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ABSTRACT 

Molecular and cellular mechanisms that control jaw length are becoming better 

understood.  This is significant since the jaws are not only critical for species-specific 

adaptation and survival, but they are often affected by a variety of size-related 

anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting.  This 

chapter overviews how jaw length is established during the allocation, proliferation, 

differentiation, and growth of jaw precursor cells, which originate from neural crest 

mesenchyme (NCM).  The focus is mainly on results from experiments transplanting 

NCM between quail and duck embryos.  Quail have short jaws whereas those of duck 

are relatively long.  Quail-duck chimeras reveal that the determinants of jaw length are 

NCM-mediated throughout development and include species-specific differences in jaw 

progenitor number, differential regulation of various signaling pathways, and the 

autonomous activation of programs for skeletal matrix deposition and resorption.  Such 

insights help make the goal of devising new therapies for birth defects, diseases, and 

injuries to the jaw skeleton seem ever more likely.  
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 “The most obvious differences between different animals are differences of size, but for 

some reason the zoologists have paid singularly little attention to them.…For every type 

of animal there is a most convenient size, and a large change in size inevitably carries 

with it a change of form.”  —J. B. S. Haldane, 1926 

 

Introduction:  On being the right jaw size during development and evolution 

As so eloquently expressed by Haldane in his classic essay, “On Being the Right 

Size”, every animal achieves its own individual size, which is closely tied to form, 

function, and fitness (Haldane, 1926).  In this context, size must be precisely controlled 

throughout development in order for animals and their constituent parts to attain proper 

structural integration and adaptation.  Nowhere is this notion truer than in the 

craniofacial complex, where size-related malformations are some of the most common 

human birth defects (Gorlin et al., 1990; Smith, 1997).  The jaw skeleton, in particular, 

displays a range of anomalies in size including hypo- and hyperplasia, pro- and 

retrognathia, micro- and macrognathia, asymmetry, and clefting.  Such variation in jaw 

length during development can often produce a spectrum of debilitating to life-

threatening conditions.  Nonetheless, variation in jaw length during evolution has also 

been essential for the adaptive radiation of vertebrates. Thus, identifying molecular and 

cellular mechanisms that both control jaw length and generate species-specific variation 

is critical to understanding disease and evolution. 

The jaws are among the most precisely adapted and highly modified structures of 

vertebrates, which facilitates complex species-specific behaviors related to feeding, 

respiration, predation, vocalization, mating, and grooming.  Such fundamental 
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connections between jaw size and jaw function provided a foundation for early theories 

of evolution by natural selection best exemplified by the beaks of Darwin’s finches 

(Darwin, 1859).  Since then, a wide array of genetic and embryological studies have 

shown that the establishment of jaw size is a complex process involving numerous gene 

regulatory networks, reciprocal signaling interactions, and hierarchical levels of control. 

Yet what has remained unclear are the particular determinants of jaw size that may play 

a role during the induction, allocation, proliferation, differentiation, and growth of neural 

crest mesenchyme (NCM), which serve as the progenitors of the jaw.  For example, 

mandibular hypoplasia and cleft palate may have as part of their etiology disruptions to 

the rate of proliferation or timing of differentiation in NCM (Dudas et al., 2006; Dudas et 

al., 2004; Ito et al., 2003; Oka et al., 2007; Satokata and Maas, 1994; Sharpe and 

Ferguson, 1988). Identifying molecular and cellular mechanisms through which the jaw 

skeleton achieves its proper length is crucial for devising new and efficacious 

treatments that could ultimately prevent birth defects. This lack of knowledge is 

significant since a major clinical objective is to devise molecular and cell-based 

strategies to lengthen the jaw in cases of mandibular hypoplasia, asymmetry, or 

malocclusion. 

Jaw length defects can arise from a wide-range of genetic or environmental 

perturbations.  For example, disruptions to Sonic Hedgehog (SHH) pathway members 

including Shh, Ptch1, Gas1, Gli2, Gli3, and Hhat contribute to micrognathia associated 

with conditions such as holoprosencephaly (Allen et al., 2007; Dennis et al., 2012; Hui 

and Angers, 2011; Melnick et al., 2005; Mo et al., 1997; Pineda-Alvarez et al., 2012; 

Roessler and Muenke, 2010).  Mutations in Fibroblast Growth Factor (FGF) pathway 
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members including Fgf8, Fgfr1, Fgfr2, and Fgfr3 also cause jaw length defects, 

especially in Crouzon and Apert syndromes (Martinez-Abadias et al., 2013a; Martinez-

Abadias et al., 2013b; Stanier and Pauws, 2012; Trumpp et al., 1999).  Mutations in 

Bone Morphogenetic Protein (BMP) pathway members such as Bmp4, Bmp7, Chordin, 

Noggin, Twist1, and Msx2 cause mandibular hypoplasia (Boell et al., 2013; Foerst-Potts 

and Sadler, 1997; Stottmann et al., 2001; Zhang et al., 2012; Zouvelou et al., 2009). 

Disruptions to the Transforming Growth Factor-Beta (TGFβ) signaling pathway also 

affect jaw length.  Mutations in TGFβ2 and TGFBR1 cause microretrognathia in Loeys-

Dietz Syndrome and when restricted to NCM (Loeys et al., 2005; Sanford et al., 1997; 

Zhao et al., 2008).  Jaw length defects are also associated with mutations in TGFBR2 

and Smad2, and Matrix metalloproteinase 2 (Mmp2) in Torg-Winchester Syndrome, 

Mmp13 in Spondyloepimetaphyseal dysplasia, and Osteoprotegerin (Opg) in Juvenile 

Paget’s disease (Gorlin et al., 1990; Nomura and Li, 1998; Oka et al., 2008; Oka et al., 

2007). 

Moreover, studies in birds have identified some factors that influence jaw size. 

For example, differential expression of Bmp4 in jaw progenitor cells influences variation 

in jaw depth and width among birds including Darwin’s finches, chicks, ducks, and 

cockatiels (Abzhanov et al., 2004; Wu et al., 2006; Wu et al., 2004) whereas jaw length 

appears to be regulated separately through a calmodulin-dependent pathway 

(Abzhanov et al., 2006; Schneider, 2007).  Likewise, factors such as SHH, FGFs, 

WNTs, and BMPs that are secreted from adjacent epithelial tissues have also been 

implicated in mediating the shape and outgrowth of the jaw and facial skeletons 

(Abzhanov and Tabin, 2004; Ashique et al., 2002; Bhullar et al., 2015; Brugmann et al., 
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2007; Brugmann et al., 2010; Doufexi and Mina, 2008; Foppiano et al., 2007; Grant et 

al., 2006; Havens et al., 2008; Hu and Marcucio, 2009, 2012; Hu et al., 2015a; Hu et al., 

2015b; MacDonald et al., 2004; Mina et al., 2002; Richman et al., 1997; Rowe et al., 

1992; Schneider et al., 1999; Schneider et al., 2001; Szabo-Rogers et al., 2008; Wu et 

al., 2006; Young et al., 2014).  But precisely how these pathways are regulated by NCM 

and how alterations to their regulation affect jaw length still needs to be clarified. Thus, 

an important and clinically relevant research goal is to address the question of jaw 

length on multiple hierarchical levels, and to manipulate developmental programs in 

ways that test the potential efficacy of molecular strategies for modulating jaw length. 

Also, observing how embryos respond to these changes is critical to devising new 

treatments for craniofacial defects. Currently, invasive surgery is the only option and is 

often needed on several occasions during childhood (Albanese and Harrison, 1998; 

Cordero et al., 2002; Joshi et al., 2014).  

Experiments in tissue regeneration and transplantation demonstrate that organs 

have an intrinsic capacity to “know” their proper size and to regulate growth accordingly 

(Leevers and McNeill, 2005).  But how intrinsic molecular and cellular programs operate 

within the local environment to modulate growth, and how the range of normal to 

abnormal phenotypic variation in size arises, remain poorly understood.  Also unclear 

are those mechanisms that serve as the targets of natural selection for evolutionary 

changes in organ size.  To address the question of how the jaw skeleton achieves its 

proper size and shape during development, we have been using a unique avian 

chimeric transplantation system that exploits species-specific differences between 

Japanese quail and white Pekin duck (Ealba and Schneider, 2013; Fish and Schneider, 
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2014a; Jheon and Schneider, 2009; Lwigale and Schneider, 2008; Schneider, 2005, 

2007; Schneider and Helms, 2003).  In particular, we have been asking the question:  

how do quail and duck achieve their remarkably different jaw sizes? Quail have short 

jaws compared to those of duck, which are relatively long (Fig. 1A).  We have focused 

on the lower jaw skeleton, which forms from the paired mandibular primordia.  NCM that 

migrates out of the caudal midbrain and rostral hindbrain is the only source of 

skeletogenic mesenchyme within the mandibular primordia (Couly et al., 1993; Köntges 

and Lumsden, 1996; Le Lièvre and Le Douarin, 1975; Noden, 1978; Noden and 

Schneider, 2006b). Our work has revealed that the orchestration of developmental 

programs regulating jaw length is under the regulatory control of NCM (Eames and 

Schneider, 2008; Jheon and Schneider, 2009; Schneider, 2005; Schneider and Helms, 

2003; Tokita and Schneider, 2009), but how NCM carries out this complicated task has 

remained unclear. 

Our experimental approach is relatively straightforward: pre-migratory NCM is 

exchanged between quail and duck embryos at the level of the neural tube.  Depending 

on the experimental design and desired outcome measures, we can transplant NCM 

unilaterally so that donor cells fill one side of the host jaw skeleton (Fig. 1B).  This 

maintains the non-surgical side of the host embryo as an internal control, and allows us 

to compare donor- and host-derived tissues directly in the same chimeric embryo 

(Eames and Schneider, 2005, 2008; Fish and Schneider, 2014a; Lwigale and 

Schneider, 2008; Solem et al., 2011; Tokita and Schneider, 2009; Tucker and Lumsden, 

2004).  Quail embryos mature at a much quicker rate than do duck (17 versus 28 days 

from fertilization to hatching), which causes faster-developing quail cells and relatively 
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slower-maturing duck cells to interact with one another as they become progressively 

asynchronous.  Such different developmental trajectories also provide a means to 

screen for the effects of donor cells on the host by looking for species-specific changes 

to the timing of gene expression, cell differentiation, and tissue formation.  Additionally, 

we can use an anti-quail antibody (Q¢PN), which does not recognize duck cells, in order 

to distinguish donor from host contributions (Fig. 1C).  We can also quantify the 

proportion of quail versus duck cells on the molecular level by applying a PCR-based 

strategy (Ealba and Schneider, 2013), which is particularly useful for gene expression 

studies (Ealba et al., 2015; Fish et al., 2014; Hall et al., 2014). 

Once quail and duck cells are intertwined with one another, resulting chimeras 

become challenged to integrate two distinct morphogenetic programs for species-

specific size and shape.  This allows us to pinpoint mechanisms underlying the 

patterning of the jaw skeleton through an empirical strategy where we 1) characterize 

donor-mediated transformations to jaw size and shape; 2) look for changes to the timing 

and location of developmental events underlying skeletogenesis such as mesenchymal 

condensation and differentiation; 3) evaluate effects of NCM on host derivatives 

involved in skeletogenesis including epithelia, blood vessels, muscles, and osteoclasts; 

4) assay for genes that become differentially expressed in chimeras; and 5) modulate 

the expression of these genes (i.e., perform gain- and loss-of-function experiments) to 

test the extent to which they regulate skeletal pattern and account for the chimeric 

phenotype (Eames and Schneider, 2005, 2008; Hall et al., 2014; Merrill et al., 2008; 

Noden and Schneider, 2006b; Solem et al., 2011; Tokita and Schneider, 2009).  

Overall, a major strength of this chimeric system is its ability to reveal in a relatively 
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normal physiologic context those signals that mediate interactions between donor NCM 

and host tissues, and ultimately lead to the establishment of species-specific size and 

shape. 

The use of the quail-duck chimeric system has led us to postulate that NCM 

employs a variety of very precise mechanisms to govern jaw length through three 

principal phases of development.  Initially, during migration and allocation of NCM, quail 

and duck have distinct numbers of progenitors destined to form the jaw skeleton, with 

duck having significantly more cells (Fish et al., 2014).  Then, as these populations 

expand, there is species-specific regulation of, and response to, various signaling 

pathways (Eames and Schneider, 2008; Hall et al., 2014; Merrill et al., 2008).  Finally, 

when these progenitors begin to differentiate into the cartilages and bones of the jaw 

skeleton, they execute autonomous molecular and cellular programs for matrix 

deposition and resorption through patterns and processes that are intrinsic to each 

species (Ealba et al., 2015; Eames and Schneider, 2008; Hall et al., 2014; Merrill et al., 

2008; Mitgutsch et al., 2011).  A long-term goal is to understand the way these 

mechanisms affect jaw length, how they are regulated, and the extent to which they can 

be targeted.  Much work points to the SHH, FGF, BMP, and TGFβ pathways as crucial 

players, and numerous pathway members and targets become altered in our quail-duck 

chimeras. We are finding that NCM differentially regulates and responds to SHH, FGF, 

BMP, and TGFβ signaling in a species-specific manner, which likely modulates the 

proliferation, differentiation, and growth of jaw progenitors, and generates variation in 

jaw length.  This provides us with insight into how these pathways empower NCM with 

its regulatory abilities during development, disease, and evolution. Our expectation is 
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that using highly divergent bird species to illuminate the determinants of jaw length will 

provide enough resolution to detect equivalent but likely much more subtle mechanisms 

generating normal and abnormal variation in humans. In this framework, we have been 

striving to define developmental periods when cells and tissues are responsive to 

inductive signals, which we hope will eventually help move the standard of care towards 

treating craniofacial defects in utero. 

 

Part 1:  Early determinants of jaw length 

The generation of NCM involves multiple and sequential developmental events, 

starting with induction at the boundary between neural and non-neural ectoderm, 

regional specification along the dorsal neural tube, maintenance of multi-potency and 

cell cycle control, transition from epithelium to mesenchyme (EMT), and migration 

(Betancur et al., 2010; Nikitina et al., 2008). NCM that emigrates from the midbrain 

through the first and second rhombomeres of the hindbrain populates the mandibular 

primordia (Couly et al., 1993; Köntges and Lumsden, 1996; Le Lièvre and Le Douarin, 

1975; Noden, 1978).  Much has been written about the ways in which the gene 

regulatory networks and developmental programs that control these events have 

remained highly conserved across vertebrates, and especially function as a mechanism 

for the elaboration of the vertebrate head (Bronner-Fraser, 2008; Depew and Olsson, 

2008; Nikitina et al., 2008; Northcutt, 2005).  Yet there is very little known about how 

changes to these programs can occur in ways that account for the evolution of species-

specific morphology.  
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In this context, we asked when, where, and how do duck embryos generate their 

long bills compared to quail embryos who make short beaks.  We started with the 

simple analogy that building a bigger structure such as a wall might involve using more 

bricks, as opposed to bigger bricks (Fish and Schneider, 2014c). Therefore, we 

concentrated on determining the number of jaw precursor cells, which are the NCM that 

migrate into the mandibular primordia.  We began by counting NCM at key embryonic 

stages (Fish et al., 2014).  At an early stage, when NCM is specified at the level of the 

neural folds, quail and duck appear to have equivalent amounts of NCM.  However, 

shortly thereafter, when NCM accumulates along the dorsal neural tube, duck have 

approximately 15% more NCM in the midbrain and rostral hindbrain, which is the 

population destined to migrate into the presumptive jaw region (Fig. 2B, C).  Moreover, 

slightly thereafter, the jaw primordia of duck contain twice as many cells as do quail.  To 

explain how an initial 15% difference could allow the population to double, we assayed 

for specific-specific variation in cell proliferation and cell cycle length (Fig. 2D, E). We 

found that while duck have a longer cell cycle, once embryonic stage is taken into 

account over absolute time, then duck cells actually proliferate more than those of quail, 

and in so doing provide duck with a cellular mechanism to increase their jaw length 

progressively throughout development. 

To search for molecular mechanisms through which duck might possibly 

generate more midbrain NCM that can migrate into the jaw primordia, we assayed for 

species-specific differences in the expression of genes known to be involved in the 

regionalization of the brain. We looked at Pax6 expression in the forebrain, Otx2 in the 

forebrain and midbrain, Fgf8 at the midbrain-hindbrain boundary, and Krox20 in 
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rhombomeres three and five of the hindbrain (Fig. 2A).  We compared duck and quail 

embryos at the time of neurulation and identified species-specific differences in brain 

shape and spatial domains of gene expression.  In particular, we observed that the 

midbrain of duck is shorter and broader, which is also evidenced by a distinct pattern of 

Otx2 expression. Ostensibly, this broader midbrain of duck enables more NCM to 

aggregate in the region that will ultimately populate the jaw region. Surprisingly, we also 

detected differences in the Otx2 expression domain between duck and quail embryos 

even before neurulation, indicating that essential species-specific patterning 

mechanisms that affect jaw size may operate at the earliest developmental stages.  

Overall, our results demonstrate precisely where and when changes to early 

developmental programs underlying the allocation and proliferation of NCM have likely 

played a role in the evolution of jaw size. 

Although we find that early differences in NCM number appear to be important 

for establishing species-specific jaw length, we also discovered that if we reduce or 

augment the amount of jaw progenitors (up to 25%), we do not observe a significant 

effect on jaw length prior to hatching (Fish et al., 2014).  Our results support other 

observations that the jaw can revert to its normal length after neural fold extirpation 

(Couly et al., 1996; Hunt et al., 1995; Scherson et al., 1993; Sechrist et al., 1995).  In 

these previous reports, however, normal jaw length was argued to result from 

regeneration of NCM at the neural tube, either by re-specification of the residual dorsal 

neuroepithelium (Hunt et al., 1995; Sechrist et al., 1995), or by an expansion of NCM 

produced by adjacent neural folds (Couly et al., 1996; Scherson et al., 1993).  In 

contrast, we find that NCM does not regenerate at the level of the neural tube and thus, 
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the return to normal jaw length requires some other compensatory mechanism likely 

involving signaling interactions with adjacent epithelia.  In other words, normal jaw 

length may be achieved by local regulation of proliferation within the post-migratory 

environment of the jaw primordia.  Importantly, such regulative development in the local 

environment allows for compensation of deficiencies in NCM up to some pre-specified 

species-specific population size, a capacity that could potentially be harnessed to 

supplement NCM number and restore normal jaw length in cases of human disease or 

injury. 

 

Part 2:  Determinates of jaw length during skeletal differentiation 

The relationship between size and shape has long been a focus of 

developmental and evolutionary biology.  Early size and shape studies focused 

principally on proportional scaling or “allometry” of anatomical structures that occurs 

ontogenetically during growth or phylogenetically across species (Huxley, 1932; 

Thompson, 1917).  This type of research led to the field of geometric morphometrics, 

which has combined multivariate methods and computer-based algorithms to quantify 

and display ontogenetic and phylogenetic differences in size and shape (Benson et al., 

1982; Bookstein, 1978, 1990; Hu et al., 2015b; Marcucio et al., 2011; Siegel and 

Benson, 1982; Smith et al., 2015; Young et al., 2010; Young et al., 2014).  Often 

morphometric data have been contextualized with quantitative genetics or evolutionary 

developmental theories like heterochrony, as a way to explain changes in size and 

shape during ontogeny and phylogeny (Alberch et al., 1979; Atchley, 1981; Atchley and 

Hall, 1991; Gould, 1966; Lande, 1979; McKinney, 1988).  We have combined the quail-
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duck chimeric system with morphometric and molecular analyses to study the 

development of Meckel’s cartilage in the lower jaw skeleton (Fig. 1D), and in so doing 

have found that NCM controls both stage-specific and species-specific size and shape 

(Eames and Schneider, 2008).   

The foundation for our work is built upon many other studies of size and shape in 

the vertebrate skull (de Beer, 1937; Hanken and Hall, 1993), primarily in relation to 

genetic specification of skeletal element identity (Balling et al., 1989; Creuzet et al., 

2002; Depew et al., 2002; Gendron-Maguire et al., 1993; Grammatopoulos et al., 2000; 

Hunt et al., 1998; Kimmel et al., 2005; Lufkin et al., 1992; Pasqualetti et al., 2000; Qiu et 

al., 1997; Rijli et al., 1993; Schilling, 1997; Smith and Schneider, 1998), epithelial- 

mesenchymal signaling interactions that are essential for the differentiation of cartilage 

and bone (Bee and Thorogood, 1980; Couly et al., 2002; Dunlop and Hall, 1995; 

Ferguson et al., 2000; Francis-West et al., 2003; Hall, 1980, 1982, 1987; Richman and 

Tickle, 1989; Richman and Tickle, 1992; Schowing, 1968; Shigetani et al., 2000; 

Thorogood, 1987; Thorogood et al., 1986; Tyler, 1978, 1983), secreted molecules that 

regulate skeletal polarity and dimensional growth (Abzhanov et al., 2004; Abzhanov and 

Tabin, 2004; Barlow and Francis-West, 1997; Crump et al., 2004; Francis-West et al., 

1998; Hu et al., 2003; Liu et al., 2005; Marcucio et al., 2005; Schneider et al., 2001; 

Wilson and Tucker, 2004; Wu et al., 2006; Wu et al., 2004), and mesenchymal control 

of species-specific skeletal morphology (Andres, 1949; Mitsiadis et al., 2006; Noden, 

1983; Schneider and Helms, 2003; Tucker and Lumsden, 2004; Wagner, 1959). 

Historically, the ability of NCM to convey species-specific pattern has been 

revealed mostly through inter-specific grafting experiments (Lwigale and Schneider, 
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2008; Noden and Schneider, 2006a).  Employing quail-duck chimeras has been a 

powerful means to understand how bones and cartilages in the face and jaws acquire 

their species-specific pattern (Jheon and Schneider, 2009; Schneider, 2005; Schneider 

and Helms, 2003; Tucker and Lumsden, 2004).  Chimeric “quck” embryos, which are 

duck hosts with quail donor cells, possess quail-like beaks and jaw joints, whereas 

chimeric “duail” exhibit duck-derived morphology in quail hosts (Fig. 1F).  We have 

spent the past decade or so trying to pin down the precise molecular mechanisms 

through which NCM accomplishes this complex task, and we have found most strikingly 

that donor NCM controls its own gene expression, cell cycle, and differentiation, as well 

as regulates certain aspects of the developmental programs of adjacent host tissues 

such as epithelia and muscles (Ealba and Schneider, 2013; Eames and Schneider, 

2005, 2008; Fish and Schneider, 2014b; Fish et al., 2014; Hall et al., 2014; Merrill et al., 

2008; Schneider, 2005, 2007; Schneider and Helms, 2003; Solem et al., 2011; Tokita 

and Schneider, 2009). 

To identify developmental mechanisms that generate skeletal size and shape, we 

focused on the differentiation and growth of Meckel’s cartilage (Eames and Schneider, 

2008).  Meckel’s cartilage of quail is substantially smaller than that of stage-matched 

duck and becomes distinctly shaped over time.  Again, because quail embryos develop 

at a faster rate than do duck embryos, chimeras reveal those aspects of size and shape 

regulation that are NCM-dependent.  We have found that NCM establishes both stage-

specific and species-specific size and shape, and does so by exerting spatiotemporal 

control over molecular and cellular programs for chondrogenesis.  NCM on the quail 

donor side of quck mandibles differentiated into chondrocytes on the timeframe of quail 
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controls as opposed to that observed on the contralateral duck host side.  Donor-

mediated shifts in cartilage differentiation were observed from the earliest stage of 

chondrogenesis.  Both Sox9, which is the earliest known molecular marker of 

chondrogenic condensations (Eames et al., 2003; Eames et al., 2004; Healy et al., 

1996; Zhao et al., 1997), and Col2a1, which is regulated directly by Sox9 (Bell et al., 

1997), were expressed prematurely by quail donor NCM relative to duck host NCM on 

the contralateral side.  Additionally, we determined that FGF signaling, which functions 

upstream of Sox9 and is essential for chondrogenesis (Bobick et al., 2007; de 

Crombrugghe et al., 2000; Eames et al., 2004; Govindarajan and Overbeek, 2006; 

Healy et al., 1999; Murakami et al., 2000; Petiot et al., 2002), is also regulated by NCM.  

While the secreted ligands Fgf4 and Fgf8 were expressed continuously by duck host 

epithelium prior to and during chondrogenesis, the receptor Fgfr2 was expressed 

prematurely only by quail donor NCM relative to duck host NCM on the contralateral 

side.  When we inhibited FGF signaling during this brief window of receptor activation, 

we blocked the formation of Meckel’s cartilage.  Therefore, by controlling the timing of 

FGF signaling as well as the expression of Sox9 and Col2a1, NCM most likely conveys 

information for stage-specific and species-specific size and shape to Meckel’s cartilage. 

In terms of evolutionary developmental biology, one exciting aspect of this work 

is the insight about how NCM keeps track of both stage-specific and species-specific 

size and shape simultaneously.  Seemingly, quail NCM makes a smaller jaw skeleton 

by shifting the timing of developmental events in the duck to resemble that found in the 

quail.  This is because quail NCM orchestrates its spatiotemporal programs for 

chondrogenesis autonomously and in so doing provides size and shape information 



	
   17 

across embryonic stages and between species in parallel.  Ultimately, this reveals that 

the developmental programs under the regulatory control of NCM link ontogeny to 

phylogeny mechanistically, and likely play a generative role in morphological evolution, 

which is a concept central to the field of evolutionary developmental biology (Alberch, 

1980, 1982; Alberch et al., 1979; Eames and Schneider, 2008; Gould, 1966, 1977; Hall 

and Olson, 2003; Schneider, 2005, 2007). 

Similarly, for bone formation in the lower jaw, we have found that quail NCM, 

when transplanted into duck, maintains its faster timetable for development, and 

autonomously executes molecular and cellular programs for osteogenesis, including 

expression of essential transcription factors such as Runx2 (Ealba and Schneider, 

2013; Eames and Schneider, 2008; Hall et al., 2014; Merrill et al., 2008).  Our 

experiments show that NCM establishes the timing of bone formation in the jaw 

skeleton by regulating cell cycle progression in a stage- and species-specific manner.  

Such work has led us to propose that NCM controls the timing of osteogenic induction, 

proliferation, differentiation, and matrix deposition through targets of TGFβ and BMP 

signaling, especially Runx2.  We have found that quail NCM, when transplanted into 

duck, maintains its faster timetable for development and autonomously executes 

molecular and cellular programs for osteogenesis, including premature expression of 

matrix-producing genes such as Col1a1.  In contrast, the duck host systemic 

environment appears to be relatively permissive and supports osteogenesis 

independently by providing circulating minerals and a vascular network.  Taken 

together, our studies have revealed that NCM dictates when bone forms by controlling 

the timing of cell cycle progression and mediating the transition from cell proliferation to 
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differentiation.  Transiently altering the cell cycle during early development can mimic 

chimeras by accelerating expression of Runx2 and Col1a1 (Hall et al., 2014).  We also 

serendipitously discovered that Runx2 expression might relate to jaw size in quail 

versus duck, since we observed higher endogenous expression of Runx2 in quail 

coincident with their smaller head skeletons.  By the time the jaw is becoming 

mineralized, Runx2 levels in quail rise to more than double those of duck.  By 

experimentally increasing the levels of Runx2 we were able to decrease the size of the 

beak skeleton, and in effect mirror the relationship between species-specific beak size 

and endogenous Runx2 levels.  Other studies have also made a connection between 

expected Runx2 expression levels (based on numbers of tandem repeats) and facial 

length such as in adult dogs and other mammals (Fondon and Garner, 2004; Pointer et 

al., 2012; Sears et al., 2007).  These observations specifically point to precise control 

over the levels of key transcription factors and the timing of skeletal cell differentiation 

as a potential developmental mechanism through which NCM can affect jaw length 

during development, disease, and evolution. 

 

Part 3:  Determinates of jaw length during late-stage growth 

While much of our work demonstrates that NCM conveys species-specific jaw 

size and shape by regulating the molecular and cellular programs that underlie the 

induction and deposition of cartilage and bone, we have also discovered that a 

previously unrecognized but equivalently important mechanism for regulating jaw length 

is the ability of NCM to mediate the process of bone resorption (Ealba et al., 2015).  In 

adults, bone resorption is linked to bone deposition as a mechanism for maintaining 
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homeostasis throughout the skeleton (Buckwalter et al., 1996; Filvaroff and Derynck, 

1998; Hall, 2005; Nguyen et al., 2013; O'Brien et al., 2008; Teitelbaum, 2000; 

Teitelbaum et al., 1997).  Yet the role and regulation of bone resorption during formation 

of the embryonic skeleton are less well understood. 

Bone resorption occurs following the actions of two cell types that are 

distinguished by their different embryological lineages and morphology.  Osteoclasts, 

which are derived from the mesodermal hematopoietic lineage (Jotereau and Le 

Douarin, 1978; Kahn et al., 2009), have historically been considered the predominant 

bone-resorbing cells (Boyle et al., 2003; Filvaroff and Derynck, 1998; Hancox, 1949; 

Martin and Ng, 1994; Teitelbaum, 2000; Teitelbaum et al., 1997).  Osteoclasts are 

multinucleated cells with ruffled borders and large and irregular morphology.  In our 

quail-duck chimeras, osteoclasts are derived solely from host mesoderm.  However 

osteocytes, which in the skeleton of the jaws and face arise entirely from NCM (Helms 

and Schneider, 2003; Le Lièvre, 1978; Noden, 1978), also resorb bone (Belanger, 1969; 

O'Brien et al., 2008; Qing et al., 2012; Tang et al., 2012; Xiong and O'Brien, 2012; 

Xiong et al., 2014).  Osteocytes typically are small, star-shaped cells with long 

cytoplasmic extensions.  When osteoclasts and osteocytes resorb bone they both 

secrete tartrate-resistant acid phosphatase (TRAP) (Minkin, 1982; Qing et al., 2012; 

Tang et al., 2012).  Additionally, each express distinct molecular markers such as 

Mmp9, which is found in osteoclasts (Engsig et al., 2000; Reponen et al., 1994), and 

Mmp13, which is detected in osteocytes (Behonick et al., 2007; Johansson et al., 1997; 

Sasano et al., 2002).  When cartilage is replaced by bone during endochondral 

ossification, Mmp9 and Mmp13 also become expressed by hypertrophic chondrocytes 
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(Colnot and Helms, 2001).  However, there is essentially no endochondral ossification in 

the lower jaw of birds since Meckel’s cartilage persists as a permanent cartilage (de 

Beer, 1937; Eames et al., 2004; Ekanayake and Hall, 1994; Kavumpurath and Hall, 

1990).  The only replacement of cartilage by bone in birds occurs in the proximal-most 

region within the articular cartilage beginning shortly before hatching (Mitgutsch et al., 

2011; Starck, 1989).  The remaining bone in the lower jaw differentiates directly from 

NCM through intramembranous ossification (Helms and Schneider, 2003; Noden and 

Schneider, 2006a; Noden, 1978, 1982; Noden and Trainor, 2005).  Thus, within the 

lower jaw of chimeric quck following transplant of NCM, Mmp9 would be almost entirely 

expressed by duck host-derived osteoclasts and Mmp13 by quail donor-derived 

osteocytes. 

When we compare the process of bone resorption in short-beaked quail versus 

long-billed duck we find that quail have dramatically higher levels of TRAP (Fig. 2H, I), 

Mmp9, and Mmp13.  Similarly, our chimeric quck develop quail-like jaw skeletons 

coincident with higher quail-like levels of TRAP, Mmp9, and Mmp13.  This means that in 

chimeric quck, quail donor NCM not only continues to act out its own intrinsic species-

specific program for bone resorption via higher Mmp13 expression and TRAP activity, 

but also up-regulates the expression of Mmp9 in duck host osteoclasts.  This reveals an 

unexpected NCM-mediated mechanism through which quail and chimeric quck acquire 

their shorter jaws.  In other words, the amount of bone resorption in birds appears to be 

inversely proportional to jaw length.  This conclusion is substantiated by the fact that 

either blocking or activating bone resorption with drugs (e.g., bisphosphonates), 
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recombinant proteins (e.g., rOPG or rRANKL), or small molecule inhibitors, can 

significantly lengthen or shorten the jaw. 

Thus, quail and duck express species-specific molecular programs underlying 

bone resorption, and these programs are governed by NCM.  Such experiments point to 

a novel function for bone resorption, which is to help establish species-specific jaw 

length, and they build upon prior work on Darwin’s finches and other species, which 

contend that a critical regulator of beak length is the calcium binding protein, calmodulin 

(Abzhanov et al., 2006; Gunter et al., 2014; Schneider, 2007).  Calmodulin has been 

shown to control osteocytes and osteoclasts locally (Choi et al., 2013a; Choi et al., 

2013b; Seales et al., 2006; Zayzafoon, 2006).  In this regard, calcium signaling and its 

effects on bone resorption (Hwang and Putney, 2011; Kajiya, 2012; Xia and Ferrier, 

1996; Xiong et al., 2014), may function as a developmental mechanism that facilitates 

the evolvability of the avian beak more generally (Kirschner and Gerhart, 1998), and 

dictates jaw length more specifically (Gunter et al., 2014; Parsons and Albertson, 2009).  

Furthermore, taken together these studies suggest that bone resorption may function 

like a rheostat during jaw length evolution, and one that is particularly sensitive to the 

availability of dietary calcium in varying ecological niches, the endocrine effects of 

calcium-dependent hormones, and the temporal and spatial modulation of calcium 

signaling within the primordia of the developing jaw (Schneider, 2007). 

Such conclusions are in agreement with previous work postulating that 

differential fields of deposition and resorption lead to changes in size and shape during 

growth of the jaw skeleton in humans (Enlow et al., 1975; Moore, 1981; Radlanski and 

Klarkowski, 2001; Radlanski et al., 2004).  These findings also help explain the basis for 
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abnormal snouts in mice with mutations in genes known to affect resorption such as 

Mmp2 (Egeblad et al., 2007), and they provide insights into the etiologies of jaw length 

defects in humans with conditions such as Spondyloepimetaphyseal dysplasia (i.e., 

Mmp13), Juvenile Paget’s disease (i.e., Opg), and after treatments with high doses of 

bisphosphonates such as zoledronic acid, which inhibit bone resorption (Gorlin et al., 

1990; Lezot et al., 2014).  Based on these types of experiments, we have become 

increasingly optimistic that precise pharmacological strategies can be devised to target 

and carefully modulate bone resorption as a non-invasive, non-surgical means for 

treating human defects in jaw length such as malocclusion or even mandibular 

hypoplasia.  Overall, the extraordinary ability of NCM to exert spatiotemporal control 

over the induction, differentiation, deposition, mineralization, and resorption of bone 

(Eames and Schneider, 2008; Hall et al., 2014; Merrill et al., 2008; Schneider and 

Helms, 2003) is what integrates the molecular and cellular determinants of jaw length 

throughout embryonic development (Fig. 2J), and is what endows NCM with its unique 

ability to generate variation in jaw length during disease and evolution.   
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FIGURE LEGENDS 

 

Figure 1.  The quail-duck chimeric system for investigating the origins of species-

specific jaw length. (A) Lower jaw skeletons of adult Japanese quail (Coturnix coturnix 

japonica) and white Pekin duck (Anas platyrhyncos).  (B) Schematic of rostral neural 

tube at embryonic stage (HH) 9.5, depicting the levels of neural crest mesenchyme 

(NCM) destined for the jaw primordia and grafted from quail (red) to duck (blue). (C) 

Horizontal section through the mandibular primordium of a HH29 chimeric quck embryo 

(rostral at top), which will give rise to the lower jaw skeleton.  Quail donor mesenchyme 

(black), stained with a quail-specific antibody (Q¢PN), is distributed throughout the 

transplanted side, while only a few quail cells are found on the contralateral duck host 

side.  (D) Schematic of a lower jaw skeleton in a chimeric quck embryo at HH38, 

showing the contributions of transplanted quail donor NCM (red) to cartilage and bone.  

(E) The lower jaw skeletons of quail and duck display species-specific differences in 

size and shape with duck being longer and more curved.  Meckel’s cartilage is stained 

with Alcian blue and the bones are stained with Alizarin red.  (F) In quck mandibles, the 

quail donor-derived jaw skeleton is shorter and straighter than that observed for the 

contralateral duck host-derived jaw skeleton, which is longer and curved.  Panels A–E 

modified from Eames and Schneider (2008); F modified from Fish and Schneider 

(2014a). 
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Figure 2.  Molecular and cellular mechanisms regulating jaw length.  (A) Quail and 

duck have distinct head shapes and species-specific regionalization of the neural tube 

at embryonic stage (HH) 10.  Duck have a foreshortened and mediolaterally broader 

midbrain (mesencephalon).  Genes including Foxg1, Pax6, Otx2, Fgf8, and Krox20 are 

expressed in domains at HH10 with each being shifted more anteriorly in duck versus 

quail.  (B, C) Differences in the allocation of NCM to the maxillary (mx) and mandibular 

(ma) primordia of the presumptive jaw region can be seen following in situ hybridization 

for Dlx2 at HH13 in quail versus duck.  The Dlx2-positive NCM domain and stomodeum 

(st) demonstrate that duck (blue) have a larger population of NCM relative to quail (red).  

(D, E) Phosphohistone H3 (PH3) identifies mitotic cells at HH16.  While duck develop at 

a slower rate (taking about 45 hours to progress from HH13 to HH20 versus 32 hours in 

quail), duck NCM completes roughly 3.3 cycles during this developmental window 

compared to an average of 2.9 cycles for quail.  Thus, the rate of proliferation relative to 

the rate of development is faster in duck.  (F, G) As a result by HH20, the jaw of duck is 

approximately twice the size of that of quail.  (H, I) Staining for tartrate-resistant acid 

phosphatase (TRAP) in the jaw skeleton reveals less bone resorption in duck versus 

quail at HH37.  (J) Multiple developmental events regulate jaw length.  Specification at 

the neural plate establishes a shorter and wider midbrain in duck. This difference, 

evidenced by distinct Otx2 expression domains, is evident by HH6 and leads to a larger 

allocation of NCM to the jaw primordia by HH13.  Duck NCM have a higher proliferation 

rate due to differences in developmental rate (time arrows on side).  Finally, lower 

amounts of bone resorption result in differential growth and elongation of the duck jaw 

skeleton.  Panels A–G, and J from Fish et al. (2014); H, I from Ealba et al. (2015). 
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