Lawrence Berkeley National Laboratory

Recent Work

Title

THERMODYNAMIC FUNCTIONS OF IRON

Permalink

https://escholarship.org/uc/item/54h8q7r6

Authors

Orr, Raymond L. Chipman, John.

Publication Date 1966-06-01

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Submitted to Trans AIME

· A Seco

UCRL-16937

· UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

THERMODYNAMIC FUNCTIONS OF IRON Raymond L. Orr and John Chipman June 1966 Thermodynamic Functions of Iron Raymond L. Orr and John Chipman

Abstract

Recently reported high-temperature thermal data have been incorporated in a review of the thermodynamic properties of iron. The recent data permit more consistent and reliable choices to be made for many of the properties, resulting in better established tabulations of the thermodynamic functions. Values of Cp, $H_T^{\circ} - H_{298}^{\circ}$, $S_T^{\circ} - S_{298}^{\circ}$, and $(G_T^{\circ} - H_{298}^{\circ})/T$ are tabulated for the solid and liquid phases of iron in both stable and metastable regions. Consistency of the tabulations has been maintained to the precision necessary to yield the Gibbs energy change between the bcc (α, δ) and fcc (γ) phases of iron at temperatures pertinent to alloy studies.

Raymond L. Orr, Member AIME, is Research Metallurgist, Inorganic Materials Research Division, Lawrence Radiation Laboratory, and Department of Mineral Technology, College of Engineering, University of California, Berkeley, California. John Chipman, Fellow of The Metallurgical Society, AIME, is Professor Emeritus, Department of Metallurgy, Massachusetts Institute of Technology, Cambridge, Massachusetts and Consultant, Inorganic Materials Research Division, Lawrence Radiation Laboratory, University of California, Berkeley, California.

The importance of the metal iron has stimulated many investigations of its thermodynamic properties at elevated temperatures. Reviews and summaries of the data have appeared from time to time. Among these the 1951 paper of Darken and Smith¹ deserves highest recognition for the quality of its criticism and for the precision and thermodynamic consistency of its tabulations. These and the more recent table of Kaufman, Clougherty and Weiss² reproduce the Gibbs energy of the (α, δ) - γ transformation with sufficient sensitivity for alloy studies. Other recent compilations of equal validity^{3,4,5,6} make no attempt to do this. Since this Gibbs energy change is not greater than 22 cal per gratom over the temperature range 1100-1800°K it is obviously desirable to tabulate values of $(G^{\circ}_{T} - H^{\circ}_{298})/T$ to four places of decimals even though the absolute accuracy would not warrant such precision. The necessity for reconsideration of the problem is emphasized by the recent publication of several important researches on the enthalpy and heat capacity of iron. The older work is well covered in the reviews cited and will be mentioned here only when actually employed in the tabulations. GAMMA IRON

Transition temperatures are taken from the selections of Elliott and Gleiser,⁵ based on the work of Boulanger⁷ and earlier workers. For the $\alpha - \gamma$ (A3) transition at 1184°K we retain the value 215 cal/g-atom adopted by Darken and Smith,¹ It has received confirmation in the recent work of Dench and Kubaschewski,⁸ and of Braun⁹ using adiabatic calorimetry, and of Wallace, Sidles and Davidson¹⁰ using a pulse heating technic. The enthalpy data of Olette and Ferrier¹¹ and of Anderson and Hultgren¹² at higher and lower temperatures may be extended to 1184°K to give the following values

-2-

which are adjusted to the required value of ΔH_{1184} :

$$H^{\circ}_{\alpha,1184} - H^{\circ}_{\alpha,298} = 8030 \text{ cal/g-atom}$$
 (1)

$$H^{\circ}_{\gamma,1184} - H^{\circ}_{\alpha,298} = 8245 \text{ cal/g-atom}$$
 (2)

Olette and Ferrier¹¹ proposed a constant heat capacity of γ . Their enthalpy data, however, fit an obviously curved line and, moreover, all other workers have found that Cp_{γ} increases with temperature. The mean value $\overline{Cp}_{\gamma} = (H_T^{\circ} - H_{1184}^{\circ})/(T - 1184)$ is plotted in Fig. 1 for their data and for those of Anderson and Hultgren.¹² If we adopt Cp_{γ} = 8.1 cal/deg g-atom at 1184°K, a mean among the three recent adiabatic values,^{8,9,10} the resulting straight line corresponds to:

$$Cp = 5.73 + 0.0020 T cal/deg g-atom$$
 (3)

In the lower part of Fig. 1 this is compared with the recent direct observations with which it is seen to be in good agreement. The enthalpy increment of γ between 1184°K (A3) and 1665°K (A4) is by this equation, 4127 cal/g-atom, which yields:

$$H^{\circ}_{\gamma,1665} - H^{\circ}_{\alpha,298} = 12372 \text{ cal/g-atom}$$
 (4)

DELTA IRON

Experimental and tabulated values of $\Delta H_{\gamma-\delta}$ have ranged from 100 to 260 cal/g-atom. Darken and Smith¹ calculated 189 cal/g-atom from the ironcarbon diagram but used 165 cal/g-atom in their tabulation. Hultgren et al.⁶ accepted 260±50 cal/g-atom. Most recently, Dench and Kubaschewski⁸ found 200 cal/g-atom and Braun⁹ found 203 cal/g-atom, both by direct measurement.

Recent enthalpy data for δ are consistent with the latter two values. From measurements over the full δ -region, Ferrier and Olette¹³ reported

 $H^{\circ}_{\delta, T} - H^{\circ}_{\alpha, 298} = 9.998 T - 4083.$ At the $\gamma - \delta$ (A4) transition temperature, 1665°K, this gives $H^{\circ}_{\delta, 1665} - H^{\circ}_{\alpha, 298} = 12564 \text{ cal/g-atom}$, and along with Eq. (4), the value $\Delta H_{\gamma - \delta} = 192 \text{ cal/g-atom}$. This is substantially lower than the value, 263±70 cal/g-atom, deduced by Ferrier and Olette, the difference being altogether in the equation for the heat capacity of γ , which is better represented by our Eq. (3) than by that of Olette and Ferrier.¹¹ From enthalpy measurements on δ over a smaller range of temperature (1725°- 1807°K), Morris, Foerster, Schultz, and Zellars¹⁴ reported $H^{\circ}_{\delta, T} - H^{\circ}_{\alpha, 298} = 10.109 T - 4262.$ When extrapolated to 1665°K, this yields $H^{\circ}_{\delta, 1665} - H^{\circ}_{\alpha, 298} = 12569 \text{ cal/g-atom}$ and, along with Eq. (4), $\Delta H_{\gamma - \delta} =$ 197 cal/g-atom.

The value of Cp_{δ} found by Dench and Kubaschewski,⁸ 9.96 at 1673°K, agrees well with the enthalpy data; while those of Braun,⁹ 9.51 at 1665°K to 9.87 at 1800°K, are slightly lower. We adopt the values $\Delta H_{\gamma-\delta} = 200 \text{ cal/g-atom}$ and an average Cp for δ of 10.00 cal/deg g-atom to give:

: . · ·		$H^{\circ}_{\delta,1665}$ -	$H^{\circ}_{\alpha, 298} =$	12572 cal/g-atom	(5)
		$H^{\circ}_{\delta, 1809}$ -	$H^{\circ}_{\alpha, 298} =$	14012 cal/g-atom	(6)
	1				

ALPHA IRON

and

16.

From 298°K to the ferromagnetic Curie temperature, taken here as 1042° K^{5,7} the recent Cp measurements of Braun⁹ and of Wallace et al.¹⁰ are in good agreement. For the most part their data are in substantially good agreement with the best earlier Cp data in that region, except in the 200° range below T_c, where the older values tend to be somewhat higher. Above 1042° K, however, the recent data, ^{8,9,10} which in this range include those of Dench and Kubaschewski⁸, scatter widely, as also do the older values.

The adopted curve for Cp_{α} , shown in Fig. 2, was drawn such that integration would yield values of $H^{\circ}_{\alpha,T} - H^{\circ}_{\alpha,298}$ which agreed with the enthalpy measurements of Anderson and Hultgren,¹² well within experimental uncertainty, and with the requirement of Eq. (1) at 1184°K. Agreement with the older but quite extensive enthalpy data of Jaeger, Rosenbohm, and Zuithoff¹⁵ was also found to be excellent. The adopted Cp curve joins smoothly with that of Kelley¹⁶ for T < 298°K. Below T_c , it follows the recent Cp data very closely except in the range between 700° and 900°K where the curve was raised slightly in order to agree better with the enthalpy data. Even here the maximum deviation from the measured values is less than 2 pct. Above T_c , agreement is best with the Cp data of Dench and Kubaschewski⁸; the deviation of their values from the adopted curve corresponds closely to that in the γ -phase.

METASTABLE BCC IRON

Between 1184° and 1809°K a smooth curve for the heat capacity of bcc-iron was drawn which was in agreement with the values already adopted and which satisfied the requirement that $\Delta G_{(\alpha, \delta) - \gamma} = 0$ at 1184° and 1665°K. Above 1450°K the curve is linear and is given by:

 $Cp_{\alpha, \delta} = 5.830 \pm 0.0024 \text{ T} (1450^{\circ} - 1809^{\circ}\text{K})$ (7) Within the stable δ -region, $1665^{\circ} - 1809^{\circ}\text{K}$, the average value of Cp_{δ} from Eq. (7) is 10.00 cal/deg g-atom, in good agreement with the experimental data for δ discussed previously. The adopted curves are shown in Fig. 2.

-5-

LIQUID IRON

The heat of fusion of δ at 1809° K was measured by Ferrier and Olette¹³, who reported 3292 ± 80 cal/g-atom. Ferrier¹⁷ also reported calculations from the phase diagrams, Fe-P, Fe-S, and Fe-C, all based on modern data. In the last two systems activity data in the solid and liquid phases are available and the accuracy of the calculations is very good. As an average of these studies, they¹³ suggest $\Delta H_{1809} = 3300 \pm 100$ cal/g-atom. This value is in complete agreement with the recent determinations of Morris et al.¹⁴ who reported $\Delta H_{1808} = 3298 \pm 100$ cal/g-atom. This agreement effectively disposes of any argument that might be advanced in favor of the older, higher values. The value, $\Delta H_{\delta-\ell,1809} = 3300$ cal/g-atom, is adopted, which, with Eq. (6), yields:

 $H_{1,1809}^{o} - H_{\alpha,298}^{o} = 17312 \text{ cal/g-atom}$ (8) Enthalpy data for the liquid measured by Ferrier and Olette¹³ in the range 1809°- 2210°K gave a heat capacity of 11.226 cal/deg g-atom. The enthalpy data of Morris et al.¹⁴ covered a much shorter range of temperature (1808°- 1875°K); the average Cp was 9.766 cal/deg g-atom. The enthalpy data are in better agreement than would appear from these average heat capacities and both sets of data are adequately represented by the adopted value:

 $Cp_{\ell} = 11.00 \text{ cal/deg g-atom}$

(9)

The hypothetical metastable melting point of γ is of interest in phase diagram construction. This temperature may be calculated from the adopted functions, which yield $\Delta G_{\gamma-\ell} = 0$ at 1798°K and $\Delta H_{\gamma-\ell}$, 1798^{= 3597} cal/g-atom.

-6-

THE TABULATIONS

The thermodynamic functions for the solid and liquid phases of iron, calculated from the foregoing considerations are given in Tables I and II. The value $S_{\alpha, 298}^{\circ} = 6.52$ cal/deg g-atom was taken from Hultgren et al.⁶ As mentioned previously, the calculations have been carried out to a precision greater than that warranted by the absolute accuracy of the values, in order to maintain an internal consistency equivalent to 1 cal/g-atom in the Gibbs energy changes for the $(\alpha, \delta) - \gamma$ transformation. Enthalpy increment values, initially carried to 0.1 cal/g-atom, have been rounded off to the nearest calorie in the tables. Values beyond the stable ranges for Fe_(γ) and Fe_(ℓ) and for Fe_(δ) above 1809°K result from extrapolations of the adopted Cp equations. The adopted equilibrium transformation functions are summarized in Table III. Finally, Table IV lists values for the Gibbs energy change for Fe_{(α, δ}) \rightarrow Fe_(ℓ) over the pertinent temperature range. ACKNOWLEDGMENTS

The authors thank Ralph Hultgren and Kenneth K. Kelley for several helpful discussions leading to the final adopted values. The work was performed under the auspices of the U.S. Atomic Energy Commission. REFERENCES

¹L.S. Darken and R P. Smith: <u>Ind. Eng. Chem.</u>, 1951, vol. 43, pp. 1815-20.

²L. Kaufman, E. V. Clougherty, and R. J. Weiss: <u>Acta Met.</u>, 1963, vol. 11, pp. 323-35.

³D. R. Stull and G. C. Sinke: <u>Thermodynamic Properties of the</u> <u>Elements</u>, pp. 112-13, American Chemical Society, Washington, D.C., 1956.

⁴K. K. Kelley: <u>U.S. Bur. Mines Bull.</u> no. 584, pp. 93-94, 1960.

⁵J. F. Elliott and M. Gleiser: <u>Thermochemistry for Steelmaking</u>, Vol. I, pp. 57-59, Addison-Wesley Publishing Co., Reading, Mass., 1960.

⁶R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley: <u>Selected Values of Thermodynamic Properties of Metals and Alloys</u>, pp. 103-12, John Wiley and Sons, New York, 1963.

⁷C. Boulanger: <u>Compt. rend.</u>, 1955, vol. 241, p. 1133.

⁸W.A. Dench and O. Kubaschewski: <u>J. Iron Steel Inst.</u>, 1963, vol. 201, pp. 140-43.

⁹M. Braun: <u>Über die spezifische Wärme von Eisen, Kobalt, und</u> <u>Nickel im Bereich hoher Temperaturen</u>, Inaugural Dissertation, Universität zu Köln, Germany, 1964.

¹⁰D.C. Wallace, P.H. Sidles, and G.C. Danielson: <u>J. Appl. Phys.</u>, 1960, vol. 31, pp. 168-76. ¹¹M. Olette and A. Ferrier: The Physical Chemistry of Metallic
Solutions and Intermetallic Compounds, <u>N.P.L. Symposium No. 9</u>, Paper 4H,
H.M. Stationery Office, London, 1959.

¹²P.D. Anderson and R. Hultgren: <u>Trans. Met. Soc. AIME</u>, 1962, vol. 224, pp. 842-45.

¹³A. Ferrier and M. Olette: <u>Compt. rend.</u>, 1962, vol. 254, pp. 2322-24. ¹⁴J.P. Morris, E.F. Foerster, C.W. Schultz, and G.R. Zellars:

U.S. Bur. Mines Rept. of Investigations no. 6723, 1966.

ា

¹⁵F.M. Jaeger, E. Rosenbohm, and A.J. Zuithoff: <u>Rec. trav. chim.</u>, 1938, vol. 57, pp. 1313-40.

¹⁶K.K. Kelley: <u>J. Chem. Phys.</u>, 1943, vol. 11, pp. 16-18.
¹⁷A. Ferrier: <u>Compt. rend.</u>, 1962, vol. 254, pp. 104-6.

Table I. Thermodynamic Functions for Solid Iron^a

	$^{\mathrm{Fe}}(\alpha,\delta)$				$^{\mathrm{Fe}}(\gamma)$			
• T ,°K	Cp cal/deg	$H_{T}^{o}-H_{298}^{o}$ cal/g-atom	S ^o -S ^o T ²⁹⁸ cal/deg	$\frac{-(G_{\rm T}^{\rm o}-H_{298}^{\rm o})}{T}$	Cp cal/deg	H ^o -H ^o T ^{-H} a,2 cal/g-at	$S_{T}^{\circ} - S_{\alpha,298}^{\circ}$ som cal/deg	$\frac{(G_{T}^{\circ}-H_{\alpha,298}^{\circ})}{T}$ cal/deg
200 15	<u> </u>			<u><u><u>g</u>-<u>a</u>tom</u></u>	<u>B-acom</u>		<u><u> </u></u>	g-acom
298.15	5.97	11	0.0000	0.0200		si si ji shek		
300	5.90 C 54		1 0240	0.3202				
400	0.04	1210	1.0340	0.7010	0 73	2174	E 2020	5 1050
500	7.10	1319	4 6075	7.7009	$\frac{0.13}{0.02}$	$\frac{31'14}{2057}$	$\frac{0.5230}{0.5695}$	0.4900
700	1.00	2007	4.09/0	0 2675	$\frac{0.93}{7.12}$	3837	$\frac{0.0000}{7.0510}$	$\frac{0.0002}{7.6575}$
700	8.21	2002	3.9222	8.3073	$\frac{1.13}{7.22}$	<u>4000</u>	$\frac{7.0518}{9.0100}$	1.0070
850	9.07	31102	7.0734	8.9494	$\frac{1.33}{7.42}$	5283	8.0109	0.0340
85U	9.01	4183	7.6408	9.2394	$\frac{1.43}{7.52}$	<u>5052</u>	$\frac{9.0043}{0.4019}$	$\frac{0.0349}{0.2169}$
900	10.30	4680	8.2088	9.0280	$\frac{1.53}{7.62}$	0020	$\frac{9.4918}{0.0016}$	$\frac{9.3102}{0.6705}$
950	11.29-	5218	8.7905	9.8174	$\frac{(.03)}{7.72}$	0400	$\frac{9.9016}{10.0055}$	9.0795
1000	13.01	5820	9.4073	10.1073	1.13	0789	$\frac{10.2955}{10.4400}$	$\frac{10.0203}{10.1613}$
1020	14.34	6092	9.0769	10.2241	$\frac{1.11}{7.70}$	0944	10.4490	$\frac{10.1012}{10.2276}$
1030	1.5.55	6241	9.8220	10.2827	$\frac{1.19}{7.01}$	1022	$\frac{10.5249}{10.0153}$	$\frac{10.2270}{10.2067}$
1042(1)	20.00	6448	10.0216	10.3535	7.81	7115	$\frac{10.0153}{10.0751}$	$\frac{10.3007}{10.3500}$
1050	13.03	6563	10.1318	10.4011	$\frac{1.83}{7.05}$	11/18	$\frac{10.6751}{10.7405}$	$\frac{10.3389}{10.4939}$
1060	12.31	6690	10.2515	10.4607	7.85	7256	$\frac{10.7495}{10.0005}$	10.4238
1080	11.58	6928	10.4742	10.5796	$\frac{7.89}{7.00}$	7414	10.8965	$\frac{10.5519}{10.6790}$
1100	11.09	(154	10.6820	10.6982	1.93	1512	11.0410	10.0780
1184(T _{$\alpha^{-\gamma}$})	9.90	8030	11.4497	11.1876	8.10	8245	11.6313	11.1876
1200	9.75	8187	11.5816	11.2790	8.13	8375	11.7402	11.2810
1300	9.26	9132	12.3382	11.8335	8.33	9198	12.3988	11.8434
1400	9.21	10052	13.0199	12.3599	8.53	10041	13.0235	12.3714
1500	9.43	10983	13.6625	12.8602	8.73	10904	13.6188	12.8695
1600	9.67	11938	14.2787	13,3372	8.93	11787	14.1886	13.3417
1665 ($T_{\gamma-\delta}$)	9.83	12572	14.6669	13.6363	9.06	12372	14.5468	13.6363
1700	9.91	12917	14.8722	13.7937	9.13	12690	14.7360	13.7913
1800	10.15	13920	15.4454	14.2318	9.33	<u>13613</u>	<u>15.2635</u>	14.2207
• 1809 (T _m)	10.17	14012	15.4961	14.2704	<u>9.35</u>	<u>13697</u>	<u>15.3101</u>	<u>14.2585</u>
1900 t. 2000	$\frac{10.39}{10.62}$	$\frac{14947}{15008}$	$\frac{16.0006}{16.5207}$	$\frac{14.6536}{15.0655}$	$\frac{9.53}{0.73}$	14556	$\frac{15.7733}{16.2672}$	$\frac{14.6323}{15.0279}$
~ 2000	10.03	19998	10.0397	15.0055	9.13	19918	10.2013	15.0218

 $a_{11}^{\circ}_{298}$ and S_{298}° refer to $Fe_{(\alpha)}$ in all cases. Functions for metastable phases are given in italics. From Hultgren et al.⁶: $H_{\alpha, 298}^{\circ} - H_{\alpha, 0}^{\circ} = 1073$ cal/g-atom and $S_{\alpha, 298}^{\circ} = 6.52$

cal/deg g-atom.

Table II. Thermodynamic Functions for Liquid Iron^a

•		710 710		$-(G^{\circ}_{T}-H^{\circ}_{\alpha}, 298)$
and the second second	Ср	$^{H}T^{-H}\alpha$, 298	$S_{T}^{-S}\alpha$, 298	T
T,°K	cal/deg	cal/g-atom	cal/deg	cal/deg
	g-atom		g-atom	g-atom
1200	11.00	<u>10613</u>	<u>12.8053</u>	<u>10.4811</u>
1300	<u>11.00</u>	<u>11713</u>	13.6858	11.1958
1400	<u>11.00</u>	<u>12813</u>	<u>14.5010</u>	11.8689
1500	11.00	<u>13913</u>	<u>15.2599</u>	12.5046
1600	11.00	15013	15.9698	13.1067
1700	11.00	<u>16113</u>	16.6367	13.6785
1800	11.00	<u>17213</u>	17.2654	14.2226
1809 (T _m)	11.00	17312	17.3203	14.2704
1900	11.00	18313	17.8602	14.7418
2000	11.00	19413	18.4244	15.2379
2100	11.00	20513	18.9611	15.7130
2200	11.00	21613	19.4728	16.1687
2300	11.00	22713	19.9618	16.6066
2400	11.00	23813	20.4299	17.0278
2500	11.00	24913	20.8790	17.4338
2600	11.00	26013	21.3104	17.8254
2700	11.00	27113	21.7256	18.2037
2800	11.00	28213	22.1256	18.5695
2900	11.00	29313	22.5116	18.9237
3000	11.00	30413	22.8845	19.2668
3100	11.00	31513	23.2452	19.5997
3200	11.00	32613	23.5944	19.9228

^aH°₂₉₈ and S°₂₉₈ refer to Fe_(α). Functions for metastable liquid are given in italics.

.

Table III. Temperatures	, Heats, and	Entropies of Tra	nsformations in Iron
Transformation	<u>т,°к</u> _	∆H <u>cal/g-atom</u>	∆S cal/deg_g-atom_
Ferromagnetic ($_{\alpha}$)	1042		
$\alpha \rightarrow \gamma$	1184	215	0.1816
$\gamma \rightarrow \delta$	1665	200	0.1201
$\delta \rightarrow \ell$	1809	3300	1.8242

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ΔG <u>cal/g-atom</u> 30 22
5001.739787010800.02776001.129067711000.02027000.710049711840.00008000.41623331200-0.00209000.21231911300-0.009910000.0808811400-0.0115	30 22
6001.129067711000.02027000.710049711840.00008000.41623331200-0.00209000.21231911300-0.009910000.0808811400-0.0115	22
7000.710049711840.00008000.41623331200-0.00209000.21231911300-0.009910000.0808811400-0.0115	and the second
800 0.4162 333 1200 -0.0020 900 0.2123 191 1300 -0.0099 1000 0.0808 81 1400 -0.0115	0
900 0.2123 191 1300 -0.0099 1000 0.0808 81 1400 -0.0115	- 2
1000 0.0808 81 1400 -0.0115	-13
	-16
1020 0.0629 64 1500 -0.0093	-14
1030 0.0551 57 1600 -0.0045	- 7
1042 0.0468 49 1665 0.0000	0
1050 0.0422 44 1700 0.0024	4
1060 0.0369 39 1800 0.0111	20

Table IV.	Gibbs	Energy	Change	for	$Fe(\alpha, \delta)$	→ Fe(v)
-----------	-------	--------	--------	-----	----------------------	-------	----

List of Figures

Fig. 1- Heat capacity of gamma-iron.

Fig. 2- Adopted heat capacity curves for iron and recent experimental

data for alpha-iron.

Ż

5

FIG 2. ADOPTED HEAT CAPACITY CURVES FOR IRON AND RECENT EXPERIMENTAL DATA FOR ALPHA-IRON.

MUB-11284

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

钧

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

=

. . .