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ABSTRACT 

A mainly didactic discussion is given of the mechanism for 

the gradual build up of. transverse polarization of electrons and posi­

trons in storage rings. The history and basic results are reviewed 

briefly. Then a naive explanation of the polarization in terms of 

spontaneous emission via a nonrelativistic magnetic dipole transition in 

a moving inertial frame is presented and criticized; Although plauSible 

~ surprisingly good (for electrons and positrons ) , the. elementary dis-

cussion fails, chiefly because the spin-magnetic-moment system cannot 

be treated in isolation from the orbital motion. A correct semiclassical 

description of radiation by a spin system is then given,in direct analogy 

with semiclassical radiation theory for charged particles ignoring spin • 

!he classical equation of motion for a spin in relativistic motion, 

derived originally by Thomas, is used to obtain an effective Hamiltonian 

of interaction of a spin with electromagnetic fields. Emission and 

absorption of radiation is then described by replacing the classical 

electromagnetic fields with the appropriately normalized photon fields. 

It is proved in an appendix that the relevant quantum-mechanical matrix 

• This work was supported in part by ERDA. 
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element reduces to this semiclassical form in .the limit applicable to 

synchrotron radiation (classical orbit and neglect of recoil). The 

resulting formulas are applicable to charged particles of arbitrary 

g factor and serve as a basis for generalization of the Russian results 

for the characteristic time of polarization and its asymptotic value. 

1hese results are of physical interest only for the known case of 0 

g = 2. but serve useful pedagogic purposes, refuting some of the C 

e2:pectations of the naive explanation. The various differential spec;,:tra 
~,_...., 

in angle and in frequency for numbers.of photons and for radiated c ' 

power for g = 2 are treated in detail and compared rl th the 

corresponding spectra for.ordinary synchrotron radiation. 
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I. INTRODUC1'ION 

The emission of synchrotron radiation by a relativistic 

charged particle subject to transverse acceleration is a much studied 

and much used phenomenon. Its histoT,Y as a theoretical possiblity 

extends back at least to before 1900 with the relativistic generaliza-

tion of the Larmer power formula by Lienard and others. For a charge 

. in uniform, circular motion, the detailed harmonic content and angular 

distributions for each harmoni~ were calculated in 1911 for an Adams 

Prize Essay by Schott (1912), but they remained an exercise in 

mathematical physics until the 1940's when the .. first electron synchro-

trons were constructed and synchrotron light was observed. The names 

of .. Poineranchuk, Schiff, and Schwinger are among those who gave 

modern theoretical discussions of the phenomena·in published and 

unpublished-work, with the paper of Schwinger (1949) containing the 

various theoretical results in their most tractable form. The 

essentials now occur in numerous advanced texts. 1 

.More recent and somewhat less well known is the realization 

of a gradual polarization of electrons and positrons as they expe­

rience a sustained transverse acceleration while orbiting in a 

storage ring. The mechanism is the emission of spin-flip synchrotron 

radiation, as first pointed out by Ternov, Loskutov, and Korovina 

.(1961). For initially unpolarized electrons or positrons of charge 

e, mass m, energy E = ymc2 in uniform motion in a circle of 

radius p, there is a gradual build up of transverse polarization 

according to 

P( t) ( 
-t/r0) 

P 1 - e 
0 

()a) 

0 
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where the maximum polarization is 

p . = 8/5l[J = 0.9238 
0 

and the characteristic time T is 
0 

(lb) 

(lc) 

(Sokolov and Ternov, 1963). The polarization is perpendicular to both 

velocity and acceleration, that is, alor~ the direction of the magnetic 

field responsible for the bending. Positrons are polarized parallel 

to the magnetic field, electrons antiparallel. 

The original work of Sokolov, Ternov, and collaborators was 

done with exact solutions for a relativistic Dirac electron in a uni­

form magnetic field. Subsequently, Baier and Katkov generalized the 

results to motion in inhomogeneous fields. For the spin-flip radiation 

by relativistic electrons or positrons they obtained (Baier and Katkov, 

1967a; Baier, 197la,b) the transition probability per unit time, 

where the unit axial vector z; specifies the initial spin direction - . 

in the electron's rest frame and j and j are unit vectors in the 

directions of the local velocity and acceleration, respectively. For 

a circular orbit with lSI = c/p, Eq. (2) leads to results (1) with , 
the senses of polarization for electrons and positrons already stated. 

The amount of spin-flip radiation is. extremely small compared 

to the ordinary (nonflip)·synchrotron radiation. The ratio of the 

powers radiated is (Ternov, Loskutov, and Korovina, 1961; Sokolov and 

Ternov, 1963} 
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p spin-flip = 3 Q-trl )
2 C· ± 35 -{j) 

p . ~p ~ ordl.nary 
(3) 

where the choice of sign depends on the initial spin state of the 

particle. Only when y approaches the critical value, 

(~)! Yc = 'll (4) 
0. 

will the amount of. spin-flip radiation be comparable to the ordinary C 

synchrotron radiation. At present a typical bending radius for an 'C 

electron storage ring is 

y < 104, showing that the 

. 6 
p : 13 meters. Hence Yc : 6 x 10 , 

-11 ratio (3) is of the order of 10 • 

whilC 

The .Jt, 

smallness of this ratio is reflected in the r~lative largeness of th~ 

build-up time T
0

• c 

radius 

In practice one must distinguish the ring's effective bend~ 

p from the average orbit radius R, defined is the circum-
·fJ" 

ference of the orbit divided by 2TT. Let the s be the length along 

the actual orbit in the storage ring and P( s) be the radius of curva-
b. 

ture of the orbit at each point. Then by consideration of the accumula-

tion of probabilities it is easy to show that the effective radius of 

curvature p to be inserted in (lc) is 

(5) 

This formula ·is valid even if p( s ) changes sign locally around the 

'orbit as would occur with the so-called wiggler magnets, suggested as 

a means of controlling the characteristic time T
0 

(Paterson, Rees, 

and Wiedemann, 1975}. For a storage ring consisting of a set of 

identical bending magnets of bending radius p and straight sections 
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combining to an orbit of circumference 21rR, the right-hand side of ( 5) 

is equal to (p/R)p-3. In prnctical units the tice constant ~0 is 

then 

(6) 

For SPEAR, the storage ring at the Stanford Linear Accelerator Center, 

p = U.7 m, R = Yf.) m. At 2 GeV per beam the build-up time is 

roughly 5 hours, while at 4 GeV per beam it is about 10 minutes. The 

strong dependence on energy means th~t tne polarization can be utilized 

as an effective physics tool only in the upper energy range of existing 

storage rings (SPEAR and DORIS, at Hamburg). 

Indications of a build up of the polarization in a single cir­

culating beam were first reported in 1968 by the Orsay group (Belbeoch 

et al., 1968), with unambiguous evidence from both Novosibirsk and 

Orsay in 1971.2 The first observations on polarization with two beams, 

under conditions similar to actual running for physics, were made 

at Orsay and presented by LeDuff et al. (1973). M:>re recently 

observations have been made at SPEAR on the polarization of a single 

stored beam with E = 2.4 GeV (Camerini et al., 1975). The first 

observation of polarization with stored colliding beams in the reac-

tions + - + - + -e.e + ~ ~ and e e + hadror.s at 3.7 GeV per beam and its 

• + -use in clarify~ng the physics of e e + hadrons has been reported by 

.Schwitters et al. (1.975). Contemporaneously, polarization measurements 

+ - + -in the colliding beam reaction e e + ~ ~ at 0.5-0.7 GeV per beam 

have been communicated from Novosibirsk by Kurdad:e et al .. ( 1975). 

For all practical purposes the works of Sokolov and Ternov and 

cf Baier and Katkov, especially the review by Baier ( 197lb) with its 
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discuscion of both theoretical and practical problems, are more·than 

adequate to describe the rudiative polarization of beams in storage 

rings. Nevertheless, it seems that there is the need for an 

"anschaulich", didactic discussion of the subject. After all, Schwinger 

(1954) demonstrated clearly that ordinary synchrotron radiation is an 

entirely classical phenomenon. He showed that the orbit is classical 

provided (~c/EP) « 1, where E is the total energy of the particle 

and p is the orbit radius of curvature, and that the first order 

quantum-mechanical corrections were obtained by replacement of 

w + w(l + "fiW/E) in the differential transition probability. It 

follows that for relativistic particles rlth 1 « y << y the orbit c 
can be treated classically and recoil effects can be neglected. This 

regime of approximation is the basis of the treatment of the spin-flip 

synchrotron radiation and similar problems by Baier and.Katkov {1967a,b, 

) 
, . 

1968 • The works of Schwinger and of Baier and Katkov are important 

in seeking as classical an understanding as possible of the phenomenon. 

We focus on the spin itself and seek in its dynamics a simj>le physical 

basis for the spin-flip radiation. The words "spin-flip" warn, of 

course, that the treatment cannot be completely classical--the electron 

spin must be treated quantum-mechanically--but otherwise it is reason-

able to expect that one can obtain an understanding of the phenomenon 

in simple intuitive terms. It turns out that there are subtleties 

that prevent the realization of this expectation in its naivest fore, 

but a satisfying elementary explanation can be obtained nevertheless. 

The plan of the paper is as follows. Firstly, the most naive 

orientation is presented. It does surprisingly and deceptively well. 

Then its shortcomings are described. Next, the familiar semiclassical 

"., 
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treatment of emission of radiation found in texts on quantum mechanics . 

is outlined and generalized via the classical r~lativistic equation 

of motion of spin to include spin-flip radiation.. The effective 

interaction Hamiltonian so obtained serves as the basis of a 

semiclassical treatment of the radiative polarization for a particle of 

charge e and arbitrary g-factor. The proof that the effective inter­

action Hamiltonian leads in the soft-photon limit to the same matrix 

element as the Dirac current with y~ and cr~v couplings is reserved 

for an appendix. The virtue of a treatment with. arbitrary g-factor, 

seemingly only an academic curiosity, is in its ability to confound 

some of the "common sense" notions of the naive orientation. The final 

section treats the angular and frequency spectra of the spin-flip 

radiation for electrons and positrons (g = 2). These are of 

pedagogical, if not practical, value. 

-10-

II. NAIVE TREATMENT AND ITS SHORTCOMINGS 

A. Elementary description 

The physicist's appetite for an elementary description of 

radiative polarization is whetted by the following facts: 

(1) The effect involves spin-flip. 

(2) The rate is very slow, as befits a magnetic dipole 

transition between states with a small energy difference. 

(J) The electrons and positrons are polarized with their 

magnetic moments parallel to the magnetic field, corresponding to 

the st~te of lowest energy of an isolated spin system. 

( 4) Formulas ( lc ) or ( 2) smaak of magnetic dipole, with 

lj,l J providng th~ factor of w3 and LM 12 /fl visible in the 

.product of fundamental constants. 

Obviously, he says, go to the rest frame of the orbiting electron 

and consider a simple Ml transition from the upper energy level to 

the lower. We follow his prescription. 

Though we know that for relativistic particles all that 

affects the character of the radiation is a segment of trajectory 

of length d - pjy, corresponding to an angular deflection 

68 - 1/y, for simplicity we consider a particle of charge e and 

mass m moving at constant speed v = cB in a circular orbit of 

radius p in a uniform static magnetic field B. The orbital 

0 

0 
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frequency is w
0 

= v/p = wa/y, where wa = eB/mc is the nonrelativ­

istic cyclotron frequency, We now consider the fields in an 

instantaneously comoving inertial frame K 1 moving with speed 

v = cB tangent to the circle. The magnetic field B _appears in 

this frame as a magnetic field B 1 = yB in the same direction as ! 
and an electric field E1 = yBB in the direction v x B, as shown - -

·in Fig. 1. Suppose that the spin degree of freedom can be treated 

nonrelativistically in this frame. With magnetic moment, 

the spin system has two energy levels in K1 .with frequency 

difference, 

, _ 1171 eB 
1 I g I 2 llli2 - 2 '"'iiiC = . 2 y wo 

(7) 

(8) 

The transition probability per unit time for a spontaneous magnetic 

dipole transition from the upper state to the lower is 

wl (9) 

With (7) and (8) this becomes 

wl (10) 

Time dilatation gives a laboratory transition rate reduced by one 

power of y. With w = c/p for a relativistic particle, (10) then 
0 

leads to a characteristic time, 
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(11) 

to be compared with (lc). 

For lgl = 2, Eq.(ll) agrees with(lc)to within a factor 

of order unity. Furthermore, spontaneous emission from the "upper" 

to "lower" energy level leads trivially to 100% polarization with the 

correct senses for electrons and positrons. Comparison with (2), ~ 

with its ratio of approximately 25 for the "downwards" transition 

rate compared to the "upwards" one and its ultimate polarization of 

92.4%, indicates that all the essentials are given qualitatively, 

and even semiquantitatively, by the naive argument. Not bad! The 

physicist then waves his hands expressively and-remarks that of 

course the spin is not exactly at rest all the time in the moving 

frame and such neglected refinements can explain away the remaining 

small discrepancies. The phenomenon is "understood". 

B. Criticisms of the simple explanation 

There are a number of shortcomings to this naive description. 

The first is that the polarization is not 100%. The "energet~cally 

forbidden" upwards transition occurs, albeit at a much slower rate 

(for g = 2) than the "energetically allowed" transition. The 

second is that the spectrum of-emitted frequencies in the moving frame 

is not a narrow line at W1 = wi2. given by (8), but a broad 

synchrotron spectrum extending to frequencies of the order 

w~x - y
2w

0
, independent of the value of g. The third deficiency 

is that the inverse characteristic time is not proportional to lgl 5 

as given by (11), but shows a more compl~cated dependence, varying as 
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jgj 2 for large jgj. The fourth and most dramatic shortcoming is 

that the degree and sense of polarization depends sensitively on the 

value of g and is' such that for g < 1/2 the "upper" energy level 

is populated prefe":'cntially over the "lower" one! 

Reasons for the failure of the naive argument are not hard 

to find. First of all, it is not permissible to consider the spin 

degree of freedom in iso1ation from the orbital motion, even in the 

instantaneously comoving frame. For such considerations to have 

approximate validity it is required that the energy level spacings 

associated with other degrees of freedom be large cqmpared to the 

transition energy of the degree of freedom under study. Thus the 

hyperfine transition in atomic hydrogen can be treated without 

regard to the electronic orbital motion, except as an "external" 

source of magnetic field. In the present circumstances, . however, 

.these conditions do not hold. For relativistic circular orbits in 

the laboratory, Bohr's quantization rule for angular momentum gives 

the orbital quantum number as 

n = ymcpffi' (12) 

where Yc is the critical value, (4). The spacing between adjacent 

orbital energy levels is 

~E = iiw 
0 

(1:3) 

where w
0 

= c/p is the orbital frequency. For highly relativistic 

particles this spacing is very small compared to '1'iwi2 given by ( 8), 

or, more properly for considerations in the laboratory, 
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'YHWb - Y~lil 
0

• With the spacing between orbital levels very small 

compared to the transition energy, that transition will inevitably 

involve some changes in orbital quantum number. In other words, there 

will occur exchanges of energy between spin and orbital degrees of 

freedom. Thre is then little significance in the concept of "upper" 

and "lower" energy states for the spin system alone. 

Another way to reach the same conclusion is to consider the 

conservation of momentum during ihe emission of a typical "spin~nip" ,, 
-~, 

photon. For ordinary synchrotron radiation the photons emerge within . . . ,.,.....,., 
-1 . "-' 

angles of the order of 68 - y of the path of the particle and 

possess a broad spectrum of energies up to yJ.nw and somewhat 
0 

beyond. The same will be demonstrated below for the spin-nip 

synchrotron radiation. With emission essentially parallel to the 

particle's direction and a typical momentum of the order of y~0/c, ~ 
the photon will cause the particle's momentum to decrease by an 0'-

amount, 

(14) 

This corresponds to a fractional change in orbital quantum number, 

~ .::. ~ - y~ = ( I )2 
n p ymcp Y Yc • (15) 

and, using (12), to a value of 6n itself of the order of 

( 16) 

This demonstrates that the changes in orbital quantum number from 

recoil are enormous. With 2.5 GeV electrons, y = 5 x 103 and 

6n = 1011 • At the quantw:~ level the orbital motion is evidently 

disturbed by the emission act! The disturbance is neverthess totally 
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negligible to the orbit and its classical description provided 

Y « Y c. For the typical conditions or p :::. 13 meters and 

Y:: 5x1o3, Eq.(l2) yields n .. 2 x 1017 and (15), tm/n::: 5 x 10-7• 

The astronomical value of n shows how classical the orbit isa 

the minute value of tm/n shows how small the perturbation of the 

orbit. Note from (12) and (14) that tm/n is just the fractional 

change in the energy of the particle as it emits the photon. These 

considerations provide justification for a classical treatment of 

the probiem (given classical trajectory and soft-photon limit). 

Yet another shortcoming of the naive argument is the assumption 

that the particle's motion is nonrelativistic and can be ignored in 

the moving inertial frame. 

At any instant the state of motion of the particle can be 

specified by its velocity vector ~ and the components of accelera­

tion .i parallel and perpendicular to it. Equivalently, the 

instantaneous radius of curvature p is related to the transverse 

acceleration by 

(17) 

while the rate of· change of speed is equal to the parallel component 

of acceleration. Only a length of arc of the order of p/y or a 

time interval 6t - p/yv is relevant in considering the radiation. 

In practical circumstances this time interval is so short that the 

radius of curvature and the speed can be treated as constants during 

it. The arbitrary trajectory can thus be approximated locally as a 

circular path or radius 

constant speed v = Be 

p along which the particle moves at 

or angular velocity w = Bc/p. · A suitable 
0 

choice of coordinates in the laboratory is shown in Fig. 2. The zero 

-16-

of time is chosen when the particle is at the origin: For a 

horizontal storage ring the guiding magnetic field is in the vertical 

(z) direction, in or out of the page, the velocity ~t t = 0 is in the 

x direction, and the acceleration at that instant in the y directio~ 

The instantaneously comoving inertial frame is defined by a boost 

in the positive X direction with Speed Sc. Denoting coordinates 

in the moving frame with primes, we have the orbit described 

parametrically in the two frames by 

y p(l-coswt) 
0 

z = 0 

x 1 = yp( sin w t - w t ) 
0 0 

y' p(l - cos (I) t) 
0 

z' = 0 

Laboratory 

Moving frame • 

The time coordinate in the moving frame is 

= y(w t - a2 sin w t) 
0 0 

(18) 

(19) 

(20) 

For laboratory times such that Yw0 ltl. = 0(1), the orbit equations 

( 19) and (20) can be approximated as 

x' = -(p/6l)(yw
0
t)3 

y' = ( p/2l )( yw
0 

t )2 ( 21) 

(I) t' 
0 = (w

0
t/y){l + y2w

0
2

t
2/6) 

-. 



-17-

The equation of the orbit is thus 

(22) 

This path is shown on the right-hand side of Fig. 2. Note that the 

2 unit of length is p/y , so the scale is greatly enlarged compared to 

the laboratory figure. Values of the parameter yw t are indicated 
0 

along the path to show the correspondence with points on the circular 

arc in the laboratory. In terms of this parameter the components 

of the velocity and acceleration of the particle in the moving frame 
' 
are 

B' y ::. ywot/y' 
(23) 

a· X = -lwo( ywo t Yr' 3 

i• y = lw0
(1 - iw

0

2t 212>j-r' 3 

where 

(24) 

is the ratio of energy to rest energy for the particle in the 

moving frame. 

Since the relevant range of yw t is of order unity, (23) 
. 0 

and (24) tell us that the particle, while instant~neously at rest in 

the moving frame at t = 0, soon attains speeds close to that of 

light. It is admittedly not ultrarelativistic in the contributing 

time interval, but is changing its state of motion rapidly and is 
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certainly not even approximately at rest for purpose of calculating 

the radiation. 

Two comments in passing: 

(1) .The path in the moving frame can be thought of as being 

produced by the combined action of a magnetic field in the z' 

direction and an electric field in the y' direction. 

or curvature of the path is p/y2, as show.n in Fig. 2. 

The scale 

This means 
0 

c 
that, although the speed is not constant in this f'rame 1 the character-

,~· 

istic orbital angular frequency is w' - y2w , of the same order of "''"' 
0 0 

magnitude as (8), the frequency associated with intrinSic spin. 

( 2) · It is amusing to verify the Lorentz in variance of tot~ 

radiated power by calculating in the moving frame with Lienard • s C 

generalization or the Larmer power formula, 

P' 
2 '6 . 

= ~ [<A I )2 - ( s I X s I >2] 
3c ,~;. ..,.. --

(25) 

Substi ttition from ( 23 ) leads to the familiar result, 

pt (26) 

independent of time, even though the components of velocity and 

acceleration are time-dependent in the moving frame. 

It is hoped that by now the reader is persuaded that the naive 

consideration of the electron's spin as an isolated, nonrelativistic 

system in the moving frame is unjustified. Because of ease of exchange 

of energy between mechanical and sp~n degrees of freedom no significance 

can be attached to the labels "upper" and "lower" energy levels for 

the magnetic moment interaction. Since the motion in the 
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instantaneously comoving inertial frame becomes somewhat relativistic 

in the time _interval of interest, there is no compelling reason for 

considering the phenomenon in that frame. The laboratory serves as 

well and is more familiar. We now proceed to a discussion of a semi-

classical derivation of the correct results. 

It may be objected that the business of the instantaneously 

comoving inertial frame is a straw man, that there is a frame where 

the spin is always at rest, namely the exactly comoving Lorentz frame 

obtained by a boost with the instantaneous velocity y(t). The. -
difficulty with such an approach is that discussion of frequency 

spectra and transition probabilities inevitably requires c~sideration 

of nonvanishing time intervals. A time-dependent Lorentz transforma­

tion to a noninertial frame seems to present insurmountable problems, 

and is not "anschaulich11 , to say the least. The relativistic effects 

of acceleration, i.e., the Thomas precession, are included auto-

matically in the derivation that follows. 

III. SEMICLASSICAL DESCRIPTION 

A. Semiclassical radiation theory for charge 

The time honored elementary treatment of spontaneous 

emission proceeds as follows. First consider a nonrelativistic 

charged particle of mass m and charge e interacting with an 

external classical electromagnetic field described by scalar and 

vector potentials ( ~ •A) and also with another given interaction 

potential U. Its motion is described quantum mechanically by the 

Schrodinger equation with a Hamiltonian, 

.. (27) 
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Commonly (e.g., in atomic physics) the pot~ntial U is absent and 

the scalar potential is the Coulomb potential of the fixed nuclei. 

If the vector potential is treated as a perturbation, the Hamiltonian 

is written as a zeroth order term, 

plus a small interaction term, 

= -eA·I3 ....... (28) , 

where the velocity operator is B = (-i~/mc)V and the potentials are ,. ,.,.. 
in the radiation gauge with J:A = 0. The term in A2 has been 

neglected. Effects of weak external fields are examined by use of 

perturbation theory with the states of the unperturbed Hamiltonian H
0 

as the basis. Phenomena like the Zeeman effect involve static external 

fields, but one can also treat time-varying applied fields and 

discuss transitions between different energy levels of the unperturbed 

system. 

It is then an easy step to consider A in (28) as the -
vector potential of a plane electromagnetic wave incident on. the 

unperturbed system, 

ik•r-iwt 
A(r,t) = EA e ·~ ,.,..,.. ,..

0 
+c.c. (29) 

The constant A
0 

is initially arbitrary, but is soon chosen to have 

the value, 

A 
0 

( JO) 

•. 
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corresponding to one photon of enere-.f 1rw per unit volume in the 

incident beam, computed by equating the classical time-averaged 

Poynting vector to ~c2~. The substitution of the vector potential 

(29) into the interaction Hamiltonian (28), follo:>wed by a treatment 

of time-dependent perturbation theory using the method of variation 

of parameters of Dirac, and leading to a discussion of the photo­

electric effect or other transitions involving the absorption of 

photons, can be traced in almost any book on quantum mechanics. 

The derivation in~olves at some step a resonant enhancement 

(ccmservation of energy!) arising from the time integral of the 

product of two exponentials, 

The first factor comes from the time dependences of the initial 

and final unperturbed states and the second fr6m the first term in · 

(29). Since Ef > Ei by assumption, the second (complex conjugate) 

term in ( 29 ). gives no contribution to the time j,ntegral. However, it 

takes no prodding to convince the student to c9nsider the opposite 

situation where Ei > Ef. He or she is thus led smoothly to spontaneous 

emission where the second (complex conjugate) piece in ( 29) is opera­

tive. It is plauSible in considering a transition with the emission 

of a single photon of wave number .5, that the same normalization 

constant ( JO) enters the vector potential here as for absorption. 

For our purposes the "golden-rule" result for the transition 

probability is not as appropriate as an expression for the differential 

probability at time t for the emission of a photon of polarization 

£ and wave number k in an elemental volume d3k: - -
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dp(t) 

(Jl) 

It is customary to extract the time dependence of the initial and 

final states and so obtain the exponential factor discussed above . . , 
because of our transition to a classical orbit following Baier and 

Katkov we treat the states and operators in the Heisenberg picture. 

In the limit as t + ...,., ( Jl) is the probability of photon emission 
~ .. 
~ 

into d\. The energy radiated can be obtained by multiplying by 'fiw. 

We are thus led to a result with a classical counterpart, the 

differential intensity of energy radiated with polarization ~ 

unit solid angle and per unit frequency interval, 

~-

per 

eo 
With the second term in (29) operative in (28) the interaction becomes 

(32) 

This gives 

( JJ) 

Here the velocity ~.(t) and t~e coordinate ~(t) are Heisenberg 

operators. Equation (JJ) can be compared with its classical analog.4 

The transition to the classical limit is evidently achieved by the 
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replacement, 

I * iwt-ik.r(t) ) 
\'~'it>l~ ·fl,(t) e ""''~ l'l'i(t) 

* iwt-i~;l,( t) 
-. it.. ·~.(t) e . 04) 

where now J.( t) and £.( t ) are given classical . quanti ties. This is 

just the result of Sch~nger ( 1954) and Baier and Katkov ( 1967b) in 

the limit that the.orbit is classical (the wave functions localized 

tightly around the orbit) and the energy of the emitted photon is 

very small compared to the energy of the particle (the noncommutativity 

of the various Heisenberg operators can then be neglected). 

The result (JJ) with the replacement (.34) can form a 

starting point for the derivation of the classic results of 

1 Schwinger (1949) and others for ordinary synchrotron radiation. 

The alert reader may have noticed that we began with.the nonrelativ­

istic Schrodinger equation and are now discussingextremerelativistic 

motion! · The reason this is permitted is that to the neglect of spin 

the interaction Hamiltonian {28) is. correct relativistically with 

a suitable velocity operator. In the classical limit, the v~locity 

operator is replaced by the classical velocity. The result is there­

·fore generally applicable for arbitrary speeds provided the trajectory 

is classical and Y <·< Y c • 

B. Semiclassical radiation theory for spin 

1. Nonrelativistic spin system 

' A semiclassical treatment of emission and absorption of 

radiation by a spin system in motion parallels the discussion of the 

last section. For orientation we first consider a spin .fi!- with 
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associated magnetic moment ~0 = g~~/2mc at rest in interaction with 

an external magnetic field ~· The Hamiltonian of interaction is 

-u ·B 
tl'iO "'' 

-(~)~-~ . (.35) 

The corresponding Heisenberg equation of motion is the familiar 

result, 

( i )..!.. S X 'R , 2 me·"' ... .., (J6) 

The interaction Hamil toni an ( .35 ) can be used to discuss the effects 

of static or time-varying magnetic fields on the energy levels and 

transitions of the spin system in isolation or perhaps with coupling 

to other (orbital) degrees of freedom. Spontaneous emission can be 

treated by the ansatz of the previous section--the emitted photon is 

described by the second term of the vector potential ( 29) with 

strength A given by ( JO). The electric and magnetic fields of 
0 

the emit ted photon are thus 

iwt-ik·r 
li'{ r, t ) = -i Y 2'11i:1W / e '"' r.r• 
i!J'.... "" 

iwt-ik·r 
B(r,t) = -iY2msw (n X e:*) e r . ..., 
rt'·."' ~ ......,.._. 

(.37) 

where n is a unit vector in the direction of k. With this magnetic 
... ~ (<T\ 

field inserted into (.35), standard lowest order perturbation theory 

leads, in the long wavelength limit, to the magnetic dipole transition 

rate (9 ). 
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2. Relativistic spin system 

In order to describe radiation by a spin system in relativ-

istic motion we must obtain suitable generalizations of {35) and 

(36). The relativistic equation of moti6n for spin is by now rela-

tively well known. It was first derived by Thomas {1927) in his 

detailed paper on what is called the Thomas precession, was discussed 

.. in a particle physics context by Bargmann, Michel, and Telegdi {1959 ), 
5 . 

and is now standard textbook fare. The Thomas-BMT equation of 

motion for the spin .11. of a particle of charge e, mass m, and 

rest-frame magnetic moment 1J = ge!is/2mc, in IllQtion with velocity • 
""'0 ..... 

in external electromagnetic fields E,B can be written in 
fll'"' 

lhomas' s original form, 

dsd""t = .!.. s x [ra + !)B -_!!_ s< s.a) - fa + _!_ '\ s x E] 
me "" - ' y "" y + 1 - if"""' \:: y + f);rr- ''"' 

. {:38) 

where a is called the magnetic moment anomaly and is defined by 

a = {39) 

The spin vector fn describes the spin in its rest system (just as 

does the Pauli ~2 and the Pauli spinors in the 2-component reduc­

tion of the 4-component Dirac spinor), but the time rate of change in 

(38) is with respect to laboratory time. 

Equation (JS) is the relativistic generalization of {35). 

Strictly speaking, it holds only for spatially uniform fields because 

it lacks _V(u·B) terms, but is an adequate description for suffi-...... ~ .,._. 

ciently slowly varying fields or weak fields,_ whatever their space 

and time variation. The Thomas-BMT equation can be thought of as 
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following from an effective Hrrmiltonian in the same way as (36) 

follows as a Heisenberg equation or motion from ( 35). Evidently 

this effective Hamiltonian is 

H(eff) 
int = - eh s · ( fa + !) B - -!L S( B ·B) 

me·"" ' y ,.,... y + 1 '"' ··~~ 
(a + -1:__) S x E] ~ 
' y + 1 .... ,..., 

{40) 

Although (40) is explicit and the most useful form for calcualticm, 

the terms in the square bracket can be rearranged into a more 

intuitive, if implicit, form. First we define the magnetic field 

in the rest_ frame of the spin, 

2 
B' = y{B - B X E)- _::t___l S{A·B) 
,... ,... lin ~ y + ,-m;;ftl1f' {41} 

lhen we introduce the Thomas precession angular velocity vector 

. 2 
_r.:_· e y r2 1 

... ~ = y + 1 {~ x_s.> = -·~ ,1S.B- S(A.~)- B X E • {42) ,..-l- ~-· me y + J. l "" ,... .t:. ;;;\ "" ,.... J 

In terms of !,' and ~ the effective Hamiltonian {40) can be. 

written 

H(eff) = - ! u ·B' + .fi~·-_s, int · Y of:o ,,., ...... -~ (43) 

B' _.. 

The two terms in (43) have immediate physical interpretations. The 

first is the expected rest-frame coupling between magnetic moment ~~d 

magnetic field in that frame, diminished by a factor y-l to account 

for the time dilatation seen in the laboratory (remember that (38) is 

a laboratory equation of motion, even though ~ is the rest-frame 

spin vector). The second term is the contribution to the energy from 

0 

a 

0 

..a.· 
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the relativistic Thomas precession of axes in the accelerated rest 

frame. 

3. Radiation formula 

The semiclassical description of radiation by the spin s ,. .. , 
proceeds with the replacement of the classical external fields E B 

lf"\lf'lfr-., 

in (40) by the fields {37) of the emitted photon. The effective 

Hamiltonian for emission then becomes 

[
H{eff)] = 
int emission 

where 

i -J 2nflw eir 
me 

iwt-i,1s,·,t 
s·V e 
rmttf\ {44) 

{45) 

The matrix element of { 44) between particle states {of spin 

and spatial coordinates) can be used straightforwardly to discuss 

transitions between states of. different spin orientation. For the 

present purposes we consider the classical limit of the ortiital 

motion, as in going from { 31) to { JJ) and ( 34). Since we are concerned 

primarily with electrons and positrons we specialize to spin ~ and 

write "!}. = ~/2. Comparison of the Hamiltonian {32) for the emission 

of radiation by a charge e with (44) shows that the formula at the 

end of the last section can be transcribed with the s~stitution~ 

* 1ik e: • B( t) + -i ·- a. V{ t ) 
""" ""' 2mc ... ""' 

(46) 

New the only quantum-mechanical aspect is the Pauli spin vector. The 

spin analog .of (33) and (34) is 

·2 
d Ispin 

Cilldw 

2~,2 4 
e •• w 

2 2 5 
1611 m c 

roo dt 

)-;ID 
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2 
iwt-ik • r{ t ) 

{rl.gli) ·~{t) e """" {47) 

with V{t) given by {45). The radiation is emitted in the course of ,.. 
a transition from initial spin state i to final spin state f, both 

states specified in the rest frame of the particle. While in 

principle nonfiip, as well as spin-flip, transi tiona contribute to the 

radiation, the nonflip transitions are dominated overwhelmingly by 

the ordinary charge radiation (see Eq. (3)). Thus only spin-flip 

transitions need concern us. 

The semiclassical { 4 7) and the corresponding result for the 

transition probability, derived from the Thomas-BMT equation, are 

shown in the appendix to follow from the matrix element of the Dirac­

Pauli current {with all" coupling for the anomalous magnetic 

moment) in the soft-photon limit. Equations ( 4 7) and { 45) thus proVide 

. a straightforward generalization to arbitrary g-factor of the formulas 

of Baier· and Katkov. They are of negligible practical value for 

g 1 2, but are put to pedagogic use below. 

Iri the appendix, ( 4 7) is also compared with a strictly 

classical expression for radiation emitted by a moving magnetic 

moment. The two results are not the same. The reasons for the 

difference are discussed. 

\ 
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IV. SPIN-FLIP SYNCHROTRON RADIATION FOR ARBITRARY g FACTOR 

A. Differential energy, photon number, and transition rates 

We now apply (47) to a calculation of the radiation emitted 

1 by a relativistic spin 2 particle of charge e and arbitrary g 

factor in a spin-flip transition while moving at velocity ~c in an 

instantaneously circular arc of radius p, Defining the time integral 

in (47) to be 

~(w,Jl,.~~.) = dt J_( t) e ...... f iwt-ik·~( t) 

we have the intensity of energy radiated per unit solid angle and per 

unit frequency interval with polarization ,S. in a single passage 

along the arc, 

(49) 

The number of photons emitted per unit solid angle, etc., is obtained 

by dividing by ifw: 

(50) 

' 

The differential transition rate follows from (50) with multiplication 

by w /2TT, where 
0 

w = flc/P: 
0 

(51) 

-)0-

This last result rigorously depends on the assumption of continuotis 

motion at constant speed in a circular orbit, but in practice holds 

provided the speed and radius of curvature are sensibly constant over 

a reasonable segment of path. The modifications for storage-ring 

orbits with bending sections and straight sections are almost self­

evident. For the total rate they have been incorporated in ( 5) and ~). 

We choose the initial spin direction to be along a unit axial 
c 

vector l; in the rest frame and consider a transition in which the 
- c -~-' 

spin direction changes from +l; to -l;. The square of the matrix 
,..,. "" c. 

element in (49)-(51), summed over photon polarizations, can thus be 

written 

s = L I (fl~:~li) 12 

pol 

(52) c;--. 

= Jr ' ' I ( m' I ( 1 - a .z; )a· u( 1 + a •l; H m ) 12 
.LO L L "" "" """ .,. - ...... 

pol spins 
0 

The sum over spins yields 

S = L [1~1 2 - 1,5:~1 2 + 2;_·( Im ~ x Re ~)) (53) 

pol 

What remains now is a calculation of u with V(t) given by (45) ,.,.. "" . 

and fl(t) and r(t) found from the circular orbit eq~ations (18), .... ,.,.. 
-1 approximated suitably for w ltl = O(y ). The approximations are 

0 

essentially the same as for ordinary synchrotron radiation1 and the 

integrals encountered the same. The relative complexity of ,Y.(t), 

expecially for a ; O, makes the calculation algebraically cumbersome 
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and not very illuminating. We merely quote results. The choice of 

coordinate axes and angles is shown in Fig. J. It is the same set of 

axes as in Fig. 2, with the x axis being the velocity direction at 

t = 0. Since the radiation pattern is strongly peaked in this direc­

tion, we choose the polar angle 6 with respect to it, although the 

angle up from the orbital plane is actually more appropriate. · 

B. DoUbly differential spectrum in frequency and angle 

For the sake of compactness in relatively unwieldy formulas 

we introduce some notation. We define 

t 

\1 = 

ye sin cp 

2w 

Jy3w 
0 

(54) 

In terms of these variables and T
0 

defined by ( lc) the differential 

transition probability (51), summed over photon polarizations, is 

Equation (55) continued next page 
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Equation (55) continued 

2 r. 2 2 2 2/t( 2 2 2\ ] _2 + (l+t )0l+a) +at - ~l ~l+a) -at J- 2~1~3a(l+a)t K2;3(n) 

(55) 

This somewhat formidable expression gives the differential rate of 

emission in . angle and frequency. In spite of the polynomials in ~ 

and t, the familiar modified Bessel functions show that the spectra 

are typical of synchrotron radiation, collimated in angle (with 

e sin~ ~ y-1 in this case) and with a broad spectrum of frequencies 

extending up to wmax - y3w
0

• The exponential behavior of the Bessel 

functions for large n assures that, although the spectrum depends in 

detail upon the g factor, the range of frequencies is 0 < w ~ Y3w0 , 

independent of g. A Lorentz transformation to the instantaneously 

comoving rest frame shows that the frequencies there are on the 

2 range, 0 < w' ~ y w
0

, independent of g. This is contrary to the 

naive expectation that wh given by ( 8) is a typical frequency in 

the movi~ frame. 

For the physically interesting case of a = 0 we consider 

the frequency-angle spectrum in detail in the next section. But for 

the P!esent we proceed direc~ly to the integrated rate and the 

polarization. 
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C. Angular distribution 

The simplest path to the integrated rate is by integration 

of (55) first over frequencies and then over angles. By means of the 

definite integral formula, 

2>..-
2 r (>.. + 1 + u + "') r(>.. + 1 ; u - "'\ r( >.. + 1 ; u + "') 

r(X+t) 2 -.;, 

x r( >.. + 1 ; u - "') 

the integration over frequencies yields the angular distribution, 

- 2~~3a(l +a)~ 

+ 
1
2",'6' ""1/1 + t

2 
h(1 + a)(1 + a+ 2at

2
) - t,_a2t(1 + 21;2 ~} 

(56) 
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Again, in spite of the polynomials in .:h with terms up to t 4, the 

relativistic forWard cone of radiation is evident by the presence of 

the factor (1 + t 2 )-5. 

D. Total rate, characteristic time, and polarization 

The integration over angles is accomplished most simply by 

noting from Fig. 3 that for small e, e sin~= sine sin~= cos 8 1 , 

0 
where e 1 is a polar angle measured from the z axis. Introducing 

C:J, 
a corresponding azimuthal angle ~ 1 and noting tnat the distribution . 
(56) is negligible except near e 1 · = Tr/2, we can write the solid angie"·'" 

c, 
element as 

.em = d~ 1 d(cos 8 1
) ~ ! d~ 1 dt y 

The range of t is effectively ( -co,oo) for y » 1. The integration C.: 

over ~~ contributes a factor of 2Tr and terms odd in t do not 

contribute. The remaining integrals are elementary. The final resul tO' 

for the transition rate is N 

w = 1 1 + ~ + J4a + ( B· r )2 [- ~ _ a + a . { 2 2] 
2T 9 ""45 "~ ,.,, 9 ' jn' 

0 

+ [cs X ~)·~12 ati + ~) + - 8- (i + a)(l + 4~)(a X ~)·t;l_ 
,.., "" .. ~ ' 2 5VJ \.: ~ ./ ~ ·~ .w.J 

(57) 

We have written the rate in a manner independent of the choice of 
,.. ·,.. 

coordinates by introducing the orthogonal unit v~~tors 8, a, B X B 
•. ,..,.,n """~ 

along what are the x, y, z axes in Fig. J, Equation (57) is the 

generalization to arbitrary g factor of the result (2) of Baier and 

Katkov ( 1967a). 
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The polarization of an initially unpolarized beam grows in 

time according to Eq. (·1 ), but with a rr:~~. life T that is obtained 
,.. ,.. 

by (57) by choosing r;; along S x B a!:.'i surmning the rates in the 
IJ.It, /\"" ,.,.,. 

6 
two directions. This yields a characteristic time, 

T = T [l + 19a + 113 a2]-l 
0 9 90 (58) 

,.. a 
The asymptotic polarization (in the direction Opposite to f3 X a ) - -.. 
is 

(59) 

'!he growth time T in units of T
0 

is shown as a function of _!! or 

g in Fig. 4. It decreases for large lgl as g-2, but has a 

maximum value of. ;/L
0 

= 8.88 when a = -o.8497 or g = 0.3186. The 

polarization as a function of a or g is shown in Fig. 5. Its - -
behavior is much more interesting than t~t of T/T0 • For large 

lgl the limiting value is P = 0.981. It has a maximum value of 

0.99196 at a = 2.22 (g = 6.44), and shows a dramatic dip to negative 

values on the range -1.00 <~ < ~0.75 · (0 < g < 0.5). For a < -1 

{g < 0), the polarization grows gradually up to its asymptotic value 

at large negative ~· 

To set the sign of the polarization in the framework of 

the "upper" and "lcwer" energy levels of a."l isolated magnetic moment, 
,.. 

we must realize that the "lower" level has s antiparallel to B x B 
.,.,.,.. /"JJIt"'r'- OlT"• 

for g > O, but parallel for g < 0. Fi5ure 5 thus shows that for g 

factors on the range _..., <! < 0.5 the "upper" energy state is 
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populated preferentially over the 11 loVler 11 , contrary to naive ideas 

of spontaneous emission by the isolated spin system. 

V. ANGULAR AND FREQUENCY DISTRIBUTIOUS FOR g =2 

The o~ly physically relevant g factor is g =2, appropriate 

for electrons and positrons. The total transition rate for spin-flip 

synchrotron radiation has been discussed in the Introduction. Here 

we examine the angular and frequency distributions of the radiation. 

These are .of academic interest only because, as we observed i;~ 

connection with Eq. (3), the. energy radiated in the spin-flip transi­

tions is negligible compared with the ordinary synchrotron radiation 

provided y << y • 
c 

A. Angular Distributions of Photons and of Radiated Power 

The starting point is Eq. (55), specialized to ~ = 0, for the 

doUbly differential transition rate in angle and frequency: 

• (1 - </)(1 • t2)~n<") • 2<3~ KJJi") K2/3("} 

(60) 

The notation is defined by Eq. (54), with reference to Fig. 3. The 

angle variable t is, for small e' y times the latitude \'lith 

respect to the z axis, that is, the angle between the direction of 

emission and the instantaneous plane of the orbit. It is the 

traditional synchrotron radiation angle, called w by.Schwinger 

(1949) and e ·by Jackson (1975). 
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The angular distribution of photons (number of photons per 

unit time per unit solid angle 7 ) is given by ( 56 ) with ..!!. = 0: 

dw 
dn 

16y 
2 4571" T 

0 

( J. + 

The angular distribution of radiated power (energy per unit time per 

unit solid angle) is obtained by multiplying ( 60) by -hw and then 

integrating over frequencies, as in going from ( 55) to ( 56). The 

result is7 

dP 
em 

These angular aistributions can be compared with the angular 

distribution of radiated power for the ordinary ( nonflip) synchrotron 

radiation, 

dPordinary 
(ill 

( 7 + 12t2 ) 
( 1 + t2 )7/2 

(63) 

We see that in the relativistic domain all the angular distributions 
.. -1 

are confined,to angles of the order of y away from the instantan-

eous orbital piane, with ~ = YW as the natural variable. The 

spin-flip angular distributions are somewhat narrower than the nonflip, 

tJ;e power decreasing as ltl-ll compared to ltl-5 at large ltl. 
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This is a reflection. of the harder photon spectrum of the spin-flip, 

magnetic radiation with an overall additional factor of w2 in its 

frequency spectrum relative to that emitted by a charge. Similarly, 

the difference in ~ dependence between the~ distribution (61) 

and the ~ distribution ( 62) is explained by the fact that the 

softer photons have a broader distribution in angle than the harder 
c ones. 

B. Total Transition Rate and Total Spin-Flip Power Radiated 
'""· 

The total transition rate of Baier and Katkov is obtained by 
c;. 

specialization of (57) to a= 0 or integration of (61) over angles 
~ A 

with dn = y dt d~'. The result is Eq. (2), which in the· present 

notation is 

w = *" [1 ~ ~ r; 
2 

+ _L r; ] 
T0 9 1 5 "'{j 3 

The total spin-flip power, from (62), is 

The ordinary radiated power is 

2(e
2

) 4 p =-- 'trw ordinary 3 ~P y o 

This leads to a ratio of spin-flip to ordinary power of 

p 
spin-flip 
p d .• 
or 1nary 

in agreement with (3) for ~.;1 = 0, r,;
3 

= ±1. 

.A 

0 

(64} 

0'• 

t~ 

( 65) f~ 

( 66) 

( 67) 
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C. Frequency Distributions 

The frequency spectrum of the radiation is found from (60) by 

integration over angles. This is not quite as easy a task as integra-

tion over frequency at fixed angle. The angular integral of (60) can 

be written 

dw 
cti 

( 2 )( 2 2 _ _2 ( 2 3/2 ( l 
+ 1 - ~1 1 + t ) K2;3(n) + 2~3 1 + t ) Kl;3(n) K213 n)Jr 

(68) 

where n = (v/2)(1 + t 2 )3/2 and v = 2w/JY3w . The modified Bessel 
0 

functions of order 1/3 and 2/3 are related to the Airy function 

Ai(~) and its derivative. Th~ appropriate integrals have been 

evaluated in another connection by Aspnes (1966 ). Expressing his 

Airy function forms in ·terms of Bessel functions, we obtain the 

relevant integrals: 

! J"" K113c s) ds 
'V3v v 

+J~ '>n<' > d' l 
v j 

Equation (69) contin~ed next page 
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Equation (69) continued 

(69) 

With these integrals and the conversion to the dimensionless fre-

quency variable v, the number of photons per unit time per unit 

interval in v takes the form, 

dw 
dv 

( 70) 

The corresponding expression for the spin-flip power radiated 

per unit interval in v is 

dP • fl' spln- lp 
dv 
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lbis can be compared with the frequency spectrum of the ordinary 

synchrotron radiation, 

dPordinary 
dv 

p 9 3 " [ { 
... 

ordinary 2i,;i " 

with the total power given by ( 66). 

(72) 

The normalized frequency distributions of the number of photons .. 
emitted per unit time in spin-flip transitions are shown in Fig. 6 fqr 

the "down" transition ( z;3 = +1, z;1 = z;2 = 0). and the "up" transi­

tion ( z;
3 

= -1, z;1 = z;2 = 0 ). The spectrum for the predominant 

"down" transition peaks around v ::: 1. 5 and extends to well beyond 

v = 4. The weaker "up" transition consists of semewhat softer photons, 

with a maximum at v : 0.7. The areas are respectively 0.962 

and 0.038, the "down" transition being 25.25 times as probable as 

the "up". 

A graphical comparison of the separately normalized power 

spectra for the spin-flip and the nonflip synchrotron radiations is 

given in Fig. 7. For the ordinary radiation the quantity plotted is 

the coefficient of Pordinary in (72). For the spin-flip radiation 

it is 27 -{i v3 /1281T times the square-bracket in ( 71 ) with 

z;1 = z;
2 

= 0, z;
3 

= ± 1. All the power spectra fall exponentially for 

large v, but for v ~ 1 their behaviors are very different. The 

ordinary synchrotron radiation spectrum is proportional to v113 

for small v, while the spin-flip spectra vary as v713• The spin-

flip radiation involves harder photons, as already mentioned in 

discussion of the angular distributions. The presence of an extra 

factor of w2 in the frequency distribution of radiation arising from 
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a magnetic moment in motion as compared to that for a charge in motion 

is a general feature, classically and quantum-mechanically.8 

VI. SUMMARY 

The primary pcrpose of this paper is didactic: to present as 

intuitive an interpretation as possible of the gradual transverse 

po;I.arization of electron and positron beams as they orbit in storage 0 

rings. A naive description of the process, utilizing a moving 

inertial frame, is shown to be deficient in several respects, even 

though it appears superficially to give roughly correct answers, 

at least for electrons and positrons. The basic reason for its 

failure (and hence the absence of a truly simple description) is 

that the spin system cannot be treated in isolation because it is 

imbedded in a virtual continuum of states associated with the 

mechanical motion of the particle. 

A semiclassical description of the radiative process is given 

by analogy with the well-known semiclassical treatment of radiation 

G 

.;t:;., 

.~ 

by a charged particle. 
C.,.J 

The classical relativistic equation of motion ~ 

for a spin in arbitrary motion in electromagnetic fields (the Thomas­

BMT equation) yields an effective Hamiltonian for the coupling of a 

spin to electromagnetic fields. In analogy with the substitution, 

ea·A -+ e8·A · 
~""""external , ""photon 

in the conventional transition to emission processes in the inter­

action Hamiltonian for a charged particle, we replace the exte~al 

!,. and .. ~, fields in the Thomas-BMT effective Hamiltonian with the 

corresponding fields for a photon. Perturbation theory then yields 

an essentially classical expression for the transition probability 
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with quantum mechanics entering only via the matrix element of the 

Pauli spin operator. It is proved in the Appendix that this result is 

equal to the quantum-mechanical expression in the limit of soft photons 

and the neglect of recoil on the path of the particle. Both of these 

qualifications are appropriate for 1 << y << y : (mcP~)i. c 

Some new results are derived concerning the spin-flip synchro-

tron radiation, the characteristic time of growth of the transverse 

polarization, and the ultimate polarization for-a charg~d particle of 

spin ~with arbitrary g factor. Since electrons artd positrons are 

the only particles likely to shaw detectable polarizations by this 

mechanism, these results are of no practical interest. They serve a 

pedagogic purpose, however, since they permit the upsetting of one 

of the key concepts of the naive description, namely, that the polari­

zation arises from spontaneous emission as the spin moves from its 

"upper" to its "lower" state in the magnetic field. It is found t~t 

for g < 0.5 the opposite is true. 

'Pte angular and frequency distributions of numbers of photons 

and of radiated power are presented for the physically interesting 

circumsta.rice of g = 2. They are compared with the corresponding 

spectra for the ordinary synchrotron radiation. This again is of 

limited practical value because of the minuteness of the spin-flip 

radiation, but may serve a pedagogic end. 

Finally we remark that our concern has been with the basic 

phenomenon and mechanism of transverse polarization by spin-flip 

synchrotron radiation. Important practical aspects of the secular 

+ -motion of spins in e e storage rings and of various mechanisms of 

detection of the transverse polarization can be found in. the papers by 

Baier (1971a,b) and Schwitters (1974) and the references therein. 
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APPENDIX 

In this appendix we establish explicitly that the appropriate 

quantum-mechanical matrix element of the Dirac-Pauli electromagnetic 

current for a particle of spin ~ and arbitrary magnetic moment reduces 

irr·the soft-photon limit to the semiclassical results (J2) and (44)•(45) 

for the nonflip and spin-flip transitions, respectively. We also 

examine·the _connection of this result to a purely classical expression 

for the radiation emitted by a moving classical magnetic moment. 

A. Soft-photon limit of the matrix element of the Dirac-Pauli current 

The relevant operator for the transition of a spin ~ particle 

of charge _2 and mass ~ from one state to another with the emission 

of a photon of momentum k and polarization £ is9 - -
[ 1 -ft. * iwt-i~·,t 
Hint = e ..!:. £ jll e 

emission Ill ll 
(Al) 

where jll is the Dirac-Pauli electromagnetic current operator for 

unit charge •. The appropriate matrix element is that of (JJ), 

with ( J2) replaced by (Al ). In the large-quantum-number (classical 

orbit) and soft-photon limit the quanti ties in ( Al) become c-numbers, 

except for a Dirac spinor product in the current. Comparison of (Al) 

with (32) and (44)-(45) shows that the correspondences between semi­

classical and quantum-mechanical results for the nonflip and spin-flip 

transitions are 

~ * ·llL - £ J 
ll onflip,radiation gauge 

2m [ * 1 '!; £ jll 
ll spin-flip1radiation gauge • 

(A2) 



The matrix element of the current j~, including a Pauli tenn 

. as well as the normal Dirac part, is 

(AJ) 

In writing ( AJ) the particle is assumed to be a point particle of 

charge ~~ mass ~ and anomalous moment !:• defined by (J9). The 

Dirac notation is that of Bjorken and Dreli (1964). _ The spinors are 

plane wave spinors normalized to one particle per unit volume. The 

4-momenta are p~ = (Po = y( t )m, ,2. = y( t )mj!( t )) . where J. = ~/dt 

is the instantaneous classical velocity, and p'P = pp- kP. The 

limit kp + 0 is to be taken, keeping only lowest order nanvanishing 

terms. 

The explicit verification of the correspondences (A2) follows 

straightforwardly upon reduction of (AJ ). to two-component form, using 

J = C
o ~·,!}.) 

O•B -B 
"" 0 

(A4) 

for any 4-vector BP = (B0 ,~), and 

\ 
u(p) X) 

and an analogous expression for u(p'). Without approximation, the 

result of this' two-component reduction is 

(A6) 

where 

+ m )( E + m) * [ G aw) J, 
4EE ' e: • 1 - - -- + wo 2m E+m 

0 
C. ) p' 

1 aw ..,. 
+ 2iii E1+ m 

+ a lf, X <l X ~/) .] 

2m(E + m)(E'+ m ) 

0 
(A7) 

and C: 

= ~ /(E' + m)(E + m) 
JJ v· 4EE' 

' 

' * * 1) + p 1 •(k X £ )p - p•p 1(k X £ ) \ 
/ftl """ 1m ,.., .... ,o) ..... ,..,.} J 

(AB) 

Using E' = E - w and p' = p - k, we can now eliminate E' 
,.. .-. - and p' _...., 

and keep only the lowest order nonvanishing contributio~ to A and B 

as w =· lkl becomes negligible compared to E and -find 

lim A 
ur+O 

* p 
£ .==. ,... E * = e: •S_ - ,., 

For A we 

(A9) 

as expected. ·The corrections are of order w/E. The anaomaly a 

does not enter until O(w2/mE). 10 The soft-photon limit of B is ,.., 
proportional to 1!1• We thus consider the analog of the 

the semiclassical lt of ( 45) and ( A2), namely 

--
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lim(_~ B) 
w-+0 ' w "" 

= 0 )k X Ef a p p•(k X E
1

) 
a +2!.. ~- ,....IW\ f'l'l'' ,,,;f 

E w E( E + m) W 

( ) 

p X Ef 

- a + --2!,_ I'~" "" E+m --y- (AlO) 

With E = ym, ~ = ~:. and .~ = ~~ the right-hand side of (AlO) 

becomes identical with ( 45). This establishes that the semiclassical 

·results derived from the Thomas-BMl' equation of motion are correct· 

quantum-mechanically for y << Yc· 

B. Comparison with a.purely classical expression 

A localized magnetic moment ~ in motion gives rise to radia­
"" tion whose spectrum of radiated energy with polarization e: .,.' frequency 

w, and wave vector ! = ~ is (Jackson, 1975, Eq.(l4.74)) 

X 
iwt-ik.r(t) 1

2 

e "" "" dt (All) 

The first term in the amplitude is evidently proportional to ~·B 
"" "'rad 

while the second is proportional to d·E where d = a X ~ is the 
"" .... rad' "" ,... -. 

electric dipole moment associated with the moving magnetic moment. 

As it stands, (All) b.ears only a slight resemblance to (47) 

with y(t) given by (45) or (AlO). This is because the magnetic 

moment l!,( t) is the moment observed in the laboratory. In ( 47) the 

spin matrix element is taken in the rest frame of the particle. To 

make a meaningfUl comparison it is therefore necessary to express ~ 
n> 
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in terms of Ji , the rest frame magnetic moment. Since magnetizatiOn 
.. ~o 

(magnetic moment density) and the negative of electric polarization 

(electric dipole moment density) transform \mder Lorentz trans forma-

tions in the same way as B and E, we find that ,.,, .... 

But the Dirac delta functio~ (inverse volumes ) transform as
11 

Hence the moving moment ~ is given in terms of the rest-frame moment 
If" 

(A12) 

The square bracketed quantity in the amplitude in (All) then can be 

written: 

(AlJ) 

The corresponding expression from ( 44) and ( 45 ) is 

= i!c CL··[fa + !)n x e:*- ....!L- B B·(nx e:*)- fa+ ~'\ax E*l 
••• \.."' y ,,. r-" Y + 1 '"• ff'> ~· ..,, \: Y + .1.) j 

(Al4) 

Comparison of (AlJ) and (Al4) shows that the classical expression has 

the same structure as the terms proportional to ~ in (Al4). This is 

quite understandable when we realize that the term involving a in the 
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current (A3) is the. Pauli term, (~~vF~vw). The second rank tensor 

(~~vljl) is the quantum-mechanical analog of the classical magnetiza­

tion tensor M~v with the same Lorentz group properties. 

It is instructive to write 

~ = (1 + a)~ o 
11110 .anc...., (Al5) 

in (A13) and then consider the difference between V name,..,. 
~classical' ~ 

( 1 + a) times the square bracket in ( Al3 ) , and k-m in ( A14): 

llV = V - V ,.. ...classical ""q-m 

l) * v * y . *] - - n x £ -~ B B·(n x £ ) -- B x £ Y lf'1 ,.., y + 1 ""' ...., rn ,.., y + l ,... ,.. 

(A16) 

With the identifications n x £ * + B and £. + ~. ( A16) is seen to ""' _, ,... ~.. ~· 

be proportional to the Thomas precession frequency ( 42). The difference 

between the classical ( Al3) and the quantum-mechanical ( A14) is 

precisely the matrix element of the Thomas precession energy, ~ ·~, 

in the effective Hamiltonian (43). 

We can now see clearly the difference between the purely 

classical treatment and the semiclassical or fully quantum-mechanical· 

treatment. It hinges on·the spin being a dynamical variable. In 

the classical approach, the magnetic moment, and by implication the 

spin since it is proportional via (Al5), is a prescribed function of 

time. It is coupled to the radiation fields with an interaction 

proportional to M>.0~0 • In terms of rest frame quanti ties this 

interaction becomes the first term in (4J). In contrast, consideration 
' 
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of spin as a dynamical variable leads to the complete effective 

·Hamiltonian (43), with a direct coupling of the spin~~· to the electro­

magnetic fields (provided the particle is charged) in addition to the 

coupling via the magnetic moment. This direct coupling, the Thomas 

precessional energy, gives a contribution to the radiation different 

in detail from the classical result (Al3). Only in the limits 
C• 

lal » l or B « l do the classical and quantum-mechanical expres-

sions approach each other. c 

.~· 
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FOOTNOTES 

l. See, for example, Jackson (1975), Sect. 14.6, or Landau and 

Lifshitz (1911), Sect. 74. 

2. The results from VEPP-2 at Novosibirsk are summarized in Sect. 6 

of Baier (197lb) which is a slightly updated version of Baier 

(197la), with the addition of these experimental observations. 

The results of the Orsay storage ring group are· contained in the 

report by Potaux (1971) to the accelerator conference in Geneva. 

J. A-summar,y of the work of Baier and Katkov on the classical regime 

and lowest order quantum corrections for ordinary and spin-flip 

synchrotron radiation can be found in Sect. 59 of Berestetskii, 

Lifshitz, and Pitaevsldi (1971), written in collaboration with 

Baier. 

4. Jackson (1975), Eq. (14.67). 

5. See, for example, Barut (1964), Sect. II.4; Hagedorn (1963), 

Chapter 9; Jackson (1975), Sect. 11.11; Sard (1970), Sect. 5.4. 

6. See.the solutions for the temporal behaviors of the components of 

the polarization vector given by Baier (197la,b), Sect. 3, esp. 

Eq. (3.23) ff. 

7. Strictly, the number of photons per unit time is not an instantan­

eous rate but actually the number of photons per passage of the 

particle times the repetition rate w/2'rr· Similarly, the radiated 

power is energy per passage times w
0
/2rr. 

8. Compare Eqs. (3J) and (All) for the classical expressions and see 

Low ( 1954) and Gell-Ma.nn and Goldberger ( 1954) for the original 

discussions of the quantum-mechanical soft-photon theorem for 

radiation by a particle possessing a charge and a magnetic moment. 
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9. For econoJey of notation we lapse into units in which t' = c = 1, 

e2 = 1/137, and use (w,k) as the photon•s 4-vector, with (E,p) 
~ ~ 

and (E 1 ,~1 ) as the charged particle 1 s 4-momenta before and after 

emission •. 

10. It is somewhat curious to note that neglect of terms of order 

w/E, with w - y3w , require l « y 
2

, while neglect of termS 
0 c 

. 2 5 4 
of order w /mE involving ~ require y « y c • 

/ 

11. This is just the FitzGerald-Lorentz contraction. 
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FIGURE CAPTIONS 

Fig. 1. Orbit of a positively charged particle with a uniform magnetic 

field B into the page is a circular path of radius p 

traversed at constant speed v. In the frame moving with 

velocity ;r,. to the right the orbit is retrograde, caused by 

a magnetic field B' = yB and a crossed electric field 

E' = yBB with directions as shown on the right. 

Fig. 2. Segment of particle orbit as seen in. the laboratory and in 

the instantaneously comoving inertial frame. In the labora-

tory the"path is the arc_ of a circle of radius p, traversed 

at constant angular speed lllo. In the moving frame it has 

a cusp at the origin. The tick marks and numbers along the 

path give the values of the laboratory time parameter, yw
0
t. 

Note that the length scale in the moving frame is p/l. 
Fig • .3. Coordinate system used in the calculations. The orbit lies 

in the x-y plane with x and y axes defined by the 

directions of ,!!, and J. at t = 0. The unit vector . .Jl 

specifies the ·direction of the photon wave vector !,· 
. .· 

Fig. 4_: Characteristic time T for. growth of transverse polarization 

in units of the electron-positron time T , Eq. (lc), as a 0 . 

function of ano~ ! (bottom scale) or i factor (top 

scale). 

Fig. 5. Asymptotic transverse polarization P as a function of the 

anomli.ly ! or ! factor. Positive values of P correspond 

" ,.. 
to a preponderance of spins in the direction of B x B (the 

direction of the guiding magnetic field for e > 0). For 

g < 0.5, .the particles' magnetic moments end up preferentially 
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opposite to the na[~etic field, contrary to naive 

expectations. 

Normalized frequency spectra T dw/dv for the number of 
0 

photons emitted per unit interval in ti,e dimensionless 

frequency variable v = 2w/3'?w . 
0 

The dominant "down" 

to 
A 

transition corresponds to a spin-flip from ~J = +1 

~J = -1 (spin finally in the directiop opposite to 8 .X 6). 
The small "up" transition is in.the reverse direction. 

Fig. 7. Log-log plot of separately normalized ordinary .(nonflip) and 

spin-flip power frequency spectra as functions of the dimen­

sionless variable v = 2w!Jy3w
0

• The actual spin-flip 

power is much smaller than the ordinary power provided 

Y << Yc (see Eq. (J) or (67)). A: low frequencies 

(v << 1), the nonflip distribution varies as v113 , while the 

spin-flip distrib~:ions vary as 7/J 
\1 • At high frequencies 

(v >> 1) all spe..:tra vanish exponentially (times different 

powers. 

/ 

0 

0 

J""' '--f. 

A 

c 
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Fig. 1. 
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