).  

Due to a low contribution of systematic error compared to random error and conditional 

bias, the RMSE is still dominantly benefiting with ARcnn postprocessing. Overall, ARcnn 

generates an IVT field with significantly more skill than GFS. When compared to GFS, ARcnn 

increases correlation between ground truth and predictions at all lead times (0.5-12% increase), 

and the method improves RMSE at forecast leads ranging from 3 hours to 7 days (9-17 % 

reduction), equivalent to an increased forecast skill time horizon of 24 and 48 hour/day 

improvements, respectively. For context, NWP forecast systems, through model improvements 

and assimilation of more observational data, have historically achieved an RMSE error skill 

improvement of ~1 day every 10 years (Magnusson & Källén, 2013). 

Interpretable CNNs are an active area of research in the machine learning community 

(e.g., Kuo et al., 2019), and ongoing research involves using CNNs to elucidate physical 

processes associated with forecast error. We speculate ARcnn-IVT improvements to CRMSE 
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involve corrections to conditional bias. Upon exhaustive inspection of individual testing 

forecasts, it appears that ARcnn is recognizing common IVT structures and correcting the IVT 

fields in similar ways given that shape. Conditional bias, i.e., conditioned on storm shape and 

magnitude, is the most accurate terminology to describe this correction. IVT systems that 

appear similar to Figure 2.1b are similarly corrected, with a reduction in high latitude IVT and 

a zonal elongation of the IVT signal. Whereas with IVT fields that are zonally stunted, ARcnn 

reduces the total IVT and moves the IVT signal eastward, indicating GFS typically propagates 

this signal too slowly. CNNs are adept at modulating output based on input spatial field 

encodings. The strength of this method is the adaptive adjustment given a wide range of 

forecasted fields. This kind of correction results mostly in a CRMSE reduction rather than a 

Bias correction. 

Importantly, coastal landfalling IVT 96-hour forecast RMSE is significantly improved 

for IVT forecasts greater than 250 kg m-1 s-1. A detailed examination of coastal error (RMSE, 

CRMSE, Bias, and PC) can be found in Figures 2.2Sand 2.3S.  The RMSE error reduction is 

found to be significant (90th percentile) which is important for the societal impact of landfalling 

ARs.  Similar error reduction spatial patterns were observed for all forecast lead times (not 

shown). For low IVT forecasts (IVT < 250 kg m-1 s-1) (Figures 2.3S and 2.4S), the improvement 

in forecast skill (as measured by RMSE, CRMSE, Bias, and PC) is even greater, with a 

significant improvement to RMSE, CRMSE, and PC, and no significant change to Bias.  

 
2.5 Summary and Conclusion  
 

This paper explored the utility of convolutional neural networks (CNNs) to improve 

integrated vapor transport (IVT) 0-7 day forecast skill. We have shown that CNNs can be used 
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to improve forecast prediction of the GFS numerical weather prediction model for the North 

American West Coast and Eastern Pacific IVT 3-168 hour forecasts. This postprocessing is 

beneficial at every forecast lead time in reducing full field CRMSE and improves Bias out to 5 

forecast days, leading to a full field RMSE improvement. ARcnn yields significantly higher PC 

between forecasted and ground-truth values at all lead times over 12 hours. ARcnn provides a 

forecast that has greater skill than climatology, compared to GFS that degraded below 

climatological skill at 7 days lead. Ongoing work involves testing this method on an ensemble 

system to determine the benefit on accuracy and uncertainty quantification.  

CNN postprocessing was shown here to increase IVT forecast skill. Additionally, the 

success of a deep learning relies on the quantity of data. As forecasts are produced, CNN 

postprocessing techniques stand to improve as a more fully sampled distribution of AR activity 

is realized. CNNs continue to evolve, and model architectures are continuously under 

development. Opportunity exists for the weather prediction community to leverage computer 

vision advances. While a stand-alone machine learning weather prediction that competes with 

modern NWP has not been developed, combining numerical weather prediction with a data-

derived CNN deep learning correction is a logical step in forecast improvement.  
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Figure 2.1. Forecasts and analysis valid for IVT fields on 29 November 2017. (a) MERRA-2 
analysis field with the IVT = 600 kg m-1 s-1 contour (solid) and dominant storm axis (dotted) as 
determined by IVT > 350 kg m-1 s-1 raw image moment. (b) GFS 96-hour forecast with the 
MERRA-2 600 IVT contour and dominant storm axis. (c) ARcnn-IVT 96-hour forecast with 
the MERRA-2 600 IVT contour and dominant storm axis. (d) Difference between ARcnn-IVT 
and GFS. (e) Difference between GFS and MERRA-2 IVT field. (f) Difference between GFS 
and MERRA-2 IVT field. 

(a)

(b)

(c)

(d)

(e)

(f)
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Figure 2.2. Spatial distribution of 96-hour forecast GFS (a) RMSE (b) CRMSE (c) GFS 
forecast Bias. (d) Pearson correlation (in color) and (a, b, c, d) climatological AR field (in 
contour). Forecast dates range from the Oct 2006 - April 2018. 

(a) (b)

(c) (d)
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Figure 2.3. ROI average temporal evolution of (a) Bias, (b) CRMSE, (c) RMSE, and (d) PC 
of raw GFS, ARcnn-IVT, persistence (Pers), and climatology (Climo) forecasts. Resampled 
bootstrap variance intervals are shown for each forecast. 

(a) (b)

(c) (d)
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Figure 2.4. Spatial distribution of percent improvement of 96-hour IVT forecast after ARcnn 
postprocessing for (a) RMSE, and (b) CRMSE. Contours indicated average IVT field. Spatial 
distribution of the 96-hour forecast difference between GFS minus ARcnn for (c) Bias 
(Contours indicate GFS Bias fields of 40 units kg m-1 s-1, dashed lines are negative), and (d) 
Pearson correlation. Calculated for locations when IVT forecast is over 250 kg m-1 s-1. All dates 
from October 2017 - April 2018 testing dataset. In all plots (a, b, c, d), cool colors imply that 
the CNN postprocessing is improving the forecast.  

(a) (b)

(c) (d)
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2.7 Chapter 2 – Support Information  
 

This supporting information is included for further reference for the reader. The text is 

dominantly a description of the specific architecture and implementation of the convolutional 

neural network designed for this study. Water managers and constituents are largely concerned 

with AR statistics at coastal landfalling points. We therefore show the same statistics as 

referenced in Figure 2.3 of the main text, highlighting only the coastal landfalling points. Lastly, 

we show the error fields (RMSE, CRMSE, and Bias) for the raw GFS and the Post-Processed 

forecast (ARcnn) on the testing dataset.  

All forecast data for training, validating and testing this network is publicly available 

from the National Center for Environmental Prediction’s Global Forecast System’s 0.5° model. 

 
2.7.1 ARcnn Architecture and Methodology  
 
 

Figure 2.1S shows the CNN architecture of ARcnn. We build ARcnn using the Keras 

library (Chollet, 2015) with the Tensorflow back end (Martín Abadi et al., 2016). ARcnn 

contains 9 separate layers with the functions performed in those layers separated by arrows. 

CNN’s are a class of artificial deep learning networks, in which multiple layers of optimized 

functions, map input data fields (GFS) to an output (ARcnn). Each layer of the CNN contains 

a convolutional layer (conv2d in Figure 2.1) which contains a three-dimensional array of feature 

mapping filters. These filters are small patches (3 x 3 matrices for all of ARcnn convolutions) 

of weights that are slid across the input two-dimensional IVT image and create output feature 

maps by summing the product of the weights and the input field. The number of filters per layer 
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is specified by the user and shown as the number following the “conv2d” in each model layer 

in  

Figure 2.2S. The produced feature maps are input to ‘activation layers’ (both RELU and 

sigmoid layers here) with non-linear functions, which enable non-linear relationships to be 

learned from the input field to the output. In ARcnn, the activation layer is a rectified linear unit 

function, this is a common choice of CNNs as RELU gradients are fast to calculate during 

training (1 if positive, 0 if negative) (Lecun et al. 2015), and hence train quickly. The final 

activation layer is a sigmoid function, which is a smooth and bounded function with real valued 

outputs, and is thus ideal for this application.  

CNN’s typically include compression layers, which reduce the dimensionality of each 

layer input thus reducing the required amount of filter training parameters. The compression is 

achieved by increasing the stride of the sliding windows, or by instituting pooling layers, which 

act on small matrix patches and reduce each patch to a scalar via a specified function (averaging, 

maximum, etc). However, in ARcnn pooling or compression layers decreased validation 

accuracy during training, and were not included, resulting in a consistent feature map height 

and width determined by the latitude / longitude of the ROI, and a layer depth specified by the 

number of requested convolutional filters.  

Due to the spatial averaging of convolution, deeper convolutional layers act on a larger 

spatial extent in the input (termed ‘receptive field’). In order to further increase the receptive 

field of deeper layers, dilated convolutions (Yu & Koltun, 2015) are implemented at varying 

depths (details shown Figure 2.2S and dilation size shown in Table 2.2S). Increasing the 

receptive field is logical in meteorological applications as, not only local, but remote features 

have influence over IVT characteristics. Batch normalization (batch norm in Figure 2.1S), 
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which re-centers and normalizes individual layers, after each convolution was found to 

drastically decrease validation error and over-fitting (Ioffe & Szegedy, 2015). This network 

borrows from the Residual Network architecture that introduced skipped connections 

(represented by arrows from boxes (1) to (8); (2) to (7); (3) to (6); (4) to (5) into addition layers 

in Figure 2.2S), which force the network to learn residual corrections to layer inputs (He et al., 

2015). The skipped connections symmetrically connect shallow layers to the deeper layers and 

allows information to more easily propagate from the less abstracted convolutions (shallower) 

to deeper sections of the network. The skipped connections aid in better back propagating the 

gradient as gradients are passed through both the weight blocks and the skipped connection.  

Optimizing the kernel filter weights occurs iteratively on predetermined training data 

through gradient descent, in which each iteration finds the weights of the functions that 

minimizes the loss (here, mean squared error) between the output (ARcnn) and a desired field 

(MERRA2). Multiple gradient descent methods where tested, and an Adam optimizer (Kingma 

et al. 2014) with a learning rate that decreased from 0.001 to 5e-6 upon validation plateaus was 

selected. The training occurs in batches of 20 IVT forecasts, selected at random, the batches 

continue until the training data has been exhausted. The error loss is calculated between the 

network prediction and the ground truth data, and the gradient of the error field is determined 

for each kernel weight. The model weights update each iteration by taking a small step in the 

direction opposite of the gradient field.  

2.7.2  Land Falling AR Statistics  
 

Figure 2.2S shows the landfalling error metrics for 96-hour GFS and ARcnn, for points 

in which IVT is forecasted to be greater than 250 kg m-1 s-1. Here, only the whole number 

latitudinal points within the shaded region are included in the analysis.  There is significant 
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improvement to the landfalling RMSE and CRMSE (90th percentile), and Bias is significantly 

degraded. However, random error dominates this field and therefore total error is reduced. 

Correlation does not show a significant improvement, but there is a clear trend, and based on 

full field statistics ARcnn is significantly improving the forecast field PC. With the addition of 

more latitude/longitude the PC, becomes further improved. Every other forecast lead time show 

similar trends (not shown).  

Figure 2.3S shows the landfalling error metrics for 96-hour GFS and ARcnn, for points 

in which IVT is forecasted to be less than 250 kg m-1 s-1. Here, only the whole number latitudinal 

points within the shaded region are included in the analysis. There is significant improvement 

to the landfalling RMSE and CRMSE (90th percentile). Bias is statistically unchanged but 

shows a trend towards degradation. However, Bias accounts for a very small fraction of total 

error. Correlation for low IVT forecasts is significantly improved. Every other forecast lead 

times show similar trends (not shown). The entire region of interest is showed for the 96hr lead 

of low magnitude IVT (< 250 kg m-1s-1) in Figure 2.4S. Similar magnitudes of improvement 

can be seen in total field RMSE, and while Bias is negatively attenuated, it does not suffer from 

the same large Bias degradation as seen in Figure 2.4c. For low magnitude IVT (< 250 kg m-1s-

1) forecast correction ARcnn is extremely beneficial. 

Figure 2.5S shows the background error field in the testing dataset of GFS and ARcnn, 

respectively. There is a significant improvement across the RMSE and CRMSE fields. 

However, the Bias term shows weak improvement or detriment depending on the spatial area 

examined. Although Bias across the entire field accounts for a low fraction of error, locations 

of relatively high Bias (e.g., the U.S. landmass and the Aleutian Islands) largely benefit from 

ARcnn postprocessing. Other areas suffer from slight Bias insertion (e.g., the Oregon Coast). 
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Because the fraction of Bias is low compared to the CRMSE, the network corrects mainly the 

latter, specifically conditionally biases, which are reflected in errors impacting the position and 

magnitude of IVT in the AR region.
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Figure 2.1S. ARcnn model architecture. 
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Figure 2.2S. Coastal (as defined by the shaded swath in panel (c)) (a) RMSE, CRMSE, Bias, 
and (b) Pearson Correlation for landfalling AR error metrics. Only IVT forecasts < 250 kg m-1 

s-1 were considered. 

(a) (b) (c)

IVT > 250 Kg m-1 s-1
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Figure 2.3S. Coastal (as defined by the shaded swath in panel (c)) (a) RMSE, CRMSE, Bias, 
and (b) Pearson Correlation for landfalling AR error metrics. Only IVT forecasts < 250 kg m-1 

s-1 were considered. 

(a) (b) (c)

IVT < 250 Kg m-1 s-1
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Figure 2.4S. Spatial distribution of percent improvement of 96-hour IVT forecast after ARcnn 
post-processing for (a) RMSE and (b) CRMSE. Contours indicated average IVT field. Spatial 
distribution of the 96-hour forecast difference between GFS minus ARcnn for (c) Bias, (d) 
Pearson correlation. Calculated for locations when IVT forecast is under 250 kg m-1 s-1. All 
dates from October 2017 - April 2018 testing dataset. In all plots (a, b, c, d), cool colors imply 
that the CNN post processing is improving the forecast. 

(a) (b)

(c) (d)
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Figure 2.5S. Background Error Fields of GFS vs AARcnn respectively in the testing data set. 
(a, d) IVT RMSE. (b, e) IVT CRMSE & (c, f) IVT Bias. 

(a)

(b)

(c)

(d)

(e)

(f)
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Table 2.1S. Training, Validation and Testing Datasets.  
 Training Validation Testing 

Period  Oct ’08 – April 
‘16 

Oct ’16 – April 
‘17 

Oct ’17 – April ‘18 

Samples Total  ~ 44000 ~ 4950 ~ 4950 

Samples Per Forecast 
lead 

~ 4000 ~ 450 ~ 450 

AR Field Occurrence ~ 76% ~ 76% ~ 73% 
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Table 2.2S. ARcnn: Hyperparameters & Architecture.  

Description Value 
Number of Hidden Layers  9 

Kernels Per Hidden Layer  layers (1-9): 64,32,16,16,16,16,32,64,1 

Kernel Size layers (1-9): [3 x 3] 

Kernel Dilation layers (1-9): 1,1,2,4,8,16,1,1,1 

Learning Rate 0.001 – 5e-5  

Batch Size 20 

Convolution Padding  Same 

Stride [1,1] 
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Chapter 3 
 

Probabilistic Predictions from Deterministic 
Atmospheric River Forecasts with Deep Learning 
 

Abstract  

Deep Learning (DL) post-processing methods are examined to obtain reliable and accurate 

probabilistic forecasts from single-member numerical weather predictions of integrated vapor 

transport (IVT). Using a 34-year reforecast, based on the Center for Western Weather and Water 

Extremes West-WRF mesoscale model of North American West Coast IVT, the 

dynamically/statistically derived 0-120 hour probabilistic forecasts for IVT under atmospheric 

river (AR) conditions are tested. These predictions are compared to the Global Ensemble 

Forecast System (GEFS) dynamic model and the GEFS calibrated with a neural network. 

Additionally, the DL methods are tested against an established, but more rigid, statistical-

dynamical ensemble method (the Analog Ensemble). The findings show, using continuous 

ranked probability skill score and Brier skill score as verification metrics, that the DL methods 

compete with or outperform the calibrated GEFS system at lead times from 0-48 hours and 

again from 72-120 hours for AR vapor transport events. Additionally, the DL methods generate 

reliable and skillful probabilistic forecasts. The implications of varying the length of the training 

dataset are examined and the results show that the DL methods learn relatively quickly and ~10 

years of hindcast data are required to compete with the GEFS ensemble. 

3.1 Overview  
 



 44 

Deterministic numerical weather prediction (NWP) systems are momentous forecast 

tools but are fatedly flawed in that they represent a single plausible realization of a possible 

weather future. Due to initial condition uncertainty, NWP deficiencies (e.g., sub-grid 

parameterization approximations), and nonlinear error growth associated with the chaotic 

nature of the atmosphere, initially small forecast errors eventually result in weather predictions 

which are as skillful as random forecasts (Lorenz 1963). Dynamic ensembles prediction 

systems (EPS) are utilized to represent the evolution of multiple likely weather trajectories. 

Though multiple methods for creating dynamic ensembles exist (e.g., Epstein 1969; Hacker et 

al. 2011; Kirtman et al. 2014); most modern EPS systems create ensembles by running many 

realizations of the atmospheric state evolution, initializing each ensemble with slightly varied 

starting conditions or using varied model physics (e.g., Toth & Kalnay 1993). A range of 

possible weather scenarios results, providing probabilistic bounds for future weather. 

Ensemble systems have greatly advanced in the modern era, yet raw EPS forecasts still 

suffer from significant systematic model bias that must be corrected with statistical post-

processing methods (Hemri et al. 2014). Often the systematic bias is particularly projected into 

the spread of the ensemble members, and under/over dispersive forecasts are common. This 

leads to a low correlation between the raw ensemble uncertainty and the forecast error; reducing 

the value of the model spread for forecast uncertainty quantification. Recent advances in deep 

learning (DL) and machine learning (ML) techniques have provided a significant step forward 

in calibrating statistical ensembles (e.g., Rasp and Lerch 2018).  

The current study investigates ML’s algorithmic ability to provide uncertainty 

quantification from single-member NWP model realizations, providing a valuable probabilistic 

measure of uncertainty, at a significantly lower real-time computational cost.  This study 



 45 

leverages the methods developed in Rasp and Lerch (2018) (henceforth; RL2018) for ensemble 

calibration, but tailors them for the generation of probabilistic predictions from a historical set 

of single-member deterministic forecasts.  Additionally, this study adds further algorithmic 

spatial awareness through vision-based DL methods (convolutional neural networks; CNN).  

Recently, there has been a surge of interest in DL-based NWP post-processing systems (see, 

Haupt et al. 2021 & Vannitsem et al. 2021). Similar to RL2018, Ghazvinian et al. (2021), 

developed a NN-based scheme that minimizes the continuous ranked probability score (CRPS) 

from a prescribed parametric forecast distribution (censored, shifted gamma) for rainfall 

prediction. Additionally, more flexible, distribution-free methods, have also been developed 

which leverage quantile-based probabilities transformed to a full predictive distribution 

(Scheuerer et al. 2020) or create direct approximations of the quantile function via regression 

based on Bernstein polynomials (Bremnes 2020).  

Traditional ensemble model output statistics (EMOS) post-processing schemes fit 

parameters of prescribed distributions (Gneiting et al. 2005). Here we retain the parametric 

distribution prediction framework but leverage multiple NN architectures to statistically link 

the CRPS loss function to the NWP system and train the networks through stochastic gradient 

descent. NN’s offer some ready advantages over more established EMOS methods. For 

example, EMOS is rigid with respect to feature selection and requires explicit prescription of 

predictor-predictand relationships in their implementation. Alternatively, NN’s offer extreme 

flexibility in incorporating and ingesting ancillary weather variables as predictors. NN’s can 

quickly encode spatial information through convolution (e.g., Chapman et al. 2019), and 

temporal information with recurrent NN’s or attention-network systems (e.g., Li et al. 2020; 

Theocharides et al. 2020). NN’s allow the post-processing system to readily encode predictor-
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predictor variable interactions and capture nonlinear variable interaction (Nielsen, 2015). 

Additionally, Modern DL training schemes (i.e. dropout, regularization, early training stopping) 

have been implemented which systematically prevent algorithmic overfitting (Krogh & Hertz 

1992; Srivastava et al. 2014).  

Though many prominent probabilistic ensemble regression calibration methods exist 

(e.g., Gneiting et al. 2005; Raftery et al. 2005; Scheuerer & Hamill 2015) most leverage 

ensemble mean and spread characteristics rather than single-member deterministic models. Still 

some established post-processing methods operate solely on deterministic fields, or can be 

adapted to operate on deterministic hindcasts (e.g., Lerch & Thorarinsdottir 2013; Robertson et 

al. 2013; Scheuerer & Hamill 2015; D. S. Wilks 2009; Wu et al. 2011), though most of these 

methods have been tested with the mean of a dynamic ensemble.  

Analog-based techniques, in which historical stores of similar forecasts are used to 

estimate uncertainty, have been similarly formulated to provide statistically developed 

uncertainty in forecasts starting from a dynamical ensemble (e.g., Hamill & Whitaker 2006), or 

from single-member deterministic predictions (Delle Monache et al. 2013).  Here we use the 

latter approach, the analog ensemble, modified for optimal rare event prediction (Alessandrini 

et al. 2019) as a state-of-the-art baseline to assess the DL methods.  

For this study, a newly developed 34-year deterministic hindcast is leveraged. This long 

training dataset provides near unprecedented opportunity to correct for systematic forecast 

error. High impact, 0-5 day (at 6-hour intervals) probabilistic integrated vapor transport (IVT) 

prediction for landfalling North American West Coast (NAWC) atmospheric river (AR) events 

is the focus. Vertically integrated IVT is the characteristic metric which defines the strength of 
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an AR (Ralph et al., 2018). IVT is a combined thermodynamic and momentum metric which 

integrates specific humidity and zonal and meridional components of the wind from 1,000 to 

300 hPa. Though we train our post-processing systems on every forecasted value, the study 

focuses on verifying IVT events above 250 [kg m-1 s-1] (~85th percentile of observed IVT), as 

events below this threshold rarely result in extreme precipitation and are thus less societally 

impactful. 

This study aims to test computationally efficient and flexible DL methods to estimate 

forecast uncertainty from a single-member NWP system for probabilistic, AR associated, IVT 

prediction. Uncertainty quantification is explored with DL methods by leveraging a 

distributional regression framework -- which aims to develop the conditional distribution of the 

weather given a deterministic set of variables. The DL methods train by optimizing CRPS - a 

mathematically principled loss function for probabilistic forecasts (Camporeale & Carè, 2021; 

Gneiting et al., 2005; Matheson & Winkler, 1976). We pit the developed statistical uncertainty 

methods against modern state-of-the-art dynamic ensembles (calibrated and not) to test their 

skill. Additionally, we use feature permutation (McGovern et al. 2019) to explore the variable 

importance in the NN-based systems. Finally, we test the length of training data required to 

develop skillful forecasts, in order to determine the length of hindcast required to train a 

prediction system. 

The remainder of the paper is structured as follows. Section 3.2 presents the dynamic 

forecast systems, the statistical ensemble and dynamic ensemble post-processing methods used, 

and the ground truth data. Section 3.3 discusses the resulting forecast skill, examines input 

variable importance, and explores the required length of training data to quantify uncertainty 
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reliably. A discussion of possible extensions follows, and we present conclusions in Section 

3.4. 

3.2 Data, Methods, and Metrics  
 
3.2.1  Region of Interest  
 

Forecasting land-falling AR events over the NAWC is crucial (Ralph et al. 2020; Wilson 

et al. 2020), and several contributions on AR forecast skill assessment are present in  the 

literature (DeFlorio et al. 2018; DeHaan et al. 2021; Nardi et al. 2018; Nayak et al. 2014; Wick 

et al. 2013). ARs bring valuable precipitation to this drought prone region (Fish et al., 2019; 

Lamjiri et al., 2017) while simultaneously being the dominant driver of flooding across the 

NAWC (Corringham et al. 2019; Ralph et al. 2020). One forecast product is a series of 

ensemble-based forecast imagery that shows a forecast lead time-latitude framework spanning 

the west coast of North America with illustrated IVT data from the NCEP-GEFS ensemble, 

known as the AR landfall tool (ARLT, Cordeira et al. 2017; Cordeira & Ralph 2021) on the 

Center for Western Weather and Water Extremes (CW3E) web portal. ARLT shows NCEP-

GEFS data in a pseudo-Hovmöller coastline-spanning framework, illustrating IVT data and 

providing situational awareness of the likelihood, intensity, duration, and timing of possible 

landfalling ARs. Due to the importance of forecasting landfalling ARs, this study examines the 

probabilistic forecast accuracy of landfalling grid-points in every examined/post-processed 

forecast system, and the two adjacent (moving westward) oceanic model points. Figure 3.1 

shows the examined points in this study. All verification metrics and forecast assessment 

henceforth are diagnosed at these 144 landfalling locations.   

3.2.2  Ground Truth  
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IVT from the National Aeronautics and Space Administration’s Modern-Era 

Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis is used 

as ground truth to diagnose forecast error and in ML training. MERRA-2 provides regularly 

gridded observations of the global atmosphere with assimilated satellite, upper air, remote 

sensing, and surface data. The MERRA-2 product is resolved on a 0.5° latitude x 0.625° 

longitude grid and interpolated to 21-pressure levels between 1,000 and 300 hPa for IVT 

calculation (Gelaro et al. 2017; McCarty et al. 2016). Every forecast field in this study is 

regridded to the MERRA-2 grid using a 1st and 2nd order conservative remapping scheme 

(Schulzweida et al. 2006) prior to ML training.  

3.2.3 Dynamic Model For Deterministic Forecast  
 

Uncertainty quantification is generated for a version of the Weather Research and 

Forecast model that has been tuned specifically to Western U.S. extreme precipitation (West-

WRF, Martin et al. 2018). West-WRF is a near real-time model developed at CW3E that was 

run retrospectively to generate a 34-year (1984-2019) hindcast spanning December through 

March of each year. In addition to providing a long training data set, the model’s consistency 

with the operational version provides an unprecedented opportunity for training machine 

learning models on historical forecasts. The model is operationally run at a 9 km resolution, but 

we use 1st and 2nd order conservative remapping to regrid this data to the common MERRA-2 

grid, the model domain spans 25°N to 60°N and 150°W to 115°W.  In this study, the December 

– March season is referred to as a water year (WY) with the year specified as the March of that 

year. For example, December 2018 – March 2019 is referred to as WY2019. West-WRF is 

evaluated in the last three years of the data set (WY2017, WY2018, WY2019). 3-fold cross-
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validation is leveraged in which the previous year is used as validation data and each of the 

three evaluated WYs is held out as testing data.  

3.2.4 Machine Learning Generated Forecast Uncertainty   
 

Four ML methods for uncertainty quantification are evaluated and compared against a 

dynamical ensemble’s raw model output and a dynamical ensemble calibrated with a neural 

network. The computational cost of developing ML-based probabilistic predictions compared 

with dynamical ensembles is significantly less, both in real-time forecasting and for hindcast 

generation. Each method is described below. For each post-processing system, the inputs are 

described in Table 3.1. Multiple deep learning (DL) models are trained, with their architecture 

shown in Table 3.2, and model architecture diagrams shown in supplemental Figure 3.1S. An 

extensive, though not exhaustive, hyperparameter search was conducted on two forecast lead 

times (48 hours and 96 hours) to select model parameters by minimizing the model loss 

(described below) on the validation dataset. To aide future DL post-processing development, 

the hyperparameter search methodology and model architecture intuition is described in the 

supplemental material. 

3.2.4a Neural Network with Location Embeddings 
 
 

Here the neural network (NN) is described, with a focus on the architecture, 

hyperparameters, and training routine utilized in this study. For a more complete exploration of 

the topic of NN’s, the reader is referred to Nielsen (2015). DL functionality is developed in 

python using the Tensorflow 2.0 (Abadi et al. 2016) library with the embedded Keras (Chollet 

et al. 2018) implementation. Following Chapman et al. (2019), an independent NN is trained 

for every forecast lead time. The input for this method is described in Table 3.1, the output is 
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the mean and standard deviation of a probability distribution representing a probabilistic 

forecast for IVT at a specified (to the NN) coastal location.  

Neural networks (NN) approximate nonlinear functions and processes (Nielsen 2015) 

through a series of feed forward matrix operations. NN’s pass input predictor variables through 

a succession of “hidden” layers, resulting in a specified output layer. Each layer is described by 

the number of nodal points in that layer with the initial layer being the number of input 

variables. Prior to input, each predictor variable is standardized using the global (every point in 

the examined domain) mean and standard deviation. In this work, a simple model with 2 hidden 

layers containing 30 and 40 nodes, respectively, is used. Nodes from adjacent layers are 

connected via model weights. The hidden nodal point values are determined by the sum of the 

product of associated model weights and the input values from the previous layer. Each nodal 

point is then ‘activated’ by a nonlinear function before passing the variables to the following 

layer. We use a Rectified Linear Unit (ReLU) activation function (Nair & Hinton 2010). The 

task of training a NN is to learn the optimal nodal weights, computed iteratively through 

backward optimization and gradient descent. In particular, each iteration seeks to minimize the 

cost of a specified loss function, by determining the gradient field of the weights and taking a 

small step in the direction opposite to this gradient. The NN leverages an Adam optimizer  

(Kingma et al. 2014) with a 0.005 training step that reduces by 10% on a validation plateau of 

5 epochs (learning cycles). After 8 epochs of no decrease in validation error, training is ended. 

This typically resulted in ~40 training epochs.  

The output model parameters (𝜇012 , 𝜎012) are estimated by minimizing the prescribed 

loss function of the continuous ranked probability score (CRPS) of a Gaussian distribution 

truncated at zero (as the magnitude of IVT cannot be negative). This loss function has been 
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used in several notable EMOS post-processing studies, largely in applications of wind speed 

prediction (e.g., Baran & Lerch 2015; Thorarinsdottir & Gneiting 2010; Thorarinsdottir & 

Johnson 2012). CRPS is discussed in the Results section and the analytical expression of the 

CRPS Gaussian distribution is provided in the appendix material. Multiple CRPS loss 

functional families were attempted (logistic, log normal, gamma, and Gaussian) (see Jordan et 

al. (2019) for these formulations), and a Gaussian truncated at zero provided the best fit, as 

determined by evaluation of the threshold-weighted CRPS and the shape of the stratified rank 

histogram, evaluated on the validation dataset -- motivating the final loss function choice.   

Additionally, location embeddings are used as an input to the NN. Embeddings are 

responsible for encoding a vectorized version of discrete information, in this case, an ID number 

specified for each of the 144 locations (1-144). These vectors are learned and updated during 

training, but do not correspond to any real variable. This allows the network to learn customized 

nodal weights for each lat/lon location while still benefitting from the relationships learned at 

every location (Guo & Berkhahn 2016; RL2018). The vector length is specified as part of the 

network architecture. By conducting a hyperparameter search, it was determined that 2 latent 

variables (vector length) provided the greatest model performance without adding additional 

model parameters. Thus, one NN can be trained for the entire domain and the bias specific to 

each location (e.g., topographically or latitudinally driven NWP biases (Gowan et al. 2018)) 

can be corrected.  

Due to the data set spanning multiple decades, we have noticed oscillations in NWP 

model skill and bias. To mitigate the potential effects of secular climate change, or slowly 

varying decadal variability, we institute a customized training regime similar to model transfer 

learning (Torrey & Shavlik 2010). The model is first trained on the full 32-year training set (34 
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years, minus 1 year of validation and 1 year of test). Next those model weights are saved and 

frozen from updating, a final layer is concatenated to the network and we “fine-tune” on just 1 

WY, two years prior to the testing data set (one year prior to the validation). For example, a NN 

that is tested on WY2019 is initially trained on WY1985-WY2017, then frozen, a new layer is 

concatenated, and it is then tuned on WY2017. The training schedule is exactly similar to that 

described above with identical criterion for ending the training. While the mean prediction is 

relatively unaffected by fine-tuning, this was found to significantly improve predicted spread 

statistics (not shown).   

 
3.2.4b Convolutional Neural Networks  
 

The convolutional neural network (CNN) architecture is shown in Table 3.2 and Figure 

3.1s. The architecture is adapted from a U-NET (Long et al. 2015). The U-NET architecture is 

ideal for this task as it passes less abstracted information from shallow layers in the CNN to 

deep layers [see Ronneberger et al. (2015) for more detail]. Additionally, versions of this 

architecture have been shown to significantly reduce IVT deterministic forecast error (Chapman 

et al. 2019). The computational details are similar to those described in the above NN. Again, 

a Gaussian distribution truncated at zero provided the best skill on our cross-validated dataset 

and was selected as the loss function. The CNN utilizes an Adam optimizer  (Kingma et al. 

2014) with a 0.0001 training step that reduces by 40% on a validation plateau of 2 epochs. After 

8 epochs of no decrease in the validation error, training is ended. This typically resulted in ~50 

training epochs. The CNN uses identical predictors to the NN, the largest difference being that 

CNNs operate on images by updating weights associated with convolutional kernels which are 

slid across input image fields and trained to highlight salient forecast features. In the CNN, the 
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entire spatial domain is fed to the model at training for each independent forecast rather than 

independent training data for each location (as in the NN).  The goal of model training is thus 

to learn the optimal weights in the convolutional kernels which minimize CRPS by best 

predicting 𝜇012 and 𝜎012 for every pixel in the image. The network is trained to optimize 

predictions in the entire model domain, however, in the following analysis, the CNN is 

evaluated only at the aforementioned coastal locations. The implications of this choice are 

discussed in section 4. The reader is referred to Zhang et al., (2021) for a theoretical description 

of CNN’s and convolutional kernel training. 

The same training regimen is utilized for the CNN with 1 additional convolutional layer 

concatenated to the end of the network after freezing all previous layers. The CNN is then fine-

tuned on the WY two years previous to the testing WY. 

 
3.2.4c Fully Connected Distributional Regression 
 

We include, as an additional baseline, a parametric prediction method that is 

conceptually similar to traditional distributional regression performed via EMOS systems. We 

implement a fully connected neural network (FCN) with no hidden layers, trained using CRPS 

estimated from a Gaussian distribution truncated at zero. The FCN, without inputting ancillary 

predictor fields, is conceptually equivalent to a global EMOS scheme, but differs in the 

parameter estimation approach. Here, as it is easily implemented and also demonstrated 

improvement in minimizing CRPS, we include all of the predictor variables that are supplied 

to the NN and CNN, and the same location embedding vector supplied only to the NN (see 

Table 3.2). The FCN leverages an Adam optimizer  (Kingma et al. 2014) with a 0.005 training 

step that reduces by 10% on a validation plateau of 5 epochs (learning cycles). After 8 epochs 
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of no decrease in validation CRPS, training is ended. In order to create as similar training 

conditions to the CNN and NN we fine-tune the FCN system by loading the model weights 

from the model trained on the 34 years of data, reducing the learning rate to 0.00001 and training 

again on data from 2 years prior to the testing data (thus, 1 years prior to the validation data). 

The FCN serves to assess the value of the nonlinear predictor-predictand relationships in both 

the NN and CNN. A local FCN implementation was also tested, but showed poorer forecast 

performance and calibration for high threshold IVT events ([250, 350, 500] kg m-1 s-1). 

 
3.2.4d The Analog Ensemble for Rare Events 
 

To compare the DL-based statistical ensemble to a state-of-the-art ML-based ensemble 

method, an analog ensemble (AnEn; Delle Monache et al. 2013) coupled with a recent bias 

correction innovation for rare events (Alessandrini et al. 2019) is constructed. The AnEn 

generates an ensemble by exploiting an issued NWP forecast, a history of forecasts made by 

the same model, and the corresponding resultant observed weather. When a forecast is issued, 

the AnEn is tasked with searching for analogous forecasts in the historical record, it then uses 

the corresponding resultant observations for the analogous forecasts as the ensemble prediction.  

Let 𝑓4𝑦C𝒙𝒇7 be the probability distribution of the observed value 𝑦 of some predicted 

quantity given a model prediction 𝒙𝒇. 𝒙𝒇 is a vector of 𝑘 predictor variables issued from the 

NWP forecast (𝒙𝒇 =	𝑥!
+ , 𝑥$

+ , 𝑥4
+ , … , 𝑥5

+) which includes the desired forecast variable (IVT) and 

a suite of other relevant predictor variables (Table 3.1). AnEn uses a distance function to then 

identify the closest analogs to 𝒙𝒇 from a database of previously issued forecasts (𝒙𝒋). The 

ground truth observations 𝑦7 from the previously issued forecasts form the ensemble. Like the 

NN, the analog ensemble is a point-based method, and only forecasts at a given location are 
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used to form this ensemble. The distance function is given by 𝑑4𝒙𝒇, 𝒙𝒋7 =

∑ 8#
/#
H∑ I𝑥9,:;-

+ − 𝑥9,:$;-
7 J

$
:<
-%=:

5
9%!  where the current NWP forecast (𝒙𝒇) is valid at time 𝑡 at a 

given forecast location. 𝒙𝒋 is the analog at the same location with the same forecast lead time 

but valid at a past time (𝑡>), 𝑘 defines the number of predictor variables weighted by 𝑤9. 𝜎9 is 

the standard deviation of the time series of past forecasts of a given variable at the same location 

and forecast lead. 𝑡̃ is equal to half the number of additional times over which the metric is 

computed. Accounting for a forecast window (𝑡̃) ensures that the trend of the examined 

variables is considered and has been shown to be valuable for minimizing forecast error 

(Alessandrini et al., 2015). This temporal trend gives the AnEn a potential predictor advantage 

over the CNN and NN.   

The AnEn is run and optimized (through 𝑤9 selection) at every location individually. 

By leveraging small predictor sets (𝑘), a full brute-force optimization search can be conducted 

by trying every permutation of 𝑤9, and examining mean squared error on an independent 

validation data set subject to ∑ 𝑤9 = 15
9%! , where 𝑤9 ∈ [0, .1, .2, … ,1]. Which has been shown 

to improve predictions in several past studies (e.g., Alessandrini et al., 2015; Junk et al., 2015). 

Supplemental figure 3.3S shows the distribution of predictor variable weights across every 

location. The predictor variable of interest (IVT) is dominantly weighted, as expected, with the 

remaining variables accounting for ~10% of variability each. To match the dynamic ensemble, 

we specify the return of 21 ensemble members. The numbers of ensembles were varied, but the 

results showed little sensitivity between 10 – 50 members.   

The AnEn has a tendency to introduce a conditional negative bias when predicting 

events in the right tail of the forecast (extreme or rare events), which are the focus of this study. 
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To ensure that the AnEn is optimized to correctly forecast rare events (as our target is to most 

accurately forecast ARs), and to set the best baseline possible for the DL/ML methods, we 

leverage the modifications to the AnEn as presented in Alessandrini et al. (2019) for conditional 

bias correction. The proposed method is based on a linear regression analysis between forecast 

and observations performed independently at each lead time and location. Each member is 

adjusted by adding a factor proportional to the difference between the target forecast and the 

mean of the past analog forecasts multiplied by the coefficient obtained after the linear 

regression analysis. We refer the reader to Alessandrini et al. (2019) to examine additional 

details of the bias adjustment algorithm. A threshold value of 300 [kg m-1 s-1] units of IVT (~90th 

percentile of station observations) is used to enact the bias correct. This value was determined 

by incrementing the value of the threshold from 250 – 500 (in 50-unit increments) and 

minimizing the CRPS on the validation datasets.  

3.2.4e Raw and Calibrated Global Ensemble Forecast System   
 

We assess the probabilistic skill of the NN-based methods (FCN, NN, and CNN) against 

a state-of-the-art dynamical ensemble: the operational 0.5° latitude x 0.5° longitude National 

Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) 

version 11.0.0 from December 1st to March 31st of WYs ending in 2017, 2018, and 2019. The 

GEFS includes 21 members (20 perturbed initial conditions, 1 control member). These data 

were obtained from The Interactive Grand Global Ensemble (TIGGE) data portal at the 

European Centre for Medium-Range Weather Forecasts. WY17 and WY18 contained 70 

missed forecasts in the TIGGE system so these were then calculated from 1° latitude x 1° 

longitude GEFS data obtained from the National Centers for Environmental Information Data 

Archive and were simply interpolated to the 0.5° grid spacing. We additionally apply the same 
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NN post-processing to the GEFS ensemble system as described in RL2018, by minimizing 

CRPS while using the ensemble IVT mean and standard deviation as predictors and leveraging 

the embedded forecast location. This algorithm was shown to outperform the best traditional 

post-processing methods (RL2018). The NN applied to the GEFS system (GEFSnn henceforth) 

is subject to the same train/test split as described above in which the network is trained in a 3-

fold cross-validation manner in which the previous year is used as validation data and each of 

the three evaluated WYs are held out as testing data. Table 3.1 describes the input variables. 

Table 3.2 describes the utilized network. 

3.3 Results  

In this section, we evaluate the predictive performance of the post-processing systems 

and raw dynamic ensemble, all based on the cross-validated testing data from WY17, WY18, 

WY19. For an introduction to the evaluation methods and underlying theory, see the Appendix. 

We use skill scores (SS	 = 	1 − ?
?"%!

	 , −¥	 < 𝑆𝑆	 ≤ 1,) where positive/negative values are 

shown to be more/less skillful than the reference forecast (𝑆-@+). Python code for reproducing 

the results and models is available online (github url). 

This analysis evaluates 6 forecast systems, termed: AnEn, FCN, CNN, NN, GEFS, and 

GEFSnn, evaluated from 0 to 120 hours (in 6-hour intervals). The AnEn, FCN, NN and CNN 

systems are built from an historical data set including a single deterministic forecast (based on 

the dynamical model West-WRF), while the GEFS is built from the raw GEFS EPS forecast. 

Additionally, the results focus on high impact IVT events which are likely to cause NAWC 

precipitation. We threshold at 250, 350, and 500 [kg m-1 s-1] units of IVT, which guarantees 
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local AR conditions. This represents percentile values of ~85th, ~93rd, ~97th, respectively. Right 

tailed events are traditionally more difficult for post-processing methods to improve upon. 

Though higher impact events exist (500+ threshold), their rarity prevents robust probabilistic 

statistical comparisons (Wilks 2010), thus the above stated thresholds are evaluated. All results 

shown henceforth are for the independent testing data years (WY2017, WY2018, WY2019).  

The GEFS and AnEn consist in a set of ensemble members while the FCN, NN, CNN, 

and GEFSnn include the mean and standard deviation of a truncated Gaussian distribution. To 

ensure a fair assessment, the following verification is conducted by computing the mean and 

standard deviation for every individual forecast and randomly sampling from that distribution 

to create pseudo-ensembles. The exact ensembles for the GEFS and AnEn were also assessed, 

but the resulting analysis was not significantly changed. 

3.3.1  Deterministic Predictions   

 Figure 3.2 shows the root mean squared error (RMSE) (a) and Pearson correlation (PC) 

(b) of the deterministic forecasts (ensemble mean) using the West-WRF raw reforecast as the 

reference forecast in 12-hour increments. Though the primary focus of this work is to evaluate 

the probabilistic skill of the ensemble forecast methods, we first demonstrate the deterministic 

skill of the forecast systems. For each method, this is taken as the mean of the predictive 

distribution/ensemble. The authors realize that this is not a direct comparison because the post-

processing methods were not applied to the same forecast baseline (i.e., West-WRF vs. GEFS). 

At all lead times, the GEFS ensemble mean (red) forecast is more skillful than the West-

WRF deterministic model from which the AnEn, FCN, NN, and CNN are developed. The 

GEFSnn (red) and Raw GEFS (light red) systems ensemble mean performance differences are 
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not statistically significant and the GEFSnn ensemble calibration is largely just influencing the 

ensemble spread statistics (discussed further below) to improve the forecast skill. The CNN 

(white) is resulting in the largest improvements of West-WRF reforecast when compared to 

AnEn, FCN, and NN at all lead times in both PC and RMSE, with a stable improvement of 

~10% at every lead time for RMSE while improving the correlation from 1-7% with greater 

improvements at the longer lead times. The NN (light blue) also improves the forecast at every 

lead time at ~5% for RMSE and improves correlation from 0-3% across lead times. The NN 

generally outperforms the FCN, showing the value of the adding nonlinear activations, with 

statistically significant improvement at lead times 0, 12, 36, 48, 72, and 96 hours for RMSE 

and at every lead time past 12 hours for PC. The NN is run locally with embedded location ID 

information, and therefore does not have the benefit of a global field view (like the CNN), this 

additional spatial feature helps to quantify the difference in mean statistics.  The CNN 

corrections result in forecasts that significantly outperform those from the FCN and NN at every 

lead time for both PC and RMSE metrics. The AnEn (blue) initially negatively impacts the 

analysis forecast (F000) but improves the skill of the deterministic forecast from 24 hours – 120 

hours with similar statistics as the NN.  

3.3.2  Diebold-Mariano Test (Under AR Conditions)  

For comparative model assessment, proper scoring rules are leveraged to 

simultaneously  evaluate the calibration and sharpness of forecasts (Gneiting & Raftery, 2007). 

Proper scoring rules assign a numerical score to pairs of probabilistic forecasts and observations 

such that the expected score is optimized if the true distribution of the observation is issued as 
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a forecast. Here, two negatively oriented (a smaller value is better) proper scoring metrics are 

examined, the Brier skill (BS, Brier 1950)  and twCRPS (Gneiting & Ranjan 2011).   

Figure 3.3 shows the results of the two-sided Diebold-Mariano (DM, Diebold & 

Mariano 2002) test calculated based on mean threshold weighted CRPS (twCRPS, Gneiting & 

Ranjan 2011) over all the samples at each lead time (0-120 hours) as the determining metric, 

with a threshold set to 250 [kg m-1 s-1] units of IVT. Simultaneous interpretation of the test 

results across lead times requires that we account for test multiplicity. We do so by controlling 

the false discovery rate at  𝛼ABC =	0.05 (see Appendix for details) (Benjamini & Hochberg 

1995; D. Wilks 2016). Each panel (a – e) leverages a separate reference forecast (AnEn, FCN, 

NN, CNN, GEFSnn, and GEFS, respectively) to compare to each other forecast. The reference 

is shown in bold, and a gray dash-dot line is used to delineate the reference further. Red panels 

indicate that the reference performs underperforms the compared forecast, blue panels indicate 

that the reference forecast outperforms compared forecast, and white panels show that the 

difference is not statistically significant between the two systems. Panels with large blue swaths 

are better forecast systems, than the compared post-processing system. 

It is apparent that when comparing individual forecast systems built from West-WRF 

(AnEn, FCN, NN, CNN, Fig. 3.3a, 3.3b, 3.3c, 3.3d, respectively) the forecasts from the CNN 

generally outperform the other systems. Forecasts from the CNN significantly outperform 

forecasts from the AnEn at all lead-times except from 84-96 hours in which the differences are 

not statistically significant. The forecasts from the CNN significantly outperform the GEFS 

ensemble system or the differences are statistically significant not at all lead times except the 

66-hour lead forecasts. Additionally, at 0-48 and 96-120 hours the CNN is competitive with the 

calibrated GEFS forecast (GEFSnn). The GEFSnn systematically significantly outperforms the 
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GEFS system for all short lead times (0-60 hours) and outperforms or not significantly different 

from GEFS from 72-120 hours. We show similar figures for the 350 and 500 [kg m-1 s-1] IVT 

thresholds in supplemental Figures 3.4S and 3.5S. While still generally outperforming each 

forecast system from a Brier skill score (BSS, Brier, 1950) and twCRPS perspective, the CNN 

struggles more to improve over the GEFS with high impact events at the longer lead times (3-

5 days), this is discussed further in the discussion section. The NN is shown to significantly 

outperform the FCN for the 250 [kg m-1 s-1] threshold at all lead times and is generally more 

skillful (though not always significantly) at the 350 and 500 [kg m-1 s-1] thresholds (Figures 

3.4S and 5S). 

3.3.3  Brier skill score and CRPS  

Figure 3.4 shows the Brier skill score (BSS) at three threshold levels (250, 350, 500, 

[kg m-1 s-1]) of IVT for forecasts from 0 – 120 hours using the GEFS forecast BS as a reference 

metric. The GEFSnn may leave the ensemble mean forecast relatively unaffected (Fig. 3.2), but 

it improves the GEFS forecast by calibrating its probabilistic skill (Fig. 3.4, dark red). Within 

the first 36 hours the CNN outperforms or shows insignificant differences from the GEFSnn 

forecast system for every threshold value (Fig. 3.4 white vs. red). Between 96 and 120 hours 

the NN-based ensembles again compete with or outperform the GEFS forecast systems. The 

NN is able to outperform the AnEn at most lead times out to 48 hours and the two methods 

have similar performance from 60 to 120 hours. At lead times between 96 and 120 hours and 

higher impact events the AnEn and NN show similar skill to the CNN (Fig. 3.4b and 3.4c). 

Though the differences are not always statistically significant, the NN generally outperforms 

the FCN at most lead times. To complement Figure 3.3 and Figure 3.4, Figure 3.2S shows the 
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twCRPS skill score at the same three threshold levels (250, 350, 500, [kg m-1 s-1]) of IVT for 

forecasts from 0 – 120 hours using the GEFS forecast as a baseline metric. The twCRPS tells a 

very similar story to the BSS and DM test. 

In both BSS and twCRPSS, between 60 and 84 hours, we note a drop in skill between the 

AnEn or the NN-derived ensembles which are built on a deterministic prediction and the 

dynamic ensemble system. Figure 3.2 shows that this skill is largely derived from a comparative 

discrepancy in deterministic forecast skill between the two forecast systems used to build these 

ensembles (GEFS and West-WRF). Again, we stress that each method is built from different 

dynamic forecast models and this does not represent a detriment added by the post-processing 

methods (see Fig. 3.2). It appears that this comparatively larger forecast skill difference (see 

Fig. 3.2 hours 0-48 vs hours 60-84) is responsible for the difference of skill in the interim 

forecast window.  

3.3.4  Spread/Skill  

Figure 3.5 shows the binned spread-skill plots of the evaluated models partitioned into 

the 0-48 hours and 54-120 hours for forecasts of IVT. In the first 48 hours (Fig. 3.5a-f) the 

GEFS model (light red) is severely overconfident (Fig. 3.5a). The AnEn faces the opposite 

problem and appears to overestimate values of forecast uncertainty (Fig. 3.5c). The remaining 

models (CNN, NN, GEFSnn) provide statistically consistent forecasts and indicate that they are 

able to capture the flow-dependent forecast uncertainty because their spread dependably reflects 

the forecast error variance. The CNN and the NN are virtually indistinguishable and perfectly 

calibrated while the GEFSnn does reflect small conditional bias towards the highest binned 

events. Across all tested models, forecasts from 54-120 hours (Fig. 3.5g-l) are less calibrated, 
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but still represent a good flow-dependent forecast uncertainty relationship. The GEFS, FCN, 

NN and CNN forecasts are overconfident and contain a slight low bias. The AnEn is the best 

calibrated forecast for the right tailed forecast error events, followed closely by the NN and 

GEFSnn forecast systems, showing that these systems capture the flow-dependent forecast 

uncertainty since the spread dependably reflects the forecast error variance. 

3.3.5  Stratified Rank Histogram  

 Figure 3.6 shows the stratified rank histograms of the evaluated models partitioned into 

the 0-48 hours and 54-120 hours. The histograms are stratified into three categories: [250-350), 

[350-500), [500+] [kg m-1 s-1]. For the analog ensemble and GEFS system we use the 21 

ensemble members generated by each system. To be consistent we sample 21 random pulls 

from the distribution described by each individual forecast to form a pseudo ensemble and build 

the stratified rank histogram from those forecasts. Bröcker & Smith, (2007) and  Siegert et al., 

(2012) demonstrated that when stratifying on the ensemble forecast mean (or other ensemble 

derived statistics), a uniform rank histogram distribution is not necessitated to show a calibrated 

forecast ensemble system. Bellier et al., (2017) offered a graphical test to check the true 

calibration shape through random sampling of ensemble members which serve as pseudo-

observations to determine the shape of a perfectly calibrated forecast ensemble. After 

conducting this test for the prescribed IVT thresholds [250-350), [350-500), [500+] [kg m-1 s-

1], it was determined that a uniform stratified distribution is optimal (not shown).  To aid in 

interpretation, Table 3.3 shows the reliability index (RI, Delle Monache et al. 2006) for the 

stratified rank histograms. Here, 𝑅𝐼 = 	∑ Y𝑓9 −	
!

D;!
YD;!

9%! , where 𝑓9 	is the frequency of 

observations in the 𝑖th rank and K is the number of forecasted ensembles. 
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We first examine the 0-48 hour forecasts. The most apparent error is in the GEFS forecast 

ensemble system which is highly under-dispersive/overconfident, and a general lack of 

statistical consistency. Applying a neural network with location embeddings to this dynamic 

ensemble (GEFSnn) results in a very well calibrated forecast for AR events (Fig. 3.6b). This 

confirms that GEFSnn is largely correcting the forecast spread while leaving the ensemble mean 

relatively unchanged (See Fig. 3.2). The AnEn is over-dispersive/ underconfident from 0-48 

hours. Despite developing all of the spread characteristics from data alone (unlike the GEFSnn), 

the NN and the CNN (Fig. 3.6d and 3.6e) both represent well calibrated probabilistic 

distributions. There is a small indication of under prediction for both of these systems, 

exacerbated further in the CNN. The FCN struggles to calibrate the right tailed events, showing 

a high bias. This demonstrates the important nonlinear information in the predictor fields as the 

NN shows a very well calibrated ensemble, with the same input predictors. The RI values in 

table 3.2 indicate that the NN is largely more calibrated than the CNN system though all post-

processing methods outperform the raw GEFS calibration. 

The 54-120 hour forecasts struggle more with statistical consistency. The GEFS ensemble 

again shows signs of over dispersion, coupled with a high bias (Fig. 3.6g), but is less affected 

by the over confidence than at shorter lead times. The GEFSnn acts to fix the dispersion and 

produces a relatively calibrated ensemble though there are signs of a low bias. The NN-based 

methods and AnEn again produce fairly calibrated ensembles. The CNN struggles prominently 

with a low bias (Fig. 3.6j and table 3.2). The AnEn and NN are relatively indistinguishable and 

produce a well calibrated statistical ensemble. The FCN again shows a severe high bias and 

offers a good contrast to the NN and CNN methods. 
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3.3.6  Variable Importance  

 To investigate rankings of input variable importance in the FCN, NN, and CNN we use 

a single-pass permutation-based measure introduced by Breiman (2001). The goal is to 

determine the level of twCRPS deterioration when the statistical link between forecast field (𝐹7) 

and the target observation (𝑦7) is broken by randomly permuting each 𝐹7, one at a time, over 

all forecast samples. We use the mean twCRPS(𝜏 = 250 [kg m-1 s-1]) of the non-permuted input 

features as a relative reference baseline. The reference twCRPS baseline is recalculated at each 

lead time in order to prevent skewing the variable importance via dependence on model lead-

time forecast skill.  If performance deteriorates significantly (high values in Fig. 3.7) the 

variable is considered important. The single-pass permutation algorithm is described in detail 

in the Appendix. Figure 3.7 shows the relative variable permutation importance at forecast lead 

times 12 (a), 24 (b), 48 (c), 72 (d) 96 (e), and 120 (f) hours for a twCRPS with threshold 𝜏 = 

250 [kg m-1 s-1] units of IVT. 

The most important variable across the three systems, at all lead times, is the NWP 

model output IVT. IVT’s importance, relative to other variables, diminishes at longer forecast 

horizons. The CNN considers integrated water vapor (IWV) as the second most important 

variable, accounting for model degradation of 6-10% across all forecast lead times. IWV is an 

integrated component of specific humidity calculated at the same model levels as IVT. Its 

relative variable importance indicates that the CNN is learning some error dependence which 

is contained solely in the thermodynamic component of IVT. The CNN shows minor 

dependence on the remaining forecast variables. We note that the CNN does not leverage 

location ID as a predictor (see Table 3.2). The CNN does not show much sensitivity to the 
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meridional or zonal components of the 500 hPa wind, though these variables have been shown 

to impact forecast error state in other NWP systems (Stone et al., 2020).  

  The FCN and the NN leverage the same input predictors and the difference in variable 

importance is an indication of the important nonlinear predictor-predictand relationships 

learned by the NN. Generally, the addition of the non-linearity, spreads predictor sensitivity 

more evenly across multiple variables, leading to greater importance of several variables. The 

second most important variable for the FCN and NN, across most lead times, is the meridional 

component of the wind at 500 hPa (v500). This is intuitive as modulation to the v500 variable 

is leveraged to diagnose storm track variability (Chang & Yu 1999; Wirth et al. 2018) and is an 

indication of amplification in the synoptic scale control (via large-scale troughing or ridging) 

over the AR system. Meridional orientated ARs tend to be stronger in magnitude (higher IVT) 

and result in greater precipitation (Cobb et al. 2021; Hecht & Cordeira 2017). Interestingly, the 

FCN and NN systems both show a sensitivity to surface pressure, which is not learned in the 

CNN. The location ID (input via an embedding layer) accounts for a 1-2% model degradation 

across all lead times and is twice as important in the NN than the FCN, indicating some 

nonlinear dependence on spatially dependent information.  

3.3.7  Length of Training   

The NN-based methods and AnEn, run in real-time, have a significantly lower cost 

compared to the GEFS system as only a single deterministic forecast is required to produce this 

probabilistic prediction. However, a longer training data set was used compared to the stable 

GEFS system (GEFS model version 11.0.0 was only stable for 3 years). To test the impact of 

the length of training (deterministic hindcast years that are required) needed to achieve 
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comparative skill we retrain the CNN, NN, and AnEn holding out forecast years one year at a 

time counting backwards in time. For example, the methods are trained solely on WY2016 and 

skill is determined on the testing dataset. Then the methods are trained on WY2015-WY2016, 

and so on until the entire dataset is utilized. Figure 3.8 shows forecasted 48-hour twCRPS (𝜏 =

250[𝑘𝑔𝑚=!𝑠=!]) of AnEn, CNN, and NN by the number of years in the training dataset using 

the GEFSnn as a reference forecast.  

The NN trains well with a single year of data and plateaus in skill quickly afterward. As 

one NN is trained for the entire domain, the NN is able to learn the forecasted IVT error 

relationship from every point in the field domain, effectively multiplying the length of the 

training data by the number of points used (144, though these are not necessarily independent 

forecast). The AnEn learns most quickly within the first 10 years but continues to learn as the 

length of training data is extended. This can be explained by the fact that, as more similar 

analogs are added with each year and the AnEn is unable to extrapolate forecast information 

but must rely on the past forecast record (except for the right tail of the distribution when the 

bias correction for rare events is applied). Though we truncate the figure at 23 years, the AnEn 

continues to learn for the 34-year period (though marginally; not shown). The CNN is the worst 

performing forecast for the first 2 years and does not significantly outperform a simple NN until 

9 years of data is utilized. The associated cost of producing a hindcast, if a CNN is desired is 

thus high (though again, only a deterministic hindcast is required). The CNN appears to plateau 

after 11 years of training and only very marginal skill is added in the remaining 20 years of 

training data. 

3.4 Discussion and Conclusion  
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 Integrated water vapor transport (IVT) is post-processed to derive a forecast uncertainty 

quantification. There has been a recent surge of interest and method development of Machine 

Learning (ML) and Deep Learning (DL) for numerical weather prediction (NWP) post-

processing (Baran & Baran 2021; Kirkwood et al. 2021; McGovern et al. 2017; Meech et al. 

2021; Schulz & Lerch 2021; Vannitsem et al. 2021). The examined DL methods (NN and CNN) 

are flexible and easy to implement with modern DL toolboxes. The ML methods can compete 

well with dynamic model ensemble due to the severe under-dispersion of the GEFS ensemble, 

and the DL ability to adjust the deterministic (mean) score to be competitive with the Global 

Ensemble Forecast System (GEFS) mean (Fig. 3.2). At lead times when the GEFS mean 

forecast skill significantly outperforms the deterministic dynamical forecast skill, the 

probabilistic methods have trouble competing (compare Fig. 3.2 and Fig. 3.4). The GEFSnn 

does not adjust the GEFS ensemble mean prediction, but simply calibrates the ensemble spread. 

A well calibrated dynamically generated ensemble would be more difficult to outperform.    

During the first 48 hours the convolutional neural networks (CNN) developed from a long 

running deterministic forecast system shows the best performance compared to each of the 

tested forecast systems, including a calibrated dynamic ensemble system. This represents a 

significant computational cost saving as a single deterministic model run is required as an input 

variable. At longer lead times (3-5 days) the CNN again is the best performing forecast system 

for AR conditions (250 [kg m-1 s-1] of IVT), but struggles more than the other systems with 

predicting the highest impact events (350 and 500+ [kg m-1 s-1] of IVT). From a Brier Skill 

Score (BSS) and Threshold Weighted Continuous Rank Probability Score (twCRPS) 

perspective the CNN is the best performing forecast at nearly all lead times and for every 

threshold when compared each other forecast system. However, the BSS can be broken down 
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into components of reliability and resolution (Murphy 1973). Supplemental figures 3.6S & 3.7S 

shows these components. For the longer lead times, and high impact events it is clear that the 

CNN is favoring resolution at the expense of reliability. The supplemental material also 

contains reliability diagrams (Bröcker & Smith 2007) to demonstrate this issue, while still 

reliable the CNN is marginally less reliable than the other methods (Figs. 3.8S-3.13S). The 

CNN is clearly reliable for IVT events with magnitudes greater than 250 [kg m-1 s-1] at all lead 

times but struggles slightly with reliability at the longer forecast leads for the highest impact 

events. Therefore, if a user wants to know if AR conditions are probable, the CNN is the best 

West-WRF based forecast available among the NN-based methods and AnEn and is 

competitive or better than the dynamic ensemble methods. For AR events greater than 500 [kg 

m-1 s-1] the AnEn or NN systems are more reliable, but much less resolved (Fig. 3.6S). Our 

results show that a NN trains extremely quickly and with a single year of hindcast data can 

create a very reliable probabilistic forecast.  

Challenges remain for this DL post-processing systems. The demonstrated DL methods are 

distinctly disadvantaged in that they fit unimodal parametric distributions, and variables that 

are not described well by a simple distribution will yield poor probabilistic forecast skill. 

Additionally, these are highly parameterized models and significant computational time was 

required to find the prescribed model hyperparameters. The presented neural networks do not 

offer a seamless forecast system, with individual networks trained at each lead time. The FCN 

and NN embed location information in their forecasts, which was shown to effect forecast skill, 

this could easily be extended to embed temporal information (by embedding representations of 

forecast lead) which would unify the forecast system into a single neural network rather than 

training individual network’s at every forecast lead (e.g., Ham et al. 2021).  Additionally, the 
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stability of these networks has not been proven under changing climate scenarios, and the 

relative non-stationarity of the training data could affect future long hindcast projects. Though 

a method for addressing this issue through fine-tuning was presented in this study, more work 

needs to be done to see if this offers a robust solution. 

Work is underway to improve the neural network based forecasts for high impact events. 

The shape of Figure 3.6j indicates a slight dry model bias, suggesting that simple post-processed 

conditional bias correction may improve CNN model skill further. Success could be found in 

simply developing the loss function to act on twCRPS rather than CRPS alone. Additionally, 

focusing loss just on the coastal landfalling points, training with a greater percentage of high 

IVT events in the training set, adding AR/no AR discriminator networks to the CNN, or adding 

metrics that specifically target calibration all have offered positive results in initial testing.  

This study uses neural networks and a CNN for distributional regression to quantify the 

prediction uncertainty from deterministic numerical weather forecast systems. The networks 

compete with or outperform state-of-the-art dynamic models, even when calibrated with the 

most modern post-processing methods. The model’s parameters are estimated by optimizing 

continuous ranked probability score, a standard metric in evaluating probabilistic weather 

forecasts, but one that is rarely used in ML communities. The models are flexible, fast, and can 

be readily trained with a few years of hindcast data. 

3.5 Metrics  

We provide a summary of the methods used for forecast evaluation. In the following we 

will refer to a forecast by 𝐹, to the random variable of the observation by 𝑌 and to a realization 

of 𝑌 by 𝑦, i.e. observed IVT.  General skill metrics are referred to as	𝑆. In order to avoid the 
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known issues in evaluating stratified forecasts (e.g, Bellier et al. 2017; Lerch et al. 2017) careful 

consideration is taken to ensure that skill metrics remain proper when stratified, additionally all 

thresholding criteria is performed on the forecasted ensemble mean (Hamill & Colucci 1997; 

Siegert et al. 2012).  

3.5.1 Evaluation Metrics  

3.5.1.1 Deterministic Metrics 
While the primary goal of this work is to determine the quality of the NN-derived 

uncertainty quantification. However, we additionally evaluate how the post-processing methods 

affect the deterministic ensemble mean predictions. This is done largely because the skill of the 

deterministic prediction greatly affects the efficacy of the probabilistic methods. For example, 

CRPS reduces to mean absolute error for a deterministic forecast.  We show root mean squared 

error (RMSE, where RMSE =	H!
#
∑ (𝐹7 − 𝑦7)$#
7%!  ) and Pearson correlation (PC, where PC =

	
∑ (A&=AF)(G&=HF)'
&()

I∑ (A&=AF)*'
&() I∑ (G&=HF)*'

&()

 ) skill scores. We aggregate forecasts over every location and 

demonstrate the methods comparative skill score (SS). Each of the above scores (𝑆) may be 

converted to 𝑆𝑆 by comparison with the same metric evaluated for a reference forecast 4𝑆-@+7 

through (SS	 = 	1 − ?
?"%!

	), −¥	 < 𝑆𝑆	 ≤ 1, where positive/negative values are shown to be 

more/less skillful than the reference forecast. 

3.5.1.2 Probabilistic Predictions 
 

Brier Skill (BS, Brier 1950) is used to assess the prediction of binary events, 

𝐵𝑆J4𝐹7 , 𝑦77 = 3𝐹7(𝜏) − 𝐼b𝑦7 ≥ 𝜏d;$, where 𝜏 is a prescribed threshold value and 𝐼 is the 
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indicator (step) function which takes the value 1 if the 𝑗:K	verifying observation exceeds 𝜏 and 

is 0 otherwise, and 𝐹7(𝜏) is the probability of event occurrence, which is forecasted. BS is 

particularly useful to check how skillful probabilistic IVT forecasts are in predicting different 

events across various established AR thresholds (e.g., Guan & Waliser 2015; Ralph et al. 2019).  

Continuous ranked probability score (CRPS, Matheson & Winkler 1976)  is a measure of 

overall predictive performance which integrates the squared difference between cumulative 

probability distribution functions of the forecast (𝐹) and observation (𝑌),  𝐶𝑅𝑃𝑆4𝐹7 , 𝑦77 =

∫ 3𝐹7(𝑥) − 𝐼b𝑦7 ≤ 𝑥d;L
=L

$
𝑑𝑥, where 𝐼, again, is the indicator (step) function which takes the 

value of 1 if 𝑥 ≥ 𝑦 and 0 elsewhere. The integral in CRPS can be computed analytically for 

ensemble forecasts (Hersbach 2000) and a suite of continuous forecast distributions (Jordan et 

al. 2019). To remain proper, CRPS must be tailored to forecast extreme events; Gneiting & 

Ranjan  (2011) defined the threshold-weighted CRPS (twCRPS), 𝑡𝑤𝐶𝑃𝑅𝑆4𝐹7 , 𝑦77 	=	 

∫ 𝑤(𝑥)3𝐹7(𝑥) − 𝐼b𝑦7 ≤ 𝑥d;L
=L

$
𝑑𝑥, where 𝑤	is a nonnegative weight function and when 𝑤	 =

	1 twCRPS reduces to CRPS. To examine extreme events (right tail of distribution) we can set 

𝑤(𝑥) = 𝐼{𝑥 ≥ 𝜏} where again 𝜏 is a prescribed threshold value. The twCRPS integral can be 

computed numerically and we leverage this method for our verification. Again, for this metric, 

we aggregate the forecasts over every station location and demonstrate the methods 

comparative skill. 

To compare the relative performance of each scheme we evaluate the Brier skill score 

i𝐵𝑆𝑆	 = 		1	–	k M?FFFF

M?"%!FFFFFFFFFlm and continuous ranked probability skill score i𝐶𝑅𝑃𝑆𝑆	 =
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		1	–	k NCO?FFFFFFFF

NCO?"%!FFFFFFFFFFFFlm which is shown in Figure 3.4 and Figure 3.2S, respectively. Positive values 

indicate a skill improvement.  

The integral in the CRPS equation can be computed analytically for ensembles, and for 

many continuous forecast distributions (see, Jordan et al. 2019). In this work we use the exact 

Gaussian CRPS solution to train our neural networks. Though this rarely occurs, as the focus 

of this study is on IVT events that are above the 250 [kg m-1 s-1] threshold, we truncate 

predictions at 0 as negative values of integrated vapor transport are non-physical. The exact 

solution of the Gaussian CRPS with mean value (µ) , standard deviation (s) and observation 

(y) is 𝐶𝑅𝑃𝑆4𝐹µs, 𝑦7 = 	s 1G=µ
s
	n2Φ IG=µ

s
J − 1p + 2𝜑 G=µ

s
− !

√Q
<, where Φ and 𝜑 denote the 

CDF and PDF of a standard Gaussian distribution, respectively (Gneiting et al., 2005).  

We utilize a two-sided Diebold-Mariano (DM) test to assess whether differences in 

forecast performances are statistically significant (Diebold & Mariano 2002). Consider two 

forecasts 𝐹! and 𝐹$, with respective mean scores 𝑆̅(𝐹9) =
!
"
	∑ 𝑆4𝐹79 , 𝑦77"

7%!   for 𝑖 = 1,2 over a 

test 𝑗 = 1,… , 𝑛 where the forecast 𝐹79 was issued 𝑘 time steps before the observation (𝑦7). The 

DM test assumes that under standard regularity conditions and the forecast cases are 

independent, 𝑡" =	√𝑛	
?̅SA)T=?̅SA*T

/U+
  , where 𝜎t" =	

!
"
∑ (𝑆(𝐹7!, 𝑦7!)"
7%! − 	𝑆(𝐹7$, 𝑦7$))$		follows the 

standard Gaussian distribution under the null hypotheses of equal predictive performance of 

two forecast sources. The null hypothesis is rejected for large values of |𝑡"|, by obtaining the 

corresponding 𝑝 − 𝑣𝑎𝑙𝑢𝑒, where forecast 𝐹! out/under performs 𝐹$, if 𝑡" is negative/positive. 

In order to account for test multiplicity when comparing methods across multiple forecast 

lead-times, we follow Wilks (2016), and use the Benjamini-Hochberg procedure (Benjamini & 
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Hochberg 1995) to control for the false discovery rate. Given the ordered lead-time 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑝!, … , 𝑝V of 𝑀 hypothesis tests, a new threshold 𝑝 − 𝑣𝑎𝑙𝑢𝑒	(𝑝∗)	is determined via 𝑝∗ =

𝑝(9∗)	where  𝑖∗ = min	(𝑖 = 1,… ,𝑀: 𝑝(9) ≤	𝛼ABC 	 ∙
9
V

), and we choose 𝛼ABC = 0.05. We then 

reject the null hypothesis if the test 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝑝∗. In Figure 3.3, 𝑀 is set to the number of 

tested lead times while comparing the twCRPS (𝑀 = 22). 

Rank Histograms (RH) are diagnostic tools that assess the calibration of a forecast 

ensemble (Hamill 2001). An ensemble is statistically consistent when ensemble members 

cannot be distinguished from observations. Therefore, an observation ranked among the 

corresponding ordered ensembles is equally likely to assume any position. If a significant 

amount of forecasts are assessed in this manner, a histogram of the observation ranks should 

show a perfectly uniform distribution (rank probability of (1/(𝑛 + 1), where 𝑛 = number of 

ensemble members). Bellier et al. (2017) proposed the use and demonstrated the consistency of 

forecast-based stratified rank histograms, which show calibration between given forecast 

thresholds, and easily enables one to assess the contribution of each stratum to the overall rank 

histogram uniformity.  

The ability of a forecast systems to quantify uncertainty is examined with binned spread-

skill plots, which compare ensemble spread (i.e., the standard deviation of the ensemble 

members) to RMSE of the ensemble mean over small class intervals of model spread, rather 

than considering the overall average spread as in the dispersion diagram (e.g., van den Dool 

1989; Wang & Bishop 2003). The spread of a forecast perfectly describes the uncertainty of the 

system if the actual forecast error equals its spread (Leutbecher & Palmer 2008). The ability to 
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quantify the prediction uncertainty thus requires the two metrics to match at all binned values 

of ensemble spread, resulting in a line that falls upon the 1:1 line.  

Permutation importance has been explored for describing variable importance to DL 

models in multiple earth system studies (Brenowitz et al. 2020; McGovern et al. 2019; Rasp & 

Lerch 2018). Permutation importance is here defined as ∆(𝑥∗, 𝑥)A),A* =

	𝑡𝑤𝐶𝑅𝑃𝑆����������� I𝐹7!(𝑥), 𝑦7(𝑥)J − 𝑡𝑤𝐶𝑅𝑃𝑆����������� I𝐹7$(𝑥∗), 𝑦7(𝑥)J where 𝑥∗	represents in input variable 

space with a singly randomly permutated input variable selected from the set of input features 

The input features have length equal to the total number of forecasts (𝑗). Permutation 

importance (𝑃𝐼) is then set in reference against the non-permuted forecast twCRPS ( 𝑃𝐼 =

	&
∆(Z∗,Z)-),-*

	:8NCO?FFFFFFFFFFF[A&
)(Z),G&(Z)\

	) ). The random permutation process is repeated for each input variable for 

form Figure 3.7. 
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Python code for reproducing the results and models is available online (github url). 

West-WRF simulations are archived at the Center for Western Weather and Water Extremes 

and on the National Center for Atmospheric Research servers are readily available upon request. 

GEFS data can be retrieved through the TIGGE archive 

(https://www.ecmwf.int/en/research/projects/tigge). MERRA2 data can be retrieved at 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. 

Chapter 3, in full is a reprint of the material as it appears in Chapman, W. E., Delle 

Monache, L., Alessandrini, S., Subramanian, A. C., Ralph, F. M., Xie, S.P., Lerch, S., 

Hayatbini, N. (2021) Probabilistic Predictions from Deterministic Atmospheric River Forecasts 

with Deep Learning. Monthly Weather Review. The dissertation author was the primary 

investigator and author of this paper. 
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Table 3.1. Abbreviations and descriptions of all input variables  
Feature Description Model [Input] 

IVT Integrated Vapor Transport (IVT)  [Kg m-1 s-1] CNN/NN/FCN/GEFSnn/AnEn 

Psfc Surface Pressure [hPa] CNN/NN/FCN/AnEn 

U500 500 hPa Zonal Wind [m/s] CNN/NN/FCN/AnEn 

V500 500 hPa meridional Wind [m/s] CNN/NN/FCN/AnEn 

Z500 500 hPa Geopotential Height [m/s] CNN/NN/FCN/AnEn 

IWV Integrated Water Vapor [mm] CNN/NN/FCN/AnEn 

locID Location ID number NN/FCN/GEFSnn/AnEn 
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Table 3.2. CNN Parameters by category with the convention Network Layer Component 
(abbreviation): Convolutional Layer (Conv); Max pooling (MP); Addition (Add); 
Concatenation (Concat); Zero Padding (Pad); Crop (Crop); Dense (Dense); Input (Input); Input 
Embedding layer (Input Embed); Embedding Vector (embedding). X is the batch size. N 
represents number of predictors (see Table 3.1).  

Convolutional Neural Network 

Layer Parameters Activation Norm Shape 

Input - - - [X,71,57,N] 

Pad [1,3] - - [X,72,60,N] 

Conv0 [3,3,16],1,1 LeakyReLU BatchNorm [X,72,60,16] 

Conv1 [3,3,16],1,1 LeakyReLU BatchNorm [X,72,60,16] 

MP 2 - - [X,36,30,16] 

Conv2 [3,3,32],1,1 LeakyReLU BatchNorm [X,36,30,32] 

Conv3 [3,3,32],1,1 LeakyReLU BatchNorm [X,36,30,32] 

Conv4 [3,3,32],1,1 LeakyReLU BatchNorm [X,36,30,32] 

Add [Conv2, Conv4] - - [X,36,30,32] 

Conv2dT [2,2,16],1,1 LeakyReLU BatchNorm [X,72,60,16] 

Concat [Conv2dT, Conv0] - - [X,72,60,32] 

Conv5 [3,3,16],1,1 LeakyReLU - [X,72,60,16] 

Conv6 [3,3,1,2],1,1 Linear - [X,72,60,2] 

Crop [1,3] - - [X,71,57,2] 

Conv7 [3,3,32],1,1 LeakyReLU - [X,71,57,32] 

Output [3,3,1,2],1,1 Linear - [X,71,57,2] 
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Table 3.3. Stratified rank histogram reliability index by method and for forecasts aggregated 
from lead times 0-48 hours and 54 – 120 hours.  
 AnEn FCN NN CNN GEFSnn GEFS 

F00-F048 .23 .24 .07 .097 .056 .50 

F054-F120 .081 .28 .084 .15 .09 .25 
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Figure 3.1. Coastal evaluation locations and climatological (December-March 1984-2019) 
Integrated Vapor Transport (colorfill).  
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Figure 3.2. Root mean squared error (a) and Pearson Correlation (b) skill scores against the 
forecast lead time for the ensemble mean or predicted mean from each forecast system. The 
West-WRF reforecast is used as the reference forecast, with positive values showing percent 
improvement. Shown predictions include GEFSnn (dark red), GEFS (light red), CNN (white), 
NN (light blue), AnEn (blue), FCN (dark blue). The error bars indicated the 95% bootstrap 
confidence intervals (where n=1000). 

a)

b)

*
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Figure 3.3. Two-sided Diebold-Mariano test using twCRPS (threshold = [250 kg m-1 s-1]) for 
the five forecast systems [AnEn (a), FCN (b), NN (c), CNN (d), GEFSnn (e), and GEFS (f)]. 
The reference forecast is indicated with a grey dash-dot line. Blue shade indicates that the 
reference forecast significantly outperforms the rows forecast, red indicates the reference 
forecast significantly underperforms the rows forecast, and white indicates that the reference 
forecast and the rows forecast differences are not statistically significant. Significance is 
determined by examining the test p-values after controlling for the false discovery rate at the 
level 𝛼ABC = 0.05. 
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Figure 3.4. Brier skill score at thresholds of 250 (a), 350 (b), and 500+ (c) [kg m-1 s-1] forecasted 
units of IVT against the forecast lead time for the ensemble mean or predicted mean from each 
forecast system. The GEFS ensemble is used as the reference forecast, with positive values 
showing percent improvement. Shown predictions include GEFSnn (dark red), GEFS (light 
red), CNN (white), NN (light blue), AnEn (blue), FCN (dark blue). The error bars indicated the 
95% bootstrap confidence intervals (where n=1000).  
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Figure 3.5. Binned spread-skill plots for forecasts from 0-48 hours (a-f) and 56-120 hours (g-
l). Error bars indicate the 95% bootstrap confidence interval (n=1000), and the 1:1 dotted line 
indicates a perfect spread-skill line. For each plot, ensemble spread is binned into 15 equally 
populated class intervals. Shown prediction systems include GEFS (a, g; light red), GEFSnn (b, 
h; dark red), AnEn (c, i; blue), FCN (d, j; dark blue), NN (e, k; light blue), CNN (f, l; black). 
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Figure 3.6. Stratified Rank Histograms. X-axis is number of ensembles +1, Y-axis is 
fractional occurrence of rank. A perfectly calibration forecast is uniform with amplitude at the 
shown horizontal dotted line. for forecasts from 0-48 hours (a-e) and 56-120 hours (f-j). 
Stratified on forecasts between ([250-350), [350-500), [500+]). 21 ensembles are drawn from 
the distribution representing the mean and gaussian spread from individual forecast systems 
(as labeled). ). 
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Figure 3.7. Relative permutation importance for the input predictors (defined in Table 3.1) in 
the CNN (black), NN (light blue), FCN (dark blue) post processing systems for lead times: 12 
(a), 24 (b), 48 (c), 72 (d), 96 (e), and 120 (f), using twCRPS with threshold set to 250 kg m-1 s-

1. Note the changing scale on the y-axis. The CNN system does not leverage a locID predictor. 
IVT relative predictor importance is divided by 10. 
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Figure 3.8. Forecasted 48-hour threshold weighted (250 kg m-1 s-1) continuous ranked 
probability skill score against the number of water years included in the training dataset. 
GEFSnn is used as a reference forecast. Shown prediction systems include: CNN (white), NN 
(light blue), AnEn (dark blue). The error bars indicated the 95% bootstrap confidence intervals 
(where n=1000). 
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3.7 Chapter 3 – Supporting Information 

3.7.1 Neural Network Model Architectures and Hyperparameter Search 

 
Here we explain the process and choice of the model architectures used in this study. A 

vast library of studies have been published on the details of neural network components and 

architectures and thus we describe the process of parameter selection, but do not describe the 

parameter itself. We encourage the reader to see Nielsen, (2015) for more details on individual 

parameter function.  

3.7.1.1 Neural Network  

 

A hyperparameter search was conducted  so select the model configuration for the 

described post-processing neural network (NN) system. Hyperparameters were optimized  on 

two forecast lead-times: forecast hour 48 and forecast hour 96, representing short and long 

forecast horizons (relative to the lead times examined in this study). Though automatic libraries 

exist to aide in exploring hyperparameter configurations (Hertel et al., 2020), the authors take 

a manual approach based on DL system intuition and testing. Model configuration selection 

was determined by finding the minimum CRPS across the validation datasets, for three-fold 

cross-validated data of water years 2016, 2017, and 2018 (see main text for more details). The 

validation is rotated such that results are evaluated with 3 separate validation forecast years. A 

near, unlimited set of hyperparameters configurations exist, in order to limit the search space, 

a few hyperparameters were held constant. The NN always leveraged an Adam optimizer  

(Kingma et al., 2014) with a 0.005 training step that reduces by 10% on a validation plateau of 
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5 epochs (learning cycles). After 8 epochs of no decrease in validation error, training is ended. 

This typically resulted in ~40 training epochs. The batch size remained constant at 50 samples. 

The Leaky ReLU alpha parameter is held constant at 0.3. Initially, DL model sensitivity was 

tested to the depth (number of hidden layers) of the neural network. Little change in model 

CRPS (outside of what could be expected from stochastic gradient descent) was observed on 

networks with a depth greater than two layers deep, regardless of the other hyperparameters 

chosen. A depth of 2-layers was thus chosen, and the remainder of the model configurations 

were cycled through exhaustively according to the following lists, exploring every combination 

of parameter choice. The selected hyperparameter is shown in bold. 

Embedding Vector Size ∈  [2, 4, 6, 10] 

Dense Node Size ∈ [10, 20, 30, 40, 50, 60] 

Dense Fine Tune Layer Node Size ∈ [8,16, 32, 64]  

Activation Function ∈ [‘ReLU’, ‘LeakyReLU’] 

Additionally, L2 regularization, batch normalization and dropout (Ioffe & Szegedy, 

2015; Srivastava et al., 2014), were all tested, but the model trained quickly and was not easily 

subject to overfitting and these measures did not drastically effect CRPS skill. Though we chose 

the hyperparameters that minimized CRPS most effectively across the validation dataset, we 

note that the model was not highly sensitive to skill changes and many of the model 

configurations yielded highly similar results. The batch size remained constant at 50 samples. 

The final model configuration was chosen that had the lowest CRPS when averaged across the 

48 hour and 96 hour forecast lead points. 

3.7.1.2 Convolutional Neural Network  
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A hyperparameter search was conducted to select the model configuration for the 

described post-processing convolutional neural network (CNN) system. Hyperparameters were 

optimized  on two forecast lead-times: forecast hour 48 and forecast hour 96, representing short 

and long forecast horizons (relative to the lead times examined in this study). Though automatic 

libraries exist to aid in exploring hyperparameter configurations (Hertel et al., 2020), the authors 

take a manual approach based on DL system intuition and testing. Model configuration 

selection was determined by finding the minimum CRPS across the validation datasets, for 

three-fold cross-validated data of water years 2016, 2017, and 2018 (see main text for more 

details). The validation is rotated such that results are evaluated with 3 separate validation 

forecast years. A near, unlimited set of hyperparameters configurations exist; in order to limit 

the search space, a few hyperparameters were held constant. The CNN always leveraged an 

Adam optimizer  (Kingma et al., 2014) with a 0.005 training step that reduces by 10% on a 

validation plateau of 5 epochs (learning cycles). After 8 epochs of no decrease in validation 

error, training is ended. This typically resulted in ~40 training epochs. The batch size remained 

constant at 50 samples. 

The CNN is a U-NET architecture (Ronneberger et al., 2015), which was also leveraged 

in Chapman et al., (2019) for integrated vapor transport post-processing. Though we offer a 

brief description here, we refer the reader for a detailed description of the U-Net architecture to 

Ronneberger et al. (2015). The U-Net is symmetric and consists of three main components 1) 

the contraction pass 2) the bottleneck layers 3) the expansion pass (see Fig. 3.1S). The 

contraction pass is made up of contraction blocks, where each block takes an input and applies 

3x3 convolutional kernels, for a specified number of layers, followed by 2x2 max-pooling 

layers. These blocks thus compress the input space to half its input size with each block pass. 
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The number of convolutional kernels doubles after each contraction block to expand the amount 

of abstracted information per block. The bottleneck layers take the compressed information and 

pass it through a specified number of residual blocks (see, He et al., 2015 for information on 

residual blocks). Each expansion block takes the compressed image, passes it through a 

specified number of convolutional layers and expands it using a 2x2 convolutional transpose 

layer, doubling the size of the input matrix with each expansion block. The number of expansion 

blocks must equal the number of contraction blocks in order to recover the full input image 

field. The U-NET incorporates “skipped-connections” (see green arrows in Fig. 3.1S) which 

connect layers earlier in the network to layers deeper in the network allowing less abstracted 

information (layers early in the network) to easily pass from the input vector to the output IVT. 

Again, the U-NET must be symmetric to support the skipped connections from the contraction 

block to the expansion block. 

U-net architecture allows for four main model choices which determine the larger model 

structure: 1) number of convolutional layers per contraction/expansion block prior to max-

pooling/convolutional transposing, 2) number of model levels (number of 

compression/expansion blocks), 3) number of bottleneck layers, 4) number of starting 

convolutional filters. The following list of these choices were used to search the hyperparameter 

space, with the selected parameter in bold.  

Number of layers per contraction/expansion block ∈ [1, 2, 3, 4] 

Number of starting convolutional filters ∈ [8, 16, 32, 64] 

Number of model levels ∈ [1, 2, 3, 5] 

Bottleneck residual blocks  ∈ [1, 2, 3, 4] 

Activation Function ∈ [‘ReLU’, ‘LeakyReLU’] 
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Additionally, batch normalization (Ioffe & Szegedy, 2015) was applied to assist model 

training speed. Though we chose the hyperparameters that minimized CRPS most effectively 

across the validation dataset, we note that the model was not highly sensitive to skill changes 

once the number of model levels of the CNN was set, and all configurations provided skillful 

models. The batch size remained constant at 50 samples. The model configuration was chosen 

that had the lowest CRPS when averaged across the 48 hour and 96 hour forecast lead points. 

It is the authors’ belief that a good set of hyperparameters was selected, but we would 

not classify them as the global optimal set. A greater search area could have yielded more skill. 

However, we note that the network was not particularly sensitive to hyperparameter choice, and 

improvements to the network likely would not yield greatly improved results.  

 

Further Component Description: 

ConvX:  These block represent 2d convolution. Each convolutional kernel is a 3x3 matrix.  

Conv2dT: This block is a transposed 2d convolution (also called fractionally-strided 

convolution), used for expanding the images back to their original input size via. 

Embedding Vector: This layer transforms positive indexes into dense vectors of specified size 

2. 

Leaky ReLU: This is a non-linear activation function. Leaky ReLU is a piecewise linear 

function with a slope of 1 if the input value is greater than 0 𝑓(𝑥) = 𝑥		𝑤ℎ𝑒𝑟𝑒	𝑥 ≥ 0, and a 

slope of 0.3 if less than zero 𝑓(𝑥) = 0.3 ∙ 𝑥		𝑤ℎ𝑒𝑟𝑒	𝑥 < 0. 

Batch Normalization: Applies a transformation that ensures the output of each layer has a 

mean near 0 and standard deviation near 1.  
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Max Pooling: This is used to down sample the input vector via a 2x2 matrix which selects the 

maximum value in the matrix, the stride is set to 1.  

3.7.1.3 Brier Decomposition   

The Brier skill score, which is the RMSE of probabilistic forecasts, can be decomposed 

into 3 additive components: reliability, resolution and uncertainty. We refer the reader to 

(Murphy, 1973) for a detailed decomposition. We note that we compile forecasts into 10 

probability bins ( [0-0.1), [0.1-0.2), etc.) to aggregate the forecasts for this calculation. 

Additionally, the uncertainty, which depends solely on the sample climatology (thus only 

depends on observations) is not shown as it is definitionally exactly similar for every forecast 

system. We show the forecast resolution and reliability for thresholds of [250, 350, 500] (kg m-

1 s-1) in figures 3.4S and 3.5S. 

3.7.1.4 Reliability Diagram Explanation  

Following Bröcker & Smith (2007) we show reliability diagrams which assess the 

calibration of a forecast system using a variety of threshold values across every forecast at every 

station location. We compile forecasts into 10 probability bins ( [0-0.1), [0.1-0.2), etc.) to 

aggregate the forecasts. We also examine frequency of forecast probabilities for each category 

which helps to assess the sharpness given a specific threshold graphically, with sharp forecasts 

characterized by higher frequencies for the forecasted probabilities close to either 0 or 1.  
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Figure. 3.1S. network architecture for the leveraged Neural Network (a; NN) and convolutional 
neural network (b; CNN). See Table 3.1 for input variables and Table 3.2 for layer 
specifications. For ease of viewing hidden layer nodes (black dots in (a)) are not shown fully 
connected, (a) is a fully connected NN. We include an additional component key below to aid 
the reader in network interpretation. 
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Figure. 3.2S. As in Figure 3.4, but for threshold weighted continuous ranked probability score 
at thresholds of 250 (a), 350 (b), and 500+ (c) [kg m-1 s-1] forecasted units of IVT. 
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Figure. 3.3S. The mean values of the weights across every landfall locations received by each 
predictor as a result of the brute force optimization using the modified version with the bias 
correction (AnEn) as described in Section 2.4 (The Analog Ensemble for Rare Events). Red 
intervals indicate 1 standard deviation of the weight distribution (standard deviation across 144 
station locations). 
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Figure. 3.4S.. Diebold-Mariano test for AnEn (a), FCN (b), NN (c), CNN (d), GEFSnn (e), and 
GEFS (f) as in Figure 3.3 but for twCRPS (threshold = [350 kg m-1 s-1]). 
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Figure. 3.5S. Diebold-Mariano test for AnEn (a), FCN(b),NN (c), CNN (d), GEFSnn (e), and 
GEFS (f) as in Figure 3.3 but for twCRPS (threshold = [500 kg m-1 s-1]). 
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Figure. 3.6S. As in Figure 3.4. but for Brier decomposed Resolution at thresholds of 250 (a), 
350 (b), and 500+ (c) [kg m-1 s-1] forecasted units of IVT. This metric is positively oriented. 
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Figure 3.7S. As in Figure 3.4. but for Brier decomposed Reliability at thresholds of 250 (a), 
350 (b), and 500+ (c) [kg m-1 s-1] forecasted units of IVT. This metric is negatively oriented. 
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Figure 3.8S. reliability diagrams for the CNN (a), AnEn (b), NN (c), and GEFSnn (d) forecast 
systems for an exceedance threshold of 250 [kg m-1 s-1] units of IVT. Results are based on 
observation- forecast pairs of all cross-validated testing years aggregated over all locations from 
0-48 hour forecasts. The inset histograms show the frequencies for each of 10 forecast 
probability bins in log10 scale. Bars on the diagonal indicate the bootstrapped 95% confidence 
interval of a perfect forecast. 

a) b)

c) d)

250 
0-48
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Figure 3.9S. Reliability diagrams for CNN (a), AnEn (b), NN (c), and GEFSnn (d) as in Figure 
3.8s but for an exceedance threshold of 350 [kg m-1 s-1] units of IVT. 
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Figure 3.10S. Reliability diagrams for CNN (a), AnEn (b), NN (c), and GEFSnn (d) as in Figure 
3.8S but for an exceedance threshold of 500 [kg m-1 s-1] units of IVT. 
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Figure 3.11S. Reliability diagrams for CNN (a), AnEn (b), NN (c), and GEFSnn (d) as in Figure 
3.8S but for an exceedance threshold of 250 [kg m-1 s-1] units of IVT for forecasts from 54-120 
hours . 
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Figure 3.12S. Reliability diagrams for CNN (a), AnEn (b), NN (c), and GEFSnn (d) as in Figure 
3.11s but for an exceedance threshold of 350 [kg m-1 s-1] units of IVT. 
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Figure 3.13S. Reliability diagrams for CNN (a), AnEn (b), NN (c), and GEFSnn (d) as in Figure 
3.11S but for an exceedance threshold of 500 [kg m-1 s-1] units of IVT. 
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Chapter 4  
 

Monthly Modulations of ENSO Teleconnections: 
Implications for Potential Predictability in North 
America 
 

Abstract  

Using a high-resolution atmospheric general circulation model simulation of 

unprecedented ensemble size, we examine potential predictability of monthly anomalies under 

El Niño Southern Oscillation (ENSO) forcing and background internal variability. This study 

reveals the pronounced month-to-month evolution of both the ENSO forcing signal and internal 

variability. Internal variance in upper-level geopotential height decreases ~10% over the North 

Pacific during El Niño as the westerly jet extends eastward, allowing forced signals to account 

for a greater fraction of the total variability, and leading to increased potential predictability. 

We identify February and March of El Niño years as the most predictable months using a signal-

to-noise analysis. In contrast, December, a month typically included in teleconnection studies, 

shows little-to-no potential predictability.  We show that the seasonal evolution of SST forcing 

and variability leads to significant signal-to-noise relationships that can be directly linked to 

both upper-level and surface variable predictability for a given month. The stark changes in 

forced response, internal variability, and thus signal-to-noise across an ENSO season indicate 

that subseasonal fields should be used to diagnose potential predictability over North America 

associated with ENSO teleconnections. Using surface air temperature and precipitation as 

examples, this study provides motivation to pursue ‘windows of forecast opportunity’, in which 
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statistical skill can be developed, tested, and leveraged to determine times and regions in which 

this skill may be elevated. 

4.1 Overview  
 

El Niño-Southern Oscillation (ENSO) is the most influential mode of global climate 

variability. ENSO usually develops during early boreal summer, peaks in winter, and decays in 

spring. Eastern Pacific tropical SST anomalies associated with ENSO events result in 

anomalous convective tropical precipitation. The latent heating response in the Tropical Pacific 

drives divergent wind and vorticity anomalies in the upper troposphere, which communicate 

with the extratropics via Rossby waves. Due to the location of the extratropical divergence and 

the Asian-Pacific jet, quasi-stationary Rossby wave generation arises in preferred locations over 

the Pacific Basin (Bjerknes, 1969; Sardeshmukh & Hoskins, 1988; Wallace and Gutzler, 1981), 

anchoring geopotential height (GPH) anomalies, and influencing North American weather, 

largely through the well-studied Pacific North American (PNA) pattern (J. Bjerknes, 1969; 

Trenberth et al., 1998; Wallace & Gutzler, 1981a). 

Atmospheric general circulation models (AGCM) are useful for examining the effect of 

ENSO on the predictability of the extratropical atmosphere (e.g., Branstator & Teng, 2017; Lau 

& Nath, 1996; Matsumura et al., 2010; Yang et al., 1998; Zheng et al., 2004). Ensemble 

members, influenced by similar lower boundary conditions but with perturbed initial 

conditions, result in a myriad of climate realizations which span the realistic range of 

atmospheric responses to boundary condition forcing. Lower-boundary forced signals manifest 

in the ensemble mean, working to make coherent anomalies despite the inter-ensemble member 

variability. However, the precise extratropical response to ENSO is difficult to determine as 1) 
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there is year-to-year SST variability amongst ENSO events (e.g., Deser & Wallace, 1987; 

Johnson, 2013; Newman et al., 2011) resulting in an array of forced atmospheric responses 

(e.g., Barsugli & Sardeshmukh, 2002; Johnson & Kosaka, 2016)  and 2) it exists within a 

background natural climate variability which acts to mask the SST forcing.  

If the response to lower-boundary forcing is understood, then diagnosing and 

understanding the slow varying modes inherent to the land and sea surfaces (i.e., ENSO, 

seasonal snowpack, etc.) can aid in subseasonal-to-seasonal (S2S) predictions. Predictability is 

typically studied in a signal-to-noise (SN) framework, in which the influence of the forcing is 

set in ratio against natural variability. SN has been used in several previous studies to diagnose 

the predictability of ENSO driven cold-season extratropical circulation (e.g., Abid et al., 2015; 

Kumar & Hoerling, 1998; Peng & Kumar, 2005; Sardeshmukh et al., 2000). The SN can be 

increased via two pathways: 1) an increase in the influence of the forced component; for 

example, as prescribed by the influence of ENSO SST and atmospheric teleconnections 2) a 

significant decrease in atmospheric internal variability. 

Many studies have demonstrated that the forced atmospheric response to interannual 

SST variations is important for the interannual variations in mid-latitude climates despite 

internal variability (e.g., Chen & Kumar, 2015; Kumar & Hoerling, 1995; Mizuta et al., 2017; 

Shukla & Wallace, 1983; Trenberth et al., 1998). Additionally, there is consensus that an 

increased atmospheric forced component associated with ENSO (dominantly in the warm 

phase) events leads to a higher seasonal predictability within the PNA region (e.g., Abid et al., 

2015; Chen and Dool, 1999; Kumar & Hoerling, 1998; Peng & Kumar, 2005; Sardeshmukh et 

al., 2000) and over the North Atlantic (Ayarzagüena et al., 2018; Honda et al., 2005; Bernat 

Jiménez-Esteve and Domeisen, 2018). However, studies disagree on the magnitude of ENSO 
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modulation on internal atmospheric variability. Sardeshmukh et al. (2000) show an increased 

(decreased) extratropical internal variability during El Niño (La Niña). Others observed 

negligible changes in the internal variability of GPH (Kumar and Hoerling, 1998) or associated 

surface variables (Chen and Kumar, 2015) conditioned on ENSO state. Kumar et al. (2000)  

documented a nonlinear ENSO modulation of internal atmospheric variability in the PNA 

region, with El Niño decreasing extratropical 500-hPa GPH internal variability over the North 

Pacific greater than La Niña increased internal variability. However, this did not significantly 

improve SN relative to the contribution of the ensemble mean shift. Abid et al., (2015) and Peng 

and Kumar, (2005) both report significant decreases (increases) in internal variability in El Niño 

(La Niña), leading to a significantly enhanced (diminished) SN relationship. However, there is 

evidence that these different conclusions may be due to the inclusion of different ENSO events 

and the number of examined ensembles, as SN does not vary wildly between models (Kang et 

al., 2011; Kang and Shukla, 2006). 

Trenberth et al., (1998) review studies that have diagnosed tropical-extratropical 

interactions due to anomalous tropical SSTs, and reveal key factors in determining the 

extratropical response. These include the location and intensity of tropical circulation 

anomalies, the effects of the mean flow on planetary wave propagation and forcing, interactions 

with midlatitude storm tracks, and interference from the internal chaotic variability of the 

midlatitude circulation (Trenberth et al., 1998 and references therein). The extratropical 

atmosphere has been observed to respond nonlinearly to ENSO cold and warm events, with a 

dominant SST forced response occurring in the warm phase and a milder reaction during cold 

events (e.g., Hoerling et al., 1997; B Jiménez-Esteve & Domeisen, 2019). Additionally, the 

impact of the annual cycle on the global wind field, and thus the barotropic Rossby wave guide, 
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leads to drastic dynamic changes in the background state upon on which low frequency forcing 

acts (R Seager et al., 2010; Souders et al., 2014). Therefore, studies which examine the 

departure from seasonal means rather than incorporating important month-to-month differences 

are less effective and potentially misleading, particularly in late winter early spring (Newman 

& Sardeshmukh, 1998). There has a been a recent reexamination of ENSO teleconnection and 

their extratropical manifestations (e.g., Chen & Kumar, 2015; Deser et al., 2017, 2018; Zhang 

et al., 2014). However, there has been much less work which resolves the significant 

intraseasonal differences sparking from a changing monthly background state. 

Increasing computational resources enable AGCMs to now run at higher resolution, 

larger ensemble size, and utilize longer historical records. These added statistics permit a 

reexamination and further exploration of large-scale dynamics and their influence on 

extratropical predictability from a SN standpoint. In this study, we test the reliability of the 

PNA-like response, and the effects on temperature and precipitation anomalies associated with 

ENSO events. We employ a high-resolution, large ensemble AGCM to examine the dynamic 

effect of anomalous ENSO forcing, and the seasonal variations at monthly resolution. We then 

explore noticeable differences in month-to-month internal variability driven by changes in large 

scale dynamics within the PNA sector. The resulting monthly changes in SN relationships imply 

important changes in the level of predictability of given variables. Finally, to test the utility of 

the PNA driven changes, we diagnose whether the SN modulation manifests in monthly 

observed anomaly composites and also to improved predictive utility on monthly timescales. 

Utilizing in-situ observations, we construct a simple probabilistic framework and adopt an 

information theory based potential predictability (PP) perspective (Kleeman, 2002) to show the 

month-to-month impact of ENSO on temperature predictability. 
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4.2 Data and Methods  

4.2.1 AGCM experiments  

To diagnose the atmospheric response to prescribed SST conditions, we utilize monthly 

mean values from a 100-member ensemble AGCM. Ensemble data were produced by the 

Meteorological Research Institute AGCM, version 3.2 (Mizuta et al., 2017) at a horizontal 

spectral resolution with triangular truncation at wave-number 319 and linear Gaussian grid 

(TL319; equivalent to 60-km mesh) with 64 vertical layers (Murakami et al., 2012). The AGCM 

was driven by observation-based SST, sea-ice concentration, and radiative forcing (greenhouse 

gases, aerosols and ozone) from 1951-2010, derived from the Centennial In Situ Observation-

Based Estimates (COBE/COBE-SST2) (Hirahara et al., 2014). Small SST perturbations based 

on slight adjustments to the empirical orthogonal functions of the interannual variation of SST 

analysis [see the appendix of Mizuta et al., (2017)] were added to the COBE SST to account 

for uncertainties in analysis (Hirahara et al., 2014). It has been shown that the spread in climate 

response due to the perturbed SST is comparable to that due to initial condition perturbations 

(Mizuta et al., 2017). Sea-ice concentration was derived from a quadratic equation on the sea-

ice/SST relationship (Hirahara et al., 2014). This dataset, titled the Database for Probabilistic 

Description of Future Climate Change (d4PDF), has been used to evaluate historical variations 

of atmospheric responses to global SST variability (e.g., Kamae et al., 2017; Mei et al., 2019; 

Naoi et al., 2020). More details of the experimental setup can be found Mizuta et al. (2017) and 

Kamae et al. (2017).  

The high-resolution of d4PDF, a state-of-the-art model with a physically consistent 

Northern Hemisphere atmospheric response to slowly varying mode forcing (e.g. ENSO, 
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Pacific Decadal Oscillation, etc.) (Kamae et al., 2017) will likely represent transients (Hertwig 

et al., 2015), the atmospheric response to ENSO (Andrew Dawson et al., 2011), mid-latitude 

blocking (Davini et al., 2017), and major weather regimes (Andrew Dawson & Palmer, 2015) 

better than a low-resolution model as shown by previous studies referenced here. 

4.2.2 Definition of ENSO and Compositing  

 We define the ENSO index as the 3-month running mean of COBE-SST2 anomalies in 

the Niño3.4 region ([5°S, 5°N];[170°W,120°W]). Anomalies are derived from centered 30-year 

base-periods updated every five years, in the exact manner as NOAA’s Oceanic Niño Index 

(ONI). Years are classified as El Niño (La Niña) based on a DJF value greater (less) than (-)1K 

and a FMA value greater (less) than (-)0.5K. This criteria results in 10 El Niño and  9 La Niña 

years. Table 4.1 specifies the categorical state of each year. We note that 8 of the 10 examined 

El Niño events fall into the category defined in (Johnson & Kosaka, 2016a) which exceed the 

convective threshold in the eastern Pacific (~.7K DJFM average SST anomaly in region ([5°S, 

5°N];[160°W,120°W]). Diagnosis of nonlinear responses between El Niño and La Niña states 

are performed by regressing variables on contemporaneous COBE-SST2 monthly anomalies in 

the Niño3.4 region for each state (Niño/Niña) independently, and examination of the slope of 

the fit. All values are demeaned (base period 1951-2010) and linearly detrended prior to the 

regression.  

We examine monthly values for every model field. Temporal resolution is set at one-

month intervals to focus on the intraseasonal dynamical atmospheric response to ENSO events. 

As El Niño’s effects are largely pronounced in boreal winter (Philander, 1989) and SST 

anomaly peaks in early winter (Neelin et al., 2000), we focus on November-April. We examine 

only monthly anomaly fields. For demonstrative purposes, in a few instances, the figures show 
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an anomaly + the background climatology, these exceptions will always be indicated in the 

figure caption.  We compute monthly anomalies, for every field, by subtracting the climatology, 

derived from the monthly mean using base-period 1951-2010. We then linearly detrend each 

time series to reduce potential effects of secular climate change. El Niño/ La Niña composites 

are formed by averaging the monthly anomalies of the years defined in Table 4.1.  

When testing significance on ensemble mean fields, we utilize bootstrap methods by 

resampling all of the ensemble mean monthly anomaly years in the record 1000 times and 

examine the 5th and 95th percentile from the synthetic distribution. When examining the 

observational record, we utilize the composite and sampling methods described in Deser et al. 

(2017), where ENSO events are treated as exchangeable and uncertainty in the composite mean 

is determined by random sampling with resampling, again we sample the events 1000 times to 

determine confidence intervals. 

4.2.3 Variable Selection   

We examine the Northern Hemisphere ENSO response on upper-level and surface 

variables. 200-hPa GPH and wind anomalies are examined. 200-hPa GPH is associated with 

strong teleconnection modes (Mo & Livezey, 1986) between the tropics and the extratropics 

via changes in the large-scale atmospheric circulation in the Pacific-American and Atlantic-

European sectors. The 200-hPa wind field, particularly in the Pacific jet region, undergoes a 

seasonal extension and intensification through early winter (November–January) as the 

Northern Hemisphere midlatitude baroclinicity increases, reaching its greatest zonal extent in 

February, and then retracts and weakens through March and the early spring (see Fig.1 of 

(Newman & Sardeshmukh, 1998)] . Additionally, the 200-hPa zonal winds are modulated in El 

Niño (La Niña) winter with a southward (northward) shift, intensification (reduction) in 
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magnitude, and thus an increased (decreased) zonal extent (see Fig. 4.1 vector anomalies and 

Fig. 7 of Jiménez-Esteve & Domeisen, (2018)).  

 We examine two-meter temperature (T2m) and precipitation which are directly linked 

to the above mentioned 200-hPa GPH and wind fields. During El Niño years anomalous 

southerly winds advect warm marine air over northwestern North America while anomalous 

northerlies bring cooler continental air masses to the southeastern United States. A strengthened 

storm track increases precipitation over much of the southwestern United States, while leaving 

the northwestern United States anomalously dry. We observe the opposite relationship for La 

Niña seasons (e.g., Dai & Wigley, 2000; Deser et al., 2018; Jong et al., 2016; Ropelewski & 

Halpert, 1986). We are motivated to study these surface variables, in tandem with upper-level 

dynamics, in order to improve ENSO based S2S forecasting accuracy, which benefits vast 

swaths of North America's populations. 

4.2.4 Observations  

 Observed 200-hPa GPH anomalies, are derived from monthly data from the National 

Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research 

(NCAR) reanalysis (Kalnay et al., 1996) available on a 2.5° x 2.5°grid. Daily average T2m data 

is utilized from the NCEP surface gaussian product which is available on the native T-62 

gaussian grid (approximately 1.875° x 1.875°) over North America (Kalnay et al., 1996). 

Finally, monthly observed precipitation is obtained from the National Oceanic and Atmospheric 

Administration’s precipitation reconstruction over land dataset interpolated onto a 1°x 1° grid 

(Chen et al., 2002). Every observed data set spans years 1951-2019. All the data sets were 

downloaded from www.esrl.noaa.gov/psd/.   
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4.2.5 Rossby Wave Source & Wave Activity Flux   

We examine the 200-hPa Rossby wave source (RWS) (Sardeshmukh & Hoskins, 1988). 
 

RWS = −ζ]D − v�̂ ⋅ ∇ζ]		, (4.1) 
 

The RWS is derived from the barotropic vorticity equation and locates vorticity forcing. 

RWS is computed using the magnitudes of the divergence (𝐷), the absolute vorticity (ζ_), and 

the irrotational component of the wind (𝑣�̂ ). RWS can be decomposed to 1) −ζ_𝐷, a vortex 

stretching term, representing the effects of divergence on vorticity change, and 2) 𝑣�̂ ⋅ ∇ζ_, the 

absolute vorticity advection by divergent flow, provided by regions of strong vorticity gradient 

(i.e. subtropical jet). To compute RWS terms we use the windpharms Python package (Andrew 

Dawson, 2016). 

Following Takaya & Nakamur (2001), we use horizontal 200-hPa wave activity flux 

(WAF) to explore the stationary Rossby wave sources and wave propagation in the extratropics. 

WAF is independent of the wave phase and parallel to the local group velocity of stationary 

Rossby waves. Monthly anomalies are regarded as perturbations. The horizontal flux is given 

as 
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, (4.2) 

 

where 𝑃, 𝑈, 𝑉, ψ> and 𝑎 are pressure (scaled by 1000 mb), zonal climatological wind velocity, 

meridional climatological wind velocity, perturbation geostrophic stream-function, and the 
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radius of the earth. Subscript 𝑥 denotes the longitudinal derivative    a 
a b
 , 𝑦 the latitudinal 

derivative a
ac

 , λ the longitude, and ϕ the latitude, respectively. 

4.2.6 Variance Patterns  

To extract the leading patterns of variability, we perform empirical orthogonal function 

(EOF) decomposition on monthly anomaly 200-hPa GPH fields of the ensemble mean and the 

internal variability fields. Decomposition is performed on each calendar month independently, 

and the full ensemble, and internal variability fields utilize all 100 members. All EOF patterns 

are area-weighted by the square-root of the cosine(latitude), prior to decomposition. We express 

the orthogonal spatial fields as the point-wise regression of each time series on the 1-standard 

deviation change of the temporal principal component (PC) modes.  

4.2.7 Signal-to-Noise & Potential Predictability  

With 100 ensemble members at 60km resolution, d4PDF is unmatched in SN literature, 

and provides a more constrained estimate of the forcing. The deviation from the forced 

response, or ensemble spread, gives an approximation of the atmospherically derived internal 

variability.  

We define context dependent signal and noise as anomalies from the ensemble mean 

and spread, respectively, consistent with (Kumar & Hoerling, 1998). We note that the structure 

of atmospheric internal variability can, and in general does, depend on SST forcing. This 

dependence has been the subject of a number of papers (e.g., Abid et al., 2015; P. D. 

Sardeshmukh et al., 2000; Schubert et al., 2001). Strictly speaking, it is not valid to refer to 

internal variability simply as “noise,” as this implies that it is independent of the forcing. 

However, for brevity we refer to SST independent internal variability as noise. We henceforth 
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derive the climate signal, for any variable 𝑥, as the monthly mean anomaly of the ensemble 

mean state for individual months in a particular year (𝑎) and ensemble members (𝑖). 

𝑋_ =
1
100�𝑋9_

!&&

9%!

, (4.3)	 

The internal variability of the system is what remains in each ensemble, after removing 

the forced signal. Deviation from the ensemble mean (equation 4.4) represents the variability 

of the atmosphere determined by any perturbation unassociated with the lower boundary 

condition and radiative forcing. 

𝑌_ =
1
100�4𝑋9_ − 𝑋_7

$
, (4.4)

!&&

9%!

 

Spatial averaged (denoted by ⟨ ⟩) signal and noise root-mean-square (RMS) terms are 

defined as  �𝑋_
$
 
)
*
 and ¡𝑌_¢

)
* respectively with signal-to-noise (SN) being a representation of 

the ratio of the aforementioned terms ( 𝑆𝑁 =
de/

*
f
)
*

gH/h
)
*

 ). This is analogous to the conventional 

assessment of potential predictability derived from standard ratio of variance analyses (Chervin, 

1986; Kumar & Hoerling, 1995; Rowell, 1998).  SN is positive, and values greater than 1 imply 

that signal is greater than noise. Grid point RMS is area-weighted by the square-root of the 

cosine(latitude) for spatially averaged fields. 

4.2.8 Kullback-Leibler divergence   

To help verify the AGCM findings on observations, we utilize the Kullback Leibler (KL) 

divergence to assess the potential predictability of a conditioned distribution against 

climatology.  
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The KL divergence is borrowed from information theory and measures (in units bits) 

the extent to which a distribution 𝑞 can be discerned from 𝑝 (Kullback, 1997). Here, since 𝑝 

and 𝑞	are the conditioned and climatological distributions, respectively, the KL-divergence can 

be interpreted as the extent to which a particular condition (i.e. Niño3.4 > 1K) informs the 

model prediction beyond climatology alone. Formally, it measures the number of excess bits 

needed to represent the examined variable when the condition is ignored (Cover & Thomas, 

2006; MacKay, 2003). 

The use of the KL divergence for assessing the PP of a forecast was proposed by  

(Kleeman, 2002). It has also been used to evaluate the potential forecast skill for multiple 

atmospheric variables (DelSole, 2004; Roulston & Smith, 2002) and to evaluate the effect of 

ENSO on North American T2m (Schamberg et al., 2020). In our analysis	𝑖 will represent 

categorical anomaly states of below normal, normal, and above normal (𝑖	 ∈ {1,2,3}),  using the 

33rd and 66th percentiles to quantize these states.  Confidence intervals are determined by 

bootstrap with resampling all years in the record 1000 times and examine the 5th and 95th 

percentile from the synthetic distribution. 

4.3 Atmospheric Response to ENSO  

It is important to note that the following results are reflective of the AGCM chosen for 

this analysis, and the ENSO event selection criteria. The sensitivity and response to SST forcing 

vary across individual models, resulting in varied ranges of internal variance and predictable 

ENSO forcing in the teleconnections. However, models with larger signals tend to have larger 
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noise, making PP vary weakly across models  (Kang & Shukla, 2006). Kang et al. (2011) 

showed that synoptic transients in the Pacific basin comprise a large fraction of the signal and 

noise associated with the PNA.  

During El Niño, the Pacific warm pool (and thus anomalous precipitation) shifts 

eastward. Forced by strong divergence at the upper-levels in response to this precipitation, the 

Northern Hemisphere has a forced anomalous GPH response (Deser & Wallace, 1990). Figure 

4.1, shows the ensemble mean monthly composite of anomalous GPH in February and March 

by ENSO state. The leading mode of forced tropical precipitation (not shown) has a correlation 

to the Niño3.4 index of 0.92 for the cold season (NDJFM, correlation on seasonal mean). 

Anomalous tropical SSTs peak during December and fade through the remainder of winter and 

early spring. However, precipitation in the tropics is not controlled solely by SSTs, but 

modulated by the convective threshold (Gadgil et al., 1984; Graham & Barnett, 1987; Johnson 

& Xie, 2010). Due to higher climatological SSTs in combination with a retained El Niño SST 

signature in late winter and early spring, the upper-level divergence, and thus teleconnection, 

remains active well beyond the peak of tropical SST anomalies (Y. Guo et al., 2019; Xie et al., 

2018). Hoerling et al. (2001) accredits the convective threshold as the source of a longitudinal 

shift in the North Pacific teleconnection between strong and weak ENSO events. The forced 

tropical precipitation response for every examined field peaks in February and remains 

anomalously strong into March. The extratropical GPH ENSO response is well studied, and a 

pressure pattern similar to the PNA, emerges as a stationary Rossby wave (Wallace & Gutzler, 

1981a). This PNA-like pattern is characterized by a deepened Aleutian Low (AL), an increased 

Canadian High, and a deepened Florida low pattern extending into the Atlantic. A clear 

longitudinal shift is evident in the magnitude of the GPH anomaly in the late El Niño season 
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(Fig 4.1a and  4.1b white dot, see supplemental Fig. 4.1S for the full wintertime season 

anomalies). Additionally, the ENSO forced North Atlantic response (Honda et al., 2001; Honda 

& Nakamura, 2001) is not apparent until February/March, and shows a weaker anomalous 

response to ENSO forcing than the PNA. DJFMA ensemble mean monthly composite of 

anomalous GPH by ENSO state are shown in the supplemental material (Fig. 4.1S).  

ENSO anomalous upper-level winds are mostly geostrophic as evident by the 200-hPa 

anomalous wind vectors parallel to the 200-hPa GPH anomalies. The large-scale (synoptic) 

Pacific trough (ridge), is thus able to bring warm marine (cool polar) air into the North 

American West, altering the surface temperatures (Z. Q. Zhou et al., 2014) during an El Niño 

(La Niña) event. Additionally, there is a distinct latitudinal shift in the subtropical jet (Fig. 4.2) 

which migrates from north-to-south (~5° as measured by the maximum zonal winds) throughout 

the ENSO season (Fig. 4.2). It is observed that due to the deepened (shallowed) Aleutian 

pressure anomaly, the jet stream is magnified (diminished), moved southward, and extended 

(contracted) across the Pacific during El Niño (La Niña) (Norris, 2000) (Fig. 4.1 and Fig. 4.2). 

This alters the longitudinal location of the jet exit region, the region of highest variability 

(Athanasiadis et al., 2010). 

4.3.1 Rossby Wave Source  

The ENSO RWS is depicted in Figure 4.2. During El Niño (La Niña), anomalous 

divergence (convergence) is produced from deep tropical convection, flow peaks at the edges 

of the heating region, resulting in anomalous convergent (divergent) regions in the subtropics. 

In the North Pacific, the position of the jet anchors the source term and often determines the 

major Rossby wave response of the North Pacific (Hakim, 2003). Under the influence of the 

seasonal jet cycle, and the evolving ENSO precipitation signal (Fig. 4.2, inset), the peak 
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response shifts east and west throughout the season, leading to a shifting center of action in the 

extratropical GPH response (Fig. 4.1, white dot). Interestingly, the teleconnection pattern shifts 

7.5° (10°) from east to west alone between February and March of El Niño (La Niña) years, 

owing to the major contraction of the mean subtropical jet (Fig. 4.1). To first order, the monthly 

El Niño and La Niña response is symmetric, but the asymmetrical components, outside the 

strongest response regions, lead to important dynamic differences (Feng et al., 2017). The most 

notable asymmetry occurs in March where the El Niño composites show an extended positive 

RWS term that spans most of the Pacific while the La Niña counterparts RWS is relatively 

muted (Fig. 4.2g & 4.2h). Generally, asymmetry (in amplitude and position) is observed 

between the cold and warm composites, notably in the eastward shifted and amplified 

anomalous GPH and the Pacific extension of the RWS term (Figures 4.1 & 4.2). Zhang et al., 

(2014)  and Feng et al., (2017) have recently reexamined the asymmetrical components the 

ENSO response and found it is driven by the background state of the atmosphere and plays an 

important role in how ENSO affects the North American climate.  

Figure 4.3 shows the forced RWS and its components for each ENSO category in the 

characteristic RWS anchoring region for boreal winter (Andrew Dawson et al., 2010; Nie et al., 

2019) (Lat: [25°N,40°N] Lon: [145°E, 155°W], inset map). We find a significant nonlinear 

RWS response to SST forcing between El Niño/La Niña seasons, with an increased sensitivity 

in El Niño periods (Fig. 4.3d). The nonlinearity is demonstrated by the slope of a linear fit 

calculated by regressing RWS on corresponding positive and negative Niño-3.4 anomalies 

(respectively) utilizing every monthly value in DJFM. The difference of these slopes is 

significant at the 10% level. We find no significant difference in the magnitude of the Niño-3.4 

anomaly between El Niño/La Niña in any month over December–April (DJFMA; Fig. 4.3e). 
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This nonlinear response to categorical ENSO states is a well-noted phenomenon (e.g., Hoerling 

et al., 1997, 2001; Hoerling & Kumar, 2002; B Jiménez-Esteve & Domeisen, 2019; Johnson & 

Kosaka, 2016; Trascasa-Castro et al., 2019), although the exact source of the nonlinearity in 

the extratropics is still subject to debate (Frauen et al., 2014). Many studies point to the 

convective precipitation response to tropical SST as a contributing factor (e.g., Chung & Power, 

2015; Hoerling et al., 2001). We find the observed RWS nonlinearity is alleviated somewhat 

(but remains significantly different), when regressing the RWS on tropical precipitation (not-

shown). The nonlinear response is seen in the magnitude of difference in the vortex stretching 

term for either ENSO state. The anomaly difference of the RWS term for cold and warm states 

is greatest in March, where both ζ_ and 𝐷 remain highly anomalous in the warm phase (Fig. 

4.3c). For both phases of ENSO, RWS anomaly peaks in February, with near equal magnitudes 

in January and March of El Niño years (Fig. 4.3c). The absolute vorticity advection opposes 

the vortex stretching term, thus weakening the total RWS in DJF. However, the magnitude of 

𝑣�̂ ⋅ ∇ζ_ decreases back to climatology in March, diminishing the March RWS drop from the 

February RWS peak (Fig. 4.3b,c). April sees a near full decay of the RWS. We observe an 

asymmetric ENSO response in every examined monthly ensemble mean anomaly variable 

(GPH, RWS, divergent wind, etc.).   

4.3.2 Wave Activity Flux  

WAF is diagnosed using equation 4.2 to explore month-to-month Rossby wave 

propagation. Figure 4.4 shows the forced monthly composites of ENSO WAF (vector), the 

anomalous 200-hPa GPH (colorfill), and the anomalous RWS (contour). In both ENSO states, 

WAF emanates from the strong RWS at the exit of the Pacific jet through the Aleutian Low 

(AL) toward North America. The December El Niño Canadian limb of the teleconnection 
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pattern shows a stronger anomalous signal than the corresponding Niña composite. By January 

in the El Niño season a canonical wave train has emerged, with the classic 4-pole PNA pattern. 

The January La Niña composite shows a strong AL signal but mostly insignificant WAF over 

land. WAF peaks in February, with a fully developed wave train pattern in both ENSO phases. 

This corresponds with the strongest PNA-like anomaly GPH pattern. The maximum Florida 

limb of the teleconnection pattern, for both WAF and GPH anomalies, is observed in March of 

Niño seasons. The Niña pattern has diminished greatly by March and both WAF and GPH 

appear relatively weak in April. Across the season the WAF shows an extreme asymmetry 

between El Niño and La Niña, varying with the asymmetric GPH anomalies. Interestingly, the 

El Niño/La Niña pathways appear different in Rossby wave propagation for the Florida low 

GPH anomalies with El Niño WAF showing a more southerly route (consistent with, Seager et 

al., 2010).  

The Icelandic Low (IL) (~[64°N,30°W]) undergoes a seasonal shift in phase expression 

between early (ND) and late season (FM) ENSO states. This is a well-studied shift that is robust 

in the observational record (e.g., King et al., 2018) though climate models typically do not 

represent the early season mechanism well (Ayarzagüena et al., 2018). D4pdf captures the 

early-season IL anomalies in the ensemble mean (Fig. 4.4a,b), which stem from increased 

precipitation anomalies in the Gulf of Mexico leading to enhanced anomalous RWS at 250-hPa 

(Fig. 4.2a,b). A late-season emergence of an anomaly in the IL occurs in February/March of El 

Niño years. In February a wave train emanates as an extension of the PNA-like pattern, 

extending the Canadian High and Florida Low into the Atlantic. A large body of literature finds 

the late season ENSO influence on the IL is due to changes in stratospheric circulation 

(Trascasa-Castro et al., 2019 and references therein). We observe an additional tropospheric 
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pathway with significant RWS terms stemming from increased precipitation (precipitation 

anomaly not shown) in the Gulf of Mexico and Florida region interacting with the Atlantic jet, 

which is energized and extended in El Niño years (Fig 4.2e,g). We see a particularly nonlinear 

RWS and WAF response between March of La Niña and El Niño years in this region. With El 

Niño leading to the shallowing of the surface IL anomalies, and the negative phase of the NAO. 

This late-season development of the IL, and peaking of the Florida low PNA-like pattern was 

also observed in multiple studies and referred to as the Aleutian-Icelandic low see-saw index 

(AII) (e.g., Honda et al., 2001, 2005; Honda & Nakamura, 2001). 

4.3.3 Additional Sources of ENSO Forced Extratropical Waves  

Though we focus on the dispersion of Rossby waves excited by tropical heating, 

extratropical waves are additionally generated and anchored due to barotropic energy 

conversion from the subtropical jet deceleration Iij
k

iZ
< 0J in the jet exit region and synoptic 

scale transient eddy vorticity fluxes. Both mechanisms are modulated by ENSO. Jet 

deceleration allows waves to effectively extract kinetic energy from the zonally asymmetric 

climatology, via an energy transfer from the climatological stationary eddies to the anomaly 

(Athanasiadis et al., 2010; Branstator, 1989; Feldstein, 2002; Simmons et al., 1983). The 

anomalous synoptic transient activity along the Pacific storm tracks -- which is extended 

eastward to the jet exit region during El Niño years (Harnik et al., 2010; R Seager et al., 2010) 

-- produces the seasonal-mean transient eddy vorticity flux convergence anomalies that 

reinforce the local signals of seasonal-mean circulation anomalies (Held et al., 1988; Straus & 

Shukla, 1997). Moreover, the downstream propagation of transient eddies from the Pacific to 
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the Atlantic basin provide a tropospheric pathway for NAO related GPH anomalies (Jiménez-

Esteve & Domeisen, 2018; Ying Li & Lau, 2012)  during ENSO. 

4.4 Signal vs. Noise  

We examine the leading mode of variability in two categories: the internal variability, 

and the forced response (Fig. 4.5, column I and II, respectively). The leading mode of variability 

accounts for ~20-30% (month dependent) of the full variability (not shown), and both internal 

variability and the forced response have loadings in the PNA regions. However, distinct 

differences are observed. Note that the internal variability (Fig. 4.5, column I) patterns have a 

far southward extent of the Canadian high-pressure system that largely covers the western 

United States, and the forced response has a linked low pressure system between the AL and 

the Florida low (Fig. 4.5, column II). The forced pattern more closely resembles the El Niño 

composites (see loading locations of Fig. 4.4) and the anomaly strength in the principal 

component agrees with this finding (not shown).  

Although the NAO loadings are present in the internal signal throughout boreal winter, 

the  forced negative NAO signal does not emerge until February. The NAO, with the exception 

of very low frequency forcing signals, is not necessarily strongly forced by an oceanic mode 

(Stephenson et al., 2000). However, ENSO forced PNA/NAO patterns/signatures, can be 

spurred by the PNA's advection of air masses which lead to baroclinic waves forming the North 

Atlantic storm track (Pinto et al., 2011). By this mechanism, a negative interannual correlation 

between the intensities of the Aleutian and the Icelandic lows reaches a value of ~-0.7 between 

the indices averaged from February to Mid-March in observations. (Honda et al., 2001; Orsolini 

et al., 2008). During February and March, the leading forced modes (Fig. 4.5h,j) show loadings 

consistent with a negative NAO phase (Barnston & Livezey, 1987) that is correlated with the 
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Niño3.4 signal (Huang et al., 1998) and peaks in the late winter/early spring. There has been 

much work on the dispersive characteristics of climate models and seasonal-to-multiseasonal 

predictability of the NAO (e.g., Scaife & Smith, 2018; Shi et al., 2015; Weisheimer et al., 2019). 

The NAO fraction of variance is low compared to the forced ensemble counterpart in every 

month. However, it has been observed that the NAO is more predictable (in a signal-to-noise 

framework) than climate models typically represent it to be (Scaife & Smith, 2018; Siegert et 

al., 2016; Zhang & Kirtman, 2019) and a model post-processing variance adjustment (Smith et 

al., 2020) could show a more enhanced variance fraction of the full ensemble in the ensemble 

mean.  

The leading mode pattern accounts for ~40-70% of the forced response variance and its 

principal component correlates with the Niño3.4 anomaly index at ~.65-.90, month dependent. 

The DJF average fraction of variance in the leading mode (~58%) agrees well with previous 

studies of ENSO forced variance (e.g., 53%:  Kumar et al., 2005; 56.2%: Zhang et al., 2016). 

However, the forced PNA-like pattern is particularly dominant in FM (~66% of variance) and 

correlates strongly with the Niño3.4 index (~.9).  

4.4.1 ENSO modulation of Internal Variance  

Motivated by the important role the AL plays in modulating North American weather 

(e.g., Gibson et al., 2020), 200-hPa GPH signal and noise (Fig. 4.6a) over the North Pacific 

(Lat: [30°N,60°N], Lon: [165°E,130°W]) is diagnosed. Climatologically, GPH noise is greatest 

during boreal winter, peaks in February, and lowest in summer (Fig. 4.6a, solid black line). 

Internal variability is significantly different from climatology (though weakly) in February of 

La Niña years (Fig. 4.6a, solid blue line). We find a modulation of the GPH noise conditioned 

on the ENSO state (Fig. 4.6a). With adjustments of up to ~10% (by percentage difference) of 
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modulated RMS across DJFM (Fig. 4.6a) in El Niño. This is a similar finding (though ~7%< 

(Abid et al., 2015)) in El Niño years. Abid et al. (2015) attributed the modulation of noise in 

ENSO years to extratropical transients, and not to increased tropical precipitation variability (as 

tropical variability, which is proportional to SST magnitude, increases (decreases) in El Niño 

(La Niña) years (Peng & Kumar, 2005)). The forced AL peaks in February of El Niño years 

diminishing slightly through March. Owing to decreased noise and increased signal in February 

and March, the regional SN approaches 1 in March. 

 Figure 4.7 displays the FM ENSO spatial modulation of the internal variability via 

monthly composites of GPH RMS noise with climatological noise depicted in solid contours. 

ENSO modulation is most apparent in JFM, with a peak in February. Noise modulation 

becomes effective for PP in March of El Niño years, as noise climatologically decays in concert 

with an El Niño mean shift (Fig. 4.6a & Fig. 4.7 , black contour). The internal variability is 

largely decreased (increased) during El Niño (La Niña), with the exception of the jet exit region, 

which is the highest source of variability in either ENSO state. The ENSO effect on internal 

variability is stronger in the warm phase than in the cool phase (See Fig 4.7c vs. Fig. 4.7d). La 

Niña noise in the northwest Pacific is significantly increased in DJF, peaks in February, and 

decays back to climatology by March (Fig. 4.6a). Abid et al. (2015) found similar diminished 

noise in the extratropical PNA region during El Niño events. Abid et al. (2015) point to the 

noise intensification associated with barotropic instability in the PNA region as a possible driver 

(Branstator, 1985; Simmons et al., 1983). Eastward (Westward) extensions (contractions) of 

the zonal jet are co-located with decreased (increased) noise in the western Pacific and over the 

southern United States. The areas of increased (decreased) El Niño (La Niña) noise 

([~40°N,150°W]) are directly related to the shift in the Pacific jet exit region (Fig. 4.7). DJFMA 
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ENSO spatial modulation of the internal variability via monthly composites is shown in the 

supplemental material. 

4.4.2 Signal-to-Noise Ratio  

  Using SN as a proxy for PP ( Sardeshmukh et al., 2000), we examine 200-hPa GPH, 

T2m, and precipitation SN during ENSO events. Area averaged SN for GPH, T2m and 

precipitation is shown (Fig. 4.8a,b,c, respectively) in the PNA sector (defined here as [25°N, 

70°N], [155°E, 60°W]). T2m SN is only accounted for over land. FMA GPH SN show a 

significant difference between ENSO categories (Fig. 4.8a). Temperature and precipitation 

show a significant difference in March and April (Fig. 4.8b).  El Niño/La Niña Precipitation is 

significantly different in March (Fig. 4.8c). We observe a statistically significant (10%) 

nonlinearity (diagnosed as described above) of month-to-month SN across all variables 

conditioned on the Niño3.4 anomaly (Fig. 4.8d, T2m and precipitation not shown). Figure 4.9 

shows the monthly composites of SN across North America for GPH and T2m. The 

teleconnection most dominantly affects T2m in El Niño in northwestern North America 

(NWNA), through the advection of warm marine air. The NWNA T2m SN increases in January, 

peaks in March, and remains elevated during April, shifting northward throughout the season. 

We theorize the April NWNA T2m SN to be a manifestation of a decreased snowpack from the 

previous month’s warm temperature anomalies (Zhang et al., 2011). The American southeast 

T2m is also affected by the southernmost limb of the PNA pattern. Northern Mexico and Florida 

show the most consistent, and significant SN,  which peaks in March of El Niño years. The 

temperature SN patterns match the Deser et al., (2018) observed and simulated ENSO anomaly 

seasonal composites well, but they occur in distinct months in boreal winter, rather than 

showing a full seasonal shift. This could indicate that averaging over a season acts to mute the 
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forced ENSO signal. Additionally, La Niña SN is generally weaker in the T2m field, in 

agreement with diminished dynamic model forecast skill when compared to El Niño seasons 

(Chen et al., 2017). 

GPH SN is greater over the PNA region, in EL Niño than La Niña, showing patterns 

which match the forcing signal (Fig. 4.4). Figure 4.10 shows the monthly composites of SN 

across North America for GPH and precipitation. La Niña SN only peaks in the southern half 

of the AL region (Fig. 4.10f, h), where internal variability is low (Fig. 4.7). GPH SN does not 

peak in the IL region, though in observations, Northern Canada and the Eastern U.S. show a 

significant shift in temperature anomalies (see, Deser et al., 2018). This is an indication that the 

northern limb of the PNA teleconnection response in d4PDF is potentially overdispersive.  

We detected low precipitation SN across the ENSO seasons (Fig. 4.10). FM SN shows 

an emergent reflection of the well-studied meridional dipole of ENSO precipitation over 

western America (Dettinger et al., 1998). GPH patterns are often represented well (Flato et al., 

2013), and an increased northern continental SN value in El Niño could be indicative of SST 

forced anomalous GPH patterns steering precipitation events away from the NWNA to impact 

more southerly locations. The largest source of SN in both ENSO states is in the Eastern Pacific 

(~[30°N,135°W]), highlighted by Zhou et al. (2014) , as enhanced (diminished) westerlies steer 

extratropical storms to a more southerly (northerly) position during El Niño (La Niña) causing 

increase (decreased) precipitation. Additionally, northern Mexico and Florida show a 

significant SN, magnified in La Niña years.  Previous studies have shown significant influence 

of tropical SST anomalies on North American precipitation variability (e.g., Burgman & Jang, 

2015; Dai, 2013; Meehl & Hu, 2006; Richard Seager et al., 2005). Accurately representing 
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precipitation involves heavily parameterized processes, and linking to surface fields 

(topography, coastline, vegetation), making it difficult when compared to T2m representations. 

4.5 ENSO Potential Predictability & Observations  

Using SN as a proxy for PP, we have demonstrated month-to-month ENSO driven 

changes in GPH, T2m, and precipitation in the Database for Probabilistic Description of Future 

Climate Change (d4PDF) model ensemble. We now verify these findings on observations. The 

following analysis is performed on all years shown in Table 4.1 and extended to include years 

(2010-2019) which are beyond the d4PDF record. Apart from ’15/'16 (El Niño) and '10/'11 (La 

Niña), every added year is ENSO Neutral. 

Figure 4.11 shows the d4PDF ensemble spread, d4PDF forced ensemble mean, 

observed composite mean, and every observed value of the PNA (Fig. 4.11a,b) and the 

Aleutian-Icelandic low see-saw index (AII) (Fig. 4.11c,d). The PNA is defined at 200-hPa by 

the four-point index described in (Wallace & Gutzler, 1981a) and is constructed using 

standardized anomaly time series at each point. The resulting index is normalized by the 

standard deviation of the combined DJF values. The AII is defined at 200-hPa in the 

characteristic regions described in (Honda et al., 2005), and is calculated as the normalized 

anomalous IL intensity subtracted from the normalized anomalous AL intensity. Each index 

uses values from 1951-2010 (the d4PDF period of record) to form the normalization 

climatology. The model mean and spread in the PNA/AII match the observed values well. PNA 

composite mean displacement for d4PDF and observations both peak in March of El Niño years 

with a near-zero anomaly shift in November, December and April. In agreement with the 

d4PDF, La Niña has a generally weaker mean shift and sits well within the d4PDF model 
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spread. La Niña signal fades in March/April. The AII index observed mean sits well within the 

spread of the d4PDF model. Using the IL index alone gives a good fit between model spread 

and observations, but a dampened magnitude (not shown), compared to the AII index.  

Figure 4.12 shows the observed monthly composite of anomalous precipitation and 200-

hPa GPH from December to April by ENSO state. We now list noticeable similarities between 

the observed monthly anomalies (Fig. 4.12) and the SN relationships displayed in Fig. 4.10. 1) 

The significant AL and Florida Low GPH anomaly matches nearly exactly for each ENSO state 

across the full season. In La Niña the AL GPH composite is co-located with the low GPH noise 

anomaly shown in d4PDF (Fig. 4.7, column II)(~[40°N,150°W]). 2) December shows very little 

GPH or precipitation anomaly signal especially affecting the North American west coast. 3) La 

Niña composites show less significant anomaly than the El Niño counterpart, in precipitation 

and GPH. 4) The Gulf of Mexico and Florida are particularly attenuated in La Niña. 5) March 

El Niño precipitation extends farther into the continental United States. We note that specific 

months magnify specific anomaly loading locations throughout the ENSO season highlighted 

in the seasonal composite seen in Deser et al., (2017, 2018). For completeness, we show the 

same figure but for observed monthly temperature anomalies in the supplemental (Fig. 4.3S).   

The largest precipitation pattern discrepancy occurs in the western United States shown 

in JFM, which is shifted into the eastern Pacific in the d4PDF SN (Fig. 4.10 vs. Fig. 4.12). 

Additionally, there is a clear model bias associated with the high-pressure limb of the PNA 

pattern in northeast Canada. This could be an indication of d4PDF overdispersiveness of the 

northern limb of the PNA pattern across the ensemble members, and a lack of forcing in the 

early season, which is consistent with the findings of Scaife and Smith (2018) and Smith et al. 

(2020) that the NAO is more predictable than climate models typically demonstrate.  
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To test the utility of the PNA-driven changes in SN on observations, we adopt an 

additional potential predictability metric developed from KL divergence (KLPP) to show the 

ENSO forcing on temperature predictability. We build distributions following the probabilistic 

framework in Johnson et al. (2014) and examine the T2m distributions for the weekly averaged 

temperature anomaly shifts conditioned on an ENSO state. These calculations are performed 

using observations, and not the d4PDF model. An observation is quantized into one of three 

divisions (below normal, normal, above normal), based on the highest probability tercile 

determined by the state of ENSO. The KL divergence is then computed [Eq. (4.5)]. We again 

show a monthly granularity to observe the evolution of potential forecast skill. 

To illustrate, at every grid point we develop a climatological weekly temperature 

distribution across all years, using average weekly T2m observations. We use the 33rd and 66th 

percentiles to quantize the anomaly value into categorical states 𝑇	 ∈ {𝑏𝑒𝑙𝑜𝑤	 𝑛𝑜𝑟𝑚𝑎𝑙,

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑜𝑣𝑒 	𝑛𝑜𝑟𝑚𝑎𝑙}. Therefore we have threshold values to divide anomalous 

temperature into equally probable categories 

I[𝑃(𝑏𝑒𝑙𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙), 𝑃(𝑛𝑜𝑟𝑚𝑎𝑙), 𝑃(𝑎𝑏𝑜𝑣𝑒 𝑛𝑜𝑟𝑚𝑎𝑙)] = n!
4
, !
4
, !
4
pJ for a climatological 

distribution (𝑞, Eq. 4.5). Next, we examine the anomaly distribution conditioned on ENSO state 

against the climatological  33rd and 66th percentiles thresholds, and determine the categorical 

probability of each tercile of the conditioned distribution (e.g., 

[𝑃(𝑏𝑒𝑙𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙|𝑁𝑖𝑛ª𝑜), 𝑃(𝑛𝑜𝑟𝑚𝑎𝑙|𝑁𝑖𝑛ª𝑜), 𝑃(𝑎𝑏𝑜𝑣𝑒 𝑛𝑜𝑟𝑚𝑎𝑙|𝑁𝑖𝑛ª𝑜)] = [0,0,1] ), where 

the probability is determined by the number of observed categorical states ([below, normal, 

above]) divided by the total number. The conditioned probability distribution (𝑝, Eq. 4.5) is 

then compared to the climatological probability distribution (𝑞) using equation 4.5. This is very 

similar to an evaluation of Climate Prediction Center's probabilities of tercile-based category 



 135 

product, and demonstrated to be an effective distance metric for ENSO effects on T2m 

(Schamberg et al., 2020). The	𝐾𝐿 divergence is a quantification of the information lost if a 

forecaster were to ignore that it was an ENSO year, and can be loosely thought of as a 

quantification of the forcing of the anomaly probability. Encouragingly, all of the KLPP 

patterns resemble the seasonal anomalies presented in (Deser et al., 2018).  

Figure 4.13 shows the monthly T2m KLPP for DJFMA in respective El Niño (column 

I) and La Niña (column II) seasons, and the composite observed GPH anomaly (contour). KLPP 

is stippled for values significant at the 10% level. Largely, the observed KLPP matches the SN 

relationships displayed in Fig. 4.9. In agreement with the d4PDF, the results of the KLPP 

divergence indicate the following monthly patterns for T2m: 1) El Niño KLPP is larger than La 

Niña, 2) little to no KLPP exists in December for either El Niño or La Niña, 3) KLPP begins to 

develop over Mexico in January of El Niño and is strongest across the southern half of North 

America in FM, 4) January and February of La Niña years see a peak in the KLPP in the Gulf 

of Mexico and Florida region, 5) reliable NWNA KLPP emerges in February and peaks in 

March, and 6) KLPP in NWNA shifts northward in April of El Niño years and KLPP vanishes 

in April of La Niña years. 

Differences between d4PDF SN and T2M KLPP exist. We note that these could be due 

to the internal variability of the atmosphere and the limited number of observations or 

attributable to d4PDF model biases. In observations there is a clear shift of the T2m associated 

with the high-pressure limb of the PNA pattern in northeast Canada in January (Fig. 4.13c). 

This could be an indication of d4PDF overdispersiveness of the northern limb of the PNA 

pattern across the ensemble members, and a lack of ENSO forcing in the early season. This is 

consistent with the findings of Ayarzagüena et al. (2018) and Smith et al. (2020) which show 
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that the NAO is more predictable than climate models typically demonstrate.  Additionally, 

February and March of La Niña years show a distinct KL divergence spike centered over 

Oregon/Washington. Figure 4.9a and 4.9b show very little SN in this region. This could be 

attributable to an over dispersion of Canadian limb of the PNA in La Niña seasons in the d4PDF, 

as a distinct trough is shown in March of observations (Figure 4.12h). 

The presented KLPP has implications for the contemporaneous signal between tropical 

ENSO SSTs and North American T2m or precipitation. However, the conditional distributions 

developed are dependent only on the knowledge of the contemporaneous ENSO state and the 

present month. The correlation between February and March Niño-3.4 indices is 0.96 and the 

correlation between December and March is 0.87; thus, these findings have serious implications 

for monthly and seasonal forecast skill. 

4.6 Summary and Discussion  

Leveraging an atmosphere model ensemble, we examine the Northern Hemisphere’s 

forced response to El Niño–Southern Oscillation (ENSO). We diagnose signal-to-noise (SN) 

relationships for 200-hPa geopotential height (GPH), 2-m temperature (T2m), and precipitation 

as a function of the amplitude and phase of tropical Pacific SST forcing, and amplitude of the 

natural variability at a monthly temporal resolution. Further, we verify the model findings by 

examining the potential predictability (PP) of those surface variables developed from 

observations with implications for subseasonal-to-seasonal (S2S) forecasting. 

The forced teleconnection is examined with Rossby wave source (RWS) and wave 

activity flux analyses. The forced pattern is generally nonlinear and asymmetric with respect to 

categorical ENSO states, which has been noted in multiple studies (e.g., Abid et al., 2015; Feng 
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et al., 2017; Johnson & Kosaka, 2016; Wenjun Zhang et al., 2019). The RWS cold season vortex 

stretching term is of weaker magnitude than it's warm phase counterpart; resulting in nonlinear 

Rossby wave forcing. The forced 200-hPa GPH is a consequence of this nonlinearity with warm 

events showing an increased amplitude as compared to their cold phase counterpart. 

Appreciable dynamic evolution occurs on monthly timescales and is potentially an 

important component to increasing S2S forecast skill. The forced response evolves temporally 

across the ENSO season (November-April), due to differences in monthly strength and location 

of the tropically driven upper-level divergence and the Pacific jet. The combined effect of 

persistent forced signal and decreased atmospheric noise results in February and March 

showing the greatest PP in every examined variable, and December showing weak to no PP. 

The dominant signal for both the internal variability and the forced response is a Pacific North 

American (PNA) like pattern (Wallace and Gutzler, 1981). The pattern is particularly robust 

during February and March of warm phase events. 

An open question remains around the forced El Niño PNA GPH anomaly in March and 

January. Though the RWS is nearly identical (Fig. 4.3), the March GPH anomaly is greater (Fig 

4.4). This phenomenon is observed in other AGCM SN studies (e.g., see Fig. 3 in Honda et al., 

2005). Jiménez-Esteve & Domeisen (2019) show a decrease in transient eddy forcing during 

March, therefore barotropic energy conversion from the jet exit region could be a potential 

pathway. The exact mechanism is not clear, and requires focused research. 

Zhou et al., (2014) notes that in a warmer climate, the large-scale 200-hPa pattern 

associated with El Niño shifts eastward, associated with an eastward shift of the tropical 

precipitation pattern. Importantly, the Pacific maximum of precipitation, coincident with the jet 
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exit region and the PNA teleconnection pattern (~40°N, 140°W), is projected to shift eastward 

in a warmer climate, impacting the western coast of North America. This coincides with the 

peak SN region in ENSO events (Fig. 4.10d-g) and could lead to an increase in skill for North 

American West Coast precipitation prediction. Additionally, the changes in circulation lead to 

an eastward and southward shifted temperature anomaly due to an increase in warm advection 

by the Aleutian low westerlies. These patterns imprint on late-season peak SN areas (Fig. 4.9g) 

and could increase forecast skill of temperature anomalies over large swaths of North America. 

This necessitates an intraseasonal exploration of the changes of ENSO SN in a warmer climate. 

Month-to-month ENSO dynamics and the background seasonal cycle lead to distinct 

teleconnection patterns. These patterns result in a myriad of signal-to-noise relationships that 

can be exploited for forecasting. New interest has arisen for statistical models (i.e., deep 

learning) for S2S forecasting owing to recent computational advances, algorithmic toolbox 

development, and successes in the Earth sciences (e.g., Abid et al., 2015; Y. G. Ham et al., 

2019). Proper training data periods must be utilized to capture these relationships and more skill 

may be gleaned from intraseasonal rather than seasonal algorithm development. This study 

joins Ayarzagüena et al., (2018) and King et al., (2018) in warning against seasonal mean 

analysis due to a shifting ENSO teleconnection and noise background state. 
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Figure 4.1 February and March ensemble mean monthly response to (column I) El Niño and 
(column II) La Niña: composites of anomalous mean 200-hPa geopotential height (colorfill), 
200-hPa winds (vector), and tropical precipitation (inset 15°S–15°N, 130°E–80°W) for El Niño 
and La Niña. Anomalous geopotential height and black wind vectors are shown for significant 
locations. Insignificant wind vectors are shown in gray. Insignificant tropical precipitation is 
stippled. Significant confidence intervals are determined by bootstrap, with resampling across 
all years 1000 times, and examination of the 5th and 95th percentile of the synthetic distribution. 
The white dot shows the Aleutian low center of action. 
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Figure 4.2 Ensemble mean monthly (December–April) response to (column I) El Niño and 
(column II) La Niña: composite 200-hPa anomalies of Rossby wave source (colorfill), and 
anomalous divergent winds (vector), along with anomalous tropical precipitation (inset 15°S–
15°N, 130°E–80°W) and 200-hPa zonal wind (climatology + anomalies; 45, 50, 55, and 60 m 
s−1shown with black contours; 60 m s−1 is shown in bold). Significant Rossby wave source is 
shown. Insignificant anomalous tropical precipitation is stippled. Significant vectors are shown 
in black and insignificant in gray. Significant confidence intervals are determined by bootstrap, 
with resampling across all years 1000 times, and examination of the 5th and 95th percentiles of 
the synthetic distribution. The white dot shows the location of maximum 200-hPa zonal wind. 
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Figure 4.3 (a) Vortex stretching (VS). (b) Absolute vorticity advection by divergent flow 
(AVA). (c) Rossby wave source (RWS) anomaly for El Niño (red line), neutral (black line), 
and La Niña (blue line) year (categorized in Table 4.1) composites. (d) Average RWS anomaly 
index with respect to the Niño-3.4 anomaly for individual months DJFM. Red (blue) markers 
indicate El Niño (La Niña) years. Diamond marker indicates the class (Niño/Niña) composite 
mean. The dashed red (blue) line indicates the linear fit calculated using every positive 
(negative) Niño-3.4 anomaly. The slope of each line is shown with 2σ uncertainty determined 
by bootstrap, with resampling across all years, 1000 times. (e) Composite El Niño and La Niña 
(negative) anomaly SST in the Niño-3.4 region for years specified in Table 4.1; 5th and 95th 
confidence intervals are shown, determined by bootstrap with resampling 1000 times. VS, 
AVA, and RWS are area averaged in the region 25°–40°N, 145°–155°W. 



 143 

 

Figure 4.4  Ensemble mean monthly (DJFMA) response to (column I) El Niño and (column II) 
La Niña: 200-hPa TN wave activity flux (WAF) composite (vector), 200-hPa geopotential 
height anomaly (colorfill), and anomalous Rossby wave source [contour; purple (positive), 
green (negative); intervals ± at 10, 20, and 25 × 10−11 s−1]. Only significant geopotential height 
is shown. Significant WAF vectors are shown in black. Significant confidence intervals are 
determined by bootstrap, with resampling across all years 1000 times, and examination of the 
5th and 95th percentiles of the synthetic distribution. White dot shows the Aleutian low center 
of action.  
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Figure 4.5  (column I) Internal variability and (column II) forced leading EOF mode of 200-
hPa atmospheric geopotential height variability, calculated for each month individually, with 
percentage variability explained by this mode, for each month, and the correlation of the 
principal component to the concurrent Niño-3.4 anomaly index (at top right). PCs are 
normalized to unit variance.
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Figure 4.6 (a) Yearly development of composite RMS signal (dotted line) and noise (solid 
line) area averaged in (b) the region of interest (30°–60°N, 165°E–130°W) for El Niño (red), 
La Niña (blue), and neutral (black) years, as defined in Table 4.1, for monthly values from 
1951–2010. Error bars show the 5th and 95th percentile bounds determined by bootstrap with 
resampling 1000 times across all El Niño years. The leading mode of variance (DJFMA 
seasonal mean) in the region of interest in (b), PC is normalized to unit variance. 
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Figure 4.7 February and March RMS noise response to (column I) El Niño and (column II) La 
Niña, with a composite map of anomalous RMS noise 200-hPa geopotential height (colorfill); 
values that are not significant are not shown. The climatology of RMS noise is shown in black 
contours (60, 70, 80, 90, 100, 110, and 120 m; 100 m shown as the bold contour). Composite 
zonal wind is in green contours [40, 50, and 60 m s−1 (climatology + anomalies), the 60 m 
s−1 contour is shown in bold]. Significant confidence intervals are determined by bootstrap, with 
resampling across all years 1000 times, and examination of the 5th and 95th percentile of the 
synthetic distribution. 
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Figure 4.8 Area averaged (25°–70°N, 155°E–60°W) signal-to-noise ratio for (a) 200-hPa 
geopotential height (b) 2-m temperature (values over land only), (c) precipitation, and (d) 
geopotential height SN with respect to the Niño-3.4 anomaly, calculated for individual months 
(DJFM only). Red (blue) markers indicate El Niño (La Niña) years. Dashed red (blue) line 
indicates the linear fit calculated using every positive (negative) Niño-3.4 anomaly. The slope 
of each line is shown with 2σuncertainty. The 5th and 95th percentile confidence intervals are 
determined by bootstrap, with resampling across all years, 1000 times.  
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Figure 4.9. Monthly (DJFMA) signal-to-noise relationship for temperature (colorfill) and 200-
hPa geopotential height (contour, 0.2 intervals beginning at 0.6, with 1 shown as the bold 
contour) for (column I) El Niño and (column II) La Niña years (as defined in Table 4.1). 
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Figure 4.10. As in Fig. 4.9, but for North American precipitation (colorfill) and 200-hPa 
geopotential height (contour) 
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Figure 4.11. Monthly d4PDF (a),(b) PNA index and (c),(d) AII index mean and 5th and 95th 
percentiles across 100 ensemble members (open circle) and for observations (diamond, 
showing observation composite mean from ENSO years; observed values shown in gray dot) 
for (left) El Niño and (right) La Niña years. The observation mean spread is estimated from 
bootstrap with resampling 1000 times across years. The d4PDF ensemble intervals are 
estimated from bootstrap with resampling 1000 times across all members. 
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Figure 4.12. (column I) El Niño and (column II) La Niña monthly composite of observed 
precipitation (colorfill) and 200-hPa geopotential height (contour; negative dashed). Contour 
intervals are set at 20 m; the 0-m contour is shown in bold. Precipitation is stippled when 
significant (plus sign). Geopotential height is stippled when significant (star). Significant 
confidence intervals are determined by bootstrap, with resampling across all years 1000 times, 
and examination of the 5th and 95th percentiles of the synthetic distribution. 
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Figure 4.13. (a)–(j) Observed monthly (DJFMA) T2m Kullback–Leibler divergence (KL) 
(tercile discrete) for (column I) El Niño and (column II) La Niña years. Significant values of 
KL are stippled. Significant confidence intervals are determined by bootstrap, with resampling 
across all years 1000 times, and examination of the 5th and 95th percentiles of the synthetic 
distribution. (k),(l) Land area averaged bits by month conditioned on ENSO phase (25°–65°N, 
170°E–60°W, the region shown in (i)]. Contours show the observed 200-hPa GPH anomaly 
composite in 20-m intervals; 0-m contour shown in bold. 
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Table 4.1. The d4PDF defined ENSO states by year.  
 

 El Niño La Niña Neutral 
Condition DJF ONI > 1K  DJF ONI < -1K -1K < DJF ONI > 

1K 
Year 1957/58, 1965/66, 1968/69, 

1972/73, 1982/83, 1986/87, 
1991/92, 1994/95, 1997/98, 
2009/10 

 

1955/56, 1970/71, 
1973/74, 
1975/76, 1984/85, 
1988/89 
1998/99, 1999/2000, 
2007/08 

 

Remaining 
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4.8 Chapter 4 – Supporting Information  

 
 
Figure 4.1S. Ensemble mean monthly (Dec-Apr) response to El Niño (column I) and La Niña 
(column II): composites of anomalous mean 200-hPa geopotential height (colorfill), 200-hPa 
winds (vector), and tropical precipitation (inset Lat: [15°S, 15°N], Lon: [130°E,80°W]) for El 
Niño (column I) and La Niña (column II). Anomalous geopotential height and wind vectors are 
shown for the 10% confidence interval. Insignificant wind vectors are shown in gray. 
Insignificant tropical precipitation is stippled. Significant confidence intervals are determined 
by bootstrap, with resampling across all years 1000 times, and examination of the 5th and 95th 
percentile. White dot shows the Aleutian Low center of action. 
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Figure 4.2S. RMS noise (Dec-Apr) response to El Niño (column I) and La Niña (column II): 
composite map of anomalous RMS noise 200-hPa geopotential height (colorfill), values that 
are not significant (10%) are not shown. The climatology of RMS noise is shown in black 
contours [m] [60, 70, 80, 90, 100, 110, 120]; 100m shown as the bold contour). Composite 
zonal wind is in green contour [ms-1 40, 50, 55, 60] (climatology + anomalies). The confidence 
intervals are determined by bootstrap, with resampling across all years, 1000 times. 
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Figure 4.3S. El Niño (column I) and La Niña (column II) monthly composite of observed 
temperature (colorfill) and 200-hPa geopotential height (contour, negative dashed). Contour 
intervals are set at 20 meters; 0 m contour shown in bold. Temperature is stippled when 
significant (plus sign). Geopotential height is stippled when significant (star). Significant 
confidence intervals are determined by bootstrap, with resampling across all years 1000 times, 
and examination of the 5th and 95th percentile of the synthetic distribution. 
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Chapter 5  
 

Subseasonal PNA Forecast Skill and Tropical PNA 
Drivers in the ECMWF 20th Century Hindcast 
 

Abstract  

Using ensemble hindcasts from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) coupled model of the 20th century (period 1901–2010), we investigate the 

subseasonal forecast skill of the Pacific North American (PNA) pattern and the spatiotemporal 

evolution in the covariability of the PNA and 1) tropical sea surface temperatures (SST) and 2) 

the Madden Julian Oscillation (MJO) in both the November and February initializations. We 

find significant intraseasonal dependence of forecast skill and tropical forcing. The February 

initializations show a much more skillful subseasonal PNA forecast (compared to the November 

initializations). Additionally, the forecast skill derived from the low-frequency variability of 

the initial condition is much more valuable in February than in November. We investigate two 

known drivers of subseasonal PNA forcing, El Niño Southern Oscillation (ENSO) SSTs and 

the MJO. The covariability in the ensemble mean and ensemble spread is investigated with 

week-reliant singular value decomposition (SVD), which treats each variable in a given average 

weekly forecast sequence as a single time step. The leading mode of the ensemble mean 

represents the coevolution of the ENSO/PNA and MJO/PNA response. The leading mode of 

the ensemble spread in the SST/PNA SVD shows only response in the extratropical atmosphere 

forcing the tropical ocean indicating that on subseasonal time-scales the uncertainty in SST 
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ensemble spread shows little influence to PNA predictability. The MJO is revealed as the 

leading mode of ensemble spread in the tropical atmosphere. The February MJO/PNA SVD 

shows strong PNA modulation beginning in forecast week 3 with the growth of a northeast 

Pacific cyclonic/anticyclonic retrograding west and enforcing the PNA pattern. This pattern is 

notably lacking in the November initialization. Due to the large sample size provided by this 

simulation, we show that uncertainty in the MJO significantly influences uncertainty in the 

PNA forecast by forecast week 3.  

5.1 Introduction  

The Pacific-North American (PNA) teleconnection pattern is characterized by a Rossby 

wave train with four loading centers, which spans from the central tropical Pacific across the 

whole of North America (Wallace & Gutzler, 1981b). It is the leading mode of Northern 

Hemisphere midlatitude atmospheric variability (e.g., Chen & den Dool, 2003), is present in 

time-scales of ranging from weeks to years (Blackmon et al., 1984), and drives significant 

weather and climate anomalies over North America (e.g., Archambault et al., 2008; Gibson et 

al., 2020; Gutzler et al., 1988; Leathers et al., 1991, and many others). Therefore, predicting the 

PNA, particularly at long forecast horizons, is of utmost societal importance for North America.  

Three main mechanisms have been noted for the development and persistence of the 

PNA pattern: 1) Poleward propagation of Rossby wave trains which are excited by tropical 

convection (e.g., Hoskins & Karoly, 1981). 2) Barotropic amplification of zonally asymmetric 

climatological flow in which the rapid growth of the PNA arises when the wave field has a 

spatial structure what projects spatially onto an unstable normal mode, which resembles the 

PNA. This particular modal structure is well suited to extract energy from the zonally varying 
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northern hemisphere jet (e.g., Nakamura et al., 1987). 3) Amplification through a positive 

feedback onto the growing teleconnection pattern by high-frequency eddy vorticity fluxes (e.g., 

Egger & Schilling, 1983). This study looks to examine subseasonal model forecast skill, 

therefore we focus on tropical drivers with long system memory. These tropical fields are 

forecasted with much greater skill than the midlatitude drivers which are characteristic of the 

second and third mechanisms.  

  Theoretical and observational frameworks have been well-established which indicate 

that a coherent fluctuation is found between the PNA pattern and tropically derived convection. 

Particularly, the Madden-Julian Oscillation (MJO, Madden & Julian, 1971), and the El Niño 

Southern Oscillation (ENSO) have been cited in numerous studies for their role in sparking 

tropical convection which in turn drives vorticity sourcing in the midlatitudes (e.g., Henderson 

et al. 2020; Hoerling et al. 1997; Horel & Wallace 1981; Mori & Watanabe 2008). Additionally, 

particular focus has been paid to the background state of the extratropical atmosphere for 

driving PNA response to tropical forcing (Dawson et al. 2011; Henderson et al. 2017;  

Sardeshmukh & Hoskins 1988). The impact of the annual cycle on the global wind-field and 

thus the PNA’s Rossby wave guide leads to significant dynamic monthly evolution of the 

midlatitude response to vorticity forcing (William E. Chapman et al., 2021). Therefore, studies 

that focus on a seasonal mean rather than accounting for the seasonal development of the 

background state will yield potentially misleading results by mixing the derived model skill 

across various degrees of forcing response (Newman & Sardeshmukh, 1998). However, likely 

do to the relatively short length of the observational record, much less focus has been paid to 

the intraseasonal development of PNA forecast skill and the tropical drivers of the PNA 

teleconnections when compared with seasonal forecasting. 
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The goal of this study is to examine the variability of the PNA forecast skill and PNA 

drivers on subseasonal timescales, as they evolve across a boreal winter, in an unprecedently 

large and long-running coupled seasonal forecast model: the European Center for Medium-

Range Weather Forecast’s (ECMWF) coupled hindcast of the 20th century. We systematically 

explore the PNA forecast skill from model initializations begun in November and February 

from using daily-to-monthly averaged predictability measures, and examine the tropically 

derived PNA model forcing and error growth. Additionally, this study leverages week-reliant 

multiple covariance analysis (MCA) to examine the co-evolution of forecasted fields and their 

associated teleconnection patterns. The ensemble mean is often used as the final forecast, while 

the ensemble spread (deviation from the mean) is used as a measure of prediction uncertainty. 

However, the spread can also be used for examining the intrinsic variability of the coupled 

tropical-midlatitude systems (e.g., Ma et al., 2017, 2021), while allowing for greatly increased 

degrees of freedom compared to the mean or observational space. Therefore, spread can be used 

to closely examine the growing modes of coupled variability in the model uncertainty space. 

Here, we examine the spatiotemporal coevolution of the MJO/PNA and ENSO/PNA 

teleconnection in the ensemble mean and spread in the ECMWF Hindcast for the November 

and February initializations.   

This paper is organized as follows. In Section 2, data and analysis procedures are 

described. In Section 3, we leverage forecast skill measures to examine the forecasted versus 

observed PNA fields. In Section 4, we examine temporal variability of the tropically derived 

PNA forcing and uncertainty error growth in the November and February initializations. 

Section 5 gives summary and discussion. 
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5.2 Data  

5.2.1 Observations  

Daily averaged upper (200-hPa) and lower (850-hPa) zonal and meridional winds, 

geopotential height (500-hPa & 200-hPa) and sea surface temperature (SST) for the period 

1901-2010 are obtained from the ECMWF Coupled Re-Analysis of the 20th Century (CERA-

20C, Laloyaux et al., 2018). In CERA20-C, SST is derived from the Hadley Centere Sea Ice 

and Sea Surface Temperature dataset (HadISST) version 2.1.0.0 (Titchner & Rayner, 2014). 

These data are used for all forecast verification and all available observations are used to define 

the mean climatology. CERA-20C assimilates only surface pressure and marine wind 

observations. To reduce uncertainty associated with different spatial resolution, CERA-20C 

data are regrid to a 2.5°	x 2.5°	horizontal resolution using a 1st and 2nd order conservative 

remapping scheme (Schulzweida et al. 2006). Likewise, all model output, described below, are 

interpolated to this common grid resolution prior to any analysis calculation. 

5.2.2 ECMWF 20th Century Hindcast Model  

The coupled 20th century hindcast experiment (CSF-20C) is examined. CSF-20C was 

developed with ECMWF’s Integrated Forecasting System (IFS) coupled model version cycle 

41r1 which includes state-of-the-art atmospheric, land surface, oceanic, and sea-ice components 

(Weisheimer et al. 2020). The atmospheric resolution is run at TL255 (~80 km) horizontally, 

with 91 vertical levels. The ocean resolution is 1° horizontally with 42 vertical levels. In our 

analysis, the atmosphere and ocean are regrid to a 2.5°	x 2.5°	 horizontal resolution using a 1st 

and 2nd order conservative remapping scheme (Schulzweida et al. 2006). CSF-20C is initialized 
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with ECMWF’s first coupled reanalysis of the twentieth century, CERA-20C (Laloyaux et al. 

2018), which provides data from 1901 to 2010. Only surface observations in the atmospheric 

(i.e. surface pressure and marine winds, but no satellite data) and observed subsurface 

temperatures and salinity profiles in the ocean were assimilated in CERA-20C. We examine 

the hindcasts initialized on the first of November, and the first of February. These experiments 

are each run for 4 months. In this analysis, we examine the first 46 days of each model run. The 

November and February hindcasts consist of 51 and 25 ensemble members, respectively. The 

ensembles were created by a combination of stochastic perturbations to the model physics in 

the atmosphere and the 10 members of the CERA-20C. These experiments were designed to 

mimic ECMWF’s operational forecasts as much as possible to enable a clear comparison with 

a real-time forecasting system where only information before the initial date is available to use. 

Time-varying forcings from greenhouse gases, the solar cycle and volcanic aerosols were all 

prescribed.  

5.2.3 ENSO Index  

All Composite El Nino/Southern Oscillation (ENSO) variability was evaluated using 

the revised multivariate ENSO index (MEI, Wolter & Timlin 2011, 

https://www.psl.noaa.gov/enso/mei/ ). El Niño (La Niña) events are designated based on a MEI 

threshold greater (less) than (-)1°K at forecast initialization.  

5.2.4 Model Drift  

Numerical Weather Prediction (NWP) systems are designed to make accurate 

predictions over short forecast leads and are not subject to the same physical constraints that 

global climate models adhere to. Thus, NWP models are typically subject to systematic model 
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drift in long-term forecasts. This includes subseasonal and seasonal prediction systems, which 

have been shown to develop pronounced spatially-dependent patterns of mean model drift on 

time-scales of 1-4 weeks (Vitart, 2004; Weigel et al. 2008). Prior to any analysis on a forecasted 

field, the lead-dependent bias is removed. Following Vitart  (2004), we first calculate each 

ensemble mean lead time dependent bias by examining its bias on each specified date over the 

entire 110 year forecast period. The bias for a specific forecast date is taken as the average 

reforecast bias over all available calendar dates spanning the 28-day interval centered on that 

forecast date, and this bias is subtracted from the forecast produced by each of the 

corresponding ensemble members.  

5.2.5 PNA Index  

The PNA index is calculated as the principal component time series of the 1st mode of 

atmospheric variability, in the region [10°N,80°N], [140°E, 60°W] for a 30-day climatological 

window (110-year) centered on the forecast day of interest in the area-weighted 200-hPa 

CERA20-C geopotential height anomaly (Z200a) observations. These patterns are then 

projected onto the Z200a forecasted fields to obtain the principle component time series 

forecast. The PNA index is scaled by dividing by the square-root of the leading eigen-value of 

the decomposition (resulting in a unit variance time-series). Figure 5.1 shows the leading EOF 

from the November and February periods, respectively. We choose to define the PNA index in 

this manner, rather than a more standard grid-point definition (e.g., Wallace & Gutzler 1981) 

as significant intraseasonal development of the midlatitude jet leads to 

latitudinally/longitudinally shifted loading centers across a full boreal season (Chapman et al., 

2021). However, it has been shown that the grid-point PNA indices and EOF developed indices 
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are highly correlated when calculated over similar seasons (O’Reilly et al., 2017b). The PNA 

indices are calculated in this manner for the CERA-20C data set, hereafter called the reference 

PNA index, and for each member in the hindcast. The ensemble mean PNA forecast is 

calculated by averaging the individual hindcast member PNA indices. 

5.2.6 Rossby Wave Source  

 We examine the 200-hPa Rossby wave source (RWS) (Sardeshmukh & Hoskins 1988).  

𝑅𝑊𝑆 = 	−𝜉𝐷 −	 𝑣̅l ∙ ∇𝜉 

The RWS is derived from the barotropic vorticity equation and locates vorticity forcing. 

RWS is computed using the magnitudes of divergence (𝐷), the absolute vorticity (𝜉), and the 

irrotational components of the wind (𝑣̅l). RWS can be rewritten in the form of RWS anomaly 

(e.g., Hsu 1996; Seo & Lee 2017; Takahashi & Shirooka 2014; Wang et al. 2018):  

(1)	𝑅𝑊𝑆> = −𝜉̅∇ ∙ 𝑣l> − 𝜉′∇ ∙ 𝑣̅l − 𝑣l> ∙ ∇𝜉̅ − 	 𝑣̅l ∙ ∇𝜉′ 

𝑅𝑊𝑆> = 𝑆! + 𝑆$ + 𝑆4 + 𝑆m 

Here, the prime represents the intraseasonal anomalies and the overbar denotes the 

seasonal mean. The seasonal mean, and intraseasonal anomalies are calculated for each 

initialization independently. For the forecasted CSF-20C fields, we leverage the 46-day mean 

of the November and February initializations of each forecast, respectively. 𝑆! and 𝑆$ are the 

vorticity forced by the interaction between anomalous divergence and mean vorticity, and by 

the interaction between mean divergence and anomalous vorticity, respectively. 𝑆4 denotes the 

mean absolute vorticity advection by anomalous divergence flow and 𝑆m represents the 

anomalous absolute vorticity advection by mean divergence flow. RWS has been extensively 
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used to examine the generation of Rossby waves excited by diabatic heating (e.g., Chapman et 

al. 2021; Johnson & Kosaka 2016; Kosaka & Nakamura 2006). To compute RWS terms we use 

the windpharms python package (Dawson 2016). 

5.2.7 MJO Calculation  

We follow the methods of Lin et al. (2008) for calculation of the real time MJO indices. 

A combined EOF analyses is performed based on Wheeler & Hendon (2004), except that 

instead of using outgoing longwave radiation (OLR) to represent tropical convection, we 

leverage velocity potential (VP) at 200 hPa (Ventrice et al. 2013). VP is the inverse Laplacian 

of divergence and acts as a smoother measure of convective activity than OLR and emphasizes 

the planetary-scale aspects of the divergent circulation -- spreading the MJO signal across the 

entire globe. Starting from the unfiltered observed daily averaged data of the CERA-20c 

reanalysis ensemble mean for VP and zonal wind at 850-hPa and 200-hPa from 1979-2010, the 

time mean, and the first three harmonics of the daily climatology are removed at every grid-

point. Next, the time-series is filtered, by removing the grid-point time-mean of the previous 

120 days. Removing the previous 120-day average eliminates most of the interannual 

variability, including the effects of ENSO. A meridional band average is then taken from 15°S 

to 15°N for the three fields. Each variable is then normalized by its own zonal average of 

temporal standard deviation, then the fields are combined and decomposed. The resulting 

structures of the EOF modes are very similar to Ventrice et al. (2013) and are shown in the 

supplementary material (Figure. 5.4S).  

The same steps described above are then applied to the CSF-20C forecast data to 

calculate the first two modes of the real-time multivariate MJO index (RMM), RMM1 and 
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RMM2 in the forecast, respectively. In the forecasts, we do not have the previous 120 days of 

data (as the integration starts on forecast day 0), so we leverage the observations before the start 

date of the integration to replace the missing data. The observed and forecasted RMM1 and 

RMM2 are normalized by the standard deviations of the observed RMM1 and RMM2 index.  

To evaluate MJO forecast skill, we compute the bivariate correlation (COR) or RMM1 

and RMM2 compared to observations and define a skillful forecast as have a COR > 0.5. COR 

is defined as  𝐶𝑂𝑅(𝜏) = 	 ∑ {CVV)0(:)CVV)1(:,J);CVV*0(:)CVV*1(:,J)}'
2()

I∑ {CVV)
0(:)*;CVV*

0(:)*}'
2() I∑ {CVV)

1(:,J)*;CVV*
1(:,J)*}'

2()

, where 

𝑅𝑀𝑀!
p(𝑡) and 𝑅𝑀𝑀$

p(𝑡) are the first two prinicipal components of the RMM analysis for the 

verification dataset at time t, and 𝑅𝑀𝑀!
q(𝑡, 𝜏)$	 and 𝑅𝑀𝑀$

q(𝑡, 𝜏)$ are the first two prinicipal 

components of the RMM analysis for the forecast dataset at time t and forecast lead 𝜏, and N is 

the total number of days considered. 

5.2.8 Week Reliant MCA  

 To examine the spatiotemporal evolution in the covariability of examined forecast 

fields, we conduct week-reliant multiple covariance analysis (MCA), via singular value 

decomposition (SVD) (Deser & Timlin 1997; Wallace et al. 1992). This is structurally similar 

to the month reliant SVD analysis (Ma et al. 2017; Ma et al. 2021) (also called extended 

empirical orthogonal functions (Weare & Nasstrom, 1982)). The SVD is performed on 

concatenated ensemble member × 110 years x 7 weeks record of forecasted fields in the CSF-

20C. For example, the forecast matrix is (Nx, Ny, Nw, Nens, Nyr), where Nx and Ny are the grid 

point numbers in the zonal and meridional direction, respectively, Nw is the weekly mean 

forecast value (we examine out to 6 forecast weeks), Nens is the ensemble size and Nyr is the 



 167 

number of years. First, we focus on the ensemble-mean variability by obtaining the ensemble-

mean anomalies defined as the deviations from the climatological mean (Nx, Ny, Nw). Then the 

matrix (Nx × Ny × Nw, Nyr) formed. We form right and left heterogenous MCA fields by 

forming the covariance matrix of two examined forecast fields, SVD is then performed to 

decompose this covariance matrix.   

Additionally, we examine the ensemble spread MCA modes by subtracting the 

ensemble mean (Nx, Ny, Nw, Nyr) from the debiased hindcast (Nx, Ny, Nw, Nens, Nyr). The matrix 

(Nx × Ny × Nw, Nens ×	Nyr) is used to form the covariance matrix for the left and right 

heterogenous forecast fields, and we conduct the SVD analysis on this matrix. Hence, the 

conventional time dimension is enlarged by the ensemble size. A covariance matrix is 

constructed by treating the forecast anomalies in the weekly sequence as a single time-step. In 

this way we obtain the heterogeneous component (PC), and the heterogenous fields reflect the 

temporal evolution of the anomalies. To display the leading SVD modes, we regress the 

forecasted anomalies on to the normalized PCs (expansion coefficients) of the heterogenous 

fields. We calculate the correlation between the examined expansion coefficients and use a 

student’s t test to determine the significance of these correlations. 

MCA decomposition via SVD yields the leading modes of covariance between two 

datasets, shows the total dataset covariance, and gives the fraction of covariance explained by 

each covariate mode. It does not, however, give the fraction of the variance in each data set that 

is explained by these covariate modes. It can be easily shown that the fraction of variance in 

the examined datasets explained by each mode, can be obtained through manipulation of the 

MCA expansion coefficients. The fraction of variance explained by mode 𝑘 is 𝑉𝑎𝑟𝐹𝑟𝑎𝑐(𝑘) =
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	100 ∙ n ∑ _32
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2()
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1()
4
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p, where 𝑎 is the MCA expansion coefficient, 𝑡 is the discrete time index, 

and 𝑚 carries the same dimension as the input spatial index (Nx × Ny × Nw). We refer the 

reader to Prohaska (1976) and Storch and Zwiers (1999) for and in-depth examination of the 

linear decomposition of coupled fields.  

5.3 PNA Forecast Skill  

The PNA ensemble spread (defined here as the average ensemble standard deviation) 

and rms error is shown for the daily averaged November (Fig. 5.2a) and February (Fig. 5.2b) 

model initializations. Ensemble spread and rms error are basic evaluations of the dispersion 

characteristics and prediction skill of an ensemble system, as it is valuable for an ensemble 

forecasting system to have the ability to forecast its own error (e.g., Hopson 2014; Molteni et 

al. 1996). Ensemble spread shows the sensitivity to initial condition and model uncertainty error 

growth and rms error measures the model prediction accuracy against the observational record. 

In a perfect ensemble system, a single ensemble member is indistinguishable from observations, 

if this is the case, the RMSE and ensemble spread are equivalent. Forecast error grows 

monotonically and eventually saturates, representing the upper limit of daily weather 

predictability (Lorenz 1969). The ensemble spread for both initialization times is notably under 

dispersive (smaller than RMSE) at all shorter lead times. The CSF-20C was originally designed 

for seasonal forecasting, and only weak initial perturbation was applied (Weisheimer et al. 

2020), which is likely the cause of the initial under dispersion. The saturated November spread 

is larger than the February spread (~1.0 vs. ~0.82) and occurs earlier in the forecasting period 

(~20 days vs. ~25 days) suggesting that November forecasts are less certain that their February 

counterparts (Stensrud et al.1999). 
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For subseasonal to seasonal (S2S) forecasts, it has been shown that time and space 

averaging can help to improve forecast skill by isolating the low-frequency component of 

atmospheric variability (e.g., Deflorio 2019). However, care must be taken when averaging, as 

time-averaging reduces the phase decorrelation rates of the averaged fields and thus eliminates 

instabilities which propagate with periods less than the averaging time, and it also reduces the 

climatological variance of the averaged fields (Tribbia & Baumhefner 1988). We define a 

forecast as skillful when error variance is equal to climatological variance, or when anomaly 

correlation is great than 0.5. We now investigate the impact of time-averaging the PNA signal 

at weekly intervals.  

Figure 5.3. shows the Pearson-correlation between forecasted PNA ensemble mean and 

observed PNA as a function of lead time in the November initialization (Fig. 5.3a) and the 

February initialization (Fig. 5.3b). The PNA is index is calculated on a rolling mean atmosphere 

state, at one-week intervals from 1 to 28 days, and the full record is used (1901-2010) in the 

correlation. The indicated forecast/observed correlation is shown at the central day of the rolling 

mean forecast. The February subseasonal correlation skill is significantly greater than the 

November initializations. The 7-day averaged November forecast correlation drops below 0.5 

in week 2 (central day 8). Increasing the average window at 1-week intervals increases forecast 

skill by approximately two days per week averaged, with correlation greater than 0.5 out to day 

20 when a 4-week average is leveraged. The 7-day February forecast correlation drops below 

0.5 in week 4 (central day 27). Again, increasing the average window at 1-week intervals 

increases forecast skill by approximately two days per week averaged, with correlation greater 

than 0.5 past day 32 when a 4-week average is leveraged. This finding is consistent with the 

concept that predictability can be improved by taking temporal or spatial averages as large-
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scale variability does not change rapidly and the growth of initial errors is relatively slow for 

low-frequency components (e.g., den Dool & Saha, 1990; Lorenz, 1969; Younas & Tang, 

2013). Additionally, in AGCM simulations, it has been shown that the late winter 200-hPa 

signal-to-noise (SN) peaks in February and remains significantly elevated in March over the 

PNA region this is especially attenuated in ENSO years (Chapman et al. 2020), while the early 

boreal winter season (ND) has relatively low ENSO driven SN (Kumar & Hoerling 1998). The 

intraseasonal disparity of forecast correlation skill supports that conclusion.  

The pseudo-persistence forecast is shown in Figure 5.3c & 5.3d. Here, pseudo-

persistence is defined ny retaining the first N-day averaged period of the forecast system as the 

forecasted anomaly and tests the impact of the low frequency initial condition certainty. As 

expected, the autocorrelation increases with time averaging from 7 to 28 days. When temporally 

averaged, every forecast field in the November initialization is less skillful than its respective 

persistence forecast, indicating that most of the forecast skill (when the forecast is averaged 

forward in time), is contained in the initial condition. This lower skill anomaly potentially 

indicates a significant shift between the large-scale forcing features which act in the early boreal 

winter. The February persistence forecasts vastly outperform the November forecast, indicating 

a more stable low-frequency atmosphere in the late boreal winter. For example, the February 

7-day average persistence forecast drops below 0.5 at 14-days (Fig. 5.3d), whereas the actual 

forecast retains skill out to day 27. This indicates that the role of boundary forcing, outside of 

the initial condition is particularly attenuated during the February/March period, but not in 

November/December.  Thus, the overall increase in forecast skill with time averaging can be 

attributed to 1) averaging weakening the noise, making the initial condition signal less 

dissipated, and 2) the role of boundary conditions and weather forcing patterns (i.e., ENSO and 
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MJO) become increasingly more influential with time averaging. We note that the one day 

forecast for February (November) vastly outperforms its respective persistence forecast with 

forecast correlation above 0.5 out to 21 (7) days and a persistence forecast correlation above 

0.5 out to 8 (5) days.  

We now investigate the phase dependence of subseasonal PNA forecast skill, by 

calculating the relative operating characteristic (ROC, Swets 1973) at various PNA threshold 

values (e.g., Kharin & Zwiers 2003; Mason & Graham 1999). The ROC curve provides a 

measure of the probabilistic forecast skill of a binary event, here, defined as the PNA index 

exceeding (or not) a prescribed threshold, and compares the forecast hit rate and false-alarm 

rate. The ROC skill score (ROCSS, defined as double the area under the ROC curve, minus 

one) is positive for skillful forecasts, equal to one for a perfect forecast and negative for 

forecasts less skillful than climatology. Figure 5.4. shows the phase dependent ROCSS curve 

for the November initialization (Fig. 5.4a) and the February initialization (Fig. 5.4b) centered 

on forecast day 28. The PNA is index is calculated on a rolling mean atmosphere state, at one-

week intervals from 7 to 28 days, and the full record is used (1901-2010) in the ROCSS 

calculation. We choose to show the forecast centered on day 28 but note that the general 

findings derived from this figure are robust across every day examined. Confidence intervals 

are shown and are derived by performing bootstrap resampling 1000 times with replacement 

and give a statistical significance estimate to the ROCSS. We note that the (-)1.1 threshold 

represents the (10th) 90th percentiles in the PNA observational record when calculated over both 

forecast initializations.  

November initializations show significantly lower ROCSS across every PNA threshold 

for the 7 and 28 day averaged forecast models when compared with the February ROCSS. 



 172 

Positive PNA events above the 0.9 threshold, in the 7-day average, are not significantly 

forecasted better than climatology, whereas forecasting negative PNA events show a 

significantly better forecast. The 28-day average ROCSS is significantly more skillful than 

climatology at every threshold, though largely this is attributable to the low-frequency 

component of the initial condition (Fig 5.3c), for November, and additional boundary condition 

forcing for February. The February initialization performs remarkably well at predicting 

positive PNA events with average ROCSS of ~0.7-0.75 when the PNA observed at greater than 

a 0.1 threshold. We note that the November 28-day averaged, negative PNA anomaly shows 

signs of significant skill. Though decadal change is not the main focus of this study we show 

the same ROCSS for 1950-2010 in supplemental Figure 5.1S. The February ROCSS is 

relatively unchanged, whereas the November ROCSS drops significantly. Indicating that the 

dominant share of forecast skill in the November initialization is in the first 40 years of the 

record. This is a period when fewer observations are assimilated into the CERA-20C reanalysis 

verification product, and the deviation from the CERA initialization is greatest. Further focused 

study is required to determine whether the observed ROCSS in November is indicative of 

decadal change, or spurious sampling error. However, we find no evidence of boundary forcing 

effectively modulating the November PNA forecast period and therefore the later conclusion 

appears more probable. 

5.4 Variability and Drivers of S2S PNA Predictability  

 In the previous section we discussed the models skill in forecasting the PNA across 

subseasonal time scales, we now seek to explain differences in the intraseasonal forecast skill 

by examining two major known drivers of PNA S2S forecast skill to examine the intraseasonal 
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growth of PNA forcing and growth of PNA uncertainty: 1) ENSO (e.g., Straus & Shukla, 2002; 

Wallace & Gutzler, 1981; L. Wang & Robertson, 2019; Younas & Tang, 2013, and many 

others) and 2) the MJO (Mori & Watanabe, 2008; Riddle et al., 2013; Tseng et al. 2018; Tseng 

et al. 2020; Vitart & Molteni, 2010). 

5.4.1 4-week Averaged Response  

5.4.1.1 Tropical SSTs  
ENSO is the dominant mode of global interannual variability, and it impacts weather in 

North America through its dominant teleconnection pattern, the PNA (Wallace & Gutzler, 

1981b). However, recent work has highlighted that the intraseasonal evolution of the ENSO 

related PNA teleconnection’s signal-to-noise ratio at monthly timescales varies drastically 

across boreal winter (Chapman et al. 2021). In the following section we will refer to ([5N,5S], 

[170W, 100W]) as the Nino3.4 region. Figure 5.4b shows a notable increase in skill associated 

with the 4-week averaged positive PNA events in February which is not present in the 

November initialization. It has been documented that El Niño events typically drive positive 

PNA patterns (Hoskins & Karoly, 1981), and this is a robust signal in both observations and 

climate models (e.g., Deser et al. 2017). Chapman et al. (2021) extensively explored the 

monthly modulations of SN in the PNA region associated with ENSO and found that SN should 

peak in February/March El Niño years and have associated weak SN in November/December. 

The CSF-20C model skill gives evidence to show that those findings hold in a coupled forecast 

setting. We first briefly examine the 4-week averaged forecast to explain this skill discrepancy. 

The MJO is the dominant mode of tropical intraseasonal variability, however, a full MJO cycle 

is realized in a period of approximately 30 to 60 days (Madden & Julian, 1971). The MJO/PNA 
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teleconnection growth and decay is typically expressed in ~10 days period (Mori & Watanabe, 

2008). Therefore, ENSO will be the sole focus of this 4-week averaged forcing section. 

Figure 5.5a and 5.5b shows the 4-week averaged ensemble mean PNA response to SSTs 

averaged in the region Nino3.4 region, centered on forecast day 28 for the November and 

February model initializations, respectively. We choose to show the forecast centered on day 

28 but note that the general findings derived from this figure are robust across every day 

examined  (not shown). It is clear that tropical SSTs play a dominant role in determining the 

PNA response in February, accounting for ~50% of variance in the PNA forecast. However, 

the November forecast shows a very weak response to the concurrent Nino3.4 SSTs.  

We diagnose this seasonal discrepancy using an 𝑅𝑊𝑆> vorticity sourcing framework 

(Sardeshmukh & Hoskins, 1988). During ENSO, convective anomalies, associated with the 

anomalous SSTs lead to anomalous tropical divergences which propagate into the midlatitudes, 

interact with a strong background absolute vorticity source (the midlatitude jet), and induce 

Rossby waves (Hoskins & Karoly 1981). Figure 5.5g and 5.5h show the 4-week averaged, 

ensemble mean RWS’ response in the region: [40N,30S]; [140E, 180] to SSTs in the Nino3.4 

region centered on forecast day 28 for the November and February model initializations, 

respectively. The February initialization has a much greater 𝑅𝑊𝑆> response to tropical SSTs 

than the November initialization, and is much more sensitive to ENSO events. The 𝑅𝑊𝑆> is 

comprised of two, major components anomalous divergence (∇ ∙ 𝑣l), and absolute vorticity (𝜉). 

It has been shown that the anomalous SSTs associated with ENSO in boreal winter peak in 

December, and the discrepancy between the November and February ENSO SSTs is not 

significant (see scatter in x-axis Figure 5.5, or Chapman et al. (2021), Fig 5.3e). Therefore, we 
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examine the divergence associated with ENSO SST in Figure 5.5e and Figure 5.5f, the February 

initialization provides does provide greater divergent component than the November 

initialization. 

To further diagnose the dominant terms that contribute to the 𝑅𝑊𝑆> and thus the 

downstream teleconnection, 𝑅𝑊𝑆> anomalies are examined with the individual terms in Eq. 

(1). The resulting scatter of tropical SSTs and 𝑅𝑊𝑆>- term S1 (−𝜉̅∇ ∙ 𝑣l> ) are nearly identical 

to Figure 5.5g, indicating that it is the dominant term driving the 𝑅𝑊𝑆> (not-shown). This 

finding is in agreement with multiple previous studies (e.g., Hsu, 1996; Wang et al., 2020). The 

midlatitude anomalous divergent flow (∇ ∙ 𝑣l> ) is slightly weaker between the November and 

December initializations (Fig. 5.5e and Fig. 5.5f), but not at a magnitude to explain the entire 

discrepancy between the model 𝑅𝑊𝑆> response of the November and December initializations 

(Fig. 5.5g and Fig. 5.5h). Therefore, the seasonal-mean background absolute vorticity (−𝜉)̅, 

must play an additional significant role. It has been shown that the 200-hPa jet undergoes a 

seasonal extension and intensification through early winter (November-January) as the northern 

hemisphere midlatitude baroclinicity increases, reaching its greatest zonal extent in February 

(Newman & Sardeshmukh, 1998). Additionally, the 200-hPa zonal winds are modulated by El 

Niño (La Niña) winter with a southward (northward) shift, intensification (reduction) in 

magnitude, and thus an increased (decreased) zonal extent across a boreal winter (e.g., Jiménez-

Esteve & Domeisen 2018) modulating the absolute vorticity term with the ENSO season. For 

completeness, we show the 4-week averaged ensemble mean composite, centered on forecast 

day 28 of RWS, divergent wind, and climatological + anomalous jet in each ENSO season in 
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the supplementary material Figure 5.2s. The composite figures are in agreement with the above 

findings. 

PNA events have been shown to be less skillfully forecast when initialized in the 

negative phase (e.g., Palmer 1988) due to significantly more extraction of kinetic energy from 

the seasonal mean flow and large scale deflection of  synoptic scale eddies during the PNA 

positive phase (Lin & Derome, 1996), leading to a greater internal variability when the PNA is 

in the positive phase. While the difference is not significant from a ROCSS standpoint, the 

negative PNA events forecast skill have a greater skill variance than their positive 

counterpoints. Negative PNA events are strongly associated with La Niña events (Fig. 5.5a). 

The findings we present here agree with that result. Chapman et al. (2021) noted a significant 

modulation atmospheric internal variability associated with ENSO events, with increased 

(decreased) atmospheric noise associated with La Niña (El Niño) events which could indicate 

more variable forecast skill. Figure 5.6 shows the percent modulation of the ensemble spread 

of Z200a per one standard deviation of change in the averaged tropical SSTs in the region 

[5N,5S], [170W, 120W]. In El Niño (La Niña) seasons, atmospheric internal variability is 

reduced (increased) by ~12% across the PNA region per standard deviation of Nino3.4 

temperatures. Following Simmons et al. (1983), it is observed that the difference in barotropic 

conversion of kinetic energy from the time mean to the low-frequency eddies between ENSO 

phases, bares a very similar spatial structure to Figure 5.6 (not-shown), and likely drives the 

variability discrepancy. Additionally, Sardeshmukh et al. (2000) noted that with the increased 

precipitation signal associated with El Niño (La Niña), the variance in the tropical west pacific 

also increased, potentially contributing additional system noise associated with the midlatitude 

teleconnection and increasing forecast uncertainty. This same phenomenon is observed in the 
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CSF-20C with standard deviation of divergent flow being significantly greater in El Niño 

seasons than in La Niña seasons (2.6e-6 s-1 and 2.2e-6 s-1 in region [5N,5S] [170W, 100W], 

respectively). However, the midlatitude ENSO associated standard deviations of divergent flow 

show an opposite relationship to the tropical SSTS. The standard deviation of divergent flow 

being significantly greater in La Niña seasons than in El Niño seasons (2.5e-6 s-1 and 2.25e-6 

s-1 in region [40N,30N] [140W, 180], respectively).  

5.4.2 Weekly Averaged Response  

Recent work in subseasonal prediction has highlighted the value of weekly time averaging 

to eliminate high variability noise in the climate system, yielding increased atmospheric 

predictability (e.g., Deflorio et al., 2019; Younas & Tang, 2013). We now turn to the weekly 

averaged development of tropically derived PNA forcing and prediction uncertainty growth and 

associated ENSO and MJO derived teleconnections.  

5.4.2.1 Tropical SSTs  

Figure 5.7. shows the 7-14 day averaged lagged response of Z200a (black contour), the 0-7 

averaged lagged response of 𝑅𝑊𝑆> (colorfill) and divergent wind (vector) and the 200-hpa 

zonal wind (climatology, green contour) composite in El Niño (Fig. 5.7a) and La Niña (Fig. 

5.7b) in the CSF-20C. The composite is calculated across every ensemble member individually 

and conditioned on the MEI defined ENSO index. Additionally, we characterize model bias in 

the Z200a field, and show where the model is biased high in stippled regions and biased low in 

hatched regions. Bias is calculated with the same method described in Deser et al. (2017). To 

determine bias, at every point we randomly sample the full ensemble simulation an equal 

number of times as the observed record conditioned on the ENSO phase of interest. This random 
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compositing is performed 2000 times. We calculate the 5th and 95th percentiles of these pseudo 

composites distributions, the stippled and hatched regions show the areas where the observed 

composites lie outside of the bootstrap- sampled composite distributions.  

In November, the divergent wind anomaly which reaches the West-Pacific extratropics is 

weak, additionally the climatological zonal wind is notably weaker when compared to later in 

the boreal winter. This results in a weak expression of  𝑅𝑊𝑆>and thus little vorticity forcing to 

generate the PNA pattern. Generally, there is no indication of a resolved PNA pattern. The La 

Niña composite indicates a weakly anomalous Aleutian Low (AL), however a bias is observed 

in the Bering sea. In El Niño seasons, no significant Z200a is observed in the extratropics. 

Notably, the anomalies in the North Atlantic Oscillation region are missing in November 

entirely.  

In February, strong divergent/convergent wind is observed stemming from the tropics and 

interacting with the midlatitude jet. The 𝑅𝑊𝑆> is characteristic of the ENSO teleconnection, 

with high anomalies co-located with the northern flank of the midlatitude jet in the North-West 

Pacific (Qin & Robinson 1993; Sardeshmukh & Hoskins 1988). This generates the 

cyclonic/anticyclonic anomaly over the extra-tropical North Pacific and the PNA pattern. The 

February initialization shows a well-developed PNA response pattern in both ENSO phases, 

with particularly strong anomalies in the Aleutian Low (AL) region. The February El Niño 

composite shows model bias in a zonally stunted AL anomaly, which should show a larger 

extent to the west and east. Additionally, the low-pressure pattern observed over the Southeast 

United States shows a notable lack of depression. The February La Niña pattern shows a 

characteristic negative PNA, but the bias indicates that the Aleutian the low anomaly is too 
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high, indicating that the model’s teleconnection is too reactive to La Niña events in late boreal 

winter.  

Ensemble Mean Anomaly Evolution  

We investigate the spatiotemporal coevolution of ensemble-mean SSTs (region: 

[15S,15N]; [0E,359E]) and Z200a in the PNA region ([25N,70N]; [140E, 60W]) through week-

reliant MCA. The weekly averaged SSTs and Z200a are used as right and left fields, 

respectively. Figure 5.8 shows the left and right heterogenous fields of the first week-reliant 

MCA mode in the November (Fig. 5.8a) and February (Fig. 5.8b) initializations for the first six 

weeks of the forecast period. Additionally, the 𝑅𝑊𝑆> (red contour) and 200 hPa divergent wind 

(vector) regressed on the normalized Z200a expansion coefficient is shown. The November 

fields explain 70.6% of covariance, 5% of variance in the GPH field and 68.7% of variance in 

the tropical SSTs. Tropical SSTs clearly show an ENSO like expression with anomalous SSTs 

peaking in the mid tropical pacific. The divergent flow to the midlatitudes is extremely weak 

and 𝑅𝑊𝑆> fades quickly after week 2. As was observed in Figure 5.7a, the midlatitude Z200a 

atmospheric response to tropical SST forcing is nearly negligible with a weakly discernable AL 

pattern emerging in weeks 0-2 but quickly dissipating. On weekly timescales it appears that 

there is little to no link in the ensemble mean of tropical SSTs and the PNA pattern. 

  The February patterns (Fig. 5.8b) explain 84.6% of covariance, 13.1% of variance in 

the GPH field and 55.8% of variance in the tropical SSTs from weeks 0-5. The heterogenous 

tropical SST pattern clearly show an ENSO expression, with tropical divergent winds consistent 

with the Figure 5.6 composites, and consistent 𝑅𝑊𝑆> remaining throughout the entire 6-week 

forecast. The Z200a anomaly slowly weakens across the forecast, as the ensemble members 
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spread -- diminishing the effective anomaly in the ensemble mean and forecast reliance on the 

initial condition.  By week 6, only the boundary condition forcing remains (see Fig. 5.2b & Fig. 

5.3b), and the forced ensemble pattern resembles the leading mode of atmospheric variability 

(Fig. 5.1b). The evolution of the SST pattern is small across the forecast period, owing to the 

slow evolution ENSO related anomalies, but the maximum SST anomaly in the ensemble mean 

is diminished in week 5 by 0.18 [K] compared to the forecast initialization.  

SST Ensemble Spread Evolution  

We now turn our attention to the spatiotemporal evolution of the ensemble SST spread 

and its effect on the PNA predictability. Figure 5.9 shows the evolution of the leading mode of 

variance in the ensemble spread of tropical SSTs (region: [15S,15N]; [0E,359E]) for the 

November and February initializations (Figure 5.9a & 5.9b). This mode represents ~5% of total 

variance in both initializations. The anomalous westerly winds appear to slow the trade winds 

and induce a wind-evaporation-SST (WES) feedback (Xie & Philander, 1994), in which cross 

equatorial flow decelerates the trades in the warmer hemisphere. These trade wind anomalies 

can often be induced by cross-basin interaction of large-scale climate modes, particularly the 

North Atlantic Oscillation (Amaya & Foltz, 2014; Chiang et al. 2002). Additionally, they are 

early indications of the arrival of the North Atlantic meridional mode (Chang et al. 1997) , and 

the North Pacific meridional mode (Chiang & Vimont 2004). The above analysis indicates that 

anomalies in tropical SSTs directly influence the expressed PNA. However, though this the 

cross-basin interaction has been shown to affect future ENSO variability (e.g., Ma et al., 2021), 

the time-scales act on the order of months to seasons, and not weeks. To investigate the 

ensemble spread’s affect influencing the extratropical atmosphere, we correlate the PCS of 

these patterns to Z200a, the North Atlantic Oscillation and not the PNA emerges (not shown). 
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Though it is not the focus of this work, we investigate this spatiotemporal coevolution further 

we conduct a week-reliant MCA on the ensemble spread of SSTs (region: [15S,15N]; 

[0E,359E]) and Z200a in the north Atlantic region ([20N,80N]; [90W, 40E]). In the patterns 

(shown in supplemental Figure 5.3s) for the February initialization,  we observe a development 

of the NAO in forecast week 2 which spurs Pacific to Atlantic flow. Ma et al. (2021) showed 

that the weakened northeast trade winds in the North Tropical Atlantic drive an anomalous flux 

of latent energy into the ocean, increasing SSTs there, driving more westerly flow. The westerly 

flow is accompanied by anomalous northerlies in the Northeastern subtropical Pacific, which 

are induced by negative surface latent heat flux anomalies. These anomalies eventually develop 

into the North Pacific Meridional Mode. 

Through MCA analysis, no relationship can be discovered between the ensemble spread 

of the PNA pattern and ensemble spread of the tropical SSTs with any significant correlation. 

Younas & Tang (2013) showed that, despite having improved potential predictability, weekly 

subseasonal PNA forecast prediction skill was not significantly improved when similar models 

were run with sea surface coupling when compared to their uncoupled counterparts. Here, 

uncoupled models mean the atmospheric circulation is driven by persistent ocean forcing. The 

results presented here agrees with that result and offers an explanation for this lack of forecast 

improvement, as the slowly evolving SSTs are forced by the atmospheric evolution, but do not 

gain the tropical temperature spread anomalies necessary to drive a feedback into the 

midlatitude vorticity sourcing on the examined timescales. 

5.4.2.2 Madden Julian Oscillation Teleconnection  

The MJO is characterized by the eastward propagation of planetary-scale convective 

anomalies with travel across the Indo-Pacific warm pool with a typical phase speed of ~5 m s-
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1. A full planetary MJO cycle is typically realized on the order of 30-60 days [as summarized 

in reviews, (W. K.-M. Lau & Waliser, 2011; C. Zhang, 2005)]. Supplemental Figure 5.4S shows 

the velocity potential at 200 – hPa of the 8 standard phases of the MJO from in the CSF-20C 

product for the November and February model initializations. The MJO teleconnects to the 

midlatitudes via two mechanisms 1) diabatic heating anomalies associated with the convective 

wave activity forcing upper level divergent winds, which propagate north and interact with the 

strong absolute vorticity gradient of the subtropical jet and induce a Rossby wave response 

(Mori & Watanabe, 2008) 2) via excitation of Rossby waves flanking to the east and west of 

the convective region which extract kinetic energy from the climatological mean flow and force 

a poleward propagating wave train (Adames & Wallace 2014). Figure 5.10 shows the 7-14 day 

averaged lagged response of Z200a (black contour), the 0-7 averaged lagged response of 𝑅𝑊𝑆> 

(colorfill) and divergent wind (vector) and the 200-hpa zonal wind (climatology, green contour) 

composite of the 8 phases active phases of the MJO in the CSF-20C. The composite is 

calculated across every ensemble member individually and conditioned on an RMM magnitude 

of greater than 1 in each phase. Additionally, we characterize model bias in the Z200a field, 

and show where the model is biased high in stippled regions and biased low in hatched regions. 

Bias is calculated with the same method as Deser et al. (2017), which is described in the section 

above. 

Multiple examples exist in the literature of the examined teleconnection response to 

active MJO events both in idealized simulations (e.g, Adames & Wallace, 2014; Mori & 

Watanabe, 2008) and in observations (e.g., Henderson et al. 2017; Tseng et al. 2019; Wang et 

al., 2020a, 2020b) have found direct forcing of the PNA pattern. The February initialization 

(Fig 5.10b) shows a good representation of the PNA like teleconnection, linked with the tropical 
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MJO signal. In phases 1-3, MJO convection is centered over the Indian ocean (Figure 5.4s), 

generating a negative	𝑅𝑊𝑆> midlatitude response and a significant negative PNA. In phases 6-

7, MJO convection is centered over the maritime continent and western Pacific, generating a 

positive 𝑅𝑊𝑆> midlatitude response and a significant positive PNA pattern. The patterns shown 

here are direct parallels to those identified in Wang et al. (2020a). A notable bias exists in the 

limb of the PNA centered over the Hawaiian region, in both positive and negative phases of the 

PNA. This region is a characteristic response region which flanks the equatorial Gill response 

to tropical heating (Adames & Wallace, 2014), acting as a generation cite for the Rossby wave 

response, and requires an in depth examination. 

The November initialization (Fig. 5.10a) shows a different response and does not 

contain the often observed PNA-like wave train characteristic of tropical heating. The 𝑅𝑊𝑆> is 

generally muted compared to its the February counterpart. However, significant Z200a 

anomalies exist, but appear to have manifest as higher wave numbers than the PNA. The 

seasonality of the MJO impacts on North America temperature have been briefly examined 

(Jenney et al. 2019), and have been shown to evolve across a boreal winter season. The 

modulation of seasonal manifestations of the MJO teleconnection found here supports this 

finding. However, no process based intraseasonal evolution of the MJO teleconnection exists 

in the literature that the authors could identify. Figure 5.4S, shows that the November 

initializations contain strong divergent/convergent winds over the Indian Ocean, but there is a 

striking lack of divergent wind over the western tropical Pacific. Convection anomalies are in 

general muted over the Pacific November initialization. Figure 5.10 suggests a significant 

modulation of the teleconnection given the divergent wind and background state across a boreal 

winter, and a focused study is needed. To examine the discrepancy between the November and 
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February teleconnection we show the four terms of the 𝑅𝑊𝑆> and the divergence in the 

characteristic PNA 𝑅𝑊𝑆> anchoring region ([20N,40N];[140E,170W]) in Figure 5.11. The first 

term in the	𝑅𝑊𝑆> (S1, −𝜉̅∇ ∙ 𝑣l> )  dominates, which is consistent with multiple previous studies 

(e.g., Hsu, 1996; Wang et al., 2020). This shows that the background seasonal absolute vorticity 

and the MJO-induced divergence play important roles in the 𝑅𝑊𝑆>, clearly a stronger 

divergence term is seen in the February initialization (Fig. 5.10d). Interestingly, S3 (𝑣l> ∙ ∇𝜉̅) 

the advection of mean absolute vorticity by anomalous divergent wind shows an important 

signal in the November initialization. Mechanistically, the teleconnection response to S3 is 

examined in Seo & Lee (2017), who found that shorter waves first travel along the westerly jet 

and then emanate at the jet exit region, prior to formation of the full PNA response. This 

mechanism could offer one insight into the discrepancy between the November and February 

Z200a patterns. 

Ensemble Mean Anomaly Evolution   

We investigate the spatiotemporal coevolution of VP (region: [15S,15N]; [0E,359E]) 

and Z200a in the PNA region ([25N,70N]; [140E, 60W]) through week-reliant MCA of the 

ensemble mean. The weekly averaged VP and Z200a are used as right and left fields, 

respectively. Figure 5.12 shows the left and right heterogenous fields of the first week-reliant 

MCA mode in the November (Fig. 5.12a) and February (Fig. 5.12b) initializations for the first 

six weeks of the weekly averaged forecast period. Additionally, the 𝑅𝑊𝑆> (red contour) and 

200 hPa tropical divergent wind (vector) regressed on the normalized Z200a expansion 

coefficient is shown. A very clear propagating MJO is shown in the VP field. The November 

fields explain 26.1% of covariance, and just 5.9% of variance in the GPH field and 15.35% of 
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variance in the tropical VP. The VP shows a very clear propagating wave which travels at a rate 

similar to the MJO phase speed (J. Wang et al., 2020b). Similar to the composite structures 

shown in Figure 5.10, the MCA November does not show a PNA like pattern, rather it shows 

high wave number Rossby wave structures initially emanating over the Asian continent. This 

gives further evidence that the early season teleconnection of the MJO does not manifest as a 

PNA pattern.  

The February fields explain 39.9% of covariance, and 12.5% of variance in the GPH 

field and 16.35% of variance in the tropical VP. The February fields display a very clear PNA 

pattern in Z200a which persists through week 3 before losing its general structure week 4 and 

5 as MJO phase amplitude weakens in the VP field. The MJO manifests as a phase 6 event, 

with divergent wind over the maritime continent. By the end of the 46-day forecast the MJO 

has traveled into phase 0, and the anomaly signal has weakened significantly as the anomaly 

variance is spread out of the ensemble mean and the ensemble mean tends towards climatology.  

Ensemble Spread Anomaly Evolution  

We now turn our attention to the spatiotemporal evolution of the ensemble VP spread 

and thus the error growth’s effect on the PNA predictability. Figure 5.13 shows the evolution 

of the leading mode of variance in the ensemble spread of tropical VP region: [15S,15N]; 

[0E,359E]) for the November and February initializations (Figure 5.13a & 5.13b). This mode 

represents ~18% of total variance in both initializations. The ensemble spread analysis reveals 

that the leading mode of ensemble uncertainty in the tropical convective systems on weekly 

timescales is the MJO. A coherent anomaly in the ensemble spread does not emerge until week 

2, indicating that the ensemble spread is relatively low up until that point. The bivariate MJO 
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forecast correlation is shown in supplemental Figure 5.5S. At week 2 the MJO still has a skillful 

forecast (~0.7 correlation), but it is clear that anomalous forecast deviations have begun to 

emerge. Further, they are accompanied by divergent wind (shown in vector) which can 

communicate with the extratropics and add to the uncertainty of the PNA forecast.  

We examine the spatiotemporal coevolution VP (region: [15S,15N]; [0E,359E]) and 

Z200a in the PNA region ([25N,70N]; [140E, 60W]) through week-reliant MCA of the 

ensemble spread. Figure 5.14 shows the left and right heterogenous fields of the first week-

reliant MCA mode in the November (Fig. 5.14a) and February (Fig. 5.14b) initializations for 

the first six weeks of the weekly averaged forecast period. Additionally, the 𝑅𝑊𝑆> (red contour) 

and 200 hPa tropical divergent wind (vector) regressed on the normalized Z200a expansion 

coefficient is shown. The VP field readily matches the leading mode of ensemble spread (shown 

in Fig. 5.13) and is identified as the emerging MJO signal. The November fields explain 25.6% 

of covariance, and 3.9% of variance in the GPH field and 6.7% of variance in the tropical VP. 

A weak teleconnection emerges in week 2; sparked by the growing divergent winds generated 

in by the emerging MJO signal. Week 3-5 show Rossby wave trains emerging from the Asian 

continent and spanning the entirety of the Pacific. The patterns are similar to the Phase 4 Rossby 

wave train shown in the November Z200a/MJO phase composites (Fig. 5.10a). Significant 

Z200a anomalies emerge throughout the 6-week forecast, but do not manifest as the PNA 

signal.  

The February fields explain 43.0% of covariance, and 7.5% of variance in the GPH field 

and 11.6% of variance in the tropical VP. In week 2, a VP anomaly and Z200a first emerges. 

Weeks 3-5 show the clear development of an internal mode of the positive PNA pattern, with 

the corresponding MJO traveling from phases 5-8. It is important to note that the SVD analysis 
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is sign invariant, thus this pattern also represents the negative forcing of the PNA pattern from 

MJO phases 1-3.  The MJO first manifests as a dipole over the Indian Ocean and Maritime 

continent, and weak anomalous RWS is overserved in the midlatitudes. This initial MJO growth 

condition represents model spread in the convective region just east of the maritime continent 

(corresponding to MJO phase 6/7 in the positive expression and phase 1/2 in the negative 

expression). Interestingly, this corresponds with the location optimal PNA growth conditions 

via tropical convection, and the optimal growth conditions in the Z200a field in Henderson et 

al., (2020), where linear inverse modeling is used to isolate the MJO derived PNA pattern. In 

week two the first signs of a cyclonic anomaly emerges over the east Pacific (~15°N, 140°W), 

this pattern retrogrades west and strengthens in weeks 3 and 4, merging with the lower limb of 

the PNA pattern, centered over the Hawaiian Isles. The easterly winds driven by this pattern 

collide with the westerly winds associated with MJO phase 5/6 over the Indian Ocean. This 

forces further midlatitude divergence and strengthens the associate 𝑅𝑊𝑆′ anchored in the 

midlatitude jet, reinforcing the PNA pattern. A relatively small percent of variance is explained 

by the displayed 6 week evolution of the Z200a (7.5%). However, when MCA is performed to 

examine covariance between individual weeks 3, 4, or 5 (rather than the full 7 week cycle), the 

variance explained increased to ~15-20% of the Z200a spread field.  

The February ensemble spread shows a clear influence on the uncertainty of the PNA 

forecasts in the MCA analysis. The internal modes of the MJO begins to be influential on the 

Z200a in week three in the weekly averaged forecasts. We now test whether this accounts for a 

significant portion of the uncertainty in the spread of the forecasted PNA index. To test this, we 

set up a simple linear model to examine the relationship between the anomalous spread of the 

MJO RMM indices 1 and 2 and the anomalous spread of the PNA forecast seven days later. 
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The model is express as 𝜎(𝑃𝑁𝐴(𝜏))> = 𝑥!𝜎(𝑅𝑀𝑀1(𝜏 − 7))> + 𝑥$𝜎(𝑅𝑀𝑀2(𝜏 − 7))>, where  

𝜏  is the examined forecast day. We fit this function for values 𝑥! and 𝑥$  by minimizing the 

mean squared error. We then examine the correlation between the model fit and the observed 

PNA spread. Figure 5.15 shows the correlation of this model in the November and February 

initializations (Fig. 5.15a & 5.15b, respectively) throughout the 46-day forecast. The forecast 

is averaged forward in time with a simple 7 day rolling average filter. Additionally, we show 

the evolution of the PNA ensemble spread (red line). The model is shown to be significantly 

skillful in week 3 (red dots on forecast day ~17), of the February initialization. Showing that 

the uncertainty in the RMM indices can explain ~15% of variance in the uncertainty of the PNA 

forecast, lagged 7 days later. The November initialization does not show this same relationship. 

This is expected, as we have shown that the MJO teleconnection in November does not manifest 

as the PNA signal. Upon examination, we find that uncertainty in	𝑅𝑀𝑀1	is the dominant source 

of the forecast skill, with greater uncertainty in 𝑅𝑀𝑀1 driving greater uncertainty in the 

forecasted PNA index. RMM1 represents convection over the maritime continent, thus 

uncertainty in that location seems to drive the MJO related uncertainty in the February PNA 

forecast. 

5.5 Summary and Discussion  

 This study investigates the subseasonal forecast skill of the Pacific-North American 

(PNA) pattern in the European Center for Medium-Range Weather Forecast’s (ECMWF) 

coupled hindcast of the 20th century, across multiple time scales. We find that the February 

initializations are much more skillful than their analogous November counterparts. The 

November forecasts do not appear to be subject to boundary layer forcing and the dominant 
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portion of their forecast skill is attributable to accurate representation of the slowly evolving 

background state in the initial condition. The November daily averaged forecasts of PNA have 

a correlation to observations of 0.5 or greater only out to forecast day 7. Weekly averaging 

increases the forecast skill by roughly four days per week with a final 4-week average forecast 

retaining skill out to day 22. A pseudo-persistence forecast demonstrates that the forecast skill 

in November is entirely due to the initial condition. Alternatively, the February forecasts are 

much more skillful. Correlation remains above 0.5 for the 1-day averaged forecast out to 20 

days. Weekly averaging again adds forecast skill of roughly four days per week averaged. The 

4-week forecast skill drops below 0.5 at 42 days. The pseudo-persistence forecast demonstrates 

that boundary condition forcing (via slowly varying climate modes) are clearly in affect in 

February.  

We examine the two tropically derived drivers of the PNA, 1) El Niño Southern 

Oscillation (ENSO) and 2) the Madden-Julian Oscillation (MJO, Madden & Julian, 1971). 

Through, composite analysis and optimal correlation analysis in the ensemble mean, we find 

no tropical teleconnection to the PNA in the November forecast. Despite a strong tropical SST 

anomaly, the ENSO/MJO teleconnections do not appear to have begun, and thus boundary 

conditions forcing the forecast skill is low. Despite having roughly equal magnitudes of tropical 

divergence in November and February, the ENSO forced divergence does not reach the 

midlatitudes. Additionally, the midlatitude divergence associated with the MJO is much weaker 

in the midlatitudes in November in every phase. Compounding the lack of divergence, in 

November a weaker subtropical jet leads to comparatively absolute vorticity sourcing, resulting 

in a weak Rossby wave source (Sardeshmukh & Hoskins, 1988) for both MJO and ENSO 

events. Alternatively, the February initializations have a strong PNA/ENSO teleconnection and 
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PNA/MJO teleconnection, observed in both composite analysis and optimal correlation analysis 

of the model ensemble mean. 

We then examine the growing modes of forecast uncertainty via ensemble spread 

analysis. The ensemble spread analysis enables a much larger sample size and available 

observations and highlights the growing anomalies driving forecast divergence from the 

ensemble mean. On weekly time-scales we can identify no feedback between uncertainty in the 

ensemble SST forecast and uncertainty on the PNA. Due to the slowly evolving nature of the 

uncertainty growth in the sea surface anomalies do not grow large enough to drive PNA 

divergence. We identify the MJO as the largest growing mode of forecast uncertainty in the 

tropical atmosphere accounting for ~18% of variance in both November and December. Despite 

still having a skillful MJO forecast, in week 3, independent MJOs have developed in the model 

spread significantly affecting the PNA forecast certainty. Particularly error growth in RMM1 

drives significant error growth in the PNA.  

Finally, empirical model development and particularly modern machine learning 

methods for subseasonal forecasting, continue to grow in popularity as more data driven 

forecast systems show that they have model skill to rival numerical weather prediction (e.g., 

Rasp et al., 2020). It is import to train these methods with the representative data in order to 

optimize forecast skill. This study demonstrates that there is a significant evolution of tropical 

forcing, and persistence in the PNA across a boreal winter season. Care must be taken when 

designing empirical methods in order to account for this intraseasonal forecast evolution. 
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Figure 5.1 Leading modes of observed variability [10N,80N], [140E, 60W] in the area 
weighted 200-hPa CERA20-C observations over the period 1901-2010 for climatological first 
30 days of a) November and b) February, representing 21.0% and 32.0% of total variance, 
respectively. 

a) Nov. b) Feb.

Leading modes of observed variability [10N,80N], [140E, 60W] in the area weighted 200-hPa 
CERA20-C observations over the period 1901-2010 for climatological first 30 days of a) November 
and b) February, representing 21.0% and 32.0% of total variance, respectively.    
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Figure 5.2  PNA RMSE (CERA-20C vs. CSF-20C) and ensemble spread as a function of 
forecast lead at daily time-scales a) November initialization and b) February initializations in 
the CSF-20C. 

a) Nov. b) Feb.

PNA RMSE (CERA-20C vs. CSF-20C) and ensemble spread as a function of forecast lead at daily time-scales a) November 
initialization and b) February initializations in the CSF-20C.    
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Figure 5.3 PNA correlation as a function of lead time for different time scales in the November 
(a) and February (b) forecast initializations and correlation of the initial averaged N-days (see 
legend) held constant (see text for details) in the November (c) and February (d) forecast 
initializations (dashed lines). Additionally, forecast correlation is shown as reference lines 
(solid lines) for panels (c) and (d), in their respective forecast months. 

a) Nov.

b) Feb.

c) Nov.

d) Feb.
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Figure 5.4 The ROC skill score for PNA events at different thresholds, for the 4-weeks 
averaged forecast, centered on forecast day 28. The 90-10% uncertainty range is also shown, as 
determined by bootstrap with resampling 1000 times.  
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Figure 5.5 Scatter diagrams of PNA Magnitude (a,b), Tropical 200-hPa Divergence (c,d), 
Midlatitude 200-hPa Divergence (e,f),  and 200-hPa Rossby Wave Source anomaly (g,h). In the 
ensemble mean of the 4-week average forecast of the ensemble mean in the November (a,c,e,g) 
and February (b,d,f,h) initializations against the concurrent SST anomaly averaged in the 
region: [5N,5S], [170W, 100W]. Regressions lines show the linear relationship between the 
variables, correlation and p-value are shown above each panel. The averaging region of interest 
is for each variable is shown in the panels on the right (see text). 
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Figure 5.6 Percent of modulation to atmospheric variability as a function of 1 standard 
deviation change in averaged SST anomaly in the region: [5N,5S], [170W, 100W] via 
regression of the ensemble spread on concurrent SST anomalies in the November (a) and 
February (b) forecasts. Stippling shows variable significance determined by boostrap with 
replacement (1000 times) and examination of the 95th and 5th percentiles of the pseudo 
distribution. 

a) Nov.

b) Feb.

[%]
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Figure 5.7 7-14 day averaged lagged response of Z200a (contour, black 10m interval, positive: 
solid; negative: dashed), 0-7 Rossby wave source anomaly averaged lagged response (colorfill), 
and climatological 200-hPa zonal wind (green; contour levels: [40,50,60,70,80] ms-1) in each 
ENSO phase, for the November (a) and February (b) model initializations. Stippled regions 
indicate CSF-20C is systematically biased high, hatched regions indicate CSF-20C is 
systematically biased low. 

a) Nov.

b) Feb.
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Niño
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Figure 5.8 Left (contour; black at 10m intervals) and right (color shading) heterogenous fields 
of the first week-reliant MCA mode of the ensemble mean weekly averaged SST anomalies 
(region: [-15S,15N],[0W, 360W]) and geopotential height (region: ([25N,70N]; [140E, 60W]). 
Additionally we show the non-rotational component of the wind (vector, reference arrow: 4 ms-

1, shown only when the windspeed is above 0.5 ms-1) and Rossby Wave Source anomaly 
(contour, red [-15,-10,-5,5,10,15]*1e11 s-2) regressed on the left expansion coefficient 
normalized to unit variance. Anomaly evolution is shown on averaged weekly intervals in the 
November (a) and February (b) initializations, the fields represent  70.6% and 68.7% of 
covariance, respectively. 

Anomalous sea surface temperature and zonal and meridional wind 850-hPa regressed on the extended EOF of SST (weekly 
averaged 0-5, region: [-15S,15N],[0W, 360W] ) intermember spread normalized to unit variance in, a) November 
initialization and b) February initializations, representing ~5% and ~5% of total variance, respectively. Reference vector 
represents 3 m/s.   

a) Nov.

b) Feb.

Add RWS, WIND

week 0 week 1 week 2

week 3 week 4 week 5

week 0 week 1 week 2

week 3 week 4 week 5
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Figure 5.9 Anomalous sea surface temperature and zonal and meridional wind 850-hPa 
regressed on the extended EOF of SST (week 0-5, region: [-15S,15N],[0W, 360W]) 
intermember spread normalized to unit variance in, a) November initialization and b) February 
initializations, representing ~5% and ~5% of total variance, respectively. Reference wind vector 
represents 3 m/s. 

Anomalous sea surface temperature and zonal and meridional wind 850-hPa regressed on the 
extended EOF of SST (week 0-5, region: [-15S,15N],[0W, 360W] ) intermember spread normalized to 
unit variance in, a) November initialization and b) February initializations, representing ~5% and ~5% 
of total variance, respectively. Reference wind vector represents 3 m/s.   
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Figure 5.10 7-14 day averaged lagged response of Z200a (contour, black 10m interval, positive: 
solid; negative: dashed), 0-7 Rossby wave source anomaly averaged lagged response (colorfill), 
and climatological 200-hPa zonal wind (green; contour levels: [40,50,60,70,80] ms-1) in each 
MJO phase, for the November (a) and February (b) model initializations. Stippled regions 
indicate CSF-20C is systematically biased high, hatched regions indicate CSF-20C is 
systematically biased low.   

a) Nov. b) Feb.
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Figure 5.11 0-7 day averaged lagged four components of the Rossby Wave Source anomaly 
(a,c) and the divergence (b,d) in the eight MJO phases in region: [20N,40N];[140E,170W] for 
the November (a,b) and February (c,d) model initializations. Error bars represent the 10th and 
90th confidence interval as determined by bootstrap with replacement 1000 times. 
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Figure 5.12 Left (contour; black at 10m intervals) and right (color shading) heterogenous fields 
of the first week-reliant MCA mode of the ensemble mean weekly averaged Velocity Potential 
anomalies (region: [-15S,15N],[0W, 360W]) and geopotential height (region: ([25N,70N]; 
[140E, 60W]). Additionally we show the non-rotational component of the wind (vector, 
reference arrow: 4 ms-1) and Rossby Wave Source anomaly (contour, red [-15,-10,-
5,5,10,15]*1e11 s-2) regressed on the left expansion coefficient normalized to unit variance. 
Anomaly evolution is shown on averaged weekly intervals in the November (a) and February 
(b) initializations, the fields represent 26.1% and 39.9% of covariance, respectively. 

Anomalous sea surface temperature and zonal and meridional wind 850-hPa regressed on the extended EOF of SST (weekly 
averaged 0-5, region: [-15S,15N],[0W, 360W] ) intermember spread normalized to unit variance in, a) November 
initialization and b) February initializations, representing ~5% and ~5% of total variance, respectively. Reference vector 
represents 3 m/s.   
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Figure 5.13 Anomalous velocity potential and zonal and meridional wind 200-hPa regressed 
on the extended EOF of SST (week 0-5, region: [-15S,15N],[0W, 360W]) intermember spread 
normalized to unit variance in, a) November initialization and b) February initializations, 
representing ~18% and ~18% of total variance, respectively. Reference wind vector represents 
3 ms-1 in weeks 0-2 and 8 ms-1 in weeks 3-5. 

200-hPa anomalous velocity potential and zonal and meridional wind regressed on the extended EOF 
of 200-hPa Velocity Potential (week 0-5) intermember spread normalized to unit variance in, a) 
November initialization and b) February initializations, representing ~18% and ~18% of total 
variance, respectively. Reference vector represents 3 m/s.   
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Figure 5.14 Left (contour; black at 10m intervals) and right (color shading) heterogenous fields 
of the first week-reliant MCA mode of the ensemble spread weekly averaged Velocity Potential 
anomalies (region: [-15S,15N],[0W, 360W]) and geopotential height (region: ([25N,70N]; 
[140E, 60W]). Additionally we show the non-rotational component of the wind (vector, 
reference arrow: 3 ms-1 in weeks 0-2; 8 ms-1 in weeks 3-5) and Rossby Wave Source anomaly 
(contour, red [-15,-10,-5,5,10,15]*1e11 s-2) regressed on the left expansion coefficient 
normalized to unit variance. Anomaly evolution is shown on averaged weekly intervals in the 
November (a) and February (b) initializations, the fields represent 25.6% and 43.0% of 
covariance, respectively. 

Anomalous sea surface temperature and zonal and meridional wind 850-hPa regressed on the extended EOF of SST (weekly 
averaged 0-5, region: [-15S,15N],[0W, 360W] ) intermember spread normalized to unit variance in, a) November 
initialization and b) February initializations, representing ~5% and ~5% of total variance, respectively. Reference vector 
represents 3 m/s.   
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Figure 5.15 Correlation as a function of forecast lead time of the anomalous spread in the 
weekly averaged RMM indices and the anomalous spread in the 7-day lagged weekly averaged 
PNA forecast. Red dots indicate when the regression is significant at the 5% level as determined 
by a standard t-test. Additionally, PNA ensemble spread is shown (red line; right y-axis). 

a) Nov.

b) Feb.
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5.7 Supporting Information  

Here, we present additional figures and information for Chapter 4 in support of the 

material presented above.  

 

 

Figure 5.1S The ROC skill score for PNA events at different thresholds, for the 4-weeks 
averaged forecast, centered on forecast day 28. The 90-10% uncertainty range is also shown, as 
determined by bootstrap with resampling 1000 times.  
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Figure 5.2S Composite Rossby wave source (colorfill), irrotational components of the 200-hPa 
wind (vector), and zonal wind at 200-hPa (climatology + anomaly, contour [40,50,60,70,80] 
ms-1) for El Niño (a,c) and La Niña (b,d) seasons in the November (a,b) and February (c,d) 
CSF-20C model initializations.  
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Figure 5.3S Left (contour; black at 10m intervals) and right (color shading) heterogenous fields 
of the first week-reliant MCA mode of the ensemble spread weekly averaged Velocity Potential 
anomalies (region: [-15S,15N],[0W, 360W]) and geopotential height (region: ([20N,80N]; 
[55W, 0]). Additionally we show the non-rotational component of the wind at 850-hPa(vector, 
reference arrow: 4 ms-1) and Rossby Wave Source anomaly (contour, red [-15,-10,-
5,5,10,15]*1e11 s-2) regressed on the left expansion coefficient normalized to unit variance. 
Anomaly evolution is shown on averaged weekly intervals in the February (a) initializations, 
the fields represent 45.5% of covariance. 

Anomalous sea surface temperature and zonal and meridional wind 850-hPa regressed on the extended EOF of SST (weekly 
averaged 0-5, region: [-15S,15N],[0W, 360W] ) intermember spread normalized to unit variance in, a) November 
initialization and b) February initializations, representing ~5% and ~5% of total variance, respectively. Reference vector 
represents 3 m/s.   
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Figure 5.4S Composite of anomalous VP at 200-hPa and 200-hPa irrotational components of 
the wind anomalies (vector) for each phase of the MJO in the November (a) and February (b) 
initializations. Reference vector is 3 ms-1. Negative VP represents upper level divergence. 

a) Nov. b. ) Feb
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Figure 5.5S Bivariate correlation of the CSF-20C MJO and CERA-20C MJO observations by 
forecast lead compiled for the November and February initializations in when initialized in 
active (black) and inactive (green) phases of the MJO. 
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Chapter 6  

Conclusion  

6.1 Summary of Contributions  

The purpose of this thesis is to examine and advance North American weather 

predictability from weather to subseasonal time-scales. Specifically, it focuses on 1) developing 

machine learning/deep learning methods and models to improve predictability through 

numerical weather prediction (NWP) post-processing on weather time-scales (0-7 days) and 2) 

examining the physical mechanisms which govern the evolution of the predictable components 

and noise components of teleconnection modes on subseasonal time-scales (7 days - 1 month).  

NWP deficiencies (e.g., sub-grid parameterization approximations), nonlinear error 

growth associated with the chaotic nature of the atmosphere, and initial condition uncertainty 

lead initial small forecast errors to eventually result in weather predictions which are as skillful 

as random forecasts. A portion of these forecast errors are inherent to the NWP models alone, 

systematic biases. The first two chapters of this dissertation developed cutting-edge vision-

based deep learning algorithms to advance the current state-of-the-art NWP post-processing 

and correct systematic NWP biases. 

Chapter 2 tests the utility of convolutional neural networks (CNN) as a postprocessing 

framework for improving the National Center for Environmental Prediction’s Global Forecast 

System’s (GFS) integrated vapor transport (IVT) forecast field over the Eastern Pacific and 

Western United States. IVT is the characteristic field of atmospheric rivers, which provide over 

65% of yearly precipitation at some western U.S. locations. The method reduces full field root 
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mean squared error (RMSE) at forecast leads from 3 hours to 7 days (9-17% reduction), while 

increasing correlation between observations and predictions (0.5-12% increase). This 

represents a ~1-2-day lead time improvement in RMSE. Decomposing RMSE shows that 

random error and conditional biases are predominantly reduced. Systematic error is reduced up 

to 5-days forecast lead, but accounts for a smaller portion of RMSE. This work demonstrates 

CNNs potential to improve forecast skill out to 7 days for precipitation events affecting the 

western U.S. 

Chapter 3 takes a step further and leverages Deep Learning (DL) post-processing 

methods to obtain reliable and accurate probabilistic forecasts from single-member numerical 

weather predictions of IVT. Using a 34-year reforecast, based on the Center for Western 

Weather and Water Extremes West-WRF mesoscale model of North American West Coast 

IVT, the dynamically/statistically derived 0–120-hour probabilistic forecasts for IVT under 

atmospheric river (AR) conditions are tested. These predictions are compared to the Global 

Ensemble Forecast System (GEFS) dynamic model and the GEFS calibrated with a neural 

network. Additionally, the DL methods are tested against an established, but more rigid, 

statistical-dynamical ensemble method (the Analog Ensemble). The findings show, using 

continuous ranked probability skill score and Brier skill score as verification metrics, that the 

DL methods compete with or outperform the calibrated GEFS system at lead times from 0-48 

hours and again from 72-120 hours for AR vapor transport events. Additionally, the DL 

methods generate reliable and skillful probabilistic forecasts. The implications of varying the 

length of the training dataset are examined and the results show that the DL methods learn 

relatively quickly and ~10 years of hindcast data are required to compete with the GEFS 

ensemble. Additionally, this chapter lays out a transfer learning framework which can be readily 
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applied to new model updates, or in the case of this work, to mitigate the potential effects of 

changing error statistics due to secular climate change, or slowly varying decadal variability. 

The second half of this thesis shifts focus to subseasonal time scales and examines 

predictability in the Pacific North American (PNA) sector in boreal winter. Particularly, it 

investigates the physical mechanisms involved in the intraseasonal modulation of atmospheric 

Signal-to-Noise (SN), and how it is affected by slowly varying climate modes (ENSO and 

MJO). These mechanisms are explored using a fully coupled hindcast of the 20th century, 

showing that the increased SN leads to high model forecast skill at subseasonal timescales in 

particular forecast windows of opportunity. Additionally, we reveal the MJO as the largest 

growing mode of tropical forecast uncertainty which directly influence PNA forecast certainty.  

Chapter 4 leverages a high-resolution atmospheric general circulation model simulation 

of unprecedented ensemble size, and examines the potential predictability of monthly anomalies 

under El Niño Southern Oscillation (ENSO) forcing and background internal variability. This 

chapter reveals the pronounced month-to-month evolution of both the ENSO forcing signal and 

internal variability. Internal variance in upper-level geopotential height decreases ~10% over 

the North Pacific during El Niño as the westerly jet extends eastward, allowing forced signals 

to account for a greater fraction of the total variability, and leading to increased potential 

predictability. We identify February and March of El Niño years as the most predictable months 

using a signal-to-noise analysis. In contrast, December, a month typically included in 

teleconnection studies, shows little-to-no potential predictability. This chapter shows that the 

seasonal evolution of SST forcing, and variability leads to significant signal-to-noise 

relationships that can be directly linked to both upper-level and surface variable predictability 

for a given month. The stark changes in forced response, internal variability, and thus signal-
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to-noise across an ENSO season indicate that subseasonal fields should be used to diagnose 

potential predictability over North America associated with ENSO teleconnections. Using 

surface air temperature and precipitation as examples, this study provides motivation to pursue 

‘windows of forecast opportunity’, in which statistical skill can be developed, tested, and 

leveraged to determine times and regions in which this skill may be elevated. 

 In Chapter 5, using ensemble hindcasts of the European Centre for Medium-Range 

Weather Forecasts (ECMWF) coupled model of the 20th century (period 1901–2010), the 

subseasonal forecast skill of the Pacific North American (PNA) pattern and the spatiotemporal 

evolution in the covariability of the PNA and 1) tropical sea surface temperatures (SST) and 2) 

the Madden Julian Oscillation (MJO) in both the November and February initializations is 

investigated. Significant intraseasonal dependence of forecast skill and tropical forcing is 

demonstrated. The February initializations show a much more skillful subseasonal PNA 

forecast (compared to the November initializations). Additionally, the forecast skill derived 

from the low-frequency variability of the initial condition is much more valuable in February 

than in November. Two known drivers of subseasonal PNA forcing are investigated, El Niño 

Southern Oscillation (ENSO) SSTs and the MJO. The covariability in the ensemble mean and 

ensemble spread is investigated with week-reliant singular value decomposition (SVD), which 

treats each variable in a given average weekly forecast sequence as a single time step. The 

leading mode of the ensemble spread in the SST/PNA SVD shows only response in the 

extratropical atmosphere forcing the tropical ocean indicating that on subseasonal time-scales 

the uncertainty in SST ensemble spread shows little influence to PNA predictability. The MJO 

is revealed as the leading mode of ensemble spread in the tropical atmosphere. The February 

MJO/PNA SVD shows strong PNA modulation beginning in week 3 with the growth of a 
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northeast Pacific cyclonic/anticyclonic retrograding west and enforcing the PNA pattern. 

However, this pattern is notably lacking in the November initialization. Due to the large sample 

size provided by this simulation, we show that uncertainty in the MJO significantly influences 

uncertainty in the PNA forecast.  

6.2 Future Directions  

Machine learning / deep learning (ML / DL) is currently in an explosive growth phase 

for algorithmic development of NPW post-processing. This dissertation presents the first use 

case of convolutional neural networks, a type of computer vision-based DL, for model post-

processing. Compared to previous post-processing algorithms, these methods offer extreme 

flexibility to ingest spatiotemporal ancillary predictors and have unique training regimes which 

systematically prevent overfitting to data. Chapter 3 introduced a method of uncertainty 

quantification for deterministic forecast fields, this method outperforms fully dynamically 

derived forecast models in every examined probabilistic skill metric. However, the forecasted 

fields are prescribed from variational distributions; non-parametric methods, could potentially 

yield a more flexible forecast system that could be used ubiquitously across desired predictand 

variables, and early work has shown that this is potentially an exciting pathway forward (e.g., 

Bremnes, 2020). Simple DL latent space analog matching has yielded initial exciting results in 

this domain, and is an echo back in time to the original forecasters who looked for forecast 

analogs (see introduction) to predict the weather. 

 Post-processing systems rarely are used to inform on the physics of model error growth, 

yet these systems can accurately characterize this growth based on the input parameters. Thus, 

there is scope for these systems to be leveraged to examine the largest growing modes of 
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forecast uncertainty in order to inform on dynamic model ensemble creation. Finally, we have 

seen the success of these methods of identifying and correcting models post-forecast. Online 

learning and adjustment could be leveraged in order to actively correct known climate model 

biases by discovering the conditional error tendencies within nudging algorithms, early work 

has shown this can be successful in simplified forecast models (Brajard et al., 2021). For this 

application, the network would be required to obey known conservation laws to prevent model 

drift in long system integration. Beucler et al., (2021) has shown model ‘constraint network 

layers’ enforce physical law conservation into climate model simulations for use in subgrid 

parameterizations, this same concept could readily be applied to the model bias problem. 

The demand for skillful forecasts at lead times of two weeks to two months continues 

to grow. Accurate forecasts, at these time scales would dramatically affect nearly every modern 

societal sector. As the desired forecast sit outside the theoretical limit of NWP predictability, 

subseasonal forecast skill will not be achieved by a simple extension of our current forecast 

systems (or a dramatic increase of model resolution). This dissertation makes it clear that even 

leveraging our most influential climate modes (ENSO / MJO) on intraseasonal timescales 

requires intentional study of the physics which determine the downstream atmospheric forcing, 

or modulation of internal variability. Thus, in statistical model development, neglecting the 

physics of the teleconnection response will result in suboptimal utilization of training data 

which is detrimental to potential forecast skill. Subseasonal forecasts are neither weather nor 

seasonal forecasts, and they should not be treated as such. Blending statistical/dynamical 

approaches could lead to our most successful forecast systems, and have shown early promise 

(Henderson et al., 2020; Weyn et al., 2021) . 



 218 

Moving forward, there are several outstanding questions adjacent to this dissertation 

that can be the focus of future research. The intraseasonal dependence of MJO and ENSO PNA 

teleconnection forecast skill has been examined, yet O’Reilly et al., (2020) has shown the 

decadal strength of the seasonal teleconnections is significantly modulated by decadal climate 

mode variability this calls into question whether subseasonal forcing and internal variability is 

equally affected by decadal variability? Initial work with the ECMWF 20th century hindcast 

shows a significant modulation of teleconnection strength in given MJO phases across the last 

decade, yet more focused research could be illuminating. It has been shown that in a future 

climate the MJO teleconnection is actively affected by the mean state midlatitude jet 

amplification (W. Zhou et al., 2020), understanding of the decadal variability which modulates 

this bias would lead to a more complete picture of the future state of these teleconnection 

patterns. 

   This dissertation has shown the dependence of the internal variability and forcing of 

the atmosphere on the midlatitude background state. The MJO is touted as the leading mode of 

intraseasonal tropical variability and is likely the largest source of subseasonal forecast skill in 

ENSO neutral years. Yet, focused simplified modeling studies on the intraseasonal 

development of the MJO teleconnection are notably lacking in the literature. These studies are 

drastically important, as statistical methods are actively being developed to issue forecasts in 

the subseasonal time range and the trustworthy observational record is woefully short in order 

to develop robust teleconnection statistics. Open questions remain about the growth of the PNA 

teleconnection, the initialization mechanism of optimal teleconnection growth (tropical 

divergence or flanking Rossby waves) forced by the MJO, and the role of synoptic-scale 
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transients in generating and maintaining the teleconnection (Adames & Wallace, 2014; 

Henderson et al., 2020).
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