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‘ of interaction of a spin with electromagnetic fields.
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ABSTRACT

- A mainly didactic discussion is given of the mechanism for

the gradual build up of transverse polarization of electrons and posi-

trons iIn storage rings, The history and basic results are reviewed

briefly. Then a naive explanation of the polarization 1n' terms of
spontaneous emission via a nonrelativistic magnetic dipole transition in
a8 moving inertial frame is presented and criticized. Although plauﬁible

and surprisingly good (for electrons and positrons), the elementary dis-

cussion fails, chiefly because the spin-magnetic-moment system cannot

be treated in isolation from the orbital motion. A correct semiclassical

description of radiation by a spin system is then given,in direct analogy

- with semiclassical radiation theory for charged particles ignoring spin.
The classical equation of motion for a spin in relativistic motiom,

derived originally by Thomas, is used to obtain an effective Hamiltonian

Priission and

absorption of radfation is then described by replacing the classical

electromagnetic fields with the appropriately normalized photon fields.

It is proved in an appendix that the relevant quantum-mechanical matrix

This work was supported in part by ERDA.
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element reduces to this semiclassical form in the limit applicable to
synchrotron radiation (clnssvical orbit and neglect of recoil). The
resulting formulas are applicable to charged particles of arbitrary

g factor and serve as a basls for generalization of the Russian results

for the characteristic time of polarization and its asymptotic value.

'meée results are of physical interest only for the knom case of 3

€=2 but éerve useful pedagogic purposes, refuting some of the s

expectations of th(; naive explanation. The various differential spectra

in angle and in frequency for numbers .of photons and for radiated

| <
power for g = 2 are treated in detail and compared with the -
- corresponding spectra for ordinary synchrotron radiation. n
o~
&
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I. lNTRODUCTION
The emission of synchrotron radiation by a relativistic
charged particle suﬁject'to transvefse aeceleration'is a much studied
and much used phenomenon.

Its history as a theoretical possiblity

extends back at 1east to before 1900 with the relativistic generaliza-

tion of the Larmor power formula by Liénard and others. For a charge

: :1n uniform, 01rcular motion, the detailed harmonic content and angular _

distributions for each harmonic were calculated in 1911 for an Adams

~ Prize Essay by Schott (1912), but they remained an exercise in

vmathematical physics until the 1940's when the ‘first electron synchro—

trons were constructed and synchrotron light was observed. The names

',ofﬂPomeranchuk, Schiff, and Schwinger are among those who gave

modern theoretical discussions of the phenomena in published and
unpublished«work, with the paper of Schwinger (1949 ) containing the
various theoretical results in their most tractable form. The
essentials now occur ln numerous advanced texts.l

.More recent and somewhat less well known is the realization
of a gradual polafizatien of elections and positrons as they expe-
rience a sustaiaed transverae acceleraiion while orbiting in a
storage ring. The mecﬁanism-isfthe emission of spin-flip synchrotron
radiation, as first pointed out by Ternov, Loskutov, and Korovina

{1961). For initially unpolarized electrons or positrons of charge

2

€, mass m, energy E = yme in uniform motion in a circle of

‘'radius p, there is a gradual build up of transverse polarization

‘ -t/1
" P(t) = Po(l-e °)‘ ‘ (12)



"(Sokolov and Ternov, 1963).

5=

where the maximum polarization is

P = 8/5V3 = 0.9238 (1b)

(o]

and the characteristic time To is

R |
5V3 ey’
LI e N (1)
° m e p '

The polarization is perpendicular to both

. veloelty and acceleration, that is, along the direction of the magnétic

field responsible for the bending. Positrons are polarized parallel
té-the magnetic field, electrons antiparallel.

The original work 6f Sokolov, Ternov, and collaborators was
done with exact solutions for a relativistic Dirac electron in a uni-
form magnetic field. Subsequently, Baier and Katkov generalized the
results to motion in inhomogeneous fields. For tﬁe spin-flip radiation
by relativistic electronsorpositrons they obtained (Baier and Katkov,
1967a; Baier, 197la,b) the transition probebility per unit time,

v - 51_6-"5-9;“5v5|g|3[ e - 8\’3_5“-(5&4&)] (@
. me .

where the unit axial vector 4 specifies the initial spin direction
in thé electron's restiframe and é and ‘é are unit vectors in the
directions of the local velocity and acceleration, respectively. For
a circular orbit with L§| = ¢/p, Eq. (2) leads to results (1) with
the senses of polarization for electrons and positrons already stated.

The amount of spin-flip radiation is.extremely small cqmpared
to the ordinary (nonfiip)-synchrotron fadiation. The ratio of the
powers radiated is ( Ternov, Loskutov? and Korovina, 1961; Sokolov and
TernoQ, 1963) |

b
Popin-r1ip _ ,35V3 (3)
.. mcp 64

ordinary

where the choice of sign depends on the initial spin state of the

particle. Only when Yy approaches the eritical value,

é .

will the amount of spin-flip radiation be- comparable to.the ordinary{ZE
synchrotron radiation. At present a typical bending radius for an. ..

electron storage ring is p = 13 meters. Hence Yo = 6% 106, while™

y < 10%, showing that the ratio (3) is of the order of 10™1. The
smallness of this ratio is reflected in the }elative largeness of thgga
build-up time Ty -
In practice one must distinguish the ring's effective bending
radius p from the average orbit radius R, defined is the circum-

ference of the orbit divided by 2m. Let the s be the length along

the actual orbit in the storage ring and p(s) be the radius of curva-

Jou,

ture of.the orbit at each point. Then bty consideration of the accumula-

ticn of probabilities it 1s easy to show that the effective radius of

curvature p +to be inserted in (lc) is

03 = ¢'[p(s)]’3 ds S{\ds . (5)

This formula is valid even if p(s) changes sign locally around the

‘orbit as would occur with the so-called wiggler magnets,'suggested as

a means of controlling the characteristic time t_ (Paterson, Rees,

and Wiedemann, 1975). For a storage ring consisting of a set of

identical bending magnets of bending radius p and straight sections



-

combining to an orbit of circumference 2uR, the right-hand side of (5).

is equal to (p/R)p'B. In practical units the time constant T, is

¢ - D(m) 3 R :
To\sec) = 98.66 TE[(;-V))—]?B B (6)

For SPEAR, the storage ring at the Stanford Linear Accelerator Center,

then

p=12.7m, R =37.3m At 2 GeV per beam the build-up time is
r&ughly 5 hours, while at 4 GeV per beam it is abou£ 10 minutés. The
strong dependence aﬁ energy méans thgt the poiarization can be utilized
as an effective physics tool only in the upper energy range of existing
storage rings (SPEAR and DORIS, at Hamburg).

Indications of a build up of the polarization in a single cir-
culating beam were first reported in 1968 by the Orsay group (Belbeoch
et al., 1968), with unambiguous evidence from both Novosibirsk and
Orsay iﬁ 19’71.2 The first observations on polarization with two beams,
under conditions similar to actual running for physics, were made

at Orsay and presented by LeDuff et al. (1973). More recently

observations have been made at SPEAR on the polarizatiqn of a single
stored beam with E = 2.4 GeV (Camerini et al., 1975). 'The first

observation of polarization with stored colliding'beams in the reac-
tions e'e  »yu'y” and e'e” + hadrons at 3.7 GeV per beam and its

use in clarifying the physics of e’e- -+ hadrons has been reported by

Schwitters et al. (1975). Contemporaneously, pblarization measurements

in the colliding beam reaction e'e” » p'u” at 0.5-0.7 GeV. per beam
have been communicated from Novosibirsk by Kurdadze et al. (1975).
For all practical purposes the works of Sokolov and Ternov and

of Baier and Katkov, especially the review by Baier (1971b) with its

-8-

discussion of both theoretical and practical problems, are more’ than
adequate to describe the raudiative polarization of beams in storage
rings. Nevertheless, it seems that there is the need for an
"anschaﬁlich", didactic discussion of the subject. After éll, Schwingér
(1954 ) demonstrated clearly that ordinary synchrotron radiation is an
entirely classical phenomenon. He showed that the orbit is classical
froviﬂed (He/Ep) << 1, where E is the total energy of the particle
and p ‘is the orbit rad;us of curvatire, and that the firét'order
quantum-mechanical corrections were obtained by replacement of

w + w(l + fw/E) in the differential transition probasbility. It
foilows that for reletivistic particles with 1 << y << Yo the orbit
can be treated classically and recoil effects can be neglected. This

regime of approximation is the basils of the treatment of the spin-flip

gynchrotron radiation end similar problems by Baier and.Katkov (1967a,b,

1968).3 The works of Schwinger and of Baier and Katkov are important
in seeking as classical an understanding as possible.of the phenomenon.
We focus on the spin itself and seek in its dynamics a'simble physical

basis for the spin-flip radiation. The words "spin-flip" warn, of

‘course, that the treatment cannot be completely élassiéal--the electron

spiﬁ'muét be treated Quéntum—mechanically--but otherwisé it is reason-
able to expect that one can obtain an understanding of the phenomenon
in simple intuitive terms. It turns out that there are subtleties
that prevent the realization of this expectation in its'naivest forn,
but a satisfying elemeﬁtary explanation can be obtained nevertheless.
The plan of the paper is as follows. Firstly, the most naive
orientation is presented. It does surprisingly and deceptively well.

Then its shortcomings are described. Next, the femiliar semiclassical
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treatment of emission of radiation found in texts on quantum mechanics .

is outlined and generalized via the classical relativistic equation
of motion of spin to include spin-flip radiation. The effective

interaction Hamiltonian so obtained serves as~£he basis of a
semiciassical treatment of the'radiétive polarization for a particle of
charge e and arbitrary g—f&ctor.‘ The prdof that the effective‘inter-
action Haﬁiltonian leads in the soft-photon 1imit to the same matrix
'element as the Dirac current with Yu end oY
for an appendix. The virtue of a treatment with arbitrary g-factor,
seemingly only an academic curiosity, is in its ability to confound
some of the "common sense" notions of the naive orientation. The final
section treéts the angular and frequency spectra of the spin-flip

radiation for electrons and positrons (g = 2). These are of

pedagogical, if not practical, value.

couplings is reserved

=10~

II. NAIVE TREATMENT AND ITS SHORTCOMINGS

A. Elementary description

The physicist's appetite for an elementary descfiption of -
radiative polarization ié whetted by the following facts: ’

(1) The effect involves spin-flip.

(2) The rate is very slow, as befits a magnetic dipole
transition between states with a small energy difference.

(3) The electrons and positrons are polarized with their
magnetic moments parallel to the magnetic field, corresponding to
the state of lowest energy of an isolated spin system.

(4) Formulas(lc)or (2) smaek of magnetic dipole, with

L@IB providng the factor of W end Lulzm visible in the

product of fundamental constants.

Obviously, he says, go to the rest frame of the orbiting eleétron
énd consider a simple Ml transition from the upper energy leQei to
the lower. We follow his prescription.

Though we know that for relativistic particles all that
affects the character of the radiation is a segment of trajectory
of length d ~ p/Y, corresponding to an angular deflection
46 ~ 1/Y, for simplicity we consider a particle of charge e and

mass m moving at constant speed v = ¢ in a circular orbit of

radius p in a uniform static magnetic field B. The orbital

00

i
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ffeqnency is w, = v/p = wB/Y, where wp = eB/me is the nonrelativ-
istic cyclotron frequency. We now consider the fields in an
instantaneously comoving inertial frame ‘K' moving with speed

v = cB tangent to the circle. The magnetic field B appears in
this frame as a magnetic field B' = yB in the same direction as B
and én electric field E' = yRB in the direction X xg@, as shown

~in Fig. 1. Suppose that the spin degree of freedom can be treated

nonrelativistically in this'frame. With magnetic mbment,

d

e (7)

Poal

1w

the spin system has two energy 1evels in K' with frequency

difference,

eB'

wip = lgl'iﬁ' ) .|g|Y2“’o- - 8)

The transition probability per unit time for a spontaneous magnetic

dipole transition from the upper state to the lowerlis

: LY ,
wo= %(%/%(ﬂgll)r ERER ¢

With (7) and (8) this becomes

T’ - o

Time dilatation gives a laboratory transition rate reduced by one

power of Y. With w, = ¢/p for a relativistic particle, (10) then

leads to a characteristic time, -

-12-

5 2.5

(11)
-m20203

T = ]2e
naive 312

to be compared with (1c).

For |g| = 2,.Eq.(11) agrees with (1c) to within aAfactor
of order unity. Furthermore, spontaneous emission from the "upper"
to "lower" energy level leads trivially to‘loo% polarizaetion with the‘
correct sensgé for electrons and positfons. Comparison_ﬁifh (2), *
with its ratio §f approximately 25 for.the "downwards" transition
rate compared to the "upwards" one and its ultimate polafization of
92.4%, indicates that all the essentials are given qualitatively,

and even semiquantitatively, by the naive argument. Not bad! The

. physicist then waves his hands expressively and remarks that of

course the spin is not exactly at rest all the time in the moving
frame and such neglected refinements can explain away the remaining

small discrepancies. The phenomenon is "understood".

B. Criticisms of the simple explanation

There are a number of shoricomings to this naive description.

~ The first is that the polarization is not 1004. The "energet;cally

forbidden" upwards transition oeccurs, élbeit at a mﬁéh slower rate
(for g = 2) than the "energetically allowed" transition. The

second is that the spectrum of emitted frequencies in the moving frame
is not a narrow line at w' = mi24 given by (8), but a broad
synchrotron spectrum extending to frequencies of the order

wéax ~‘Y2wo, independent of the value of g. The third deficiency

is that the inverse characteristic time is not proportionai to Igl5

as given by (11), but shows a more complicated dependence, varying as

¢
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lg|2 for large |g|. The fourth and most dramatic shortcoming is

that the degree and sense of polarization depends sensitively on the

value of g and is'such that for g < 1/2 the "upper" energy level

is populated prefeventially over the "lower" onel

Reasons for the failure of the naive argument are ﬁot hard
to find. First of all, it is not permissible to consider the spin
degree of freedom in isolation from the orbital motioﬁ; even in the
' iﬁétaﬁtaneously comoving fiame. For such consideratiéns.to have
approximate validity it ié_required that the energy level spacings
associated with'other degrees 6f freedom be large compared to the
transition energy of the degreé of freedom under study. Thus the

hyﬁe:fine transition in atomic hydrogen can be treated without

..regard to the electronic orbital motion, except as an "exterﬁal"
source of magnetic field. In the present circumstances, however,
" these conditions do nof hold. For relativistic circular orbits in
thé laboratofy, Bohr's'qnantizétidn rule for angular momentum gives

the orbital quantum number as

n = ymepAl = Y'Ycz (12)

ﬁhere Y, is the critical value, (4). The spacing between adjacent
orbital energy levels is ' '

AE = My , ' (13)

where w, = c¢/p is the orbital frequency. For highly relativistic
particles this spaéing is very small compared -to ‘ﬁmiz' given by (8),

'or, more properly for considerations in the laboratory,

ﬁérticle's direction and a typical momentum of the order of Y3ﬁmo/c,g%m

-14-

ynmiz ~ anwo. With the spacing bétween orbital levels very small
compared to the transition energy, that transition will inevitably
1nvolve.some changes in orbital.quantum number. In other words, there
will occur exchanges of energy between spin and oibital degreés of
freedom. Thre is then little significance in the concept of "upper”

and "1owef" energy states for the spin system alone.

g

0

Another way to rgach_the same conclusion is to consider the -

éonservation_of momentum during the emission of a typical "spin-flip"

i

rhoton. For ordinary sypthotron radiation the photons emerge within

v ) -
angles of the order of A48 ~ yf; of the path of the particle and
. . &
possess a broad spectrum of energles up to Yzﬁmo and somewhat
2
beyond.. The same will be demonstrated below for the spin-flip
' &

synchrotron radiatibn. With emission essentially parallel to the

9

the photon will causé the particle's momentum to decrease by an
amount, . b
.0\

Ap

"

YBﬁmo/c- = Yzﬂlp‘ . : (1)

This corresponds to a fractional change in orbital quantum nurber,

An - Ap . YA _ ~ )2
T T I e (v/v,)*, . (15)

and, using (12), to a value of An itself of the order of

m o=y . | , (16)

- This demonstrates that the changes in orbital quantum number from

recoil are enormous. With 2.5 GeV electroms, y = 5 x 103 and
An = 1011. At the quantum level the orbital motion is evidently

disturbed by the emission act! The disturbance is neverthess totally
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negligible to the orbit and its classical description provided

Y << Y, For the typical conditions of p = 13 meters and

7 7

Y = 5%10%, Eq.(12) yields n x 2 x 107 and (15), An/n = 5% 1077,
The astronomical value of n shows how classical the orbit is;

the minute value of An/n shows how small the perturbation of thé
orbit: Note from (12) and (14) that An/n is Jusi the fractional
change inthe énergy of the particle as it emits the phqton. These
éqnsideratiOns provide justification for a classical treatment of

the problem (given classical trajectory and soft-photon 1iﬁit).

Yet another shortcoming of the naive argument is the assumption
that the particle's motion is nonrelativistic and can be ignéred in
the moving inertial frame. _

At any instant the state of motion of the particle can be
specified by its velocity vector y and the components of accelera-.
tion J parallel and perpendicular to it. Equivalently, the

instantaneous radius of curvature p 1is related to the transverse

accéleration by
- G2
po= v/ (17)

while the rate of change of speed is equal to the parallel combonent‘
of accelgration. Only a length of arc of the order of pfy or a
time interval At - p/yv 1is relevant in considering the radiation.

In practical circumstances this time 1nter§al is so short that the
fadius of curvature and the speedAcan be treated as constants during
it. The arbitrary trajectory can thus be approximated locally as a
circular path or radius p along which the particle moves at

constant speed v = Bc or angular velocity wy = Bc/p. A suitable

choice of coordinates in the laboratory is shown in Fig, 2. The zero

. =16~

of time is chosen when the particle is at the origin: For a
horizontal storage ring the guiding magnetic field is in the vertical

(z) direction, in or out of the page, the velocity at t = 0 1is in the

x direction, and the acceleration at that instant in the ¥y direction

The instantaneously comoving inertial frame is defined by a boost

in the positive x direction with speed Be. Denoting coordinates

- in the moving f:ame with;primes, we have the orbit described

parametrically in the two frames by

x = psinmot

i}

¥y = p(l - cos mot) } Laboratory (18)
z = 0"
/
o \
x' = yp(sin wyt - mot)
y' = p{1 - cos mot) }Mbving frame . (19)
z' = 0

The time coordinate in the moving frame is
wt' = ylut - 82 sinut) (20
o’ . g o] *

For laboratbry times such that Ymo|t| = 0(1), the orbit equations

(19) and (20) can be approximated as

Cx' -(p/6Y2)(ont)3

Y s (D/ZYZ)(Yth)Z ) (21)
: 2 2.2

wot ~ (wot/y)(l * Yt /6) )

/ T
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The equation of the orbit is thus

)2/ 3

v o= e/ )er?l x| /o (22)

This path is shown on the right-hand side of Fig. 2. Note that the

unit of length is p/yz, so the scale is greatly enlarged compared to
the laboratory figure. Values of the parameter ont are indicated

along the path to show the correspondence with points on’ the circular

arc in the laboratory. In terms of this parémeter the components

of the velocity and acceleration of the particle in the moving frame
~

are
‘ 2 22, ., '
B; T Yu,t /2 ) )
By = Yyugt/y' v
' § (23)
é; ~ -yzmb(ont)/; 3 :
where -
Yom 1Yl (24)

_ is the ratio of energy to reét ehefgy for the particle in ihe

moving frame.

Since the relevant.range.of Yo t is of order unity, (23)
and (24) tell us that the particle, while instantaneouély at rest in
the moving frame at t = 0, soon attains speeds_close‘to that of
light{ It is admittedly not ultrarelativistic iﬁ the contribu;ingA

time interval, but is changing its state of motion rapidly and is

~18-

" certainly not even approximately at rest for purpose of calculating

the radiation.
Two comments in passing:

(1) The path in the moving frame can be thought of as being
produced by the combined action of é magnetic field in the z'
direction and an electric field in the y' direction. .The scﬁle

‘of curvature of the path'is p/yz, as shown in Fig, 2. This meens ‘

_ E _ o
that, although the speed is not constant in this frame, the character-

e

istic orbital angular frequency is wé ~ Yzwo, of the same order of
ﬁ;‘,

15
Ll

magnitude as (8), the frequency associated with intrinsic spin.

(2) 1t is amusing to verify the Lorentz invarience of totaIgk
radiated power by calculating in the moving frame with Liénafﬁ's L=

generalization of the Larmor power formula, e
. @vs

R L I .12 :
Plo= (g - (8 x| . (25)

Substitution from (23) leads to the familiar result,
Pro= 2% A3 = 2ePeytetsae? ©(26)

independént of time, even thoughbthe cbmponents of veloeity and
acceleration are time-dependent in the moving frame.

It is hoped that by now the reader is persuaded that the naive
considergtion of the electron's spin as an isolated, nonrelativistic
system in the moving frame is unjustified. Because of ease of exchange
of energy'between'mechanical.and spin degrees of freedom no siénifiéance
can be attached to the ‘labels dupper" and "lower" energy levels for

the magnetic moment interaction. Since the motion in the



~19-

instantaneously comoving inertial frame becomes somewhat relativistic
in<£he time interval of interest, there is no qompelling reason for
considering the phenomeqon in that frame. The laboratory serves as
‘well and is more familiar. .We now proceed to a discussion of a semi-
classical derivation of the correct results. _ ,

It may be objected that the business of the instantaneously
comoving inertial frame is a.straw man, that there is a frame where
the sfin is always at rest, namely the exactly comoving Lorentz frame
obtained by a boost with the instantaneous velocity ~‘_}‘,r___(t.). The.
difficulty with such an approach is that discussion of frequency
spectra and transition probabilities inevitably_requires consideration
of nonvanishing time intervals. A time-dependent Lorentz transforme-
tion to a noninertial frame seems to present insurmountable problems,
and is not "anschaﬁlich", to say the least. The relativist;c effects
of acceleration, i.e., the Thomas precession, are included auto-

matically in the derivation that follows.

III, SEMICLASSICAL DESCRIPTION

A. Semiclassical radiation theory for charge
The time honored elementéry tféatment of spontaneous
emission proceeds as follows. First consider a nonrelativistic 7
charged particle of ﬁass m and charge e ‘interacting with an
external classical electromagnetic field described by sqalar and
vector potentials (¢,A) and also with another givén interaction
potential U. Its motion is described quantum mechanibally by the

Schrodinger equatioh with & Hamiltonian,

H = %(g-eﬁ/c)zi-w*-U . C(27)

~20-
Commonly (e.g., in atomic physics) the poténtial U is absent and
the scalar potential is the Coulomb potential of the fixed nuclei.

If the vector potential is treated as a perturbation, the Hamiltonian

is written as a zeroth order term,

(p)?

H = =

° 2m

+edb+ U

‘plus e small interaction term,

Hint = S48 (28) -

where the velocity operator is B = (-iﬁ/mcxg‘ and the potentials are

2

in the radiation gauge with “2‘.5\ = 0, The term in A™ has been

neglected. Effects of weak external fiélds are examined by use of
perturbation theory with the states of the unperturbed Hamiltonian Ho
as the basis. Phenomena like the Zeeman effect involve static external
fields, but one can also treat time-varying applied fields and
discuss transitions between different energy levels of the unperturbed
syétem.

It is then an easy step to consider A in (28) as the
vector potential of a plane electromagnetic wave incident on the
unperturbed system,

tp-tut
A(r,t) = eA e
oo

o~ 0

+ c.c. . : (29) .

The constant Ao is initially arbitrary, but is soon chosen to have

the value,

A = (z2rhiesx) - (30)

[+
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corresponding to one photon of energy 4w per unit volume in the
incident beam, computed by equating the classical tiﬁle-averaged
Poynting vector to ‘Kcz.,lg.. The substitution of the velctor potential
{29) into the interaction Hamiltonian (28), followed by a treatment
of time-dependent perturbation theory using the method of variatioxd
of parameters of Dirac, and leading to a discussion of the photo-
electric effect or other transitions involving the absorption of
photons, can be traced in almost any book on quantum mechanics.

| The derivation involves at some step a resonant enhancement
(conservation of energy!) arising from the time integral of the
’ pfoduct of two exponentials,
JEE VR
The first factor comes from the time dependences of the initial
~ and final unperturbed states and the second from the first term in -
(29). Since E, > E; by assumption, the second (complex conjugate)
term in (29) gives no contribution to the time integral. However, it
takes no prodding to convince the student to consider the opposite
‘ situation where E:l > Ef. -He or she is thus led smoothly to spontaneous
.emission where the second (comp;tex conjugate) piece in (29) is opera- )
‘ tive. It is plausible in considering a transition with the emission
of a single phbton of wave number X thet the same normalization
constant (30) enters the vector potential here as fot' abso_rption..

For our purposee the "golden-rule" result for the transition

probability is not as appropriate as an expression for the differentiel

‘ probability at time t for the emission of a photon of polarization

4 and wave number. ‘_15 in an elemental volume d3k:
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ap(t) =

t ; tz
1 Sk
Ef <‘}‘f(t' iy (80]¥ () at? —
- (2)
(31)
It is customary to extract the time dependence of the initial and CJ
final states and so obtain the exponential factor discussed above, bu&:

because of our transition to a classical orbit following Baler and

Katkov we treat the states and operators in the Heisemberg picture.

In the limit as t + m, (31) 1is the probabillty of photon emission

o

i
into d3k. The energy radiated can be obtained by multiplying by fw. .
We are thus led to a result with a classical counterpart, the '

Fa
differential intensity of energy radiated with polarization £ per -
unit solid angle and per unit frequency interval, -

Pr . dap(=)
qddw W -
66}

With the second term in (29) operative in (28) the interaction becomes

’ fwt-ik.r
- - 27|'ﬁc * R ) )
(Hint )emission = e - c Be . (32)

This gives

 dwt-1k-x(
€ B(t)e i(t)> dt

2
%%m = [ <"'r(t)

Imc

(33)

Here the velocity B(t) and the coordinate X( t) are Heisenberg
eperators. Equation (33) can be compared with its classical a.nalog."

The transition to the classical limit is evidently achieved by the
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replacement,

-ik.r(t)
5 iwt-ik.r(t |‘l’i(t)>

(\vf('t )'ﬁ*'s(tj e

' : iwt-ik-r(t)
— &A1) e “‘. (34)

where now g(t) and 'g‘( t) are given classical quantities. This is
- Just thg result of Schwinger (1954) a.nd Baier and Katkov (1967b) in
the 1im:'_Lt vth‘at the 'orbit is classic_él ‘(the wave functi‘ons localized ‘
‘tightly around the orbit) and the energy of the emitted photon is
’very small compared to the energy of the particle {the noncommutativity
.of the varic;us Heisenberg operators can then be neglected).

The result (33) witfx the replacement (34) can form a
starting point for the derivation of the classic results of
Schwinger (1949) and others for ordinary synchrotron radiatiqn.l
The alert reader may have noticed that we began with the nonrelativ-
istic Schrodinger equation and are now discussing extreme relativistic
motion! - Tﬁe reason this is permitted is that to the neglect of spin
the interaction Hamiltonian (28) is correct relati_vistically with
a suitable velocity operator. In the classical iimit, the veélocity
operator is replaced by the classical velocity. The result is there;
‘fore generally applicable for arbitrary speeds provided the trajectory

is classical and Y << Yc.

B. Semiclassical radiation theory for spin

1. Nonrelativistic spin system

* A semiclassical treatment of emission and absorption of
radiation by a spin system in motion parallels the discussion of the

last section. For orientation we first consider a spin ‘h,g\ with

-2/~

associated magnetic moment = 'gen.‘s./ch at rest in interaction with

o
The Hamiltonian of interaction is

Hint = -nuo':g = ‘(%%‘g B . ' (35).

an external magnetic field B.

The corresponding Heisenberg _equation of motion is the familiar

result,

- iltes) = (D2sxa . e

2.8

The interaction Hamiltonian (35) can be used to discuss the effects

of static or time-varying magnetic fields on the energy levels and

transitions of the spin system in isolation or perhaps with coupling

to other (orbital) degrees of heédom. Spontaneous emission can be
treated by the ansatz of the previous section--the emitted photon is
described by the second term of the véctor potential (29) with
strength A  ‘given by (30). The electric and magnetic fields of
the emitted photon are thus

iwt-ik.r
Kzx,t) = -1\ ot g* e T
(37)
iwt-ik.r
Br,t) = -iVemw (nxeg)e 7

where n is a unit vector in the direction of k. With this magnetic
‘field inserted into (35), standard lowest order perturbation theory‘
leads, in the long wavelength limit, to the magnetic dipole transition
rate (9).
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2. Relativistic spin system

N

In order to describe radiation by a spin system in reiativ-
istic motion we must obtain suitable ’generalizations of {35) and
(36). The relativistic eguation of motion for spin is by now rela-
tively well known. It was first derived by 'Thémas (1927) in his
detailed paper on what is called the Thomas precession, was discussed

.in & particle physics context by Bargmann, Michel, and Telegdi (1959),

and is now S'_tandard textbook f'are.5

The Thomas-BMT equation .of
motion for the spin S, of a particle of charge e, mass m, and
rest-frame magnetic moment Yo = gehg/ch, in motion with velocity °
= .g_c in external electromagnetic fields ;:\,R can be written in
Thomas's original form, '

i’%:f—sx a;la-_ar_g(.s)- + 1 x
dt me ™ w- ( Y)m y+1--:§m (a vy+1>.-§- :vE“
(38)

where a is called the magnetic moment anomaly and is defined by

a=55—2 . (39)

‘The spin vector 5 describes the spin in iis rest 'system (just as
does the Pguli g/z and the Pauli spinors in the 2-component reduc-
.tion of the 4-component Dirac spinor), but the time rate of change in

(38) is with respect to laboratory time. '

Equation (38) is the relativistic generalization of (35).
Strictly speaking, it holds only for spatially uniform fields because
it lacks 'x( _Ji-.'g.) terms, but is an adequate description for suffi-
bcienth_/ slowly varying fields or weak fields, whatever their space

and time variation. The Thomas-BMT equation can be thought of as

26—~

following from an effective Homiltonlan in the same way as (36)

'follow"s as a Heisenberg equation of motion from (35). Evidently

this effective Hamiltonlan is

(eff) _ eh A 1 ay 1
Hirg S T meR (a * 'Y')rg TY+1 .é\(IBIﬁ?\) - (a * ¥+ 1)2 *E
(40)

Although (40) 1s explicit and the most useful form for celcualticm,

the terms in the square bracket can be rearranged into a more
intuitive, if impliqit, form. First we define the magnetic field "B“'
in the rest frame of the spin,
. 2 .
B o= AB-pxE)-ETaER) - - (41)
Then we introduce the Thomas precession angular velocity vector
Bt
= ;ﬁ—(éx ) = _e_.__f'y - lr53213-8( . ')-BxE] (42)
"% Y+l L v, EC‘Y"' { an /!’-:B\,‘g o (F‘J.

‘In terms of B' and e the effective Hamiltonian (40) can be.

written

f 1
el T - FHoR tHapa | (43)

The two terms in (43) have immédigte physical interpretations. The’
first is the expected rest-frame coupling between magnetic moment and
magnetic field in that frame, diminished by a factor 'y-l to account
for the time dilatation seen in the laboratory (remember that (38) is
a 1a$oratory equation of mot_.ion, even though s i; the vresrt-f‘rame

spin vector) . The second .term is the contribution to the energy from

0=

7

b6

é
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the relativistic Thomas precession of axes in the accelerated rest .
frame.

3. Radiation formula

The semiclassical description of radiation by the spin s

o

Proceeds with the replacement of the classibal external fields E,B
i

in (40) by the fields (37) of the emitted rhoton. The effective

- Hamiltonian for emission then becomes

(eff )]' " & dwt-lier ;
H = iVorhw == s-Ve :
[ int emission me e (44)
where

X (eePaxg - Prasaee- (oo tp)axs
(45)

The matrix element of (44) between particle states (of spin
and spatial coordinates) can be used straightforwardly to discuss
transitions between states of different spin orientation. VFor the
present'purposes we consider the classical limit of fhe orbital
motion, as in going from.(31) to (33) and (34). éince ve are concerned
primarily with electrons and positrons we sbecialize to spin % énd
write s = g/2. Comparison of the Hamiltonian (32) for the emission
of radiation by a charge e with (44) shows that the formula at the
_ end of tﬁe last section can be transcribed with the s&bstitutién}

e -8(t) + -1 3K gyt . (46)

e 2me ~ ™

Ncw the only quantum-mechanical aspect is the Pauli spin vector. . The

spin analog of (33) and (34) is
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2
.2 ,
d Ispin e2h2w4 jwt-ik-r(t)

= [ at {rlgli) -¥(t) e oo (47)
dQdw . 16ﬂ2m205 o

00
.

with V(t) given by (45). The radiation is emitted in the course of
a transition from inifial sfin state 1 to final spin state f, both:
states specified in the rest frame of the barticlé. While in
principle nonfiip, ag well as spin-flip; transitions contribute to the
radiation;‘the nonflip transitions are dominated overwhelmingly by
tﬁe ordinary charge radiation (see Eq. (3)). Thus only spin-flip
transitions need concern us.- ‘

The semiclassical (47) and the corresponding result for the
transition probability, derived fromvthe Thomas-BMT equation, are
shown in the appendix to follow from the matrix element of the Dirac-
Peuli current (with .o“v coupling for the anomalous magnetic

moment) in the soft-photon limit. Equations (47) and (45) thus provide

~a straightforward generalization to arbitrary g-factor of the formulas

of Baier and Katkov. They are of negligible practical value for
g7 2, but are’pﬁt to pedégogic use below.

In the appendix, (47) is alsd compared with a strictly
classical exprgssion for radiétion emitted bj a moving magnetic
moment. The two results are not the same. The reasons for the

difference are discussed.
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IV. SPIN-FLIP SYNCHROTRON RADIATION FOR ARBITRARY g FACTOR

A. Differential energy, photon number, and transition rates

We now apply (47) to a calculation of the radiation émitted
by a relativis@ic spin % particle of charge e and arbitrary g
factor in a spin-flip transitidn while moving at velocity ﬂgc in an
instantaneously circular arc of radius p;rkfining the time integral
in (47) to be |
ww,ne) = f a g o R (48)

o Il

we have the intensity of energy radiﬁted per unit solid engle and per
unit frequency interval»with polarizetion g, in a single passage

‘along the are,

2 2 4
d°1 ek w 2

= flo-uli . , (49)
T - rr Kelepin] o

Thebnumber 6f photons emitted per unit solid angle, etc., 18 obtained

by dividing by Hw:

2 23 42 :
dN _ _e {t]g-uli) . (50)
dS2dw 16ﬂ2m205 l o ‘ o : »

The differential transition rate follows from (50) with multiplication
by m°/2n, where w = Be/p: »
2 eghm Wy

a"w

' spin direction changes from +; to :&. The square of the matrix

: 0.

‘This last result rigorously depends on the assumption of continuous

motion at constant speed in a circular orbit, but in practice holds
provided the speed and radius of curvature are sensibly constant over
a reasonable segment of path. The modifications for storage-ring
orbits with bending sections and straight sections are almost self-
evidgnt. For the total ratevtheyvhave been incorporated in (5) and_&%?.
We choose the initial spin direction to be along a unit aXiEé' -

vector ¢ in the rest frame and consider a transition in which the

o

fx

£

element in (49)-(51), summed over photon polarizations, can thus be

written

b b

o

T 1 Celggle) 12
pol

f

(52) o~ .

HL LIl gne

pol spins

2
.'}1“(1 +’g‘-§s)‘m)l .

The sum'over spins yields

Z [y - Ies

What remains now is a calculation of u with ’K(t) given by (45)

*ZC(ImuxRe u)] . (53)

and B(t) and z(t) found from the circular orbit equations (18),

approximated suitably for m°|t| = O(Y-l). The approximations are

essentially the same as for ordinary synchrotron raqiation}

and the
integrals encountered the same. The relative complexity of 3Kt),.

expecially for 'a # 0, makes the calculation algebraically cumbersome
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and not very illuminating. We merely quote results. The choice of

coordinate axes and angles is shown in Fig. 3. It is the same set of

axes as in Fig. 2, with the x axis being the velocity direction at

t = 0. Since the radiation pattern is strongly peaked in this direc-

tion, we choose the polar angle 6 with respect to it, although the

angle up from the orbital plane is actually more appropriate.

B. Doubly differential spectrum in frequency and angle

For the sake of compactness in relatively unwieldy formulas

we' introduce some notation. We define

t = yosin¢ o )
n = ;—-(I*Ye sin? 922 ) . (54)
. 2w
V & cem———
' 3Y3“’° : }

In terms of these variables and T_ - defined by(le) the differential

transition probability (51), summed over photon polarizationms, is

2 31 » 42 |
s - 3V3 Ja t){lw)(ha y

40n31 Yzw"
(o] o.

N

l)t +atl>+c a(2+a)(1+2t )

Equation (55) continued next page
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Equatioﬁ (55) continued
+ (1+tz)[(1+a)2 v a2? g (1a)? - 0% - 2t a(1+a)t] i /()
+2\1+ 42 [C3(1 +a)l + g + 2at2) - C1a2t(1 + 2t2)].

This somewhat.formidable expression gives the differential rate of

emission in angle and frequency. In spite of the polynomials in &

-and %, the familiar modified Bessel functions show that the spectra

are typical of synchrotron radiation, collimated in angle (with
9 sin ¢ ~ v -1 in this case) and with a broad spectrum of frequencies
extending up to Wpay ~ YBwo. The exponential behavior of the Bessel
functions for large n assures that, although the spectrum depends in
detail upon the g factor, the range of frequegcies is O { w < YBwo,
independent of g. A Lorentz transformation to the instantaneously
comoving rest frame shows that the frequencies there are on the
range, 0 < w' ¢ Yzwo, independent of g. This is contrary to the
nalve expectation that miz given by (8)'15 a typical frequency in
the moving frame.

For the physically interesting case of a =0 we consider
the frequency-ﬁhgle.spectrum in detail in the next section. But for
the present we proceéd directly to the integrated rate and the

polarization.



C. Angular distribution

The simplest path to the integrated rate is by integration
of (55) first over frequencies and then over angles. By means of the

definite integral formula,

) A . B

fvx Ku(x) Kv(x)dx =
: 0 » .

A=2 ! S

2 F<A+l+u+v>r<)\+l+u-v)r)\+l-u+v
T +1) p) 2 (™=

+ - -
xI‘(A 12u v) ,

the integration over frequencies yields the angular distribution,

——g—(ut)’ (1++.)(1+ 2:2)

45 'r

ot Clzél *'a)z + (a2 - i)t + aztID + 2 a(2 + a)(1 + 21;2)

| + .2;.1;31,( 1- atz)
+ % (1 + tz)[(1+ a)z + >a>2-t2 - C12<(l + 8)2 - a2t2>‘
-.2c1;3a(1 + av)t]
+ 1—2C’-526'l .v_l—:_t—z. [c3(1 +»a)(1 ‘ta+ 2at?) - claét(l + 2‘°2)]

(56)
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Again, in spite of the polynomials in t, with terms up to tl’, the

relativistic forward cone of radiation is eﬁdent by the presence of

the factor (1 + 42 )-5.

D. Total rate, characteristic time, and polarization_
The integration over angles is accomplished most simply by
noting from Fig. 3 that for small 6, 6 sin ¢ = sin 8 sin ¢ = cos 6',

where 6' is a polar angle measured from the 2z axis. Introducing

i,

a corresponding azimuthal angle ¢! and. notihg 'ﬂhat the distribution
(56) is negligible except near 6' = m/2, we can write the solid angl.em.

. <
element as

' 1
= 1 "y o = [ .
daQ d¢' d(cos e.) ~ Yd¢ dt N
The range of t is effectively (-w,») for ¥y >> 1. The mtegrationﬁ
over ¢' contributes a factor of 27 and terms odd in t do not | e
contribute. The remaining integrals are elementary. The final regultC-" .

for the transition rate is : o D

(57)

We have written the rate in a manner independent of the choice of

coordinates by introducing'the orthogonal unit vectors g, 'é\, g ""é,\
along what are the x, y, z axes in Fig. 3. Equation (57) is the
generalization to arbitrary g factor of the result (2) of Baier and

Katkov (1967a).
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The polarization of an initially unpolarized beam grows in

time according to Eq. (1), but with a me2n life 1t that is obtained

by (57) by choosing L along B x B and summing the rates in the

6 L.
two directions. ihis yields a characteristic time,

-1
1+%~+%§az . ‘ (58)

~

_ : - 3
The asymptotic polarization (in the direction opposite to li x B)

ey,

- _ 8 (1+a)1+—>

5W[§ 1+ 123 + :iéi_ .
' 9 90

(59)

- The-growth time T In units of T is shown as a function of a or

g in Fig. 4. It decreases for large |g| as g-z, but has a

maximum value of T/To = 8.88 when a = -0.8497 or g = 0.3186. The

polarization as a function of & or g is shown in Figﬂ 5. Its

behavior is much more interesting than that of T/To. For large

lg] the limiting value is P = 0.981. It has a maximum value of

0.99196 at a = 2.22 (g = 6.44), and shows a dramatic d1p to negative

values on the range -1.00 < a < -0.75" (0 <g < 0.5). For a < -1
(é < 0), the polarization grows gradually up to its asymptotic value
at large negative a.

To set thé sign of the pqlarization in the frémework of

the "upper" and "lcwer" energy levels cf an isolated magnetic moment,

we must realize that the "lower" level has s antiparallel to B8 x 8
A aadal N .4l i

. for g > 0, but parallel for g < 0. Figure 5 thus shows that for g

factors on the range - < g < 0.5 the "upper" energy state is
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populated preferentially over the "lower", contrary to naive ideas

. of spontaneous emission by the isolaied spin system.

V. ANGULAR AND FREQUENCY DICTRIBUTIONS FOR g =2

The only physically relevant g factor is _§‘=2, appropriate
for electrons and positrons. The total transition rate for spin-flip
synchrotron radiation has been discussed in the Introductlon. Here
we examine the;angular and frequency dlstributions of therradlation,
These are of academic interestvonly because, as we observed i;.ﬂ\
connection with Eq. (3), the energy radiated in the spin-flip transi-

tions is'negligible compared with the ordinary synchrotron radiation
provided vy << Yo

A, éggular Distributions of Photons and of Radiated Power

The starting point is Eq. (55), specialized to a = O, for the

doubly differential transition rate in angle and frequency:

R - 3\{-\)3(1+t) ‘:1+t

o2 2
2201 - t3) + Tt M)
o - o0 TYm Sy 13]“12./3

RECE IO E )K2/3(n)+2c Vi + % Ky () Ky (n) :

(60)

The notation is defined by Eq. (54), with reference to Fig. 3. The

angle variable t 1is, for small €, Y times the latitude with .
respect to the z axis, that is, the angle between the direction of
emission and the instantaneous plane of the orbit. It is the

traditional synchrotron radiation angle, called iy by.Schwinger

(1949) and © by Jackson (1975).
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The angular distribution of photons (number of photons per

unit time per unit solid angle7) is given by (56) with a=0:

2

oo 28 (w20 dor? e 2 (121 v tR) ¢ 2nnt
1 "2 1 S

de 45771
: (<)

+ eV +° ' (61)

The angular distribution of radiated power (energy per unit time per
unit solid angle) is obtained by multiplying (6d) by 4w and then

integrating over frequencies, as in going from (55) to (56). The

result is7

13
@ _ 77\V3 o 272 ) 2,2, _,02 2
@ " T N TS A R G

. A3
+ 2;1;3t 5 .\{- ) V1 + 12 . (62)
3°.77n
These angular distributions can be compared with the angular
distribution of radiated power for the ordinary (nonflip) synchrotron

radiation,

. .
ordlnary o ec (7 + 12t ) . (63)
321\’ ( ) (1 + t )

We see that in the relativistic domain all the angular distributions
are confined\tb angles of the order of Y-1 away from the instant;n-

eous orbital'pi‘ane, with' t=v as the natural variable._ The -

spin-flip angular distributions are somewhat narrower than the nonflip,

-11
&1

the power decreasing as compared to ]t|'5 at large [t].

B, Total Transition Rate and Total Spin#Flip Power Radiated
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This is a reflection of the harder photon spectrum of the spin-flip,
magnetic radiation with an overall additional factor of‘ w2 in i4s
frequency spectru; relative to that emitted by a charge. Similarly,
the difference in t dependence between the number distrlbution (61)
and the energy distribution (62) is explained by the fact that the
softer photons have a broader distribution in angle than the harder

ones.

The total transition rate of Baier and Katkov is obtained by

specialization of (57) to a =0 “or integration of (61) over angles

£
with dQ = y 1 dt d¢'. The result is Eq. (2), which in the presentdm
notation is v 2.
<
1 [, 2_ 2, 8 ;
w = 1-58% +—=1 . (64) w
A R 4 |
. o
The total spin-flip power, from (62), is
- : , eV
. YHw .
_ 16 o |, 1 35V3 s
Pspin_-flip —_5V3 To .[1 .. z Cl + % CB] e (65) 17%9

The ordinary radiated power is

2 ‘ - .
2f e 4
-3-(%) Y’hwo . ’ (66)

This leads to a ratio of spin-flip to ordinary power of

Pordinary

Teptnctitp ( ) +—35‘Gc11 L (e
ordlnary mep 64 - 3] J

in agreement with (3) for ¢, =0, T
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C. Frequency Distributions

The frequency spectrum of the radiation is found from (60) by

integration over angles. This is not quite as easy a task as integra-

tion over frequency at fixed angle. The angular integral of (60) can

be written

B N I | '
%]'; = 2__2,._31__ [ at [2;12(1 + £2) +(1 —_;12)(1 + t2)2};€/3(n)
o | . .

10n™ v WoTo

P12 2P R ) v 201+ 22 ) Ky ()

| (68)
‘where n = (v/2)(1 + t2)3/2 and Vv = 2m/3y3wo. The modified Bessel
functions of order 1/3 and 2/3 are related to the Airy function
A1(E) and its derivative. Thé‘appropriate integrals have been
evaluated in another conneetion by Aspnes (1966). Expressing his
Airy function forms in terms of Bessel functions, we obtain the

relevant integrals:

(1+ %) K2 (‘-’(1»«-1;2)3/2 at = —% K. ,.(s) ds
fo 1/3 2 N’B v v 1/3
i 2.2 .2 (/ 2,3/2 |
(1 + %) Y(1+ %) >dt = uf K, ,.(v)
fo 173\ 2 eyl 7

+J' Kl/B(S) dS‘}
\Y

J

Equation (69) continued next page

Equation (69) continued

2.2 v 2.3/2
I .(l+t) lcg/3<§(1+t) )dt
0

T

3K, (V) - (s) d

POVoN K2 L “1/3 s.

[ a3 e, )
0] .

%
03 v KI/B(V)
(69)

With these integrals and the conversion to the dimensionless fre-
quency variable v, the number of photons per unit time per unit

interval in v takes the form,

w9 v 2y vy e g2 ) (s)ds + (
® T Tont, SR S Ky /5(s)ds + g K 5(v)}
: Vv
(70)

The corresponding expression for the spin-flip power radiated

per unit interval in v 1is

dPspin—f‘lip = 27 Y‘ﬁmo\ 3
—dv_ 20m \ "7, )"

+ Clz[ Ky j5{s)ds + 23 K /5(v
\Y

2 '

71)
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This canbe compsréd with the ffequency spectrum of the ordinary

synchrotron radiation,

- .
ar
ordinary _ 9 #3 ;
dv Pordinary T f[’ K5/3(s)ds (72)
v . . .

'with the total powef given.by (66). _ |

The norqslized frequency distributions of the gggggi_of photons
- emitted per unit time in spin-flib transitions are shown in Fig. 6 for
the "down" transition (c3 = +1, g, = = 0) and the

Z, "ﬁp" transi-

Vtion (;3‘= -l; Ly =8y = 0). The spectrum for the predominant
"down" transition peaks around v =z 1.5 and extends to well beyond
v = 4.
with & maximum at v = 0.7. The areas are respectively 0.962
and 0.038, the "down" transition being 25.25 times as probable as
the "up”..

A graphical camparison of the separately normalized power
spectra for the spin-flip and the nonflip synchrotron radiations is
given in Fig. 7. For the ordinary radiation the_quanti;y plotted is

the coefficient of - Pordinary

it is 271/—'v3/128n times the square-bracket in (71) with

in (72). For the spin-flip radiation

=0, ;3 -..1. All the power spectra fall exponentially for

BT

large Vv, but for v £ 1 their behaviors are very different. The

* ordinary synchrotron radiation spéctrum is proportional to vl/B

7/3. The spin-

for small v, while the spin-flip spectra vary as Vv
flip rsdiation involves harder photons, as already mentioned in
discussion of the asgdlaf distributions. The presence of an extra

factor of m2 in the frequency distribution of raqiation arising from

The weaker "up" transition consists of somewhat softer photons, -

. by a charged particle.
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a msgnétic moment in motion as compared to that for a charge in motion

is a general feature, classically and quantum—mechanically.8

VI. SUMMARY
The primary purpose of this paper is didactic: +to present as

intuitive an interpretation as possible of the gradual transverse

polarization of electron and positron beams as ‘they orbit in storage {3

rings.

A naive description of the process, utilizing a moving €5
inertial frame, is shown to be deficient in several.respécts, even {::
though it appears superficially to give roughly correct answers, o
at least for electrons and positrons. The basic reason for its S
failure (and hence the absence of a truly simple description) is B
that the spin system cannot be treated in isolation because it is =
imﬁedded in a virtual continuum of states associafed_with the
mechanical motion of the particle; -

o

A semiclassical description of the radiative process is given
by analogy with the well-known semiclassical treatment of radiation

The classical relativistic equation of motion

for a spin in erbitrary motion in electromagnetic fields (the Thomas-

BMT equation) yields an effective Hamiltbnisn‘for the coupling of a

spin to electromagnetic fields. In analogy with the substitution,

eg-A ef-A )

mexternal m.mphoton

“in the ébnventional trsnsition to emission processes in the inter-

action Hamiltonian for a charged particle, we replace the external

SL and‘;g fields in the Thomas-BMT effective Hamiltonian with the

corresponding fields for a photon. Perturbation theory then yields

- an essentially classical expression for the transition probability

x4
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with quantum mechanics entering only via the matrix element of the
Pauli spin operator. It is proved in the Appendix that this result is
equal to the quantum-mechanical expression in the limit of soft photons
and the neglect of recoil on the path of the pgrticle. Both of these

= (mcp/ﬁ)i.

Some new results are derived concerning the spin-flip synchro-

qualifications are appropriate for 1 <<y << Yc

tron radiation, the characteristic time of growth of the transverse
polarization, and the ultimate polarization for:-a charged particle of
spig 5 with arbitrary g factor. Since electrons arnd positrons are
the only particles 1ikely to show detectable polarizations by this
mechanism, these results are‘of no practical interest. They serve a
pedagogic purpose, however, since they permit the upsetting of one

of the key concepts of the nalve description, namely, that the polari-
gation arises from spontaneous emission as the spin moves from its
nypper" to its "lower" state in the.magnetic field. It is_fbund that
for g < 0.5 the opposite is true.

The angular and frequency distributions of numbers of photons
and of radiated power are presented for the physically interesting
cirgumstance of Ig = 2. They are compared with the corresponding
spectra for the ordinary synchrotron radiation.._This again is of
limited practical‘value becguse of the minuteness of the spin—flip ‘
rédiation, but may serve a pedégogic end.

Finally we remark that our concern has been with the basic
phenomenon and mechanism of transverse polarization by spin-flip
synchrotron radiation. Important practical aspects of the secular
motion of spins in e'e”

storage rings and of various mechanisms of

detection of the transverse polarization can be found in.the papers by

- Baler (1971a,b) and Schwitters (1974) and the references therein,

vy
APPENDIX

In this appendix we establish explicitly that the appropriate
quantum-mechanical matrix element of the Dirac-Paull electromagnetic

current for a particle of spin % and arbitrary magnetic moment reduces

in" the soft-photon 1imit to the semiclassical results (32) and (44)-(45)

for the nonflip and spin-flip transitions, respectively. We also
examine the connection of this res@lt to a purely classical expression
for the'radiation emitted by a moving classiéal magnetic moment.

A. Soft-photon limit of the matrix element of the Dirac-Pauli current

The relevant operator for the transition of a spin % pafticle
of charge e and mass m from one state to another with the emission

of a photon of momentum X and polarization £ 139

Awt-ik.r

*®

[Hm] = ea\Egte T (1)
emission woM

where J% is the Dirac-Paulil electromagnetic current operator for

unit charge. .The appropriate matrix element is that of (33),

with (32) replaced by (Al). In the large-quantum-number (classical

orbit) and soft-photon limit the quantities in (A1) become c-numbers,
except for.a Dirgc spinor product in the current. Compariéon of (A1)
with (32) and (44)-(45) shows that the correspondencesbbetween semi-
classical and quantum-mechaﬂical results for the nonflip and spin-flip
transitions are

e* B %:* j%n
- H onflip,radiation gauge

om | %
(xfl,g-,),_.flxi) - [eu j

u]
spin-flip,radiation gauge .
(A2)

.
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The matrix element of the current | u, including a Pauli term

.as well as the normal Dirac part, is

, ¥] up) (43)

e ¥ = ﬁ(p"')[t +1 o g
In writing (A3) the particle is assumed to be a point particle of
charge ‘g, mass m eand anomalous moment a, defined by (39). The

" Dirac notation is that of Bjorken ‘and Drell (1964).. The spinors are
plane wave spinors normalized to one particle per unit volume. The
4~-momenta are pu = (po = ¥(t)m, p= Y(t)mﬁ(t))ﬂ where ;l‘ = dz/dt
"48 the instentaneous classical velocity, and p"J = pu - k%, The
limit ku + 0 1s to be taken, keeping only lowest order norivanishing

. terms.

. The explicit»verii‘ication of the correspondences (A2) follows

stmigﬁtforwai'dly upon reduction of (A3) to two-domponent form, using

Bo '29' ] ‘
B - | o )
og-B -B
" (o)

.for a.ny 4—vector Bu = (B ,B), and
»u(p) = (

and an analogous expreséion for u(p'). Without appro:dmation, the

result of this two-component reduction is

Xi \\\ C ) »
2E ) ’ - - (Aj), ‘-
_13“ _

T+m Xi‘ ,
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¥ ou !
mey 3 = (xgla v ageBlx,) (26)
where
(E' + m)(E+m) _* aw 2 ~aw\ P’
-\/ oy PN A - 1"5 e
akx(pxp') =
*WETREET| (ar)
and . ' _ o
- J(E* + m)(E +m) R aw ,".:.. x p'
- V ZEE" 2m>E+m_f 1*.‘2-7 e &
a * .
TEmATE -
. o

+ . _ 8 . ' v.-' - D ' * 1 AN
e o S - .esz:a.x,e,nlj e

Using E' = E - w - cand p'=p-X, we can now eliminate E' and p'

Ll

-and keep only the lowest order nonvanishing contrlbutlons to A and B

as w = Llf.l becomes negligible compared to E and. |p|.. For 4 ‘we
) m

find
limA = £°F =£.B . . (49)

as expected. _The corrections are of order w/E. The anaomaly a -
does not enter uiitil O(wz/mE).lo. The soft-photon limit of B is
proportional to l}f,l We thus consider the analog of the

the semiclassical 4& of (45) and (A2), hamely'
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*
x .
un(2g) - (opind rEEns
mm TE) e THEr+m®
pxe |
- (a +E+m>m . (a10)

With E=ym, p = ymd, and k = un, the right-hand side of (A10)
Ll

becomes identical with (45). This establishes that the semiclassical
‘results derived from the Thomas-BMT equation of motion are correct

quantum—mechamcally for y << Y,

B. Comparison with a.purely classical expression

A localized magnetic moment ”g‘ ~in motion gives rise to radia-
tion whose spectrum of radiated energy with polarization & frequency

and wave vector k = ug is A(Ja.ckson, 1975, Eq.(14.74))

2 .
- d Iclassical

dwd

* *
(n x g)ult) + eh.(8(1) x w(1))]

iwt-i'l’s‘-r(t)
X . e o at

. (a11)

.- The first term in the amplitude is evidently proportional to ‘;E'rgra

while the second is proportional to d E_., where d =8 x u' is the
mrad L

electric dipole moment associated with the moving magnetic moment.

As it stands, (All) bears only a slight resemblance to (47)
with V(t) given by (45) or (A10). This is because the magnetic
mbment p(t) is the moment observed in the laboratory. In (47) the

~n
"spin matrix element is taken in the rest frame of the particl_e. To

make a meaningful comparison it is therefore necessary to express '_1'1‘
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in terms of Eo’ the rest frame magnetic moment.
(magnetic moment density) and the negative of electric polarization
(electric dipole moment density) transform under Lorentz transforma-

tions in the saime way as B and "l:.:, we find that

pe - -

: : PSR & |
But the Dirac delta functions (inverse volumes) transform as

6('3)(};" -}') = y! 6(3)(,1;, - R)

Hence the moving moment u 1is glven in terms of the rest-frame moment
) m .

Yo 88
= . A12
R ‘ 29 Y+ 1m k°) (M12)
The square bracketed quantity in the amplitude in (A11) then can be
* *
(a2 hr 5 ,PJ

(a13)

el
Fac S | |
. ‘ _ .
R 1 % ay oy Fy L1 *!
- m%’-[@*q),’&"fp -y=T AR (s (a 75T )Bxej
| (A14)
Companson of (A13) and (Al4) shows that the classical expression has
the same structure as the terms proportional to a in (All,) This is

quite understandable when we reelize that the term involving a in the

Since magnetization
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R

current (A3) is the Pauli term, The second rank tensor

. V)
(To, P 9).
(%uv‘l)) is the quantum—izxechanical analog of the classical magnetiza-
~tion tensor er with the same Lcrentz group -properties.

It is instructive to write

#o = (1+a)%’g1 (a15)

in (A13) and then consider the difference between 'Xclassical’ namely

(1 + a) times the Ecuare bracket in (A13), and qu-m in (A14):

Xclassical - qu-m

|G- Dare - rssm s -sre-s] -
‘ (a16)
With the ldentifications ,g'xrgf ->’_§' anc ::: -"E{ (a16) is seeﬂ to
be proportionali to the Thomas precession frequency (42). The difference
between the classical (Al3) and the quantum-mechanical (Al4) is
precisely the matrix element of the Thomas precession energy, % 'S5 -
1in the effective Hemiltonian (43). - |

| We can now see clearly the difference between the purely
classical treatment and the semiclassical or fully quantum-mechanical
It hinges on the spin being a dynamical variable. In

the clas_sical -approach, the magnetic moment, and by implication the
spin since it is proportional via (Al15), is a prescribed function of .
"_ti_.me. It 1s coupled to the radiation fields with an mteraction
probortional to Mml“A U.

In terms of rest frame quantities this.

" interaction becomes the first term in (43). In contrast, consideration

. |a| >>1 or B <<1 do the classical and quantum-mechanical expres-

’ -50-

of spin as a dynamical variable leads to the complete effective

'Hamiltonian (43), with a direct coupling of the spin s to the electro-

magnetic fiel.ds (provided the particle is charged) in addition to the

" coupling via the magnetic moment. This direct coupling, the Thomas

precessional energy, gives a contribution to the radiation different

in detail from the classical result (A13). Only in the 1imits .

i

sions approach each other.
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FOOTNOTES
See, for example, Jackson (1975), Sect. 14.6, or Landau and
Lifshitz (1971), Sect..74.
The results from VEPP-2 at Novosibirék are summarized in Sect. 6
of Baier (1971b) which is a slightly updated version of Baier

10.
(1971a), with the addition of these experimental observations.

~ The results of the Orsay storage ring group are'contained in the

. report by Potaux (1971) to the accelerator conference in Geneva.

: 11.
A- summary of the work of Baier and Katkov on the classical regime

and lowest order quantum correétions for ordinary and spin-flip
synchrotron radiation can be found in Sect. 59 of Berestetskii,
Fifshitz, and Pitaevskii (1971), written in collaboration with ‘
Baier. ' .

Jackson (1975), Eq. (14;67).

See, for example, Barut (1964), Sect. II.4; Hagedorn (1963),
Chapter 9; Jackson (1975), Sect. 11.11; Sard (1970), Sect. 5.4.
See the solutions for the temporal behaviors of the components of.
the polarization vector given by Baier (1971a,b), Sect. 3, esp.
Eq; (3.23) ff. o
Stfictly, the number of photons per uﬁit‘time is not an instantan-
eous rate but actually the number of photons per paséage of the .
pafticle times the repetition rate w°/2ﬂ. Similarly, the radiated
power is energy per passage times w /2n. _

Compare Egs. (33) and’ (All) for the classical expressions and see
Low (1954) and Gell-Mann and Goldberger (1954 ) for the original

discussions of the quantum-mechanical soft-photon theorem for

radiation by a particle possessing a charge and a magnetic moment.

w/E, with W ~ YBw , require yz <y, 2

-52-

For economy of notation we lapse into units in which ¥ =c¢ =1,
e2 = 1/137, and use (w’ﬁ) as the photon's 4-vector, with (E$B)
and (E'&&') as the charged particle's 4-momenta before and after

emission.

It is somewhat curious to ﬁote that neglect of terms of order
R while'neglect.of terms
of order w /mE 1nvolving a require Y5 << yc4.

This is just the FitzGerald-Lorentz contraction.
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FIGURE CAPTIONS
Orbit of a positively charged particle with a uﬁiform magnetic
field B into the page is a circular path of radius p
tfaversed at constant speed v. In the frame moving with
velocity 4 to the right the orbit is retrograde, caused by

a magnetic field B' = yB and a crossed electric field

'E' = ygB with directions as shown on the right.

_Segment of particle' orbit as seen in the laboratory and in -

the instantaneous_ly comoving inertial frame. In the labora-
tory the path is the arc of a circle of radius p, traversed
at cénstant angular speed W, In the moving frame it has

a cusp a'b the origin. . The tick marks and numbers aiong the

path give the values of the laboratory time parameter, ont.

Note that the length scale in the moving frame is p/yz.
Coordinate system used in the calculations. The orbit lies
in the x-y plane'wi,th' x and y axes defined by the
directions of B and.'g' at t =0. The unit vector g

. ”m . .
specifies the direction of the photon wave vector ’1:‘

Characteristic time T forﬂ. growth of traixsyerse ponlariz'ationﬁ

in units ‘of the electron-positron time T ,"_Eq._'(lc),' as a

Fig. 5.

function of anomaly a (bottOm scale) or g factor (top-
scale)

Asymptotic transverse polarization P as a t‘unction of the
anomdly & or g factor. Positive values of P cor_respond
to a preponderance of spins in the direction of E x"B‘ (the_
direction of the guiding magnetic field for e > 0). For

g <0. 5, the particles magnetic moments end up. preferentially '



Fig. 6.

Fig. 7.
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opposite to the magmetic field, contrary to naive
expectations.
Normalized frequency spectra Todw/dv for the number of

photons emitted per unit intervel in ti.e dimensionless

- frequency variable v = Ew/BYJmo. The dominant "down"
transition corresponds to a spin—flip from c3_=_*1 to

gy = -1 (spin:f;hally in the direction opposite to E'x_é). .

The small "up" transition is in the re#e}sézdirecfion.
Log-log plot of separately normélized ordinary.(honflip) and
spin-flip power frequency spectra as functions of the dimen-
ﬁionless variable v = Zm/BYBwO. ‘Thé actual spin-flip
power is much smaller than the ordinaiy power provided

Y <y, (see Eq. (3) or»(67)). A% low frequencies

(v << 1), the nonflip distribution varies as vl/B, while the

' 7
spin-f1ip distribuiions vary as 'v‘/3. At high frequencies
(v >> 1) all spectra vanish exponentially (times different

powers.

¢

L
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- Laboratory frame - Instantoneously co-moving
| | I inertial frame

XBL 759-4036
Fig. 1. ,



Laboratory frame
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| " vy |
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Fig. 2. XBL759-4034
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Fig. 4.

O I

!



-62-

I T | I l ! I l l I !
l
| 2
R W R |
4 6 8

XBL 759-4030




-63-

— l | I | | | l ]

i transition’ ~
"Up transition"

o} 2 4 6 8 10

XBL 759-4032

0o



Normalized power spectrum

o

o

—64-

. . | I_ _ T
ﬂnflip | 1
W
i Flip "down"
1 1
10-2 10-! 10
174

XBL 759-403



“ .

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcbntractors, or
their employees, makes any warranty, express or implied, or assumes
any Iegél liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights. ‘
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